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The main goal of many political and intelligence forecasts is to effectively 

communicate risk information to decision makers (i.e. consumers). Standard reporting 

most often consists of a narrative discussion of relevant evidence concerning a threat, and 

rarely involves numerical estimates ofuncertainty (e.g. a 5% chance). It is argued that 

numerical estimates of uncertainty will lead to more accurate representations of risk and 

improved decision making on the part of intelligence consumers. Little work has focused 

on how well consumers understand and use forecasts that include numerical estimates of 

uncertainty. Participants were presented with simulated intelligence forecasts describing 

potential terrorist attacks. These forecasts consisted of a narrative summary of the evidence 

related to the attack and numerical estimates of likelihood and potential harm. The primary 

goals were to explore how the structure of the narrative summary, the format oflikelihood 

information, and the numerical ability (numeracy) of consumers affected perceptions of 
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intelligence forecasts. Consumers perceived forecasts with numerical estimates of 

likelihood and potential harm as more useful than forecasts with only a narrative evidence 

summary. However, consumer's risk and likelihood perceptions were more greatly 

affected by the narrative evidence summary than the stated likelihood information. These 

results show that even "precise" numerical estimates of likelihood are not necessarily 

evaluable by conswners and that perceptions of likelihood are affected by supporting 

narrative information. Nwneracy also moderated the effects of stated likelihood and the 

narrative evidence swnmary. Consumers higher in numeracy were more likely to use the 

stated likelihood information and conswners lower in nwneracy were more likely to use the 

narrative evidence to inform their judgments. The moderating effect of likelihood format 

and conswner's perceptions of forecasts in hindsight are also explored. 

Explicit estimates of uncertainty are not necessarily useful to all intelligence 

conswners, particularly when presented with supporting narrative evidence. How 

conswners respond to intelligence forecasts depends on the structure of any supporting 

narrative information, the format of the explicit uncertainty information, and the numerical 

ability ofthe individual conswner. Forecasters should be sensitive to these three issues 

when presenting forecasts to conswners. 
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CHAPTER I
 

INTRODUCTION AND PROBLEM STATEMENT
 

Introduction to Policy and Intelligence Analysis
 

Human societies are more interdependent with respect to economics, culture, and 

human ecology than at any other time in history. As a result of this increased 

dependency, political and business leaders are often faced with monumental decisions 

about policy that have the potential to affect vast numbers of people around the world. 

Thus, it is very important that these decisions are based on the very best information and 

analysis. 

There are numerous public and private agencies that conduct analysis and research 

with the goal of aiding political decision makers. This decision support is called policy 

analysis and/or policy focused-research. Morgan & Henrion (1990) define policy 

analysis as an "analytical activity undertaken in direct support of specific public or 

private sector decision makers who are faced with a decision that must be made or a 

problem that must be resolved" (pg. 16). In addition, "the objective ofpolicy analysis 'is 

to evaluate, order and structure incomplete knowledge so as to allow decisions to be 

made with as complete an understanding as possible of the current state of knowledge, its 

limitations and implications' (Morgan, 1978)". 

US intelligence agencies are an example of a public entity that provides policy 

analysis and policy-related research to senior US decision makers. The analysis and 

forecasting activities of US intelligence agencies take several unique forms, which can be 

categorized into three basic types of intelligence - strategic, tactical, and indications and 

warnings intelligence (Clark, 2004; a similar categorization is discussed by Cooper, 

2005). Strategic intelligence involves in-depth research focused on the capabilities and 

plans of a target. These are long-range intelligence products that tend to be broad and 

complex in terms of both information sources and the time window covered in the report. 
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The National Intelligence Estimates (NIE's) generated by the Central Intelligence 

Agency (CIA) are strategic intelligence products. In contrast to the complexity and 

breadth of the NIE's, tactical intelligence involves the collection and transmission of 

current (real-time) information to support issues that require immediate action or are 

currently being executed. Finally, arguably the highest priority activity for an 

intelligence agency is "providing indications and warning on threats to national security" 

(Clark, 2004, pg. 159). Indications and warnings intelligence involves "detecting and 

reporting time-sensitive information on foreign developments that threaten the country's 

military, political, or economic interests" (Clark, 2004, pg. 159). Generating forecasts 

and providing reports warning ofpotential terrorist attacks is one example of this type of 

intelligence product. 

One of the primary goals of indications and warnings intelligence is communicating 

risk information to government decision makers or other consumers of the risk analyses l
. 

As Fisk (1995) comments, "Problems of 'indications analysis' or 'intelligence warning' 

are essentially questions of how to assign probabilities to hypotheses of interest" (pg. 

264). For example, one hypothesis of interest could be the proposition that a known 

terrorist group will carry out a specific terrorist act within a given timeframe. Decision 

makers responsible for national security would greatly benefit by being warned of such a 

plot, and ideally they would also like to know the chances that this attack will occur and 

the potential harm that would result if the attack were to succeed. In this sense, the 

indications and warnings intelligence process is really a form of estimating and 

communicating risks. The present work is focused on understanding the factors that 

influence consumer perceptions of indications and warnings intelligence products. 

Reporting the Results of Intelligence Forecasts 

US intelligence analysts, and policy analysts more generally, have traditionally relied 

on qualitative methods for the bulk oftheir analysis and forecasting. Two main 

1 In this context, the "consumers" are those individuals that use intelligence forecasts to make decisions 
about policy and action (e.g. military leaders, the president, and others). 
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techniques include model based approaches (see Clark, 2004) and scenario-based 

forecasting (see Clark, 2004; Schwartz, 1996). One common feature of these qualitative 

approaches is that probability and/or margins of uncertainty are not explicitly represented 

when developing and reporting forecasts. Although there are several modem examples 

of large-scale policy analyses in which numerical uncertainties are estimated and reported 

(Morgan & Henrion, 1990), explicit uncertainty analysis has not reached the state of 

standard practice in many domains ofpolicy and risk analysis. 

Several authors have noted that the insufficient description of probability and analyst 

uncertainty has contributed to intelligence failures and other difficulties in 

communicating forecasts. For example, Armstrong, Leonhart, McCaffery & Rothenberg 

(1995) discuss several intelligence failures that were caused, at least in part, by a 

"reluctance to quantify their [the analysts'] theories ofprobability or their margins of 

uncertainty" (pg. 240). The historical forecasts they examined included the first Chinese 

nuclear test, the OPEC price decrease ofDecember 1973, and the Ethiopian revolution of 

1974. In addition, Michael Schrage in an editorial for the Washington Post (February, 

20th 
, 2005) discussed the importance of analysts including estimates of uncertainty in 

intelligence reports. He describes the lack of quantitative uncertainty estimates as an 

institutional bias and points out that many other professionals, including insurance 

analysts, bankers and public health practitioners, routinely use quantitative risk analyses. 

Why should intelligence forecasts concerning national security, often reported directly to 

the President, have less analytic complexity than the forecasts generated by the 

professionals mentioned above? The closest that most intelligence analysts come to 

quantifying probability or margins of uncertainty are vague verbal probability estimates 

(i.e. this attack "could" occur; the attack is "highly unlikely" at this point, etc; Zlotnick, 

1995). However, because verbal probability statements are poorly defined and may mean 

different things to different people, they are not ideal for the accurate communication of 

risk (Armstrong et aI., 1995; see Chapter II). 

When it comes to communicating the results of an intelligence forecast, most finished 

intelligence products are presented in scenario-based or narrative form that describe the 
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possible future states of the world or target (Clark, 2004). Analysts appear to "prefer to 

transmit knowledge through writing, because only writing can capture the full complexity 

of what they have to say" (Gardiner, 1995, pg.354). Consequently, the form and style of 

these narrative reports is an important part of communicating risk and analytic 

conclusions between analyst and consumer. In fact, several authors have discussed 

methods for writing convincing scenarios to increase the chances that consumers will 

accept a forecast (Clark, 2005; Gregory & Duran, 2001). However, because of 

institutional norms and consumers' preferences for information in narrative form, 

intelligence reports are not likely to become purely quantitative in nature. The most 

natural way to include quantitative estimates of uncertainty in current intelligence 

reporting is along side supporting narrative information concerning the evidence and 

reasoning supporting the conclusions. 

The Benefits ofIncluding Explicit Estimates of Uncertainty 

Morgan and Henrion (1990) discuss several general reasons why explicitly addressing 

uncertainty is important in policy and intelligence analysis. Their first argument is one 

by analogy, arguing that if natural scientists are expected to be explicit about uncertainty 

in measured quantities, why shouldn't policy-focused research be held to the same 

standard, particularly because the uncertainty is much greater in the policy domain than 

in the natural sciences? They also point out three more specific arguments in favor of 

uncertainty analysis and explicit reporting: 

1. A central purpose of policy research and policy analysis is to help 
identify the important factors and the sources of disagreement in a 
problem, and to help anticipate the unexpected. An explicit treatment of 
uncertainty forces us to think more carefully about such matters, helps us 
to identify which factors are most and least important, and helps us plan 
for contingencies or hedge our bets. 

2. Increasingly we must rely on experts when we make decisions. It is 
often hard to be sure we understand exactly what they are telling us. It is 
harder still to know what to do when different experts appear to be telling 
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us different things. If we insist they tell us about the uncertainty of their 
judgments, we will be clearer about how much they think they know and 
whether they really disagree. 

3. Rarely is any problem solved once and for all. Problems have a way of 
resurfacing. The details may change but the basic problems keep coming 
back again and again. Sometimes we would like to be able to use, or 
adapt, policy analyses that have been done in the past to help with the 
problems of the moment. This is much easier to do when the uncertainties 
of the past work have been carefully described, because then we can have 
greater confidence that we are using the earlier work in an appropriate 
way. (pg. 3) 

Related to the third point above, Fisk (1995) and Schrage (2005) note that 

consistently including quantitative uncertainty estimates in intelligence reports could act 

as an audit trail for analytic judgment, which could be revisited and reviewed by 

consumers and the analytic community. Schrage (2005) also points to several other 

benefits of this greater analytic accountability. For one thing, it would put pressure on 

analysts to think extra hard about their analysis and conclusions. It would also give 

consumers much more information on which to judge the analytic conclusions, and 

ideally, the explicit uncertainty estimates would allow a more accurate transferal for risk 

information from analyst to consumer (e.g. the likelihood that that the analyst assigns to 

the potential threat is accurately communicated to the consumer). Consumers could 

quickly assess the level of confidence that an analyst has in his or her evidence and 

conclusions, and the explicit uncertainties would give consumers an idea of where more 

work needs to focused to reduce the uncertainty: "Then their ability to push, prod and 

poke the intelligence community would be firmly grounded in their own perception of the 

strength and weakness of the work coming out of it" (Schrage, 2005). 

Why Might Analysts be Reluctant to Include Explicit Estimates of Uncertainty? 

The analytic community continues to primarily focus on qualitative techniques for 

forecasting in which they do not consistently provide numerical estimates of uncertainty. 

There are several reasons why this may be the case. First, many intelligence problems 
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are so complex and multifaceted, and involve such a great degree of uncertainty, that it 

may seem impossible to estimate the uncertainty in the system. Morgan and Henrion 

(1990) note that it may be because of the "vast uncertainties" inherent in many policy 

analyses that it is "still not standard practice to treat uncertainties in an explicit 

probabilistic fashion" (pg.20). Considering this enormous complexity and uncertainty, it 

is not surprising that many analysts see a qualitative approach to analysis as the only 

alternative. The work of the intelligence analyst has even been compared to that ofthe 

historian, both of which labor to fit disparate pieces of evidence together into a coherent 

causal story (Heuer, 1999). For many intelligence problems, this focus on forming a 

coherent story out of a set of evidence may lead analysts into a scenario/narrative 

presentation ofthe results and away from thinking probabilistically about their 

conclusions and forecasts. 

It is clear that there are many situations in which uncertainty must be estimated 

through expert judgment alone, and it is understandable that this may seem like a 

daunting task. However, most analysts would agree that they cannot be sure about the 

level of uncertainty present in a system (for example, the precise probability that an event 

will occur), but they are not completely ignorant either. Analysts are likely to have some 

idea or intuition about uncertainty, and there are several structured techniques that can be 

used to help elicit probability estimates from experts (see Armstrong, 2001). 

The second reason that analysts may be reluctant to use numerical estimates of 

uncertainty in forecasts is that they feel that there are no structured techniques available 

for applying risk analysis or estimating uncertainties in the intelligence domain. In recent 

years, however, several different schemes and approaches for probabilistic and 

uncertainty analysis that would be applicable to intelligence problems have been 

developed. For example, several authors have discussed the potential application of 

quantitative risk analysis procedures to problems of terrorism prediction and forecasting 

(for example see Garrick, 2002; Pate-Cornell, 2002; Haimes and Longstaff, 2002; 

Horowitz & Haimes, 2003). 
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A third reason is that analysts may feel that even if they did explicitly report 

probability and margins of error in intelligence reports, consumers would not be 

interested in seeing them, nor would they be able to understand or use the information. 

Michael Schrage in his Washington Post editorial (February, 20th, 2005) relates a 

conversation that he had with a senior CIA officer concerning consumers and quantitative 

analyses: "Intelligence analysts 'would rather use words than numbers to describe how 

confident we are in our analysis,' a senior CIA officer who's served for more than 20 

years told me. Moreover, 'most consumers of intelligence aren't particularly sophisticated 

when it comes to probabilistic analysis. They like words and pictures, too. My experience 

is that [they] prefer briefings that don't center on numerical calculation. That's not to say 

we can't do it, but there's really not that much demand for it. '" 

It is an empirical question as to how well consumers, particularly those 

uncomfortable with numbers, would be able to use, and feel comfortable using, 

intelligence forecasts that include quantitative estimates of uncertainty. There is a 

relatively rich psychological literature on how people perceive likelihood and risk, and 

the experimental work in this dissertation will focus on exploring lay consumers' 

perceptions of forecasts in the intelligence domain. 

A last potential concern is that providing explicit estimates of uncertainty would leave 

an audit trail of analytic forecasts. Analysts may be reluctant to leave themselves open to 

potential criticism if events to which they assign small probabilities occur, or events to 

which they assign high probabilities do not occur. It may be more comforting to keep 

analytic judgments and forecasts vague, which allows only "ambiguous accountability" 

(Schrage, 2005). This may be partly a fear about hindsight bias on the part of future 

auditors of an analyst's forecasts, as well as a fear about finding out how poorly 

calibrated their forecasts really are (see Tetlock, 2005; Heuer, 1999). 

It is unknown how consumers will feel about analytic judgments in hindsight. For 

example, will consumer perceptions be greatly affected by the presence of explicit 

uncertainties in intelligence forecasts? Another focus of the empirical work in this 

dissertation is on how consumers will view the results of quantitative forecasts in 
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hindsight. 

The first two issues concerning analytic methods are outside of the scope of the 

present work. The empirical work in this dissertation will focus on perceptions of risk 

forecasts from the perspective of the consumer. 

Summary 

The focus of this dissertation is on indications and warnings intelligence forecasts. 

The purpose of these forecasts is to communicate risk information in a format that is 

effective and subsequently useful for decision making. However, standard reporting 

methods in policy and intelligence analysis rarely involve explicit, numerical estimates of 

uncertainty. Even though there are many potential benefits of including numerical 

uncertainty estimates in policy and intelligence forecasts, the analytic community has 

been reluctant to express uncertainty in quantitative form. Standard reporting methods 

for intelligence forecasts most often involve a scenario-based or narrative discussion of 

the evidence and possible future states of the world, and any numerical estimates of 

uncertainty would likely accompany this narrative presentation. 

Several writers have argued that the explicit treatment of uncertainty will lead to 

improved analysis and risk communication (e.g. Morgan and Henrion, 1990; Schrage, 

2005). Quantitative estimates of the likelihood and potential harm of particular target 

events (ideally with an accompanying sensitivity analysis) may lead consumers of 

intelligence forecasts to more accurately perceive the attendant risks and to make better 

decisions. One potential benefit of including quantitative estimates in intelligence 

forecasts is greater consistency in interpretations. 

However, two things must happen for this quantitative approach to improve consumer 

decision making. First, the analysts must use solid analytic methods and reach sound 

conclusions. As discussed briefly above, several risk and policy analysts have developed 

techniques for conducting quantitative risk analyses in the intelligence domain. Second, 

the consumers of these reports must be able to understand and be comfortable using the 

results of these quantitative analyses. If consumers misinterpret the results, or otherwise 
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misuse or ignore them, then the hard work done by the analysts is lost. It is clear that the 

communication between analysts and consumers is critical component of the process. 

Although many authors have discussed particular analytic techniques that could be 

fruitfully applied in the intelligence domain, how these analyses should be reported for 

the benefit of consumers has received less attention. 

In an intelligence forecast that includes both scenario-based and numerical 

uncertainty information, there are several sources of information that consumers can use 

to make judgments of risk and quality. The focus of this dissertation is on risk 

communication, specifically on how consumers understand and evaluate quantitative 

intelligence forecasts concerning the risk of terrorist attacks. The primary goals are to 

explore how the structure and format of an intelligence forecast, as well as the individual 

characteristics of the consumer (e.g. a consumer's ability to understand probability 

information), affect consumer perceptions of risk and perceptions of the usefulness and 

quality of intelligence forecasts. Another aim of this work is to model how consumers use 

these various sources of information to inform their judgments. 

Selected research literature related to the conceptualization of uncertainty, intuitive 

perceptions of likelihood and risk, individual differences in numerical ability, and the 

effect of hindsight knowledge is reviewed in the next chapter. In Chapter III, a model of 

consumer risk perception is developed along with specific research questions for the 

empirical work that follows. The following chapters consist of the experimental results 

and conclusions, as well as the implications ofthis work for the communication of risk in 

indications and warnings intelligence forecasts. 
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CHAPTER II
 

LITERATURE REVIEW
 

Uncertainty, Probability and Sensitivity Analysis
 

The explicit representation of uncertainty is important for policy and intelligence 

forecasting, but how can we conceptualize and define uncertainty, probability, and 

sensitivity analysis? According to Rowe (1994), "Uncertainty is essentially the absence 

of information, information that mayor may not be obtainable." (pg. 743). In general, 

when analysts are asked to report their uncertainty in a forecast, they are being asked to 

detail or quantify the effect that imperfect information has had on the results of the 

analysis. This type ofuncertainty has also been called epistemic uncertainty, which is 

conceptually different from aleatory uncertainty (Pate-Cornell, 1996). Aleatory 

uncertainties "stem from variability in known (or observable) populations and, therefore, 

represent randomness in samples", and epistemic uncertainties stem "from a basic lack of 

knowledge about fundamental phenomena" (pg. 97). Most problems in risk, policy, and 

intelligence analysis will involve both types of uncertainty, although epistemic 

uncertainty will tend to dominate. 

Rowe (1994) describes four different classes of uncertainty important in risk 

analyses: 1) Metrical, uncertainty and variability in measured quantities; 2) Structural, 

uncertainty due to complexity in modeling the phenomenon under study; 3) Temporal, 

uncertainty about future and past states of the world, and 4) Translational, uncertainty in 

transmitting information through the explanation of uncertain results (see also Politi, Han 

& Col, 2006; Peters, 2006). Metrical uncertainty is extremely important in 

intelligence/policy analysis, as it is directly related to the quality and credibility of the 

evidence on which an analysis is based. Evidence credibility is not only important in the 

analysis stage, but might also be helpful to include in a final report for consumers (Heuer, 

1999; Schrage, 2005). For instance, information about evidence credibility could help 
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consumers identify gaps in knowledge that could lead to future information collection 

efforts. Structural uncertainty is also extremely important because it represents 

uncertainty in how a model of a phenomenon is constructed. This is a particularly acute 

problem in policy/intelligence analysis because a large part of the analytic process 

involves attempts to deduce a model of the situation/target under study. Morgan & 

Henrion (1990) argue that uncertainty about model form is generally harder to think 

about than the individual quantities in the model, and that most analysts agree that 

uncertainty about model form is generally more important and will have large effects on 

the eventual results and conclusions. Although this may be difficult in practice, ideally 

analysts would also present a rating of the structural uncertainty in their model. The most 

familiar kind of uncertainty discussed above is temporal, specifically uncertainty about 

future states of the world. This type of uncertainty is most often modeled by probability, 

and this will be a main focus in the empirical studies discussed below. 

The Interpretation ofProbability 

When a person is asked to interpret the meaning of a probability statement (or assess 

the likelihood of an event), how do they conceptualize "probability"? What does 

probability mean exactly? This has proven to be a very difficult question, and the 

collective answer seems to be that it depends. 

There are two basic schools of thought about the interpretation of probability: the 

classical or frequentist school and the subjectivist or Bayesian school. "The classical or 

frequentist view ofprobability defines the probability of an event's occurring in a 

particular trial as the frequency with which it occurs in a long sequence of similar trials" 

(Morgan & Henrion, 1990, pg. 48). Thus, probability is only definable if one can locate 

or generate (at least in principle) a distribution of identical trials of the phenomenon in 

question (Pate-Cornell, 1996). This means that many of the phenomena to which we 

assign probabilities, like the probability of a single event occurring, are meaningless from 

the frequentist point of view. The Bayesian or subjectivist view of probability "is the 

degree of belief that a person has that it [an event] will occur, given all of the relevant 
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information currently known to that person" (Morgan & Henrion, 1990, pg. 49). Since a 

Bayesian probability is by definition subjective and personal, different people may 

legitimately have different probabilities for the same event, which will depend on their 

state of knowledge. In practice, when one takes a Bayesian stance toward probabilities, 

one can incorporate both frequentistic (or aleatory) information about a process or event 

as well as any other relevant knowledge. In the limited case where only frequency 

information is available, the subjective Bayesian probability will equal the frequentist 

probability. This distinction between the objective probabilities based on frequencies and 

subjective probabilities based on personal belief also roughly maps onto the concept of 

external and internal statements ofprobability, respectively (Kahneman & Tversky, 

1982a; Teigen, 1994). Frequency based probabilities are restrictively thought of as 

external to the observer, as a property of the system or process in question, while 

subjective probabilities include personal statements of uncertainty that are a property of 

the knower, not a property of the outside world. Some authors have pointed out that this 

distinction between internal and external probabilities may be part of the gulf between 

analysts and consumers in terms of communicating risk (Walker, 1995). For example, 

consumers that adopt a more internal or subjectivist view oflikelihood may 

misunderstand or ignore risk information based on relative frequency interpretations of 

likelihood. 

Several authors have discussed more detailed taxonomies ofhow probability is 

understood and interpreted. For example, Teigen (1994) discusses six different 

interpretations of intuitive probability. Chance probabilities (or Type I) are external and 

are most naturally thought of in terms of relative frequency. Figuring out the probability 

of being dealt three of a kind in poker (5-card draw) is a good example of a chance 

probability. This type ofprobability is naturally expressed in a frequency format (e.g. 

2/100 chance). When thinking about the probability of a single, unique event like a 

terrorist attack, it becomes more difficult to think of the probability in terms oflong-run 

frequencies (What is the relevant distribution for figuring the frequentist probability?). In 

these cases, people have been found to rely on different interpretations of probability. 
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Dispositional probabilities (Type II) are external and can be thought of as a measure 

of how "easily the outcome in question may occur, or how close it is to becoming 

realized" (Teigen, 1994, pg. 220). For single unique events people often think of 

probability as being attached to the event and not as a function oflong-run frequencies. 

Related to dispositional probabilities are their internal counterpart, confidence or 

subjective degree of belief (Type III; Teigen, 1994). The main issue here is the extent to 

which a judge believes that the outcome will occur or will soon become realized. 

Teigen (1994) also discusses uncertainty by ignorance (Type IV), which concerns not 

the probability of the chosen hypothesis, but one's certainty about which hypothesis or 

prediction to choose in the first place. The next interpretation involves the controllability 

of events (Type V). For example, personal control may give a sense of certainty that is 

different than when an event is subject to external, uncontrollable forces. The last variant 

of the probability concept is plausibility (Type VI). This interpretation ofprobability is 

related to perceived closeness to reality, or perceived closeness to truth, and is often 

activated when one reads a narrative concerning an event. The plausibility, and hence the 

probability, can be affected by the completeness of the description, the coherence of the 

story, the causal elements that are included in the story, etc. In practice, quantitative 

probability estimates will almost always be accompanied by narrative summaries. 

Hence, the factors that affect plausibility judgments may strongly influence consumer's 

perceptions of the probability of events. 

The Form ofa Probability Statement 

Because the focus of this dissertation is on consumer perception ofprobabilistic 

forecasts, how analysts format probabilistic information for consumers is very important. 

A probability can be expressed in percentage form (10%), decimal form (.10) or 

frequency form (1/10). Each of these forms is mathematically equivalent and, ideally, 

would be interpreted in the same way. However, as will be discussed further below, the 

format of the probability information has been found to affect perceptions of likelihood 

and risk. 
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Sensitivity Analysis and Presenting Ranges ofPlausible Values 

Due to the large uncertainties present in many policy or intelligence problems, it is 

often very difficult for an analyst to generate a point estimate for all empirical quantities 

and be confident about the structure of the model under study. For example, although it 

may be difficult to produce a single probability value for the occurrence ofan event, 

analysts can often produce a range ofplausible probabilities values. This can be done by 

first producing a best estimate ofthe probability and then choosing a high estimate and a 

low estimate that defines the range of plausible values. As analysts become more 

confident in their estimates, the confidence interval between the high and the low 

estimates will become smaller. As analysts become less confident in their estimates, the 

confidence interval will become larger. For instance, if an analyst was trying to estimate 

the probability of an event occurring, he or she could report the probability as a range 

(Low: 10% Best: 25% High: 40%). 

Additionally, when structured analytical techniques are used to help an analyst 

generate a probability value for an event, sensitivity analysis can be used to produce the 

confidence intervals. Sensitivity analysis refers to changing the inputs, assumptions, or 

data in an analysis to see how these changes affect the output. There are many different 

structured techniques that have been developed for sensitivity analysis (see Helton, 

1993). For instance, an analyst developing a forecast for a particular terrorist plot could 

use the worst-case assumptions of the world to get the high probability estimate and then 

use the best-case assumptions of the world to get the low probability. Producing 

confidence intervals instead of single point estimates of the probability of an event has 

the advantage of giving information about the amount of confidence that an analyst has in 

his or her forecast. Point estimates of the probability of an event will often appear 

precise regardless of the confidence that an analyst has in the estimate. 

In summary, there are several ways ofconceptualizing the uncertainty in a policy or 

intelligence analysis, one of which is temporal uncertainty, or the probability of 

something happening over a given time frame. The focus in this dissertation is on 
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consumer perceptions of probability statements, as well as second-order uncertainty, 

which can be represented by confidence intervals around probability statements. 

Specifically, I will be focusing on perceptions of intelligence reports that include the 

constituent pieces of a risk analysis, which is a probability and potential harm estimate. 

Intuitive Probability Judgments 

A rich psychological literature focuses on how people make intuitive probability 

judgments about uncertain events. These judgments are intuitive in the sense that they 

are made without statistical information about the frequency of the target event in the 

population. For instance, if consumers were presented with a narrative summary of a 

potential terrorist plot, without explicit estimates of probability, they would need to use 

intuitive processes to assess the probability or risk ofthe potential attack. Much of the 

early work in the field ofjudgment and decision making focused on intuitive judgments 

of probability, and it was this work that culminated in the heuristics and biases approach 

to studying human judgment and reasoning (see Kahneman, Slovic & Tversky, 1982). 

Strategies for Intuitive Probability Judgments 

Researchers have explored several different strategies that judges use to make 

unaided intuitive probability judgments when presented with simple descriptions, sets of 

evidence, or scenarios related to a target event. Two cognitive shortcuts that came out of 

this literature are using representativeness and availability to judge the likelihood of an 

uncertain event (Tversky& Kahneman, 1974). Judges use representativeness when they 

assess the probability of event A by how representative, or how similar, it is of class or 

process B. For example,judges may estimate the probability that an individual is a 

member of a particular group by how well the description of that individual resembles 

their notions of the properties of the group, as in the famous Linda problem (Tversky and 

Kahneman, 1982ca). In the Linda problem, judges are presented with a short narrative 

description ofthe personality and interests of a woman named Linda. They are then 

asked to choose whether they think Linda is more likely to be a bank teller or a feminist 
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bank teller (among other options). The narrative description included details about Linda 

that seem consistent with Linda being a feminist (e.g. deeply concerned about issues of 

discrimination and social justice), and consequently, the majority ofjudges thought that 

Linda was more likely to be a feminist bank teller as opposed to just a bank teller. 

However, it its clear that the conjunction of two events (Le. bank teller and feminist) 

cannot be more likely than a single event (Le. bank teller), and the judges were said to 

have succumbed to the conjunction fallacy. Thus, the highly representative description of 

Linda was thought to have overwhelmed the probabilistic reasoning of the judges. Other 

biases such as base-rate neglect are also thought to be caused by representativeness, in 

that judges tend to ignore base-rates when given highly representative scenarios. Much of 

the experimental work on the representativeness heuristic has been attacked on 

methodological grounds (e.g. Gigerenzer, 1996), although the notion of 

representativeness provides one powerful explanation for the robust effects ofpresenting 

detailed scenarios of forecasted events on perceptions of likelihood. 

We find no good reason to believe that the judgments ofpolitical analysts, 
jurors, judges, and physicians are free of the conjunction effect. This 
effect is likely to be particularly pernicious in the attempts to predict the 
future by evaluating the perceived likelihood of particular scenarios. As 
they stare into the crystal ball, politicians, futurologists, and laypersons 
alike seek an image of the future that best represents their model ofthe 
dynamics of the present. This search leads to the construction of detailed 
scenarios, which are internally consistent and highly representative of our 
model of the world. Such scenarios often appear more likely than less 
detailed forecasts, which are in fact more probable ... The reliance on 
representativeness, we believe, is a primary reason for the unwarranted 
appeal of detailed scenarios and the illusory sense of insight that such 
constructions often provide. (Tversky & Kahneman, 1982a, pg. 97-98) 

Ifjudges estimate the likelihood of an event by the "ease with which instances or 

occurrences can be brought to mind" they have been described as using the availability 

heuristic (Tversky & Kahneman, 1974, pg. 1128). For example, ajudge may rate the 

likelihood of a particular terrorist attack by the ease with which similar events can be 
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brought to mind. In this sense, availability is really about probing memory for similar 

instances with which the judge can use to estimate likelihood. However, Kahneman & 

Tversky (1982b) also discuss the availability heuristic in terms of the ability to construct 

instances or scenarios, and they call this the simulation heuristic. In other words, judges 

may construct plausible scenarios that would lead to the target event and use the ease 

with which this can be done as a guide to estimating the probability of the event. In the 

case of the intelligence consumer, this scenario construction is often already completed, 

and consumers will likely use the "goodness" of the provided narrative scenario as a 

guide to likelihood estimation. Consumers may, however, intuitively construct additional 

instances and scenarios from the evidence set. 

Several researchers have presented additional models that focus on reasoning as a 

primary process involved in making intuitive probability judgments. Pennington & 

Hastie (1988) developed an influential model of explanation-based decision making, 

which focuses on story construction as the primary reasoning process that mediates many 

judgments and decisions. The decision maker begins by constructing a mental model (i.e. 

story, scenario, explanation, or causal model) of the situation from the available evidence. 

When several potential mental models are reasonable, the best model is chosen based on 

the fit between the evidence and the story model, as well as by the quality of the story. 

The perceived quality of the story is determined by the completeness of the explanation, 

the coherence of the story, the ease of story construction, and other factors (Hastie & 

Dawes, 2001). This type of scenario-based reasoning strategy seems particularly 

applicable to the intelligence consumer, in that the consumer would likely use a strategy 

such as this to make likelihood judgments from the evidence scenario presented by the 

analyst. 

Curley & Benson (1994) discuss a model of belief processing that explicitly focuses 

on the role of reason construction in likelihood estimation. In their view, probability 

assessment is more of a reasoning process in which we construct different reasons for or 

against a proposition (e.g. whether a terrorist attack will occur), form a belief, and then 

we scale the strength this belief to a probability scale. Tversky & Kahneman (l982b) 
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also discuss the importance of causal-based reasoning in judgments under uncertainty, in 

which people are thought to use schemas of cause-effect relationships to make sense of a 

set of evidence, which is then used as a basis for judgment. 

In each of models discussed above, the primary reasoning process involves causal­

based scenario construction from a set of evidence on which likelihood judgments are 

based. These types of reasoning processes can also broadly be classified as knowledge­

based as opposed to statistical reasoning. Beach & Braun (1994) discuss a contingency 

model of subjective probability judgment, in which a judge is thought to possess several 

different strategies for making probability judgments (e.g. causal-based, statistical, etc), 

and judges choose the appropriate strategy depending on the context of the problem. For 

example, with problems that involve games ofchance a judge will likely choose to reason 

statistically, but if given a personality description of an individual in the form of a 

narrative they are likely to use knowledge-based reasoning strategies. For our purposes, 

this type of model is interesting in light of the judgment task that intelligence consumers 

face, in which both scenario-based and explicit probability information is presented in a 

forecast. In these situations, there may be a conflict between the likelihood estimates 

based on the scenario presented and the explicit probability presented by the analyst. In 

this case, consumers are explicitly presented with a numerical probability that is 

purportedly based on the evidence presented and the professional judgment of the 

analyst, together with evidence that could be used to create other scenarios and likelihood 

judgments. 

Intuitive Judgments from both Numerical Probabilities and Scenario-based Information 

Relatively few studies have explored judgments when both explicit probability and 

scenario-based information is available to the judge. However, a few researchers have 

found that scenario information accompanying a probability estimate can have a large 

effect on the interpretation of that estimate. Windschitl and colleagues (1999, 2002, 

2003) have reported several experiments in which they demonstrate that although 

numerical probability estimates are less affected by context than verbal probability 
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estimates, they are not free from contextual effects: " ...that any numeric probability­

whether it is a communicated forecast, an internal belief regarding the objective 

likelihood of an event, or external information on which a belief is based - can be 

ambiguous from an intuitive perspective even though it is numerically precise" (Flugstad 

& Windschitl, 2003, pg. 108). 

For example, Flugstad & Windschitl (2003) report several experiments in which 

participants read scenarios about a doctor's diagnosis that was also accompanied by a 

numerical estimate ofthe probability that the surgical intervention would fail. 

Participants were then asked a series of questions about intuitive optimism or pessimism 

regarding surgery. The main finding was that, given a fixed numerical probability, 

positive reasons for the probability estimates provided by the doctor were found to 

increase optimism versus negative reasons for the same event. They connect these 

findings to the evaluability work reported by Hsee and colleagues (1996), in that "an 

isolated numerical probability forecast is often difficult to evaluate and therefore does not 

have strong affective or intuitive implications" (Flugstad & Windschitl, 2003, pg. 108). 

This lack of evaluability is what leaves judgments based on the probability estimate open 

to the effect of scenario or other contextual information. This line of thought also leads 

to the notion that ifparticular judge's were better able to draw meaning from the 

numerical probability information, they would be less likely to be influenced by 

contextual information. This question will be addressed in the experiments below when 

individual differences in numerical ability are explored. 

Hendrickx et al. (1989; 1992) also conducted several interesting experiments on the 

relation between scenario and probabilistic information. They presented subjects with 

descriptions of risky activities and asked them to decide whether to engage in the activity 

and to make ranked accident probability judgments. They manipulated the amount of 

supporting scenario information and whether frequency probability information was 

presented (e.g. "1 in every 25 experienced swimmers gets into trouble"). They found that 

more extensive concrete scenarios had a larger effect on perceived likelihood than 

abstract scenarios had. Additionally, they found that when scenario and frequency 
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information were presented together, the frequency information was dominated by the 

scenario information. 

In summary, this research suggests that judgments based on precise numerical 

probability estimates can still be influenced by contextual information. A narrative 

summary of the relevant evidence supporting a probabilistic intelligence forecast may be 

a prototypical case of supplemental information affecting the interpretation of a 

numerical probability forecast. 

Intuitive Judgments of Risk 

In many forecasting situations, the forecaster is interested in communicating the risk 

associated with a particular event or activity, not just reporting the likelihood with which 

the event will occur. However, researchers have not reached a consensus on how risk 

should be defined or how risk is intuitively understood by the layperson. Brun (1994) 

discusses the many ways in which the risk concept has been defined. Although there are 

exceptions, Brun (1994) concludes that " ...most definitions of risk include an estimate of 

uncertainty (a likelihood, possibility or judged subjective probability) for a negative event 

to happen (a possible loss or a negative consequence of an action). It follows that risk 

perception has a perceived probability/uncertainty aspect as well as a perceived severity 

aspect to it." (pg. 297). It follows, then, that many of the same issues and strategies that 

have been discussed in the context ofprobability estimation are also applicable to risk 

perception (Brun, 1994), including many of the theories discussed above. Interestingly, 

there are several ways in which the concept of risk may be different depending on the 

specific properties of the hazard that is under judgment. For example, Brun (1994) 

discusses research by Vlek and Stallen (1980) in which they state that risk may be 

"primarily associated with the probability ofa loss whenever possible losses are small 

and of a similar magnitude and the probabilities are well specified, but that "risk" refers 

to the size of the loss (e.g. the possible magnitude or severity of an accident) in contexts 

where negative consequences can be serious, but the probabilities are vague and hard to 

assess." (pg. 297). 
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Further research has identified several other characteristics of the hazards that affect 

risk perceptions beyond some combination of likelihood and potential harm perceptions. 

Using a psychometric paradigm, in which laypeople are asked directly about their 

preferences and feelings toward different types of hazards, researchers have discovered 

several different factors, or underlying characteristics, that laypeople use to judge risk. 

The first factor is dread risk, which is defined by "perceived lack of control, dread, 

catastrophic potential, fatal consequences, and the inequitable distribution of risks and 

benefits", while the second primary factor is unknown risk, which is defined as 

"unobservable, unknown, new, and delayed in their manifestation of harm." (Slovic, 

1987, pg. 283). 

In addition to characteristics of the hazard, characteristics of the individual are likely 

to have strong effects on perceptions of risk. For example, recent research findings show 

that cultural outlooks and worldviews have a large impact on individuals' feelings and 

perceptions of various societal risks (e.g. egalitarian versus individualistic worldviews). 

An individual's worldview may have a stronger influence than other individual 

characteristics like race, education and political affiliation (Kahan, Braman, Slovic, Gastil 

& Cohen, 2007). 

In summary, researchers generally agree that concepts of risk are composed of some 

combination of perceptions of likelihood and potential harm, although the layperson also 

uses characteristics of the particular hazard under judgment and personal worldviews in 

their perceptions of risk. 

Consumer Perceptions of Probabilistic Forecasts and Risk Communications 

Relatively few researchers have examined forecasts from the perspective of 

"consumers" (i.e. individuals using forecasts to make decisions) judging the quality or 

usefulness of forecasts (Fox & Irwin 1998; Yates, Price, Lee & Ramirez, 1996). One 

experimental paradigm comes from the business, law and meteorological domains, in 

which consumers are presented with the past predictive performance of a judge and then 

asked about the quality of the judge (e.g. Considering hislher past performance, which 
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judge would you like as your stock portfolio advisor?). In these experiments, the 

forecaster is providing single-event probability judgments for a series of cases, and the 

consumer is given multiple trials to learn about the past performance of each judge. 

Yates et al. (1996) and Price & Stone (2004), using methodologies as described above, 

found that consumers tended to prefer judges that were categorically correct (i.e. 

forecasted a probability of greater then .5 for events that occurred) and those that were 

more extreme to those that were better calibrated (see also Keren & Teigen, 2001). 

Calibration in this general sense refers to the extent to which a forecaster provides high 

probability estimates for events that do occur and low estimates for events that do not 

occur. Price and Stone called this latter effect the "confidence heuristic" and found that a 

more confident advisor (extreme in assigning probabilities) was thought to make more 

categorically correct judgments and was perceived to be more knowledgeable. Yates et 

al. (1996) also found evidence that consumers were sensitive to the reasons or 

explanations that accompanied the forecasts. 

Keren & Teigen (2001) conducted a series of four experiments that suggest that lay 

people have a clear preference for more extreme and higher probabilities over less 

extreme ones (this is related to the "confidence heuristic" described above). They make a 

useful distinction in judging the "goodness" of probability judgments - namely, how 

informative is it (does it provide accurate information about the state of the world), and 

how valuable is it (is it useful for determining future actions to take). Subjects were given 

pairs ofprobabilities and asked which was more valuable and informative. The main 

finding was that the larger of the two probabilities was judged to be more valuable and 

informative. 

In the second approach to studying consumer perceptions of forecasts and risk 

communications, consumers are presented with forecasts without additional frequency 

information about the past performance of the forecaster. Consumer trust and 

perceptions of source credibility have emerged as important factors in consumer 

perceptions of risk and overall perceptions of the quality or believability of risk forecasts 

(e.g. see McComas & Trumbo, 2001; Peters, Covello & McCallum, 1997; Trumbo & 
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McComas, 2003). One interesting study reported by Trumbo & McComas (2003) 

examined how differences in perceptions of the credibility of government and industry 

reports of risk information related to how consumers process information, which leads to 

differences in perceptions of risk. Their results suggest that perceptions of low credibility 

promote systematic information processing, which leads to greater risk perceptions, 

whereas perceptions of high credibility for state or industry risk communication results in 

greater heuristic processing which leads to lower perceptions of risk. 

Effects ofthe Format of Uncertainty Information on Perceptions of Risk and Perceptions 

of the Quality of the Forecast or Forecaster 

Verbal versus Numerical Expressions ofUncertainty 

There is quite a large literature concerning how people understand and use verbal 

statements to represent uncertainty (e.g. likely, seldom, very unlikely, etc; Budescu & 

Wallsten, 1995; Wallsten & Budescu, 1995). In general, verbal expressions of 

uncertainty have been found to be more vague than numerical estimates and, in some 

cases, have been found to relate to judgments that are less consistent and reliable than 

those based on numerical estimates (Wallsten, Budescu, and Zwick, 1993; see Fox & 

Irwin, 1998 for a discussion of the different research traditions relating to linguistic 

expressions of uncertainty). As noted above, however, numerical estimates of 

uncertainty are not immune to context effects or different interpretations by different 

consumers. In the case of communicating uncertainty information from forecaster to 

consumer, these research results suggest that using verbal statements of uncertainty is 

inferior to more precise numerical uncertainty estimates (Fischhoff, 2001; Heuer, 1999). 

Fox and Irwin (1998) also review research that focuses on preferences for verbal 

versus numerical estimates of uncertainty. Overall, there is evidence to suggest that 

consumers tend to prefer to receive numerical uncertainty information but forecasters 

prefer to use verbal statements. In addition, Gurmankin, Baron, & Armstrong (2004) 

found that consumers were more trusting and comfortable with physician risk 
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information that included numerical probability estimates as opposed to verbal 

probabilities, although this effect interacted with the consumer's level of numerical 

ability (discussed below). Since the focus in this work is on consumers, these findings 

suggest that consumers of intelligence forecasts would prefer to have explicit numerical 

uncertainty information in forecasts. 

Standard Probability Formats versus Frequency Formats 

There has been a heated debate concerning the merits of frequency formats (i.e. lout 

of 10), as opposed to probability (i.e..1) or percentage (10%) formats, as a more natural 

way of communicating uncertainty. Gigerenzer and colleagues (see Gigerenzer, 1994 for 

a review) have argued that humans are more naturally prepared to deal with frequency 

information, given that our species has evolved mechanisms to represent frequencies in 

order to learn from the natural environment. In fact, these authors have found that many 

of the standard biases identified in the heuristics and biases literature (e.g. 

overconfidence, base-rate fallacy and the conjunction fallacy) are not present when 

individuals are presented with frequency as opposed to standard probability information 

(Gigerenzer, 1994). The focus of the present investigation, however, is simply the 

transferal of risk/likelihood information from forecaster to consumer and does not 

involve statistical reasoning. 

Additional research suggests that relative frequency information is easier to 

understand and is thought to be clearer than percentage or decimal representations of 

probability (see Burkell, 2004 for a discussion of this research). Overall, frequency 

representations of likelihood are thought to be more amenable to clear understanding and 

are easier to work with when additional calculations or comparisons need to be done to 

arrive at ajudgment (Hoffrage, Lindsey, Hertwig and Gigerenzer, 2000; Burkell, 2004). 

However, Burkell (2004) mentions that "when the goal is only to present likelihood, and 

no statistical reasoning is required, percent format (e.g. 2%) is also appropriate [in 

addition to frequency formats], because it is perceived as easy to understand." (pg. 204). 

In the risk communication situation modeled in the present work, this research suggests 
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that frequency or percentage formats may be effective in transferring information from 

forecaster to consumer. 

Several researchers have also reported that consumer risk perceptions differ 

depending on whether probability is expressed as a relative frequency versus a decimal 

probability or percentage. Specifically, these results suggest that consumers perceive 

greater risk when presented with probability information as a relative frequency (Slovic, 

et aI., 2000; Siegrist, 1997; Keller, Siegrist & Gutscher, 2006). For example, Slovic et ai. 

(2000) found that consumers reported greater risk when the dangerousness of a mental 

patient was communicated as a relative frequency (e.g. "Of every 10 patients similar to 

Mr. Jones, 1 is estimated to commit as act of violence to others during the first several 

months after discharge") as opposed to a percentage probability (e.g. "Patients similar to 

Mr. Jones are estimated to have a 10% probability of committing an act ofviolence to 

others during the first several months after discharge"). 

In the present studies, frequency and percentage probability formats will be compared 

for the consistency with which consumers use this information (i.e. greater stated 

likelihood leads to greater perceived likelihood) and how they feel about intelligence 

forecasts with different formats for likelihood information. 

Confidence Intervals and Reporting a Range ofPlausible Probability Values in a 

Forecast 

Several authors have suggested that some type of sensitivity analysis should 

accompany any probabilistic forecast. Presenting a probability point estimate in a 

forecast as well as a range of plausible values (i.e. a 95% confidence interval) gives the 

consumer information not only about the best probability estimate from the forecaster, 

but also relays information about the level of uncertainty inherent in the probabilistic 

analysis (sometimes called second-order uncertainty). The main goal of this approach is 

to present consumers with the most complete and honest information possible, with the 

hope that consumers will be able to use this information for further judgments and 

decisions. 
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Although including the results of uncertainty or sensitivity analysis in intelligence 

forecasts may seem beneficial, it is not clear that consumers will actually be able to use 

this information in judgment and decisions. In other words, there may be a tradeoff 

between more complete information and a consumer's ability to understand and use the 

information presented. Although not specific to presenting ranges of probability values, 

previous research suggests that more complete information can sometimes lead to a lack 

of understanding and inferior choices (Peters, Dieckmann, Dixon, et aI., 2007; see Peters, 

in press for a brief review). 

Hsee (1995) reports findings on the effects of presenting ranges ofvalues on 

judgment and decision making. These findings suggest that when consumers are 

presented with a plausible range of values for an attribute, they may tend to ignore the 

information about this attribute and focus on other, possibly less relevant, information. In 

one study, Hsee (1995) showed participants two different files and asked them which one 

they would like to edit. One of the files was more interesting but paid less, while the 

other file was not as interesting but paid more. When the pay rate was presented to 

participants as a range, a larger percentage of participants chose to edit the more 

interesting but lower paying file. Thus, the range information appeared to allow the 

participants to weigh the pay rate less and focused them on the only other information on 

which to make the choice (Le. how interesting the file was). This finding suggests that 

presenting numerical probability information as a range may cause consumers to ignore 

probability and focus on other information to make their judgments (e.g. the narrative 

summary of the evidence). Thus, one might expect consumers to rely more on the 

narrative information as opposed to the numerical probability information when the 

probability information is presented as a range. 

There has also been research focused on how consumers feel about risk or likelihood 

information when it is presented as a range ofplausible values. For example, in several 

studies, Johnson & Slovic (1995; 1998) presented participants with simulated risk 

communications from government sources like the Environmental Protection Agency 

(EPA). When these risk communications were reported with a range of plausible 
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probability values, participants tended to rate the agency as more trustworthy but less 

competent, and in verbal protocols many subject reported being uncomfortable with the 

range of probability values because it made them feel less confident that the EPA could 

estimate the risks involved (see also Johnson, 2003). In another example from a 

oompletely different domain, Epstein, Alper, & Quill (2004) reviewed the research 

literature relating to the presentation of clinical evidence to medical patients. They 

concluded that less educated and older patients did not like being presented with 

confidence intervals and had trouble understanding them. 

External versus Internal Framing ofProbabilistic Forecasts 

There have been very few studies that have explored internal versus external framing 

of probability information in forecasts. An internal frame is thought to direct the 

consumer to interpret the probability estimate as a statement of uncertainty in the 

forecaster's personal belief or judgment (e.g. "I am 10% sure that x will happen in the 

next 6 months"), while an external mode may direct the consumer to interpret the 

probability as a statement about the propensity of the event in the external world, outside 

of the personal belief structure of the forecaster (e.g. "The probability that x will occur 

over the next 6 months is 10%"). 

In an unpublished manuscript, Fox & Malle (1997) discuss several interesting effects 

relating to internal versus external framing of probability information. Their results 

suggest that consumers tend to have more faith or belief in a forecaster that uses an 

internal frame for expressing probability as opposed to an external frame, and consumers 

feel that probability statements with an internal frame indicate that the forecaster is more 

certain and willing to take responsibility for the forecast (Fox & Irwin, 1998). One 

experimental result is particularly interesting in light of the consumer hindsight effects 

that will be the focus of Study 3. Fox and Malle (1997) presented experimental subjects 

with vignettes in which an economist forecasted that exports would increase in the next 

month. The numerical probability was framed as either internal (i.e. 70% sure) or as 

external (i.e. 70% chance) to the forecaster. Consumers where then told about the 
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eventual increase or decrease of exports over the next month. When told that exports 

increased in the next month, the majority of subjects said that they would rather promote 

the economist that reported his or her forecast in the internal frame, and, alternatively, if 

exports actually decreased, the majority of subjects said that they would rather fire the 

economist that reported his or her forecast in the internal frame (Fox & Irwin, 1998). In 

summary, consumers were more likely to praise a forecaster that they thought made a 

correct forecast and punish a forecaster that they thought made an incorrect forecast when 

the forecast was framed as internal to the forecaster. 

Numeracy 

The Conceptualization and Measurement ofNumeracy 

Numeracy defined in the broadest sense is the ability to understand and use numbers. 

This would include an understanding of the real number line, the ability to compare 

numbers in magnitude, the understanding of time and money, measurement, estimation, 

and the ability to perform simple arithmetic. At a somewhat higher level, a broad 

definition might also include basic logic, performing multi-step operations, a fundamental 

understanding of chance and basic statistical principles, and comfort with proportions, 

fractions, probabilities, and risks. Researchers have defined and measured numeracy in 

various ways, often because of differences in their specific research interests and domain 

of study. For example, Paulos (1988) defines innumeracy as the "inability to deal 

comfortably with the fundamental notions of number and chance" (pg. 3). He discusses 

difficulties individuals have in understanding extremely large and small numbers, 

grasping infinity, correctly using combinations and permutations to calculate quantities, 

and understanding basic concepts involving chance and probability. Another example 

comes from the healthcare domain, where researchers are often interested in the ability of 

the public to understand the risks and benefits of particular medical treatments. These 

authors often define numeracy as the ability to understand proportions, risks, percentages 

and probabilities, since these are the forms in which risk and benefit information is most 

often presented to consumers (Burkell, 2004). 
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Much ofthe quantitative health information presented to the public involves 

communicating the risks associated with particular diseases or treatment options (Burkell, 

2004). Most of this information comes in the form of explicit probabilities, relative 

frequencies, and proportions, and it is assumed that people can interpret these different 

measures to make an assessment of the likelihood of different outcomes. Because of the 

importance and common use of this type of outcome likelihood information, researchers 

have developed numeracy measures specifically designed to assess these skills. 

Schwartz, Woloshin, & Welch (1997) measured numeracy with three questions, 

which included a basic question assessing participants understanding of chance (i.e. how 

many heads would come up in 1000 tosses of a fair coin) and two questions asking the 

participants to convert a percentage to a proportion and a proportion to a percentage (Le. 

the chance ofwinning a car is 1 in 1000, what is the percentage ofwinning tickets for the 

lottery?). This measure proved popular among researchers, and several authors have 

developed expanded versions ofthe original3-item measure. 

One important addition to the literature was the expanded numeracy measure created 

by Lipkus, Samsa & Rimer (2001). They added eight questions to the items from the 

Schwartz et al. numeracy scale. The additional items were designed to assess a 

participant's ability to understand and compare risks (e.g. Which ofthe following 

numbers represents the biggest risk of getting a disease: 1%, 10%, or 5%?) and to move 

between decimal representations, proportions and fractions. Peters, Dieckmann, Dixon, et 

al. (2007) have also used an expanded version of the Lipkus numeracy scale, introducing 

four more difficult items. Among other things, these additional items test the 

understanding of base rates as well as the ability to make more complex likelihood 

calculations. 

Because the consumer of a probabilistic intelligence forecast is presented with very 

similar probabilistic estimates as consumers in the medical domain, numeracy defined as 

the ability to understand proportions, risks, percentages and probabilities is used in the 

present studies. Specifically, the expanded numeracy measure used by Peters et al. 
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(2007) is used in the studies reported below (see Appendix B for the expanded numeracy 

measure). 

Previous Findings Relating to Individual Difftrences in Numeracy 

Many researchers have tried to identify optimal methods ofpresenting numerical 

information to consumers (see Dieckmann, 2007). However, very little research has 

focused on how people with varying levels of numerical ability understand and use 

information presented in different formats. Fagerlin et al. (submitted) reviewed some of 

the literature on presenting risk and benefit information, but for the most part could only 

speculate about how individuals varying in numerical ability would deal with different 

presentation methods. 

Peters, Vastfjall, Slovic, et al. (2006) conducted several experiments that examined 

how individuals varying in numerical ability were able to understand and use 

probabilities expressed in different formats and to what extent they were affected by 

information framing. In one study, Peters et al. (2006) examined whether numerical 

ability affected the perception of probability information. Participants were asked to rate 

the risk associated with releasing a hypothetical mental health patient. One half of the 

participants read the scenario in the frequency form ("Of every 100 patients similar to 

Mr. Jones, 10 are estimated to commit an act of violence to others during the first several 

months after discharge") and the other half received the same information in percentage 

form ("Of every 100 patients similar to Mr. Jones, 10% are estimated to commit an act of 

violence to others during the first several months after discharge"). High numerate 

participants did not differ in their risk ratings between the two formats. Low numerate 

participants, however, rated Mr. Jones as being less of a risk when they were presented 

with the percentage format. The authors speculate that the low numerate, because of 

limited numerical skills, have more difficulty transforming one representation to another 

(10/100 = 10%), and were therefore differently affected by the format. The low numerate 

may have reported a higher level of risk in response to the frequency format because in 
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this condition they generated more vivid images of the violent acts than in the percentage 

condition (Slovic, Finucane, Peters, & MacGregor, 2004). 

In another study, researchers focused on trust and confidence in numerical 

information. Guarmankin, Baron, & Armstrong (2004) conducted a web survey in which 

they presented subjects with several hypothetical risk scenarios. The scenarios depicted a 

physician presenting an estimate of the risk that a patient had cancer in three different 

formats (verbal, numerical probability as percentage or numerical probability as fraction). 

Participants then rated their trust and comfort with the information, as well as whether 

they thought the physician distorted the level of risk. Numeracy was measured with a 

scale adapted from Lipkus et al. (2001). Overall, they found that participants were more 

trusting of the information in the numeric as compared to the verbal formats, although 

this effect interacted with numeracy. Even after adjusting for gender, age, and education, 

the results showed that those subjects with the lowest numeracy scores trusted the 

information in the verbal format more than the numeric, and those with the highest 

numeracy scores trusted the information in the numeric formats more than the verbal. 

In summary, low numerate participants tend to be worse at reading survival graphs, 

more susceptible to framing effects, more sensitive to the formatting of probability and 

risk reduction information, and tend to trust verbal more than numerical information 

(Dieckmann, 2007). 

Numeracy and Affective Processing 

Peters and colleagues conducted two experiments that examined whether numerical 

ability was related to affective evaluations of numbers (peters, et aI., 2006). In one study, 

they used the jellybean task developed by Denes-Raj and Epstein (1994). Participants 

were presented with two hypothetical bowls ofjellybeans and were told that they would 

win $5 if they picked a colored jellybean. One bowl had a total of 100 jellybeans with 9 

colored jellybeans. This bowl was labeled "9% colored jellybeans". The second bowl 

had a total of 10 jellybeans with only one colored jellybean and was labeled "10% 

colored jellybeans". Participants were then asked to choose the bowl they would like to 

pick from. They also rated how they felt about the 9% chance associated with the first 
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bowl (affect question), rated the precision of that feeling ("How clear a feeling do you 

have about the goodness or badness of Bowl A's 9% chance of winning?"), and finally 

completed the expanded numeracy measure based on Lipkus et al. (2001). Participants 

lower in numeracy were more likely to choose from the bowl with the lower chance of 

winning (9% versus 10%) and they also reported less precise feelings about the 9% 

chance. The authors speculate that because the low numerate were not able to draw 

meaning from the percentage information, they were drawn to the objectively worse bowl 

by an irrelevant source of affective information - namely, the bowl with greater the 

number of winning beans. 

In a second study, these authors used a task developed by Slovic, Finucane, Peters & 

MacGregor (2004). Two groups ofparticipants are asked to rate the attractiveness of a 

simple gamble. The first group was given the following: 7/36 chances to win $9 and 

29/36 chances to win nothing. The second group was given a similar gamble but with a 

small loss: 7/36 chances to win $9 and 29/36 chances to lose 5¢. The initial findings 

from Slovic et al. (2004) were that participants rated the gamble with the small loss 

considerably higher than the gamble with no loss. Peters et al. (2006) had participants 

complete this same task, but also had them complete measures of affect and affective 

precision, as well as the expanded version of the Lipkus et al. (2001) numeracy scale. 

They found that high numerate participants rated the bet with the small loss as more 

attractive than the bet with no loss, whereas low numerate participants rated the two bets 

as equally attractive. In this case the high numerate participants were actually making 

objectively worse judgments than the low numerate participants. The authors explain this 

difference by pointing out that the high numerate are actually better able to deal with 

numbers and therefore draw more affective meaning from numbers. In fact, high 

numerate participants were shown to have more positive and more precise feelings 

toward the 7/36 chances of winning, as well as more positive feelings toward the $9. 

High numerate participants had particularly strong positive feelings toward the $9 when it 

was accompanied by the small 5¢ loss, suggesting that they were particularly sensitive to 

the comparison of the small loss and the comparatively much larger gain. In this case, it 
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is possible the ability of the high numerate decision makers to draw meaning from 

numbers and number comparisons actually led them astray. As a whole, this work 

suggests that people lower in numeracy do not draw as much affective meaning from 

numbers, and consequently, may be more influenced by other, sometimes irrelevant 

sources of affective information. 

In summary, previous work suggests that individuals lower in numeracy have 

difficulty judging risks and benefits, show larger framing effects, are sensitive to the 

formatting ofprobability information, trust verbal more than numerical information, and 

appear to not draw as much affective meaning from numbers. To my knowledge, 

individual differences in numerical ability have not been studied in the political 

forecasting domain, although there are many similarities between this domain and the 

experimental tasks that have been used in past research. Of particular relevance to the 

present studies is the sensitivity to the formatting ofprobability information, perceptions 

of narrative versus numerical information, and the finding that the low numerate may 

disregard any numerical probability information and focus on other sources of 

information when making judgments (e.g. narrative information in the forecast). 

Hindsight Bias 

In a series of experiments in the mid 1970's, Baruch Fischhoff (1975) demonstrated 

that people tended to overestimate the probability with which they would have correctly 

forecasted an event before it occurred when they were informed of the outcome of the 

event. In other words, once people know the outcome of an event they tend to 

overestimate how well they could have correctly predicted whether the event would 

happen or not without the outcome knowledge. For example, Fischhoff(1975) asked 

research participants to make a prediction about the outcome of a real world event, and 

then after the outcome of the event was known he asked them recall what they had 

predicted. On average, participants tended to be biased in the direction ofthe actual 

outcome of the event. Numerous follow-up studies have been conducted on a range of 
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related hindsight effects, and the hindsight literature has been reviewed by Hawkins and 

Hastie (1990). 

Further explorations of the hindsight bias phenomenon showed that, as suspected, it 

was not just probability estimates that were biased in the direction of the actual outcome 

of the event, but relevant facts and evidence relating to the event were also reinterpreted 

in light of the outcome knowledge. In fact, it may be the causal reinterpretation of the 

evidence on which the forecast is based that is primarily responsible for hindsight effects 

(Hastie & Dawes, 2001). For example, Wasserman, Lempert & Hastie (1991) 

demonstrated that hindsight effects were only present when causal explanations relating 

the evidence to the outcome could be readily generated. In other words, when given 

knowledge about the outcome of the forecasted event, people naturally go back and try to 

make sense of the evidence in light of the outcome, using what Fischhoff (200 1) calls a 

"heuristic ofmaking sense" (pg. 544). "However, like other heuristics, rapidly 

integrating new information provides its benefits at a price. Those images of once­

possible futures are no longer available when we need them. In their stead, we find 

pictures colored by our knowledge of what actually happened" (pg. 544). 

Hindsight biases are a potential problem whenever consumers, or the forecasters 

themselves, revisit forecasts after the occurrence or non-occurrence of the forecasted 

event is known. Heuer (1999) discusses the potential problems that can occur with 

respect to hindsight bias in the intelligence forecasting domain. As discussed in the 

introduction, the auditing of forecasts is a necessary part of the learning process for 

forecasters, and forecast consumers also revisit forecasts, particularly after the occurrence 

of an event with negative consequences (i.e. the intelligence memo written about Bin 

Laden before September 11 th, 2001). Fischhoff (2001) discusses the importance for 

forecasters to be precise in their forecasts, not only because this will help them learn from 

their mistakes, but also because ambiguous forecasts are more likely to result in hindsight 

bias on the part of future auditors. If the natural reaction is for people to take the relevant 

evidence and reinterpret it in light ofthe known outcome, then an ambiguous forecast 

may allow more opportunity for future auditors to see causal patterns in the set of 
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evidence that lead to the outcome. Fischhoff(2001) argues that more precise forecasts, 

preferably with numerical estimates of probability, are superior both in terms of 

forecaster learning and the reduction of the potential for gross hindsight reinterpretations 

of forecasts. These results suggest that in the intelligence forecasting tasks studied here, 

more ambiguous forecasts (pure narrative) would lead to larger hindsight effects than 

forecasts with probabilistic estimates (more precise). However, this hypothesis has so far 

not been tested. 
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CHAPTER III
 

A MODEL OF CONSUMER PERCEPTIONS OF SINGLE-EVENT INTELLIGENCE
 

FORECASTS AND PRIMARY RESEARCH QUESTIONS
 

A Model of Consumer Perceptions of Single-Event Intelligence Forecasts
 

Figure 1 shows a simple conceptual model of consumer perceptions of likelihood, 

potential harm and risk based on single-event intelligence forecasts that include both a 

discussion of narrative evidence and explicit estimates of likelihood and potential harm. 

This model is based on a conceptual analysis of the task of the intelligence consumer and 

the research literature reviewed in Chapter II. The properties of the intelligence forecast 

as well as the characteristics of the individual consumer are important in determining 

consumer perceptions of risk, as well as consumer feelings about the quality and 

usefulness of a forecast (e.g. source credibility, trust, competence, etc). Although the 

model depicted in Figure 1 is focused on consumer perceptions of likelihood, harm and 

risk, many of the same factors are expected to affect consumer feelings about the quality 

and usefulness of forecasts. 
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Figure 1. A simple model of consumer risk perceptions from simulated intelligence 
forecasts. 
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Risk perceptions are modeled as some unknown function of perceptions of the 

likelihood and the potential harm of the target event. The precise combination of 

likelihood and potential harm that compose risk perceptions is not known (and may vary 

depending on the particular characteristics of the task under study), and for this reason 

likelihood and potential harm are treated separately in the analyses presented below. In 

addition, global risk perceptions are also likely to depend on the characteristics of the 

particular hazard (e.g. the familiarity of the risk, or the amount of "dread" associated with 

the hazard) and the idiosyncratic perceptions of the individual consumer. 

2 Although the characteristics of the hazard and other idiosyncratic subject level effects are expected to 
affect individual perceptions of risk, they are not the focus of the present investigations and are not 
depicted in Figure 1. 
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Next, perceived potential harm is modeled as a function of the stated potential harm 

information presented in the forecast (e.g. statements about the expected loss of life or 

property if the target event were to occur). The perceived likelihood of the target event is 

a function of both the properties of the narrative discussion ofthe evidence set and the 

explicit probability provided by the forecaster. As consumers perceive greater coherence 

and credibility in the narrative evidence, they will perceive the target event as more 

plausible and believable and will therefore perceive the event to be more likely. In 

addition, as the explicit probability stated in the forecast increases, consumers will 

perceive the event to be more likely. 

The relative reliance on the narrative evidence or the stated probability information is 

hypothesized to be moderated by the numerical ability of the consumer. Consumers that 

are higher in numerical ability will be able to evaluate and use the stated probability 

information, and will rely less on the narrative description for their perceptions of 

likelihood. Conversely, consumers lower in numerical ability will have more difficulty 

evaluating the probability information, and will therefore rely more on the narrative 

evidence for their perceptions of likelihood. 

Finally, the format of the stated probability is expected to moderate the effect of 

stated probability on perceptions of likelihood. As discussed in Chapter II, some 

probability formats have been shown to be more easily evaluated by consumers, 

particularly consumers that vary in numerical ability. 

Research Questions 

The primary purpose ofpresenting explicit estimates of likelihood and potential harm 

is to communicate, as faithfully as possible, the estimates of risk that are generated by the 

analyst to the intelligence consumer. Using the model of consumer perceptions of 

intelligence forecasts developed above as a guide, there are several reasons why explicit 

risk estimates may fail in that goal: 1) consumers may focus on the vivid narrative 

information to such an extent that the probability information is neglected when judging 

risk (Le. become overwhelmed by the vividness of the scenario information and 
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underweight the explicit probability information), 2) consumers lower in numeric ability 

may not understand the numerical information, and may just attend to the narrative 

information because they don't understand or want to avoid the numerical information, 3) 

even if consumers use the numerical probability information to some extent, they will not 

use it in the way that is intended (Le. at least ordinal differentiation between probability 

values - 5% chance perceived as lower than 10% chance, etc), 4) consumer's perceptions 

of risk may not be consistent and may depend on the format of probability information, 

and 5) when judging a forecast in hindsight, the inclusion of numerical estimates in 

intelligence forecasts will affect consumer perceptions of the quality ofthe forecast. The 

overarching goal of this dissertation is to address, empirically, these five points 

concerning the inclusion of numerical probability and threat information in intelligence 

forecasts. 

Below are the primary research questions that are the focus of this dissertation. 

Several specific hypotheses concerning specific manipulations (e.g. probability format) 

will be discussed in the context of each individual experiment. 

1.	 To what extent does the presence of a narrative summary of the evidence 

supporting a forecast affect perceived risk and perceptions of the quality and 

usefulness of the forecast? 

2.	 To what extent will perceptions of coherence in the narrative summary and 

credibility of the evidence affect perceived risk and perceptions of the quality 

and usefulness of the forecast? 

3.	 Will consumers be sensitive to numerical information concerning probability 

and threat in the presence of a narrative summary of evidence, and will the 

majority of consumers be able to make at least ordinal differentiations 

between the probability levels? In addition, will consumers find intelligence 

forecasts with numerical probability and threat estimates more useful as 

decision making aids and also find them to be of higher quality? 
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4.	 Will the ability of consumers to use the numerical probability information in 

judging risk be moderated by the format of the probability information? 

Differences between verbal probability estimates, percentage formats, 

frequency formats, percentage formats presented as an external probability 

versus a confidence rating, and probabilities presented with a confidence 

range will be tested. 

5.	 Will the numerical ability of the individual consumer affect the extent to 

which they rely on the numerical versus narrative information in a forecast? 

Also, will consumers with different levels of numeracy be able to use the 

probability information, and will they show different preferences for 

probability information in specific formats? 

6.	 Finally, how will consumers perceive forecasts in hindsight (i.e. after they 

know the outcome ofthe forecasted event)? How will consumers perceive 

the quality of the forecast and, when they perceive a forecast to be "wrong", 

will they place differing amounts of blame on the forecasters depending on 

whether numerical estimates of probability and threat were included in the 

forecast? 
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CHAPTER IV
 

THE SIMULATED INTELLIGENCE FORECASTS, THE SUBJECT POPULATION,
 

AND PRELIMINARY STUDY 1
 

The preceding chapters have detailed the conceptual task of the intelligence consumer 

and a model of the information sources and individual differences that affect perceptions 

of these forecasts. The development of the simulated intelligence forecasts and the 

subject population that was used in the primary experiments is discussed next. 

Development of the Simulated Intelligence Forecasts 

The simulated forecasts were modeled after a single-outcome indications and warning 

intelligence forecast, in which a narrative summary of pertinent evidence and explicit 

numerical information about the probability and potential harm of the event are 

presented. This type of forecast represents a relatively straightforward risk 

communication situation, with the assumption that if consumers have difficulty in this 

very simple case the problems would potentially be magnified in more complicated 

situations. 

Four different forecasts were created that outlined the evidence relating to a potential 

terrorist attack in a large city in the United States (see Appendix A). Each scenario is 

approximately one-page long and was roughly modeled after historical examples of 

intelligence reports available in the public domain (e.g. see http://www.foia.cia.gov/). 

The now famous August 6th Presidential Daily Briefing (PDB) entitled "Bin Laden 

Determined to Strike in US" was also used as a rough template (see Appendix A). PDBs 

come in many forms but are generally relatively short intelligence products designed to 

alert and inform the president on matters of immediate import. The PDBs do not 

themselves include all of the information about how an analyst reached the conclusions 

that he or she did, although more information would be available in a separate more 
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detailed document or could be acquired through verbal questioning of the analyst, or 

other top managers and directors. 

Each of the terrorist scenarios was approximately the same length with roughly the 

same quantity of evidence. The first scenario depicted a potential explosive attack 

against a government building in Washington, D.C., the second report depicted an 

explosive attack against a railway system in Chicago, the third report depicted an 

explosive attack against a passenger ship in a New York harbor, and the fourth report 

depicted a potential explosive attack against a professional sporting event in Los Angeles. 

Experimental Participants 

Ideally, real consumers of intelligence forecasts would have been recruited as study 

participants. For obvious reasons it is difficult to use actual intelligence consumers, since 

they include high-ranking government officials and advisors, members of congress, or the 

president. Several different populations of subjects were used in the present studies. A 

large community sample was used in Study II. A sample of graduate/law students from 

the University of Oregon was used in Study III (and Preliminary Study I), and a mixed 

sample of undergraduates from the University of Oregon and participants that had 

completed undergraduate degrees was used in Study IV. 

Preliminary Study I: Pretesting the Simulated Intelligence Forecasts 

Purpose 

There were two primary goals ofPreliminary Study 1. The first goal was to assess the 

plausibility of the different explicit probabilities assigned to the simulated intelligence 

forecasts. In the experiments that follow, each scenario will be presented with several 

different explicit probability estimates. This study was designed to identify a plausible 

range of probability values that could be assigned to each scenario. It is important to 

make sure that after reading the simulated scenarios the participants, as a whole, were not 

completely surprised by the assigned probability. The proposed range ofprobability 

levels was between 1%-20%. This intermediate probability range was picked because the 
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probabilities were low enough to be believable in terms of a potential terrorist attack, yet 

they were still high enough to be, potentially, comprehensible for consumers. The goal 

was to test the hypotheses of interest in this range of probability and, in future work, 

investigate different ranges ofprobability. For instance, many potential terrorist attacks 

are very unlikely on the order of 1/1,000, or 1/1,000,000, and these small probabilities 

should be investigated in future work. 

The second goal of this study was to explore consumer likelihood judgments 

concerning a target event when only a narrative description of evidence is available. It 

was expected that these likelihood judgments would be highly variable due to the 

idiosyncratic way in which consumers used the available evidence to make their 

judgments. 

Procedure and Design 

Participants read each simulated scenario and then rated whether they thought that 

each of the four possible assigned probabilities was a reasonable estimate of the 

likelihood of the target event. The assigned probabilities were 1%, 5%, 10% and 20%. 

Then they were asked to make their own estimates of the highest and lowest reasonable 

probability for the event. Each subject made ratings for all four scenarios. The order in 

which the subjects read the scenarios was counterbalanced, and the order in which they 

rated the probabilities was randomized. 

Results and Discussion 

A total of 17 psychology graduate students attending the University of Oregon 

participated in the study. Table 1 shows the percentage of participants who felt that the 

stated probability was a reasonable estimate, and Table 2 shows descriptive statistics for 

the subject-generated low and high probability ranges. 

It is not clear from the percentages displayed in Table 1 that participants found the 

stated probabilities to be reasonable estimates of the chance that the terrorist attack would 

occur. For instance, in some cases only 55-60% ofparticipants thought that a particular 
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probability was reasonable. Particularly concerning were the results for the 20% 

probability level for forecasts 3 and 4, which only a quarter of participants found 

acceptable. However, examination of the means and standard deviations for the high and 

low estimates for each forecast suggests that the stated probabilities are acceptable (see 

Table 2). For example, the mean low and high probability estimates for scenario 1 

roughly span 1-20%. Taking the results as whole, it seems reasonable to attach stated 

probabilities ranging from 1% - 15% to forecasts 3 and 4, and stated probabilities ranging 

from 1%-20% for forecasts 1 and 2. 

The second goal ofthis study was to explore the variance in perceived probability 

estimates. It is clear from the Table 2 that there is quite a bit ofvariability in perceived 

likelihood ranges between the subjects. For instance, some subjects reported likelihood 

ranges on the order of 20%-70%, while others reported likelihood ranges on the order of 

0%-.01 %. When only presented with narrative evidence, consumer perceptions of 

likelihood can vary widely. This demonstrates one of the disadvantages of using purely 

narrative reports, which tend to be ambiguous, to present risk information to consumers. 

Including explicit probability/risk information for consumers may help to alleviate this 

problem, and this hypothesis will be tested in the experimental work reported in the next 

chapter. 
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Table 1. Percentage of participants who felt that each probability 
was a reasonable estimate of the probability that the event would 
occur. 

1%7 5%7 10%7 20%7 

Scenario 1 0.65 0.76 0.76 0.47 

Scenario 2 0.59 0.53 0.59 0.65 

Scenario 3 0.82 0.71 0.59 0.24 

Scenario 4 0.82 0.59 0.53 0.24 
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Table 2. Descriptive statistics for subject-
generated probability ranges. 

Low(%) High (%)
 

Scenario 1
 

Mean 1.54 21.71
 

SD 2.03 19.53
 

Mean 4.30 27.71
 

SD 7.15 21.86
 

Mean 1.13 14.36
 

SD 2.34 15.01
 

Mean 1.01 14.00
 

SD 2.37 15.62
 

Median 1 10
 

Extreme 0 50
 

Scenario 2
 

Median 1 30
 

Extreme 0 70
 

Scenario 3
 

Median 1 10
 

Extreme 0 50
 

Scenario 4
 

Median 0.1 10
 

Extreme 0 50
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CHAPTER V
 

PRIMARY EXPERIMENTAL STUDIES
 

Overview of Primary Studies
 

Study 2. This study is an initial exploration of the effects ofexplicit estimates of 

likelihood and narrative scenario information on consumer risk perceptions. In addition, 

both the format of explicit likelihood information and the numerical ability of the 

consumers are explored as potential moderators of the effect of likelihood and scenario 

information on perceptions of risk. 

Study 3. This study was designed to further test the impact of explicit likelihood 

information and specific properties of the narrative scenario information on perceptions 

of likelihood and potential harm. As in Study 2, the format of the explicit likelihood 

information and the numerical ability of the consumers are explored as moderators. 

Study 4. The primary focus of Study 4 is to explore how consumers feel about 

intelligence forecasts in hindsight (with knowledge about the outcome of the forecasted 

event). Specifically, how do consumers feel about the usefulness and source credibility of 

these forecasts, and to what extent do they blame a forecaster when an event occurs that 

was given a relatively low likelihood in a forecast? Of particular interest are the types of 

information (Le. narrative or stated likelihood) that consumers use to make usefulness, 

source credibility and blame judgments in hindsight. 

Study 2 - Initial Explorations of the Effects of Explicit Likelihood and Scenario 
information on Perceptions of Risk 

Purpose 

The primary purpose of Study 2 was to determine whether consumers of simulated 

intelligence forecasts would be sensitive to stated likelihood information, particularly in 
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the presence of a narrative evidence summary. Another focus was whether consumers 

would be better able to use likelihood information in a particular format, and whether 

they would perceive particular likelihood formats to be higher in usefulness, knowledge 

and trust. In addition to assessing the information sources that consumers used to assess 

risk, it is also important to explore the types of forecasts that consumers are most 

comfortable using and feel are of the highest quality. Consumers are not likely to use 

forecasts that they have difficulty understanding or forecasts that they don't trust. 

Finally, the potential moderating influence of consumer numeracy was explored. 

In the model of consumer risk perceptions developed above (see Figure 1), the 

properties of the scenario information and the explicit estimates of likelihood and 

potential harm are modeled as direct effects of perceived likelihood and perceived harm. 

Perceived likelihood and perceived harm then affect overall perceptions of risk. In this 

study, however, only global risk perceptions are measured. In Study 3, the effects of 

explicit likelihood, harm, and scenario information on perceptions of likelihood are 

studied directly. 

Method 

Participants 

A community sample from the Eugene/Springfield area was recruited to participate in 

Study 2. 

Procedure & Materials 

Study participants were paid $10 for approximately 1 hour of participation time. Each 

participant was asked to read one simulated intelligence report about a potential terrorist 

attack in Washington, D.C. (Scenario 1, discussed above). The report provided a 

narrative description of the evidence concerning the potential attack as well as a 

statement about the potential lives lost if the attack were to occur (see Appendix B). The 

statement about the potential lives lost was held constant for each participant. Since both 

stated probability and probability format were ofprime interest in this experiment, stated 
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threat was held constant so as to minimize the effect that perceived threat had on risk 

judgments. 

After reading the intelligence report participants then responded to a series of 

questions about what they read. In addition, participants completed the Lipkus numeracy 

scale and provided demographic information (see Appendix B). All study procedures 

were approved by the University of Oregon Institutional Review Board (IRB). 

Experimental Design 

The experiment was run as a fully between subjects 4 (uncertainty format) x 2 

(probability) x 2 (evidence) design, with a total of 16 conditions. Uncertainty 

information was presented in four formats: verbal, frequency, percentage, and percentage 

w/range, and probability was presented as either highly unlikely (5%, 5 out of 100, Lo: 

1% Best: 5% Hi: 10%) or fairly unlikely (20%, 20 out oflOO, Lo: 10% Best estimate: 

20% Hi: 30%). The verbal and numerical probability statements for each probability level 

were roughly matched based on previous research (Kent, 1994; Hamm, 1991), where 

highly unlikely was found to roughly correspond to a 5% probability and fairly unlikely 

was found to roughly correspond to a 20% probability. Bisantz, Marsiglio & Munch 

(2005) have used a similar approach in matching verbal and numerical probability 

statements. Additionally, the intelligence report was presented with either a summary 

statement only, or with a narrative description of the evidence and then the summary 

statement. 

Dependent Variables 

The dependent variables were designed to assess perceived risk and perceptions of the 

intelligence report. The primary measure of perceived risk was assessed with a single 

question: "How would you rate the risk associated with this possible attack?" Participants 

rated risk on a 0-10 scale ranging from "very low risk" to "very high risk". 

In addition to perceived risk, participants also rated their perceived value or 

usefulness of the report: "How valuable is this intelligence report? In other words, does it 
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provide useful information for determining future actions to take?" In addition, 

participants rated how knowledgeable they thought the analyst was about this potential 

attack: "How knowledgeable does this analyst seem about this potential attack?" Both 

value and perceived knowledge were rated on 0-10 rating scales, ranging from "not at all 

valuablelknowledgeable" to "extremely valuable/knowledgeable. Finally, participants 

rated perceived trust in the summary and conclusions in the report: "How much do you 

trust that this analyst is giving you complete and unbiased information/conclusions about 

this potential attack?" Trust was rated on a 0-10 scale, anchored by "very little trust" and 

"very high trust". 

Results 

Sample Characteristics 

There was a total ofn=305 participants (16-21 subjects per experimental condition) in 

a slightly unbalanced experimental design. Tables 3 and 4 show the sample 

characteristics. 

Table 3. Sample Characteristics 

Characteristic n 
Mean 

(Median) 
SD 

Age 305 48.31 (49.00) 15.12 

~umeracya(0-15) 305 9.69 (10.00) 3.17 

a Distribution is moderately negatively skewed. 
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Table 4. Sample Characteristics 

Characteristic n % 

Female 182 59.7% 

Education (n=304) 

8th grade or less 1 .3% 
Some HS 15 4.9% 
HS graduate 85 27.9% 
Vocational/trade school 11 3.6% 
Some college/2yr degree 107 35.1% 
4yr college graduate 39 12.8% 
More than 4yr college degree 46 15.1% 

Table 5 shows the Pearson correlations among the dependent variables in Study 1. 

Inspection of scatterplots for each variable pair confirmed that there were no non-linear 

associations between the variables. Thus, Pearson correlation coefficients were used as 

an appropriate index of the linear relationship between the variables. 

Table 5. Pearson correlations (wi 95% CI) between dependent variables (n=305). 

Risk Value Knowledge Trust 

Risk 1.00 

Value .358 1.00 
(256, .452) 

Knowledge .238 
(129, .341) 

.649 
(579,.710) 1.00 

Trust .144 .605 .728 1.00 
(032, .252) (529, .672) (671, .777) 

Perceived risk is moderately correlated with perceived value, and to a lesser extent 

with perceived knowledge and trust. Theoretically, one might expect roughly zero 

correlation between perceived risk and these variables. For example, regardless of 
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perceived risk a report may still be valuable or useful in terms of deciding on what to do 

about the risk. Because perceived risk is theoretically distinct from the other perception 

variables and the correlations are moderate, perceived risk will be analyzed in a 

univariate fashion. 

Perceived value, knowledge, and trust were highly correlated in this sample. This 

probably reflects the fact that all of these items are getting at a similar construct of 

perceived "quality". Due to the high correlations between these variables, it may be more 

parsimonious to treat them as indicators of a similar construct and analyze them together 

in multivariate analyses. See Appendix E for additional discussion of effect size 

measures, confidence intervals, and the statistical assumptions for analytic techniques 

used in Study 2. 

Perceived Risk 

The explicit likelihood estimates and the narrative discussion of the evidence were 

hypothesized to affect consumer risk perceptions. These effects may be moderated by the 

format of the likelihood estimates and the numerical ability of the consumers. Specific 

research questions are detailed below. 

1.	 Will consumer perceptions of risk be affected by the explicit likelihood 

information presented in the forecast, in that higher stated likelihood will lead 

to higher perceptions of risk? 

2.	 Will consumer perceptions of risk be affected by a narrative discussion of the 

evidence presented in the forecast, in that the presence of the narrative will 

lead to higher perceptions of risk? 

3.	 Will the format of the likelihood information moderate the effect of explicit 

likelihood on perceived risk? 

a.	 The sensitivity of consumers to the different levels of stated likelihood may 

be moderated by the format of the likelihood information. 
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b.	 In addition, previous research suggests that expressing likelihood in a 

frequency format results in higher estimates of risk than equivalent 

expressions of likelihood in decimal or percentage form. 

4.	 Will consumers lower in numeracy have more difficulty using the explicit 

probability information to inform their risk judgments, and will their 

judgments be moderated by the format of explicit likelihood? 

Tables 6 and 7 show the effects ofexplicit likelihood information and uncertainty 

format on perceptions of risk both with and without a narrative description of the 

evidence. 

Table 6. The effect of explicit likelihood estimates and uncertainty format on risk 
perceptions without a narrative description ofevidence. 

Verbal Frequency Percentage 
Percentage 

w/range 
Total 

Highly Unlikely 
(5%,5/100) 

4.55 (2.44) 
n=20 

4.05 (1.99) 
n=21 

3.85 (2.48) 
n=20 

3.82 (1.70) 
n=17 

4.08 (2.17) 
n=78 

Fairly Unlikely 
(20%, 20/1 00) 

5.40 (1.60) 
n=20 

5.17 (2.46) 
n=18 

4.75 (1.97) 
n=20 

4.82 (2.43) 
n=17 

5.04 (2.10) 
n=75 

Total 
4.98 (2.08) 

n=40 
4.56 (2.26) 

n=39 
4.30 (2.26) 

n=40 
4.32 (2.13) 

n=34 

Note: Mean (SD) and sample size (n) are reported. 
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Table 7. The effect of explicit likelihood estimates and uncertainty format on risk 
perceptions with a narrative description of evidence. 

Percentage
Verbal Frequency Percentage Total

w/range 

Highly Unlikely 5.67 (2.35) 5.24 (2.36) 4.20 (2.73) 4.89 (1.91) 4.99 (2.38) 
(5%,5/100) n=18 n=21 n=20 n=18 n=77 

Fairly Unlikely 5.05 (1.85) 5.32 (2.81) 5.40 (2.48) 5.38 (2.85) 5.28 (2.46) 
(20%, 20/1 00) n=20 n=19 n=20 n=17 n=75 

5.34 (2.10) 5.28 (2.55) 4.80 (2.64) 5.12 (2.38) 
Total 

n=38 n=40 n=40 n=34 

Note: Mean (SD) and sample size (n) are reported. 

Consistent with the first two hypotheses, both higher stated probability, F(I,299) = 

5.74, P = .017, r = .136 (95% CI = .245, .024), and the presence of a narrative summary 

of the evidence, F(l,299) = 4.99, P = .026, r = .126 (95% CI = .235, .014), resulted in 

higher perceptions ofrisk3
• In addition, the frequency format elicited slightly higher risk 

perceptions than the percentage format, t(299) = 1.08. P = .28, r = .062 (95% CI = .173, ­

.051), although this effect was small and not statistically significant. 

Consumers, averaging across the format condition, were sensitive to the stated 

likelihood information when judging the risk of the potential terrorist attack. Simple 

effects were used to test whether this difference in perceived risk was present for each 

likelihood format. Figure 2 shows the mean perceived risk between the two levels of 

stated probability for each probability format. Effect sizes are also presented for the 

difference between the stated probability conditions for each format (* indicates a 

contrast is significant at p<.05). Consumers did not show substantially different 

perceptions of risk when likelihood was expressed in a verbal form. However, risk 

perceptions did differ in the expected direction in each of the numerical likelihood 

formats, although only the percentage format elicited a significant effect. It is also 

3 See Appendix E for a discussion of the General Linear Model (GlM) used to model consumer 
perceptions of risk, as well as a discussion of the r effect size measure. 
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interesting to note that there were virtually no differences between the probability formats 

in terms ofperceived risk at the higher probability value, while at the lower probability 

level there were substantial differences between the formats. 

Figure 2. The effect of stated likelihood and likelihood format on perceived risk. 
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Note: * indicates that the contrast was significant at p<.05. 

To explore the last set of hypotheses, individual differences in numeracy were used to 

predict perceived risk. There was a small to medium effect ofnumeracy, F(l, 298) = 

6.47, P = .011, r = .148 (95% CI = .256, .036), such that consumers lower in numeracy 

reported higher perceptions of risk. In addition, numeracy level interacted with the 

format of the likelihood information to affect perceptions of risk. Figure 3 shows the 

mean perceived risk for the format conditions split by high and low numeracy. A median 

split for numeracy is used for simplicity of display. 
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Figure 3. The effect of format condition and numeracy level on perceptions of risk. 
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There was a significant interaction between numeracy and the contrast between the 

verbal probability condition and the numerical conditions combined, t(295) = 2.27, P = 

.029. The low numerate showed little difference between the verbal probability condition 

and the numerical conditions (r = -.05, 95% CI = .106,-.204) while the high numerate 

showed higher perceived risk in the verbal condition and decreased perceptions of risk in 

the numerical conditions (r = .252, 95% CI = .398, .093). The high numerate were 

sensitive to the numerical probability information and showed a decrease in perceived 

risk compared to the verbal, while the low numerate perceived roughly the same level of 

risk in the verbal condition as compared to the numerical conditions. However, the low 

numerate do show a trend toward higher average risk ratings in the frequency condition 

as compared to the other conditions (r = .124, 95% CI = .274, -.032), which is consistent 

with previous findings reviewed above. 

Since consumers lower in numeracy have more difficulty evaluating numbers, it 

follows that the explicit likelihood information may not affect their perceptions of risk in 
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a consistent manner (i.e. higher perceptions of risk with higher stated likelihood 

regardless of the format of the likelihood information). 

Figures 4-7 show the relationship between uncertainty format and stated likelihood by 

numeracy (median split for display purposes) and evidence condition. Note that due to 

the sample size there are only 8-12 participants included in each of the means displayed 

in these graphs. Statistical power is a definite concern when testing the simple effects for 

these subgroups. Effect size measures are presented in the figures. 

Figure 4. The effect of stated likelihood and likelihood format on perceived risk with 
summary only, for consumers low in numeracy. 
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Figure 5. The effect of stated likelihood and likelihood format on perceived risk with 
summary only, for consumers high in numeracy. 
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Figure 6. The effect of stated likelihood and likelihood format on perceived risk with 
summary plus evidence, for consumers low in numeracy. 
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Figure 7. The effect of stated likelihood and likelihood format on perceived risk with 
summary plus evidence for consumers high in numeracy. 
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In the summary only condition, the low numerate show the expected pattern of higher 

risk ratings in the higher probability condition under all formats except for the percentage 

w/range format, while the high numerate show the expected pattern in all formats. When 

the evidence is present as well, however, the patterns change for both the high and low 

numerate. The low numerate show the expected pattern for the percentage and 

percentage w/range conditions, show no differentiation in the frequency format, and 

show a large effect in the opposite direction in the verbal condition. The high numerate 

show a relatively large effect in the expected direction with the percentage format, and 

show a flat trend or slightly opposite effect in the frequency and percentage w/range 

formats. To summarize, only the percentage format showed the predicted relationship at 

both levels of the evidence condition for both the high and the low numerate participants, 

although these effects clearly need to be replicated in a more powerful experimental 

design. These results also suggest that the presence of the narrative evidence summary 

has a strong effect on how consumers use the stated likelihood information to inform 
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their risk judgments. The competition between the narrative evidence summary and the 

stated likelihood information will be examined in more detail in Study 3. 

Perceived Usefulness ofthe Forecast and Perceptions ofKnowledge and Trust 

Perceptions of the forecast were explored as a function of the format of explicit 

likelihood information, the presence of the narrative description and the numerical ability 

of the consumer. Specific research questions are outlined below: 

1.	 Will the presence of a narrative discussion of the evidence affect consumer 

perceptions of the usefulness of the forecast and/or perceived knowledge and 

trust? 

2.	 Will the format ofthe likelihood information affect consumer perceptions of 

the usefulness of a forecast and/or perceived knowledge and trust? 

a.	 Because of the difficulty in interpreting verbal probability estimates, verbal 

probability statements will be perceived as less useful, and the forecaster 

will be perceived as less knowledgeable and trustworthy. 

b.	 Previous research also suggests that consumers may perceive a forecaster 

that presents a probability point estimate with a range as less 

knowledgeable than one that presents a point estimate only. Point 

estimates with a range may also be perceived as less useful because there is 

not a single number on which a consumer can use to help assess the risk of 

the target event. 

3.	 Will consumers varying in numeracy prefer likelihood information in different 

formats? 

a.	 Previous research suggests that the low and the high numerate may prefer 

probability information in different formats. The low numerate will 

perceive greater usefulness, knowledge and trust in forecasts with 

frequency representations of likelihood as compared to percentage 

representations. 
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Because of the high intercorrelations between the perception variables, a multivariate 

general linear modeling framework was used to assess the effects of the independent 

variables on the linear combination of the three perception variables. 

As hypothesized, participants who read a narrative summary of the evidence with the 

forecast reported higher levels of perceived usefulness, knowledge and trust, Pillai's = 

.053, F(3,296) = 5.49, P = .001, r = .230 (95% CI = .334, .121) 4. The standardized 

discriminant function coefficients for the linear combination of the perception variables 

were -.709, -.509 and .145 for usefulness, knowledge and trust, respectively. This 

indicates that all of the perception variables contributed to the differentiation of the 

evidence groups, although perceived usefulness made the largest contribution. 

To address the second set of hypotheses, differences in consumer perceptions among 

the different likelihood formats were explored next. The first contrast compared the 

verbal probability condition to the average of the numerical conditions, and although it 

was not statistically significant, Pillai's = .013, F(3,296) = 1.31, p = .271, r = .11 (95% CI 

= .220, -.002) the effect was in the expected direction, with lower ratings of value, 

knowledge and trust in the verbal likelihood condition. However, there was virtually no 

difference between the percentage with range condition and the average of the other 

numerical likelihood conditions, Pillai's = .001, F(3,296) = .11, P = .957, r = .031 (95% 

CI = .143, -.082). This is inconsistent with previous findings in which forecasters who 

presented likelihood estimates with ranges were perceived as less knowledgeable than 

those who presented likelihood point estimates only. 

The final set of hypotheses concern the potentially moderating influence of consumer 

numeracy. Figure 8 shows the effect of uncertainty format and consumer numeracy on 

perceptions of usefulness, knowledge and trust. 

4 Details of the multivariate analyses are discussed in Appendix E. 
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Figure 8. The effect of uncertainty format and consumer numeracy on perceptions of 
usefulness, knowledge and trust. 
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Note: The dependent variable in this figure is the linear combination ofperceived usefulness,
 
knowledge and trust used in the MANGVA.
 

As a main effect, participants lower in numeracy reported greater perceptions of 

usefulness, knowledge and trust, Pillai's = .07, F(3,296) = 7.16, p<.OOI, r =.26 (95% CI 

= .362, .152). The standardized discriminant function coefficients were -.442, -.524, and 

-.166 for value, knowledge and trust, respectively. Furthermore, as hypothesized, the 

difference in perception ratings between the frequency format and the percentage format 

was moderated by the numeracy level ofthe consumer, Pillai's = .029, F(3,294) = 2.89, P 

= .036, r = .170 (95% CI = .277, .059), and perceived trust was the main variable driving 

this effect (standardized discriminant function coefficients were -.416, .158, and -.818 for 

value, knowledge, and trust, respectively). The low numerate rated the frequency 

condition higher than the percentage condition, and the opposite was true for the high 

numerate. Overall, the high numerate found a forecast with a percentage likelihood 

estimate to be more useful, and higher in knowledge and trust than a forecast with the 

other uncertainty formats. The low numerate found a forecast with a frequency and 
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percentage with range likelihood estimate to be more useful, and higher in knowledge 

and trust than a forecast with a percentage or verbal likelihood estimate. 

However, additional exploratory analysis revealed that the preference for the 

percentage format by the high numerate and the frequency format for the low numerate 

were moderated by stated likelihood, Pillai's = .04, F(3,287) = 3.58, p = .014, r = .20 

(95% CI = .305, .090). Figures 9 and 10 show the effect of uncertainty format and 

numeracy at each level of stated likelihood. The figures show that the preference for the 

frequency format by the low numerate and the preference for the percentage format by 

the high numerate is only present at the lower level of likelihood. 

Figure 9. The effect of uncertainty format and numeracy on perceptions of usefulness, 
knowledge and trust at low stated likelihood (i.e. 5%, 5/1 00). 

1-r------------------------,----, 

0.6 +----...-------r----. 

0.4 +----r-------r------1~___= ---___1 
Ul 
C 

.g
Q. 

0.2 +----r------=I::==---I 
CII 
~ 
CII 
A­

0 
.HighNum 
LlLowNum 

i -0.2 
CII 
2: 

Note: The dependent variable in this figure is the linear combination ofperceived usefulness, 
knowledge and trust used in the MANOVA. 



64 

0.6 +---------1---'11--. 

0.4+----­

Figure 10. The effect of uncertainty format and numeracy on perceptions of usefulness, 
knowledge and trust at high stated likelihood (Le. 20%, 20/1 00). 
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In addition, collapsing across numeracy, stated likelihood moderated the effect of 

uncertainty format on perceptions of usefulness, knowledge and trust. Figure 11 shows 

the effect of uncertainty format and stated likelihood on perceptions of usefulness, 

knowledge and trust. Perception ratings were roughly equal for each likelihood format 

except for the percentage with range condition. The percentage with range condition was 

rated substantially higher in the high probability condition than in the low probability 

condition, Pillai's =.03, F(3,298) =2.95, P =.033, r =.341 (95% CI =.536, .112), and 

perceived usefulness was the main variable driving this effect (standardized discriminant 

function coefficients were -.822, -.502, and .332 for value, knowledge and trust, 

respectively). It appears that consumers only found the percentage with range condition 

useful in the high probability condition, and it is possible that when the probability values 

get too low consumers can no longer use the range information. 
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Figure 11. The effect of uncertainty fonnat and stated likelihood on perceptions of 
usefulness, knowledge and trust. 
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Note: The dependent variable in this figure is the linear combination of perceived usefulness, 
knowledge and trust used in the MANDVA. 

Summary and Discussion 

The primary purpose of Study 2 was to detennine whether consumers of simulated 

intelligence forecasts would be sensitive to stated likelihood infonnation, particularly in 

the presence of a narrative evidence summary. Another primary focus was whether 

consumers would be better able to use likelihood infonnation in a particular fonnat, and 

whether they would perceive particular likelihood fonnats to be higher in usefulness, 

knowledge and trust. Finally, the potential moderating influence of consumer numeracy 

was explored. 
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The Effect ofStated Likelihood and Narrative Information 

On average, the magnitude of the stated likelihood had an effect on perceived risk, 

suggesting that participants were sensitive to the explicit likelihood information in the 

forecast. The presence of a narrative summary of the evidence also resulted in increased 

perceptions of risk. Presumably, the narrative information formed a more compelling 

story and elicited more compelling imagery from consumers. The compelling story 

likely made the attack seem more plausible, which led to the higher ratings of risk. The 

effect sizes were roughly equal for the explicit likelihood and narrative conditions 

suggesting that including a description of the evidence underlying a forecast has roughly 

the same effect on perceived risk as a stated probability shift from 5%-20%. In addition, 

not only did the narrative information increase risk ratings, but consumers also found the 

forecast to be more useful and the forecaster more knowledgeable and trustworthy. 

The Effects ofLikelihood Format 

The results so far have provided evidence that consumers are sensitive to the 

probability information in the forecast. As expected, however, the extent to which 

consumers were sensitive to the stated likelihood was moderated by the format of the 

likelihood information. 

Verbal Likelihood Format. Because of the lack of specificity of verbal probability 

statements, consumers were not, as a whole, sensitive to changes in verbal stated 

likelihood. Consumers also tended to rate forecasts with verbal estimates of likelihood 

lower in terms of usefulness, knowledge, and trust compared to the numerical formats. 

This result adds to the long list of indictments against verbal probability statements. It is 

clear from these findings and previous research discussed in Chapter II that verbal 

probability statements without a reference scale are not particularly helpful in 

transmitting risk information from analyst to consumer. 

Numerical Likelihood Formats. In general, consumers were sensitive to the changes 

in explicit likelihood in each numerical condition, although the percentage format showed 

the largest effect. One primary effect of interest was whether both high and low 
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numerate participants were sensitive to the stated likelihood information (higher 

perceived risk in the higher likelihood condition) for each of the likelihood formats. 

Inspection of the mean perceived risk for each condition revealed inconsistent risk ratings 

in several conditions (see discussion above). Consumers appeared to be particularly 

insensitive to the stated likelihood information when they read a narrative about the 

evidence, presumably because they were not focusing on the likelihood information as 

much in the presence of the narrative summary. Without the narrative summary, 

however, the low and the high numerate showed roughly consistent patterns of risk 

perception across stated likelihood for each numerical likelihood format (except for the 

range condition for the low numerate). In the end, however, only the percentage 

likelihood format consistently showed the expected pattern across the likelihood levels 

for both high and low numerate consumers with and without a narrative summary of the 

evidence. 

Frequency versus Percentage Likelihood Formats. Consumers also reacted 

differently to the likelihood formats based on stated likelihood and numerical ability. The 

low numerate perceived greater usefulness, knowledge, and trust in the frequency 

condition as compared to the percentage condition, and the opposite was true for the high 

numerate. This pattern of results, however, was only present at lower stated probability, 

possibly because people generally have more difficulty dealing with these probabilities 

and are therefore more sensitive to format. In addition, it is noteworthy that although the 

low numerate expressed higher ratings of usefulness, knowledge and trust for likelihood 

information in frequency form, they did not, on average, consistently perceive higher risk 

when presented with higher stated likelihood in frequency form. 

Percentage with Range Format. Consumers rated the percentage w/range likelihood 

format higher in usefulness, knowledge and trust when the forecast involved higher 

likelihood values (Le. best estimate 20%) as compared to lower likelihood values (Le. 

best estimate 5%). Considering the difficulty that many people have understanding low 

probabilities, ranges ofplausible likelihood values in the low probability range may not 

be useful for consumers. 
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In addition, risk perceptions in the percentage w/range condition were not as 

consistent (i.e. consistency would be higher risk perceptions for higher stated likelihood 

ranges) as risk perceptions in the percentage fonnat. Although the range fonnat actually 

provides more infonnation than the other numerical fonnats (i.e. high, low, and best 

estimates of probability), the additional infonnation may make it difficult to use the 

estimates to infonn perceived risk. For example, a particular consumer could be a 

pessimist and focus on the high end of the range when judging risk or could focus on the 

low or best estimate depending on his or her inclination. In many ways the range 

condition is superior to the point estimate fonnats, in that the consumer is also given an 

idea of the certainty that the forecaster has in the estimate. Because of the present 

interest in the risk communication and forecasting literature on sensitivity analysis and 

reporting ranges ofparameters, I focus on the percentage with range condition again in 

Studies 3 and 4. 

Study 3 - Further Investigations of Including Numerical Estimates of Likelihood and
 
Hann in Forecasts
 

Purpose 

Study 3 was designed to address two primary issues. The first issue was the direct 

comparison of purely narrative intelligence forecasts to forecasts with narrative as well as 

numerical estimates of likelihood and potential hann. Although people recommending 

probabilistic analyses often assume that providing numerical estimates is superior to 

purely narrative forecasting (e.g. Fischhoff, 2001), this has not been shown empirically in 

the intelligence domain. Providing numerical estimates of likelihood, for instance, 

should facilitate the communication of probability infonnation from analyst to consumer 

in a more accurate, consistent manner than verbal probability statements or purely 

narrative descriptions of evidence. However, as was discussed in Chapter II, numerical 

estimates of likelihood can still be affected by contextual factors (e.g. a narrative 

evidence summary accompanying a quantitative forecast), and may not be consistently 
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interpreted by different consumers. Thus, it is important to empirically explore the effects 

of including quantitative estimates in intelligence reports as compared to purely narrative 

reports. In Study 2, the verbal condition included verbal probability statements that were 

used in the place of quantitative estimates. The use of verbal labels in place of 

quantitative probability estimates is an interesting issue in its own right, but the more 

fundamental question is whether purely narrative reports (with no quantitative or verbal 

probability summary) are different from reports with quantitative estimates. 

The second issue was to more directly assess consumer's use of narrative and explicit 

likelihood information when forecasts include both of these information sources. 

Specifically, the goal was to determine the impact of explicit likelihood information and 

specific properties of the narrative on perceptions of likelihood. Unlike Study 2, in which 

perceived risk was the primary dependent measure, the impact of explicit likelihood and 

narrative information is related directly to perceptions of likelihood. Perceived likelihood 

and perceived potential harm are thought to be two of the sources of information that 

affect global perceptions of risk (see Model of Consumer Perceptions of Forecasts in 

Chapter III). 

Additionally, as in Study 2, both the numerical ability of the consumers and the 

format of explicit likelihood information were explored as potential moderators (see 

Model of Consumer Perceptions of Forecasts in Chapter III). Based on experimental 

results reported by Fox and Malle (1997), in which the internal or external framing ofa 

subjective probability estimate affected consumers perceptions of the forecaster, internal 

and external framing of likelihood were explored as a potential moderator variable. In 

addition to these point estimate likelihood formats, the percentage with a range format 

was explored as well. 
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Method 

Participants 

The experimental sample consisted of graduate and law students attending the 

University of Oregon. 

Procedure and Materials 

Study participants were paid $14 for approximately 1 hour of participation time. 

Participants were presented with simulated intelligence forecasts warning of a possible 

terrorist attack. Four separate terrorism scenarios were generated. The scenarios were 

very similar in terms of written length and the number and types of evidence used. 

Participants then responded to a series of questions about each scenario, filled out the 

numeracy individual difference measure and provided demographic information. All 

study procedures were passed through the University of Oregon Institutional Review 

Board (IRB). 

Experimental Design 

Unlike Study 2, this study was designed to test the specific hypotheses of interest 

with sufficient statistical power and in a manner that is more representative of the real 

environment in which consumers may view intelligence forecasts. Real consumers will 

most likely be looking at multiple intelligence forecasts in close proximity or directly 

comparing them. Therefore, a potentially better way to present the intelligence forecasts 

to consumers is in a within subject design. 

In Study 2, consumers were sensitive to the explicit likelihood information stated in 

the forecasts, although consumer numeracy and the format of the likelihood information 

moderated these effects. However, explicit likelihood was only presented at two levels 

(5% and 20%) in Study 2. To further test the sensitivity of consumers to explicit 

statements of likelihood in intelligence forecasts, and to allow more detailed analysis of 

the function relating explicit to perceived likelihood, 3 levels of likelihood (i.e. 1%, 5%, 

10%) were presented to consumers in Study 3. Since many forecasts in the intelligence 
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domain are likely to involve relatively low probability events, a lower probability range 

was used in this study. 

In addition, explicit likelihood was not presented in a frequency format in Study 3. 

Understanding likelihood as a relative frequency is very natural when one is presented 

with an event that is repeated, like the spinning of a roulette wheel. For example, stating 

the probability that a particular mental patient will commit an act of violence in the next 6 

months as 1/1 00 is clear as long as we can visualize the set to which this patient belongs: 

out of 100 mental patients with identical symptoms only 1 will commit an act of violence 

in the next 6 months. However, for many situations in which a probability value is 

assigned to a single event, a frequency representation of probability and therefore a 

frequency format is not clearly applicable. The probability of a particular act of terrorism 

becoming reality is a good example (see discussion in Chapter II). In addition, results 

from the Study 2 indicate that in the presence of a narrative description of the evidence, 

the frequency format did not elicit consistent ratings of risk (i.e. higher risk ratings for 

higher stated likelihood). 

This experiment was run as a 3 (probability format/framing) x 4 (probability level) 

mixed experimental design with probability level as the within subject factor. The four 

levels of stated probability were narrative-only (no probability), 1%, 5%, 10%. The 

probability format factor varied as follows: 1) point estimate ofprobability framed as an 

external estimate (The probability that this event will occur is ... ), 2) point estimate of 

probability framed as a rating of how confident the analysts are that the event is going to 

occur (We are x% sure that this event will occur ... ) and 3) a point estimate of the 

probability framed as an external estimate with a confidence range around the estimate 

(Our best estimate of the probability that this event will occur is x%, but the probability 

could be as low as x% or as high as x%). The third condition is a bit different from the 

other two in that it includes two pieces of information - namely, the estimated external 

probability of the event, and an interval that gives the consumer information about how 

confident the analyst is in that estimate. The wider the confidence interval the less 

confident the analyst is in their best estimate, the narrower the interval the more 
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confident. Also, the pairing of scenario to probability level as well as the order of 

presentation were randomized to control for incidental effects. 

Unlike Study 1, all of the intelligence reports were presented with a narrative 

description of the evidence supporting the forecast. For the evidence-only report, there 

was no stated probability information and there was no mention ofthe potential harm that 

could result ifthe attack were to occur. For the narrative reports in the probability 

conditions, there was a statement about the numerical probability of the event (in 

different formats depending on condition) as well as a statement about the potential threat 

or harm that would result ifthe attack were to occur. The statement about potential harm 

was held constant for all of the reports (except the narrative-only, which had no harm 

information): "If the attack occurs, a plausible worst-case scenario would be 1000 deaths 

and injuries and 50 million dollars in property damage." Since explicit likelihood and 

potential harm were not reported in the narrative-only forecasts, any differences between 

the narrative-only and numerical forecasting conditions must be interpreted as resulting 

from the addition of both likelihood and potential harm information. 

Dependent variables 

The dependent variables were designed to capture the perceived likelihood and 

potential harm of the forecasted terrorist plot, as well as perceptions of the usefulness and 

source credibility of the intelligence forecasts. As in Study 2, the first question asked 

about the consumer's global perceptions of risk: "How would you rate the risk associated 

with this possible attack?". In addition to this global question, separate questions were 

asked about the perceived likelihood and impressions of the overall harm or threat 

associated with the attack: "What is your impression ofthe chance that this attack will 

occur over the next 6 months?", "Focus on the potential outcome of the described 

terrorist attack. If this attack did occur, what is your impression of the overall harm that 

would be inflicted on people, property, the economy, etc?" In addition, consumers were 

asked about the perceived value or usefulness of the forecast for decision making. 

Finally, source credibility was assessed with a scale used by McComas & Trumbo 
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(200 I). This measure was used to assess how consumers generally felt about the source 

of the intelligence forecast. The source credibility scale is made up of five questions 

asking the extent to which consumers trust the conclusions of the forecast, whether they 

feel the forecast is accurate, whether it is fair, whether it tells the whole story, and 

whether it is biased. Each consumer responded to the dependent variables discussed 

above for each of the four intelligence forecasts. Consumers responded to these 

dependent variables directly after reading each intelligence forecast. 

After reading each of the four intelligence reports and responding to the dependent 

variables, the consumers were asked to make two additional ratings concerning the 

evidence described in each scenario. The narrative summary of the evidence had a strong 

influence on perceptions of the intelligence forecast presented in Study 2. In this study, 

consumers will be asked about specific aspects of the scenario information presented in 

each intelligence forecast. The first was a global rating of the overall credibility of the 

evidence, and the second was a rating of the how well the evidence could be formed into 

a coherent story. Again, these ratings were made for each of the four scenarios after the 

participants had finished the primary dependent variables. Numeracy was explored as an 

additional covariate that is stable across subjects, and the additional ratings of credibility 

and coherence were explored as time-dependent covariates (or within subject covariates). 

Participants responded to all questions on II-point rating scales. See the Appendix C for 

Dependent variables. 

Results 

Sample Characteristics 

There was a total of n=87 participants, resulting in 29 subjects in each between 

subject condition. Participants all had 4-year college degrees and the majority were 

current graduate/law students attending the University of Oregon. These advanced 

students were from a variety of departments, including biology, business, chemistry, 

computer science, economics, education, engineering, geological science, international 
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studies, law, mathematics, philosophy, physics, political science, and psychology. Tables 

8 and 9 show the sample characteristics. 

Table 8. Sample Characteristics. 

Characteristic n 
Mean 

(Median) 
SD 

Age 87 28.05 (27.00) 6.32 

~umeracya(0-15) 87 12.29 (13.00) 2.11 

a Distribution is moderately negatively skewed. 

Table 9. Sample Characteristics. 

Characteristic n 

Female 46 52.9 

Education (n=87) 

4yr college graduate 11 12.6 
Current Graduate or Law Student 76 87.4 

The relationships between the dependent variables were examined before proceeding 

with the formal analysis. First, reliability analysis was conducted on the five items 

making up the source credibility scale (McComas & Trumbo, 2001). Inspection of 

scatterplots for each item pair confirmed that associations between the variables were 

roughly linear in nature. Reliability analyses were conducted separately for responses at 

each level of the within subjects variable (i.e. pure narrative, and the three numerical 

forecast conditions). Both the alpha coefficients (a = .850-.887) and average inter-item 

correlations (average r = .539-.592) were sufficiently high to justify averaging the items 

to create a composite source credibility measure. 

Table 10 shows the average Pearson correlations (averaged across the four levels of 

the within subjects factor) between the dependent variables related to perceptions of 
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chance, harm and risk in Study 3. Inspection of scatterplots for each variable pair 

confirmed that all of the variables were roughly linearly related. 

Table 10. Average Pearson correlations wi 95% CI's between dependent variables 
related to risk perception (n=87). 

Risk Likelihood Harm Credibility Coherence 

Risk 1.00 

Likelihood .587 
(.710, .429) 

1.00 

Harm .398 .220 1.00 
(.562, .204) (.412, .010) 

Credibilityl .351 .267 .092 1.00 
(.527, .146) (.456, .054) (.302, -.126) 

Coherencel .352 .207 .138 .601 1.00 
(.528, .148) (.405, -.009) (.343, -.080) (.723, .443) 

I Four cases were missing data on this variable, n=83. 

Judging by the pattern of correlations in Table lO, global perceptions of risk were 

more strongly associated with perceptions of likelihood than perceptions of potential 

harm. Perceptions of the credibility and coherence of each narrative evidence summary 

are also significantly related to perceived risk. The focus of this study, however, is 

perceptions of likelihood and perceptions of global risk will not be explored further. 

Conceptually, there should be roughly zero correlation between perceived likelihood and 

harm, but a small to moderate correlation is evident in these data. Since many of the 

hypotheses involve expected changes in perceptions due to manipulations of stated 

likelihood, perceived likelihood will be the primary dependent variable. 

The ratings of story coherence and evidence credibility are highly correlated. In 

addition, coherence and credibility show small to moderate correlations with perceptions 

of likelihood. Importantly, coherence and credibility correlate only weakly with potential 

harm, which is consistent with the theoretical model presented in the Chapter II. This 

makes sense because theoretically the credibility and coherence of the evidence set is 

pertinent to the likelihood or plausibility of the event occurring, not the potential harm. 



76 

Perceived Likelihood 

The two primary goals of this study were to compare consumer perceptions of purely 

narrative intelligence forecasts to forecasts with explicit estimates of likelihood and 

potential harm, and to assess the impact of narrative and explicit likelihood information 

on consumer perceptions when both of these sources of information are available in a 

forecast. These research questions will be addressed separately below. 

Pure narrative versus numerical forecasts. Two primary research questions will be 

explored in the analysis below: 

1.	 Will pure narrative forecasts result in higher estimates of likelihood than forecasts 

with narrative and numerical estimates? Research suggests (see Chapter II) that 

people use scenario-based reasoning strategies that tend to inflate perceptions of 

likelihood when only presented with a narrative summary of the evidence relating 

to the target event. When numerical estimates of likelihood are presented, 

however, initial likelihood perceptions due to the narrative should be pulled down 

toward these numerical estimates. 

2.	 Because consumers will have more difficulty evaluating likelihood in pure 

narrative forecasts (e.g. consumers may use idiosyncratic strategies of evaluating 

likelihood) than when numerical estimates are included, consumers in the pure 

narrative condition are expected to show more variance in perceptions of 

likelihood than consumers in the numerical estimate conditions. This increased 

variance in likelihood perceptions is an indication that the transferal of likelihood 

information from analyst to consumer is not as consistent in pure narrative 

forecasts. 

Table 11 shows the effect of stated likelihood and likelihood format on consumer 

perceptions of likelihood. Contrary to expectations, there were no significant differences 

in the variance of likelihood ratings between the narrative-only and numerical conditions. 
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This implies that the presence of numerical estimates of likelihood and potential harm do 

not necessarily result in more consistent perceptions across consumers. Although there 

were no significant differences in the variance of likelihood ratings between the pure 

narrative and numerical forecasts, the distribution of the likelihood ratings were affected 

by the presence of the explicit numerical estimates. 

Table 11. The effect of explicit numerical estimates of likelihood and potential harm and 
uncertainty format on consumer perceptions of likelihood. 

Narrative 1% 5% 10% Totala 

Probability 25.60 (21. 71) 19.03 (24.78) 25.17 (25.30) 23.97 (24.83) 22.72 
(external) TB=J2.99 TB=5.52 TB=8.20 TB=9.71 TB=10.09 

Probability 28. 62 (24.7J) 22.33 (24.77) 23.10 (22.66) 26.90 (23.77) 24.11 
(internal) TBc=26.9U TB=3.22 TB=5.00 TB=8.74 TB=19.40 

Probability 30.00 (22.4-1) 24.60 (21.55) 22.76 (20.47) 26.38 (20.13) 24.58 
w/range T1328.82 TB=21.85 TB=13.06 TB=24.08 TB=20.09 

Total 
28.07 

TB=24.97 
21.99 

TB=4.87 
23.68 

TB=7.43 
25.75 

TB=14.57 

Note: There are n=29 participant ratings per cell, with N=87 total. Participants responded on a 0-100%
 
scale. Mean (SD) and Tukey's Biweight (TB) robust measures of central tendency are reported above.
 
Tukey's Biweight measures of central tendency provide a more robust measure of location than the mean in
 
cases of extreme skewness and/or kurtosis (Wilcox, 2005).
 
a Mean totals for the between subject condition of probability format are made up of only those
 
observations in the numerical conditions. The responses in the pure narrative condition were not included
 
in these means because there was no explicit likelihood information present in this condition. This is
 
necessary because the experimental design is not fully crossed.
 

Figure 12 shows the distributions of consumer likelihood ratings for the narrative 

only condition and each level of stated likelihood by likelihood format. In the narrative 

condition (which was identical for each level of likelihood format because no likelihood 

information was displayed), the distributions are slightly positively skewed, indicating 

that ratings tended to bunch up slightly at the low end of the probability scale. For these 

distributions, the mean estimates presented in Table 11 are likely to be good measures of 

the central tendency of the distributions. This is confirmed when comparing the mean to 
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the Tukey's Biweight robust measure of central tendency. Robust measures of central 

tendency give better estimates of central tendency in distributions with severe skewness 

and/or kurtosis. 

Figure 12. Boxplots showing the distribution of likelihood ratings at each level of 
likelihood and likelihood format. 
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However, inspection of the boxplots for the numerical forecasting conditions reveals 

extreme positive skewness, particularly for the internal and external point estimate 

formats. For these distributions the mean is pulled sharply toward the outliers at the high 

end of the likelihood scale and is not a representative measure of central tendency. This 

is evident by comparing the means with the robust estimates of central tendency in Table 

11 for these distributions. The means for these distributions are not appropriate measures 

of location. 
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This pattern of results shows that the manipulations of probability format and 

probability level not only changed the central tendency of the distributions but also the 

shape of the distributions. In addition, the shape of the pure narrative and numerical 

forecasting distributions are drastically different, making it very difficult to compare the 

means of these distributions or use any mean based statistical methods to compare the 

groups. For example, looking at the pattern ofmeans in Table 11 paints a different 

picture than the pattern of robust measures of central tendency, the later of which is a 

more accurate representation of location in the distributions. Because of the complexity 

introduced by the pattern of distributional changes, bootstrapping methods based on 

robust measures of central tendency were used to compare the pure narrative and the 

numerical forecasting conditions (Wilcox, 2005)5. 

It was hypothesized that the pure narrative condition would result in higher ratings of 

perceived likelihood than the numerical conditions, particularly in the point estimate 

conditions. Inspection of the robust measures of central tendency in Table 11 shows a 

large difference between the narrative and numerical condition in the point estimate 

conditions (probability and confidence), and a smaller difference in the range conditions. 

In the point estimate conditions (average of probability and confidence), the narrative 

elicited substantially higher likelihood ratings than the 1% (Diff = 20.77, 95%CI: 1.28, 

26.67),5% (Diff= 17.32, 95%CI: -4.69, 24.14), and 10% (Diff= 16.01, 95%CI: -2.60, 

21.84) numerical conditions. In the range condition the differences between the narrative 

and numerical conditions were much smaller, 1% (Diff= 7.01, 95%CI: -0.76, 24.64), 5% 

(Diff= 14.38, 95%CI: 2.62, 24.82), and 10% (Diff= 5.18, 95%CI: -4.96, 18.28)6. 

5 It is difficult to transform the distributions of likelihood ratings to a more normal shape because the 
skewness is not consistent across the distributions. For example, a log transformation to correct the 
skewness of the likelihood ratings at one condition will bias distributions that are relatively normal in the 
opposite direction, and since all of the scales on the repeated measures factor must be consistent, different 
transformation cannot be applied to different distributions. 
6 In general, bootstrap methods tend to be less powerful as compared to standard mean-based statistics, and 
although the differences reported are substantial in magnitude, some comparisons were not significant at 
alpha=.05 (although all p's<.10). These same comparisons were also conducted with standard mean-based 
methods, and although the mean is not an accurate measure of location in these distributions (discussed 
above), all group comparisons were significant at alpha=.05. 
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Overall, pure narrative forecasts resulted in greater consumer perceptions oflikelihood 

than forecasts with 1%, 5%, and 10% numerical likelihood estimates. This suggests that 

consumers were sensitive to the explicit likelihood information in the forecasts and they, 

consequently, lowered their ratings of likelihood from what would be estimated from the 

narrative information alone. In the next section, precisely how consumers used both the 

explicit likelihood and narrative information is explored in more detail. 

The impact ofexplicit likelihood and narrative information on perceptions of 

likelihood Several research questions are explored in this section: 

1.	 In the presence of a narrative evidence summary, to what extent will 

consumers use the explicit likelihood information to inform their perceptions 

of likelihood? Forecasts that include higher explicit estimates of likelihood 

should result in higher perceived likelihood on the part of consumers. 

2.	 In the presence of explicit numerical estimates of likelihood, to what extent 

will consumers use the coherence and credibility of the evidence in the 

narrative summary to inform their perceptions oflikelihood? Consumers that 

perceive greater coherence and credibility in the narrative summary will 

perceive greater likelihood. 

3.	 To what extent will the format of the likelihood information moderate the 

effect of explicit likelihood and narrative information on perceptions of 

likelihood? 

•	 Does presenting the likelihood as an internal confidence rating as 

compared to an external likelihood affect consumer's sensitivity to this 

information? 

•	 Consumers may show less sensitivity to the explicit likelihood information 

when likelihood is presenting with a range ofplausible value. The results 

from Study 2 suggest that this may be the case. 
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4. To what extent will consumer numeracy moderate the effect of explicit 

likelihood and narrative information on perceptions of likelihood? 

•	 Consumers lower in numeracy may not be as sensitive to numerical 

likelihood information and may focus more on the narrative summary 

when making likelihood judgments. The opposite may be true for 

consumers higher in numeracy. 

Explicit likelihood: One of the primary research questions in this study was how 

consumers used the explicit likelihood information to inform their perceptions of 

likelihood. For example, if consumers completely ignored the scenario information and 

directly translated the explicit likelihood estimates to their rated perceptions oflikelihood 

(Le. 1% stated, 1% reported; 5% stated, 5% reported, etc), the slope relating stated to 

perceived likelihood should be roughly equal to 1 (assuming that consumers were using 

the best estimate in the point estimate w/range format). This assumes, however, that 

participants were using the rating scale as a percentage likelihood scale, and they were 

not using it as a more generic scale in which they tried to scale their feelings of likelihood 

in terms of relative magnitude7
. Examination of the distributions of the likelihood ratings 

in Figure 5.11 shows that consumers were clearly not directly translating stated 

likelihood into rated perceived likelihood. The linear function relating stated likelihood 

to rated perceived likelihood had an intercept = 21.58 and a slope = 0.417 (significantly 

different from b = 1, P < .05). 

It is clear that consumers were not directly translating stated likelihood into perceived 

likelihood. This either indicates that these consumers were interpreting the probability 

scale appropriately (0-100% chance) and they were simply using other information from 

the forecast to make their likelihood ratings, or they were not using the probability scale 

in the strict sense and simply using it as a generic rating scale, in which they tried to scale 

7 In addition, the likelihood rating scale was presented in 5-point steps (Le. 0-5-10-15 etc), and although 
many consumers reported values between the steps (e.g. 1%), the crudeness of the scale may have affected 
how consumers reported perceptions of likelihood. 



82 

their feelings of likelihood in terms of relative magnitude. However, even if consumers 

were using the rating scale as a generic scale in which they tried to scale their feelings of 

likelihood, they should still make ordinal differentiations between the levels of stated 

likelihood. One would expect a 10% stated likelihood to be rated higher than a 5% stated 

likelihood which would be rated higher than a 1% likelihood. Thus, even if consumers 

were not all using the likelihood rating scale in the same way, the extent to which 

consumers adhere to a monotonic relationship between stated and perceived likelihood 

will be an indication of their sensitivity to the stated likelihood information. 

Only 39.08% of consumers showed a consistent monotonic relationship among their 

rated perceptions of likelihood as stated likelihood increased8
• Thus, approximately 60% 

of the consumers in this sample were not consistently perceiving higher likelihood as the 

stated likelihood increased. Perhaps the stated likelihood values of 1% and 5% were too 

small and close together to be distinguished by many consumers, and the requirement for 

sensitivity to the explicit likelihood should be loosened even more - namely, that only a 

stated likelihood of 10% must result in higher perceptions of likelihood than a stated 

likelihood of 1%. A much larger percentage of consumers, 67.82%, perceived greater 

likelihood in forecasts with a 10% stated likelihood as compared to a 1% stated 

likelihood. Although the consumers were, to some extent, using stated likelihood to 

inform their perceptions of likelihood, they appeared to be using other information as 

well. In the next section, the extent to which consumers also use the properties of the 

narrative evidence summary to inform their perceptions of likelihood is explored. Also 

of interest are the potential moderating effects of the format of the likelihood information 

and consumer numeracy level. 

8 As discussed above, the likelihood rating scale was presented to consumers in 5-point intervals (Le. 0%­
5-10-15, etc). Although some consumers reported values in between these 5-point intervals (e.g. 1%), this 
crude measurement scale may have affected ratings of perceived likelihood. For example, a consumer may 
have tried to directly translate stated likelihood (e.g.! %,5%,10%) to rated perceived likelihood, but 
because there was not an explicit 1% on the rating scale, he or she may have reported 5%, 5%,10%. Thus, 
if a consumer reported this pattern of likelihood ratings they were given credit for having made an ordinal 
differentiation (Le. monotonic function) among the levels of stated likelihood. 
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Explicit likelihood and narrative information: The next set of hypotheses were 

tested in the context of several multilevel mixed models, with the repeated measures 

represented at level 1 (i.e. within subject manipulations and covariates varying within 

subjects), and the between-subject data represented at level 2 (i.e. between subject 

manipulations, and subject-level covariates). See Appendix E for statistical details 

concerning the multilevel models used to estimate effects in Study 3 and Study 4. 

The primary goals of this analysis are to test the hypothesized effects of stated 

likelihood information and properties of the narrative summary on perceptions of 

likelihood. In addition, the potentially moderating influence of likelihood format and 

consumer numeracy will be explored. These hypothesized relationships were discussed 

in Chapter III (see Model of Consumer Perceptions of Intelligence Forecasts). The direct 

effect of stated likelihood on perceived likelihood has already been discussed above, 

although in these analyses likelihood format and numeracy will be explored as 

moderators of this effect. In these analyses, the effect of stated likelihood is represented 

as the linear slope across the stated probability levels (higher order polynomial effects 

were not significant), which indexes the extent to which consumers perceived greater 

likelihood as stated likelihood increased. As noted above, credibility and coherence 

ratings were highly correlated with one another, and including them in the multilevel 

models resulted in moderate multicollinearity problems. Several models were fit with 

coherence and credibility modeled separately, and the results were comparable. On the 

basis of the similar pattern of relationships between the variables and model parsimony, 

the credibility and coherence ratings were averaged to create a composite variable that 

will be called "evidence properties". This composite variable can be conceptualized as 

the extent to which each consumer found the evidence in each scenario to be credible and 

coherent. In addition, the likelihood ratings were log transformed in all analyses to 

reduce the skewness problems discussed above. 

In the first model, ratings of perceived likelihood were modeled as a function of 

stated likelihood and likelihood format. The linear function relating stated likelihood to 

perceived likelihood was positive, as detailed above, and significantly different from 0, 
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slope = 0.239, t(255) = 3.996, p < .001, ES = .539
. The primary goal of this analysis, 

however, was to test if the format of the likelihood information moderated this effect. 

The likelihood format did reliably explain some of the variance in the slopes relating 

stated to perceived likelihood, t(255) = -1.859, p = .06, ES = .16, such that consumers in 

the range condition showed flatter slopes than consumers in the point estimate conditions 

(i.e. internal and external point estimates). Consumers in the range condition showed less 

differentiation between the levels of stated likelihood. There were no significant 

differences between the internal and external point estimate conditions. Figure 13 shows 

the effect of stated likelihood on perceived likelihood for the point estimate and range 

conditions. 

Figure 13. The effect of stated likelihood on perceived likelihood for the point estimate 
and range conditions. 
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Stated Likelihood 

This result demonstrates that stated likelihood had a larger linear effect on perceived 

likelihood in the point estimate conditions than in the range condition. Overall, however, 

there was still quite a bit of variability in perceived likelihood that was not accounted for 

9 See Appendix E for discussion of the effect size metric used for the HLM results. 
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by stated likelihood or likelihood format. In the next set of models the coherence and 

credibility of the narrative evidence and individual differences in numeracy were added 

as further predictors ofperceived likelihood. 

In the full model, perceptions of likelihood were modeled as a function of stated 

probability and perceptions of credibility and coherence of the narrative summary at the 

first level. At the second level, contrasts comparing the likelihood format conditions and 

consumer numeracy were added. Table 12 shows the results for the full multilevel 

model. Each effect will be described in more detail below. 

The first hypothesis tested was that consumer perceptions of the credibility and 

coherence of the narrative evidence summary would relate to perceptions of the 

likelihood of the target event. Higher ratings of coherence and credibility were found to 

relate to higher perceived likelihood, t(237) = 4.740, P < .001, ES = 1.06. As above, 

there was also a significant linear effect of stated likelihood on perceived likelihood, 

t(237) = 3.245, P = .002, ES = 0.54. These results suggest that the perceived properties of 

the narrative evidence had a larger effect on perceived likelihood than the manipulations 

of stated likelihood (i.e. 1%, 5%, 10%). 
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Table 12. Multilevel model results for perceived likelihood. 

Fixed Effect Coefficient SE t p-value 

Mean likelihood (Intercept) 

Mean intercept (Intercept) 2.64 0.09 29.10 <.001 

Range vs Point estimates 0.10 0.06 1.583 .117 

Prob vs Confidence 0.05 0.11 0.430 .668 

Numeracy -0.15 0.05 -2.90 .005 

Stated Likelihood (Slope) 

Mean slope (Intercept) 0.17 0.05 3.245 .002 

Range vs Point estimates -0.04 0.03 -1.383 .168 

Prob vs Confidence -0.04 0.07 -0.601 .548 

Numeracy 0.10 0.02 4.162 <.001 

Evidence Properties (Slope) 

Mean slope (Intercept) 0.15 0.03 4.740 <.001 

Range vs Point estimates -0.04 0.02 -2.237 .026 

Prob vs Confidence 0.04 0.04 1.030 .305 

Numeracy -0.03 0.01 -2.095 .037 

Note: The three levels of likelihood fonnat were tested as two orthogonal helmert contrasts. Contrast I 
compared the range condition to the average of the two point estimate conditions. Contrast 2 compared the 
two point estimate conditions to each other (probability as an external estimate versus probability as an 
internal, subjective confidence statement). 

In addition, the format of the likelihood information significantly moderated the 

effect of evidence properties on perceived likelihood. Consumers in the point estimate 

conditions used the evidence properties to rate perceived likelihood more than the 

consumers in the range condition, t(237) = -2.237, P = .037, ES = 0.23. This is counter to 

expectation, in that one might expect the consumers to use the evidence properties more 

in the range condition because there was no single probability from which to judge 

likelihood. In fact, previous research has suggested that when presented with a 
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confidence range, participants are more likely to ignore that information and focus on 

other information to make the judgment at hand. Figure 14 shows the effect of 

perceptions of coherence and credibility on perceived likelihood for consumers in the 

point estimate and range conditions. 

Figure 14. The relationship between perceived credibility/coherence and perceived 
likelihood for consumers in the point estimate and range conditions. 
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The Effect ofNumeracy: Participants higher in numeracy reported greater levels of 

perceived likelihood, t(79) = -2.902, P = .005, ES = .37. In Study 2, a similar relationship 

was observed between numeracy and perceived risk. Numeracy also moderated the 

effect of the stated likelihood and the evidence properties on perceived likelihood. The 

effect of stated likelihood on perceived likelihood was smaller for consumers lower in 

numerical ability, t(237) = 4.162, P < .001, ES = .56, and the relationship between the 

ratings of the evidence and perceived likelihood was higher for consumers lower in 

numeracy, t(237) = -2.095, P = .037, ES = .22. These results suggest that consumers 

lower in numeracy were more sensitive to the perceived properties of the narrative 
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information and less sensitive to the stated probability information, which follows if the 

stated probability information was not as evaluable and more difficult to use for those 

lower in numerical ability. Figures 15 and 16 show the effects of stated likelihood and 

evidence properties on perceived likelihood for consumers with different levels of 

numeracy. 

Figure 15. The effect of stated likelihood on perceived likelihood for consumers with 
different levels of numeracy. 
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Figure 16. The relationship between perceived credibility/coherence and perceived 
likelihood for consumers with different levels of numeracy. 
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Perceived usefulness and source credibility 

The primary research questions concerning perceived usefulness and source 

credibility are presented below: 

1.	 Will consumers feel that a forecast is more useful and has higher source 

credibility when explicit numerical estimates of likelihood and potential harm 

are presented? 

2.	 Will consumers feel that a forecast is more useful and has higher source 

credibility when they perceive there to be greater coherence and credibility in 

the narrative evidence summary? 

3.	 Will the format of the likelihood information affect perceived usefulness and 

source credibility? 

4.	 Will numeracy affect the perceived usefulness and source credibility of 

intelligence forecasts? 
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The source credibility composite measure and perceptions of usefulness showed a 

moderate to strong correlation, r = .534, 95% CI (.669, .364). Perceived usefulness and 

source credibility are modeled separately belowlO
• 

Perceived Usefulness. Ratings of perceived usefulness, or how valuable the 

intelligence forecasts were for decision making, were modeled as a function of stated 

likelihood, likelihood format, perceptions of the credibility and coherence of the narrative 

and numeracy. As expected, the pure narrative condition elicited lower perceived 

usefulness than the numerical conditions, t(319) = -1.978, P = .048, ES = .23, and the 

internal (confidence) likelihood format tended to elicit lower levels of usefulness than the 

probability and range conditions combined, t(79) = -1.735, P = .086, ES = .17. 

Additionally, as hypothesized, consumers who rated the evidence set as more coherent 

and credible reported higher levels of perceived usefulness, t(319) = 11.950, P < .001, ES 

= 2.78. Finally, consumers higher in numeracy reported lower levels ofperceived 

usefulness than consumers lower in numeracy, t(79) = -2.623, p = .011, ES = .30. 

10 Since these two variables are correlated, a multivariate analytic framework would be ideal for this 
analysis. Since multivariate multilevel models are still relatively new and difficult to estimate at this point, 
other analyses were conducted to assess the independent effects of these variables (Le. removing the shared 
variance). For example, a separate multilevel model was estimated for the residualized source credibility 
measure (i.e. the variance in the source credibility measure that could not be explained by perceived value, 
acquired by regressing source credibility on perceived value and saving the residuals). There were no 
substantive differences between the results with the residualized variables and the results with the full 
variables reported below. 
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Table 13. The effect of stated likelihood and likelihood format on perceived usefulness. 

Narrative 1% 5% 10% Totala 

Probability 4.36 (2.60) 4.64 (2.54) 4.93 (2.51) 4.57 (2.28) 4.71
 
(external) tF=28 n=28 n=28 n=28 n=28
 

,., ~ ~ --) Of)Probability .,.)) ~"-' ) 3.83 (2.29) 4.45 (2.05) 4.45 (2.18) 4.24
 
(internal) n'29 n=29 n=29 n=29 n=29
 

Probability 4.93 (1.98) 4.93 (1.72) 4.61 (1.64) 4.82 (1.63) 4.78
 
w/range n:::::28 n=28 n=28 n=28 n=28
 

4.27 4.46 4.66 4.61
Total 

n=85 n=85 n=85 n=85 

Note: Mean (SD) and sample size (n) are reported. 
a Mean totals for the between subject condition of probability format are made up of only those 
observations in the numerical conditions. In other words, the responses in the pure narrative condition 
were not included in these means because there was no explicit probability information present in this 
condition. This is necessary because the experimental design is not fully crossed. 

Source Credibility. Perceived source credibility was modeled as a function of stated 

likelihood, likelihood format, perceptions of the credibility and coherence of the narrative 

and numeracy. The first hypothesis tested was that consumers would perceive greater 

source credibility in the numerical forecasting conditions as opposed to the pure narrative 

condition. There was virtually no difference between these conditions (see Table 14). 

The next hypothesis was confirmed, that consumers who perceived greater coherence and 

credibility in the evidence set would also perceive greater overall source credibility, 

t(322) = 9.847, P < .001, ES =1.84. Individual differences in numeracy were not 

significantly related to perceptions of source credibility. 
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Table 14. The effect of stated likelihood and likelihood format on perceived source 
credibility. 

Narrative 1% 5% 10% Totalft 

Probability 5.23 (1.74) 5.18 (1.96) 5.60 (1.80) 5.11 (2.00) 5.30 
(external) n''''':28 n=28 n=28 n=28 n=28 

Probability 4.78 (2.06) 5.20 (2.02) 4.92 (1.97) 5.14 (2.14) 5.09 
(internal) n=29 n=29 n=29 n=29 n=29 

Probability 5.29 (1.59) 5.08 (1.50) 4.77 (1.48) 4.98 (1.48) 4.94 
w/range noc::28 n=28 n=28 n=28 n=28 

5.09 5.16 5.10 5.08
Total 

n=85 n=85 n=85 n=85 

a Mean totals for the between subject condition of probability format are make up of only those 
observations in the numerical conditions. In other words, the responses in the pure narrative condition 
were not included in these means because there was no explicit probability information present in this 
condition. This is necessary because the experimental design is not fully crossed. 

Summary and Discussion 

Overall, the results from this experiment reveal important differences in likelihood 

perception and perceptions of usefulness and source credibility between narrative-only 

forecasts and those with explicit probability and potential harm information added to the 

narrative forecast. In addition, when presented with both narrative and numerical 

information with which to judge likelihood and harm, consumers appeared to be more 

greatly affected by their perceptions of the credibility and coherence of the narrative than 

the explicit likelihood information (narrative, ES = 1.06; stated likelihood, ES = 0.54), 

and these effects were moderated by the format of the probability information and the 

numerical ability of the consumer. 

Pure narrative forecasts versus numericalforecasts 

There are two potential communication problems when communicating risk 

information from analyst to consumer. The first is that different consumers may not 

perceive the same levels of likelihood or risk in a forecast (i.e. there will be large amount 
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of variance in judgment), and the second is that consumers may be systematically biased 

in their judgments (e.g. consistently perceiving more likelihood or risk than the analyst 

intended). It was hypothesized that the presence of explicit estimates oflikelihood would 

facilitate more consistent transfer of likelihood information from analyst to consumer and 

reduce the idiosyncratic ways in which likelihood is estimated from a narrative evidence 

summary. Contrary to expectation, there were no differences in the variance of 

likelihood ratings between the pure narrative and numerical forecasting conditions, 

although there were other effects on central tendency and the shape of the distributions of 

likelihood ratings. The narrative-only condition resulted in higher estimates of likelihood 

than the numerical forecasting conditions. Presumably, when given only narrative 

information with which to judge risk or likelihood, estimates tend to be inflated due to the 

scenario-based reasoning processes that pure narrative forecasts elicit. For example, 

consumers may judge the likelihood of the target event by the plausibility of the terrorist 

scenario, using representative and simulation type heuristics that overwhelm statistical 

thinking about the problem (discussed in Chapter II). When given the explicit numerical 

likelihood and harm information, however, these figures act as an anchor or frame with 

which to judge the likelihood of the scenario. Thus, consumers initial perceptions of 

likelihood based on the narrative summary of the evidence were pulled down toward the 

explicit likelihood estimates presented in the forecast. In addition, and as expected, 

forecasts with only a narrative summary were judged as less useful for decision making 

than forecasts with numerical estimates of likelihood and potential harm. 

The relationship between stated likelihood andperceived likelihood 

We have seen that consumers were sensitive to the explicit likelihood information in 

the forecasts, but how did they use this information to inform their perceptions of 

likelihood? It is clear from examining the distributions of perceived likelihood that the 

majority of consumers were not directly transferring stated likelihood into perceived 

likelihood. One would expect, however, that the explicit likelihood estimates presented 

by the analyst were at least differentiated in an ordinal fashion in consumer's perceptions 
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of likelihood. However, only 39.08% of consumers showed a monotonic relationship 

between stated and perceived likelihood (Le. perceptions likelihood for stated 

10%>5%>1%), and 67.82% of consumers showed greater perceptions of likelihood for 

forecasts with 10% stated likelihood as opposed to 1% stated likelihood. In addition, the 

general trend for consumers to perceive greater likelihood as the stated likelihood 

increased was moderated by the format of the likelihood information. This effect was 

stronger in the point estimate conditions then in the range condition. Presumably, in the 

point estimate condition there is a single number that consumers could use to inform 

perceptions of likelihood, while in the range condition this was not the case. In summary, 

consumers were sensitive to the explicit likelihood information presented in the forecasts, 

although many consumers appeared to be using other information to inform their 

perceptions of likelihood as well. 

The effect ofboth statedprobability andproperties ofthe narrative summary 

Even in the presence of explicit likelihood estimates, consumers that perceived 

greater coherence and credibility in the narrative summary reported greater perceptions of 

likelihood. In fact, perceptions of credibility and coherence had a larger effect on 

perceived likelihood than the manipulation of stated likelihood (l%, 5%, 10%). In 

addition, higher perceived coherence and credibility also related to higher perceived 

usefulness and source credibility of the forecast. 

This result fits in well with previous research showing that the interpretation of 

numerical expressions of likelihood are affected by contextual information (Windschitl 

and colleagues, see Chapter II). Even though one might expect numerical expressions of 

likelihood to be unambiguously interpreted because they are precise, many consumers 

have trouble evaluating these estimates to inform their perceptions of likelihood. In this 

case, consumers also used the narrative evidence summary to inform their perceptions of 

likelihood. In addition, one might expect consumers who are better able to evaluate 

numerical estimates of likelihood to use the stated likelihood estimates and be less 

affected by the narrative evidence summary. Conversely, consumers who have difficulty 
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evaluating numbers will not be able to use the stated likelihood to inform their 

perceptions of likelihood and will focus more on other contextual information like the 

narrative evidence summary. The results showed precisely this effect. Consumers lower 

in numeracy tended to use the narrative evidence summary to judge likelihood and 

showed less sensitivity to the stated likelihood information. Consumers higher in 

numeracy showed the opposite pattern. 

Other effects oflikelihoodformat 

Consumers presented with the probability point estimates showed a larger 

relationship between ratings of the narrative evidence and likelihood judgments than 

those presented with the range condition. This result was contrary to expectation. 

Previous research suggests that when participants are presented with a range of values, 

they will tend to ignore the information and use other more easily evaluated information 

to make the judgment at hand (Hsee, 1995; see Chapter II). In this case, one might 

expect that consumers would be more likely to use the narrative information in the range 

condition as compared to the point estimates conditions. It fact, it appears that consumers 

were less influenced by their perceptions of the credibility and coherence of the evidence 

in the range condition. 

In addition, when probabilities were expressed as a confidence rating (i.e. " ...we are 

x% sure that this attack will occur over the next six months), consumers found them to be 

less valuable than when they were presented as external probabilities (i.e. " ... the 

probability of this attack occurring over the next six months is x%") or as external 

probabilities with a range. 

Study 4 - Exploring Consumer Perceptions of Intelligence Forecasts in Hindsight. 

Purpose 

The primary focus of Study 4 is to explore how consumers feel about the source 

credibility and usefulness of intelligence forecasts in hindsight, and to what extent 

consumers assign blame to forecasters after knowing the outcome of a forecasted event. 
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Of particular interest are the types of information that consumers use to make source 

credibility, usefulness, and blame judgments in hindsight. For example, when evaluating 

a forecast in hindsight, will consumers still be sensitive to the stated likelihood 

information and credibility and coherence ofthe narrative evidence summary? 

One ofthe factors that might make the intelligence community reluctant to attach 

numerical probability estimates to their analytic judgments is that they feel they could be 

more readily blamed if a forecasted low likelihood event occurs or a high likelihood 

event does not occur. For example, consumers may blame the analyst for providing a 

poor forecast if an event assigned a likelihood of 5% occurs. The analysts may feel more 

insulated from blame if they keep things vague and non-falsifiable, which could be one 

reason why current intelligence reporting is primarily narrative in nature (Schrage, 2005). 

When forecasting potential terrorist threats, it seems that an analyst would be more 

afraid of the perceived "error" in which they make a forecast with a low probability and 

then the attack occurs. The opposite "error", a high probability forecast of an attack that 

does not occur, would likely receive less attention precisely because the feared event did 

not occur. In this study, the focus is on consumer perceptions of intelligence reports in 

which an analyst assigns a relatively low probability to an event that eventually does 

occur within the specified timeframe of the forecast. 

Method 

Participants 

Participants were a mix of undergraduate students from the University of Oregon and 

members of the community with undergraduate college degrees. 

Procedure and Materials 

Study participants were paid $14 for approximately 1 hour ofparticipation time. 

Participants were presented with the same simulated intelligence reports used in Study 2 

(see Appendix D for materials). In this study, however, consumers first read a brief 
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passage about a terrorist attack that occurred a few weeks ago. A passage from one of the 

scenarios is presented below: 

"Summary of the attack: 

Several weeks ago, a bomb was detonated on a passenger ship in New 
York City killing over 900 people and wounding hundreds more. It has 
become clear that militant group ZZZ was responsible for the attack. The 
attack would most likely have been stopped if additional security had been 
assigned to protect targets in New York City. A special congressional 
committee has been formed and several politicians have begun criticizing 
the intelligence community. 

Turn to the next page to read an intelligence report that was 
submitted to senior decision makers three weeks before this attack. You 
will then be asked to make a series ofjudgments about this intelligence 

report." 

Participants then read an intelligence report that was written a few weeks before 

the attack occurred. They then made a series ofjudgments about the report. All study 

procedures were passed through the University of Oregon Institutional Review Board 

(lRB). 

~xperi1nentallJesign 

This experiment was run as a 3 (probability format/framing) x 4 (probability level) 

mixed experimental design with probability level as the within subject factor. The 

experimental design was identical to the design used in Study 3. 

lJependent variables 

For the most part, the dependent variables were identical to Study 3, although in this 

study they are framed in hindsight (see Appendix D). However, there was one additional 

question that asked participants to rate the amount of blame that they felt the forecasters 

deserved - "Think about both the intelligence report and the terrorist attack that occurred 



98 

three weeks later. Some people are blaming the intelligence community for not doing a 

goodjob predicting whether this attack would occur. How much blame do you think 

should be placed on the analysts that produced the intelligence report?" Participants 

responded to all questions on II-point rating scales. 

Results 

Sample Characteristics 

There was a total of n=81 participants, resulting in 27 subjects in each between 

subject condition. The majority of the participants were undergraduate students, although 

approximately 25% were either current graduate students or had 4-year college degrees. 

Tables 15 and 16 show the sample characteristics. 

Table 15. Sample Characteristics 

Characteristic n 
Mean 

(Median) 
SD 

Agea 
80 23.43 (21.00) 7.73 

~umeracyb(0-15) 81 11.43 (12.00) 2.20 

a One participant did not report age. 
b Distribution is moderately negatively skewed. 

Table 16. Sample Characteristics 

Characteristic n % 

Femalea 
40 49.4 

Educationa (n=80) 

Some College 60 74.1 
4yr college graduate 18 22.2 
Current Graduate/Law Student 2 2.5 

a There was one case that did not indicate sex or education level. 
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Before proceeding with the formal analysis, the relationships between the dependent 

variables were examined. First, reliability analysis was conducted on the five items 

making up the source credibility scale (McComas, 2001). Reliability analyses were 

conducted separately for responses at each level of the within subjects variable (i.e. pure 

narrative, and the three numerical forecast conditions), and as in Study 3, both the alpha 

coefficients (a = .839-.903) and average inter-item correlations (average r = .523-.668) 

were sufficiently high to justify averaging the items to create a composite source 

credibility measure. 

Table 17 shows the average correlations (averaged across the four levels of the within 

subjects factor) between perceived blame, perceived value, and source credibility. Table 

18 shows the average Pearson correlations between the dependent variables related to 

perceptions of likelihood, potential harm and risk. Inspection of scatterplots for each 

variable pair confirmed that all of the variables were roughly linearly related. 

Table 17. Average Pearson correlations wi 95% CI's between blame, usefulness, and 
source credibility (n=81). 

Blame Usefulness Source Cred 

Blame 1.00 

Usefulness .092 
(304, -.129) 

1.00 

Source Cred -.157 .586 1.00 
(064, -.363) (713, .422) 
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Table 18. Average Pearson correlations wi 95% CI's between dependent variables 
related to risk perception (n=87). 

Risk Chance Harm Credibility Coherence 

Risk 1.00 

Chance .683 
(.784, .546) 

1.00 

Harm .487 .360 1.00 
(.638, .301) (.536, .154) 

Credibilityl .519 .420 .220 1.00 
(.664, .337) (.585, .222) (.418, .002) 

Coherencel .462 .357 .205 .733 1.00 
(.619, .270) (.534, .150) (.405, -.014) (.820, .613) 

I Two cases were missing data on this variable, n=79. 

Overall, the pattern of correlations is roughly consistent with those reported in Study 

3. Again, perceived likelihood was more highly correlated with global perceptions of 

risk than perceptions ofpotential harm. In addition, there was a small to moderate 

correlation between perceived likelihood and perceived harm. 

The ratings of story coherence and evidence credibility are highly correlated, and 

coherence and credibility show moderate correlations with perceptions of chance, which 

is consistent with the theoretical model presented in Chapter III. As in Study 3, 

coherence and credibility show smaller correlations with perceived potential harm. 

Finally, the correlation between perceived usefulness and source credibility was 

consistent with the pattern observed in Study 3. Perceived blame was not significantly 

correlated with the other perception variables. 
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Perceived Blame 

Several research questions were explored below: 

1.	 The primary comparison of interest is between the pure narrative and 

numerical estimate conditions. Will the purely narrative forecast elicit less 

blame than a forecast with a low probability estimate assigned to an event that 

eventually occurs? 

2.	 Within the numerical forecasting conditions, consumers may assign more 

blame the lower the estimated probability of the attack, perceiving these 

forecasts to be more "wrong". 

3.	 The probability point estimate (which appears more precise) may elicit more 

blame than the point estimate with range. In addition, consistent with 

previous research (Fox and Malle, 1995), participants may assign more blame 

when the probability point estimate is framed as a confidence rating (internal) 

as opposed to an external probability. 

4.	 Participants may also use their perceptions of the credibility and coherence of 

the narrative evidence summary to inform their perceptions of blame. 

Table 19 shows the effect of stated likelihood and likelihood format on perceptions of 

blame. The distributions of perceived blame ratings were not skewed, and there were no 

missing data. 
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Table 19. The effect of stated likelihood and likelihood format on perceptions of blame. 

Narrative 1% 5% 10% TotalS 

Probability 5.19 (3.07) 5.19 (2.40) 5.11 (2.55) 4.85 (2.43) 5.05 
(external) n=27 n=27 n=27 n=27 n=27 

Probability 4.17 (2.97) 5.13 (2.50) 4.80 (2.63) 4.41 (2.31) 4.78 
(internal) ll'c=27 n=27 n=27 n=27 n=27 

Probability 4.67 (3.17) 4.69 (2.64) 3.70 (2.33) 4.04 (2.78) 4.14 
w/range n::::::27 n=27 n=27 n=27 n=27 

4.67 5.00 4.54 4.43
Total 

n=81 n=81 n=81 n=81 

a Mean totals for the between subject condition of probability fonnat are made up of only those 
observations in the numerical conditions. 

Effects ofexplicit likelihood The analysis proceeded in a similar manner as Study 2, 

in which multilevel models were used to model the effect ofthe experimental 

manipulations, perceptions of the credibility and coherence of the evidence summary and 

numeracy. The first research question of interest was whether perceived blame differed 

between the pure narrative and the average of the numerical forecasting conditions. 

There was no significance difference between these conditions in terms ofperceived 

blame. Within the numerical forecasting conditions, however, there was a significant 

linear trend across the probability levels, t(237) = -1.974, P = .049, ES = .48, such that 

consumers reported less blame as stated likelihood increased. The numerical probability 

information was perceived as a relevant source of information for judging blame, and 

they were interpreting the forecasts with the lower probabilities as more "wrong". 

Effects oflikelihoodformat. There was also a trend for consumers to report less 

blame in the range condition than in the two point estimate conditions, t(78) = -1.661, P = 

.10, ES = .14. However, since consumers were sensitive to the stated likelihood 

information when making judgments of blame, this effect may be due to the fact that the 

range format provided a range that included higher estimates of likelihood (e.g. in the 

10% condition it ranged to as much as 30% at the high end). However, the range 
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condition elicited lower perceived blame even as compared to point estimates that 

equaled the high end of the provided range (e.g. compare the mean blame in the point 

estimate conditions for 10% with the mean blame in the 5% condition for the range 

conditions, which provided the following interval, High: 10%, Best: 5%, Low: 1%). In 

other words, the observed difference between the point estimate and range conditions 

cannot be fully explained by the range format providing higher estimates of probability 

within the provided intervals. In addition, there were no significant differences in 

perceived blame between the internal and external framing of likelihood, t(78) = 0.491, P 

= .625. 

Evidence properties, perceived harm, and numeracy. Contrary to expectation, ratings 

of the coherence and credibility of the narrative evidence did not significantly relate to 

perceived blame, t(308) = -1.309, p = .192. However, perceptions of potential harm were 

significantly related to perceptions of blame, t(308) = 2.883, P = .005, ES = .55, such that 

greater perceptions of harm were associated with greater ratings of blame. Numeracy had 

an overall effect on perceived blame, t(77) = -2.399, P = .019. ES = .29, such that 

consumers lower in numeracy reported that more blame should be placed on the analysts. 

Perceived Usefulness and Source Credibility 

The research questions explored in this section are detailed below: 

1.	 When examining an intelligence forecast in hindsight, will participants 

perceive different levels of usefulness and/or source credibility between 

reports with only narrative versus those with numerical estimates? 

2.	 Will consumers be sensitive to the stated likelihood and properties of the 

narrative summary when judging usefulness and source credibility in 

hindsight? 

3.	 Will numeracy or the format of the stated likelihood affect perceptions of 

usefulness or source credibility? 
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As in Study 3, perceived usefulness and source credibility are modeled separately. 

The distributions of perceived value and source credibility were not grossly skewed, and 

there were no missing data for perceived value and one missing case on the source 

credibility measure. Tables 20 and 21 show the effects of stated likelihood and 

likelihood format on perceptions of usefulness and source credibility. 

Table 20. The effect of stated likelihood and likelihood format on perceived usefulness. 

Narrative 1% 5% 10% Totat 

Probability 6.00 (2.39) 5.37 (1.86) 5.81 (2.13) 5.59 (2.61) 5.59 
(external) Jl""'27 n=27 n=27 n=27 n=27 

Probability 6.35 (2.62) 5.20 (2.29) 6.52 (2.36) 6.33 (2.29) 6.01 
(internal) n=27 n=27 n=27 n=27 n=27 

Probability 6.46 (2.13) 6.04 (2.65) 5.93 (2.63) 6.96 (1.97) 6.31 
w/range n=27 n=27 n=27 n=27 n=27 

6.27 5.54 6.09 6.30
Total 

n=81 n=81 n=81 n=81 

•Mean totals for the between subject condition of probability fonnat are make up of only those 
observations in the numerical conditions. In other words, the responses in the pure narrative condition 
were not included in these means because there was no explicit probability infonnation present in this 
condition. This is necessary because the experimental design is not fully crossed. 
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Table 21. The effect of stated likelihood and likelihood format on perceived source 
credibility. 

Narrative 1% 5% 10% Total8 

Probability 5.58 (1.91) 4.97 (1.50) 5.16 (1.58) 5.55 (1.76) 5.23 
(external) n::::::27 n=27 n=27 n=27 n=27 

Probability 5.68 (1.92) 5.06 (1.60) 5.83 (1.77) 6.41 (1.35) 5.77
 
(confidence) n=26 n=26 n=26 n=26 n=26
 

Probability 6.85 (1.76) 6.33 (1.94) 6.44 (1.85) 6.89 (1.63) 6.55 
w/range 11":::27 n=27 n=27 n=27 n=27 

6.04 5.46 5.81 6.28
Total 

n=80 n=80 n=80 n=80 

a Mean totals for the between subject condition of probability fonnat are make up of only those 
observations in the numerical conditions. In other words, the responses in the pure narrative condition 
were not included in these means because there was no explicit probability infonnation present in this 
condition. This is necessary because the experimental design is not fully crossed. 

Perceived usefulness. 

Explicit likelihood and narrative information: The pure narrative and the average of 

numerical forecasting conditions did not differ in perceived usefulness, t(318) =1.145, P 

=.254. Within the numerical forecasting conditions, there was a significant linear trend 

across stated likelihood, t(237) =2.434, P =.016, ES =.53, such that consumers rated 

forecasts with higher stated likelihood as more useful for decision making. Inspection of 

the means shows that consumers actually thought the pure narrative report was more 

valuable than forecasts with 1% or 5% probabilities (averaging across format), and 

roughly equal in value to forecasts in the 10% condition. This makes sense if consumers 

were judging the forecasts with lower stated likelihood as more "wrong" in hindsight, and 

a forecast that is wrong is not as useful as a forecast that says nothing at all about 

likelihood (pure narrative condition). 

In addition to using the stated likelihood information to judge how useful the report 

would have been for decision making, there was also an association between ratings of 

the credibility and coherence of the evidence and perceptions of usefulness, t(225) = 
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9.353, P < .001, ES = 2.42, such that consumers found a forecast to be more useful the 

greater they perceived the credibility and coherence of the narrative evidence summary to 

be. 

The effect of likelihood format: There were no significant differences due to 

likelihood format, although there was a trend for the range condition to be rated as more 

useful than the external point estimate condition, t(78) = 1.611, p = 0.11, ES = .25. 

Numeracy: As in Study 2, consumers higher in numeracy rated the forecasts lower in 

value overall, t(75) = -2.793, P = .007, ES = .41. 

Source Credibility. 

The results for source credibility were very similar to the results for perceived 

usefulness. 

Explicit likelihood and narrative information: There was a significant linear trend 

across stated likelihood, t(236) =3.976, P < .001, ES =.76, such that consumers rated 

forecasts with higher stated likelihood higher in source credibility. There was also an 

association between ratings of the credibility and coherence of the evidence and 

perceptions of usefulness, t(227) = 9.500, P < .001, ES = 3.50, such that consumers found 

a forecast to have more source credibility the greater they perceived the credibility and 

coherence of the narrative evidence summary to be. 

The effect of likelihood format: There was a significant difference between the range 

condition and point estimate conditions, t(78) = 3.463, P = .001, ES = .55, such that 

consumers rated the range condition higher in source credibility than the point estimate 

conditions. 

Numeracy: There were no significant effects of consumer numeracy. 

Perceived Likelihood 

Specific research questions are detailed below: 
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1. In hindsight, will the pure narrative forecast elicit higher perceptions of 

likelihood than the numerical conditions? In other words, will consumers be 

sensitive to the explicit likelihood estimates in the numerical forecasting 

conditions, even though they already know the outcome of the forecasted 

event? 

2.	 Will consumers use the stated likelihood and the properties ofthe narrative 

summary to make likelihood judgments in hindsight? 

3.	 Will the format of the likelihood information or consumer numeracy affect 

perceptions of likelihood in hindsight? 

In this experiment, consumers were asked to look back at the intelligence forecast 

written before the eventual attack and to rate how they would have rated the likelihood of 

the attack if they had been given this forecast before the attack occurred. Table 22 shows 

the effect of stated likelihood and likelihood format on perceptions of likelihood in 

hindsight. 

Table 22. The effect of stated likelihood and likelihood format on perceptions of 
likelihood. 

Narrative 1% 5% 10% Totala 

Probability 63.70 (23.40) 43.70 (27.76) 51.48 (26.52) 51.48 (30.47) 48.89 
(external) n c=27 n=27 n=27 n=27 n=27 

Probability 59.54 (25.65) 43.80 (27.57) 48.80 (30.25) 51.39 (30.00) 48.00 
(internal) n=27 n=27 n=27 n=27 n=27 

Probability 60.93 (17.65) 40.56 (27.15) 45.00 (27.98) 56.57 (24.41) 47.38 
w/range n=27 n=27 n=27 n=27 n=27 

61.39 42.69 48.43 53.15
Total 

n=81 n=81 n=81 n=81 

a Mean totals for the between subject condition of probability fonnat are made up of only those 
observations in the numerical conditions. In other words, the responses in the pure narrative condition 
were not included in these means because there was no explicit probability infonnation present in this 
condition. This is necessary because the experimental design is not fully crossed. 
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Unlike Study 3, where consumers judged the likelihood of potential terrorist plots 

from these intelligence forecasts without the benefit of hindsight, the distributions of 

likelihood ratings were not drastically skewed. Figure 17 shows the distributions of 

hindsight likelihood ratings by stated likelihood and likelihood format. 

Figure 17. The distributions of hindsight likelihood ratings by stated likelihood and 
likelihood format. 

Canci 
• Probability 
• Confidence 
fi]]lRange 

Narrative 1'1(, 5'1(, 10% 

Probability Level 

Additionally, it is clear from Table 22 that the likelihood ratings are much higher in 

this experiment than when these same forecasts were judged without hindsight (Study 3). 

This is an example of a classic hindsight effect, in that even when told to make a 

judgment with the information that was only available before the outcome of an event, 

the knowledge of the outcome biased likelihood estimates in the direction of the outcome. 
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Thus, in this case because the event did occur consumers judged that they would have 

thought that the attack was very likely. In addition, hindsight likelihood ratings were 

higher in the narrative condition as opposed to the numerical conditions, t(318) = 5.568, p 

< .001, ES = 1.57. 

In the next set of analyses, hindsight likelihood judgments were modeled as a 

function of stated likelihood, likelihood format, ratings of the credibility and coherence of 

the evidence, and consumer numeracy. 

Stated likelihood andproperties ofthe narrative summary. As in Study 3, consumers 

showed sensitivity to the stated likelihood in the forecasts, reporting higher perceptions 

of likelihood as the stated likelihood increased, t(231) = 2.798, P = .006, ES = .49. In 

addition, higher ratings of the credibility and coherence of the narrative summary were 

associated with higher perceived likelihood in hindsight, t(231) = 7.692, P < .001, ES = 

2.77. As in Study 3, perceptions of the credibility and coherence of the narrative 

summary had a larger effect of perceptions of likelihood than the stated likelihood 

manipulation (1%,5%,10%). Unlike Study 3, however, the numeracy level of the 

consumer did not significantly moderate the use of the evidence properties or the stated 

probability information, although the effects were in the same direction. 

Numeracy. There was a relatively small effect for numeracy, t(77) = -1.916, P = .059, 

ES = .26, such that consumers lower in numeracy reported higher perceived likelihood. 

Summary and Discussion 

This study was designed to explore consumer perceptions of intelligence forecasts in 

hindsight. Specifically, consumers were given the details of a terrorist attack that 

occurred and then they were asked to examine an intelligence forecast that was produced 

before the attack. In these situations people have shown what has been called a hindsight 

bias, in that they tend to overestimate the likelihood or the ease to which the event could 

have been predicted. In other words, the knowledge about the eventual outcome of the 

forecasted event biases perceptions of what was known or what could have been 

predicted before the event occurred. This effect is important because this is exactly the 
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situation that intelligence analysts may find themselves in if a terrorist attack were to 

occur, particularly an attack that they had previously assigned a relatively low likelihood 

in an intelligence forecast. As stated above, this is one of the reasons that analysts may 

prefer purely narrative forecasts, so as not to look like they are making deterministic 

predictions. Strictly speaking, a probabilistic forecast can never be wrong because, by 

definition, the forecaster is not making a deterministic claim about whether an event will 

occur or not. However, a consumer looking back at a forecast in hindsight (already 

knowing that the forecasted attack did occur) may perceive forecasts with smaller 

probabilities as more "wrong" than those with higher probabilities. Previous research 

discussed in Chapter II suggests that some consumers do tend to look at probabilistic 

forecasts injust such a deterministic manner. 

Pure narrative forecasts versus numerical forecasts 

Does presenting a more ambiguous pure narrative forecast reduce perceptions of 

blame as compared to numerical forecasts when a negative target event occurs? Overall, 

pure narrative forecasts did not result in significantly lower perceptions of blame than 

forecasts with explicit estimates of likelihood and potential harm. This was somewhat 

surprising because the numerical forecasts all had relatively low estimates of likelihood 

for the event (l%, 5%, 10%). One might expect that the forecaster in the pure narrative 

forecast would not have been blamed for making a poor forecast because there was no 

likelihood value on which to base this judgment. However, the mean rating of blame was 

lower in the pure narrative condition as compared to the 1% and 5% numerical 

forecasting conditions, and if the likelihoods were estimated to be much lower there 

would likely be a significant difference between pure narrative and numerical estimates. 

As will be discussed below, consumers were sensitive to the stated likelihood when 

assigning blame. 

In addition, the pure narrative forecast was perceived to have more usefulness and 

source credibility than the forecasts with the lowest levels ofprobability. This is most 

likely because consumers were sensitive to the likelihood information when assessing the 
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quality of the forecasts in hindsight and the low estimates of likelihood were perceived to 

be more "wrong", and therefore not as valuable or credible. 

The effect ofboth stated likelihood andproperties ofthe narrative summary 

The results suggest that participants do tend to assign more blame to a forecaster that 

assigned a smaller likelihood to a terrorist attack that eventually occurred. Interestingly, 

this effect was not moderated by numeracy. It appears that consumers at all levels of 

numerical ability take likelihood into account when judging intelligence forecasts in 

hindsight. In addition, perceptions of the credibility and coherence of the evidence set 

were not found to significantly predict perceptions ofblame. It appears that consumers 

focus more on the stated likelihood information and ignore the narrative evidence 

summary when making judgments of blame. However, consumer perceptions of the 

potential harm of the attack were also associated with perceived blame, such that 

consumers that perceived greater potential harm in the forecasted event assigned more 

blame to the forecaster. 

In terms of perceived usefulness and source credibility, consumers found the forecasts 

with lower stated probabilities and forecasts that were perceived to have a less credible 

and coherence evidence set to have less usefulness and source credibility. 

Effects oflikelihoodformat 

Within the numerical probability conditions, the range condition elicited slightly less 

blame than the point estimate conditions. The increased blame in the point estimate 

conditions may be due to the fact that they appear more precise, and are therefore 

perceived as being more "wrong". In the range condition, by contrast, the analyst is 

communicating a certain amount of uncertainty in the analysis, and may appear less 

blameworthy. Finally, the range condition was thought to have more value and source 

credibility than the point estimate conditions in hindsight. 

Previous research suggested that consumers would assign more blame to forecasters 

that made incorrect forecasts when they expressed likelihood in an internal format 
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(confidence) as opposed to an external format (Fox and Malle, 1995). No significant 

differences were found between internal and external likelihood formats. 

Perceptions oflikelihood in hindsight 

Consumers showed clear hindsight effects in their perceptions of the likelihood of the 

forecasted event after already knowing the outcome. The mean likelihood ratings were 

substantially higher than the likelihood ratings for the same forecasts in Study 3. 

Although consumer likelihood judgments were much higher in hindsight, consumers 

were still sensitive to the stated probability information and perceptions of the credibility 

and coherence ofthe evidence set. As in Study 3, perceptions of the narrative summary 

had a larger effect on perceived likelihood in hindsight than the stated probability 

manipulation (l %,5% to 10%). Previous research suggests that when causal or scenario­

based information is present in hindsight, this information will be reevaluated in light of 

the outcome knowledge (see Chapter II: Hindsight Effects). Participants did use the 

properties of the narrative evidence to make their hindsight likelihood judgments, and a 

reevaluation of the narrative evidence summary is a likely explanation for the drastically 

increased perceptions of likelihood in hindsight. 
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CHAPTER VI
 

CONCLUSIONS, LIMITATIONS, AND FUTURE RESEARCH DIRECTIONS
 

Conclusions and Implications
 

The main goal of many political and intelligence forecasts is to communicate risk to 

decision makers. These forecasts should be communicated in a way that effectively 

transmits risk information from analyst to consumer. However, standard reporting 

methods in policy and intelligence analysis rarely involve explicit, numerical estimates of 

uncertainty, even though several experts have argued that the explicit treatment of 

uncertainty will lead to improved analysis and risk communication. Standard reporting 

methods for intelligence forecasts most often involve a scenario-based or narrative 

discussion of the evidence and possible future states of the world, and any numerical 

estimates of uncertainty would likely accompany this narrative presentation. 

The primary purpose of presenting numerical estimates of uncertainty is to 

communicate, as accurately as possible, the risk estimates generated by the analyst to the 

intelligence consumer. For example, numerical estimates oflikelihood are more precise 

than narrative descriptions ofevidence and it has been presumed that they allow more 

consistent interpretation by consumers. Although much previous research has focused on 

the analytic techniques that can be used to estimate these numerical quantities, how these 

analytic results should be reported for the benefit of consumers has received less 

attention. The work in this dissertation has focused on risk communication in 

intelligence forecasts from the consumer's perspective. 

Perceptions ofIntelligence Forecasts with Numerical Likelihood and Narrative 

Information 

The intelligence consumer is faced with a difficult task because both the numerical 

estimates of uncertainty and the narrative supporting evidence could be used to inform 
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perceived likelihood and risk. In the present studies, consumers did perceive forecasts 

with explicit likelihoods as more useful than forecasts with only a narrative evidence 

summary. However, the maj ority ofconsumers did not consistently use stated likelihood 

to inform their perceptions of likelihood, and the properties of the narrative summary had 

a strong influence on perceptions of likelihood. These results shows that even "precise" 

explicit statements of likelihood are not necessarily evaluable by consumers and the 

perception of likelihood is affected by the contextual information available to the judge 

(see Windschit et aI., 1999,2002; Hsee, 1995; Hendrickx et aI., 1989, 1992; Yates et aI., 

1996). 

One of the reasons that analysts may be reluctant to assign numerical likelihood 

estimates to forecasts is that they feel they may be blamed if a relatively small likelihood 

is attached to an event that eventually occurs. Strictly speaking, a probabilistic forecast 

can never be wrong because, by definition, the forecaster is not making a deterministic 

claim about whether an event will occur or not. Looking at a series of forecasts is the 

only way to assess the skill or calibration of a forecaster. Some consumers, however, did 

tend to think of these single-event forecasts in a deterministic manner by assigning more 

blame to a forecaster who assigned a smaller likelihood to a terrorist attack that 

eventually occurred. When evaluating forecasts in hindsight consumers were found to be 

sensitive to stated likelihood but not the properties of the narrative evidence summary 

(although perceptions ofharm were also predictive of blame judgments). These results 

suggest that at least some of the consumers in the sample did not fully appreciate the 

nature of probabilistic statements. These consumers may perceive these statements as 

ratings of event propensity, with probabilities above 50% being correct and those below 

50% being incorrect and probabilities further away from the correct side of the 

distribution as more "wrong" (e.g. 10% is more "wrong" than 30%). Unfortunately, this 

is exactly the type of hindsight interpretation of probabilistic estimates that analysts may 

fear. It is unclear how best to deal with this issue, although it is possible that simple 

educational interventions focused on the nature ofprobabilistic statements could help 

(see discussion ofNumeracy below). 
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In addition, there did appear to be benefits of presenting numerical likelihood 

estimates in these forecasts. Consumer's sensitivity to the stated likelihood helped to 

control hindsight likelihood judgments as compared to narrative-only forecasts. 

Consumer judgments of the likelihood of an attack in hindsight were much higher when 

presented with narrative-only forecasts as compared to forecasts accompanied by a 

relatively low stated likelihood. 

Implications 

Reporting explicit estimates of uncertainty in a forecast does not necessarily mean 

that this information will be consistently interpreted or used by consumers of the forecast, 

particularly when presented with supporting narrative evidence. Consumers may more 

consistently use the numerical estimates to inform their perceptions of risk and likelihood 

if supporting information is not presented (see results from Study 2), but it is unlikely that 

consumers would trust or feel comfortable using a purely numerical forecast in this 

domain. If an analyst presented a report consisting of only numerical estimates of 

likelihood and potential harm, the consumer would most likely want to know on what 

basis the analyst came to that conclusion. For example, Yates et al. (1996) reported 

several experiments in which consumers evaluated forecasts concerning the outcome of 

lawsuits. In these experiments consumers were presented with only numerical forecasts. 

However, consumers often expressed an interest in having more justification about the 

methods and evidence that the forecasters used to make their judgments. Yates et al 

(1996) note that" ... it should be irrelevant how a consultant arrives at his or her 

assessments, only that those judgments are reliably good in a statistical sense. But that is 

apparently not good enough for many consumers." (pg. 45). Forecasting events in the 

domain of politics and human affairs may not be perceived in the same way as the 

engineer reporting the likelihood of an in flight engine failure on the commercial airliner. 

Consumers may be far more likely to take the numerical estimate of the engineer at face 

value, and not press him or her for details about how this estimate was generated. In the 

political and intelligence domain, however, consumers may intuitively understand the 
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difficulties and uncertainties involved in forecasting human events, and they may not be 

likely to take a probability point estimate at face value without inquiring about the 

evidence behind this judgment. 

Consumers willingness to accept numerical forecasts at face value may be limited to 

forecasting situations where statistical information ofpast performance or deterministic 

laws governing the phenomenon are perceived to be important to the estimation of the 

likelihood. In forecasting situations that are perceived to be based on the examination of 

evidence and reasoning processes such as analogy and scenario generation, consumers 

will most likely want to see supporting evidence (Yates, 1996). The present results 

suggest that any supporting information presented to consumers may have a large impact 

on perceptions of the likelihood and risk of the event, potentially overwhelming, or at 

least greatly affecting, the numerical likelihood estimates that are generated by the 

forecaster. This may result from the fact that the layperson is well practiced in "sense 

making" and reasoning processes based on scenario generation and the examination of 

evidence, and these consumers may automatically engage in this type of reasoning when 

presented with narrative evidence-based information. In contrast, if the engineer 

described above presented the technical information about engine reliability, these 

common reasoning processes would not be clearly applicable, and the non-expert 

consumer would most likely use the engineer's likelihood estimate. 

The supporting evidence underlying a forecast been shown to have a large impact on 

consumer perceptions of risk and likelihood. Thus, forecasters must be extremely careful 

in choosing the types of information that are reported and the format of that information, 

even when numerical estimates of likelihood or risk are reported as well. Ideally, the 

explicit estimates of likelihood and potential harm would work in concert with any 

supporting narrative information, providing the consumer with a complete picture of the 

risk associated with the forecasted event. 
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The Formatting ofNumerical Likelihood in Intelligence Forecasts 

The fonnat of the stated likelihood infonnation moderated the impact of stated 

likelihood on perceived risk, likelihood and perceptions of the "quality" of the report. 

The use ofverbal probability estimates was found to be a poor method of transferring 

likelihood infonnation from analyst to consumer. Consumers judged forecasts with 

verbal probability estimates to be less useful and the forecaster that reported them as less 

knowledgeable and less trustworthy. 

Among the point estimate numerical fonnats, consumers were more consistent in 

using stated likelihood to inform perceived likelihood in the percentage fonnat as 

compared to the frequency format. Previous research has focused on the benefits of 

frequency infonnation over single-event probability fonnats (i.e. percentage and decimal 

fonnats; see Chapter II), but this may be restricted to situations when statistical reasoning 

is involved. In the forecasting situation, the likelihood estimate is only meant to transmit 

infonnation to the consumer and it appears that the frequency fonnat may actually be 

more confusing. When likelihood is represented as a ratio (i.e. frequency fonnat), both 

the numerator and the denominator must be evaluated in relation to one another, while in 

the percentage fonnat there is just a single number that needs to be evaluated. In 

addition, the representation of likelihood as a relative frequency may not be readily 

understood when it is attached to a single, non-repeating event. 

Perfonning sensitivity analysis and reporting a range of plausible parameter estimates 

in an important topic in risk communication and forecasting. This is mainly because of 

the complexity present in many policy/intelligence domains and the sensitivity of the 

results to changes in the initial conditions and inputs. Ranges of plausible values are also 

useful for reporting second-order uncertainty to consumers and reducing the perceived 

precision of these estimates that results when only point estimates are presented. 

Risk and likelihood perceptions were not as consistent in the range condition (i.e. 

higher risk and likelihood perceptions for higher stated likelihood ranges) as they were in 

the point estimate conditions. The range of likelihood estimates allows more flexibility 

in the interpretation of the estimate (i.e. Does one focus on the best estimate or the low or 
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high end of the range?), and likely decreases the consistency with which consumers use 

this information. However, consumers found the range format to be more useful and the 

forecaster more knowledgeable and trustworthy than the point estimate format, but only 

at higher stated likelihood (i.e. 20% versus 5%). Consumers were also less affected by 

the narrative evidence summary when judging likelihood in the percentage with range 

condition. This result was unexpected. Previous research suggests that when participants 

are presented with a range of values, they will tend to ignore the information and use 

other more easily evaluated information to make the judgment at hand (Hsee, 1995). 

Thus, one might expect that consumers would be more influenced by the narrative 

information in the range condition as compared to the point estimates conditions. It is 

unclear why the opposite effect was observed here, but it suggests that presenting a range 

of values will not necessarily force consumers to focus on other information to make a 

judgment or decision. 

In addition, when evaluating an intelligence forecast in hindsight, consumers assigned 

lower levels of blame to forecasters when they presented their forecasts with a range of 

estimates. Consumers also rated the range format higher in usefulness and source 

credibility. The increased blame in the point estimate conditions may be due to the fact 

that they appear more precise, and are therefore perceived as being more "wrong". In the 

range condition, by contrast, the analyst is communicating a certain amount of 

uncertainty in the analysis, and may appear less blameworthy 

Implications 

As discussed by many researchers, expressing uncertainty in verbal form is not likely 

to be an effective method of communication between analyst and consumer, at least not 

without some kind of reference scale accompanying the forecast (and at that point one 

might as well use a numerical scale). In addition, representing likelihood as a single­

event probability (e.g. in percentage form) appears to be a better choice than a frequency 

representation. 
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These results suggest that presenting likelihood as a range has both positive and 

negative repercussions. Consumers may not clearly differentiate forecasts as well when a 

range of likelihood values is reported, although they seem to be less affected by the 

supporting narrative information. In addition, less blame is assigned in hindsight when a 

range of values is reported. Consumers also find range formats to be more useful and 

believe the forecaster is more knowledgeable and trustworthy, at least at higher 

probabilities. 

Presenting ranges and confidence intervals may turn out to be the only plausible 

method of quantitative forecasting in the political and intelligence domains. Analysts are 

unlikely to be comfortable reporting point estimates in many situations, both because of 

the complexity of the problems and the insufficient data on which these judgments are 

often based, and that they do not want consumers to perceive these estimates as "precise". 

Consumers will also benefit from the additional information provided by confidence 

ranges. Schrage (2005) notes this as one of the important advantages to reporting 

uncertainty in intelligence forecasts, in that consumers will have more information about 

the confidence that a forecaster has in his or her conclusions. If the reporting of 

confidence ranges becomes standard practice in intelligence forecasting, additional 

research will be needed to more fully understand the positive and negative effects that 

this approach will have on consumers. 

Individual Differences in the Numerical Ability ofConsumers 

Individual differences in numerical ability also had an effect on how consumers 

perceived and used quantitative forecasts. Consumers lower in numeracy focused more 

on the properties ofthe narrative summary and did not use the stated likelihood to inform 

their perceptions of risk as much as higher numerate consumers. In addition, consumers 

with different levels of numeracy also perceived particular likelihood formats to be more 

useful for decision making, and found the forecaster that reported these likelihoods to be 

more knowledgeable and trustworthy. 
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These results add to a series of recent findings that connect differences in numerical 

ability, or how well people can evaluate and use numbers, to judgment and decision 

making behavior (see Dieckmann, 2007 for a review). Whenever ajudgment or decision 

making task involves the evaluation of numbers, consumers may choose very different 

reasoning strategies for completing these tasks depending on numerical ability. This 

effect will likely be magnified when there are other sources of information, beside the 

numbers, that may be more easily used to make the judgment or decision at hand. 

Intelligence forecasts with both explicit numerical information and a narrative evidence 

summary are an excellent example ofjust such a situation. 

Implications 

Consumers of political and intelligence forecasts will vary in their comfort with 

numbers and their ability to use and evaluate numerical information. These differences in 

numeracy may greatly affect how consumers view the conclusions of the forecast and 

how well numerical information (in this case probabilistic information) can be used to 

transfer risk information from analyst to consumer. One way to alleviate this problem is 

for forecasters to find methods of reporting numerical information that is evaluable to 

consumers at all levels of numerical ability. The results from several recent studies 

suggest that alternative presentations of health-related information may make this 

information more evaluable for consumers lower in numerical ability (Peters, 

Dieckmann, et aI., 2007; Peters, Dieckmann, Vastjall, Mertz, et aI., 2006). For example, 

simplifying information displays to ease the cognitive burden of a task and providing 

verbal category labels to facilitate the evaluability of numerical information have been 

shown to improve judgment and choice. Methods similar to these or new methods could 

be developed to help consumers of intelligence forecasts evaluate and understand 

quantitative forecasts. 

A second way to address this problem is to teach consumers about the evaluation and 

interpretation of any numerical quantities presented in a forecast. For example, this could 

take the form of short written tutorials describing the interpretation and suggested use of 
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any numerical information. It is unclear, however, how effective short tutorials will be in 

improving the understanding of probabilistic information and eventually improving the 

use of this information by those lower in numeracy. 

If there is a question about how any numerical information will be understood by 

consumers, a forecaster should consider alternative formats for quantitative information 

to improve evaluability. The forecaster may also consider including a short tutorial 

describing the interpretation of any numerical information included in the forecast. 

However, additional research is needed to assess the effectiveness ofthese interventions. 

Limitations 

Each of the experiments in this study used simulated intelligence forecasts of 

potential terrorist plots involving explosive devices in the United States. As discussed in 

Chapter III, the characteristics of the particular hazard under study will affect laypersons 

perceptions of risk (e.g. the controllability or dread risk of the hazard; Slovic, 1987). 

Thus, it is possible that the results described in this dissertation are in some part restricted 

to hazards relating to terrorism. Ideally, a representative sample of hazards from the 

intelligence domain could be tested in future studies to show the generality of the effects 

that have been described. It may even be possible to use real, unclassified intelligence 

reports from US government archives. 

The sample of research participants may also limit the generalization of these results. 

Real consumers of intelligence forecasts may have specialized knowledge and 

backgrounds that may make them respond differently to intelligence forecasts. The 

recruitment of more educated participants for studies 3 and 4 was done to simulate the 

likely education level of real intelligence consumers, although there are clearly other 

contextual factors that were not simulated in the current studies (e.g. worldview, political 

pressure that may affect a consumer's perception of a forecast, etc). 

Another limitation to the generalizability of the results was the relatively narrow 

range of numerical likelihood that was manipulated (l%-20%). The extent to which 

consumers are sensitive to the numerical likelihood information and narrative summary 
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information may depend on the range oflikelihood values presented. For example, 

probability neglect maybe a particularly important problem whenever small likelihoods 

are communicated in a forecast (e.g. on the order of 1/1000 to 1/1000000; see Sunstein, 

2003 for a discussion ofprobability neglect). For example, consumers may ignore the 

likelihood estimates because they are too difficult to understand and focus on other 

information in making their likelihood judgments (e.g. the narrative evidence). More 

research is needed on how consumers make judgments of likelihood when presented with 

a wider spectrum of explicit likelihood values. 

Finally, the findings relating perceived likelihood to perceptions of the credibility and 

coherence of the narrative evidence summary are purely correlational in nature. Thus, 

one should be cautious in any causal interpretation of these findings. For example, it is 

not clear that perceptions of the coherence and credibility of the evidence set actually 

lead to greater perceptions of likelihood, or if the increased perceptions of likelihood lead 

to greater perceptions of the credibility and coherence of the evidence. Ideally, the 

properties of the narrative evidence summary could be experimentally manipulated to 

provide a more rigorous test of the causal relationship between these constructs. 

Future Research Directions 

There are several potentially fruitful future research directions focused on risk 

communication and intelligence forecasting from the perspective of consumers. These 

recommendations are based both on the experimental results presented above and a 

review of the literature in forecasting, risk communication, and intelligence analysis. 

There are several different levels of uncertainty that are present in the risk analysis 

and intelligence forecasting domains. When analyzing a particular problem or set of 

events there may be uncertainty about the quality or credibility of the evidence, 

uncertainty about the structural model of situation (how the evidence fits together), 

uncertainty about the likelihood that particular events will occur in the future, and 

uncertainty about the potential harm that would result if these events occur (see Chapter 
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II). Ideally, the forecaster accounts for these different types of uncertainty during the 

analytic process. It is an open question, however, whether consumers should also be 

presented with estimates of uncertainty at these different levels. Would consumers be 

able to interpret this information, and would it improve the judgments and decisions that 

are eventually based on these forecasts? The results of the present experiments begin to 

address how consumers would respond to uncertainty relating to the likelihood of future 

events, with or without second order uncertainty around these estimates. Although some 

authors suggest presenting additional levels of uncertainty in intelligence forecasts (e.g. 

Schrage, 2005), future work should explore how feasible it will be for analysts to 

estimate this uncertainty, and how well consumers could use this information when 

interpreting a forecast and making subsequent judgments and decisions. 

Although single event forecasts are likely to be reported to consumers in the 

intelligence community, there are also situations in which consumers will need to be 

informed about numerous potential threats simultaneously. Ideally, these threats could be 

reported in a format that facilitates trade-offs and comparisons among them. Future 

research could be aimed at identifying the optimal methods ofpresenting multiple 

potential threats simultaneously (see Horowitz & Haimes, 2003). Researchers and 

practitioners should be sensitive to the psychological limitations of consumers who will 

need to understand and make use of these forecasts. 

As long as quantitative intelligence forecasts are accompanied by a narrative evidence 

summary, consumer's perceptions of the risk and quality of forecasts will be greatly 

dependent on the nature of this supporting information. Future research should focus on 

the specific characteristics of this supporting information that affect consumer 

perceptions of risk and quality. I will also be very important to explore how the 

characteristics of the supporting information interact with explicit estimates of 

uncertainty. For example, perceptions of the coherence and credibility of the narrative 

evidence summary were found to be predictive of consumer perceptions. These 

characteristics will need to be studied in more rigorous experimental designs in the 

future, and there are several other potentially important characteristics that may affect 
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consumer perceptions. For example, the completeness of the explanation, the presence of 

alternative explanations (either implicit or explicit), and the vividness of the description 

are all interesting factors of the supporting information that may have strong effects of 

how a forecast is perceived by consumers. 

Future research should also focus on ways of presenting intelligence forecasts that 

makes them interpretable to consumers with a range of numerical abilities. Probabilistic 

forecasts are likely to be lost on consumers who do not have the basic numerical skills to 

interpret the uncertainty information presented by the forecaster. As discussed above, 

this research could focus on the ways of making numerical information more evaluable to 

consumers or on ways of teaching consumers about the meaning and interpretation of the 

numerical information presented. 

Hindsight effects in the intelligence forecasting domain is also a very interesting 

research direction considering the recent high profile intelligence "failures" and the 

intelligence reports and forecasts that are now being scrutinized after the fact. Future 

research should further explore how both the quantitative and qualitative properties of 

intelligence forecasts affect judgments in hindsight. Ideally, future research will identify 

the types of information that should be included and specific formats for intelligence 

forecasts that minimize hindsight effects. 
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APPENDIX A 

SCENARIOS TESTED IN PRELIMINARY STUDY 1 

Note: Below are the four intelligence scenarios that were tested in Preliminary Study 1. 

In addition, one example of an actual Presidential Daily Briefing (PDB) is also included 

("Bin Laden Determined to Strike in US"). The simulated intelligence forecasts were 

roughly modeled after historical PDBs and other intelligence reports available in the 

public domain. 
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Intelligence Report #1 

Intelligence Report: 

Yesterday afternoon a foreign newspaper printed a statement from the militant 
group XXX warning of an attack on the US. 

Four months ago, an informant warned that the militant group XXX had tried to 
purchase a quantity of an unknown explosive. Whether they succeeded in 
purchasing the explosives is unknown. 

The FBI intercepted a cellular telephone call between individuals with suspected 
links to the militant group xxx. Washington, DC was mentioned repeatedly in 
the conversation, although they did not reveal any information about an 
impending attack. The call was intercepted last week and originated within the 
US. 

The FBI has also reported suspicious activity consistent with the surveillance of 
federal buildings in Washington, DC. This activity has been observed on 
numerous occasions over the last several months. 

The militant group XXX has used explosives against government buildings in 
foreign countries in the past. 
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Intelligence Report #2 

Intelligence Report: 

A tip from an anonymous informant recently led the FBI to the apartment of two 
men suspected of working for the militant group YYY. When the FBI arrived the 
men had already left, but investigators did discover simple maps and timetables of 
the railway systems in Chicago, IL. 

Several months ago, a videotaped statement by the leader of the militant group 
YYY appeared on the Internet. Among other things, the leader alluded to a recent 
train bombing in Portugal and warned that the United States would be next. 

Three months ago, analysts doing routine satellite monitoring of a known YYY 
training camp reported an increase in activity. It appeared that members ofYYY 
were experimenting with explosive devices. 

The YYY militant group has been implicated in several train bombings over the 
last several years. The most recent attack in Portugal was powerful enough to 
completely destroy one train car filled with passengers and completely derail the 
train. 

Both the FBI and the Chicago Police have reported suspicious activity around 
train stops in the city. This activity has been observed on numerous occasions 
over the last several months. 
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Intelligence Report #3 

Intelligence Report: 

On a few different occasions port authorities have stopped and questioned pairs of 
men trespassing in New York City ports. Each time the men were in the areas of 
the port where passenger ships dock. 

A few weeks ago, a website with ties to the militant group ZZZ posted a statement 
that warned of attacks on the US. It specifically mentioned that the next attacks 
would be aimed at a vulnerable place, since so much security has been focused on 
air travel. 

On a tip from an undercover agent, the FBI recently captured a wanted member of 
the militant group ZZZ. He revealed that group leaders had discussed attacking a 
port in New York City. He claimed to not know of any details concerning an 
attack and seemed unsure that members of the group had acquired the necessary 
explosives. 

The FBI has also bugged the apartment oftwo suspected members of ZZZ. The 
men have been overheard discussing the technical details ofprevious terrorist 
attacks, as well as discussing preparations for leaving the city in the near future. 

The ZZZ militant group has used explosives to attack targets in the past. 
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Intelligence Report #4 

Intelligence Report: 

Several national security experts have predicted a terrorist attack during a large 
sporting event in US. The high concentration of people in a relatively small area 
is the obvious draw of this type of attack. 

A member of the militant group VVV was recently apprehended abroad. He 
revealed that the leadership ofVVV had discussed several different plans to use 
explosives in the US. One plan was to coordinate several simultaneous explosive 
attacks in a highly populated area. Members of VVV have carried out attacks of 
this nature before. 

In the last several months, both local authorities and the FBI have increased 
surveillance of professional basketball, baseball, football, and hockey events in 
the Los Angeles area. On one occasion, a suspicious package was left in a 
crowded area at a professional basketball game. The package turned out to be a 
hoax, but several authorities reported suspicious persons possibly observing the 
response. There is no way to be sure, but the hoax package could have been used 
to test the response of security and law enforcement. 

Last week, the FBI confiscated financial statements and froze the bank accounts 
of a Los Angeles lawyer suspected ofpartially supporting members ofVVV in 
the US. In the financial statements were records of a recent purchase of"military 
materials". It is unknown what exactly was purchased or where the materials are 
located now. 
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Declassified and ~roved 

for Release, IB April 2004 

Bin Ladln Determined To Strike in US 

Clandestine, foreign government, and media reports indicate Bin Ladln 
since 1997 has wanted to conduct terrorist attacks in the US. Bin Ladin 
implied in US television interviews in 1997 and 199B Ihal his followers would 
follow Ihe example of World Trade Center bomb.er Aamzi Youser and "bring 
the fighting to America." 

After US missile slrlkes on his base In Afghanistan in 1998, Bin Ladin 
lold followers he wanted to relaliate in Washington, according to 
a , service. 

An Egyptian Islamic Jihad (EIJ) operative lold an' service 
at the same time that Bin Ladin was planning 10 exploh the operative's 
access to the US to mount a terrorist strike. 

The millennium plotting In Canada In 1999 may have been part of 
Bin Ladin's first serlaus attempt to Implement a terrorist strike In the 
US. Convicted plotter Ahmed Ressam has told the FBllhat he conceived the 
idea 10 alt€lck Los Angeles International Airport himself, but th~r;elr .. 
Ladin lieutenant Abu Zubaydah encouraged him and h~lpet;l faclI~ate {he 
operation. Aessam also said that in 1998 Abu Zubaydah was plannln.g.: his 
Own US attack. '. 

Ressam says Bin Ladln was aware of the Los Angeles operation. 

Although Bin Ladln has nat succeeded, his attacks against the US 
Embassies In Kenya and Tanzsnlllin 1998 demonstrate that he prepares 
operations years In advance and Is not deterred by setbacks. Bin Ladin 
associates surveilled our Embassies In Nairobi and Dar es Salaam as early 
as 1993, and some members of the Nairobi cell planning the bombings w&re 
arrested and deported In 1997. . 

AI-Oa'ida members-Including same who are US Citizens-have resided 
In or traveled to the US for years, and the group apparently maintains a 
support structure that could aid attacks. Two al-Oa'ida members found guilty 
In the conspiracy to bomb our Embassies in East Africa were US citizens, and a 
senior EIJ member lived in California in the mid-1990s. 

A clandestine source said In 19.98 that a Bin Ledin cell in New York 
was recruiting Muslim-American youth forallacks. 

We have not been able to corroborate some of the more sensation61 
threat reporting, such as that from a , Fservice in 
1998 saying that Bin Ladin wanted to hijack a USaircralt to gain the 
release of "Blind Shaykh" 'Umar 'Abd a/-Rahman and other US-held 
extremists. 

conrinued 

For 'he President Only Declassified and APJproved•
 for Release, 10 April 20046 Auausl 2001 
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Declassified and Approved
for Release, 10 April 2004 

- Nevertheless, FBI information since thai time indicales patlerns of 
suspicious acllvlty In this country consistent with preparations lor 
hijackings or other types 01 at1acks. inclUding reCent surveillance of 
lederal buildings in New York. 

The FBI is conducting approximalely 70 'ulilieid invesllgations 
Ihroughout the US thai it considers Bin Ladin-relaled. CIA and the 
FBI are investigating a call 10 our Embassy in the UAE In May saying 
that a group 01 Bin Ladin supporteJs was in the US planning at1acks 
with explosives. 

For rhe Prssident Only Declassified and ~roved 
6 Augu 51 2001 for Release, 10 Apr1.1 2004 
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APPENDIXB 

MATERIALS FOR STUDY 2 

Note: Because ofthe fully between subjects design, there were 16 different experimental 

conditions. The two scenarios below are the summary only and summary with narrative 

evidence conditions in the verbal probability condition for the low level of probability. 

The additional manipulations ofprobability level and probability format are displayed in 

brackets. Only the information in the sentence in bold was manipulated across the 

probability level and format conditions. The dependent variables and the numeracy 

measure used in Study 2 follow the scenarios. 
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Evaluating an Intelligence Report 

INSTRUCTIONS: Imagine that you receive the following intelligence report about a 
possible terrorist attack. Read the report carefully. On the next page you will make a 
series ofjudgments about this report. 

Intelligence Report: 

The militant group XXX might use explosives to attack a federal building in 
Washington, DC. If the attack occurs, a plausible worst-case scenario would be 
1000 deaths and injuries and 50 million dollars in property damage. 
Based on the evidence outlined above and our professional judgment and 
experience, we estimate that this attack is highly unlikely over the next six 
months. 

High verbal: [ ... we estimate that this attack is fairly unlikely over the next 
six months.] 

Low percentage: [ ... we estimate that the probability that this attack will 
occur over the next six months is 5%.] 

High percentage: [ ... we estimate that the probability that this attack will 
occur over the next six months is 20%.] 

Low frequency: [ ... we estimate that the probability that this attack will 
occur over the next six months is 5 out of 100.] 

High frequency: [ ... we estimate that the probability that this attack will 
occur over the next six months is 20 out of 100.] 

Low range: [ ... our best estimate of the probability that this attack will occur 
over the next six months is 5%, but the probability could be as low as 1% or 
as high as 10%.] 

High range: [ ... our best estimate of the probability that this attack will occur 
over the next six months is 20%, but the probability could be as low as 10% 
or as high as 30%.] 
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Evaluating an Intelligence Report 

INSTRUCTIONS: Imagine that you receive the following intelligence report about a 
possible terrorist attack. Read the report carefully. On the following pages you will 
make a series ofjudgments about this report. 

Intelligence Report: 

Yesterday afternoon a foreign newspaper printed a statement from the militant 
group XXX warning of an attack on the US. 

Four months ago, an informant warned that the militant group XXX had tried to 
purchase a quantity of an unknown explosive. Whether they succeeded in 
purchasing the explosives is unknown. 

The FBI intercepted a cellular telephone call between individuals with suspected 
links to the militant group XXx. Washington, DC was mentioned repeatedly in 
the conversation, although they did not reveal any information about an 
impending attack. The call was intercepted last week and originated within the 
US. 

The FBI has also reported suspicious activity consistent with the surveillance of 
federal buildings in Washington, DC. This activity has been observed on 
numerous occasions over the last several months. 

The militant group XXX has used explosives against government buildings in 
foreign countries in the past. 

Summary 
The militant group XXX might use explosives to attack a federal building in 
Washington, DC. If the attack occurs, a plausible worst-case scenario would be 
1000 deaths and injuries and 50 million dollars in property damage. 
Based on the evidence outlined above and our professional judgment and 
experience, we estimate that this attack is highly unlikely over the next six 
months. 

[The same manipulations outlined above were applied to this condition]. 
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Questions about the Intelligence Report 

INSTRUCTIONS: Please answer the following questions about the intelligence report on 
the previous page. 

1.	 How would you rate the risk associated with this possible attack? 

o 1 2 3 4 5 6 7 8 9 10 

Very low Moderate Very 
Risk Risk high 

Risk 

2.	 How valuable is this intelligence report? In other words, does it provide useful 
information for determining future actions to take? 

o 1 2 3 4 5 6 7 8 9 10 

Not at all Fairly Extremely 
valuable valuable valuable 

3.	 How knowledgeable does this analyst seem about this potential attack? 

o 1 2 3 4 5 6 7 8 9 10 

Not at all Fairly Extremely 
knowledgeable knowledgeable knowledgeable 

4.	 How much do you trust that this analyst is giving you complete and unbiased 
information/conclusions about this potential attack? 

o 1 2 3 4 5 6 7 8 9 10 

Very little Moderate Very 
Trust Trust high 

Trust 



136 

Additional Questions 

5. How knowledgeable are you about politics and world affairs? 

o 1 2 3 4 5 6 7 8 9 10 

Not at all Fairly Extremely 
knowledgeable knowledgeable knowledgeable 

6. Please rate yourself along the liberal/conservative political spectrum? 

o 1 2 3 4 5 6 7 8 9 10 

Extreme Moderate Extreme 
Liberal Conservative 
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[Numeracy Measure] 

NUMBERS - you may not use a calculator for any of these questions. 

1. Imagine that we roll a fair, six-sided die 1,000 times. Out of 1,000 rolls, how many 
times do you think the die would come up as an even number? 

Answer:

2. In the BIG BUCKS LOTTERY, the chances of winning a $10.00 prize are 1%. What 
is your best guess about how many people would win a $10.00 prize if 1,000 people each 
buy a single ticket from BIG BUCKS? 

Answer:	 people 

3. In the ACME PUBLISHING SWEEPSTAKES, the chance of winning a car is 1 in 
1,000. What percent oftickets of ACME PUBLISHING SWEEPSTAKES win a car? 

Answer:	 % 

4.	 Which ofthe following numbers represents the biggest risk of getting a disease? 

1 in 100 1 in 1000 1 in 10 

5.	 Which of the following numbers represents the biggest risk of getting a disease? 

1% 10% 5% 

6. IfPerson A's risk of getting a disease is 1% in ten years, and Person B's risk is 
double that of A's, what is B's risk? 

Answer: % in	 years 

7. If Person A's chance of getting a disease is 1 in 100 in ten years, and person B's risk 
is double that of A, what is B' s risk? 

Answer: In	 years 
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8. If the chance of getting a disease is 10%, how many people would be expected to get 
the disease: 

A: Out of 100? Answer: people 

B: Out of 1000? Answer: people 

9. If the chance of getting a disease is 20 out of 100, this would be the same as having a 
__% chance of getting the disease. 

10. The chance of getting a viral infection is .0005. Out of 10,000 people, about how 
many of them are expected to get infected? 

Answer: people 

11. Which of the following numbers represents the biggest risk of getting a disease? 

1 chance in 12 1 chance in 37 

12. Suppose you have a close friend who has a lump in her breast and must have a 
mammography. Of 100 women like her, 10 of them actually have a malignant tumor 
and 90 of them do not. Of the 10 women who actually have a tumor, the 
mammography indicates correctly that 9 of them have a tumor and indicates 
incorrectly that 1 of them does not have a tumor. Of the 90 women who do not have 
a tumor, the mammography indicates correctly that 81 of them do not have a tumor 
and indicates incorrectly that 9 of them do have a tumor. The table below 
summarizes all of this information. Imagine that your friends tests positive (as if she 
had a tumor), what is the likelihood that she actually has a tumor? 

Tested 
positive 

Tested 
negative 

Totals 

Actually has a tumor 9 1 10 
Does not have a tumor 9 81 90 

Totals 18 82 100 

Answer: 



-------

139 

13.	 Imagine that you are taking a class and your chances of being asked a question in 
class are 1% during the first week of class and double each week thereafter (i.e., you 
would have a 2% chance in Week 2, a 4% chance in Week 3, an 8% chance in Week 
4). What is the probability that you will be asked a question in class during Week 7? 

Answer:	 %

14.	 Suppose that lout of every 10,000 doctors in a certain region is infected with the 
SARS virus; in the same region, 20 out of every 100 people in a particular at-risk 
population also are infected with the virus. A test for the virus gives a positive result 
in 99% of those who are infected and in 1% of those who are not infected. A 
randomly selected doctor and a randomly selected person in the at-risk population in 
this region both test positive for the disease. Who is more likely to actually have the 
disease? 

_ They both tested positive for SARS and therefore are equally likely to have the 
disease 

_	 They both tested positive for SARS, and the doctor is more likely to have the 
disease 

_	 They both tested positive for SARS and the person in the at-risk population is 

more likely to have the disease. 
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APPENDIXC 

MATERIALS FOR STUDY 3 

Note: In Study 3, consumers responded to four different scenarios, which were randomly 

assigned to one level of the probability level within subject factor (i.e. narrative, 1%,5%, 

10%). Participants were also randomly assigned to one of three levels of the probability 

format (i.e. probability, confidence, probability w/range). Below are the four different 

scenarios used in Study 3 at each level of the probability factor. In the actual experiment 

each scenario was matched with each level of probability in a counterbalanced design. 

The different levels of the between subject factor ofprobability format are displayed in 

brackets. The dependent variables for Study 3 follow the experimental materials. Also, 

the same numeracy measure used in Study 1 was used in Studies 3 and 4. 
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Intelligence Report # 1 

INSTRUCTIONS: Imagine that you receive the following intelligence report about a 
possible terrorist attack. Read the report carefully. On the following pages you will 
make a series ofjudgments about this report. 

Intelligence Report: 

Yesterday afternoon a foreign newspaper printed a statement from the militant 
group XXX warning of an attack on the US. 

Four months ago, an informant warned that the militant group XXX had tried to 
purchase a quantity of an unknown explosive. Whether they succeeded in 
purchasing the explosives is unknown. 

The FBI intercepted a cellular telephone call between individuals with suspected 
links to the militant group XXX. Washington, DC was mentioned repeatedly in 
the conversation, although they did not reveal any information about an 
impending attack. The call was intercepted last week and originated within the 
US. 

The FBI has also reported suspicious activity consistent with the surveillance of 
federal buildings in Washington, DC. This activity has been observed on 
numerous occasions over the last several months. 

The militant group XXX has used explosives against government buildings in 
foreign countries in the past. 

Summary 
The militant group XXX might use explosives to attack a federal building in 
Washington, DC. 

[The pure narrative forecast condition was identical at each level ofthe 
probability format factor.] 
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Intelligence Report #2 

INSTRUCTIONS: Imagine that you receive the following intelligence report about a 
possible terrorist attack. Read the report carefully. On the following pages you will 
make a series ofjudgments about this report. 

Intelligence Report: 

A tip from an anonymous informant recently led the FBI to the apartment of two 
men suspected ofworking for the militant group YYY. When the FBI arrived the 
men had already left, but investigators did discover simple maps and timetables of 
the railway systems in Chicago, IL. 

Several months ago, a videotaped statement by the leader of the militant group 
YYY appeared on the Internet. Among other things, the leader alluded to a recent 
train bombing in Portugal and warned that the United States would be next. 

Three months ago, analysts doing routine satellite monitoring of a known YYY 
training camp reported an increase in activity. It appeared that members ofYYY 
were experimenting with explosive devices. 

The YYY militant group has been implicated in several train bombings over the 
last several years. The most recent attack in Portugal was powerful enough to 
completely destroy one train car filled with passengers and completely derail the 
train. 

Both the FBI and the Chicago Police have reported suspicious activity around 
train stops in the city. This activity has been observed on numerous occasions 
over the last several months. 

Summary 
The militant group YYY might use explosives to attack a train in Chicago. If the 
attack occurs, a plausible worst-case scenario would be 1000 deaths and injuries 
and 50 million dollars in property damage. 
Based on the evidence outlined above and our professional judgment and 
experience, we estimate that the probability that this attack will occur over 
the next six months is 1% 

Confidence condition: [...we are 1% sure that this attack will occur over the next 
six months.] 
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Range condition: [... our best estimate of the probability that this attack will 
occur over the next six months is 1%, but the probability could be as low as .1 % 
or as high as 5%.] 
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Intelligence Report #3 

INSTRUCTIONS: Imagine that you receive the following intelligence report about a 
possible terrorist attack. Read the report carefully. On the following pages you will 
make a series ofjudgments about this report. 

Intelligence Report: 

On a few different occasions port authorities have stopped and questioned pairs of 
men trespassing in New York City ports. Each time the men were in the areas of 
the port where passenger ships dock. 

A few weeks ago, a website with ties to the militant group ZZZ posted a statement 
that warned of attacks on the US. It specifically mentioned that the next attacks 
would be aimed at a vulnerable place, since so much security has been focused on 
air travel. 

On a tip from an undercover agent, the FBI recently captured a wanted member of 
the militant group ZZZ. He revealed that group leaders had discussed attacking a 
port in New York City. He claimed to not know of any details concerning an 
attack and seemed unsure that members of the group had acquired the necessary 
explosives. 

The FBI has also bugged the apartment of two suspected members ofZZZ. The 
men have been overheard discussing the technical details of previous terrorist 
attacks, as well as discussing preparations for leaving the city in the near future. 

The ZZZ militant group has used explosives to attack targets in the past. 

Summary 
The militant group ZZZ might use explosives to attack a passenger ship in New 
York City. If the attack occurs, a plausible worst-case scenario would be 1000 
deaths and injuries and 50 million dollars in property damage. 
Based on the evidence outlined above and our professional judgment and 
experience, we estimate that the probability that this attack will occur over 
the next six months is 5% 

Confidence condition: [...we are 5% sure that this attack will occur over the next 
six months.] 
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Range condition: [... our best estimate of the probability that this attack will 
occur over the next six months is 5%, but the probability could be as low as .5% 
or as high as 10%.] 
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Intelligence Report #4 

INSTRUCTIONS: Imagine that you receive the following intelligence report about a 
possible terrorist attack. Read the report carefully. On the following pages you will 
make a series ofjudgments about this report. 

Intelligence Report: 

Several national security experts have predicted a terrorist attack during a large 
sporting event in US. The high concentration ofpeople in a relatively small area 
is the obvious draw of this type of attack. 

A member of the militant group VVV was recently apprehended abroad. He 
revealed that the leadership ofVVV had discussed several different plans to use 
explosives in the US. One plan was to coordinate several simultaneous explosive 
attacks in a highly populated area. Members ofVVV have carried out attacks of 
this nature before. 

In the last several months, both local authorities and the FBI have increased 
surveillance ofprofessional basketball, baseball, football, and hockey events in 
the Los Angeles area. On one occasion, a suspicious package was left in a 
crowded area at a professional basketball game. The package turned out to be a 
hoax, but several authorities reported suspicious persons possibly observing the 
response. There is no way to be sure, but the hoax package could have been used 
to test the response of security and law enforcement. 

Last week, the FBI confiscated financial statements and froze the bank accounts 
ofa Los Angeles lawyer suspected ofpartially supporting members of VVV in 
the US. In the financial statements were records of a recent purchase of"military 
materials". It is unknown what exactly was purchased or where the materials are 
located now. 

Summary 
The militant group VVV might use explosives to attack a professional sporting 
event in Los Angeles. If the attack occurs, a plausible worst-case scenario would 
be 1000 deaths and injuries and 50 million dollars in property damage. 
Based on the evidence outlined above and our professional judgment and 
experience, we estimate that the probability that this attack will occur over 
the next six months is 10% 

Confidence condition: [...we are 5% sure that this attack will occur over the next 
six months.] 
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Range condition: [... our best estimate of the probability that this attack will 
occur over the next six months is 10%, but the probability could be as low as 1% 
or as high as 20%.] 
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Questions about the Intelligence Report 
[These were asked after each scenario] 

INSTRUCTIONS: Please answer the following questions about the intelligence report on 
the previous page. Feel free to look back at the intelligence report when making your 
ratings. 

1.	 How would you rate the risk associated with this possible attack? 

Very low Moderate Very 
risk risk high risk 

o 1 2 3 4 5 6 7 8 9 10 

2.	 What is your impression of the chance that this attack will occur over the next 6 
months? 

No chance 
As likely as 

unlikely 
Certain 

0% 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100% 

3.	 Focus on the potential outcome of the described terrorist attack. If this attack did 
occur, what is your impression of the overall harm that would be inflicted on 
people, property, the economy, etc? 

Not Moderately Extremely 
hannful hannful harmful 

at all 

o 1 2 3 4 5 6 7 8 9 10 
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4.	 How valuable is this intelligence report? In other words, if you had to decide 
what should be done about this attack, how useful or valuable is this report for 
detennining future actions to take? 

Not at Fairly Extremely 
all valuable valuable 

valuable 

o 1 2 3 4 5 6 7 8 9 10 

5.	 Below are several questions about how you feel about the information and 
conclusions presented by the analysts. Please circle the number between the pair 
ofwords that best describes how you feel about the infonnation and conclusions 
presented in the intelligence report. 

Can't be 
trusted 

0 1 2 3 4 5 6 7 8 9 10 Can be trusted 

Is 
inaccurate 

0 1 2 3 4 5 6 7 8 9 10 Is accurate 

Is unfair 0 1 2 3 4 5 6 7 8 9 10 Is fair 

Doesn't tell 
whole story 

0 1 2 3 4 5 6 7 8 9 10 Tells whole story 

Is biased 0 1 2 3 4 5 6 7 8 9 10 Is unbiased 
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FURTHER QUESTIONS ABOUT THE INTELLIGENCE REpORTS 

[These questions were asked at the end ofthe experiment.] 

1.	 Now focus specifically on the evidence that is presented in each intelligence 
report. How credible is the evidence overall? By "credible" we mean the ability 
to trust or believe the evidence. For example, people often feel that something 
they have "seen with there own two eyes" is more credible than a rumor they 
heard from a stranger. 

How would you rate the overall credibility of the evidence presented in each report? 
Make a separate rating for each ofthe four intelligence reports. Feel free to go back 
and look at the reports again. 

Very little Moderate Very high 
credibility credibility credibility 

Report #1 0 1 2 3 4 5 6 7 8 9 10 

Report #2 0 1 2 3 4 5 6 7 8 9 10 

Report #3 0 1 2 3 4 5 6 7 8 9 10 

Report #4 0 1 2 3 4 5 6 7 8 9 10 

Very little Moderate Very high 
credibility credibility credibility 
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2.	 Again, focus specifically on the evidence that is presented in each intelligence 
report. How well does the evidence fit into a coherent story? By a "coherent 
story" we mean the ease to which you can form a good story or scenario from the 
evidence. For example, if all of the evidence fits into a believable story and there 
are not any other plausible explanations for the evidence, then you would rate the 
evidence as being very coherent. If, on the other hand, some pieces of evidence 
fit into a story but others do not, or there is more than one plausible story that fits 
the evidence, then you would make a lower rating for the coherence of the 
evidence. 

How would you rate the overall coherence of the evidence presented in each report? 
Make a separate rating for each of the four intelligence reports. Feel free to go back 
and look at the reports again. 

Very	 Moderate Very high 
little coherence coherence 

coherence 

Report #1 0 1 2 3 4 5 6 7 8 9 10 

Report #2 0 1 2 3 4 5 6 7 8 9 10 

Report #3 0 1 2 3 4 5 6 7 8 9 10 

Report #4 0 1 2 3 4 5 6 7 8 9 10 

Very 
little 

Moderate 
coherence 

Very high 
coherence 

coherence 
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APPENDIXD 

MATERIALS FOR STUDY 4 

Note: The experimental design and the terrorist scenarios were the same as those used in 

Study 3. In Study 4, however, there was an additional brief summary detailing how each 

terrorist attack had occurred several weeks earlier. This brief summary preceded each 

intelligence forecast. Below are each of these summaries. The dependent variables for 

Study 4 were nearly identical to those used in Study 3, however the wording is slightly 

changed because the judgments are taking place in hindsight. 
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TERRORIST ATTACK: SCENARIO #1 

Instructions: Please read the following paragraph about a terrorist attack that occurred 
several weeks ago. 

Summary of the attack: 

Several weeks ago, a bomb was detonated on a passenger train in Chicago killing over 
900 people and wounding hundreds more. It has become clear that militant group YYY 
was responsible for the attack. The attack would most likely have been stopped if 
additional security had been assigned to protect targets in Chicago. A special 
congressional committee has been formed and several politicians have begun criticizing 
the intelligence community. 

Tum to the next page to read an intelligence report that was submitted to senior decision 
makers three weeks before this attack. You will then be asked to make a series of 

judgments about this intelligence report. 

[Participants then read an intelligence forecast that was submitted to decision makers 
before this attack occurred] 
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TERRORIST ATTACK: SCENARIO #2 

Instructions: Please read the following paragraph about a terrorist attack that occurred 
several weeks ago. 

Summary of the attack: 

Several weeks ago, a bomb was detonated outside of a federal building in Washington, 
DC killing over 900 people and wounding hundreds more. It has become clear that 
militant group XXX was responsible for the attack. The attack would most likely have 
been stopped if additional security had been assigned to protect targets in Washington, 
DC. A special congressional committee has been formed and several politicians have 
begun criticizing the intelligence community. 

Turn to the next page to read an intelligence report that was submitted to senior decision 
makers three weeks before this attack. You will then be asked to make a series of 

judgments about this intelligence report. 

[Participants then read an intelligence forecast that was submitted to decision makers 
before this attack occurred] 
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TERRORIST ATTACK: SCENARIO #3 

Instructions: Please read the following paragraph about a terrorist attack that occurred 
several weeks ago. 

Summary of the attack: 

Several weeks ago, a bomb was detonated in a crowd at a sporting event in Los Angeles 
killing over 900 people and wounding hundreds more. It has become clear that militant 
group VVV was responsible for the attack. The attack would most likely have been 
stopped if additional security had been assigned to protect targets in Los Angeles. A 
special congressional committee has been formed and several politicians have begun 
criticizing the intelligence community. 

Tum to the next page to read an intelligence report that was submitted to senior decision 
makers three weeks before this attack. You will then be asked to make a series of 

judgments about this intelligence report. 

[Participants then read an intelligence forecast that was submitted to decision makers 
before this attack occurred] 



156 

TERRORIST ATTACK: SCENARIO #4 

Instructions: Please read the following paragraph about a terrorist attack that occurred 
several weeks ago. 

Summary of the attack: 

Several weeks ago, a bomb was detonated on a passenger ship in New York City killing 
over 900 people and wounding hundreds more. It has become clear that militant group 
ZZZ was responsible for the attack. The attack would most likely have been stopped if 
additional security had been assigned to protect targets in New York City. A special 
congressional committee has been formed and several politicians have begun criticizing 
the intelligence community. 

Turn to the next page to read an intelligence report that was submitted to senior decision 
makers three weeks before this attack. You will then be asked to make a series of 
judgments about this intelligence report. 

[Participants then read an intelligence forecast that was submitted to decision makers 
before this attack occurred] 
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Questions about the Intelligence Report 
[These questions were asked after each scenarioJ 

INSTRUCTIONS: Imagine that you had read the intelligence report 3 weeks before the· 
eventual attack. Please answer the following questions about this intelligence report on 
the previous page. Feel free to look back at the intelligence report when making your 
ratings. 

1.	 Judging from the intelligence report, what would have been your impression of 
the risk associated with this possible attack? 

Very low Moderate Very 
risk risk high risk 

o 1 2 3 4 5 6 7 8 9 10 

2.	 Judging from the intelligence report, what would have been your impression of 
the chance that this attack would occur over the next 6 months? 

As likely as 
No chance	 Certain

unlikely 

0% 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 % 

3.	 Focus on the potential outcome of the terrorist attack described in the intelligence 
report. Judging from the intelligence report, what is your impression of the 
overall harm that would be inflicted on people, property, the economy, etc, if the 
attack occurred? 

Not Moderately Extremely 
hannful hannful hannful 

at all 

o 1 2 3 4 5 6 7 8 9 10 
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4.	 How valuable was this intelligence report? In other words, if you had to decide 
what should have been done about this possible attack, how useful or valuable 
would this report have been to you? 

Not at Fairly Extremely 
all valuable valuable 

valuable 

o 1 2 3 4 5 6 7 8 9 10 

5.	 Below are several questions about how you feel about the information and 
conclusions presented in the intelligence report. Please circle the number between 
the pair of words that best describes how you feel about the information and 
conclusions presented in the intelligence report. 

Can't be 0 1 2 3 4 5 6 7 8 9 10 Can be trusted 
trusted 

Is 0 1 2 3 4 5 6 7 8 9 10 Is accurate
 
inaccurate
 

Is unfair 0 1 2 3 4 5 6 7 8 9 10 Is fair 

Doesn't tell 0 1 2 3 4 5 6 7 8 9 10 Tells whole story 
whole story 

Is biased 0 1 2 3 4 5 6 7 8 9 10 Is unbiased 

6.	 Think about both the intelligence report and the terrorist attack that occurred three 
weeks later. Some people are blaming the intelligence community for not doing a 
good job predicting whether this attack would occur. How much blame do you 
think should be placed on the analysts that produced the intelligence report? 

0 1 2 3 4 5 6 7 8 9 

Very little Moderate Great
 
Blame Blame amount
 

of
 
Blame
 

10 
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FURTHER QUESTIONS ABOUT THE INTELLIGENCE REpORTS 

[These questions were asked at the end ofthe experiment] 

1.	 Now focus specifically on the evidence that is presented in each intelligence 
report. How credible is the evidence overall? By "credible" we mean the ability 
to trust or believe the evidence. For example, people often feel that something 
they have "seen with there own two eyes" is more credible than a rumor they 
heard from a stranger. 

How would you rate the overall credibility of the evidence presented in each report? 
Make a separate rating for each of the four intelligence reports. Feel free to go back 
and look at the reports again. 

Very little Moderate Very high 
credibility credibility credibility 

Report #1 0 1 2 3 4 5 6 7 8 9 10 

Report #2 0 1 2 3 4 5 6 7 8 9 10 

Report #3 0 1 2 3 4 5 6 7 8 9 10 

Report #4 0 1 2 3 4 5 6 7 8 9 10 

Very little Moderate Very high 
credibility credibility credibility 
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2.	 Again, focus specifically on the evidence that is presented in each intelligence 
report. How well does the evidence fit into a coherent story? By a "coherent 
story" we mean the ease to which you can form a good story or scenario from the 
evidence. For example, if all of the evidence fits into a believable story and there 
are not any other plausible explanations for the evidence, then you would rate the 
evidence as being very coherent. If, on the other hand, some pieces of evidence 
fit into a story but others do not, or there is more than one plausible story that fits 
the evidence, then you would make a lower rating for the coherence of the 
evidence. 

How would you rate the overall coherence of the evidence presented in each report? 
Make a separate rating for each of the four intelligence reports. Feel free to go back 
and look at the reports again. 

Very	 Moderate Very high 
little coherence coherence 

coherence 

Report #1 0 1 2 3 4 5 6 7 8 9 10 

Report #2 0 1 2 3 4 5 6 7 8 9 10 

Report #3 0 1 2 3 4 5 6 7 8 9 10 

Report #4 0 1 2 3 4 5 6 7 8 9 10 

Very 
little 

Moderate 
coherence 

Very high 
coherence 

coherence 
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APPENDIXE 

DETAILS OF STATISTICAL ANALYSES 

Study 2 

Assumptions ofthe Univariate General Linear Model 

A univariate general linear modeling framework was used to test the hypothesized 

effects on perceived risk. There were no missing data on the variables of interest. In 

addition, several ofthe assumptions of the univariate general linear model were assured 

by proper sampling practices and the roughly equal sample sizes within groups. These 

assumptions include independence and an identical within group error distribution. The 

univariate general linear model is robust against violations ofthe homogeneity of 

variance assumption with relatively large sample sizes and roughly equal sample sizes 

among the groups (i.e. less than 2:1). Finally, residual plots for each model were 

examined for nonlinearities and other indicators ofpoor model fit, as well as 

confirmation of a roughly normal distribution of errors and equal variance of errors 

across levels of the independent variables. No concerning violations of the assumptions 

were found. 

Effect Size, Power, and Confidence Intervals 

In general, I have tried to focus on effect sizes and the precision of estimation (Le. 

reporting confidence intervals), as opposed to null hypothesis significance testing. 

However, p-values are reported for the bulk of the statistical results. In addition, r is used 

as an effect size measure in Study 2. There are several other alternatives, for example 

Cohen's d, but r has several advantages over standardized difference measures of effect 

size. The primary benefit or r is the generality of interpretation as a measure of the linear 

relationship between two variables (Rosenthal, 1994). For example, r makes conceptual 

sense whether the variables of interest are both continuous in nature (Pearson's r), or one 

is dichotomous and one is continuous (Point-biserial). Mean difference indexes (e.g. 
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Cohen's d) make sense in the later case, but are not intuitively meaningful when both 

variables are continuous. Although the interpretation of any effect size must be 

understood within the context of the particular application, Cohen (1988) has developed 

general guidelines for interpreting r effect sizes: Small: F.1, Medium: F.3, Large: F.5. 

The concept of statistical power is a very important, and often ignored, aspect of 

statistical analysis. Rough power analyses were conducted to assure sufficient power for 

the primary effects of interest during the design of this experiment. Like any study, 

however, additional a priori hypotheses are often developed after the study design is 

finalized, and additional post-hoc research questions are often of interest once the 

analysis stage begins. In these cases, precise post-hoc power estimates are often difficult 

to compute. Thus, 95% confidence intervals are included to give the reader a general 

idea ofthe precision of estimation (i.e. statistical power) in the parameters of interest 

(Loftus, 2004). In general, the smaller the confidence intervals the greater the precision 

and the higher the statistical power. 

Multivariate GLMAssumptions 

As in the univariate case, a large sample size and roughly equal cell sizes ensure 

robustness of the multivariate solution against the violation of the multivariate normality 

and homogeneity of variance-covariance matrices assumptions. Scatterplots were used to 

assess the linearity assumption - namely, that all of the dependent variables are linearly 

related. Examination of the scatterplots revealed no nonlinear relationships of concern. 

Multivariate Effect Size and Confidence Intervals 

There are several different ways to represent the magnitude of individual model 

effects within the context of the multivariate general linear model (Kline, 2004). Pillai's 

V or Wilks' lambda are common choices and represent the proportion of explained and 

unexplained variance, respectively. In an effort to keep the effect size measures 

comparable across the univariate and multivariate analyses in Study 1, r effect sizes are 

reported for the multivariate effects. The r effect size can be computed in several 
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different ways - namely, by taking the square root of the Pillai's V statistic for the effect 

of interest, or by calculating a discriminant function score for each participant and then 

calculating the r effect size from these scores in the same manner as in the univariate 

case. For the majority of the effects of interest the two methods of computation 

converged, but in some cases there were discrepancies (e.g. when conducting simple 

effect tests). In those cases the r effect size calculated from the discriminant function 

scores is reported because I feel it is a more accurate representation of the effect size for 

specific simple effects. The Pillai's V in the simple effect procedure in SPSS is 

controlling for all other comparisons in the model, and consequently, produces a slightly 

different Pillai' s V that when raised to the power of 1/2 is not a good representation of 

the effect size for the contrast of interest. 

Study 3 & Study 4 

Multilevel Models 

Repeated measures designs are not optimally modeled with the General Linear 

Modeling (GLM) framework that was used to analyze the fully between subjects data in 

Study 2. A further generalization of the GLM called a Linear Mixed Model is more 

appropriate for data structures with repeated measurements. The subspecies of linear 

mixed models are known as multilevel mixed models, hierarchical linear models (HLM), 

or random-effects models. 

There are several reasons why a multilevel framework is considered superior to a 

GLM for repeated measures data: 1) Multilevel models are more flexible in terms of data 

requirements (e.g. the repeated measures do not need to be measured at the same time for 

each subject), 2) multilevel models permit more control over the covariance structure, 

and 3) it is easier to work with time-varying covariates in the context of multilevel 

models (Raudenbush & Bryk, 2002). For these reasons, a multilevel framework was used 
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to model the effects of the experimental manipulations, as well as the effects of the 

subject-level and time-varying covariates. 

General Specification ofMultilevel Models and Model Building 

Two-level models 

All of the multilevel models used in Studies 3 and 4 were two-level models with 

the repeated measures data modeled at level 1 and the between subjects data model at 

level 2. For example, the following model was fit to assess the impact of stated 

likelihood, properties of the narrative evidence summary, and the moderating influence of 

stated likelihood format and consumer numeracy on perceptions of likelihood in Study 3 

(the results of this model are presented in Table 5.10): 

LEVEL 1 MODEL (bold: group-mean centering; bold italic: gr 

CHANCE_L = 13() + 131(UNEAR_1) + 132(EVI_PROP) + r 

LEVEL 2 MODEL (bold italic: grand-mean centering) 

130 = 100 + 'Y01(H1_COND) + 10z(H2_COND) + "I03(NUMTOT) + I}o 

13 , = "110 + 'Y11(H1_COND) + 1,z(H2_COND) + "I,3(NUMTOT) 

132 = "120 + YZ1(H1_COND) + 'Yz2(H2_COND) + Y23(NUMTOT) 

At levell, the dependent variable is the likelihood ratings from each consumer for 

each of the three intelligence forecasts that they read. Therefore, each consumer 

expressed his or her perceived likelihood to a forecast with a stated likelihood of 1%, a 

forecast with a stated likelihood of 5%, and a forecast with a stated likelihood of 10% 

(the pure narrative forecast is not included in this analysis). These perceptions of 

likelihood are then modeled as a function of a linear trend across the levels of stated 

likelihood (Linear_T in the figure above). Consumers also rated the coherence and 

credibility of each of the three forecasts that they read. Thus, perceptions of likelihood 

are also modeled as a function ofconsumer's ratings of the credibility and coherence of 

each forecast (Evi_Prop in the figure above). Three parameters are then estimated from 
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this level I model: ~o= the intercept, or the mean level of perceived likelihood averaging 

across stated likelihood and at the mean level of credibility and coherence; ~l=the extent 

to which likelihood perceptions show a linear trend across stated likelihood at the mean 

level ofcredibility and coherence; ~2=the linear relationship between perceptions of 

credibility and coherence and perceptions oflikelihood averaging across stated 

likelihood. 

At level 2, these three parameters become dependent variables and variance in these 

parameters for each consumer are modeled as a function of the between subject variables. 

In this case, the between-subject variables are the format of the stated likelihood in the 

forecast, which are represented as two helmert contrasts (HI =contrast between the range 

condition and the two point estimate conditions; H2=contrast between the point estimate 

conditions, internal and external framing oflikelihood), and the total score on the 

numeracy individual difference measure. The goal of the level 2 model is to see if the 

variance in the parameters estimated at level 1 can be predicted by the between subject 

variables represented at level 2. For instance, parameter Y13 at level 2 is an estimate of 

the extent to which the effect of stated likelihood on perceived likelihood (averaging 

across likelihood format) can be predicted by the numeracy level of the consumer. In 

other words, this is a test ofa cross-level interaction. 

Model building 

In general, all of the multi-level models used in studies 3 and 4 were specified to test 

specific hypotheses of interest. However, exploratory analyses were also conducted to 

test for higher-order interaction effects that would clarify the effects found elsewhere in 

the models. Higher order interactions that were not significant were removed and the 

more parsimonious model results are reported. 

Assumptions ofMultilevel Models and Standard Error 

Each of the models reported above were fit with Restricted Maximum Likelihood 

Estimation (REML). Similar statistical assumptions underlie parameter estimation in 

multilevel models and multiple regression analysis, although in the case of multilevel 
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models there is multilevel data structure. Violations of critical assumptions can 

negatively influence standard errors and inferential tests (Raudenbush & Bryk, 2002). 

Residual plots for each model were examined for nonlinearities, outliers, and other 

indicators of poor model fit, as well as confirmation of a roughly normal distributions of 

errors and equal variance at each level of the multilevel model. No concerning violations 

of the assumptions were found in any of the models fit above. Furthermore, all 

inferential tests are conducted with robust standard errors, which further guard against the 

influence of violating critical assumptions (Raudenbush & Bryk, 2002, pg. 276). 

Random versus Fixed Coefficients 

In a two level model, predictors at level-l and level-2 are modeled as fixed 

effects. However, the intercepts and slopes that are estimated at level-l can be modeled 

as fixed, non-randomly varying, or randomly varying (Raudenbush, Bryk, Cheong, 

Congdon & du Toit, 2004). A fixed intercept or slope means that the parameter is 

assumed to be equal for each level two unit, which in this case is the individual 

consumers. A non-randomly varying intercept or slope means that the parameter is 

expected to vary across level-2 units with respect to level-2 predictor variables, but does 

not vary randomly for each individual. For example, in Study 2 one of the primary 

predictions was that the linear effect across probability levels on perceived likelihood 

would be moderated by the consumer numeracy (a level-2 variable). Randomly varying 

intercepts or slopes means that these parameters are a function of overall population 

effects as well as a "random", or unique contribution for each person. Of course, an 

intercept or a slope can also be modeled as having contributions from unique, non­

random sources (e.g. numeracy) as well as unique, random effects for each person. 

In each of the multilevel model estimates above, the intercept is modeled with 

both random and non-randomly varying components. The intercepts were modeled as 

random because I wanted to capture the idiosyncratic (random) way in which consumers 

may be using the ratings scales. For example, some consumers may show similar slopes 

across the within subject factor in terms of perceived likelihood, but they just start at 
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different places on the rating scale. This might happen if, for instance, the likelihood 

scale was interpreted as a more general rating scale to which consumers scaled their 

responses in an idiosyncratic way. However, the slope terms were modeled as only non­

randomly varying (Le. as functions of the level-2 variables), without random error terms. 

This was done because I had no a priori reason to assume random variation in the slopes, 

and practically, with only 3-4 levels of the within subject factor in a given model it was 

often impossible to estimate all of the random effects (i.e. there were not enough degrees 

of freedom). 

Not allowing the slope coefficients to vary randomly introduces a potential 

misspecification problem, if in fact the slope coefficients do have substantial random 

variance components. On way to assess the impact of the potential misspecification of 

random effects it to compare model-based and robust estimates of standard error in the 

model without the random variance component (Raudenbush & Bryk, 2002). If the 

standard error estimates are substantially different from one another, then this is an 

indication that the fixed coefficients may need to be specified as random. The model­

based and robust standard errors were not substantially different in any of the models 

reported above. In addition, the specification of slope coefficients as random (in models 

with adequate degrees of freedom) did not result in any substantive differences in the 

interpretation of effects from a non-randomly varying specification. 

Centering 

It is very important in multilevel modeling that each of the level-1 and level-2 

predictors are represented in a way that makes the coefficients scientifically interpretable. 

As in standard regression analyses, this is achieved through centering, or specifying the 

location for, the level-1 and level-2 variables (Raudenbush & Bryk, 2002). There are 

several different ways to center predictor variables, with grand mean centering or group 

mean centering as the most common options. In the models reported above, each of the 

continuous and categorical variables (often represented by contrast coded dummy 

variables) are grand mean centered. This results in a similar interpretation as the standard 
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ANCOVA model, for instance, where the intercept in the level-l model is interpreted as 

the grand mean adjusted for any covariates in the model (Raudenbush & Bryk, 2002). 

For example, grand mean centering is useful in specific cases where "main effect" type 

analyses are of interest, like a specific contrast on the probability format variable 

averaging across level of the other experimental factor (probability level). 

Effect Size 

Ideally, every effect estimated in the multilevel models could be represented by a 

common effect size measure, like Cohen's d or r. However, since multilevel modeling is 

a relatively new statistical approach, methodologists are still actively searching for the 

most appropriate ways to represent effect sizes for individual model parameters. Since r 

effect sizes were reported in Study 2, I tried various methods of calculating r effect sizes 

for the parameters in the multilevel analyses to make them comparable with the effects 

from Study 2. Since there is relative dearth of literature on the calculation of the effect 

sizes in these models, I was not able find a consistent way to calculate r effect sizes that 

didn't leave me with the lingering feeling that I was doing something wrong. In the end, 

I decided to follow the lead ofRaudenbush & Xiao-Feng (2001) and Tymms, Merrell, 

and Henderson (1997), who present similar approaches for calculating effect sizes in 

multilevel models. The basic approach is to generalize the standardized difference effect 

size measures discussed by Cohen (1988) and Glass (1981) to the multilevel context. In 

short, for dummy coded categorical variables and standardized continuous variables the 

effect size takes the following general form: 

A = /3Plp 

~LPP , 

where I!J.p is the standardized effect size measure, f3Pl is a specific coefficient for the 

effect of interest, and ,JTpp is the square root of an appropriate random variance 

component. For example, assume that the primary effect of interest at level-l is the 

linear slope between the narrative and numerical probability level conditions in Study 3. 
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Assume that f3Pl is the coefficient indicating the difference between two probability 

format conditions (between subject variable at level-2) on this linear slope, in other words 

it is a cross level interaction effect. The effect size !:J.p, therefore, is a representation of 

the difference between the two conditions on this linear slope, f3Pl, divided by the 

population variation in the linear slopes (random variance component), and can be 

considered a standardized mean difference. 

Since these effect size measures have not been thoroughly studied, they should 

not be directly compared to other standardized mean difference effect sizes (e.g. Cohen's 

d), or the r effect sizes calculated in Study 2 that could readily be converted into Cohen's 

d. The main reason for presenting the effect size measures in Study 2 and Study 3 is to 

provide a framework for comparing the magnitude of the different effects within each 

study. So, for instance, the reader can compare the magnitude of important hypothesized 

effects like the effect of stated probability information compared to the effect of the 

properties of the narrative evidence on perceived likelihood. 

Power Analysis 

Under the assumption that the GLM was going to be used for analysis, a rough 

power analysis was conducted to estimate the sample size needed to test the between and 

within subject effects with adequate statistical power. Assuming between a small and 

medium effect size (using Cohen's criteria), a total sample size ofN=60 would produce 

power = .80 for the between subjects comparisons of interest. For the within subject 

effect, a total sample size ofN=60 would produce power = .96. However, this sample 

size may have been too small to reliably detect individual differences associated with the 

numeracy. Correlations between numeracy and the dependent variables in Study 1 

ranged from r = .20-.25. Assuming a correlation ofr = .25 and a sample size ofN=60, 

estimated statistical power = .65. If the total sample size was increased to N=80, then 

power=.80 for detecting a simple correlation with numeracy. At least from the 

perspective of the GLM, the sample sizes ofN=87 and N=81 appear sufficient. 
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However, formal power analysis was not conducted within the context of 

multilevel models. For multilevel models, in general, the number of groups has more 

effect on statistical power than the number of observations. In this case the individual 

participants are the group level variable, and it is recommended that the higher-level 

sample size (level-2) is at least 20, but preferably 50 for adequate statistical power 

(Garson, 2007). Thus, I expect to have adequate statistical power with N=87 and N=81 at 

level-2. 
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