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Abstract. Recent decades have shown intensive studies devoted to the fate of pharmaceuticals in 
the environment. These studies have involved the development of analytical tools, determination 
of pharmaceuticals in different compartments, composting technologies, and plant uptake of 
pharmaceuticals. The presence of organic pollutants in sewage sludge, including 
pharmaceuticals, is a problem of major concern. The re-use of sewage sludge should be 
encouraged since it represents a long-term solution provided that the quality of the sludge re-used 
is compatible with public health and environmental protection requirements. Composting is a 
widely recognized way of making the soil application of sewage sludge safer. 
In this study, the impact of sewage sludge composting on the degradation of metformin (MET), 
by far the most often prescribed antidiabetic drug worldwide, and carbamazepine (CBZ), a poorly 
biodegradable but widely used as an anticonvulsant drug to cure depression and seizures, were 
analysed. The anaerobically digested and dewatered sewage sludge samples were collected from 
municipal wastewater treatment plant. Composting experiments were performed under fixed 
conditions during 30 days. The results of the experiment showed that during a 1-month 
composting period more than 90% of MET residues degraded, but no degradation of CBZ took 
place during the composting period. The half-life of MET was 3 days for the compost mixture 
with the ratios of 1:3 and 1:2 (v:v). The results of this study show that composting maylead to the 
efficient degradation of MET, whereas for the elimination of CBZ from sewage sludge different 
means should be used. 
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INTRODUCTION 

The world's pharmaceutical industry has become one of the fastest growing and 
profitable business sectors. It generates enormous volumes of waste, either directly or 
indirectly. Hundreds of different active pharmaceutical ingredients (APIs) are discarded 
in the environment (Agamuthu & Fauziah, 2011). There is clear evidence of impacts of 
APIs on the building up of bacterial antibiotic resistance (Helwig et al., 2013). As 
pharmaceuticals are designed to be resistant to biodegradation and current technology at 
the majority of wastewater treatment plants is unable to remove most APIs, ecosystems 
are thus exposed to these pollutants (Vallini & Townend, 2010). 
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Sewage sludge, a residue from the treatment of domestic and industrial wastewater, 
may be itself regarded as hazardous waste which may cause several undesired 
consequences due to biological and chemical contaminants, but under certain conditions 
it can also be used as a fertilizer (Haiba et al., 2016). Taking into account the latter, its 
safety with respect to pharmaceutical residues (in addition to other potential factors, e.g. 
pathogens, heavy metals, etc.) must be assessed before use (Kipper et al., 2011). Land 
application of sewage sludge can be a source of the contamination of food plants by 
pharmaceutical products (Lillenberg et al., 2010). Plant uptake of pharmaceutical 
residues, present (even in very small quantities) in soils fertilized with sewage sludge 
compost, is an obvious reality (Kipper et al., 2011). Although sewage compost is rich in 
minerals, enabling long-
antimicrobials consumed even in very small amounts with everyday food can initiate 
strains of resistant bacteria in human and animal organisms (Kipper et al., 2017). Due to 
the fact that the use of composted sewage sludge as soil fertilizer is a common practice, 
knowledge on how the stabilization process affects the reduction of contaminants in this 
matter is considered  

It has been shown that the concentrations of pharmaceuticals decrease after sewage 
sludge digestion and composting, but they are still present in detectable amounts (Haiba 
et al., 2016). Amendments of sawdust clearly speed up the degradation of sulfonamides 
and fluoroquinolones, whereas the mixtures with peat and straw perform lower abilities 
to decompose the residues of these pharmaceutical (Haiba et al., 2016). In addition to 
this, sawdust is able to regulate the moisture content and increase the porosity of 
composting material (Li & Li, 2015). Sawdust has beneficial effects on composting of 
municipal solid waste. Yousefi et al. (2013) have shown that all compost treatments 
reached thermophilic temperature rapidly, but the temperature of composting without 
sawdust showed fluctuations with a rapid drop in the thermophilic temperature and 
further increase thereafter. On the basis of observed trends in temperature, the 
composting piles with sawdust required shorter composting periods than those without 
any sawdust (Yousefi et al., 2013). From an agricultural point of view, sludge co-
composted with particularly fine-textured sawdust is the most proper compost material 
to be applied to soils (Ammari et al., 2012). 

The study conducted by Zhong et al. (2018) compared the development of various 
physicochemical properties and the composition of microbial communities involved in 
the composting process in the solid fraction of dairy manure (SFDM) with a sawdust-
regulated SFDM. The succession of bacteria in both groups proceeded in a similar 
pattern, suggesting that the effects of the sawdust on bacterial dynamics were minor. 
Based on this the authors concluded that this confirms the feasibility of composting using 
only the SFDM. However, this study does not handle the problems associated with 
different organic pollutants present in dairy manure.  

A PhD study was conducted to examine the degradation of some widely used drugs, 
as fluoroquinolones, sulfonamides, diclofenac (DFC), triclosan (TCS), metformin 
(MET) and carbamazepine (CBZ) during composting processes, using several bulking 
agents and different ratios of sewage sludge and sawdust in the mixture (Haiba, 2017). 
The results reflecting the degradation of sulfonamides and fluoroquinolones, DFC and 
TCS have been published recently (Haiba et al., 2016 and 2017). Higher proportions of 
sawdust clearly speeded up the degradation of both DFC and TCS. The current paper is 
to reflect the results obtained in studying the degradation of MET and CBZ during 
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sewage sludge co-composting with different portions of sawdust, and to compare the 
outcomes of this work with the results obtained for DFC and TCS, formerly reported in 
Agronomy Research (Haiba et al., 2017) According to the information available from 
the scientific publications the biodegradation rate of MET is high, whereas the 
biodegradation of CBZ does not take place (Mrozik , 2014; Blair et al., 2015; 
Butkovskyi et al., 2016). DFC readily biodegrades in agricultural soils, whereas the 
degradation of TCS only partly follows this pathway (Xu et al., 2009). 

MET is the first-line medication for the treatment of type 2 diabetes (Maruthur et 
al., 2016). This disease affects more than 200 million people worldwide (Reitman & 

ults published in 2015 by Niemuth 
& Klaper demonstrated that MET acts as an endocrine disruptor at environmentally 
relevant concentrations (Haiba, 2017). Unlike many pharmaceutical drugs, MET is not 
metabolized by humans but passes unchanged through the body. With no natural 
degradation processes, MET can be easily reintroduced to humans as they enter the food 
chain (Trautwein et al., 2014). Detection of MET in seawater and tap water proved the 
absence of an efficient degradation process in ocean environments or drinking water 
preparation which suggests a high persistence and the potential for ubiquitous 
distribution (Trautwein et al., 2014; Haiba, 2017). During sewage treatment a significant 
reduction of MET concentrations is observed which seems to be mainly due to microbial 
degradation. Despite the high removal efficiency of sewage treatment plants (STPs), 
MET is still released in significant amounts into the aquatic environment (Scheurer et 
al., 2009). MET is a mobile compound with low affinity to soils (
2014). This indicates that this drug may be a potential threat to ground and surface water 
(Benotti & Brownawell, 2007; Haiba, 2017). 

CBZ, an antiepileptic drug, is one of the most frequently detected pharmaceuticals 
in soil and aquatic environments (Zhang et al., 2008; Oosterhuis et al., 2013). CBZ is 
used for the treatment of seizure disorders, for relief of neuralgia, and for a wide variety 
of mental disorders. Approximately 72% of orally administered CBZ is absorbed, while 
28% is unchanged and subsequently discharged through the feces (RxList4; Zhang et al., 
2008; Haiba, 2017). Nieto et al. (2010) determined concentrations between 11 and 
42 mg kg-1 (dry weight  dw) for CBZ in samples from two STPs. However Miao et al. 
(2005) detected CBZ at concentration 69.6  kg-1 (dw) in untreated biosolids and at 
concentration 258.1  kg-1 (dw) in treated biosolids. Chefetz et al., 2008 indicated that 
CBZ exhibits the persistence characteristic of organic contaminants, potentially leading 
to long-term environmental risks (Haiba, 2017). It is known that CBZ is toxic for some 
algae, bacteria, invertebrates and fish (Camacho-Munoz et al., 2010). There are no 
conclusive results confirming the effects (or their lack) of prolonged exposure of 
organisms to low concentrations of CBZ (Rezka et al., 2015; Haiba, 2017). 

CBZ is highly persistent and frequently found in sewage, surface waters and 
managed aquifer recharge systems (Leclercq et al., 2009; Nieto et al., 2010), and once it 
is discharged into the environment it causes toxicity (Joss et al., 2006; Verlicchi et al., 
2012). Removal of CBZ and its metabolites from municipal sewage treatment plant is 
very low (~8%). CBZ is persistent in soils (Li et al., 2013; Grossberger et al., 2014; 
Paltiel et al., 2016) and has been shown to be taken up and accumulate in a variety of 
crops (Winker et al., 2010; Shenker et al., 2011; Holling et al., 2012; Goldstein et al., 
2014; Malchi et al., 2014, Haiba, 2017). CBZ is recalcitrant both in biodegradation and 
photolysis experiments. This compound is retained by the soil where it is accumulated 
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due to its low degradation rate. Slow degradation rate coupled with plant uptake 
phenomenon indicates that CBZ present in biosolids amended soils is a significant 
concern and poten -
acute toxicity of CBZ < 100 mg L-1 (Malarvizhi et al., 2012; Haiba, 2017). 

 
MATERIALS AND METHODS 

 
The procedures described in the current section are identical to those presented in 

Haiba et al., 2017 with the exception that the drugs used were different: instead of 
examining the concentration changes of DFC and TCS, the degradation of CBZ and 
MET was studied during sewage sludge composting. The composting parameters were 
in excellent agreement with those presented in Haiba et al., 2017, showing the efficiency 
of the composting process. 

 
Chemicals and materials 
CBZ (99.9%) and MET hydroxide (99.8%) were obtained from Sigma-Aldrich. 

LC-  99.9%; LC-MS Ultra CHROMASOLV; 
Fluka), water purified in-house using Millipore Milli-Q Advantage A10 system, 
1,1,1,3,3,3-hexafluoroisopropanol (HFIP, Sigma-Aldrich), NH4OH (25%; eluent 
additive for LC-  98%; puriss p.a., Sigma-Aldrich). The 
samples were prepared using vortex mixer VWR International, shaker Elpan 358S, 
centrifuge Eppendorf 5430R and ultrasonic bath Bandelin Sonorex were used. Sample 
extracts were filtered through Sartorius Minisart RC4 (regenerated cellulose, pore size 
0.2  membrane diameter 4 mm) syringe filters using disposable 2 mL syringes 
(Brand). 

 
Sample preparation 
The anaerobically digested and subsequently dewatered by centrifugation sewage 

sludge samples were obtained from a municipal wastewater treatment plant. Prior to the 
treatment by aerobic composting under laboratory conditions the sewage sludge was 
mixed with sawdust at two different ratios (1:2 and 1:3 sludge: sawdust, v:v). The initial 
concentration of both CBZ and MET was 2 mg kg-1 in relation to dry weight (dw). 
Reference piles without additions of pharmaceuticals and with the same ratios of sludge 
and sawdust were prepared. Samples were thawed at room temperature and mixed by 
vigorous shaking. For extraction about 5 g of sample was precisely weighted into 50 mL 
polypropylene centrifuge tube. The following extraction procedure was used: 

1. 15 mL of extraction solvent (1% v/v formic acid in ethanol) was added to a 
sample tube. 

2. Vortex mixed for 30 s. 
3. The sample tube was tightly capped and placed horizontally on a shaker 

(200 rpm) for 10 min. 
4. The tube was turned into vertical position and shaken manually to ensure that 

the solid content is in contact with extraction solvent. 
5. Extraction was continued by sonicating during 10 min. 
6. Samples were centrifuged at 7,830 rpm during 5 min. 
7. The extracts were removed from the tube using pipette. 
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Steps 1-7 were repeated five times with each sample. Extracts were combined in 
100 mL polypropylene bottles, mixed and weighted. From each extract 15 mL was taken 
into 15 mL polypropylene centrifuge tube for further treatment. Prior to LC-MS analysis, 
sample extracts were diluted: to 100  
1.5 mL Eppendorf tube. Automatic pipette was used for dosing, but all the solutions were 
weighted. The solutions were vortex-mixed and filtered through syringe filter. First five 
drops of filtrate were discarded and the remaining (ca 1 mL) was collected into auto-
sampler vial (2 mL glass vial). 

 
Calibration samples  
Calibration and quality control samples were prepared by diluting stock solutions 

of analytes. Stock solutions were prepared by dissolving appropriate amount of analytes 
in ethanol. Working standards were prepared in 1.5 mL Eppendorf tubes by diluting 
600  
solutions, all solutions were prepared by weight, vortex-mixed and filtered through 
syringe filters. Concentrations of the solutions used for calibration were chosen 
according to the linear range for each analyte. 

 
LC-MS/MS analysis 
Sample extracts were analyzed (as described in Haiba et al., 2017) using LC-

MS/MS system consisting of ultra-high performance liquid chromatograph UHPLC 
Agilent 1290 Infinity and mass spectrometer Agilent 6495 Triple Quad. The liquid 
chromatograph consisted of the following modules: binary high-pressure gradient pump 
with built-in degasser, autosampler with sample compartment cooling and column 
thermostat. Waters XBridge C18 (150 mm  3 mm, 3.5 
Waters Guard Cartridge (20 mm  4.6 mm) (Waters) precolumn were used for sample 
analysis. 

For analyte detection triple quadrupole mass spectrometer equipped with heated 
electrospray interface (HESI) Agilent JetStream was used. Chromatographic separation 
was carried out using gradient elution. As the weak component of eluent (A), 5 mM 
HFIP buffer solution (pH adjusted to 9 using NH4OH) was used. The strong component 
of the eluent (B) was methanol. The gradient program started from 10% B and content 
of B was increased to 100% during 33 minutes. For the following 3 minutes isocratic 
(100% B) elution was used, followed by 3 min gradient to 10% B. For equilibration the 
column was eluted with 10% B for 4 minutes. Eluent flow rate was 0.3 mL min-1, column 
temperature maintained at 30  
monitoring (MRM) mode was used for analyte detection. MRM transitions used are 
presented in Table 1. 

 
Table 1. MRM transitions, collision energies (CE) and ionization polarities used for analysis 

Analyte Precursor ion, m/z Product ion, m/z CE Polarity mode 
Carbamazepine 237 194 20 positive 
 237 179* 40 positive 
Metformin 130   71 25 positive 
 130   60 10 positive 
*  quantitative transition. 
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The following ion source and MS parameters were used for analysis: drying gas 
temperature 250  L min-1, nebulizing gas pressure 20 psi (138 kPa), 
heating gas temperature 350  L min-1, capillary voltage 3,000 V. As 
drying, nebulizing, heating and collision gas nitrogen was used. The instrument was 
controlled using Agilent MassHunter Workstation ver B.07.00 software. For quantitative 
analysis Agilent MassHunter Workstation Quantitative analysis ver B.07.01 software 
was used. 

 
RESULTS AND DISCUSSION 

 
Before spiking the (initial) concentrations of MET in the mixtures of sewage sludge 

and sawdust were very low: 1 to 2  kg-1 (dw) (Table 2). As it can be seen from Table 2, 
none of the compost mixtures was free of CBZ. Its concentrations were from 41 to 
62  kg-1 (dw). This data for CBZ is in reasonable agreement with the results published 
by Miao et al. in 2005 (Haiba, 2017). Similar concentrations with CBZ were found in 
compost mixture before spiking for DFC (64 to 86  kg-1 dw) (Haiba et al., 2017). 
 
Table 2. Concentrations of metformin and carbamazepine in sewage sludge sawdust mixtures 
(mg kg-1, dw) 

Compound Mixture ratio (v:v) Before spiking 1 day 1 week 1 month 
Metformin 1:2 0.002  0.000 2.14  0.25 0.44  0.02 0.18  0.01 

1:3 0.001  0.000 1.95  0.15 0.30  0.02 0.14  0.02 
Carbamazepine 1:2 0.062  0.002 3.11  0.38 2.59  0.05 3.20  0.10 

1:3 0.046  0.003 2.69  0.26 2.31  0.08 2.32  0.08 
lower detection limit for MET  0.009 ng mL-1; for CBZ  0.004 ng mL-1 in injected solution. 
 

After preparing compost mixtures unexpectedly high concentrations of CBZ were 
detected. This phenomenon can be explained with the rapid loss of organic matter during 
the initial stage of composting and is in agreement with the results obtained by Blair et 
al. (2015), which showed that the concentrations of CBZ and its metabolites increased 
on a dry weight basis between untreated and treated biosolids. It has been also 
established that in wastewater treatment plants CBZ sometimes exhibits negative 
removal efficiency (Collado et al., 2014, Haiba, 2017). 

The results measured after 1 week showed that MET had decreased by 79% in 
compost mixtures with sludge-sawdust ratios 1:2 (v:v). In the case of compost samples 
with the ratios of 1:3 (v:v) the relevant concentration drop was only 85%. 

The results given in Tables 2 and 3 showed that no degradation of CBZ took place, 
whereas over 90% of MET degraded during a 1-month composting (Haiba, 2017). 
Butkovskyi et al. (2016) have shown that under specific conditions the partial 
degradation of CBZ takes place. CBZ is not mineralized in soil but is transformed to a 
range of transformation products, especially to the recalcitrant acridone-N-carbaldehyde 
(Li et al., 2013). The degradation products of CBZ are more toxic than CBZ (Donner et 
al., 2013). The formation of these products might also take place during sewage sludge 
composting (Butkovskyi et al., 2016; Haiba, 2017). 
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Table 3. Extent of degradation (%) for metformin and carbamazepine during one week and 
month composting  

 
CBZ readily adsorbs on sludge particles (Blair et al., 2015; Nielsen & Bandosz, 

2016; Haiba, 2017). The work carried out by Koba et al. (2016) showed that CBZ and 
its metabolites are persistent under the studied conditions in soils. According to Li et al. 
(2013) the values of t1/2 for CBZ in soils were between 46 and 173 days (in the studied 
mixtures t1/2 was 178 to 222 days. 

CBZ was an exception in the study: this compound was persistent under all studied 
conditions. According to Collado et al. 2014 in some cases CBZ exhibits even negative 
removal efficiency with no seasonal variation (Golovko et al., 2014). The results showed 
this same phenomen in this study (see Table 4). This leads to the conclusion that 
composting is not an appropriate mean for degrading this compound. 
 
Table 4. The degradation rate constant and half-lives of carbamazepine and metformin 

Compound 
Mixture 
ratio (v:v) 

Current study Data from literature 
k(d-1) t1/2 (d) % k(d-1) t1/2 (d) % 

CBZ 1:2 0.00 222 -11  a   
1:3 0.00 178 13 

MET 1:2 0.22 3 91 0.12 0.26a 
0.22 0.27b 

1 5a 
2 3b 

99 100a  
1:3 0.27 3 93 

a  agricultural soil, b  compost mixture; CBZ  Li et al. (2013); MET   
 
For comparison, the degradation of TCS takes place only partly during one-month 

composting period, indicating that longer periods are needed for the more complete 
removal of pharmaceutical residues from sewage sludge based compost (Haiba et al., 
2017). TCS gives the following k and t1/2 values in the case of agricultural soils (Xu et 
al., 2009; Haiba, 2017): k = 0.05 0.04 d-1; t1/2 = 13 20 d. In sterile soil k = 0.02 d-1 and 
t1/2 = 35 d; 45% of TCS degrades during 30 days. In the case of compost mixtures 
k = 0.03 0.05 d-1 and t1/2 = 13 26 d. The level of degradation was 55 81%. TCS readily 
adsorbs on soil particles and due to this its mobility in soils is low (Xu et al., 2009; Haiba, 
2017). Bioavailability of TCS greatly decreases in biosolids-amended soils. Biosolids 
decrease plant uptake primarily by increasing soil organic carbon content and 
subsequently sorption (Fu et al., 2016; Haiba, 2017). 

Results of this study and results presented in Haiba et al. (2017) showed clearly that 
the degradation of both MET (93%) and DCF (98%) almost fully takes place already 
during one-month composting period in the case of compost samples with the ratios of 
1:3 (v:v). A
compound with a low affinity to soils (Kd = 1.4 0.5 mL gss

1 for MET in different soils). 
MET is polar and very soluble in water; thus it interacts more strongly with water than 
with the soil surface. Although the half-lives of MET were 1 5 days in different soils 
(Table 4), due to its weak sorption MET may be a potential threat to ground and surface 
water (Benotti & Brownawell, 2007; Haiba, 2017). The degradation of MET takes place 

Sample No Mixture ratio (v:v) 
Metformin Carbamazepine 
1 week 1 month 1 week 1 month 

1 1:2 79 91 16 -11 
2 1:3 85 93 14 13 
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2014: k = 0.12 0.26 d-1; 
t1/2 = 1 5 d) and compost mixtures (k = 0.22 0.27 d-1; t1/2 = 2 3 d). According to 
Markiewicz et al. (2017) in most cases MET follows a dead-end pathway with formation 
of guanylurea. The formed guanylurea does not degrade any further and also does not 
show toxic properties. In the case of different soils there is a 99 100% degradation of 
MET during a 30-
compost mixture degradation was lower at 92 93% (Table 4). 

Similarly, DCF is not persistent and is readily biodegradable in soil; its degradation 
follows the first-order exponential decay model and half-life (t1/2) is ranging from 0.4 to 
less than 5 days (Xu et al., 2009; Al-Rajab et al., 2010; Dalkmann et al., 2012; Carter et 
al., 2014; Grossberger et al., 2014; Haiba, 2017). The bioconcentration factors found for 
DCF were high in the case of long-term irrigation with sewage (Christou et al., 2017). 
In agricultural soils (Xu et al., 2009) k = 0.23 0.16 d-1and t1/2 = 3 4 d. In the case of 
sterile soil k = 0.01 d-1 and t1/2 = 70 d (Xu et al., 2009), and for compost mixtures 
k = 0.09 0.1 d-1 and t1/2 = 7 8 d (Haiba, 2017). According to this data in sterile soil only 
26% of DCF degrades during a 30-day period, whereas in compost mixtures the level of 
degradation was 92 98%. This leads to the conclusion that the biodegradation of DCF 
prevails over its chemical degradation. 

Data obtained as a result of degradation experiments were fitted to the exponential 
decay model: C = C0e  to obtain the degradation rate constant k. Half-lives (t1/2) were 
calculated by the equation: t1/2 = 0.693/k (Xu et al., 2009; Haiba, 2017). 

As a rule, the degradation rate of pharmaceuticals depends on the media 
consistency. In agricultural soils biodegradation of pharmaceuticals is faster than in 
freshly made compost mixtures probably due to the fact that the formation of microbial 
communities in the latter presumably takes time. Strong adsorption of pharmaceuticals 
to soil or sludge particles inhibits the degradation of pharmaceuticals. At the same time, 
this also slaps down the plant uptake of these pharmaceuticals, which is important in the 
view of food safety (Haiba, 2017). 
 

CONCLUSIONS 
 

This study was carried out to demonstrate the degradation of CBZ and MET in 
composting processes using different ratios of sewage sludge and bulking agent 
(sawdust). In the case of MET, compost samples with the sludge-sawdust ratios of 1:3 
and 1:2 (v:v) yielded similar degradation of more than 90% during a 1-month 
composting period. No degradation of CBZ takes place during composting experiments. 

The current study (involving MET and CBZ) and the results (for DFC and TCS) 
published in Haiba et al. (2017) leads to the conclusion that composting might ensure 
the efficient degradation of DCF, MET and TCS, whereas for the elimination of CBZ 
from sewage sludge different means should be used. The persistence of pharmaceuticals 
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