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1. INTRODUCTION

Agricultural background

Soil organic carbon (SOC) plays a key role in the global carbon (C) 
cycle. Agricultural soils act as an important C reservoir, containing three 
times as much C as the atmosphere (2.25 ∙ 1012 versus 0.75 ∙ 1012 t C) and 
fi ve times as much as in forests and other vegetation (Post et al., 1982; 
Jobbágy & Jackson, 2000). In Estonia, it is estimated that a total of 
323 ± 46 million t SOC is retained in mineral soil (Kõlli et al., 2010). 
Soil organic matter (SOM) has a role in the storage and availability of 
nutrients, improving tilth, air and water movement, water retention, and 
decomposition processes in soil (Gregorich et al., 1994). The amount 
of C stored in agricultural soils depends on soil type, local climate and 
other site-specifi c conditions, such as land use and land management 
policies. To protect or increase the existing SOC pool by sequestration 
of atmospheric C could prove crucial in mitigating the global greenhouse 
effect over time (IPCC, 2001; Guo & Gifford, 2002). This positive effect 
is thought to result from a reduction in the loss of SOC in the absence 
of soil tillage, while at the same time high C input is maintained through 
plant fi xation. SOC pools are the balance between C input via primary 
productivity and output via decomposition processes (Amundson, 2001). 

Agricultural practices and land use can cause changes in plant cover as 
well as associated changes in SOC stocks (Post & Kwon, 2000). In general, 
there is more SOC under grasslands than under cropland (Cole et al., 
1993; Jackson et al., 1996) due to several factors, including infrequent soil 
disturbance, greater plant residue returns, higher root biomass, manure 
applications, and dung return during grazing. 

Roots are the main source of organic matter on production grasslands 
(e.g., silage, hay, grazing). On set-aside grasslands and turfs where above-
ground biomass is not used, plant remains also could be considered a 
source of organic matter if left on the fi eld to decompose after mowing. 
It is generally assumed that differences in input amounts (not quality 
of the input material) are responsible for observed variations in SOC 
storage (Catovsky et al., 2002; Skinner et al., 2006). On the other hand, 
it is known that SOC dynamics are affected by the identity and specifi c 
structure of chemical substrates entering the soil (Orwin et al., 2006; 
Meier & Bowman, 2008), which implies that input material quality does 
have some infl uence. 
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Scope of the thesis

Plants return a wide range of C substrates to the soil system. The substrate 
decomposition rate is determined by their chemical nature, which depends 
on species composition and growth stages. The overall purpose of this 
thesis is to investigate the content and stock of SOC in selected species of 
grassland soils that have been put to various uses. This thesis also studies 
the effect of various management measures (e.g., fertilization; mowing 
frequency; removal of plant residues after mowing, or returning them 
to the surface) on the growth of various grass swards.
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2. REVIEW OF THE LITERATURE

2.1. Soil organic matter

Soil organic matter (SOM) is either mixed or associated with the mineral 
part of soil and thus has a very complex and heterogeneous composition. 
SOM includes plant, animal, and microbial residues in all stages of 
decomposition (Post & Kwon, 2000).

Soil organic carbon (SOC) stock plays an important role in the global 
biochemical C cycle (Schlesinger, 1990; Batjes, 1996). All SOC originally 
comes from the atmosphere and is captured by plant photosynthesis 
and converted into plant material. Plant C enters the SOC pool either 
as above-ground biomass, litter, or root material (Catovsky et al., 2002; 
Bardgett et al., 2005). Decomposition of these materials leads to the 
formation of organic material in soil (Swift et al., 1979). The balance 
between C input and output via decomposition processes controls SOC 
accumulation within ecosystems (Olson, 1963). 

2.2. Agriculture land management

Land management is a key factor controlling biosphere C dynamics (IPCC, 
2001; Guo & Gifford, 2002). Changes in land use affect soil properties, 
including C and nitrogen (N) cycles (Potter et al., 1996; Houghton 1999; 
Guo & Gifford, 2002). Various land management and tillage methods 
affect SOC distribution in the soil profi le, microbial activity, and the 
balance between nutrient mineralization and immobilization, thereby 
changing soil quality.

SOC reduction is known to occur during processes where natural 
grasslands are converted into arable land (Mann, 1986; Post & Mann, 
1990; Davidson & Ackerman, 1993). Decreases in SOC are caused by 
reduced inputs of organic matter, improved decomposition conditions, 
and tillage effects that remove the amount of physical protection that 
otherwise prevents decomposition. Conventional tillage such as ploughing 
increases SOM reduction by breaking apart soil aggregates and improving 
soil aeration (Balesdent et al., 1990). 

Depending on ecological conditions, every soil type has specifi c SOC 
fl ows throughout the soil cover (Batjes, 1996; Körchens et al., 1998; 
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Yakimenko et al., 1998; Kõlli et al., 2010). Soil texture plays an important 
role in stabilizing the SOC effect, as increasing clay and carbonate content 
decrease C outputs (Paul 1984; Körchens et al., 1998). Low-intensity tillage 
systems, which leave large amounts of plant residues on soil surfaces, 
also inhibit SOC reduction. Converting arable land into grasslands is one 
option for reducing the content of atmospheric carbon dioxide (CO2) 
that arises from organic material decomposition (Guo & Gifford, 2002) 
while increasing SOC accumulation (Lal, 2004). Compared to arable 
land, higher SOC content in grasslands is explained partly by greater C 
input to soil ( Jackson et al., 1996; Lal & Bruce, 1999) and infrequent soil 
disturbance (Nyborg et al., 1999). 

It  is known that converting arable land to grasslands controls both SOC 
and N distribution in the soil profi le (Steinbeiss et al., 2008b). Ploughing 
arable fi elds leads to a homogeneous distribution of plant remains, while 
the input of plant material in grasslands is controlled by above-ground 
biomass and root distribution, as 70–75% of the root biomass is located 
in the top 15 cm of soil (Gill et al., 1999). SOC and N concentrations 
increase in the main rooting zone; reduced root biomass in the deeper 
horizons cause SOC reduction in deeper soil layers. SOC distribution 
in soil profi les also varies strongly with vegetation type ( Jobbágy & 
Jackson, 2000). 

2.3. Organic matter decomposition

Decomposition of plant residues is not only one of the fundamental 
processes in agroecosystems, but also is responsible for the recycling of 
nutrients released from decomposing organic matter, which sustains plant 
growth and soil quality. Decomposition is a biological process whereby 
complex organic substances from dead material are physically broken 
down and transformed into simpler organic and inorganic molecules by 
saprophytic fungi and bacteria (Juma, 1998). Living organisms use plant 
C residues as an energy source along with N for building cell structure 
(Swift et al., 1979; Benbi & Richter, 2002). By breaking down C structures 
and rebuilding new ones (or storing C into their own biomass), soil biota 
play the most important role in nutrient cycling processes and provide 
soil with suffi cient nutrients to harvest a healthy crop. 

In general, bacteria break down easily-decomposable organic material, 
which results in nutrients such as N becoming available for uptake by other 
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organisms; this process is called mineralization. During decomposition, 
different products besides nutrients also are released: CO2; energy; water; 
and resynthesized organic C compounds, which are less decomposable 
than the original plant material. Fungi break down the less decomposable 
organic matter and retain those nutrients in the soil as fungal biomass. 
Just like bacteria, fungal waste products become SOM and are used by 
other organisms. Subsequent decomposition of dead material and modifi ed 
organic matter results in the formation of a more complex organic matter 
called humus (Juma, 1998). Humus affects soil properties because as it 
slowly decomposes, it darkens soil color, intensifi es soil aggregation and 
aggregate stability, and increases cation exchange capacity (i.e., the ability 
to attract and retain nutrients). 

2.3.1. Factors affecting organic matter decomposition

The decomposition of plant residues is the result of complex processes 
controlled by the quality of organic matter, environmental factors, contact 
between plant residues and soil, and decomposing particle size (Swift et 
al., 1979; Stott et al., 1986; Heal et al., 1997; Martens, 2000).

2.3.1.1. Quality of organic matter

The ability of soil microorganisms to decompose and mineralize organic 
matter depends on the biochemical composition of the organic material 
(e.g., N content, C/N ratio, types of C compounds) (Heal et al., 1997; 
Gunnarsson & Marstrop, 2002; Trinsoutrot et al., 2002). In general, plants 
contain the same classes of C compounds (e.g., amino acids, organic acids, 
sugars, fructans, hemicelluloses, cellulose, and lignin), but the proportions 
of each (which depend on species and maturity) could be different and 
may infl uence the degree and rate of decomposition (Martens, 2000; de 
Neergaard et al., 2002).

The decomposition of organic material begins with simple compounds. 
At fi rst, non-structural C compounds (e.g., amino acids, organic acids, 
sugars, fructans) are decomposed followed by compounds with more 
complex structures (e.g., hemicellulose, cellulose, lignin) (Van Soest, 1982; 
Gunnarsson & Marstrop, 2002; Gunnarsson et al., 2008). Hemicellulose, 
cellulose, and lignin are structural polysaccharides, which are the main 
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components of cell walls. Structural polysaccharides are responsible 
for conferring rigidity to cell walls, thereby allowing plants to grow as 
erect structures (Wagner & Wolf, 1999). Hemicelluloses are groups of 
structural carbohydrates that surround cellulose fi brils and cement them 
together; they consist of mostly branched chains of cellulose-like sugar 
units bound together, but with a lower degree of polymerization than 
cellulose (Wagner & Wolf, 1999; Gunnarsson, 2003). Cellulose is the most 
abundant carbohydrate in the world, amounting to about 20–40% of all 
plant dry matter (DM) (Van Soest, 1982). Cellulose has a much higher 
degree of polymerization compared to hemicellulose (Kögel-Knabner, 
2002). Lignin is a large molecule consisting of phenolic groups composed 
of aromatic rings with three C side chains (Gunnarsson, 2003). Lignin’s 
size and complexity lead to a slower decomposition rate compared to that 
of cellulose and hemicellulose; thus, its decomposition products have a 
long residence time in soil, which enhances SOC sequestration through 
the formation of complexes with other organic molecules (Hättenschwiler 
& Vitousek, 2000). 

Decomposition and mineralization of plant residues also are controlled 
by N availability and the C/N ratio of the organic matter (Frankenberger 
& Abdelmagid, 1985; Trinsoutrot et al., 2000). In many studies, the initial 
N content of residues has been shown to be the main factor predicting 
decomposition kinetics (Trinsoutrot et al., 2000; de Neergaard et al., 
2002). Thus, both initial N content and C/N ratio may be considered as 
parameters for predicting the decomposability of plant material. Plant 
materials with a C/N ratio <20 may result in net N mineralization, while 
those with a C/N ratio >20 tend to cause net immobilization (Schornberg 
et al., 1994; Wagner & Wolf, 1999). 

Incorporation of plant material into soil generally stimulates microbial 
growth and activity. In early decomposition of plant residues with higher 
C/N ratios, net immobilization of soil N often occurs (Reinertsen et 
al., 1984), as more N is needed by developing microorganisms than the 
substrate provides. If N is the limiting nutrient for microbial growth (and 
thus for decomposition), then microorganisms compete with plants for N 
that would be actively taken up from the surrounding environment; thus, 
the absolute N concentration in plant residues would increase compared 
to the initial amount. 
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2.3.1.2. Environmental factors

Temperature and moisture conditions are the main environmental factors 
infl uencing the activity of decomposers involved in the decomposition 
process (Dalias et al., 2001a, b; Pietikäinen et al., 2005). During the 
decomposition process, an increase in soil temperature and moisture 
generally results in higher rates of microbial activity along with increased 
rates of plant residue reduction (Stott et al., 1986). Microbial activity is 
generally predicted to increase rapidly up to a temperature of about 30 
°C. Wang et al. (2000) suggested that higher temperatures accelerate 
SOC decomposition only when soil moisture is adequate, and inhibits 
decomposition when soil moisture is limited. An optimal temperature 
for microbial activity is reached between 35 °C and 45 °C, while the 
optimal moisture content for organic matter decay is 50–60% (McKinley 
& Vestal, 1985). At higher temperatures, the temperature infl uence on 
decomposition rate is reduced; thus, increasing temperature by the same 
number of degrees at lower temperatures accelerates decomposition more 
than the same increase does at higher temperatures (Kirschbaum, 1995; 
Dalias et al., 2001a). 

2.3.1.3. Soil contact and plant residue particle size

Contact between plant residues and soil also affects decomposition 
(Douglas et al., 1980; Ambus & Jensen, 1997). The decomposition of 
surface-placed plant residues is generally slower than of buried residues 
(Seneviratne et al., 1998; Coppens et al., 2006) because moisture is best 
stored in soil plant residues (Parr & Papendick, 1978). Plant residues 
spread on the soil surface will normally be exposed to more variable 
temperature and moisture conditions than will residues buried in the 
soil (Shomberg et al., 1994). These variable conditions may greatly slow 
down the decomposition of plant residues on the soil surface. 

Decomposition is also infl uenced by decomposing particle size. There 
is a positive correlation between decomposition rate and the decreasing 
particle size of plant material (Bremer et al., 1991; Jensen, 1994). Small 
particles offer a relatively larger surface area, thereby increasing the 
possibilities for microbial attack and activity (Angers & Recous, 1997; 
Gunnarsson, 2003). 
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2.4. Options for increasing soil organic carbon content 

There is a positive correlation between the amount of C input and SOC 
content (Parton et al., 1995; Karlen & Cambardella, 1996). Thus, increasing 
grassland productivity could be one important option to improve SOC 
content (Catovsky et al., 2002; Skinner et al., 2006). However, many long-
term fi eld observations show that although plant material is incorporated 
into soil in large quantities, SOC content does not necessarily increase 
(Campbell et al., 1991; Körner & Arnone, 1992; Gill et al., 2002). 
These results suggest a negative relationship between C input and SOC 
conservation (Gill et al., 2002). The addition of fresh plant residues to soil 
could cause native SOC decomposition, which is known as the ‘priming 
effect’ (Kuzyakov, 2006). The mechanisms involved in the priming effect 
are unclear (Fontaine et al., 2003); it is commonly accepted that low SOC 
quality limits the amount of energy available for soil microbes, which, in 
turn, reduces the SOC mineralization rate (Paul & Clark, 1989). Fresh 
material is abundant with energy-rich C compounds, so introducing them 
into soil not only stimulates microbial activity, but also increases microbe 
biomass (Dalenberg & Jager, 1989); soil microbes typically are limited 
in C (Smith & Paul, 1990), so the addition of fresh material increases 
SOM mineralization.

SOM in grasslands originates primarily from root death and decomposition 
(Gill & Burke, 2002). Root decomposition is a major source of C and 
nutrient turnover in grasslands (Seastedt, 1988; Dornbush et al., 2002). 
Through root turnover and rhizodeposition, roots maintain SOC 
(Anderson & Coleman, 1985) and more complex soil food webs that 
regulate important nutrient transformations (Neher, 1999). Root material 
containing lignifi ed tissues and other structural components, which 
provide a more recalcitrant material than shoots (Rasse et al., 2005). 
These structures also may physically protect decomposable compounds 
embedded within them, thereby further decreasing decomposability 
(Chesson, 1997; Gorissen & Cotrufo, 2000). 

Besides roots, SOC input also is mediated through plant residues, 
especially in set-aside grasslands mowed only 1–2 times per year; reduced 
mowing prevents brush formation, while plant residues accumulate in large 
amounts when left to decompose on the sward surface (Harivandi et al., 
2001). Mowed biomass contains large amounts of nutrients, so removing 
plant residues from sward results in major losses of N and other nutrients 
(Haynes & Goh, 1980). Leaving plant residues onsite not only reduces the 



18

need for additional nutrients (i.e., mineral N) to support sward growth, 
but also can save signifi cant amount of fossil energy that otherwise would 
be used for picking up and treating the clippings as waste. 

2.4.1. Fertilization of grasslands

Fertilization has been used for centuries to increase forage production 
in grasslands (Billings et al., 2006). Fertilization results in increased 
below-ground production as well as above-ground production (Russel 
& Williams, 1982), which contributes to increased SOC. 

Generally, N fertilization may change SOM quality (i.e., C/N ratio) due 
to biotic and abiotic stabilization of mineral N into SOM (Šimek et al., 
1999). The relationship between decomposition and external N availability 
is not clear (Fog, 1988; Knorr et al. 2005). It is believed that SOC stock 
increases with the C/N ratio of the material (i.e., roots or plant residues) 
introduced into the soil (Parton et al., 1995; McGuire et al., 2001); thus, 
increasing N availability may reduce SOC stock (Hunt et al., 1988; Mack 
et al., 2004). Some studies, however, have shown how SOC stock increases 
with higher N availability (Campbell et al., 1991; Magill & Aber, 1998), 
while other studies have reported that N availability is not infl uenced by 
SOC stock (Pastor et al., 1987; Hunt et al., 1988; Prescott, 1995). Across 
studies, the differential response to N addition partly can be explained 
by differences in the chemistry of plant residues (Sinsabaugh et al., 2002).

N fertilization is a major component in land management and thus has 
a considerable impact on soil as well as on soil microbial community. 
N fertilization may profoundly impact below-ground decomposers 
by modifying microbial composition, which affects the production of 
soil enzymes involved in the decomposition of SOM and plant litter 
(Fog, 1988; Saiya-Cork et al., 2002). Sinsabaugh et al. (2005) found that 
increasing N availability decreases the quantity of soil enzymes responsible 
for recalcitrant-C decomposition. Studies conducted in other managed 
ecosystems showed that N fertilization suppressed soil fungi, which 
led initially to a bacteria-dominant community (Bardgett et al., 1996), 
followed by preservation of recalcitrant substances, and then an overall 
increase in SOC storage. It also has been found that an increase in soil N 
availability may stimulate the activity of cellulolytic enzymes such as soil 
cellulose (Fog et al., 1988; Berg & Matzner, 1997) while reducing SOC 
storage. As a consequence, the N effect on decomposition depends on 
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the chemical composition of the organic matter (Sinsabaugh et al., 2002). 
Apparently, the effects of soil N availability on SOM decomposition 
and SOC storage rely on organic matter chemistry such as the relative 
abundance of lignin and cellulose (Yao et al., 2009).

2.4.2. Importance of plant species diversity on carbon 
and nitrogen turnover in grasslands

In grasslands, recent research has demonstrated that the diversity of 
plant species plays an important role for C transfer into the soil and is 
able to modify SOC storage under given land-use schemes (Tilman et al., 
2006; Steinbeiss et al. 2008b). The interactions of various plant species 
with soil have been shown to infl uence primary productivity, SOC, and 
N sequestration (Nyborg et al., 1999; Catovsky et al., 2002; Tilman et 
al., 2006; Fornana & Tilman, 2008; Steinbeiss et al., 2008a, b). If plant 
species diversity infl uences the size of any one of these pools (i.e., either 
through a change in the quantity of material entering the pool or in the 
turnover rate of the pool), then the entire ecosystem productivity could 
be signifi cantly affected. 

Several studies have addressed diversity-function relationships and found 
positive effects of species richness on productivity and soil processes 
(Hooper et al., 2005). However, these effects often were driven by plant 
community composition rather than by plant species or functional group 
richness (Hooper et al., 2005; De Deyn et al., 2008, 2009). De Deyn et 
al. (2009) found that changes in SOC and N pools were related more 
to above-ground biomass or the presence of specifi c plant species than 
to plant species richness or total community biomass. For instance, 
diversity effects on primary productivity in grasslands appeared to 
depend strongly on the presence of N-fi xing legumes (Spehn et al., 2002; 
Fornana & Tilman, 2008). Legumes increase soil organic N through 
symbiotic N fi xation with rhizobial bacteria (Guretzky et al., 2004). 
N-fi xing legumes (e.g., Trifolium pratense, which is typically associated with 
unfertilized species-rich grasslands) are widely recognized as keystone 
grassland plant species that infl uence both soil N availability and overall 
plant community production (Hopkins & Wilkins, 2006; Van der Heijden 
et al., 2008). However, their role in grassland SOC storage is less clear; it 
has been suggested that N-fi xing legumes have the potential to promote 
SOC sequestration (Soussana et al., 2004; Fornana & Tilman, 2008; De 
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Deyn et al., 2008, 2009). The presence of legumes signifi cantly increased 
root biomass production through net soil N accumulation, and it is likely 
that legume-derived N is qualitatively important for building up SOM 
and storing more C (Drinkwater et al., 1998). Legumes have high litter 
quality (i.e., low C/N), a high litter decomposition rate, and low nutrient-
use effi ciency; furthermore, because of symbiotic relationships, legumes 
have large effects on N availability and N supply rates in many N-limited 
natural and agricultural systems (Chapin et al., 1986). 

The varying effect of different plant species on SOC content is due 
to differences in chemical composition (especially C compounds). The 
total concentration of hemicelluloses can vary from 15% to 35% in both 
legumes and grasses depending on age, species, and the morphology of 
plant parts (Nelson & Moser, 1994). On the other hand, legumes such 
as Trifolium pratense are known to contain more branched hemicelluloses 
and large amounts of pectic substances (Aman, 1993). According to 
Gunnarsson & Marstorp (2002), branched hemicelluloses decompose 
more rapidly than rigid hemicelluloses. Compared to legumes, grasses 
generally contain higher concentrations of cellulose (Chesson et al., 1985); 
however, lignin content has been found to be higher in legumes than in 
grasses (de Neergaard et al., 2002; Gunnarsson et al., 2008).
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3. HYPOTHESIS AND AIMS OF THE STUDY

The main hypothesis of this thesis is that plant residues left to decompose 
on sward surface not only affect plant growth and SOC content, but also 
are infl uenced by various land management measures (e.g., fertilization, 
mowing frequency) as well as the composition of plant species. The 
different effect of plant residues is based on variations in their quality, 
which affects residue decomposition rates and the amount of recycled 
C and N.

The aims of the study were:

1. To investigate the decomposition of various plant residues left on 
sward surfaces as well as N mineralization during decomposition. 

2. To explain how the decomposition dynamics of plant residues is 
infl uenced by their initial chemical composition (i.e., N content 
and C/N ratio).

3. To investigate how leaving plant residues to decompose on sward 
surfaces affects herbage growth and SOC content.

4. To explain the integrated effects of plant residues and fertilization 
on SOC content.
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4. MATERIAL AND METHODS

4.1. Background of experimental site

The experiment was carried out from 2003 to 2008 at the Eerika 
Experimental Station of the Estonian University of Life Sciences 
(58°23’32” N, 26°41’31” E, elevation 60 m above sea level). According 
to the World Reference Base for Soil Resources (WRB) classifi cation 
system (FAO, 1998), the experimental fi eld soil was Stagnic Luvisol with 
a sandy loam soil texture. The humus horizon (A) content was 64.0% 
sand (2.0–0.02 mm), 7.3% silt (0.02–0.002 mm), and 28.7% clay (<0.002 
mm); its depth was 25 cm (Figure 1). Beneath the humus layer were 
four horizons arranged sequentially as follows: (i) a yellowish-brown Bw 
ferralic-accumulation horizon (depth: 25–40(46) cm); (ii) a whitish eluvial 
Ewg horizon (depth: 40(46)–60(78) cm); (iii) an illuvial clay-accumulation 
Bt horizon (depth: 60(78)–84(90) cm); and (iv) a parent material of horizon 
C (depth: 84(90) – 100+ cm). 

A 0 – 25 cm

Bw 25 – 40(46) cm

Ewg 40(46) – 60(78) cm

Bt 60(78) – 84(90) cm

C 84(90) – 100+ cm

Figure 1. The experimental fi eld soil profi le.

The fi eld was previously under barley for three years. Each autumn, straw 
was harvested and the fi eld was ploughed afterwards. In May 2003, before 
establishing the swards (i.e., sowing), soil samples from depths up to 20 cm 
were collected and analyzed. At the beginning of the experiment, the total 
nitrogen (Ntot) content was 1.49 mg g-1, SOC was 14.7 mg g-1, pHKCl was 
5.5, available phosphorous (P) was 39.6 mg kg-1, and potassium (K) was 
79.7 mg kg-1. P and K soil contents were determined by the AL-method.
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Before seeding the experimental fi eld, the site was cultivated, stones were 
removed, and the fi eld was smoothed by rolling. Two seed mixtures were 
sown: (i) a turfgrass (TG) mixture (hereafter ‘TG sward’) consisting of 
Festuca rubra rubra c ‘Kauni’ and Poa pratensis c’Esto’ and (ii) a mixture 
of grass (G) and white clover (Cl) (hereafter ‘GC sward’ (Phleum pratense 
c’ ‘Tika 34%, Lolium perenne c ‘Raidi’ 38% and Trifolium repens c ‘Tooma’ 
28%). All cultivars were bred in Estonia. The TG mixture sowing rate 
was 200 kg ha-1 (germinating seed), with each species contributing 50% 
in terms of germinating seed numbers. The GC mixture sowing rates 
were 5.5 kg ha-1 for Phleum pratense, 6.1 kg ha-1 for Lolium perenne, and 4.6 
kg ha-1 for Trifolium repens. The swards was unfertilized between sward 
establishments (i.e., the period from May 2003 until May 2004). 

4.2. Experimental design

The TG sward experiment was arranged as a 2 х 6 factorial and set out 
in a randomized complete block design with four replicates. The factors 
were as follows: (i) two plant residues treatments, with residues removed 
(RRM) or residues returned (RRT); and (ii) seven applied fertilizer rates 
(kg ha-1). Both RRM and RRT treatments occurred in two adjacent blocks 
separated by a 1 m band of Festuca rubra commutata. Individual treatment 
plots were 10 m2. No watering was applied.

The GC sward experiment was arranged as a 2 x 2 factorial and set out 
in a randomized complete block design with four replicates. The factors 
were as follows: (i) two plant residues treatments (RRM or RRT); and 
(ii) two applied fertilizer rates (kg ha-1). Both RRM and RRT treatments 
occurred in two adjacent blocks separated by a 1 m band of Festuca rubra 
commutata. As with TG sward, individual treatment plots were 10 m2 and 
no watering was applied.

4.3. Management of swards

4.3.1. Fertilization

The TG sward fertilizer treatments were as follows: N0P0K0 (hereafter 
‘TGN0’, or unfertilized control), N80P11K48 (TGN80), N160P22K96 
(TGN160), N240P34K144 (TGN240), N320P45K192 (TGN320) and N400P56K240 
(TGN400). NH4NO3, Ca(H2PO4)2, and KCl were used as the sources of N, 
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P, and K fertilizers, respectively. Depending on the ratio of N, P, and K, 
fertilizers were applied by hand to plots in two to four splits; N fertilizer 
was applied in four splits: (i) at the beginning of May (one week after the 
start of the growing season), and during (ii) the fi rst 10 days of June, (iii) 
the fi rst 10 days of July, and (iv) the fi rst 10 days of August. P fertilizer 
was applied in two splits: (i) at the end of April, and (ii) at the end of 
September. K fertilizer was applied in three splits: (i) at the end of April, 
(ii) during the fi rst 10 days of June, and (iii) at the end of September.

The GC sward experimental treatments were as follows: N0P0K0 (hereafter 
‘GCN0’, or unfertilized control) and N80P26K50 (GCN80). N fertilizer 
rates were applied in July seven days after the second cutting. P and K 
fertilizers were applied in spring just after beginning of the growing 
season (i.e., at the end of April).

4.3.2. Mowing

TG sward was cut 15–20 times at a height of 5 cm during the growing 
season by using traditional Estonian lawn mowing techniques. Cutting 
took place when the sward height was approximately 7.5 cm, and carried 
out on average once a week, except during periods of drought and in 
autumn, when cutting occurred less frequently (i.e., about once every 
two weeks). A rotary mulching lawn mower (Partner 5553 CMDEW) 
with a bag attachment (for collection of plant residues) was used to cut 
the plots. After each cutting, the harvested material was removed from 
the bag and weighed. Subsamples (100 g) were taken for determination 
of DM and N content (but only during the fourth year, 2007). For RRT 
treatment plots, fresh plant residues were returned immediately after 
weighing, spread evenly by hand over the area where they had been 
removed, and then mulched with a lawn mower. The end results were 
intended to resemble how the residues would have looked had they been 
mulched throughout mowing.

GC sward were cut 3–5 times during the growing season with a frontal 
bar mower (i.e., MF-70). Sward was cut for the fi rst time when the grasses 
were at the end of tillering, and leaf tubes were beginning to form. Cutting 
took place when the sward height was approximately 20 cm. After each 
cutting, the harvested material was collected and weighed. Subsamples 
(100 g) were taken for determination of DM and N content (but only 
during the fourth year, 2007). For RRT treatment plots, fresh plant 
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residues were returned immediately after weighing and spread evenly by 
hand over the area where they had been removed.

4.4. Measurements, analyses, and calculations

4.4.1. Dry matter yield

Swards dry matter yield (DMY) was measured between 2004 and 2008. 
In this thesis, only mowed plant material is considered under DMY 
(excluding material left as stubble and root biomass). After mowing, cut 
material from experimental plots (including RRT and RRM treatments) 
was weighed. Subsamples were collected for DM content measurement, 
which was performed in four replicates. 
The DM content (%) of biomass was determined by drying the sample 
in a forced-drought oven for six hours at 105 °C and calculated using 
the following formula:

DM = (Md * 100)/Mf 

where Md is the weight of dry material (g), and Mf is the weight of fresh 
material (g).
The DMY (kg ha-1) was calculated by using the DM content and the 
mass of fresh biomass.

4.4.2. Decomposition of plant residues

For TG sward, the decomposition of plant residues was studied from 2006 
to 2007, during four periods of 8–10 weeks each (referred to as Period I, 
II, III, and IV; Table 1). Periods were chosen so that residue decomposition 
could be studied at different times during the growing season. For TG 
sward, decomposition was investigated under four fertilization variants 
(i.e., TGN0, TGN80, TGN160, and TGN400) and without separating 
the grass species. Plant lengths studied during decomposition were 
approximately 2–3 cm.
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Table 1. Swards, experimental duration, and sampling weeks (2006–2007).

Species/
Mixtures

Period Duration of 
experiment

Year Total 
number of 
exposed 
bags

Sampling 
weeks

TG1 I (8)5 15 May–10 July 2006 64 2, 4, 6, 8
TG II (8) 13 Sept–8 Nov 2006 80 1, 2, 4, 6, 8
TG III (10) 26 Oct–4 Jan 2006 48 2, 5, 10
TG IV(8) 16 May–10 July 2007 48 2, 4, 8
GC2 IA (8) 30 May–25 July 2006 64 2, 3, 5, 8
Cl3 IVA (8) 31 May–27 July 2007 64 2, 4, 6, 8
G4 IVA (8) 31 May–27 July 2007 64 2, 4, 6, 8

1TG = turfgrass; 2GC = grass-clover; 3Cl = white clover; 4G = grass; 5the number of 
weeks per decomposition period is given in parentheses.

For GC sward, the decomposition of plant residues also was studied 
in 2006 and 2007. In both years (referred to as Period IA for 2006 and 
Period IVA for 2007), plant residues were left on the sward to decompose 
for eight weeks after the fi rst cut. The decomposition time intervals 
studied are presented in Table 1. In 2006, G and Cl decomposition was 
studied in a mixture containing the same ratio of G and Cl residues as 
when originally grown on the sward. In 2007, G and Cl residues were 
separated and their decomposition dynamics studied separately. Plant 
lengths studied during decomposition depended on their length at the 
fi rst cutting (i.e., ~15 cm).  

At the beginning of each period (i.e., 15 May, 13 Sept, and 26 Oct 2006, 
and 16 May 2007 for TG sward; 30 May 2006 for GC sward; and 31 May 
2007 for separated G and Cl residues) and directly after cutting, a 100-g 
sample of fresh herbage was collected. For GC sward, an average of 10 
samples (one handful each) was taken from random cut places.
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From each sample, a subsample of 20 g of fresh plant residues was put 
into 20×20 cm nylon bags with a 1.5 mm mesh size (Figure 2). 

Figure 2. Placement of nylon bags used for studying plant residue decomposition.

Each fi lled nylon bag was fi xed with clamps and placed into the same 
plot thatch layer from where it had been harvested. Per treatment, the 
number of nylon bags used in different periods was 12–20 and depended 
on how many times the bags were planned to be removed from plots. 
In Period I, for example, bags were removed at four different times over 
eight weeks so that every fertilizing variant received 16 bags (i.e., four 
bags per replication). 

At the beginning of the experiment, the remaining plant sample parts 
were used to determine the Ntot and total carbon (Ctot) content and the 
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C/N ratio (TG sward in Table 2; GC sward in Table 3). The cellulose 
and lignin content in TG sward residues also were measured, but only 
in Period IV. 

Table 2. Ntot, Ctot, and C/N ratio of TG sward residues (Period I – IV); cellulose 
and lignin content (Period IV) 

Parameter TGN0 TGN80 TGN160 TGN400

Period I
Ntot, mg g-1 24.3a1 29.3b 30.5b 39.2c

Ctot, mg g-1 418.6a 418.7a 420.9a 417.6a

C/N 17.3c 14.3b 13.8b 10.6a

Period II
Ntot, mg g-1 42.3a 46.6a 53.9b 58.5c

Period III
Ntot, mg g-1 38.1a 42.1ab 48.2c 44.4bc

Period IV
Ntot, mg g-1 23.3a 38.5b 38.0b 45.2c

Ctot, mg g-1 425.5a n.d.2 n.d. 433.5a

C/N 18.2a n.d. n.d. 9.3b

Cellulose, g kg-1 178.2a n.d. 185.0a 175.1a

Lignin, mg g-1 12.6a n.d. 12.2a 12.2a

1Within each row, mean values with different letters are signifi cantly different (p<0.05); 
2n.d. = not determined.

Table 3. Ntot, Ctot, and C/N ratio of GC mixture residues in spring 2006 (Period IA) 
and G and Cl residues in 2007 (Period IVA).

2006 2007

GC G Cl

Parameter GCN0 GCN80 GCN0 GCN80 GCN0 GCN80

Ntot, mg g-1 33.0b1 34.0b 20.3a 18.6a 38.8c 42.4d

Ctot, mg g-1 n.d.2 n.d. 450.8a 444.3a 453.7a 447.6a

C/N n.d. n.d. 22b 24b 12a 11a

1Within each row, mean values with different letters are signifi cantly different (p<0.05); 
2n.d. = not determined.

Nylon bags were removed from the fi eld according to the time intervals 
specifi ed in Table 1. Weeks were counted from the fi rst day when bags 
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were placed on an experimental plot; bags always were removed on the 
seventh day of the week. For each fertilization treatment, four bags were 
removed simultaneously (i.e., one bag per treatment replicate). 
Upon removal, the contents of each nylon bag were carefully examined 
and visible soil particles removed. The residue was oven-dried for six 
hours at 105 °C and individually weighed to record the DM. The biomass 
residue remaining in the bags was expressed as a percentage of the initial 
dry weight. The weight loss (%) for each period was calculated using the 
following formula:

Weight loss = 100 * (Mi - Mt)/Mi

where Mi is the initial plant material dry matter mass (g) in the nylon 
bag; and Mt is the plant material dry matter mass (g) in the nylon bag at 
time t, when bags were removed from fi eld. 

4.4.3. Nitrogen mineralization from decomposing plant residues

Based on plant residues left in the nylon bags, Ntot was determined. The 
amount of mineralized N (Nm) (% of initial amount) at a time interval 
(t) was calculated using the following formula: 

Nm = 100 * (Ni - Nt)/Ni

where Ni is the initial amount (mg) of N in the decomposing material; 
and Nt is the amount (mg) of N in the decomposing material at time t.

4.4.4. Weather conditions

The climate of Estonia is almost maritime in the west and slightly 
continental in the east. The winter period (when average air temperature 
is permanently below 0 °C) lasts on average 115 days; the average mean 
temperature of the coldest months is -5.5 °C. The average duration of the 
vegetation period (air temperature permanently above 5 °C) is 175–190 
days. The average period without night frosts is four months, during 
which time the average midsummer (July) temperature is 16–17 °C. Mean 
annual precipitation is 550–700 mm; the average precipitation in the 
wettest months (April to the end of October) is 350–500 mm (Keppart & 
Loodla, 2006). Throughout the experimental period, micrometeorological 
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conditions were monitored at the experimental site using Metos Model 
MCR300 weather stations (Pessl Instruments GmbH, Weiz, Austria). 
The sensors were positioned 2 m above the ground. 
In order to investigate the effect of weather conditions on decomposition, 
information about average air temperature (°C), relative air humidity 
(%), and precipitation (mm) was gathered at different times. Weather 
parameters are presented for TG sward (Periods I–IV) and GC sward 
(Period IA and IVA) for every week during which decomposition was 
studied (Table 4). 

Table 4. Weekly weather parameters during decomposition periods. 

Week Mean 
temperature, °C

Mean relative air 
humidity, %

Precipitation, 
mm

Period I

1 9.7 (1.5)1 70.8 (17.7) 16.0
2 11.1 (1.7) 77.5 (6.9) 14.2
3 11.5 (1.6) 83.8 (10.0) 29.0
4 11.3 (2.1) 82.6 (7.5) 7.8
5 18.2 (2.2) 69.6 (6.9) 0.2
6 20.5 (3.5) 78.3 (11.3) 10.0
7 17.5 (1.5) 77.9 (6.9) 0.0
8 22.1 (2.8) 66.3 (6.8) 10.0

Period II

1 12.0 (3.4) 86.7 (2.9) 0.0
2 13.8 (1.0) 93.5 (3.3) 6.0
3 13.2 (0.7) 97.3 (1.4) 6.4
4 10.4 (1.7) 98.6 (0.5) 20.4
5 7.0 (1.2) 97.8 (1.3) 10.4
6 8.8 (3.6) 98.4 (1.1) 43.0
7 3.1 (4.3) 96.0 (2.4) 31.4
8 -2.0 (5.1) 98.3 (1.0) 4.0

Period III

1 3.5 (4.1) 96.6 (2.3) 33.4
2 -2.5 (4.2) 98.3 (1.0) 2.0
3 0.8 (2.1) 98.8 (0.4) 1.4
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Week Mean 
temperature, °C

Mean relative air 
humidity, %

Precipitation, 
mm

4 4.6 (1.6) 98.8 (0.5) 9.2
5 7.0 (0.7) 99.0 (0.0) 2.2
6 6.6 (1.6) 98.7 (0.5) 13.6
7 4.9 (2.6) 98.4 (0.5) 22.0
8 0.3 (3.1) 98.4 (0.8) 13.6
9 0.1 (2.8) 96.3 (3.3) 1.0
10 1.8 (1.5) 99.0 (0.0) 16.0

Period IV

1 14.0 (3.4) 74.9 (8.0) 11.0
2 18.6 (3.9) 85.1 (8.2) 42.4
3 16.3 (2.8) 79.9 (8.2) 9.2
4 18.1 (0.8) 74.7 (1.6) 0.0
5 14.8 (1.4) 84.0 (9.2) 8.0
6 15.8 (1.3) 83.1 (8.3) 17.4
7 16.2 (2.7) 84.9 (7.8) 9.8
8 16.5 (1.6) 93.9 (16.5) 31.8

Period IA

1 11.8 (1.6) 85.5 (8.7) 7.6
2 12.2 (3.8) 79.1 (11.2) 0.2
3 18.6 (2.6) 70.7 (5.6) 10
4 19.8 (3.5) 80.0 (10.4) 2
5 17.8 (1.8) 76.3 (9.4) 0
6 22.4 (2.9) 65.8 (7.2) 10
7 19.3 (2.5) 70.7 (7.0) 0
8 16.7 (2.1) 73.1 (4.3) 1.6

Period IVA

1 16.3 (2.8) 79.5 (9.2) 9.2
2 18.1 (0.7) 75.8 (3.3 0.8
3 14.2 (0.3) 83.6 (9.4) 7.2
4 15.7 (1.6) 84.7 (8.6) 18.8
5 17.3 (2.6) 83.5 (7.3) 8.4
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Week Mean 
temperature, °C

Mean relative air 
humidity, %

Precipitation, 
mm

6 16.0 (0.6) 95.6 3.9) 31.8
7 17.6 (1.5) 86.4 (5.6) 15.2
8 16.9 (1.6) 86.1 (7.5) 7.2

1Standard deviations are given in parentheses. 

4.4.5. Nitrogen uptake by plant and use effi ciency

In 2007 (fourth year of the experiment), Ntot was determined from 
every cut of both swards. For TG sward, Ntot was measured in samples 
taken from six fertilization variants (TGN0, TGN80, TGN160, TGN240, 
TGN320, TGN400); for GC sward, samples were taken from two variants 
(GCN0 and GCN80). For both swards, samples included RRT and RRM 
treatments. N uptake by plants (NUP), apparent N recovery (NREC), 
and N-use effi ciency (NUE) were calculated from sward DMY under the 
experimental conditions studied. Additionally, the apparent N recovery 
from residues (NRECR) and the N-use effi ciency from residues (NUER) 
were calculated using the following formulas:

Returned plant residues impact (RRI), kg ha-1 y-1, indicates the DMY 
(kg) difference between the RRT and RRM treatments per ha (ha-1) and 
per year (y-1):

RRI = DMYRRT - DMYRRM, 

where DMY is the dry matter yield of sward (kg ha-1); and the indices 
RRT and RRM indicate the specifi c residue treatments.

NUP (kg ha-1 y-1) indicates the total N amount (kg) taken up by plants 
per ha (ha-1) and per year (y-1): 

NUPRRT, RRM = DMY * Ntot/1000

where NUPRRT is the N amount (kg ha-1 y-1) returned with plant residues; 
NUPRRM is the N amount (kg ha-1 y-1) removed with plant residues; and 
Ntot is N content in plant residues (mg g-1).
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NREC (%) indicates the percentage of N applied with fertilizer that was 
recovered in the yield: 

NREC = {(NUP at Nx - NUP at N0)/ Nx} * 100

where Nx is the applied N rate (kg ha-1), x=0, 80, 160, 240, 320 and 
400 for TG sward; 0 and 80 for GC sward; and N0 is the unfertilized 
(control) variant.

NUE (kg kg-1 y-1) indicates how much DMY (kg) was produced per kg 
(kg-1) N fertilizer and per year (y-1):

NUE = (DMY at Nx - DMY at N0)/Nx.

On RRM treatment apparent NREC and NUE indicates with inorganic 
fertilizer applied N recovering and N-use effi ciency.

On RRT treatment apparent NREC and NUE indicates with inorganic 
fertilizer and with residues applied N recovering and N-use effi ciency.
NUER (kg kg-1) indicates the yield (kg) produced per (kg) returned residues 
N:

NUER = {(DMYRRT at Nx - DMYRRTY at N0) - (DMYRRM at Nx - 
DMYRRM at N0)}/ NUPRRT at Nx

NRECR (%) indicates the percentage of N applied with residues that 
were recovered in the yield: 

NRECR = {(NUPRRT at Nx - NUPRRT at N0) - (NUPRRM at Nx - 
NUPRRM at N0)}/ NUPRRT at Nx * 100

NRECR at control treatment = (NUPRRT - NUPRRM)/ NUP at N0 * 100

4.4.6. Soil sampling

In June 2006, soil profi le pits were dug on the experimental fi eld. Soil 
samples were collected at depths of 0–5, 5–10, 10–20, 20–30, 30–40, 
40–50, 50–60, 60–80, and 80–100 cm. In September 2008, soil samples 
were taken from various fertilization variants (TGN0, TGN80, TGN160 
and TGN400 for TG sward; GCN0 and GCN80 for GC sward), and 
from RRT and RRM treatments at different depths (0–5 and 5–20 cm). 
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Soil was air dried and passed through a 2-mm sieve. SOC and Ntot were 
determined from soil samples.

4.4.7. Soil organic carbon stock

SOC stock (t ha-1) for two depths (0–5 and 5–20 cm) was calculated for 
TG sward at four fertilization variants (TGN0, TGN80, TGN160 and 
TGN400) and for GC sward at two fertilization variants (GCN0 and 
GCN80); RRM and RRT treatments were included as before. 
SOC stock (t ha-1) was calculated using the following formula:

SOC stock = BD * SOC * D / 10

where SOC is measured in mg g-1; BD is bulk density (g cm-3); and D is 
the soil sampling depth (cm), with 5 cm representing a depth of 0–5 cm 
and 15 cm representing a depth of 5–20 cm. 
BD (g cm-3) was estimated using the  Adams (1973) equation:

BD = 100/{(SOM/10/0.244) + ((100 - (SOM/10)) / 1.64)}

where SOM is the soil organic matter content (mg g-1), with an assumption 
that SOM is 58% of SOC (Mann, 1986).

4.4.8. Chemical analyses

All soil and plant analyses were carried out at the laboratory of the 
Department of Soil Science and Agrochemistry, Estonian University of 
Life Sciences. 

Ntot concentration in soil and plants and Ctot in plants was analyzed 
by the dry combustion method in a varioMAX CNS elemental analyzer 
(ELEMENTAR, Germany). 

SOC content was determined by wet oxidation with potassium dichromate 
(K2Cr2O7) according to Tjurin (Vorobyova, 1988).
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4.4.9. Sward thatch layers

The thickness of TG sward thatch layers was measured at the end of 
the experiment in 2008. Ten samples from randomly selected places in 
every plot were taken using a 3.5-cm diameter soil drill. The thatch layer 
thickness was measured with liner. 

4.5. Statistical analysis

The Statistica version 7.0/9.1 (StatSoft Inc.) software package was used 
for all statistical analyses. 

Factorial analysis of variance (ANOVA) and one-way ANOVA were applied 
to test the effect of various factors (e.g., RRM or RRT; fertilization) on 
the DMY, Ntot, SOC, and SOC stock. Fisher’s least signifi cant difference 
(LSD) test for homogeneous groups was used for testing signifi cance 
differences between fertilization and plant residue treatments.
The level of statistical signifi cance was set at p<0.05.
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5. RESULTS

5.1. Infl uence of species on plant residue decomposition

When comparing the decomposition of various plant residues (i.e., TG 
sward, GC sward, G and Cl separately) over an eight-week period, the 
fastest decomposition occurred with Cl residues (73% of initial mass) 
and the slowest with G residues (49%) (Figure 3). The addition of Cl 
residues did not enhance the decomposition of GC residues (48%). For 
all four periods and fertilization variants, 64% of TG sward residues 
were decomposed over eight weeks.
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Figure 3. Weight losses of various plant residues as percentage (%) of the initial DM 
weight depended on species or mixtures; TG = turfgrass sward; GC = grass-clover 
sward; Cl = white clover; G = grass. Vertical bars denote 0.95 confi dence interval (CI).

5.1.1. Turfgrass sward

The decomposition rates of TG residues varied during Periods I–IV 
(Figure 4). The fastest decomposition (76%) occurred in Period II, 
when residues were left on growing plots in September. The slowest 
decomposition (57%) occurred in Period III, when residues were left 
on plots at the end of October. By comparison, TG residues left in the 
middle of May were slower (i.e., 62% in Period I and 60% in Period IV).
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Figure 4. Weight losses of TG sward residues as a percentage (%) of the initial DM 
weight, during decomposition in spring-summer 2006 (Period I), in autumn (Period 
II), autumn-winter (Period III) and in spring-summer 2007 (Period IV). Vertical 
bars denote 0.95 CI.

5.1.2. Infl uence of weather conditions 
on plant residue decomposition

Air temperature was the only measured weather parameter that showed 
a signifi cant infl uence on the decomposition of TG residues during an 
eight-week period (R2=0.97; Figure 3 in III). In general, increasing air 
temperature to 10 °C resulted in an increased decomposition rate, but 
further increases in air temperature resulted in slower decomposition 
rates (Figure 3 in III). There were no signifi cant relationships between 
relative air humidity or precipitation and weight loss over an eight-week 
period (P>0.05; Table 4 in III).

In the spring periods of two years (i.e., Period I and Period IV), weather 
conditions were similar at the start of the decomposition process. Over 
eight weeks in 2006, the average air temperature was 15.2 °C and relative 
air humidity was 75.9%; in 2007, those same parameters were 16.3 °C 
and 82.6%, respectively. Under similar weather conditions, weight losses 
over eight weeks were also similar, with decomposition measured at 
62% and 60%, respectively. In the late summer period (Period II), the 
average air temperature over eight weeks was lower (8.3 °C) and relative 
air humidity was higher (95.8%) compared to the spring periods; in these 
weather conditions, the decomposition rate was the fastest. In Period III, 
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the average air temperature over ten weeks was 2.7 °C and relative air 
humidity was the highest (98%) of all periods; under these conditions, 
57% of material had decomposed. 
The effect of weather conditions on the decomposition of GC sward 
residues, however, could not be assessed. In 2006, the decomposition 
of GC sward residues was studied together, but in 2007 G and Cl were 
studied separately.
At the beginning of the decomposition process for TG sward residues, N 
content varied signifi cantly within fertilization variants (Table 2), although 
it did not have any effect on decomposition (Figure 5). Only in Period 
III did TGN0 variant material decompose slightly faster than fertilized 
variants over eight weeks.

Figure 5. Weight losses of TG sward residues as a percentage (%) of initial DM weight) 
depended on fertilization and period. Vertical bars denote 0.95 CI. 
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5.1.3. Grass-clover sward 

The N content of GC sward residues from two fertilization variants 
did not vary signifi cantly (Table 3), although residue decomposition 
dynamics were different. The GC sward residues from the GCN80 variant 
decomposed slower compared to residues from the unfertilized control 
variant (Figure 6). Over eight weeks, 54% of material from unfertilized 
variants decomposed compared to 43% from fertilized variants.

 

Figure 6. Weight losses of GC sward residues as a percentage (%) of the initial DM 
weight depended on fertilization (Period IA). Vertical bars denote 0.95 CI.



40

5.1.4. Decomposition of grasses and 
white clover separated residues 

In 2007, when the decomposition of G and Cl residues were studied 
separately, Cl residues decomposed faster (Figure 7). For both fertilization 
variants, 49% of G residues and 73% of Cl residues decomposed over 
an eight-week period.

Figure 7. Weight losses of G and Cl residues as a percentage (%) of the initial DM 
weight; mean of GCN0 and GCN80 (Period IVA). Vertical bars denote 0.95 CI.

For G residues, 55% of the GCN0 variant sample and 44% of the 
GCN80 variant sample were decomposed (Figure 8). By comparison, 
the weight loss of Cl residues in both fertilization variants was 78% and 
68%, respectively. 
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Figure 8. Weight losses of G and Cl residues as a percentage (%) of the initial DM 
weight depended on fertilization (Period IVA). Vertical bars denote 0.95 CI. 
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5.2. Nitrogen mineralization

5.2.1. Turfgrass sward

For TG residues, the amount of Nm directly depended on Ni content 
(Figure 9), as higher N content led to more N mineralized. Depending 
on the decomposition period, 41–65% (TGN0) and 64–74% (TGN400) 
of Ni content was mineralized. Nm was largest in autumn (Period II) when 
its decomposition rate also was the highest.

Figure 9. Nm from TG sward residues depended on fertilization and period; Nm = % 
from Ni. Vertical bars denote 0.95 CI.

5.2.2. Grass-clover sward

For GC swards, Nm was not signifi cantly affected by fertilization, although 
less N was mineralized in the unfertilized control variant than in the 
fertilized variant (Figure 10). Over eight weeks, 46% of the GCN0 
variant’s Ni was mineralized compared to 37% of the GCN80 variant.
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Figure 10. In 2006, Nm for GC sward residues depended on fertilization (Period IA); 
Nm = % from Ni. Vertical bars denote 0.95 CI.

The Nm rate and amount of Nm were higher in Cl residues than in G 
residues. Within the fi rst two weeks, 42% of Cl residues in the GCN0 
variant was mineralized from Ni compared to 31% in the GCN80 variant 
(Figure 11; white clover). After eight weeks, 78% of Cl residues from both 
variants was mineralized from Ni.

On the other hand, 39% of G residues in the GCN0 variant was 
mineralized from Ni within two weeks compared to the increase of N 
content by 3.4% in the GCN80 variant (Figure 11; grasses mixture). After 
eight weeks, 52% of G residues in the GCN0 variant was mineralized 
from Ni compared to 33% in the GCN80 variant.
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Figure 11. In 2007, Nm from Cl and G residues depended on fertilization (Period 
IVA); Nm = % of Ni. Vertical bars denote 0.95 CI.



43

5.3. Effects of plant residues

5.3.1. Above-ground dry matter yield

In 2004–2008, RRT signifi cantly increased GC sward DMY (P < 0.05) 
(Table 5). The effect was highest in the unfertilized variant, where DMY 
increased by 52%; in the fertilized variant, RRI had a smaller effect on 
yield, as DMY only increased by 39% with RRT treatment. Due to the 
integrated effect of plant residues and N fertilization, the DMY increase 
was 70% for the GCN0 variant with RRM, and 22% for the GCN80 
variant with RRM treatment. 

During the same experimental period, TG sward had a signifi cantly lower 
average DMY than that of GC sward. The DMY of TG sward varied 
between 1524 kg ha-1 and 5834 kg ha-1 depending on the fertilization 
variant. The DMY of TG sward was not affected by residues management 
(P > 0.05). The only exceptions were fertilization variants TGN160 and 
TGN240, which showed signifi cant DMY increases with RRT treatment 
(P < 0.05). 

Table 5. Swards DMY, RRI, and RRT:RRM yield ratios (2004–2008).

Fertilization 
treatment

DMY, kg ha-1

Ratio RRT:RRM
RRT1 RRM2 RRI

TG sward (n=316)
TGN0 1412a3A4 1524aA -112A 0.93
TGN80 2840aB 2678aB 162A 1.06
TGN160 4050bC 3436aC 614B 1.18
TGN240 5498bD 4630aD 868D 1.19
TGN320 5784aD 5366aE 418C 1.08
TGN400 5962aE 5834aF 128A 1.02

GC sward (n=84)
GCN0 5751bA 3778aA 1973B 1.52
GCN80 6417bA 4611aB 1806A 1.39

1RRT = plant residues returned to plots; 2RRM = plant residues removed from plots; 
3Within each row, different small letters indicate a signifi cant infl uence (P < 0.05) of 
RRT and RRM on sward DMY; 4Within each column, different capital letters indicate 
a signifi cant infl uence (P < 0.05) of N fertilization on DMY per sward type.
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5.3.2. Nitrogen uptake by plant and use effi ciency

For TG sward residues, Ntot depended on the fertilization variant as well 
as on whether RRM or RRT treatments were followed (Table 6). NUP 
decreased for TGN0 with RRT, but otherwise was higher for all other 
fertilization variants. In general, NUP signifi cantly increased with RRT 
treatment until a fertilization rate of 240 kg N ha-1 was applied; beyond 
that point, increasing the N fertilization rate resulted in only modest 
increases in NUP. For RRM treatment, however, NUP increased steadily 
until 400 kg N ha-1.

With RRM treatment, NREC and NUE reached their highest levels at 
the lowest N application rate applied (i.e., TGN80). When the N rate was 
increased to 160 kg ha-1, both NREC and NUE decreased and successively 
higher fertilization rates did not have any signifi cant impact on either 
parameter. With RRT treatment, NREC and NUE reached optimum 
values at an N rate of 240 kg ha-1; beyond this point, applying higher N 
rates resulted in sharp decreases for both parameters. For TG sward, the 
impact of plant residues on DMY was the highest for the TGN160 and 
TGN240 variants (Table 5). NRECR also was the highest with TGN160 
and TGN240 variants (Table 7). 

Table 6. DMY, Ntot content, NUP, NREC, and NUE of harvested plant residues 
from TG and GC swards (2007).

Fertiliza-
tion 
treatment

DMY, 
kg ha-1

Ntot, 
mg g-1

NUP,
kg ha-1

NREC,
%

NUE,
kg kg-1

RRM1 RRT2 RRM RRT RRM RRT RRM RRT RRM RRT

TG sward 
TGN0 1144  990 30 31   34   31 - - - -
TGN80 2317 2511 34 34   79   85 56.2 67.5 14.8 19.0
TGN160 2903 3541 37 38 107 135 45.6 65.0 11.0 15.9
TGN240 3747 5159 40 43 150 222 48.3 79.6 10.9 17.4
TGN320 4366 5086 43 45 188 229 48.1 61.9 10.1 12.8
TGN400 5155 5481 43 43 221 236 46.7 51.2 10.0 11.2

GC sward 
GCN0 4469 7787 24 24 107 190 - - -
GCN80 5210 7723 24 26 125 204 22.5 17.5 9.3 -0.9

1RRT = plant residues returned to plots; 2RRM = plant residues removed from  plots.
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For GC sward, the effect of RRT treatment on DMY was statistically 
signifi cant for both fertilization variants (i.e., GCN0, GCN80), although 
the impact of plant residues was signifi cantly smaller at GCN80. NUP was 
higher with RRT treatment, but similar for both variants. Fertilization 
variants had no effect with RRT treatment, so NUE was negative (i.e., 
-0.9) at GCN80 (Table 6). NRECR was 43.7% of Ntot at GCN0 variant, 
but was reduced by -2.3% at GCN80 (Table 7).

Table 7. NRECR and NUER of harvested plant residues from TG and GC swards (2007). 

Fertilization 
treatment

NREC
R
,

%
NUE

R
,

kg kg-1

TG sward
TGN0 -9.7 -4.9
TGN80 10.5 4.0
TGN160 23.0 5.9
TGN240 33.8 7.0
TGN320 19.2 3.8
TGN400 7.6 2.0

GC sward
GCN0 43.7 17.4
GCN80 -2.3 -4.0

5.4. Distribution of soil organic carbon and 
nitrogen content in soil profi le

In 2006, SOC and Ntot accumulated in the upper soil layers of the 
experimental fi eld. 

SOC content in the top layer (0–5 cm) was 16.0 mg g-1 (Figure 12). At a 
depth of 5–20 cm, SOC content was 14.7 mg g-1. At lower layers, SOC 
content decreased signifi cantly from 6.6 mg g-1 at 20–30 cm to 1.8 mg g-1 
at 80–100 cm. 

Ntot in the top layer (0–5 cm) was 1.75 mg g-1. At a depth of 5–20 cm, 
Ntot was 1.60 mg g-1 and decreased to 0.40 mg g-1 at 50–60 cm.
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Figure 12. SOC and Ntot (mg g-1) in the experimental fi eld soil profi le.

5.5. Soil organic carbon and total 
nitrogen content in swards soil

For both swards, SOC concentration increased signifi cantly during the 
fi ve-year experimental period (Table 8). In the upper soil layer (depth: 
0–5 cm) of TG sward, SOC concentration increased with RRT treatment 
(by 21.6%) as well as with RRM treatment (by 7.2%). In the upper soil 
layer (depth: 0–5 cm) of GC sward, SOC concentration also increased 
with RRT (by 42.9%) and with RRM (by 32.0%.) 

For TG sward, SOC content decreased at lower layers (depth: 5–20 
cm), but did not change signifi cantly in GC sward compared to initial 
concentrations measured in 2003. Fertilization variants did not infl uence 
SOC content for TG swards. In GC sward, fertilization variants had 
an impact at a soil depth of 5–20 cm, where SOC decreased with RRM 
treatment.
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Table 8. Ntot, SOC, and C/N ratio in TG and GC sward soil in 20081. 

Fertilization 
treatment

Ntot, mg g-1 SOC, mg g-1 C/N

RRT2 RRM3 RRT RRM RRT RRM

TG sward (0–5 cm)
TGN0 1.52bA 1.08aA 18.0bA 15.9aA 11.9aA 14.7bB

TGN80 1.54bA 1.27aB 17.6bA 15.7aA 10.8aA 12.0bA

TGN160 1.58bA 1.39aB 17.4bA 15.8aA 11.0aA 11.3aA

TGN400 1.56bA 1.28aB 18.4bA 15.5aA 11.8aA 12.1aA

GC sward (0–5 cm)
GCN0 2.09bA 1.84aA 20.8bA 19.3aA 10.0aB 10.5aB

GCN80 2.22bB 1.96aB 21.2bA 19.5aA 9.5aA 9.9aA

TG sward (5–20 cm)
TGN0 1.18aA 1.16aA 13.4bA 12.2aA 11.4bB 10.5aB

TGN80 1.17aA 1.18aA 13.2bA 12.5aA 11.3bB 10.6aB

TGN160 1.22aA 1.10aA 13.6bA 12.3aA 11.2aB 11.2aB

TGN400 1.23aA 1.17aA 13.1bA 12.7aA 10.7aB 10.9aB

GC sward (5–20 cm)
GCN0 1.49aA 1.48aA 14.5aA 14.1aB 9.7bA 9.5aA

GCN80 1.55bA 1.42aA 14.7bA 13.5aA 9.5aA 9.5aA

1In 2003 the initial Ntot and Corg contents were 1.49 and 14.7 mg g-1, respectively, the 
initial C/N ratio was 9.9; 2RRT - plant residues were returned to the plots; 3RRM - plant 
residues were removed from the plots; 4Different small letters within each row indi-
cate signifi cant infl uence (P < 0.05) of returning plant residues on soil Ntot and SOC 
concentrations and C/N ratio; 5Different capital letters within each column indicate 
signifi cant infl uence (P < 0.05) of fertilization on soil Ntot and SOC concentrations 
and C/N ratio within the sward type and soil depth.

For TG sward (depth: 0–5 cm), Ntot did not change signifi cantly with RRT 
treatment when compared to its initial content, but decreased with RRM 
treatment (15.7%, P < 0.05). At this same depth, Ntot was signifi cantly 
lower at TGN0 than with other fertilized variants. For GC sward (depth: 
0–5 cm), Ntot increased in GCN0 with RRM (by 23.5%) and with RRT 
(by 40.3%). For GCN80 at the same depth, Ntot increased by 31.5% with 
RRM treatment and by 49.0% with RRT treatment. 

For TG sward at lower layers (depth: 5–20 cm), Ntot decreased in both 
residue treatments. For GC sward (depth: 5–20 cm), Ntot at GCN0 was 
not infl uenced by RRT treatment; at GCN80, however, Ntot increased 
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with RRT treatment and did not change with RRM treatment compared 
to its initial content. 

The C/N ratio of TG sward soil was higher compared to GC sward soil 
and did not vary signifi cantly over the experimental period. 

From 2003 to 2008, SOC stock increased more in GC swards (depth: 
0–5 cm). With RRT treatment, SOC stock increased by 0.73–0.78 t ha-

1y-1 (Table 9). With RRM treatment, the increase was 0.56–0.59 t ha-1 y-1. 

Table 9. SOC stock and changes with sward type and fertilization treatments1. 

Ferti l ization 
treatment

SOC stock, t ha-1 Change in SOC stock, t 
ha-1 y-1

RRT2 RRM3 RRT RRM

TG sward (0–5 cm)
TGN0 12.6cA 11.3bA 0.41bA 0.15aA

TGN80 12.3cA 11.1bA 0.35bA 0.13aA

TGN160 12.2cA 11.2bA 0.33bA 0.14aA

TGN400 12.8cA 11.0bA 0.45bA 0.10aA

GC sward (0–5 cm)
GCN0 14.1cB 13.3bB 0.73bB 0.56aB

GCN80 14.4cB 13.5bB 0.78bB 0.59aB

TG sward (5–20 cm)
TGN0 29.1bA 26.7aA -0.48aA -0.96bC

TGN80 28.8bA 27.3aA -0.54aA -0.84bC

TGN160 29.5bA 27.0aA -0.40aA -0.90bC

TGN400 28.6bA 27.8aA -0.59aA -0.74bC

GC sward (5–20 cm)
GCN0 31.2bB 30.5aB -0.51aB -0.20bA

GCN80 31.5bB 29.3aB 0.13aB -0.44bB

1In 2003 the initial SOC stock was 10.5 t ha-1 in 0-5 cm and 31.5 t ha-1 in 5-20 cm; 
2RRT = plant residues returned to plots; 3RRM = plant residues removed from plots; 
4Within each row, different small letters indicate a signifi cant infl uence (P < 0.05) of 
RRT on SOC content and change in SOC stock; 5Within each column, different capital 
letters indicate a signifi cant infl uence (P < 0.05) of fertilization on SOC content and 
change in SOC stock at the same soil depth.
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For TG swards (depth: 0–5 cm), SOC stock increased by 0.33–0.45 t ha-

1y-1 with RRT treatment and by 0.10–0.15 t ha-1 y-1 with RRM treatment. 
At lower soil layers (depth: 5–20 cm), SOC stock decreased according to 
sward type. For GC swards, SOC stock decreased by 0.20–0.44 t ha-1y-1 
with RRM treatment, while in TG swards the decrease was 0.74–0.96 t 
ha-1. Overall, SOC reduction was lower with RRT treatment.

5.6. Thickness of thatch layer

At the end of the experiment, the thickness of the TG sward thatch 
layer was signifi cantly higher with RRT treatment and with fertilization 
rates of 160–400 kg N ha-1 (Figure 13). At lower N application rates, the 
thickness of the thatch layer was not affected by RRT treatment. 

Figure 13. The thickness of the TG sward thatch layer depended on fertilization vari-
ants and management of TG residues (2008). Vertical bars denote 0.95 CI.

When the N fertilization rate was increased above 160 kg ha-1, the 
thickness of the thatch layer also increased and was similar with RRT 
or RRM treatments. For the TGN160 variant, the difference in thickness 
was 0.6 cm (i.e., 2.6 cm with RRT treatment and 2.0 cm with RRM 
treatment). At TGN400, the difference in thickness was 0.7 cm (i.e., 3.2 
cm with RRT treatment and 2.5 cm with RRM treatment). 
There was no thatch layer formed in GC sward.
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6. DISCUSSION

6.1. Decomposition of plant residues

6.1.1. Infl uence of species and cutting frequency

In our experiment, the decomposition rates of plant residues (TG sward: 
Festuca rubra rubra and Poa pretense; GC sward: Phleum pratense, Lolium perenne, 
and Trifolium repens) varied between 48% and 78% over an eight-week 
experimental period in unfertilized variant. Cl residues had the fastest 
decomposition rate, and GC residues the slowest. Variations among 
plant species likely occurred due to differences in C-compound content. 
Initially, the decomposition rate is strongly related to the content of easily-
decomposable soluble compounds (Gartner & Cardon, 2004). Over time, 
however, the content of recalcitrant compounds starts having an impact on 
the decomposition rate (Berg & Staaf, 1980; Berg, 2000). Compared to G, 
it has been found that Cl contains more easily-decomposable compounds 
(Martens, 2000; de Neergaard et al., 2002). Cl generally has much less 
neutral detergent fi ber content in the total cell wall than G, but a higher 
content of lignin (Thomson et al., 1985; Ulyatt et al., 1988; Søegaard et 
al., 2008). The lowest neutral detergent fi ber content was found in Cl 
leaves. In some cases, cellulose content or acid detergent fi ber content 
can be the same in G and in Cl (Thomson et al., 1985; Ulyatt et al., 1988). 

Comparing decomposition rates among plant species is complicated 
because a proper comparison depends on the decomposition environment 
(i.e., location, climate) in the experiment as well as the residue chemical 
composition. A plant’s chemical composition depends on species and 
growth stage (i.e., cutting frequency). By comparing decomposition 
dynamics after the fi rst cut, our experiment concluded that TG residue 
weight loss after the fi rst two weeks was 23% (average of 2006 and 
2007) and increased to 64% within eight weeks. G weight loss in GC 
sward was 15% after two weeks and 49% over eight weeks. Thus, the 
content of easily-decomposable C compounds must have been lower 
in the G residues of GC sward because they had been cut at a later 
growth stage than TG sward. During seasonal plant development, the 
content of easily-decomposable C compounds decreases (Wilman & 
Wright, 1983) while the content of recalcitrant compounds (e.g., lignin) 
increases. Higher recalcitrant compound levels inhibit the decomposition 
rate of plant residues, which results in slower decomposition at later 
growth stages. Therefore, frequently cut TG plants are in earlier growth 
stages; furthermore, TG sward residues contain sizeable fractions of 



51

easily-decomposable compounds that decompose at a faster rate (Shi et 
al., 2006b). Willms & Beauchemin (1990) found that increasing cutting 
frequency caused lignin content to decrease, which was associated with 
a decreasing age of plant tissue harvested. 

TG sward decomposition dynamics has not been studied thoroughly, 
and most experiments have been performed in the United States (Kopp 
& Guillard, 2004; Shi et al., 2006a,b). For example, laboratory soil 
incubations with bermudagrass (Cynodon. dactylon X transvaalensis) residues 
showed that 20–30% of C and N clippings were mineralized within seven 
days (Shi et al., 2006a). Kopp & Guillard (2004) investigated above-
ground residues decomposition in Utah; their data indicates that the 
amount of material decomposed after four weeks was 70% of the initial 
material, which does not agree with our results. Over our eight-week 
experimental period, 57–76% of TG sward residues decomposed, and 
the rate of decomposition depended signifi cantly on weather conditions 
during decomposition (III).

6.1.2. Effect of air temperature and humidity 
on decomposition (Paper III)

Plant residues left on sward surfaces decompose at varying rates depending 
on environmental conditions. For example, our results indicated that 
the optimal air temperature for fresh material decomposition on ground 
surfaces was about 10 °C, with a reduction in rates either above or below 
that temperature. Wang et al. (2000) suggested that higher temperatures 
accelerate organic matter decomposition only when moisture content 
is adequate, and inhibits decomposition when air humidity is limited. 
Flanagan & Veum (1974) showed that organic matter decomposition can 
be limited by low air temperature as well as by low moisture content, 
and increasing only one of those factors does not compensate fully for 
the infl uence of another limiting factor. 

In our experiment, the dynamics of moisture content in decaying material 
was not determined, but we assumed that increasing air temperature 
above 10 °C turned low moisture content into the limiting factor for 
decomposition. At air temperatures below 10 °C, the limiting factor 
was air temperature, which proved most important at the beginning 
of the decomposition process (i.e., within the fi rst two weeks) when 
decomposition rates were the highest. Above 10 °C, weight loss by 
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decomposing was slowed down, and this effect was most likely caused 
by the fast drying of plant material. For fast decomposing of TG sward 
residues, our results suggested that it was important to maintain the initial 
moisture content because rainwater cannot fully compensate for its loss. 
In Period IV (i.e., spring-summer 2007), the average air temperature 
during the fi rst two weeks of the decomposition process was 16 °C, 
which was relatively higher than in other experimental decomposition 
periods. Even though the amount of precipitation was also at its highest 
in Period IV, weight loss stayed at a lower level compared with other 
decomposition periods. 

Henriksen & Breland (1999) found that plant residues decomposed 
intensively even though the average temperature during the entire 
investigational period generally stayed below 0 °C and never rose above 
2.4 °C. Our research results (III) indicated that at an air temperature of 
about 0 °C (i.e., Period III, autumn-winter 2006), the decomposition rate 
of plant residues was signifi cantly slower than at higher temperatures. 
We were unable to determine, however, if the decomposition process 
continued at 0 °C (or even lower temperatures) because during Period 
III there were days when the average air temperature exceeded 5 °C. It 
is possible that most decomposition occurred during those short periods 
when air temperatures were higher than 0 °C. Due to variability in air 
temperatures, average temperature cannot be considered a good indicator 
to evaluate its infl uence on decomposition during different seasonal 
periods. This assumption is true for late autumn, winter, and early spring 
periods when average air temperatures remain about 0 °C, even though 
there were wide variations between night and day temperatures.

6.1.3. Infl uence of fertilization on decomposition of plant 
residues and nitrogen transformations (Paper III)

As a result of different N fertilization rates, the C/N ratio of TG sward 
residues used in our experiment was <20; despite the two-fold variation, 
there were no signifi cant differences in decomposition dynamics (III). 
This is consistent with the results of Kopp & Guillard (2004), who 
indicated that different N content due to fertilization did not have any 
impact on the decomposition rate of TG clippings. Our results also 
confi rmed fi ndings by Quemada & Cabrera (1995) and Wagner & Wolf 
(1999), who found that with a similar C/N ratio <20, further increasing 
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N content (along with a concomitant decrease in C/N ratio) did not affect 
the decomposition rate of plant material.

It is well-known in the literature that a decrease in concentration of easily-
decomposable plant compounds will occur due to accelerated herbage 
growth promoted by fertilization (Wilman & Wright, 1983; Jones & 
Wilson, 1987). In our experiment, fertilization did not have any impact 
on the content of cellulose and lignin in TG swards (III); this may be 
explained by the high cutting frequency of TG sward, which inhibits the 
effect of fertilization on the growth and development of plants compared 
to swards cut less frequently.

In our experiment, as well as the one by Kopp & Guillard (2004), Nm was 
affected by Ni content in TG sward residues. More N was mineralized 
where the Ni content was higher. Our results also showed that although 
TG sward residues are easily decomposable, N immobilization (i.e., 
increase of N content in decaying material) can occur at the start of 
the decomposition process. In Period II (i.e., summer-autumn 2006), N 
content decreased signifi cantly during the fi rst week of decomposing, 
but all samples showed a tendency to increase during the second week. 
Microbes can suffer due to the shortage of N when the largest share 
of N compounds already have decomposed. After the fi rst week of 
decomposition, the concentration of N in material was on average 38 
mg g-1. High N content indicates a low C/N ratio; if the average C content 
in residues (i.e., 420 mg g-1) is used to calculate the C/N ratio, then the 
C/N ratio would be 11. 

Although such a low ratio ordinarily indicates that there is enough N 
available for the decomposition process, in reality the N immobilization 
occurs. The N immobilization within a material of low C/N ratio also has 
been mentioned in other studies (Jensen, 1994; de Neergaard et al., 2002; 
Gunnarsson & Mastrop, 2002). According to Swift et al. (1979), soluble 
substances and labile compounds, which form the biggest proportion 
in TG residues (Gunnarsson & Marstrop, 2002), are rapidly degraded 
during early-phase decomposition by fast-growing microorganisms that 
require a high N concentration (Quemada & Cabrera, 1995; Gunnarsson 
& Marstrop, 2002). The N immobilization of plant residues was thought 
to be caused by high C/N ratios of easily-decomposable compounds 
that constitute the major C sources of early-phase decomposition of 
plant materials ( Jensen, 1997; Andersen & Jensen, 2001; Gunnarsson & 
Marstrop, 2002; Shi et al., 2006a). 
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Similar to studies by Chesson et al. (1985), Cadisch et al. (1998), and de 
Neergaard et al. (2002), our results also indicated that Nm is affected by 
plant chemical composition. We conclude that N immobilization also 
happens with high N concentration and a low C/N ratio; thus, preliminary 
N concentration and C/N ratio do not describe the decomposition 
processes in detail, or determine if immobilization takes place or not. 
Those processes could be more accurately predicted if we knew the 
content of easily-decomposable compounds. It is possible that similar 
N immobilization happened during other experimental periods (i.e., I, 
III, IV), but those results were not recorded because analyses were made 
only from the start of the second week. For TG swards, the total Nm 
was unaffected by N immobilization occurring during decomposition; 
therefore, during the eight experimental weeks (and including an average 
of various periods under different variants), 51–60% of Ni content was 
mineralized. 

Decomposition of GC residues was studied after the fi rst cutting. Before 
then, only P and K fertilizers (hereafter ‘PK’) were applied. N fertilizer 
was applied after the second cutting. GC sward residues with the GCN80 
variant decomposed slower than the GCN0 variant, even though the 
Ni content and C/N ratio in both variants were the same. Thus, by 
applying PK fertilizers, it is possible that the development and growth 
rate of grasses and legumes can be affected by reducing the content of 
easily-decomposable C compounds (Wilman & Wright, 1983). In our 
experiment, changes in chemical composition may have contributed 
to the slower decomposition of residues from PK-fertilized variants. 
Slowdown of the decomposition process also may have occurred because 
there was not enough N available for decomposers at the start of the 
decomposition process. Compared to the GCN0 variant, the N amount 
was probably higher that is related to less decomposable compounds (i.e., 
translocation of N). In later growth stages, N is bound to decomposable 
compounds (Berg, 1986; Peyraud & Astigarraga 1998) that need more N 
to decompose (Aber & Melillo, 1982). This attribute is shown clearly by 
differences in N content dynamics during residue decomposition. The 
N content of GC sward residues in variants where PK fertilizers were 
applied decreased less than in the GCN0 variant despite having identical 
Ni at the start of the decomposition process. 

By separating the G and Cl residues, variations occurred in the 
decomposition and Nm of GC sward residues that also were observed by 
de Neergaard et al. (2002) and Rasmussen et al. (2007). By applying PK 
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fertilizers, there was no effect on decomposition and Nm of Cl residues, 
but the decomposition of G residues was slower in the fertilized variant 
(similar to GC sward residues). Compared to G residues, the N content 
of Cl residues was higher; this probably explains why in the PK-fertilized 
variant the decomposition process did not slow down as much as with 
G residues. It is also possible that PK fertilizers act differently on the 
content of C compounds in legumes and grasses, but this subject was 
not studied in our experiment. 

The addition of Cl residues to G residues had an impact on the 
decomposition and Nm of G only at the start of the decomposition process 
(i.e., within the fi rst two weeks). At the start of the process, this shows that 
the decomposition of G residues may have been limited by low N content. 
During the fi rst two weeks, the decomposition rate of GC mixture residues 
was higher than that of G residues, which may be explained by considering 
how N released from Cl residues likely was used in G decomposition. 
Similar results also were published by Gunnarsson & Marstorp (2002), 
who showed that combining plant materials with different carbohydrate 
and protein compounds affects Nm; furthermore, by varying the quality 
of C compounds but keeping the same C/N ratio, it is possible to change 
the course of N release, which either leads to rapid initial immobilization 
or rapid mineralization. Whether Nm or immobilisation occurs during 
decomposition depends on when C compounds in plant residues are 
decomposed (i.e., before or after Nm or immobilization). 

6.1.4. Infl uence of returned plant residues on 
sward dry matter yield (Papers II, V, VI)

In TG swards consisting mainly of G, RRT treatment did not have 
any clear impact on herbage growth. In TGN0, however, the effect of 
RRT treatment was negative because NUP also was reduced. Probably 
not all N content in residues was available for plant use; instead, a large 
proportion of N was incorporated into SOM. This phenomenon was 
confi rmed by soil analysis data during the fi fth experimental year, when 
Ntot content was signifi cantly higher when TG residues were returned 
and not removed (V). This effect also was supported by negative NUER 
and NRECR values. 

The fi nding that RRT treatment in TGN0 does not increase TG sward 
DMY is not in accordance with results from Kopp & Guillard (2002). 
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In their experiment, the authors studied the infl uence of RRT treatment 
on sward DMY at two experimental fi elds with different soil types. In 
one experimental fi eld, the authors found DMY was similar between the 
nonfertilized variant with RRT treatment and the fertilized variant with 
RRM (392 kg N ha-1). In the other experimental fi eld, however, the effect 
of plant residues on DMY also was signifi cant, but smaller than in the 
fi rst experimental fi eld. Differences may have been due to variations in 
soil water-holding capacity and SOC content; for example, the content 
of SOC in both experimental fi elds was higher than in our study (i.e., 
89 and 73 mg g-1, compared to 51 and 42 mg g-1), while the SOC content 
of our experimental fi eld was 14.7 mg g-1. The effect of returning TG 
residues was highest in soil with the highest SOC content and lowest in 
soil with the lowest SOC content. Earlier studies have shown that C and 
N mineralization rates are lower in soils with a lower SOC content (Shi et 
al., 2006b), which is probably why the effect of RRT treatment is smaller. 
It is known that plant and soil C/N ratios are key variables affecting net 
soil Nm rates (Manzoni et al., 2008; Meier & Bowman, 2009).

RRT treatment in GC swards increased DMY signifi cantly. Signifi cantly 
more N with residues was returned to the GC sward compared to the 
TG sward. The amount of released N was suffi cient for microbes to use 
in decomposition as well as for DMY formation. 

Thus, the effect of RRT treatment on herbage growth depends on the 
choice of sward species. The effect of RRT treatment was especially high 
in GC sward, but not signifi cant in TG sward because the N amount 
released from residues was used for decomposition and not for DMY 
production. 

6.2. Integrated effects of returned plant residues and 
fertilization on sward dry matter yield (Paper VI)

6.2.1. Turfgrass sward

In fertilized variants where TG sward residues were returned, NUP, 
NREC, and NUE all increased and were accompanied by Nm in soil. This 
result agrees with fi ndings reported by Starr & Deroo (1981) and Kopp 
& Guillard (2002). The availability of soil N for plant use is determined 
largely by Nm during the decomposition of organic matter (Swift et al. 
1979). 
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Previously, we concluded that returning TG sward residues had no 
signifi cant effect on herbage growth. RRI was signifi cant only when 
fertilization rates of 160 kg N ha-1 or 240 kg N ha-1 were used. Thus, plants 
appear only to use excess N not needed by microbes for decomposition 
(Chapin et al., 2002). TG sward residues with varying N content appeared 
to decompose at the same rate, although more N was mineralized from 
residues where Ni content was higher. The Ni content of residues depended 
on fertilization and increased with higher N rates; thus, the amount of 
N available for plants also increased. In the TGN160 variant, 135 kg N 
ha-1 was returned to grassland, and the effect of plant residues on herbage 
growth was signifi cant only when 295 kg N ha-1 (with fertilization and 
RRT treatment) was applied to TG sward. 

Kopp & Guillard (2002) showed that the RRT effect increases linearly 
with higher N fertilization rates (i.e., from 0 to 392 kg N ha-1y-1). In our 
experiment, the RRT effect at fi rst increased with increasing N rates, but 
then started to decline from 240 kg N ha-1 (TGN240) onward Above 
TGN240, the effect of this decline nevertheless weakened Ntot and RRT 
even at higher N rates. In our experiment, TG swards were established 
with seed mixtures of Festuca rubra rubra and Poa pratensis, which have 
basic N requirements of 160 kg ha-1 and 400 kg ha-1, respectively, under 
Estonian climate conditions (Raave & Hein 1989). In the TGN320 and 
TGN400 variants, the N amount probably exceeded plant requirements 
because DMY increased signifi cantly at both N rates with RRM treatment. 
These results suggest that RRT effi ciency depends on the specifi c N 
need of the plant species, as RRT treatment is effi cient only until the 
point when Nm and N released from plant residues does not exceed plant 
requirements (VI).

6.2.1.1. Effect of turfgrass sward characteristics on 
impact of the returning the residues 

RRI on TG sward growth also could have been infl uenced by the thatch 
layer on the soil surface. Thatch accumulation occurs when the production 
of organic matter exceeds the decomposition rate (Beard, 1973). TG 
sward was cut on average of once per week. Continuously returning fresh 
material to TG sward prevents microbes from decomposing older material 
as suffi cient N is available from fresh material (Moorhead & Sinsabaugh, 
2006). The decomposition rates of TG residues in different fertilization 
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variants were the same. Thus, the thatch layer was signifi cantly larger 
with more frequent RRT treatments. Thicker thatch layers decreased 
the contact between fresh TG residues and soil; thus, decomposition 
occurred mainly on top of the thatch layer (Figure 14). 

Other studies suggest that thatch layers are rich in lignin (Yao et al., 
2009). Starr & DeRoo (1981) studied thatch layer formation on TG sward 
that had been fertilized with 195 kg N ha-1 and found that a thatch layer 
formed not only with RRT treatment, but also with RRM treatment. 
According to their measurements, the thatch layer contained 280 kg N ha-1 
with RRM treatment and 510 kg N ha-1 with RRT treatment. As residue 
decomposition takes place on top of the thatch layer, it is reasonable to 
assume that N released from residues would be immobilized into the 
thatch layer and unable to reach the plant. 

Our results indicate that RRI on TG sward is infl uenced by sward density 
and cutting height (VI). Returning TG sward residues had an impact 
only in May, as the sward was still sparse after the winter. During the 
following months, RRI was not signifi cant because the sward was denser. 
In previous similar studies (Starr & Deroo, 1981; Heckman et al., 2000; 
Kopp & Guillard, 2002), the cutting height (3.8–4.4 cm) was lower than 
in our experiment.

Figure 14. Formation of a thatch layer on TG sward.

The combined effect of taller grass in the sward after cutting, longer grass 
residues, and denser sward may have hindered residues from reaching the 
soil surface. Several studies have shown that early-phase decomposition 
of plant residues is positively infl uenced by the degree of contact between 
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plant residues and soil (Jensen, 1994; Sørensen et al., 1996). Close contact 
with soil usually will increase the microbial decomposition of organic 
matter (Douglas et al., 1980; Cogle et al., 1989) and this is mainly due 
to the higher moisture content in residues (Parr & Papendick, 1978). 
Our study showed that the rate of decay was infl uenced by the length 
of the period when grass residues stayed moist after cutting (III). Grass 
residues left on turf dry quickly in the sun and wind, which means their 
decomposition occurs slowly. Consequently, it can be concluded that RRI 
may be infl uenced by the length and density of the TG sward, and that 
RRI is greater in swards that are shorter and less dense. 

6.2.2. Grass-clover sward

The amount of plant residues left on GC sward surfaces was signifi cantly 
larger than the amount left on TG sward surfaces. For GC sward, RRI 
affected DMY in both the fertilized (GCN80) and nonfertilized variant 
(GCN0), as approximately 200 kg N ha-1 was returned to the sward by 
residues in both variants. Thus, the N amount in residues was suffi cient 
for decomposition as well as for DMY formation. In the GCN80 variant, 
an additional 80 kg N ha-1 was applied, but this amount did not have any 
effect on DMY compared to the GCN0 variant. One possible reason 
may be that there was more N in the GCN80 variant soil than plants 
could uptake, as root nodule bacteria also increase the amount of N 
returned to soil. Another possible reason may be that some N was used 
to decompose residues. 

In the literature, various studies have reported how residues from 
fertilized variants contain more recalcitrant compounds than residues 
from nonfertilized variants, and thus require more N for decomposition. 
Some N also may have been bound in recalcitrant compounds that was 
unavailable for plant uptake, and thus became part of the SOM. In soil 
of the fertilized variant, this effect could be seen as a higher Ntot. With 
RRT treatment, NREC and NUE decreased signifi cantly compared to 
RRM treatment. Previous research has shown that fertilizer N recovery 
from perennial grassland soils is often low compared to that of cultivated 
crops (Power, 1981). 

Various reasons for poor fertilizer recovery have been postulated. 
Perennial grasses have an abundance of carbonaceous root material, 
which may contribute to N immobilization from fertilizers (Power, 1980). 
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Similarly, a considerable amount of N may be immobilized in microbial 
biomass (Amato & Ladd, 1980) or incorporated into cyclic-N compounds, 
which are relatively resistant to microbial decomposition (Legg et al., 
1971; Alien et al., 1973). Several publications suggest that 3–5 years of 
fertilization is required for the N cycle to establish new steady state levels 
(Clark, 1977; Power, 1981; Power & Legg, 1984). 

In summary, our experiment showed that the herbage growth of both 
TG and GC swards increased with varying fertilization rates. RRT 
treatment increased sward herbage growth only when the N amount 
from fertilization or plant residues was suffi cient for decomposition and 
DMY formation. The RRI on DMY of various swards was seen when 
the N amount from fertilization or residues was at least 200 kg N ha-1 
or higher. 

6.3. Soil organic carbon (Papers I, IV, V)

Our experiment was conducted on soil classifi ed according to the WRB 
as Stagnic Luvisols (FAO, 2006), which are suitable for a wide range of 
agricultural uses. Stagnic Luvisols are medium fertility soils that are mainly 
used as arable land (74%), forested (22%), or under grasslands (4%) (Kõlli 
et al., 2010). The humus layer of Stagnic Luvisols is generally of medium 
or low content (i.e., 19–24 mg g-1), which implies low fertility. In order 
to improve SOM stock in Stagnic Luvisols, short-term grasslands are used 
in crop rotation. 

Information is scarce about SOC grasslands stock established on Stagnic 
Luvisols (I; Kõlli et al., 2009). Based on Kõlli et al. (2009), the average 
SOC of Luvisols in epipedon (humus cover) (21.9 cm) is 45 t ha-1. At the 
start of our experiment, soil at a depth of 0–20 cm contained 42 t SOC 
ha-1. Our results showed that grasslands with different species infl uence 
SOC accumulation in soil differently. Over the fi ve-year experimental 
period, SOC stock at a depth of 20 cm increased signifi cantly more in 
GC sward (43 t ha-1) than in TG sward, where SOC stock decreased to 
39 t ha-1. With RRT treatment, however, SOC stock also increased in 
TG sward. 

In Estonia, where upland grassland soils have an automorphic moisture 
regime, SOC pools in epipedon are 40–114 kg ha-1 and higher in soils 
with higher carbonate content (I). The average SOC stock of grasslands 
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epipedon in Estonia is 70 t ha-1 (Kõlli et al., 2009). Unfortunately, SOC 
stock results from other studies are diffi cult to compare because different 
soil layer thicknesses were used for SOC measurements. In order to 
overcome this problem, one option is to calculate SOC stock for separate 
profi les (i.e., epipedon layer (or topsoil, or humus cover) or soil cover). A 
second option is to calculate SOC stock at different soil depths; typically, 
depths of  0–20 cm are widely used, but also data for depths of 0–30 
cm may be found. According to Lal et al. (1998) for mean grassland 
ecosystems, SOC stock is given as 116 t ha-1 at a depth of 1 m. Arrouayes 
et al. (2001) found that land under permanent grassland contained average 
SOC stocks of nearly 70 t C ha-1 at depths of 0–30 cm.

Apart from soil type, water regimens also have a signifi cant impact on 
SOC accumulation (I). SOC stock of epipedon in hydromorphous mineral 
soils is 117.0 t ha-1 in grasslands and 184 t ha-1 in wetlands (I; Kõlli et al., 
2009). In natural coastal grasslands, decomposition and mineralization 
are reduced due to moist conditions, resulting in SOC accumulation and 
the formation of thin C-rich humus horizons (I; IV; Kõlli et al., 2009). 

In our experiment, different swards were established on the same soil 
type. Although soil type and soil characteristics were similar, our results 
were affected mostly by plant species and sward management measures. 
Plant species composition may have an impact on SOC stock because 
below-ground C input varies signifi cantly in different plant mixtures. 
Wedin et al. (1995) presented 25-fold differences in below-ground net 
primary productivity, whereas above-ground productivity only showed 
two-fold variation. In GC sward, SOC content increased signifi cantly 
from roots compared to TG sward; the extent of this effect is due to the 
positive impact of legumes on SOC and Ntot content that were noted in 
other studies (Spehn et al., 2002; Fornana & Tilman, 2008; Drinkwater 
et al., 1998). Adding legumes to sward increases Nm in soil (De Deyn et 
al., 2009), which results in an increase of above-ground grassland DMY 
as well as below-ground biomass (Fornara & Tilman, 2008). 

From a morphological point of view, G and Cl root systems differ quite 
markedly. G generally profi t from a larger root biomass (Hebeisen et 
al., 1997; Castle et al., 2002). It has been found that Cl root turnover is 
signifi cantly faster compared to G root decomposition (Rasmussen et al., 
2007). In GC sward, SOC originates mainly from G (Wardle et al., 1999; 
Eriksen et al., 2004; Rasmussen et al., 2007) and N from Cl (Rasmussen 
et al., 2007). Nm during decomposition of Cl roots is used by microbes 
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in the decomposition of G roots, where N immobilization probably will 
occur, while N released from Cl will be bound to SOM and increase 
Ntot content. Consequently, the Cl root pool is a key component in the 
build-up of the soil N pool (Drinkwater et al., 1998).

In our experiment, SOC content in various swards increased mainly in 
the top layer after arable land had been turned into grassland (V). At 
a depth of 5–20 cm, SOC content decreased, but signifi cantly more in 
TG sward soil, which indicates a small root effect at that depth. In TG 
sward soil, a dense root system is formed at 0–5 cm (Qian et al., 2010). 
Although SOC content decreased with both RRT and RRM treatments, 
the decrease was slower with RRT. Decreases in SOC content at lower 
soil layers indicate the lack of (or low) C input at that depth, along with 
SOC mineralization that causes decreases in both SOC and Ntot content. 
Mineralized C and N probably will be leached to deeper layers of the 
soil profi le. Steinbeiss et al. (2008b) attributed SOC content decreases 
in deeper horizons to C leaching into deeper soil layers and concluded 
that plant-derived C is preferentially mineralized and adsorbed to soil 
particles, while mobilized soil C is transported further down the soil 
profi le. SOC leaching also has been mentioned by Jobbágy & Jackson 
(2000). In GC sward, however, SOC content at lower soil layers did not 
change over the fi ve-year experimental period. At depths of 5–20 cm, 
root turnover probably occurred because G and Cl roots extend deeper 
than those of TG roots. 

Various grassland species have different responses to fertilization as well 
as to SOC stock. It is generally assumed that a larger amount of SOM 
accounts for higher SOC accumulation (Nyborg et al., 1999), and to 
increased G root growth in response to N fertilization (Anderson & 
Coleman 1985; Malhi & Gill, 2002). In our experiment, the DMY of TG 
sward varied signifi cantly among fertilization variants (i.e., 1333–5924 kg 
KA ha-1), but the SOC content at depths of 0–5 cm did not vary. 

Returning different amounts of residues to the TG sward surface 
following fertilization did not have any impact on SOC content because 
the addition of fresh material may have created a ‘priming effect’ by 
activating the decomposition of SOM (Fontaine et al., 2004). The 
mechanisms involved in the priming effect are not fully understood 
(Kuzyakov et al., 2000; Fontaine et al., 2003). A high content of easily-
decomposable SOC can lead to fast microbial growth, which likely 
results in higher microbial biomass and activity (Schenk et al., 1995). In 
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turn, stimulation of soil microbiological activity may increase the SOM 
decomposition rate (Kuzyakov et al., 2000). Steinbeiss et al. (2008b) 
observed that RRT treatment not only did not increase SOC content, 
but also that the amount of C added to soil could be attributed to the 
amount mineralized in soil. Starr & Deroo (1981) found that the N 
amount from SOM increased signifi cantly after fertilization possibly due 
to an enhanced rate of fertilizer mineralization (i.e., the priming effect) 
(Kuzaykov et al., 2006). Another possible reason why SOC content was 
unaffected by increased C fertilization input may be that N fertilization 
(i.e., external N availability) was affected by below-ground decomposers 
that modifi ed microbial community composition and led to the production 
of soil enzymes involved in the depolymerization of SOM and plant 
litter (Fog, 1988; Saiya-Cork et al., 2002; Yao et al., 2009). Increasing 
N availability may inhibit the activity of oxidative enzymes that decompose 
recalcitrant compounds and increase SOC storage (Kirk & Farell, 1987), 
while stimulating the activity of cellulolytic enzymes such as soil cellulase 
(Fog, 1988; Waldtrop et al., 2004) reduces SOC storage. As a consequence, 
the N effect on decomposition depends on the chemical composition of 
SOM (Sinsabaugh et al., 2002). The cellulose content of plants is generally 
high (Bandaranayake et al., 2003; Qian et al., 2003; Yao et al., 2009), 
which can lead to an assumption that higher N availability may produce 
a positive impact on SOC mineralization of TG sward. 

In our experiment, the same amount of residues was left on GC sward 
surfaces for both GCN0 and GCN80 variants. SOC contents with various 
fertilization rates were similar, indicating that N availability in the soil (i.e., 
fertilization) in GC sward did not have any effect on SOC content (i.e., 
SOC mineralization). In our nylon bag decomposition experiment with 
GC sward, we showed how residues of the GCN80 variant decomposed 
slower resulting in a larger input of SOM compared to the GCN0 variant. 
SOC content did not increase in this soil, which shows that higher N 
availability increased SOC decomposition (mineralization).

The effect of GC sward residues on SOC stock at a depth of 0–5 cm (i.e., 
top layer) was signifi cantly lower compared to those of TG sward. This 
variation may be due to differences in the chemical composition of plant 
residues that became a part of SOM. In TG sward, a thatch layer was 
formed with lower layers that contained mostly recalcitrant compounds 
(e.g., lignin) that were in better contact with the soil surface (Yao et al., 
2009). Lignin decomposition products favor an increase in SOC content 
(Takeda, 1998). 
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GC sward plant residues had better decomposition conditions. Compared 
to TG sward, GC sward is less dense and creates better contact between 
plant residues and soil; thus, decomposing material did not dry so easily, 
organic matter input did not exceed plant residue decomposition, and 
a thatch layer did not form on the surface. The residues that became 
part of SOM were of better quality compared to the TG sward thatch 
layer. High-quality plant residues (i.e., high N, low lignin concentrations) 
mineralize rapidly, but may not contribute much to the maintenance of 
SOM (Handayanto et al., 1997). Therefore, larger amounts of lignin-rich 
material become a part of SOM in TG sward compared to GC sward, 
and SOC content also increased more in TG sward soil.
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CONCLUSIONS

• The decomposition rate of plant residues depended on sward 
species composition and their developmental stage during cutting. 
White clover residues decomposed faster than grasses residues. 
Turfgrass sward residues at earlier developmental stages during 
cutting also decomposed faster than grass residues in grass-clover 
sward cut at later stages. 

• Differing residue N content due to fertilization did not affect 
decomposition rate, indicating that N content at the beginning of 
decomposition did not affect the process. Residues with similar 
N content may decompose at different rates because the content 
of C compounds is different. The N content of residues is a 
suitable indicator for predicting the amount of mineralized N 
because more N was mineralized from residues with a higher 
initial N content.

• The effect of residues on sward herbage growth depended on 
species composition and sward management (i.e., fertilization and 
cutting frequency). The residues effect was higher in grass-clover 
sward that was cut less frequently, and dry matter yield was higher 
compared to turfgrass sward. For turfgrass sward, returning of 
residues is effective only during the fi rst part of the vegetation 
period when sward is sparse and shorter, as contact between 
residues and soil surface is enhanced; this implies that returning 
of residues may be signifi cantly affected by characteristics such as 
density and plant height. With dense sward, residues remain on 
top of herbage, where they dry and nutrients cannot reach plants.  

• Sward herbage growth increased due to residues only if the N 
released by residues was suffi cient for decomposers as well as for 
sward growth. The N amount released by residues depended on 
fertilization rate, the amount of residues left to decompose, and 
sward species composition. For grass-clover sward, the largest 
residues returning effect occurred in the nonfertilized variant. 
For turfgrass sward, residues returning effect was noticeable only 
if the N fertilizer rate was 160 kg N ha-1 or 240 kg N ha-1.
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• Residues returning effect on sward SOC content and stock 
depended on species composition and sward management (i.e., 
fertilization and cutting frequency). Turfgrass residues increased 
Soil organic carbon content in the top layer (i.e., 0–5 cm)
signifi cantly more than grass-clover sward residues; residues 
returning effect was signifi cantly smaller at lower soil layers (i.e., 
5–20 cm). Fertilization and cutting frequency had an impact on 
plant chemical composition that, in turn, affected the chemical 
composition and decomposition of soil organic matter. 

• Frequent cutting of turfgrass sward caused the formation of a 
thatch layer on top of the soil that prevented contact between 
easily-decomposable turfgrass residues and soil. As a result, soil 
N input decreased, which inhibited decomposer activity while 
increasing the amount of recalcitrant organic material going 
into soil. No thatch layer formed on the grass-clover sward soil 
surface. The turfgrass sward thatch layer decomposed less than 
grass-clover sward residues, which increase soil organic carbon 
content more than easily-decomposable material.

Application of the study results

Our research results can be used to give advice on optimal sward 
management (i.e., fertilization, cutting frequency, returning or removing 
of residues) for turfgrass and grasslands that are out of use. This area of 
research is important in Estonia where cutting subsidies are available. 
Previously, it was not known what happens to grassland soil if plant 
residues are left to decompose on sward surfaces. Our experiment 
confi rmed that residues can be left on turfgrass sward surface only in the 
fi rst part of summer while the sward is still sparse. In case of dense sward, 
residues remain on the surface and nutrients cannot reach growing plants; 
the residue layer eventually damages turfgrass sward by providing spaces 
and making it less sparse. If residues are left on the turfgrass sward surface, 
cutting either should be performed before rainfall or the sward should be 
irrigated after cutting to maintain moisture content for decomposition and 
to improve the percolation of residues to the soil surface. When residues 
are returned, the turfgrass sward should be fertilized or the N in residues 
will be bound to SOM and be unavailable for plant use; this is especially 
important during the fi rst years after turfgrass is established. As turfgrass 
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sward ages, organic matter accumulates in the soil,  and SOC and Ntot 
content increase, leading also to increases in the mineralization of SOM 
nutrients. Older turfgrass swards need less N fertilization, as applying 
higher fertilization rates has no effect on herbage growth as the amount 
of residues formed after cutting increases. In such cases, the amount of 
added residues may exceed their decomposition rate, which results in the 
formation of a thatch layer on the soil surface. 
The addition of legumes to the seed mixture has a positive impact on 
plant growth and SOM content. It is not necessary to apply mineral 
fertilizers to grass-clover grassland when cut residues have been left to 
decompose, as the N amount is suffi cient for decomposition of residues 
as well as for plant growth. By leaving residues to decompose on sward 
surfaces, dry matter yield and SOC content increases.
The following hypotheses arose during our experiment and need further 
study: 

- To investigate why leaving plant residues to decompose on turfgrass 
sward surfaces did not have any effect on herbage growth in all 
fertilization variants (especially in the control variant where the effect 
of plant residues on dry matter yield was rather negative).

- To investigate why the effect of plant residues left on the sward seen 
in our experiment was signifi cantly different from results of analogous 
studies. Is it because of different soil types (i.e., SOC content, texture), 
or weather conditions?

- To specify N movement released during the decomposition of residues 
left on sward surfaces in the plant-soil system by using the stable 
isotopes (15N) method.
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SUMMARY IN ESTONIAN

TAIMEJÄÄTMETE JA VÄETAMISE MÕJU TAIMEDE 
KASVULE JA ORGAANILISE SÜSINIKU SISALDUSELE 

MULLAS

Sissejuhatus

Mulla orgaaniline süsinik (Corg) on olulise tähtsusega globaalses süsiniku 
ringluses ja muld on oluline süsiniku talletaja. Ta sisaldab kolm korda 
rohkem süsinikku võrreldes selle sisaldusega atmosfääris (2.25 ∙ 1012 
versus 0.75 ∙ 1012 t C) ja viis korda rohkem, kui seda on taimestikus 
(Post et al., 1982; Jobbágy & Jackson, 2000). Mullas oleva Corg sisaldus 
sõltub mitmetest teguritest: ilmastikust, maakasutusest, majandamisest 
jne. Võrreldes põllumullaga on sisaldus suurem rohumaa mullas (Cole 
et al., 1993; Jackson et al., 1996), kuna mulda mineva orgaanilise aine 
(varis, taimede juured) kogused on seal suuremad ja lagunemine pärsitud. 
Saagi saamise eesmärkidel kasutatavatel rohumaadel (hein, silo tootmine, 
loomade karjatamine) on peamiseks orgaanilise aine allikaks taimede 
juured. Tootmisest väljas olevatel rohumaadel, kuid samuti ka murudel, 
võivad neile lisanduda ka pärast niitmist taimiku pinnale jäävad taimsed 
jäätmed. 

Mulda mineva orgaanilise aine koguse ja lagunemisprotsessi kiiruse 
vaheline tasakaal iseloomustab seda, kui suur on mullas orgaanilise 
aine varu (Amundson et al., 2001). Orgaanilise aine lagunemise kiirust 
mõjutavad peamiselt kolm faktorit: mullaorganismid (lagundajad), 
lagunemiskeskkond ja orgaanilise aine keemiline koostis (Swift et al., 
1979; Stott et al., 1986; Heal et al., 1997; Martens, 2000). Süsinikühendite 
sisaldus on oluline orgaanilise aine lagundatavuse indikaator, samuti sõltub 
lagundajate lagundamisvõime süsinikühendite keemilisest struktuurist 
(Heal et al., 1997; Gunnarsson & Marstrop, 2002; Trinsoutrot et al., 2002). 
Orgaanilise aine lagunemine sõltub veel lämmastiku kättesaadavusest 
ning lagundatava materjali C/N suhtest (Frankenberger and Abdelmagid, 
1985; Trinsoutrot et al., 2000). 

Käesolev doktoritöö keskendub erinevate taimikutega rohumaade 
majandamisvõtete mõju uurimisele taimede kasvule ja mulla orgaanilise 
süsiniku sisaldusele.
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Käesolevas doktoritöös uuritakse majandamisvõtete mõju erineva 
taimikuga rohumaade taimede kasvule ja mulla orgaanilise süsiniku 
sisaldusele. 

Töö peamine hüpotees: niitmisejärgselt lagunema jäetud taimejäätmete 
mõju taimiku edasisele kasvule ja mulla orgaanilise süsiniku sisaldusele 
sõltub rohumaa liigilisest koosseisust ja rohumaa majandamisest 
(väetamisest ja niitesagedusest). Neist tegureist sõltuvad taimejäätmete 
omadused, nende lagunemiskiirus ja mineraliseeruva lämmastiku kogus. 
Uurimustöö eesmärgid:
- Uurida taimejäätmete lagunemist taimiku pinnal ja lämmastiku 

mineraliseerumist. 

- Selgitada, kas taimejäätmete keemiline koostis (N sisaldus ja C/N 
suhe) mõjutab lagunemisdünaamikat ning avaldab toimet taimede 
kasvule. 

- Uurida taimejäätmete mõju, samuti ka jäätmete ja väetamise koosmõju 
mõju mulla orgaanilise süsiniku sisaldusele. 

Metoodika

Uurimaks taimejäätmete mõju taimede kasvule ja mulla Corg sisaldusele, 
rajati 2003. a. Eesti Maaülikooli Eerika katsejaama põllule kahe erineva 
seemneseguga katsed:

1. Murusegu: punane aruhein (Festuca rubra rubra) 50% ja 
aasnurmikas (Poa pratensis) 50%; 

2. Valge ristiku ja kõrreliste segu: valge ristik (Trifolium repens) 28%, 
põldtimut (Phleum pratense) 34% ja karjamaa raihein (Lolium 
perenne) 38%. 

Enne katsete rajamist määrati mullas orgaanilise süsiniku (Corg) ja 
üldlämmastiku (Nüld) sisaldus. Taimejäätmete mõju taimede kasvule 
uuriti aastatel 2004 – 2008. Murutaimikut niideti kasvuperioodi jooksul. 
keskmiselt 15 – 20 korda, valge ristiku ja kõrreliste seguga taimikut 3 – 5 
korda. Pärast igat niitmist ja saagi kaalumist tagastati osadele lappidele 
taimejäätmed kasvukohale (RRT), teistelt need eemaldati (RRM). Mõlemat 
varianti väetati ühesuguste väetusnormidega: 

1. Murutaimik: N0P0K0 (TGN0, TG – murutaimik), N80P11K48 
(TGN80), N160P22K96 (TGN160), N240P34K144 (TGN240), 
N320P45K192 (TGN320) ja N400P56K240 (TGN400);
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2. Valge ristiku ja kõrreliste segu taimik: N0P0K0 (GCN0, GC – 
valge ristiku ja kõrreliste seguga taimik) ja N80P26K50 (GCN80).

Aastatel 2006 – 2007 uuriti 8 nädala jooksul pärast niitmist taimikule 
tagastatud taimejäätmete lagunemist ja sealt N mineraliseerumist. 
Murutaimikul uuriti taimejäätmete lagunemist pärast niitmist, mis toimusid 
15. mai, 13. septembril ja 26. oktoobril 2006. aastal ja 16. mail 2007. aastal. 
Murujäätmete lagunemise uurimisel kõrreliste liike ei eraldatud. Valge 
ristiku ja kõrreliste jäätmete lagunemist uuriti pärast esimest niidet (30. 
mail 2006. aastal ja 31. mail 2007. aastal). Lagunemise uurimisel 2006. 
aastal taimi liigiti ei eraldatud ning proov sisaldas valget ristikut ning 
kõrrelisi samas vahekorras nagu see kasvas taimikus, 2007. aastal määrati 
lagunemisaste eraldi nii valge ristikul kui kõrrelistel. 
Jäätmete lagunemise uurimiseks võeti vahetult pärast niitmist igast 
variandist 100 g niidetud materjali. Igast proovist kaaluti 20 grammi, 
mis pandi 20 * 20 cm nailonkotti (koti augu läbimõõt 1.5 mm). Proovi 
ülejäänud osast määrati kuivaine ja tehti keemilised analüüsid. Nailonkotid 
taimejäätmetega viidi samale katselapile, kust materjal pärit oli ning 
kinnitati klambritega taimiku pinnale. Kotid eemaldati lappidelt 2 – 
3 nädalase intervalliga 8 nädala jooksul (Table 1). Kotis olev materjal 
kuivatati 105 °C juures, kaaluti ja arvutati välja kaalukadu võrreldes kotti 
pandud proovi esialgse massiga. Kaalukao (%) arvutamiseks kasutati 
valemit: 

Kaalukadu = 100 * (M0 - Mt)/M0

kus M0 on proovi esialgne kaal (g);
Mt on proovi kaal ajahetkel t, kui nailonkott katselt eemaldati. 

Nailonkott i al lesjäänud taimejäätmetest määrat i Nüld sisaldus. 
Mineraliseerunud N (Nm) kogus (% esialgsest kogusest) ajahetkel t, mil 
nailonkotid katselt eemaldati, arvutati kasutades valemit: 

Nm = 100 * (Ni - Nt)/Ni

kus Ni on esialgne N kogus (mg) taimejäätmetes; 
Nt on N kogus (mg) proovis ajahetkel t. 
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Kõikidelt katsevariantidelt võeti 2008. aasta septembris 0 – 5 ja 5 – 20 cm 
sügavuselt mullaproovid. Neis määrati Corg ja Nüld sisaldus, mille põhjal 
arvutati Corg varu (t ha-1) kahel erineval sügavusel kasutades valemit: 

Corg varu = BD * Corg * D / 10

kus Corg on mulla orgaanilise süsiniku sisaldus (mg g-1); 
BD on mulla lasuvustihedus (g cm-3); 

D on mullakihi tüsedus (cm), mille kohta Corg varu arvutati; 5 cm mullakihi 
0 – 5 cm ja 15 cm 5 – 20 cm jaoks. 

Lasuvustihedus (g cm-3) arvutati välja kasutades Adams (1973) valemit:

BD=100/((OA/10/0.244) + ((100 - OA/10) / 1.64))

kus OA on orgaanilise aine sisaldus mullas (mg g-1); me eeldame, et mulla 
orgaanilise aine sisaldab 58% Corg (Mann, 1986).

Tulemused ja arutelu

Niidetud taimejäätmete lagunemisdünaamika taimiku pinnal sõltus 
taimeliigist ja taimiku niitmiseaegsest arengufaasist. Kõige kiiremini 
lagunes 8 nädala jooksul valge ristik (73%). Kõige aeglasemalt aga 
kõrreliste segu (49%). Murujäätmetest lagunes sama aja jooksul 64%. 
Erinev lagunemiskiirus võrreldes murutaimiku jäätmetega olid tingitud: 
(i) kõrreliste ja valge ristiku erinevast keemilisest koostisest (erinevate 
süsinikühendite sisaldus) ja (ii) valge ristiku ja kõrreliste segu taimikult 
pärinevate kõrreliste jäätmete vanemast arengufaasist. Taimede arenedes 
suureneb neis raskemini lagunevate süsinikühendite sisaldus ja lagunemine 
aeglustub. 

Erinevatest väetusvariantidest pärit murujäätmed olid küll erineva N 
sisaldusega, kuid lagunesid 8 nädala jooksul sama kiirusega. Valge ristiku 
ja kõrreliste segu jäätmete N sisaldus oli lagunemisprotsessi alguses 
kontrollivariandis ja PK-väetisega väetatud variandis (lämmastikväetist 
ei antud enne esimest niidet) ühesugune, kuid väetatud variandilt pärit 
jäätmed lagunesid kontrollvariandiga võrreldes aeglasemalt. Sellest järeldub, 
et jäätmete lagunemiskiirus ei sõltu N sisaldusest, mistõttu see näitaja ei 
sobi jäätmete lagundatavuse indikaatoriks. Fosfor- ja kaaliumväetisega 
(PK) väetamine kiirendas taimede arengut ning selle käigus muutus 
erinevate süsinikühendite sisaldus. Kontrollvariandiga võrreldes suurenes 
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PK-väetisega väetatud variandis raskesti lagunevate ühendite sisaldus, 
mistõttu oli seal ka suurem kogus taimedes sisalduvast lämmastikust 
seotud raskemini lagunevate ühenditega. N kättesaadavuse vähenemine 
lagundajatele põhjustas lagunemise aeglustumise. 

Taimejäätmete tagastamine suurendas oluliselt taimiku saaki vaid ristiku-
kõrrelise katses. Mõju oli suurim väetamata variandis, kus saak suurenes 
52%, väetatud variandis aga 39%. Võrreldes väetamata ja taimejäätmeteta 
variandiga suurenes väetamise ja taimejäätmete mõjul saak 70%. 
Ainult väetise mõjul kasvas taimiku saak 22%. Murutaimikul avaldus 
taimejäätmete mõju ainult siis, kui taimikut väetati N normiga 160 ja 
240 kg ha-1. Taimejäätmete mõju ilmnes alles nii kõrge N normi korral 
tõenäoliselt seetõttu, et suur osa jäätmetega tagastatud lämmastikust ei jõua 
muru puhul taimedeni. Seda näitasid tulemused murutaimiku väetamata 
variandis ja normiga 80 kg N ha-1 väetatud variandis, kus tõenäoliselt kogu 
taimejäätmetest vabanenud lämmastik kulus taimejäätmete lagundamiseks. 
Kui aga kasutati suuremaid norme kui 240 kg N ha-1, siis väetisega antud ja 
taimejäätmetega tagastatud lämmastiku kogus oli suurem kui kõrreliste N 
omastamise võime. Seda kinnitavad ka tulemused, mis saadi variandis, kus 
jäätmeid ei tagastatud, sest seal suurenes saak ka 240 kg N ha-1 suuremate 
normide korral. Valge ristiku ja kõrreliste segu katses oli taimejäätmete 
mõju saagile väetamata variandis suurem, kui väetatud variandis, ehkki 
neis mõlemas tagastati taimejäätmetega ühesugune kogus lämmastikku 
(190 – 204 kg N ha-1). Põhjuseks oli nähtavasti see, et väetatud variandist 
pärit taimejäätmete lagundamisel vabanes vähem lämmastikku, sest need 
jäätmed sisaldasid rohkem raskemini lagundatavaid ühendeid. Nendega 
seoti ka osa jäätmetes sisalduvast lämmastikust. Seetõttu tarvitati väetisega 
antud lämmastikust osa ka taimejäätmete lagundamiseks ning väetisega 
antud N mõju taimiku saagile jäi väikseks. 

Mõlemas katses olnud taimikutüübi mullas suurenes Corg sisaldus 5. 
aastaga oluliselt. Selle kasv oli suurem valge ristiku ja kõrreliste seguga 
mullas, mis oli tingitud liblikõielise positiivsest mõjust mulla süsiniku 
ja lämmastiku sisaldusele. Ristik suurendas mulla orgaanilisest ainest 
lämmastiku mineraliseerumist, mille tulemusena suurenes nii taimiku 
maapealne kui maa-alune biomass. Kokkuvõttes mõjus see positiivselt 
mulla orgaanilise aine sisaldusele.

Taimejäätmete jätmine taimiku pinnale, suurendas mulla Corg sisaldust 
mõlemas katsevariandis. Valge ristiku ja kõrreliste segu jäätmete mõju Corg 
varule pindmises kihis (0 – 5 cm) oli oluliselt väiksem võrreldes muru 
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jäätmete mõjuga. Mõju erinevus võis olla tingitud sellest, et taimejäätmete 
keemiline koostis, mis sai mulla orgaanilise aine osaks, oli kahel taimiku 
tüübil erinev. Murutaimikul moodustus mulla pinnale kõdu, mida valge 
ristiku ja kõrreliste seguga taimikul ei tekkinud. Mulla pinnaga oli kontaktis 
kõdu alumine kiht, mis tõenäoliselt sisaldas palju ligniini (Yao et al., 2009). 
Ligniini lagunemisproduktid soodustavad Corg sisalduse suurenemist 
mullas (Takeda, 1998). Valge ristiku ja kõrreliste seguga taimiku 
taimejäätmetel olid paremad lagunemistingimused. Ristiku-kõrreliste 
taimik oli murutaimikuga võrreldes hõredam, mistõttu taimejäätmete 
kontakt oli mullaga parem, lagunev materjal ei kuivanud nii kergesti 
ning taimikule ei moodustunud kõdukihti. Lagunemissaadused, mis said 
mulla orgaanilise aine osaks, olid parema kvaliteediga kui murutaimikul 
tekkinud kõdukihi saagis. Parema kvaliteediga (kõrge N sisaldus, madal 
ligniini sisaldus) materjal laguneb kiiresti. Lagunemise käigus tekib vähe 
selliseid laguprodukte, mis suurendavad mulla orgaanilise aine sisaldust 
(Handayanto et al., 1997). Murutaimikul sai mulla orgaanilise aine osaks 
suurem kogus ligniinirikkamat materjali võrreldes ristiku-kõrreliste 
taimikuga ja Corg kasv oli seetõttu murutaimiku mullas suurem. 

Väetamine ei mõjutanud Corg ja Nüld murutaimiku mullas ega ka Corg 
sisaldust valge ristiku ja kõrreliste segu taimiku mullas, sest väetisega 
antud N kiirendas mulla orgaanilise aine lagunemist. Väetamine suurendas 
ristiku-kõrreliste segu katses mulla pindmises kihis (0 – 5 cm) Nüld sisaldust, 
sest osa taimejäätmetes olevast N-st oli seal seotud süsinikühenditega, 
mis ei lagunenud ja said mulla orgaanilise aine osaks. 

Kokkuvõte 

Taimejäätmete lagunemiskiirus sõltus taimiku liigilisest koosseisust ja 
taimede arengufaasist niitmishetkel. Valge ristik lagunes kõrrelistega 
võrreldes kiiremini. Niitmishetkel nooremas arengufaasis olevate 
murutaimiku kõrreliste jäätmed lagunesid kiiremini, kui hilisemas 
arengufaasis niidetud kõrreliste jäätmed. Väetamisest tingitud suurem 
lämmastiku sisaldus jäätmetes nende lagunemise kiirust ei mõjutanud. 
Sellest järeldub, et N sisaldus lagunemisprotsessi alguses ei iseloomusta 
jäätmete lagunemisprotsessi kulgu. Ühesuguse N sisaldusega jäätmed 
võivad laguneda aga erineva kiirusega, sest süsinikühendite sisaldus on neis 
erinev. Kuivõrd lämmastik mineraliseerus rohkem neist jäätmetest, mille 
N sisaldus oli suurem, siis on see näitaja sobiv indikaator mineraliseeruva 
lämmastikukoguse ennustamiseks.
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Taimejäätmete mõju taimede kasvule sõltus taimiku liigilisest koosseisust 
ja taimiku majandamisest. Mõju oli suurem ristiku-kõrreliste segu 
variandis. Seda niideti harvemini ja saagid olid suuremad kui murutaimiku 
variandis. Murutaimiku puhul oli jäätmete tagastamine efektiivne ainult 
vegetatsiooniperioodi esimesel poolel kui taimik oli hõredam. See 
näitab, et jäätmete tagastamisest saadav efekt sõltub taimiku tihedusest 
ja kõrgusest. Jäätmete tagastamine murule on efektiivne hõredama ja 
lühema taimiku korral, sest nende imbumine mullapinnale on siis vähem 
takistatud. Tiheda taimiku korral jäävad jäätmed taimedele kuivama ja 
neis sisalduvad toitained ei jõua mullapinnale. 

Taimejäätmed soodustasid taimede kasvu ainult siis, kui neis sisalduva 
lämmastiku kogus oli piisav nii lagundajate tegevuseks kui ka taimede 
kasvuks. Jäätmetega tagastatud lämmastiku kogus sõltus taimiku 
väetamiseks kasutatud N normist, lagunema jäetud jäätmete kogusest 
ja taimiku liigilisest koosseisust. Kõige suurema efekti andis jäätmete 
tagastamine valge ristiku ja kõrreliste segu väetamata variandis. Muru 
puhul osutus jäätmete tagastamine efektiivseks ainult siis kui taimiku 
väetamisel kasutati väetisenorme 160 ja 240 kg N ha-1.

Taimiku pinnal lagunevate taimejäätmete mõju mulla Corg sisaldusele (ja 
varule) sõltus taimiku liigilisest koosseisust ja taimiku majandamisest 
(väetamisest ja niitmissagedusest). Murutaimiku jäätmed suurendasid 
mulla orgaanilise süsiniku sisaldust pindmises kihis oluliselt rohkem, kui 
valge ristiku ja kõrreliste segu jäätmed. Alumises kihis oli mõju oluliselt 
väiksem mõlema taimiku puhul. Väetamine ja niitmissagedus mõjutasid 
taimede keemilist koostist. See mõjutas mulda mineva orgaanilise aine 
keemilist koostist ja lagunemist. Murutaimiku sage niitmine tekitas 
mullapinnale kõdukihi, mis takistas kergestilagunevate murujäätmete 
kontakti mullaga. Selle tagajärjel vähenes mulda mineva lämmastiku kogus. 
See pärssis lagundajate tegevust ja suurendas mulda mineva süsinikurikka 
orgaanilise aine kogust. Ristiku ja kõrreliste segu katses kõdukihti ei 
tekkinud, jäätmed olid lämmastikurikkamad ning mullapinnal lagunes 
rohkem orgaanilist ainet. 

Uurimustöö tulemuste kasutamine

Uurimistulemuste baasil on võimalik anda teaduslikult põhjendatud 
soovitusi, kuidas murusid ja tootmisest väljasolevaid rohumaid optimaalselt 
majandada (väetamine, niitmissagedus, taimejäätmete jätmine taimiku 
pinnale lagunema või eemaldamine taimikult). Kuivõrd Eestis on võimalik 
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taotleda rohumaade niitmistoetust, siis on selline teave väga oluline. 
Enamasti ei teatagi, mis juhtub mullaga siis, kui kulusid kokku hoides 
jäetakse niitmisjäätmed rohustu pinnale lagunema. Antud tööst järeldub, 
et taimejäätmed võib jätta murule lagunema ainult suve esimesel poolel 
kui taimik on veel hõre. Tiheda taimiku korral jäävad jäätmed taimikule 
ning neis sisalduvad toitained ei jõua taimedeni. Tüse jäätmete kiht taimiku 
pinnal kahjustab muru, muutes selle hõredaks ja tekitades taimikusse 
tühikuid. Niita tuleks muru enne vihma või seda pärast niitmist kasta, et 
säilitada jäätmetes niiskust ja kiirendada jäätmete imbumist mulla pinnale. 
Jäätmete tagastamisega koos tuleks muru kindlasti väetada, sest vastasel 
korral seotakse jäätmetes olev lämmastik mulla orgaanilise aine koosseisu 
ja see ei ole taimedele omastatav. Eriti oluline on see just esimestel aastatel 
pärast muru rajamist. Muru vananedes toimub orgaanilise aine kuhjumine 
mulda, Corg ja Nüld sisaldus suurenevad, selle tulemusena suureneb ka 
toitainete mineralisatsioon orgaanilisest ainest ning lämmastikväetise 
vajadus väheneb. Liiga suure N normiga väetamine kiirendab küll taimede 
kasvu ja suurendab niitmisel tekkivat jäätmete kogust, kuid juurde tulev 
jäätmete kogus võib ületada lagunemisvõime ning tekitada mullapinnale 
kõdukihi. 

Liblikõielise lisamine seemnesegusse avaldab positiivset mõju taimede 
kasvule ja mulla Corg sisaldusele. Jättes valge ristiku ja kõrreliste seguga 
taimikul jäätmed taimiku pinnale lagunema, ei ole mineraalväetisega 
väetamine vajalik, sest taimejäätmetega tagastatavast lämmastikust piisab 
nii jäätmete lagundamiseks kui ka taimede kasvuks. Lagunevad jäätmed 
suurendavad saaki ja mulla Corg sisaldus.

Edasist uurimist vajavad küsimused:
- Uurida, miks murutaimiku pinnal lagunevad taimejäätmed ei 

avaldanud enamuses väetusvariantides mõju taimede kasvule? Miks 
kontrollvariandis oli mõju kuivaine saagile pigem negatiivne?

- Uurida, miks meie uurimustöö tulemused erinesid oluliselt teistes 
analoogsete uurimustöödede tulemustest? Kas põhjused võivad olla 
meie muldades (Corg sisalduses, lõimis) ja/või kliimas? 

- Täpsustada taimikule lagunema jäetud taimejäätmete lagunemise 
käigus vabanenud lämmastiku liikumist taim-muld süsteemis, 
kasutades stabiilsete isotoopidega (15N) märgistamismeetodit.
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Abstract. Soil organic carbon (SOC) and soil organic matter (SOM) contents of Estonian 
grassland soils are analysed in 20 soil groups using data from the database PEDON and 
CATENA. The SOC and SOM concentrations (g kg-1) and pools (Mg ha-1) for upland mineral 
soils (Leptosols, Cambisols, Luvisols, Albeluvisols, Regosols; total 9 groups), lowland mineral 
soils (Gleysols, Fluvisols; 9 groups) and wetland organic soils (Histosols; 2 groups) are given 
separately for humus cover (HC) and soil cover (SC). The SOC and SOM pools for the entire 
Estonian grasslands were calculated on the basis of different soil types, morphological 
characteristics and distribution superficies. It was concluded that in Estonian grasslands SC 
39.9±8.0 Tg of organic carbon is sequestered, 76.2% of which is found in HC and 23.8% in 
subsoils. Grassland SOC is sequestered in 69.1±12.6 Tg of SOM. A quality analysis of humus 
covers of grassland soils (evaluated from the pedo-ecological perspective) distinguished 5 
quality groups and 15 subdivisions.  

Key words: grassland soils, humus status of grassland soil, quality of humus cover, carbon 
sequestration, SOC and SOM concentration and pools 

INTRODUCTION

The sequestration of soil organic matter (SOM) and the soil organic carbon (SOC) 
in soil organic matter are widely recognized as agents of soil formation and functioning 
(Lal et al., 1998a; Pulleman et al., 2000; Shaffer & Ma, 2001). 

Quantification of SOM and SOC flow and sequestration in soil has tremendous 
importance (Kern et al., 1998; Bernoux et al., 2002; Nemeth et al., 2002; Zhou et al., 
2003). SOC may be sequestered in soil horizons in different forms and in variable 
relations with nitrogen (Batjes, 1996; DeBusk et al., 2001). The SOM (as well as SOC) 
flow throughout the soil begins with litter falling on the surface or into the soil, 
continues with its disintegration, transformation into humus and ends with the 
disappearance from the soil by its consumption, by soil organisms, by complete 
mineralization or by illuviation into subsoil or eluviation out of the soil profile. Each 
soil type has specific characteristics (input => acting and sequestration => output) of 
SOC flow (Körchens et al., 1998; Yakimenko, 1998; Neill et al., 1998; Genxu et al., 
2002). Depending on the soil type and land use, the sequestered carbon may have 
varying fabrics, properties, quality and residence time in soil the complexity of which 
can be related to types of humus layers (Kõlli, 1992, 1994). 

To determine SOC and SOM sequestered into different grassland soils, a macro-
morphological quantitative approach based on horizon samples was used in our 

109



research. We have previously determined SOC and SOM pools accumulated into 
Estonian arable soils (Kõlli & Ellermäe, 2003) and forest soils (Kõlli et al., 2004).  

The main tasks of the present work, which fulfils SOC and SOM research gaps in 
relation to Estonian semi-natural grasslands, were the following: (1) to determine SOC 
and SOM pools in Estonian grasslands’ soil cover (SC); (2) to analyse the humus cover 
(HC) and subsoil roles in SOC and SOM sequestration into grasslands SC by different 
soil groups, and (3) to elucidate pedo-ecological regularities of the HC quality of 
grassland soils. 

MATERIALS AND METHODS 

The quantitative characteristics of grassland soils originate mainly from the soil 
profile horizons database PEDON which contains data of 82 grassland experimental 
areas. PEDON was compiled mainly during 1967–85 and was updated in 1986–95 and 
in 1999–2002. Data of organic soils were later completed using the humus status 
research transect data from the database CATENA formed during field studies in 
1987–1992.  

For the present work, the data on soil morphology (fabric and thickness of soil 
horizons), bulk density and SOC and SOM concentrations (in the fine earth, ø <1 mm) 
of humus (A), raw-humuous (AT), histic (T), eluvial (E) and illuvial (B) horizons were 
used. The carbon concentration for each soil horizon was determined by the Tjurin 
method (Vorobyova, 1998) based on soil samples taken during field research. For 
calculation of SOC and SOM pools in the HC and SC of individual profiles (by 
research areas), the SOC and SOM concentration, soil bulk density and content of 
coarse fragments in each horizon of the soil profiles were taken into account. The role 
of rock fragments in soil horizons was determined by their volume in field conditions. 
The bulk density samples were taken from approximately one third of the profiles. 
Later the information was generalised and used in the calculation of SOC and SOM 
pools in different soil horizons and the SC as a whole. 

In the present work the pools of SOC and SOM by soils were estimated for two 
SC layers: (1) HC or epipedon, which consists of humus, raw-humous and/or peat 
(histic) horizons and (2) SC or solum as a whole, the depth of which reaches from the 
surface to the unchanged parent material or to C horizon. Therefore the SC consists of 
HC and subsoil including eluvial (E) and illuvial (B) horizons. The thickness of SC 
was determined by the depth of the boundary between B and C horizons. In the 
presence of BC horizon, the solum thickness was measured from the surface to the 
middle of the BC horizon. 

The area of Estonian natural grasslands was 299.5 103 hectares during the years 
2000-2001, forming 6.6% of the total land or 20.9% of agricultural land of Estonia 
(Statistical…, 2003). For the calculation of means and for the analysis of variance, the 
PC program MS STATISTICA 7 was used. The soil group names and codes are given 
in the system of the World Reference Base for Soil Resources (WRB; FAO et al., 
1998). The correlation between the Estonian Soil Classification (ESC) and the WRB 
for Estonian soils is shown in Table 1 by soil codes.  

110



111

RESULTS AND DISCUSSION  

Overall, the thickness of grasslands sola varies between 25 and 77 cm, with 
standard deviation 5–20 cm (Table 1). Only the average thickness of Leptosols
(skeletic, rendzic) and Fluvisols (salic) formed on coastal areas is smaller. In most 
cases, HC thickness is between 19 and 29 cm; but the humus horizons of very young 
coastal and drought-prone skeletal soils are much thinner. It must be mentioned that for 
Histosols, the unique HC (30 cm) and SC depth (50 cm) was taken arbitrarily. 

The average SOC and SOM pools in HC and SC by soil groups were calculated 
on the basis of profile data of different research areas (Table 2).  

In upland grassland soils with automorphic moisture regime, SOC pools in HC 
are between 40–114 Mg ha-1, and are higher in soils with higher carbonate content. 
SOC pools that are remarkably lower are accumulated into drought-prone skeletal soils 
(32 Mg ha-1). SOC pools higher than in automorphic soils are characteristic of 
Gleysols. But the highest pools are those in Sapric and Fluvic Histosols, the HC of 
which is peat (hemic, sapric). Intensely variegated SOC and SOM pools may be 
sequestered into the HC and SC of Fluvisols. The largest quantities are characteristic of 
the Histic Fluvisols which are situated in riverside areas but are remarkably reduced in 
coastal Fluvisols. For Histosols the SOC and SOM pools were recalculated to arbitrary 
HC (30 cm) and SC depths (50 cm). 

 Unfortunately, up to now, there has been an absence of exact data about soil 
distribution on Estonian semi-natural grasslands. However, there is data available from 
the inventory of grasslands by plant associations (Aug & Kokk, 1983), by land cover 
types (Meiner, 1999), by wet lands (Paal et al., 1999) and others (Arold, 2005) which 
help to receive approximate superficies and the precise relative importance of different 
soil groups on grasslands. With data re: soil distribution for the whole mapped area as 
well as for forested and arable lands, by R. Kokk (1995), it was possible to find 
superficies of soils which are used mainly as grasslands. Such soils formed 56% of the 
total grassland area. The superficies of coastal grasslands, alvars and riverside areas 
matched well. More problematic are areas with Cambisols, Luvisols, Albeluvisols as 
well as areas influenced by erosion, as these soils may be reforested or turned into 
arable land. Soil distribution data used in calculation (percentage and superficies) by 
different grassland soil groups are presented in Table 3. The calculations of SOC and 
SOM pools of 20 soil groups show that the main SOC accumulators are Sapric 
Histosols, Histic Gleysols, Cambisols and Luvisols in Estonian grassland SC.

The main quantitative parameters of soil humus status are HC thickness and 
morphology (fabric), SOC and SOM concentrations and pools by soil horizons, and 
HC quality (type). In connection with the absence of thickness and of SOC and SOM 
pools (Mg ha-1) data for five grassland soil groups in our research areas (see Table 2), 
the gaps in calculation of total SOC and SOM pools (see Table 3) were filled by using 
the data presented in Table 4. The data of Luvisols (cutanic, endogleyic) and
Saprihistic Gleysols were used as weighted averages (Mg ha-1) of arable and forest 
soils (Kõlli, & Ellermäe, 2003; Kõlli et al., 2004).  
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The data about soils influenced by erosion areas (eroded and deluvial soils) were 
taken from our unpublished work and data about hydromorphic Leptosols (endo- and
epigleyic) from previously generalized postlithogenic soil matrices (Kõlli et al., 2004).

In total, 39.9±8.0 Tg SOC is sequestered (Table 5) in Estonian grasslands SC. Of 
that, 76.2% is accumulated into the active layer or into HC (i.e. incorporated into 
stabilised soil humus, raw-humous material or in peat); 23.8% of SOC is located in the 
passive layers (in E and B horizons) or in subsoil and is characterized therefore by a 
long turnover time. The generalised SOC and SOM pools (Table 5) are given 
separately for three sets of soil groups. The role of these three grassland soil group sets 
in the sequestration of total SOC pools in grasslands is 34.5, 35.3 and 30.2%, 
respectively; the role of these sets for the total grassland area, (51.5, 35.4 and 13.1%, 
respectively).  

In Estonian grasslands 69.1±12.6 Tg SOM is accumulated; approximately half 
(31.3 Tg or 45.3%) is peat. More than half, 54.7%, of grasslands’ total SOM may be 
qualified as humus with different quality and available for soil edaphon. The majority, 
78% (29.5 Tg), of total grasslands’ humus is situated in active HC and 22% (8.3 Tg) in 
passive part or in subsoil. The high proportion of peat in the SOM of Estonian 
grasslands (approximately half) is caused by the high amount of Histosols (13.1%) and 
Histic Gleysols & Fluvisols (12.5%). 

The generalised (weighted by area) data about SOC and SOM pools (Mg ha-1) in 
HC and SC are also presented in Table 5. The comparison of three grassland soil sets 
shows that subsoils of upland and lowland mineral soils have approximately equal 
SOC and SOM sequestration capacities, but the average sequestration capacity of SOC 
in lowland mineral soils’ HC (in Mg ha-1) is more than 1.6 times higher than in upland 
soils. Due to the subsoil richness in SOC, the most powerful SOC accumulators are 
Histosols sola, where an average per one hectare's 50 cm layer sequesters 306 Mg 
SOC.

In the World Soil Resources Report (FAO, 2001) mean SOC amounts of 0.3 m 
and 1.0 m soil layers in Boreal Agro-Ecological Zones are 98–102 and 231–240 Mg 
ha-1, respectively; the 0.3 m layer SOC pool matches  our grasslands soil HC weighted 
average (Table 5). The mean grassland ecosystem soil organic pools according to Lal 
et al. (1998b) is given as 116 Mg ha-1 which is similar to our lowland mineral soils HC 
pools, and is close to the weighted mean of Estonian grassland SOC amounts.  

In the Brazilian Amazon Basin the mean SOC amounts to a depth of 1 m (Rosell 
& Galantini, 1998) are in a similar range with our data, in Alfisols 76–120, Inceptisols - 
68–76 and in Mollisols 95–156 Mg ha-1, if we compare them respectively with 
Albeluvisols, Lepto-&Cambisols and Mollic Cambisols (Table 2). However, the depth 
of our sola is thinner, as is characteristic of northern areas. 

Comparative studies of meadow and forest soils in the forest zone of Russia 
(Yakimenko, 1998) have demonstrated the ability of grassland ecosystems to 
accumulate more SOC in a 50 cm soil layer than in forest ecosystems. For example, 
67–88 Mg ha-1 SOC is accumulated in grassland soil in the Middle Urals, 66-90 in 
Leningrad province and in Moscow province 52–81 Mg ha-1 SOC, which are 
accordingly 2–21, 12–22 and 8–29 Mg ha-1 more than in the same soils under the 
forests.

The experiments with annual application of nitrogen and sulphur fertilizers on 
hayed native grasslands in Saskatchewan, on a Boralfic Boroll with sandy loam to 
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sandy clay texture (Nyborg et al., 1998), clearly demonstrated enhancement of SOC 
storage in grassland soil superficial 37.5 cm layer up to 8 Mg organic carbon per one 
hectare.

Comparison of Estonian grassland soil SOC pools to a 50 cm layer of soils in the 
northwestern United States in Mg per ha (Kern et al., 1998) demonstrates the 
variability of SOC pools with similar limits (CV limits of 20–60%), indicating higher 
amounts (84–110 Mg ha-1) in Rendolls, Udolls and Borolls compared with Udalfs and 
Boralfs (56–86 Mg ha-1). Soils with aquic water conditions in the northwestern United 
States tend to be similar to pools of Estonian Gleysols (varying from 90-200 Mg SOC 
ha-1).

The humus status of Histosols (Tarnocai, 1998) reveals that SOC pools of our 
Sapric Histosols match well with C. Tarnocai’s surface (0–30 cm depth) carbon 
content of Saprists, Hemists (Mesisols and Humisols according to the Canadian Soil 
Classification) with average SOC amounts of 182 and 217 Mg SOC ha-1 respectively. 
C. Tarnocai (1998) estimated for the Canadian Grassland Ecoclimatic Province a mean 
SOC content of 122 Mg ha-1 which is slightly lower than the value (133 Mg ha-1) found 
by Post et al. (1982). It is interesting that this is equal to our value for Estonian 
grassland SOC amounts (133 Mg ha-1; Table 5).  But it is clear that the weighted 
average SOC content of an estimated area depends largely on the presence of 
Histosols.

At present different sources concerning the  distribution of SOC and SOM in 
European soils are available (Rusco et al., 2001; Van-Camp et al., 2004; Zdruli et al., 
2004) but in most cases the total SOC and SOM stocks for different countries are 
computed indirectly and must be updated from time to time. For example, the SOC for 
Estonian topsoil (0–30 cm) is computed as 1.5 Gt (Van-Camp et al., 2004), however 
the sources refer to the lack of geo-referenced, measured, harmonised data on SOC 
available in Europe.

Comparison of SOC and SOM retaining (sequestration) capacity of grassland HC 
and SC by soils groups and soil sets with those for arable and forest soils (Kõlli & 
Ellermäe, 2003; Kõlli et al., 2004) enables us to elucidate some pedo-ecological 
regularities. First of all, arable, forest and grasslands clearly differ by their soil types 
and texture composition. On arable land, more fertile upland mineral soil types (with 
loamy texture) are dominant (altogether 72%); on forest lands there is a greater share 
of organic (37%) and lowland mineral soils (39%); consequently both differ from 
grassland composition (see Tables 3 and 5). A clear difference is observed in HC 
thickness, which is highest in arable soil, and in the fabric of HC where a clearly 
formed forest floor is observed in forest soils. In arable soils the organic superficial 
layer is absent all together, but may occur on some grasslands that have low biological 
activity. With regard to grasslands SOC and SOM amounts, their weighted averages 
are slightly higher on upland mineral and lowland mineral soils when we compare 
them with arable and forest lands. 

Our study reveals that we must not decide carbon sequestration capacity only on 
SOC and SOM concentration, but first of all on the basis of SOC or SOM. Many 
researchers have clarified (Kern et al., 1998; Körchens et al., 1998; Percival et al., 
2000; FAO, 2001) that SOC- and SOM-retaining capacity depends on the soil moisture 
regime, physical clay and carbonate content in fine earth, and soil management 
character. Land use and/or tillage technology have a substantial influence mainly on 
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the humus status of superficial soil layers. SOC sequestration in subsoils depends 
greatly on the thickness of the solum. In subsoils of mineral grasslands, an average of 
17–19 Mg ha-1 SOC or 29–34 Mg ha-1 SOM may be found. That may be treated as a 
buried resource. Thick Histosols and various soils with pachic, cumulic and 
thaptohumic epipedons formed in mineral soils by accumulation of eroded (deluvial) 
and alluvial sediments are especially rich in sequestered SOC.

The characteristics of humus quality are presented in Table 6, where a rough 
estimation of the share of different HC types is shown. The first three divisions (A, B 
and C) belong to upland mineral soils (see Table 5). Raw-humous HC is developed on 
lowland mineral soils; the exceptions are Histic Gleysols and Histic Fluvisols, the HC 
of which is peaty. By area, the peat type HC (25%) can be divided almost equally 
between thin peat (peaty soils) and thick peat (real organic (peat) soils). A remarkable 
share of HC (23% by pools and 26% by area) belongs to raw-humous or wet HC, 
which is potentially fertile, but suffers from water logging during spring and autumn. 
These HC are relatively well humified in Gleysols with calcareous and neutral reaction, 
rich in nutrition elements. The portion of acid raw-humous HC with features of 
podzolization is not high (< 6% by area) but the quality of this kind of SOM is low 
from the ecological, and especially from the edaphic, viewpoint. Although the soils of 
upland grasslands form more than half, (51.5%), of the total grassland, their SOM 
pools account for only about one third, (34.3 %). A comparison of qualities of Estonian 
forest and grassland HC’s show that biologically more active epipedons or HC are 
characteristic of grassland.  

CONCLUSIONS 

Sequestration capacities for each soil type of grassland characteristic SOC and 
SOM have developed. They are determined mainly by soil thickness, moisture regime, 
as well as by carbonate and clay content. Depending on composition of individual site 
specific soil properties, the SOC and SOM contents and pools in humus cover and sola 
may vary greatly.  

In Estonian grassland soils 39.9±8.0 Tg SOC is sequestered. The latter is 
accumulated as 69.1±12.6 Tg of SOM (humus, raw-humous material, peat) in different 
soil horizons and layers. 76.2% of SOC is located in the biologically active humus 
cover and 23.8% in less active subsoil. Epipedons formed on grasslands are 
biologically more active and have better ecological quality than on forest lands.   
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Abstract. The maintenance of turfgrass sward includes mowing and fertilization. Every year 
turfgrass sward produces a sizeable amount of clippings containing large amounts of nutrients 
which will be available for plants during the decomposition process. The aim of this research 
was to study clippings decomposition speed, the effect of returned clippings to the turfgrass 
sward’s clippings yield and total nitrogen content in clippings and soil. The study was carried 
out on turfgrass sward (seed mixture composition Festuca rubra rubra 50% and Poa pratensis 
50%). The turfgrass clippings were either removed after cutting or returned to the plots. The 
clippings yield and nitrogen content in the clippings were measured after every cutting. The soil 
samples from different plots were analyzed for total nitrogen at the beginning and the end of the 
growing season. The decomposition dynamics of clippings was studied using the litterbag 
technique. Also the nitrogen mineralization from decaying material and the concentration 
changes of cellulose and lignin were studied during 12 weeks.  

The results showed that the turfgrass clippings mass and the content of nitrogen decreased 
during the decomposition process very quickly. The degradation of cellulose takes place after 
about 30% of initial weight decomposition. During the 12 week study period we did not fix the 
beginning of lignin decomposition. Higher productivity was obtained in treatments where 
clippings were removed. N content did not differ in plant from plots where clippings returned or 
removed but N content in soil of plots with clippings returned decreased compared to N content 
in soil of plots where clippings were removed.  
 
Key words: clippings, turfgrass, decomposition, N mineralization, cellulose, lignin 
 

INTRODUCTION 
 

Environmentally friendly agriculture should move towards to a more closed 
nutrient cycle. This would mean the decreasing use of mineral fertilizers which have 
been dominant so far. Organic fertilizers as well as nutrients released from plant 
remains will be as a good replacement for plant nutrition and elevating soil fertility. 
The decomposition of organic matter has been investigated mainly in soil, and organic 
matter left above-ground for decomposition has not received so much attention. In 
amenity grasslands and set-aside fields, the returning of clippings to the site would be 
economically the cheapest possibility of management of those areas. On one hand the 
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soil will be enriched with humus substances and on the other, the nutrients released 
during the mineralization process are ready for usage by plants.  

Several investigations have shown that organic matter returned as mulch, will 
start to accumulate in grasslands (Meinhold et al., 1973; Murry & Juska, 1977). The 
reason could be the lack of micro-organisms which could decompose the organic 
matter above ground. At the same time opposite results can be found. The trials of 
Kopp & Guillard (2002) have shown that from returned clippings a remarkable amount 
of nitrogen (N) will be released, which would considerably lessen the need for mineral 
fertilizers. In their trial the returning of clippings did not cause the decomposition of 
thatch layer which was noticed in aforementioned investigations. 

The goal of our work was to explain the decomposition dynamics of clippings left 
on the sward, the release of N from the clippings and its effect on sward productivity 
and N content of clippings and soil. Also the changes in concentrations of cellulose and 
lignin studied during decomposition. 
 

MATERIALS AND METHODS 
 

The experiment was carried out at the Estonian University of Life Sciences in the 
experimental station Eerika (58°23'32" N latitude, 26°41'31" E longitude) in 2007. The 

site had been seeded in 2003 with a turfgrass mixture (Festuca rubra rubra 50% and 
Poa pratensis 50%).  

The soil of the experimental field was Stagnic Luvisol according WRB 
classification (FAO, 1998) and the humus horizon contained 1.6% organic carbon and 
1.63 mg N g-1. 

The experiment was conducted on unfertilized sward in four replications with plot 
size 1x7 m. The swards were cut 14 times at a height of 5 cm during the growing 
season. For the cutting a lawn mower with a bag attachment was used. After every 
cutting the material was removed from the bag and weighed. After the weighing 
procedure the clippings of the turfgrass were either returned (hereafter CRT) to the 
plots or removed (hereafter CRM). The returned and removed clippings were analysed 
by total N and the amount of N (nitrogen uptake) removed or returned by clippings was 
calculated using the yields of the plots multiplied by N concentration. 

After the first cutting, the decomposition dynamics of clippings was investigated 
using the litterbag technique. A total of 20 g of fresh biomass equivalent to about 5 g 
dry biomass was put into 20×20 cm polyester litterbags with a 1.5 mm mesh size. At 

certain time intervals the bags were collected and the material was removed from bags, 
dried (105°C, 4 hours), weighed and the weight loss was calculated. The biomass 
residue remaining in the litterbags was expressed as a percentage of the initial dry 
weight. The remaining percentage of mass (RPM) for each period was determined 
using this formula:  

 
RPM (%) = (100 x Mt)/M0, 

 
where M0 is the initial plant material dry matter mass in the litterbag and Mt is plant 
material dry matter mass in bag in time t, when litterbags removed from field. The 
litterbags material was analyzed for N and carbon:nitrogen ratio (C:N). 
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The remaining percentage of N (RPN) at the time t was calculated:  
 

RPN (%) = (100 x Nt)/N0, 
 

where N0 is initial N amount in sample and Nt is N amount in sample at time t, when 
the litterbag was removed from the plot. Van Soest’s method used to measure the 

changes of lignin and cellulose concentration in decomposing clippings (Van Soest, 
1963). 

At the beginning of the vegetation period (May 2007) and at the end (September 
2007) of the vegetation period, the total N content of soil samples (0-5 cm) of both 
management variants (CRM and CRT) was determined according to Kjeldahl.  

The statistical package Statistica version 7.0 (StatSoft.Inc) was used for all the 
statistical analyses. Factorial ANOVA was applied to test the effect of the treatments 
on the yield and N content in the clippings and the soil. 
 

RESULTS AND DISCUSSION 
 

The turfgrass clippings decomposition and N mineralization 
 
The decomposition of clippings on the sward was rapid in the first weeks. 

Already by the first 2 weeks, 27.4% of initial material was decomposed (Fig. 1).  
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Fig. 1. The remaining percentage of mass (RPM) and nitrogen (RPN) (%) in 

turfgrass clippings during decomposition process. 
 

After 12 weeks of decomposition, 31.2% of clippings initial mass remained. The 
initial concentration of cellulose in the clippings was 178.2 mg g-1. During first two 
weeks the concentration of cellulose increased to 249.0 mg g-1 but by the end of week 8 
had decreased down to 103.3 mg g-1. The cellulose started to decompose after week 4 
and approximately 30% of the initial material had decayed. Analyzing the 
decomposition process of clippings indicated that approximately 60% of the turfgrass 
clippings consisted of easily soluble compounds and the remaining 40% was the 
material needed for that year’s decomposition. Such a long-term degradation is caused 



 314 

by the increased lignin concentration. The clippings initial lignin concentration was 
12.6 mg g-1. During the studied decomposition period the lignin decomposition did not 
occur and the lignin concentration increased after week 8 to 150.0 mg g-1. 

Living organisms using the plant residue’s carbon as a source of energy and the 

nitrogen for building cell structure cause the decomposition and mineralization of 
organic matter. The plant cell is mainly composed of different water soluble 
carbohydrates, cellulose and lignin. Plant material chemical composition determines 
the availability of plant carbon to the soil decomposers, and will therefore have a 
crucial influence on the dynamics of N mineralization during decomposition 
(Gunnarsson, 2003; Trinsoutrot et al., 2000). The most easily decomposable 
compounds are water-soluble carbohydrates, and then cellulose and the most difficultly 
decomposable compounds is lignin.  

At the beginning of the decomposition process, the content of N in the clippings 
was 31.5 mg g-1 and after 12 week 59.5% of that was mineralized. Nitrogen released 
from the clippings did not affect the content of total N in either the soil or the 
clippings. At the same time the variants where the clippings were removed the soil 
total N content was increasing during the growing season (Table 1).  

 
Table 1. Total N (mg g-1) content in soil (0-5 cm) from plots with clippings were returned 

(CRT) or removed (CRM) plots in spring and autumn. 
 CRT CRM 
 spring autumn spring autumn 
N, mg g-1 1.37a 1.34a 1.43b 1.61c 

Different letters within line indicate significant difference of the mean values at p<0.05. 
 

The C:N ratio of decomposing clippings at the beginning was 18 in our study and 
decreased down to 12 throughout the decomposition period. There is a wide 
assessment that plant materials with a C:N ratio less than 20 may result in net N 
mineralization and those with a C:N ratio greater than 20 tend to cause net 
immobilization (Quemada & Cabrera, 1995). Immobilization (i.e. increasing N amount 
in decaying sample) did not occur during the decomposition process in our trial (Fig.1). 
When the relationship of used C:N ratio of different week is calculated, it appears that 
during first two weeks, at the beginning of decomposition process, the used C and N 
ration is 27:1. This proves that there was insufficient N for microbial decomposition 
and the immobilization took place. After week 2 the consumed C:N ratio was 54:1 and 
after week 4, when the cellulose was degraded, the used C:N was in relation 19:1. The 
ratio was narrower, because the N which was earlier linked to cellulose was liberated 
during the mineralization and made available to bacteria. Thus, according also to 
Andersen & Jensen (2001) the C:N ratio in decomposable material does not influence 
the decomposing process but the C:N ratio in decomposing compounds is the crucial 
factor for explaining the decomposition process. The C:N ratio in easily decomposable 
compounds can be broader than in plant material total and therefore immobilization 
can occur eventhough the C:N ratio in decomposable organic matter in total is 
relatively narrow (Andersen & Jensen, 2001). 

According to Swift et al. (1979) soluble substances and labile compounds, which 
form the biggest proportion in turfgrass clippings, are rapidly degraded in the early 
stages of decomposition by fast growing micro-organisms that require a high 
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concentration of N which may cause its initial immobilization. To decompose the wide 
C:N ratio compounds the missing amount of N will be taken from soil. The soil total N 
did not increased, although during the vegetation period the big amount of N from 
clippings was returned to the sward after every cutting.  

 
The impact of returned and removed clippings on sward productivity and N 

uptake 
 
The total N content in the clippings was similar in most cuttings of CRT and 

CRM variants, a significant difference occurred in first cut where the yield of CRM 
variant contained much more N compared with CRT variant (Table 2). The average 
yield of clippings was 13.5% higher in CRM variant compared to the CRT variant but 
the difference was not statistically significant. 

The average yield of the growing period was largely influenced by the yield of the 
first cutting, which was 42% larger in CRM variant compared to CRT variant. The 
following cuttings of these two variants were similar. N uptake was greater in CRM 
variant, referring to the larger amounts of N removed by clippings (34.8 kg N ha-1), 
compared to the N returned by clippings in CRT variant (30.5 kg N ha-1). If the data of 
first cutting is omitted from the data analysis, the results will be the opposite, but here 
the differences between two investigated variants will be statistically minor. 

 
Table 2. The average total N content (mg g-1) in clippings by different cuttings, dry matter 

yield (kg ha-1) and N uptake (kg ha-1) of turfgrass swards plots with clippings removed (CRM) 
and with clippings returned (CRT).  

 
Total N content in 
clippings, mg g-1  

DM yield of sward, 
kg ha-1  

N uptake by 
clippings, kg N ha-1 

Cut CRM CRT CRM CRT CRM CRT 
1st cutting 40.5b 31.5a 462.3a 268.7a 18.7a 8.46a 

2-14 cuttings 29.6a 30.7a 681.9b 721.5b 20.2a 22.2b 
All cuttings (1-14) 30.4a 30.8a 1144.2c 990.2c 34.8b 30.5c 

Different letters within column indicate significant difference of the mean values at P < 0.05. 
 

The results of our investigation differed remarkably from the findings of Kopp & 
Guillard (2002). According to their investigation the productivity of the unfertilized 
variant was in the context of returned clippings equal to the productivity of the variant 
receiving 392 kg N ha-1 where the clippings were removed. In our trial the amount of N 
returned by the clippings was 30.5 kg N ha-1 but did not have any significant influence 
on soil or plant N content. Earlier investigations have shown that by the decomposition 
of clippings a remarkable loss of N occurs by the volatilisation process in NH3, which 
can reach up to 10-20% of total mineralizable N (Janzen & McGinn, 1991). Also N 
immobilization by microbe-decomposers is the reason for N decreasing in soil as we 
discussed earlier. According to the research of Kuzyakov et al. (2000) the so called 
priming effect will take place in plant-soil systems, which activates an extra 
decomposition of indigenous soil organic matter, and therefore the soil N content is 
decreasing. Immobilization took place in our trial because the total N content in CRT 
variant in upper 0-5 cm soil layer was stable in spring as well as in autumn. At the 
same time the total N in CRM variant was increasing during the growing season. The 
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higher content of soil total N was presumably caused by the decomposition of plant 
roots and released N was combined to the soil organic matter, instead of being used by 
the microbes in decomposition of clippings as happened in CRT variant.  

 
CONCLUSIONS 

 
We can conclude that over 60% of the turfgrass clippings which stayed on site 

after mowing consisted of easily decomposable material, which is mostly influenced by 
the easily soluble compounds in the clippings. A large number of easily decomposable 
compounds in decaying material caused the nitrogen deficit and missing nitrogen will 
be taken from soil. The returning of clippings during the growing season did not have 
any effect on soil and clippings total N content, as the amount of N released from 
clippings was so small and most was used by the microbe-decomposers. The N content 
in soil was higher in plots where clippings were removed. 
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ORIGINAL ARTICLE

The decomposition of turfgrass clippings is fast at high air humidity

and moderate temperature

KARIN KAUER, HENN RAAVE, TIINA KÖSTER, REIN VIIRALT, MERRIT NOORMETS,

INDREK KERES, TOOMAS LAIDNA, ARGAADI PAROL & ARE SELGE

Department of Field Crop and Grassland Husbandry, Estonian University of Life Sciences, Institute of Agricultural and

Environmental Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia

Abstract

In grassland areas where herbage production has no economic value, the cut grass is often left on the sward surface where its
decomposition is influenced by weather conditions. Although the influence of temperature and humidity on decomposition
has been investigated under controlled lab conditions, experimentation has generally been under ideal moisture conditions
that have not tested the combinations of climatic limitations that might occur in the field. The decomposition of mown
turfgrass clippings deposited at different times of vegetation period was studied in situ using nylon bags during the first
8 weeks after deposition to investigate the effect of weather conditions (the air temperature, relative humidity, precipitation)
on decomposition. Decomposition is the highest in the case of high air humidity and temperature of 108C. Limiting factors
for decomposition at temperatures above 108C is the air humidity and below 108C the air temperature. The general
tendency was that the rate of decomposition increased with increasing air temperature up to 108C, but with further
increases of air temperature the decomposition rate slowed down. Relative air humidity had a variable impact (at the
beginning of the decomposition process (weeks 1�2) the influence was negative, during weeks 3�8 of the decomposition
process the effect was positive), and hence had no generalized relationship with decomposition over the studied
decomposition period (weeks 1�8). The most significant influence of weather conditions on the decomposition rate was
recorded directly after cutting. If the cutting was done during hot weather conditions, the material was drying fast and
therefore decomposed slowly. Our results indicate that for fast decomposition of clippings it is important to maintain the
freshness of material. Lower decomposition rates occurred during conditions of hot and dry weather, and also cooler
(temperature near to 08C) weather, and can be compensated as soon as favourable weather arrives.

Keywords: Air temperature, nylon bags, precipitation, relative air humidity, sward.

Introduction

In amenity grassland where there is a requirement to

mow grassland for maintenance, the mown grass

clippings often have no economic value and are left

on the sward surface, where their decomposition is

influenced by weather conditions. In temperate

zones the weather conditions change during the

year and could have a direct influence on the rate

of decomposition of organic matter. During periods

of unfavourable conditions for decomposition, resi-

dues of grass clippings left on the sward surface

could tend to accumulate, partly because their

deposition exceeds decomposition rate. To avoid

these problems, and to ensure good turfgrass man-

agement in the absence of agronomic productivity, it

is important to know the rates of decomposition of

grass residues left on the sward surface during

different growing stages.

Temperature and moisture conditions are the

main factors influencing the activity of decomposers

involved in the decomposition process (Paul and

Clark 1996, Dalias et al. 2001a, 2001b, Pietikäinen

et al. 2005, Uvarov et al. 2006). During the process

of decomposition of organic matter an increase in

soil temperature and moisture generally results in

greater rates of microbial activity and thus increased

rates of reduction of plant residue (Stott et al. 1986,
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Donnelly et al. 1990). Microbial activity is generally

predicted to increase rapidly up to a temperature of

about 308C. An optimal temperature for microbial

activity is reached between 35 and 458C, and the

optimal moisture content for organic matter decay is

50�60% (McKinley and Vestal 1985, Chen et al.

2000). It is found that at higher temperatures the

temperature influence to the decomposition rate is

reduced i.e. increasing temperature by the same

number of degrees at lower temperatures accelerated

decomposition more than the same increase at

higher temperatures (Kirschbaum 1995, Dalias

et al. 2001a).

The influence of temperature and humidity on

decomposition has been investigated mostly under

controlled laboratory conditions and in field experi-

ments where plant residues are incorporated into soil

(Kirschbaum 1995, Henriksen and Breland 1999,

Dalias et al. 2001a). Laboratory experiments that

focus on temperature responses have been generally

conducted under ideal moisture conditions, so that

the various combinations of climatic limitations to

decomposition that might occur in the field have not

necessarily been tested. Field tests carried out in soil

have shown there are strong interactive effects

of temperature and moisture on litter respiration

during litter decomposition (Flanagan and Veum

1974, Clark and Gilmour 1983, Doel et al. 1990,

O’Connell 1990).

Plant residues spread on the soil surface will

normally be exposed to more variable temperature

and moisture conditions than will residues buried in

the soil, and these variable conditions may greatly

slow down the decomposition of organic residues on

the soil surface. For example, Curtin et al. (1998)

found that CO2 evolution was 36�62% less from soil

being exposed to drying/wetting cycles compared

with soil having adequate constant moisture content.

In natural conditions decomposition of organic

matter on the surface of soil is influenced by air

temperature, air relative humidity and precipitation,

in addition to the influences of soil temperature and

moisture content, which as a rule are different from

the respective parameters for air (Quemada and

Cabrera 1995). Close contact with soil will usually

increase the microbial decomposition of organic

matter (Douglas et al. 1980, Cogle et al. 1989,

Havstad et al. 2010) and this is mainly due to higher

moisture content in residues (Parr and Papendick

1978).

Even though the influence of temperature on

decomposition has been the focus of many investiga-

tions, the decomposition of mown plant residues at

different periods in the growing season has received

little attention. There is also little information about

the effect of weather conditions on decomposition of

fresh organic material. The moisture content in fresh

grass material is high at the starting point of

decomposition and it is probably very favourable

material for the microbes so that they can start the

decomposition process immediately. Therefore, we

can assume that at the beginning of decomposition

the rate of decomposition depends only on tempera-

ture, because the moisture needed for the decom-

position process is adequate. The influence of

temperature can occur in two ways: temperature

activates the decomposers, and at the same time it

also dries the material causing moisture to become a

limiting factor as temperatures increase. The objec-

tive of the research was to investigate the influence of

air temperature, relative air humidity and precipita-

tion on the dynamics of decomposition. We hypothe-

sized that turfgrass clippings mowed at different

times during the growing season will decompose at

different rates, and that these rates would be mainly

influenced by different weather conditions during

these periods.

Materials and methods

Background of experimental site

The field experiment was carried out at the Experi-

mental Station Eerika of the Estonian University of

Life Sciences (58823?32?? N latitude, 26841?31?? E

longitude). The soil of the experimental field was a

Stagnic Luvisol according to WRB classification

(FAO, ISSS, ISRIC 1998). Soil analyses by estab-

lishing the trial showed that the humus horizon

contained 16.0 mg organic carbon g�1 and 1.63 mg

N g�1. The sward had been established in June 2003

with a turfgrass mixture of Festuca rubra rubra

(198 kg ha�1 germinating seed) and Poa pratensis

(52 kg ha�1), the mixture providing a 50:50 ratio of

germinating seeds by seed number of Festuca rubra

rubra and Poa pratensis. The sward was unfertilized

during the period between the sward establishments

in 2003 and in May 2004 when in those plots the

research was initiated to demonstrate the influence

of returned clippings to the yield and growth of

sward plants.

The experimental design was a randomized com-

plete block with four replicates of each of four

fertilization treatments, with a plot size 1�7 m for

each treatment plot. The fertilizer treatments were as

follows: N0P0K0 (N0) as control, N80P11K48 (N80),

N160P22K96 (N160) and N400P56K240 (N400) kg

ha�1. The N as (NH4)NO3 and K as KCl fertilizer

was applied by hand to the plots (a plot size 7 m2) in

2 to 4 splits depending on the ratio during vegetation

period. The P fertilizer as Ca(H2PO4)2 was applied

to the plots in 1 split at the beginning of May. The
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turfgrass sward was mown with a rotary lawn mower

(Partner 5553 CMDEW) with a bag attachment at

5 cm height when the height of grass was approxi-

mately 7�8 cm high. The frequencies of mowing

depended on the rates of grass growth. The clippings

from each plot were returned to that plot and then

mulched with a lawn mower.

The research about decomposition process of

clippings was carried out in years 2006 and 2007.

We analysed the decomposition process of clippings

in four different fertilization treatments (N0, N80,

N160, N400) having four replications in each

treatment. The research on clippings decomposition

was simultaneously implemented together with re-

search on clippings influence on sward and therefore

the methodology of the trial was the same in both

cases.

Arrangement of experiment

There were four experimental periods, each of 8�10

weeks duration (referred to as Period I, II, III and

IV) (Table I).

At the beginning of each period (15 May, 13 Sept,

26 Oct in 2006 and 16 May in 2007), directly after

cutting, a sample of 100 g of fresh herbage was

collected. From each sample, a subsample of 20 g of

fresh herbage (the length of the plant species was

2�3 cm) was put in to 20�20 cm nylon bags with a

1.5 mm mesh size. Each of the bags with the fresh

clippings were placed and fixed with clamps into the

thatch layer of the plot from which it had been

harvested. The number of bags used, per treatment,

was between 12 and 20 in different periods and it

depended on how many times the bags were planned

to be removed from the plots. For example in period

I the bags were removed four different times during

8 weeks that means every fertilizing variant received

altogether 16 bags (4 bags for every replication).

Weekly mowing took place even when studying the

decomposition of clippings. The nylon bags didn’t

disturb the mowing because they were fixed tightly to

the soil surface. The mowing height was 5 cm and

the mower did not touch the nylon bags. Bags were

removed according to a certain timetable (Table I).

Weeks were counted since the day when the bags

were placed on the experimental plot. The removal

of bags was taking place on the 7th day of the week.

Simultaneously four bags were removed from each

fertilization treatment (1 bag per replicate of a

treatment).

Measurements analysis

The remainder part of the sample at the beginning

of experiment was used to determine (i) dry matter,

(ii) total nitrogen, (iii) total carbon, (iv) cellulose and

(v) lignin content.

At retrieval, the content of each bag was carefully

examined and visible soil particles were removed

continued by determination of cellulose and lignin

content of the remaining plant residue.

The dry matter content was determined by drying

the sample in a forced-draught oven for 6 hours

at 1058C. Total nitrogen and carbon content were

analysed by dry combustion method in a vario

MAX CNS elemental analyser (ELEMENTAR,

Germany). Van Soest’s method was used to measure

the cellulose and lignin content on a dry matter basis

(Van Soest 1963).

Equations for calculations

Dry matter

Dry matter %ð Þ

¼ weight of dry material gð Þ � 100 %ð Þð Þ=weight
of fresh material gð Þ

The weight loss (decomposition rate) for each period

was calculated using the following formula:

weight loss %ð Þ ¼ 100� M0 �Mtð Þ=M0

where:

M0 is the initial plant material dry matter mass in

the bag;

Mt is plant material dry matter mass in bag in time t,

when bags were removed from field.

Weather

The climate of Estonia is almost maritime in the

west and slightly continental in the east. The winter

period (average air temperature permanently below

08C) lasts on average 115 days with an average mean

temperature of the coldest months of �5.58C. The

average duration of the vegetation period (air tem-

perature permanently above 58C) is 175�190 days.

The average period without night frosts is four

months, during which time the average midsummer

Table I. Time of experiment, the duration of decomposition

periods and sampling weeks.

Period

Duration

of the

experiment Year

Total

number

of bags

exposed

Sampling

weeks

I (8 weeks) 15 May�10 July 2006 64 2, 4, 6, 8

II (8 weeks) 13 Sept�8 Nov 2006 80 1, 2, 4, 6, 8

III (10 weeks) 26 Oct�4 Jan 2006 48 2, 5, 10

IV (8 weeks) 16 May�10 Jul 2007 48 2, 4, 8
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(July) temperature is 16�178C. Mean annual

precipitation is 550�700 mm; the average precipita-

tion in the wettest months (April to the end of

October) is 350�500 mm (Keppart and Loodla

2006). Throughout the experiment period we mon-

itored the meteorological conditions at the experi-

mental site using Metos Model MCR300 weather

stations (Pessl Instruments GmbH, Weiz, Austria).

The sensors were positioned two metres above the

ground.

In the current research we gathered the informa-

tion about average day air temperature (8C), relative

air humidity (%) and precipitation (mm). By results

the weather parameters are presented for periods I�

IV and decomposition weeks (weeks 1�2, weeks 3�8,

weeks 1�8) (Table III).

Statistical analysis

Statistical analyses were carried out using software

Statistica version 7.0 (StatSoft Inc.). Analysis of

variance (ANOVA) for a randomized complete

design was used to test the influence of N fertiliza-

tion on decomposition. In the figures presented

the value of standard error (SE) was found by using

the two-way unweighted means analysis, where the

factors were: (i) dates of sampling and (ii) rates of

nitrogen fertilization.

The linear and multiple regression analysis with

backward stepwise were performed to evaluate the

relationships between the weight loss and different

weather parameters (average air temperature, air

relative humidity and precipitation of each period).

Results

Chemical composition of turfgrass clippings

The DM content and chemical compositions of

turfgrass clippings during the different periods are

presented in Table II.

Weather

Summarized weather parameters for the whole

decomposition process and different periods of the

decomposition process are presented in Table III.

Decomposition of turfgrass clippings

The decomposition process of clippings from four

different fertilization treatments was similar in all

analysed experimental periods. The fertilization rate

did not affect the decomposition process significantly

(F(3,343)�0.024; p�0.99).

Decomposition of turfgrass clippings during dif-

ferent periods showed the same pattern of decom-

position but the decomposition rates were different

(pB0.05). The fastest decomposition during the

8-week period was recorded for material cut in

late summer on 13 September (Figure 1). The

slowest rate was observed during the decomposition

which started in October, which is middle of the

autumn in Estonia. The difference in decomposition

rates was most apparent during the first two weeks of

each decomposition period. During the following

weeks the variations between decomposition periods

were smaller. In all compared periods the decom-

position rates were highest directly after deposition

of clippings and slowed down during the following

weeks. When approximately 40% of the initial

material still remained in the bag the decomposition

process slowed down considerably. The material

from harvested plots of different fertilization treat-

ments decomposed at similar rates (Figure 1).

The cellulose and lignin decomposition was stu-

died for the herbage during Period IV only. The

cellulose in the turfgrass clippings started to decom-

pose 4 weeks after cutting, when on average 33% of

Table II. The dry matter (DM) content, nitrogen (N), carbon

(C), cellulose and lignin initial concentration and C:N ratio in

clippings at the beginning of Periods I�IV.

N0$ N80 N160 N400

Period I

DM,% 28.3a% 26.4a 26.4a 26.3a

N, mg g�1 24.3a 29.3b 30.5b 39.2c

C, mg g�1 418.6a 418.7a 420.9a 417.6a

C:N 17.3c 14.3b 13.8b 10.6a

Period II

DM,% 17.7b 16.9b 14.3a 14.4a

N, mg g�1 42.3a 46.6a 53.9b 58.5c

Period III

DM,% 28.7c 25.0b 21.8a 21.0a

N, mg g�1 38.1a 42.1ab 48.2c 44.4bc

Period IV

DM,% 28.6c 24.2b 23.1a 22.4a

N, mg g�1 23.3a 38.5b 38.0b 45.2c

C, mg g�1 425.5a n.d.§ n.d. 433.5a

C:N 18.2a n.d. n.d. 9.3b

Cellulose, mg g�1 178.2a n.d. 185.0b 175.1a

Lignin, mg g�1 12.6a n.d. 12.2a 12.2a

$N0, N80, N160 and N400 means 0, 80, 160 and 400 kg N ha�1.
%Different letters within each line indicate significant difference of

the mean values at pB0.05.
§n.d., not determined.
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Table III. Weather parameters for test periods.

Mean temperature, 8C Mean relative humidity, % Precipitation, mm

Week Average Min Max Average Min Max Average Min Max

Period I

1�2 10.4 7.8 13.9 74.1 52.6 94.5 30.2 0.0 13.4

3�8 17.1 8.2 26.6 76.2 58.0 97.0 57.0 0.0 23.8

1�8 15.3 7.8 26.6 75.7 52.6 97.0 87.2 0.0 23.8

Period II

1�2 12.9 7.2 15.9 90.3 81.0 98.0 6.0 0.0 6.0

3�8 6.4 �9.7 14.0 97.9 92.0 99.0 115.6 0.0 19.0

1�8 8.1 �9.7 15.9 95.9 81.0 99.0 121.6 0.0 19.0

Period III

1�2 0.05 �9.7 10.1 97.4 92.0 99.0 35.4 0.0 14.6

3�10 3.3 �4.8 10.0 98.4 90.0 99.0 79.0 0.0 11.2

1�10 2.6 �9.7 10.1 98.2 90.0 99.0 114.4 0.0 14.6

Period IV

1�2 16.6 9.6 24.4 80.1 66.0 98.0 53.6 0.0 23.0

3�8 16.3 12.6 20.3 83.7 70.0 98.0 76.2 0.0 14.0

1�8 16.3 0.0 23.0 82.5 66.0 98.0 129.8 0.0 23.0

Figure 1. Turfgrass clippings weight loss, as percentage (%) of the initial dry matter (DM) weight, during decomposition in spring�summer

2006 (Period I), in autumn (Period II), autumn�winter (Period III) and in spring�summer 2007 (Period IV). Bars indicate confidence

limits at pB0.05.
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the initial mass had already decomposed (Figure 2).

The initial content of cellulose (179.4 mg g�1) had

decreased by the end of the investigated period to

88.8 mg g�1. The initial content of lignin in the

decomposing material was 12.4 mg g�1. During

8 weeks (the period of decomposition in this

trial) the lignin was not decomposing and its con-

centration was increasing during successive weeks.

By week 8 the content of lignin had increased up to

154.0 mg g�1.

Influence of weather conditions on decomposition of

clippings

Air temperature was the only measured weather

parameter that showed a significant influence on

the decomposition of turfgrass clippings during an

8-week period (R2�0.97; Figure 3). The general

tendency was that increasing the air temperature

to 108C resulted in an increase in the rate of

decomposition, but further increases in air tempera-

ture resulted in a slowing down of the decomposition

rate (Figure 3). There were no significant relation-

ships between relative air humidity or precipitation

and weight loss over an 8-week period (p�0.05;

Table IV).

In the spring periods of the two years (Period I and

Period IV) at the start of the decomposition process

the weather conditions were similar for both 8-week

periods. In 2006, the average air temperature over 8

weeks was 15.48C and relative air humidity was

76%. In 2007, those parameters were 16.58C and

82%, respectively. In similar weather conditions the

weight losses over 8 weeks were also similar, and in

those years by 8 weeks after the cut the proportions

of material that had decomposed were 61.9% and

60.3%, respectively. In the late summer period

(Period II) the average air temperature over 8 weeks

was lower (8.28C) and relative air humidity com-

pared with the spring periods was higher (96%), and
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Figure 3. Regressions of mean temperature and weight losses at

different times of the decomposition process. The points at

different temperatures indicate weight losses of the decaying

material from different fertilization treatments. A: Week 1�8

y��0.32x2�6.33x�43.08 R2�0.46*** (polynom). B: Week

1�2 y��0.32x2�6.30x�9.15 R2�0.83* (polynom). C: Week

3�8 y��1.58x�53.09 R2�0.48* (linear). * Significant at

pB0.05. *** Significant at pB0.001.

Figure 2. Concentration of the lignin and cellulose in turfgrass

clippings during decomposition (Period IV). Bars indicate con-

fidence limits at pB0.05.
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in these weather conditions the rate of decomposi-

tion was the fastest. In period III the average air

temperature during 8 weeks was 2.28C, relative air

humidity was the highest (98%) and under these

conditions 57% of material had decomposed.

By 1�2 weeks of the decomposition process the

relationship between air temperature and weight loss

was similar to the relationship between air tempera-

ture and weight loss of the whole investigated period,

and the optimal air temperature for decomposition

of clippings was 108C on average. The mean air

temperatures of Period I weeks 1�2 were 10.48C and

of Period IV weeks 1�2 16.38C. The weight loss

during weeks 1�2 in the cooler temperatures of

spring�summer 2006 was one-third greater than in

the warm temperatures of spring�summer 2007,

43.9% and 27.1% of initial dry matter, respectively.

The rate of decomposition was also decreased

under conditions of low temperatures. The slowest

was the decomposition during late autumn (Period

III) when the average air temperature of weeks 1�2

was 0.18C. In Period II the average temperature of

weeks 1�2 was 8.28C and weight loss 32%, which

was similar to Period IV.

The relationship between weight loss and relative

air humidity was negative during weeks 1�2 (Table

IV). The highest relative air humidity (91�97%) in

this period was characteristic of the late summer and

autumn periods (Periods II and III) and the lowest

was the air humidity (74�80%) during spring

periods. The significant relationship between pre-

cipitation and weight loss during weeks 1�2 was not

observed.

After the second week of each period the decom-

position rate was faster during the autumn periods

(Period II and III). The average air temperature of

weeks 3�8 of Period III was higher than during first

2 weeks, thereby resulting in a remarkable increase in

decomposition rate. The slowest was the decom-

position in weeks 3�8 of Period I, when the average

air temperature was 178C. Increasing the relative air

humidity and precipitation had a positive influence

on weight loss (Table IV).

Decomposition models

Climate parameters (temperature, humidity and

precipitation) were tested to predict plant residues

decomposition with a multiple regression model

(Table V). By weather parameters weight loss models

were fitting better if every 8-week period was divided

by two different time periods: 1�2 and 3�8 weeks.

Table IV. Regressions of mean relative humidity and precipitation with weight losses at different times of the decomposition process.

Parameter (Climatic variables) Linear regression R2

1�2 week

Mean relative humidity, % Weight loss��1.15x�126.36 0.71*

Precipitation, mm Weight loss��0.18x�33.94 0.063ns$

3�8 week

Mean relative humidity, % Weight loss�1.16x�67.82 0.95***

Precipitation, mm Weight loss�0.39x�3.39 0.53***

1�8 week

Mean relative humidity, % Weight loss�0.21x�45,63 0.074ns

Precipitation, mm Weight loss�0.084x�54.33 0.034ns

*Significant at pB0.05.

***Significant at pB0.001.
$ns, not significant.

Table V. Results of multiple regression analysis with backward stepwise of the test between weight losses of different weeks and mean

temperature, mean relative humidity and precipitation.

Week Intercept

Mean air

temperature,8C

Mean air relative

humidity,%

Precipitation,

mm

Standard error of

estimate R2 p

1�2 154.770 (6.442)$ 0.191 (0.088) �1.352 (0.064) �0.392 (0.040) 3.292 0.942 B0.0000

3�8 �41.294 (18.057) 1.225 (0.562) 0.687 (0.129) 7.527 0.703 B0.0000

1�8 �82.776 (15.695) 1.766 (0.234) 1.994 (0.176) �0.380 (0.038) 4.342 0.736 B0.0000

$Standard deviations are in parentheses.
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The multiple regression backward stepwise analysis

revealed that air temperature will have a strong

positive influence on decomposition process. The

model that contained the average air temperature,

relative air humidity and precipitation described well

the speed of decomposition in weeks 1�2 and 1�8. In

weeks 3�8 the weight loss model was the best if the

average air temperature and precipitation were

included in the model.

Discussion

The influence of air temperature and humidity on

decomposition of fresh organic material

The rate of decomposition of turfgrass clippings

depends mainly on the weather conditions during

the decomposition period. The initial content of

nitrogen and different C:N ratio in plant material did

not affect the decomposition process through the

whole trial period. Quemada and Cabrera (1995)

and Wagner and Wolf (1999) have concluded that an

increase in nitrogen content does not influence the

process of decomposition if the C:N ratio of decom-

posable material is initially less than 20. In our trial

the initial C:N ratio was less than 20 in all fertiliza-

tion treatments, which was also the presumable

cause for a similar decomposition process for the

material derived from different fertilization plots.

The influence of N fertilization rate on the clippings

decomposition has been dealt in our previous paper

(Kauer et al. 2007).

Air temperature and relative air humidity were

important factors influencing the decomposition of

turfgrass clippings on the sward surface. Previous

investigations have revealed that by increasing tem-

peratures up to 358C the rate of organic matter

decomposition will increase, and after that it stabi-

lizes and then starts to decrease (McKinley and

Vestal, 1985, Chen et al. 2000). Our results indi-

cated that during decomposition of fresh material on

the ground surface the optimal air temperature for

decomposition was lower than previously reported

and did not exceed 108C. There was a reduction in

the rate of decomposition at temperatures above and

below 108C. The research of Flanagan and Veum

(1974) showed that decomposition of organic matter

can be limited by low air temperature as well as low

moisture content, and increasing only one of these

factors does not compensate fully for the influence of

other limiting factors. Flanagan and Veum (1974)

also indicated that, in the case of decomposing

material which had low moisture content (B50%

of dry weight), temperature increases had little effect

on decomposition, but at higher moisture content,

respiration was more responsive to temperature

changes. Similarly, they noted that moisture changes

had little effect on litter decomposition at lower

temperatures (B58C), while at higher temperatures

(10�158C), decomposition was more responsive to

moisture changes. Too little or too much water

inhibited, or even stopped, litter decomposition

due to matric limitation or oxygen diffusion limita-

tion, respectively (Flanagan and Veum 1974, Clark

and Gilmour 1983). Our research gave similar

results. In our research the dynamics of moisture

content in decaying material was not determined,

but still we presume that by increasing the tempera-

ture above 108C the low moisture content in

decomposable material was becoming the limiting

factor for the decomposition process. The fast drying

of clippings is indispensable if they remain on the

sward surface. To slow the drying process we must

implement activities that promote rapid infiltration

of the clippings into the canopy where the moisture

content is higher. This is contributed by more

frequent mowing. In this case the clippings which

sift to the canopy are shorter in length and their

reaching the soil surface is less hindered.

At temperatures below 108C the limiting factor

was the air temperature. The influence of air

temperature on the decomposition process was the

most important at the beginning of decomposition

process (during first 1�2 weeks) when the rate of

decomposition was highest. By increasing air tem-

perature from the optimal (108C), the weight loss by

decomposing was slowed down and this effect was

most likely caused by fast drying of material. Our

results indicate that for fast decomposing of turfgrass

clippings it is important to maintain the initial

moisture content in the material because rainwater

can not fully compensate for it. In Period IV the

average air temperature during the first 2 weeks of

decomposition process was 168C. This was relatively

higher than in other investigated decomposition

periods. Even though the amount of the precipitation

was also the highest, the weight loss stayed at a lower

level compared with the other decomposition peri-

ods. The impact of moisture content of returned

clippings at the beginning of decomposition is also

indicated by the relationship between relative hu-

midity and decomposition. At the beginning of the

decomposition period (the first 1�2 weeks) when the

material was still fresh, the relationship between

air humidity and decomposition rate was negative

(Table V). But it was only an apparent effect because

the highest rates of air humidity were determined in

late autumn when the air temperature was very low

and therefore the weight loss by decomposition was

very small.

The second reason why the relationship between

air humidity and decomposition rate seems negative
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is due to differences of the air humidity in spring and

autumn. In spring (after winter) the content of the

air humidity during the first 2 weeks of studied

decomposition process is lower (74.1% Period I and

79.4% Period IV) than in autumn (90.3% for Period

II and 97.4% for Period III). In spring the higher air

temperature causes the higher air humidity due to

the higher rate of evaporation from the soil. In

summer and autumn the higher temperature de-

creases the air humidity. Due to the different

temperature effect on the air humidity at the

different times of the year the relationship between

air humidity and decomposition rate was negative

during the first 2 weeks of the decomposition process

in our study. In summer and autumn the air

humidity is more dependent on the air temperature

and precipitation, which is why the decomposition

during weeks 3�8 of the decomposition process is

described mainly with the air temperature and

precipitation. This means that to study the influence

of weather conditions on the decomposition we

should also take into account seasonal effects at

different times of the year because the relationships

between temperature and humidity may vary at

different time of year.

The negative effect of air humidity on the decom-

position process in the first weeks (1�2) and weeks

3�8 was the reason why the influence of air humidity

was not significantly important on decomposition

process in the whole period. From the beginning of

the third week, when decomposable material had

already dried, the relationship between weight loss

and precipitation became positive, showing that in

the case of dry material the moisture content is one

of the important factors limiting the decomposition

process. Henriksen and Breland (1999) found that

plant residues were decomposing intensively even

though the average temperature of the whole in-

vestigation period stayed under the 08C and did not

rise above 2.48C. Our research results indicated also

that by temperatures around zero degrees (Period

III) the decomposition process continued but the

rate of decomposition of grass clippings was signifi-

cantly slower than the decomposition rate at higher

temperatures. However, our results do not enable us

to determine that the decomposition process con-

tinued at 08C, or even by lower temperatures,

because during that decomposition period there

were days when the average temperature exceeded

58C. It is possible that the majority of the decom-

position process occurred during short periods when

the temperatures were higher than 08C. Due to

variability in temperatures, average temperature

cannot be considered a good indicator to character-

ize specified time periods for evaluating the influence

of air temperature on decomposition. This assump-

tion is true for late autumn, winter and early spring

periods when average temperatures remain around

08C but there are wide variations between night and

day temperatures.

The influence of air temperature and humidity on

easily decomposable compounds and cellulose

Our results indicated that during the first 2 weeks,

when it was mainly the more easily decomposable

compounds that were decomposing under condi-

tions where the content of moisture was not the

limiting factor, the rate of decomposition increased

remarkably in response to increasing temperatures

from 0 to 108C. In such conditions the influence of

increasing temperatures on the decomposition of

easily decomposable compounds was especially no-

ticeable at lower temperatures. In Period III, when

the temperature was increasing from 0.1 to 3.28C,

the weight loss also increased remarkably as tem-

peratures increased. Our results revealed that the

decomposition of easily decomposable compounds

depends on both air temperature and relative hu-

midity. Andersen and Jensen (2001) investigated

decomposition of previously dried plant residues at

three different temperatures (3, 9 and 158C) and

constant air humidity and found that the decom-

position of easily decomposable compounds (i.e.

water-soluble compounds) was less dependent on

temperature than was the decomposition of more

slowly decomposable compounds (i.e. cellulose and

lignin).

Several studies have concluded that the decom-

position of slowly decomposable structural com-

pounds is sensitive to changes in temperature, and

the decomposition of such compounds by lower

temperatures is more limited than by higher tem-

peratures (De Neve et al. 1996, Nicolardot et al.

1994, Bol et al. 2003). According to chemical

kinetic theory, decomposition of recalcitrant, slowly

decomposing substrates has higher activation energy,

and thus higher temperature sensitivity (Bosatta and

Agren 1999). In our experiment we analysed the

content of cellulose and lignin in the clippings but

during the study period only the decomposition of

cellulose took place, which does not confirm the

earlier findings, that to decompose the structural

compounds the higher temperature is needed. The

decomposition of cellulose started when the weight

loss of the initial sample was 33%. In decomposition

Period I, during the first 2 weeks 43% of the sample

had already decomposed due to the fact that
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cellulose was also starting to decompose (assuming

that clippings had the same chemical composition in

both spring decomposition periods). The average

temperature during the first 2 weeks of Period I was

lower (10.48C) than the average temperature in the

first 2 weeks in Period IV (16.68C). The decom-

position of cellulose was more intensive if the

decomposing material was more humid, because in

Period I, due to lower air temperature, we can

suppose that the material was not drying so fast as in

Period IV. By continuing the decomposition process

when the decaying material was already obtaining

the characteristics of the surrounding environment

(i.e. similar moisture content) the decomposition

process is faster in conditions where the air tem-

perature is lower and humidity higher. Donnelly

et al. (1990) investigated the decomposition of

cellulose and lignin at different temperature condi-

tions (4, 12, 248C) and soil moisture contents (20,

40, 60%). According to their results the highest rates

of cellulose and lignin were decomposed at the

highest of the investigated air temperatures and

highest soil moisture content. The same research

also revealed that, at lower soil moisture contents,

the activity of microbes decomposing the cellulose

and lignin was not increasing in response to increas-

ing temperature. They concluded that if moisture

is a limiting factor, then microbes did not respond

to increasing temperatures and in this case the

soil moisture content is a more important factor

influencing the decomposition process than tem-

perature. The results of our investigation for decom-

position in weeks 5�8 are in accordance with the

results of Donnelly et al. (1990). In decomposition

Periods I and II until week 4, 53.6 and 53.1% was

decomposed from the initial mass. The weight

losses were similar, meaning that the material should

contain similar amounts of different carbon com-

pounds. The Periods I and II, weeks 5�8, the

average air temperatures were 19.5 and 3.98C and

air humidity 73.0 and 97.7%, respectively. The

decomposition in that time interval was faster in

Period II, which was cooler and more humid than

in Period I. Some other studies also support the

finding that higher air temperatures do not increase

the rate of the decomposition process, mainly due to

lower moisture content in decomposing material

(Giardina and Ryan 2000, Epstein et al. 2002,

Aerts 2006).
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Abstract

Question: To what extent is restoration of vegetation in coastal grasslands

delayed by accumulation of nutrients after abandonment of traditional manage-

ment and subsequent reed encroachment? How does nutrient flow in the plant–

soil system react to reintroduction of grazing?

Location: Coast of Baltic Sea, western Estonia.

Methods: Abandoned, continuously managed and restored coastal meadows

were selected in four different study regions and their vegetation composition

sampled. Nitrogen, P, K, Na, Ca and Mg concentrations and C/N ratios were

determined in both vegetation and soil. Differences between management

groups were evaluated.

Results: Comparison among different management groups revealed several dif-

ferences in both relative and total amount of nutrients in soil and vegetation.

Most soil properties of restored sites were similar to those in abandoned sites.

Carbon stock in the soil profile doubled after abandonment, total N concentra-

tion in the top soil layer increased while plant available P concentration

decreased. The phytomass and chemical composition of phytomass rapidly

changed back to a ‘normal’ level after restoration. Species composition remained

different, but species typical of coastal grasslands were present in restored sites.

There was a strong site specificity in the results.

Conclusions: Re-establishment of grazing had a rapid impact on plant biomass

of coastal grasslands. Species composition responded more slowly, but target

species returned relatively quickly. Slow recovery of soil properties, however,

means that the results of restoration may be fragile and return of tall-growth

vegetation is very probable if managent intensity declines. Long restoration peri-

ods should be planned to reach pre-abandonment environmental conditions

when using non-destructive restoration methods.

Introduction

Boreal Baltic coastal meadows (Natura 2000 code 1630*;
they also belong to the Northern European group of mari-

time salt marshes, Chapman 1977) are considered of very

high nature conservation value (Adam 1990; Allen & Pye

1992; Rannap et al. 2004), serving as a habitat for many

rare and threatened amphibian, bird (especially waders)

and plant species (Rebassoo 1975; Puurmann & Ratas

1998; Kuresoo & Mägi 2004). In the northern part of the

Baltic Sea area, they are located in an area of post-glacial

isostatic land uplift. During the last several thousands of

years, in regions where the shores are flat, sea is shallow

and wave action is small, the land that has risen from the

sea has been immediately taken into use byman to pasture

livestock. This has prevented accumulation of nutrients in

the soil, has kept the soils of coastal grasslands young and

developing, and has created habitats with short-stature

vegetation. As in all other semi-natural meadows in the

hemiboreal zone of Europe, the quality of coastal meadows

for nature conservation directly depends on human-

induced management, mostly grazing (Gibson et al. 1987;

Applied Vegetation Science
Doi: 10.1111/j.1654-109X.2011.01167.x© 2011 International Association for Vegetation Science 219



Jerling 1999; Jutila 2001; Burnside et al. 2007). However,

the intensification of agriculture in the 20th century has

made pasturing in coastal areas economically unprofitable

andmost coastal meadows have now been abandoned.

On abandoned Baltic coastal grasslands, Phragmites aus-

tralis becomes dominant and forms dense and high reed-

beds. During this process, species that are adapted to the

low statue of the vegetation of grazed coastal meadows lose

their habitat and a considerable drop in biodiversity is

observed (Dijkema 1990; Esselink et al. 2000; Burnside

et al. 2007; Wanner 2009). Recognition of species decline

has initiated several restoration projects in coastal grass-

lands (e.g. Kokovkin 2005). However, removal of Phrag-

mites stands can be rather expensive and labour intensive

and is not always successful (Burdick & Dionne 1994;

Marks et al. 1994; Chambers et al. 1999). Therefore, con-

servation agencies in the Baltic region usually do not

employ destructive methods of reed removal (e.g. sod cut-

ting) and in most cases rely only on reintroduction of graz-

ing as a restoration tool and allow the ecosystem to

develop without extensive man-made transformations.

However, in such modest and low-input restoration

events, return of favoured bird and plant species to areas

where grazing is reintroduced often takes longer than

expected (Kuresoo &Mägi 2004).

We hypothesize that restoration success on abandoned

coastal grasslands is reduced by natural eutrophication that

takes place during reed encroachment (see also Chambers

1997; Chambers et al. 1999; Bart & Hartman 2000). Reed

is highly productive and in natural reedbeds most of the

biomass remains ungrazed and enters the detritus system

(Polunin 1984; Hocking 1989). In coastal areas, where

decomposition and mineralization are reduced due to

moist conditions, reedbeds not only accumulate a large

amount of biomass and nutrients above ground, but also

in soil. Mineralization of litter in reedbeds is also sup-

pressed by the high C/N ratio (Polunin 1984) of shoots of

Phragmites.

Reintroduction of grazing should quickly reduce the

amount of plant biomass and change the flow of nutri-

ents in restored sites. Changes in vegetation composition

can also be expected to occur relatively fast if there is

still a seed bank present in the soil (although after a

long time of abandonment this is often not the case; see

e.g. Thompson et al. 1997; Wolters & Bakker 2002;

Wanner 2009) or when there is a nearby source for spe-

cies immigration (e.g. Bernhardt & Koch 2003). But the

inertia of soil development processes is strong and could

prevent re-establishment of small plant species charac-

teristic of coastal grasslands due to increased productiv-

ity, even if their immigration is not limited by

availability of propagules (Onaindia et al. 2001; Van Dijk

et al. 2007).

The aim of the current work is to estimate the extent to

which restoration effects are delayed by changes in nutri-

ent availability on abandoned coastal grasslands and how

nutrient flow in the plant–soil system reacts to reintroduc-

tion of grazing. We approach the issue using comparative

analysis of vegetation and soil properties of abandoned

coastal meadows (reedbeds or reed-dominated sites),

restored coastal meadows and well-preserved (grazed)

coastal meadows. We address the following specific ques-

tions: (1) What happens to the soils after management of

coastal grassland ceases? (2) How do soil and vegetation

properties (especially their macronutrient concentrations)

respond to reintroduction of grazing? (3) To what extent is

restoration of vegetation in coastal grasslands delayed by

presumed accumulation of nutrients after abandonment of

traditional management and subsequent reed encroach-

ment?

Methods

Fourteen different coastal grasslands in four regions

were selected along the western coast of Estonia (Fig. 1)

based on information on their management history. In

each region, continuously managed, abandoned (neither

grazed nor mown for at least 30 yr before the study)

and restored (by means of re-establishment of grazing

about 3–5 yr before the study) coastal grassland sites

were selected as close to each other as possible in order

to minimize the effect of site specificity on soils (e.g.

effects of parent material, stoniness, texture, weather).

Restored sites were selected as close to abandoned sites

as possible (in Haeska and in Piirumi separated only by

a fence between the pastures) in order to assure the

similarity of the vegetation and management history

prior to the start of restoration. Managed sites were

selected as having as similar geomorphology to the

abandoned sites as possible. There was no restored site

available in northernmost Silma region. Managed sites

had been grazed primarily with cattle and occasionally

with sheep and horses at ca. 0.5–1.5 livestock units per

hectare per year.

All studied grasslands were relatively large and wide,

with a distance from the shoreline to the landward edge of

the grassland mostly exceeding 500 m. A relatively homo-

geneous upper part of the saline zone (middle to upper

geolittoral) was selected for the study in all sites, and spe-

cial care was taken to select areas without a clearly detect-

able elevation gradient in order to minimize differences in

salinity, effects of waves, sedimentation, etc., between

plots, and to also ensure comparability between sites. Plant

associations dominating inmanaged grasslands were Elytri-

gietum repentis, Junco-Glaucetum and Festucetum rubrae.

Abandoned grasslands were almost completely dominated
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by Phragmitetum australis while restored sites did not have

fully developed plant associations (transitional versions of

Deschampsio-Caricetum nigrae, Elytrigietum repentis and

Phragmitetum prevailed).

In each site 20 0.5 m 9 0.5 m relevés were investigated

on two 90-m long transects (ten plots per transect, 10-m

apart) located 30 m from each other and perpendicular to

the coastline. In each relevé, plant species compositionwas

determined, cover of each species estimated and vegetation

height measured. From each second relevé (ten plots per

site) the central 10 cm 9 50 cm part was sampled for

measurement of plant standing biomass (litter was

excluded), and from the rest of the plot at least 15 g of liv-

ing plant material was collected for chemical analyses. In

the central part of the same plots the depth of a humus

layer (A, AT and AO horizons, hereinafter referred to as

top layer) of soil was measured and soil samples from the

top layer were collected for chemical analyses. One soil pit

(up to 1-m deep) was excavated between the transects for

description of soil type, generic soil layers and collecting

samples for estimation of bulk density and C content of the

soil. Plant biomass samples were dried at 80 °C for 48 h

and then weighed. Samples for chemical analyses were

air-dried. Field analyses were undertaken in Jul and Aug

2005.

Acid digestion with sulphuric acid solution was used

to determine total content of P, K, Na, Ca and Mg in the

plant material. After digestion, the content of total P was

determined colorimetrically. Total K and Na content

were determined by flame photometry and total Ca and

total Mg were measured using atomic absorption spec-

troscopy. Total N and total C content of oven-dried

samples were determined by the dry combustion method

on a varioMAX CNS elemental analyser (ELEMENTAR,

Germany).

Soil samples were air-dried, sieved through a 2-mm

sieve and analysed for total N (Kjeldahl method), plant

available P, K, Ca and Mg (Mehlich-3), organic C (Tjurin)

and pH (KCl). Organic matter content of the soil was deter-

mined by weight loss after heating for 4 h at 500 °C. All
chemical analyses were performed in the Laboratory of

Soil Science and Agrochemistry of the Estonian University

of Life Sciences. Carbon stock in the soil profile was calcu-

lated by multiplying bulk density of each soil layer with

the depth and C content of that layer and then correcting

for the area.

We employed two-way analysis of variance (ANOVA)

to estimate differences between management groups,

effect of region and regional differences in management

effects (as estimated by the interaction between the factors

‘region’ and ‘management’). All variables were tested for

normal distribution of residuals of model predictions with

the Shapiro test. Number of species and vegetation height

were log-transformed and plant canopy cover was arcsin-

transformed prior to analyses to obtain a fit with normal

distribution. We employed Dunnett’s modified Tukey-

Kramer pair-wise multiple comparison test (DTK test) for

detection of homogeneous groups.

Correlation between concentration of nutrients in the

soil and in plants was tested using linear correlation analy-

sis, which was performed separately for different manage-

ment types as well as for the pooled data.

We used detrended correspondence analysis (DCA) in

order to describe variation of vegetation composition and

passively fitted environmental vectors on the resulting

ordination. Linear correlation analysis was employed to

estimate the relationship between the axes values for each

site and the non-categorical environmental variables. Dif-

ferences in diversity of vegetation between management

groups were assessed with Shannon diversity and even-

ness indices.

Twenty-nine species commonly found in ecologically

well-preserved coastal grasslands (pers. obs.) were selected

to serve as indicator or target species for evaluation of

Fig. 1. Locations of the study sites in four regions on the western coast of

Estonia. Site numbers: 1 – Pürksi (abandoned; 58°59′51″ N, 23°34′03″ E); 2

– Tahu (managed; 58°59′38″ N, 23°33′56″ E); 3 – Põgari (managed; 58°48′

13″ N, 23°31′10″ E); 4 – Saardu (abandoned; 58°47′20″ N, 23°36′0″ E); 5 –

Haeska I (managed; 58°46′52″ N, 23°39′24″ E); 6 – Haeska II (restored; 58°

46′58″ N, 23°41′44″ E); 7 – Haeska III (abandoned; 58°47′05″ N, 23°42′

15″ E); 8 – Salmi (managed; 58°43′55″ N, 23°40′01″ E); 9 – Kastna

(abandoned; 58°19′33″ N, 23°54′30″ E); 10 – Suti (managed; 58°18′55″ N,

23°58′30″ E); 11 – Kavaru (restored; 58°16′06″ N, 24°10′37″ E); 12 –

Piirumi I (restored; 58°09′30″ N, 24°28′37″ E); 13 – Piirumi II (abandoned;

58°09′14″ N, 24°28′48″ E); 14 – Häädemeeste (managed; 58°5′27″ N; 24°

29′08″ E).
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restoration success (Appendix S1; hereinafter ‘typical

coastal grassland species’). Species selection was guided by

the database of habitat preferences of Estonian species

(Sammul et al. 2008). Relative frequency of presence in

relevés (occurrence probability) of these species was calcu-

lated per each management group and arcsin-transformed

to obtain normal distribution. Mean occurrence probabili-

ties were compared between management groups with

paired t-tests assuming unequal variance and with Welch

adjustment to the degrees of freedom.

All statistical analyses were carried out with the R soft-

ware version 2.10.1 (R Development Core Team, Vienna,

Austria). DCA was carried out using the package VEGAN

(version 1.17-0), and environmental vectors were fitted

using the function ‘envfit’ with 999 permutations.

Results

Vegetation properties

Management had a strong influence on most vegetation

properties (Table 1). Abandoned sites had larger plant

canopy cover, taller vegetation and more plant biomass

than managed and restored sites. Managed and restored

sites had more diverse vegetation (more species per

relevé, increase in diversity indices). Concentrations of N

and Na were larger in plants of managed and restored

sites than in plants of abandoned sites. Only the concen-

tration of P and Ca, as well as the C/P and N/P ratios, in

plants did not differ between sites with different manage-

ment. Most of the vegetation properties in restored sites

were similar to those of managed sites, while abandoned

grasslands formed a separate homogeneous group. The

exceptions to the above were mean Shannon diversity

index and evenness of vegetation (restored sites were a

separate homogeneous group with intermediate diversity

values between low-diversity abandoned sites and high-

diversity managed sites), concentration of Mg in plants

(restored sites and abandoned sites were similar and both

differed from managed sites), concentration of K in

plants (plants in restored sites had a lower concentration

of K than plants in managed or abandoned sites) and C/

N ratio (managed sites did not differ from either restored

or abandoned sites while the latter differed from each

other).

There was also a strong difference between different

regions in most vegetation properties. Only concentration

of Mg, C/P ratio and N/P ratio in plants did not differ

between different regions. Regional differences were also

pronounced in the significance of the interaction between

the effects of management and region, however, most

interactions were ordinal and only N concentration in

plants had a disordinal interaction between region and

management.

Soil properties

The soils of the coastal grasslands studied are classified as

Gleyic Fluvisols (Sodic), Histic Fluvisols (Sodic) and Eutric

Histosols (Endofluvic features; WRB 2006). Soils have

developed on sand or clay as parent material, they are

moist and with slightly developed profiles. Abandoned

areas with a fully developed reedbed had a very thick and

tough top layer of soil with large quantities of roots and

litter of Phragmites. Five of the grasslands had turf layers

deeper than 10 cm. Two of these grasslands belong to

group of abandoned grasslands (Pürksi: total range of turf

layer 7–16 cm, share of plots with turf layer over 10 cm

deep 60%; Kastna: 10–46 cm, 70%), two sites were

managed (Häädemeeste: 8–23 cm, 80%; Suti: 10–19 cm;

90%) and one site was restored (Piirumi restored: 5

–25 cm, 30%).

Management has a statistically significant influence on

all soil properties studied except for C stock in the soil pro-

file (Table 2). There was a two-fold difference in C soil

stock between managed sites and either abandoned or

restored sites; however, due to large variations and lack of

replication (only one value could be estimated per each

site) this difference is not statistically valid. Most soil

parameters did not differ between restored and abandoned

sites, whereas managed sites formed a separate homoge-

neous group. The exceptions were the depth of the top

layer, N content and P content, for which managed and

abandoned sites form separate homogeneous groups, while

restored sites did not differ from sites of other types due to a

large variation. Soils of managed sites had a shallower top

layer, smaller organic matter content, smaller N, C and Mg

concentration and C/N ratio, but higher P and Ca concen-

tration, aswell as higher pH, than abandoned sites.

The regional differences were important for the depth of

top layer, pH and concentrations of K, Ca, Mg and C/N

ratio of soils. The interaction of management and region

was significant for all estimated soil parameters except

P content in soils. Most interactions were ordinal, but K

and Ca content in soil were disordinal.

The content of a particular mineral element in the soil

was only infrequently correlated with its content in the

plants (Table 3) and correlations were rare in several man-

agement types simultaneously. Content of P in plants was

negatively correlated with its content in soil in restored

sites, content of Mg in plants was negatively correlated

with its content in soil in abandoned sites and when the

data from different management groups were pooled. Con-

tent of Ca in plants was negatively correlated with Ca con-

tent in soil in managed sites and in pooled data. There was

a positive correlation between C/N ratio in plants and in

soil in managed sites and a negative correlation between

C/N ratio in plants and soil in restored sites.
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Species composition

The DCA on the species abundances produced four axes

with eigenvalues of 0.76, 0.62, 0.43 and 0.32. The man-

aged habitats and the restored habitats formed distinct

groups in an ordination plane (Fig. 2), suggesting different

vegetation composition. However, the abandoned habitats

were very scattered, showing very large variations in vege-

tation composition of abandoned sites. The correlation of

DCA axes with environmental parameters is given in

Table 4. Axis 1 is primarily related to vegetation character-

istics. The variation is led by the effect of management –

abandoned sites are located on the positive side and

managed sites on the negative side of DCA axis 1 (Fig. 2a).

The axis is also negatively correlated with soil pH and posi-

tively correlated with vegetation height, which is effec-

tively determined by management regime. DCA axis 2 is

positively correlated with parameters indicating low min-

eralization rate and accumulation of biomass in soil (soil C

content, organic matter content and C/N ratio, but also Mg

content). The negative end of DCA axis 2 primarily indi-

cates high species richness of a habitat.

The distribution of species in an ordination plane

revealed a distinction between different ecological groups

(Fig. 2b). The positive end of DCA axis 1 is characterized

by tall species of productive habitats (e.g. Urtica dioica and

Anthriscus sylvestris), while at the negative end typical

coastal grassland species aggregate (e.g. Plantago maritima,

Table 3. Linear correlations between estimated chemical properties of soils and plants. Statistically significant correlations are printed in bold.

Correlation (Plants vs soil) Managed Restored Abandoned Pooled

r P r P r P r P

N 0.018 0.89 �0.29 0.12 �0.0005 0.99 �0.09 0.29

P 0.18 0.17 �0.39 0.031 0.27 0.055 �0.026 0.76

K �0.10 0.43 �0.36 0.050 0.096 0.51 0.014 0.87

Mg 0.002 0.99 0.33 0.071 �0.41 0.003 �0.27 0.001

Ca �0.44 0.0004 �0.008 0.97 �0.050 0.73 �0.30 0.0003

C 0.30 0.0007 �0.018 0.89 0.009 0.93 0.059 0.33

C/N ratio 0.53 <0.0001 �0.57 <0.0001 �0.17 0.097 0.0003 0.99

r = Pearson correlation coefficient; P = probability level.
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Fig. 2. Distribution of individual relevés (a), all 280 relevés included, and species (b) in the ordination diagram for the first two axes of the DCA.

Environmental vectors are neutrally fitted into the ordination plane if their correlation with DCA axes is statistically significant at P < 0.05 (see also Table 4).

In (b), where species names overlap, higher priority for plotting the name is given to the more abundant species: less abundant species are plotted as

crosses (+). Abbreviations of environmental variables: pH – soil pH; No Sp – number of vascular plant species in relevé; Cover – plant canopy cover; Soil

Depth – depth of the top layer of soil; Veg. Height – vegetation height; Org. Matter – organic matter content of soil; N – nitrogen content in soil; C – carbon

content in soil; Mg – magnesium content in soil; C/N – C/N ratio in soil; K – potassium content in soil; P – phosphorus content in soil. Species names are

given in Appendix S1.
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Odontites spp., Juncus gerardii, Carex extensa and Blysmus

rufus). The positive end of DCA axis 2 is characterized by

species of moist habitats (e.g. Pedicularis palustris, Carex ela-

ta, Eleocharis uniglumis, Iris pseudacorus and Caltha palustris).

The negative end of DCA axis 2 is characterized by species

of alkaline and species-rich habitats (e.g. Sesleria caerulea,

Scorzonera humilis,Nardus stricta and Pilosella officinarum).

Mean relative occurrence frequency of typical coastal

grassland species was highest in relevés of managed mead-

ows and lowest in abandoned meadows (Fig. 3). The dif-

ference was statistically significant at P < 0.006 (two-tailed

test, df = 28, t = 3.02). Selected species were less common

in restored sites, but this difference did not differ from that

of managed sites (t(28) = 1.34, P = 0.19), while being

different from that of abandoned sites (t(28) = 2.39,

P < 0.024).

Discussion

Grazing has been a traditional and regularly induced dis-

turbance in Boreal Baltic coastal grasslands to which local

species have adapted and which sustains local biodiver-

sity, primarily by maintaing low-stature vegetation

(Puurmann & Ratas 1998; Burnside et al. 2007; Wanner

2009). Depending on the differences between regions

(e.g. abundance of reed or other habitats in a region),

increasing height of vegetation or even a change from

low-stature vegetation to a reedbed may or may not be

considered favourable for nature conservation (see also

Bakker et al. 1997). Such effects are especially debatable

for bird species (Koivula & Rönkä 1998; Milsom et al.

2000; Bakker et al. 2003; Ottvall & Smith 2005). In the

northern Baltic Sea area, following coastal grassland

abandonment, bird diversity (especially waders) in most

cases starts an immediate decline (e.g. Helle et al. 1988;

Kuresoo & Mägi 2004). Plant diversity, however, often

initially increases (e.g. Jutila 1997), only to decline in

later stages of succession, especially after tall and dense

reedbeds start to develop (see also Vestergaard 1998).

After establishment of reed, distribution of typical small-

stature seashore plants is restricted to the edges or occa-

sional short-term openings within the reedbeds (pers.

obs.). Our results indicate that in such abandoned sites

with tall and Phragmites-dominated vegetation the differ-

ent productivity components do not change in a uniform

manner. Comparing abandoned sites to managed sites, N

content in soil increases while P content decreases, even

though the latter effect is not uniform across the regions

studied. Nitrogen is typically the predominant limiting

nutrient for salt marsh plants (Mendelssohn & Morris

2000; but see Van Wijnen & Bakker 1999 for more

detailed analysis), in common with wetland plants in

general (Van Duren & Pegtel 2000; Van de Riet et al.

2010), thus its increase could be interpreted as increased

productivity. However, considering the large amount of

organic C in soils of abandoned sites, one could assume

that a large amount of N is actually bound with organic

compounds in soil thus making it unavailable for plant

growth. Carbon addition has even been used as a means

to create N deficiency and reduce plant growth (Eschen

et al. 2006; Reynolds & Haubensak 2009 and references

therein). In our abandoned sites, the C/N ratio is higher

than in managed sites, indicating a possible reduction in

relative N availability. Moreover, in abandoned sites the

availability of P is very low, making it the primary limit-

ing factor for plant growth (see also Olff et al. 1997; Van

Wijnen & Bakker 1997). Thus, the availability of nutri-

ents in soil does not clearly increase with abandonment,

as was initially hypothesized; yet plant biomass produc-

tion increases considerably.

Table 4. Linear correlations between between site scores on DCA axes

and non-categorical environmental variables.

Variable DCA1 DCA2 DCA3 DCA4

Number of species �0.36*** �0.35*** 0.19** 0.18**

Plant canopy cover 0.17** 0.19** 0.29** 0.10n.s.

Vegetation height 0.52*** 0.36*** 0.15* �0.13*

Depth of top layer 0.32*** �0.12* 0.10n.s. �0.12*

Organic matter content

in soil

0.47*** 0.47*** 0.07n.s. �0.10n.s.

pH of soil �0.41*** �0.22*** �0.15* 0.30***

N content in soil 0.32*** 0.31*** 0.06n.s. �0.04n.s.

C content in soil 0.49*** 0.54*** 0.06n.s. �0.24***

C/N ratio in soil 0.33*** 0.38*** �0.04n.s. �0.14*

P content in soil �0.06n.s. �0.15* 0.19** 0.04n.s.

K content in soil 0.20*** 0.23*** 0.02n.s. 0.22***

Ca content in soil �0.07n.s. 0.02n.s. 0.13* �0.10n.s.

Mg content in soil 0.46*** 0.43*** �0.01n.s. 0.01n.s.

r = Pearson correlation coefficient; ***P < 0.001; **P < 0.01; *P < 0.05;
n.s.not significant.
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Fig. 3. Relative occurrence of typical coastal grassland species in relevés

of the three studied management groups. Distribution of 29 species was

analysed, bars denote 95% confidence intervals of the mean, and statistical

differences betweenmean values are denoted with different letters.
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The increase in plant biomass is due to the increased

abundance of tall and competitive species with high rela-

tive growth rates –most notably Phragmites australis. Phrag-

mites has a broad ecological amplitude and grows best in

nutrient-rich habitats (Hocking et al. 1983; Güsewell &

Koerselman 2002). It is also a species in which growth

clearly benefits from increased N levels but is not as sensi-

tive to variation in P levels (Romero et al. 1999). Eutrophi-

cation of the Baltic Sea (Rönnberg & Bonsdorff 2004) has

probably contributed to the increased spread of Phragmites.

Moreover, it has been shown that the disturbances from

accumulation of wrack, to which large amounts of litter of

Phragmites contribute, benefits its growth in some parts of

coastal salt marshes (Minchinton 2002). Thus, there are

several factors that simultaneously facilitate and even cre-

ate a positive feedback for the development of reedbeds in

abandoned coastal meadows.

The increased amounts of nutrients in soils of aban-

doned sites did not result in increased concentrations of

mineral elements in plant biomass (Tables 1, 3). This sug-

gests that mineralization of nutrients and their flow in the

plant–soil system is reduced in such sites. The difference is

again attributable to the dominance of tall grasses, mostly

Phragmites. Importantly, low availability of N (in particular)

and excess of C in plant litter decreases the speed of

decomposition of litter and mineralization. This also affects

mineralization of P, creating a strong deficiency of plant

available P in soil and reducing P content in plants to extre-

mely low levels. Considerable increases in the amounts of

litter and poorer conditions for its decomposition lead to a

large accumulation of organic matter in soils of abandoned

sites, perhaps best illustrated as a two-fold increase in C

stock in the soil profile. This change actually alters the

whole structure of the soils – while soils of managed grass-

lands mostly belong to the class of mineral soils, soils of

abandoned sites should mostly be classified as Histic Fluvi-

sols and thereafter to Histosols (WRB 2006). This means

that these soils have a considerable turf layer, reduced pH

and provide completely different growth conditions for

plants, as well as soil biota (e.g. Butt & Lowe 2004; Ivask

et al. 2009). It is possible that reedbeds develop faster on

sites where a turf layer is already present, in which case

our results present not so much an effect of abandonment

but rather regional differences in geomorphology of the

coast, effect of elevation, etc. However, as we paid special

attention to avoiding such effects when selecting the study

sites, and also considering the number of sites and regions

studied, we are certain that this is not the case. So far evi-

dence of the impact of grazing on accumulation of biomass

in soils is contradictory. Jeschke (1983) describes how on

the German coast of the Baltic Sea trampling and soil com-

paction in grazed areas leads to reduced levels of decompo-

sition and a build-up of organic matter (see also Cuttle

2008). Vestergaard (1998), on the other hand, describes

accumulation of organic matter due to grassland abandon-

ment on the southern Baltic coasts in SE Denmark, sup-

porting our conclusions. Both studies also report the loss of

a typical coastal grassland due to reed encroachment.

There could be regional differences that are important to

consider. While in the southern Baltic, the brackish coastal

meadows are naturally on peaty soils, in the northern Bal-

tic such accumulation of peat is considered an aberrance

from the ‘natural’ state of coastal grasslands and, as such, a

conservationally unfavourable process (see also Dijkema

1984) despite possible enhanced C sequestration (Chmura

et al. 2003). Moreover, as our results also demonstrate dif-

ferences between study areas, local conditions (such as dif-

ferences in bedrock and geomorphology of the coast)

could strongly affect the dynamics of coastal ecosystems.

However, there could also be a discrepancy between the

exact processes discussed. In the first case, the effect of

trampling is discussed in areas that are still grasslands, and

where soil compaction is an important factor. In the second

case, the whole community (or even an ecosystem) is

changing from grassland to reedbed and the importance of

trampling is downgraded by the effect of increased produc-

tion of plant biomass and increased litterfall.

Restoration of coastal grassland bymeans of simply rein-

troducing grazing, with or without initial cutting back of

reed, but certainly without any application of intensive

and destructive methods for reed reduction (e.g. top soil

removal or herbicide application), does not succeed in

changing the soil properties for at least the first 5 yr follow-

ing restoration. This does not imply that such restorations

are unsuccessful; as our results demonstrate, the vegeta-

tion of restored sites has reverted to a relatively similar

state to traditionally managed (grazed) sites in terms of

most properties. Thus, there is a considerable decrease in

addition of organic matter to soil and the impact that plant

litter (through both quantity and quality) has on soil for-

mation has reverted to a state similar to managed (i.e.

desired state) coastal meadows. Moreover, even though

the soil N content and C/N ratio of restored sites is still simi-

lar to that of abandoned sites, the plant N content of

restored sites is already similar to that of the managed sites,

which indicates increased availability of N for plants and,

hence, increased N mineralization in soil. If management

of these areas continues, and new input of nutrients into

the system can be avoided, the restoration of typical coastal

grasslands should be possible. However, changes in soils

take much longer than changes in above-ground proper-

ties of the plant community (see also Onaindia et al. 2001;

Klimkowska et al. 2007; Van Dijk et al. 2007). This dis-

crepancy should be considered when planning the dura-

tion of restoration projects as well as monitoring of

restoration success.
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The DCA axes show that species composition of the

studied communities is primarily related to management

regime and lushness of the vegetation. Obviously, these

two aspects are negatively correlated, as grazing efficiently

disturbs the vegetation and reduces the level of dominance

by tall species. The second DCA axis is more complex and

demonstrates the transition from species-rich pH-neutral

(or even slightly alkaline) communities to moist, C- and

organic matter-rich (peaty) communities. Ordination very

clearly highlights the large variation in coastal communi-

ties (as also emphasized by differences between study

regions in both vegetation and soil properties), especially

variation in vegetation of abandoned sites. Not all reedbeds

are species-poor; Vestergaard (1998) decribes multi-species

Phragmites-dominated communities in the geolittoral of

Danish coasts. In our study areas, reedbeds have more spe-

cies if they are on drier or shallower soils (negative end of

the second DCA axis) or have not yet fully developed. In

such cases, the dominance of Phragmites is not as strong

and several other competitive species with high growth

rates dominate (e.g. Elymus repens, Filipendula ulmaria, Ly-

thrum salicaria and Angelica sylvestris). The latter sites can be

initially quite species-rich (see also Jutila 1997; Wanner

2009), but it is not certain whether their diversity can per-

sist when the reedbed continues to develop. High small-

scale species density (number of species per unit area) is

not typical for coastal meadows and the richness of plant

species alone is not usually the goal of conservation. In

Estonia, these habitats are restored for protection of low-

stature vegetation, suitable for small plants and specific

groups of birds and amphibians. Surprisingly, even though

the vegetation of restored sites seemed very different from

the vegetation of continuously managed sites during the

site selection process, and the distinction between these

two groups in the DCA ordination is fairly clear, the typical

coastal grassland species were relatively common (in terms

of occurrence) in restored areas (Fig. 3). Thus, just 5 yr of

restoration has been sufficient for developing early similar-

ities in vegetation of restored and continuously managed

coastal grasslands. We must point out, however, that this

early success is fragile. First, the relatively common occur-

rence of typical coastal grassland species does not imply

that they are also abundant. Second, Phragmites australis is

still present in 52% of relevés of the restored sites (Appen-

dix S1), and when present covers on average 10% of the

relevé. Thus, whenever there is a drop in the grazing inten-

sity, Phragmites and other highly competitive species that

are still commonly present (e.g. Deschampsia cespitosa and

Filipendula ulmaria) will flourish and the small species may

be rapidly out-competed (pers. obs., see also Bakker 1989;

Bakker et al. 1997). Therefore, it is essential to maintain

efficient management of restored sites when evaluating

the success of restoration, and to pay attention not only to

the presence of favourable target species but also to the

presence of species that are responsible for degradation of

the habitat and the factors that benefit abundance of unfa-

vourable species, such as accumulation of biomass and

nutrients in soil.

Acknowledgements

Kaja Lotman fromMatsalu National Park, Heikki Luhamaa

from Sea-Park of Kihnu Bay,Marju Erit from Silma Nature

Reserve and Marika Kose from Luitemaa Nature Reserve

kindly helped to locate suitable study areas and provided

information on the history of the sites. Jaanika Luiga, Kaili

Kattai, Karin Kaljund, Maris Remmel and Vivika Meltsov

provided invaluable help during fieldwork. The comments

of Norbert Hölzel and two anonymous reviewers consider-

ably improved the manuscript. Roger Evans kindly cor-

rected the English. This study was supported by grant no

P5086PKPK05 from the Estonian University of Life Sci-

ences, grant no SF0170052s08 from the Estonian Ministry

of Education, and grant no 7567 from the Estonian Science

Foundation.

References

Adam, P. 1990. Saltmarsh ecology. Cambridge University Press,

Cambridge, UK.

Allen, J.R.L. & Pye, K. 1992. Coastal salt marshes: their nature

and importance. In: Allen, J.R.L. & Pye, K. (eds.) Salt

marshes: morphodynamics, conservation, and engineering signifi-

cance. pp. 1–18. Cambridge University Press, Cambridge,

UK.

Bakker, J.P. 1989. Nature management by grazing and cutting.

Kluwer Academic, Dordrecht, NL.

Bakker, J.P., Esselink, P. & Dijkema, K.S. 1997. Options for resto-

ration and management of coastal salt marshes in Europe.

In: Urbanska, K.M., Webb, N.R. & Edwards, P.J. (eds.) Resto-

ration ecology and sustainable development. pp. 286–324. Cam-

bridge University Press, Cambridge, UK.

Bakker, J.P., Bos, D. & de Vries, Y. 2003. To graze or not to graze:

that is the question. In: Wolff, W.J., Essink, K., Kellermann,

A. & Van Leeuwe, M.A. (eds.) Challenges to the Wadden Sea

area. Proceeedings of the 10th International Scientific Wadden Sea

Symposium. pp. 67–88. Ministry of Agriculture, Nature Man-

agement and Fisheries, Groningen, NL.

Bart, D. & Hartman, J. 2000. Environmental determinants of

Phragmites australis expansion in a New Jersey salt marsh: an

experimental approach. Oikos 89: 59–69.

Bernhardt, K.-G. & Koch, M. 2003. Restoration of a salt marsh

system: temporal change of plant species diversity and

composition. Basic and Applied Ecology 4: 441–451.

Burdick, D. & Dionne, M. 1994. Comparison of salt marsh restora-

tion and creation techniques in promoting native vegetation and

functional values. Office of State Planning, Concord, NH, US.

Applied Vegetation Science
228 Doi: 10.1111/j.1654-109X.2011.01167.x© 2011 International Association for Vegetation Science

Effects of reed encroachment on Baltic grasslands M. Sammul et al.



Burnside, N.G., Joyce, C.B., Puurmann, E. & Scott, D.M. 2007.

Use of vegetation classification and plant indicators to assess

grazing abandonment in Estonian coastal wetlands. Journal

of Vegetation Science 18: 645–654.

Butt, K.R. & Lowe, C.N. 2004. Anthropic influences on earth-

worm distribution, Isle of Rum National Nature Reserve,

Scotland. European Journal of Soil Biology 40: 63–72.

Chambers, R. 1997. Porewater chemistry associated with Phrag-

mites and Spartina in a Connecticut tidal marsh. Wetlands 17:

360–367.

Chambers, R., Meyerson, L. & Saltonstall, K. 1999. Expansion of

Phragmites australis into tidal wetlands of North America.

Aquatic Botany 64: 261–273.

Chapman, V.J. (ed.) 1977. The wet coastal ecosystems. Elsevier

Scientific, Amsterdam, NL.

Chmura, D.G.L., Anisfeld, S.C., Cahoon, D.R. & Lynch, J.C.

2003. Global carbon sequestration in tidal, saline wetland

soils. Global Biogeochemical Cycles 174: 1111.

Cuttle, S.P. 2008. Impacts of pastoral grazing on soil quality. In:

McDowell, R.W. (ed.) Environmental impacts of pasture-based

farming. pp. 33–74. CAB International, Wallingford, UK.

Dijkema, K.S. 1984. Salt marshes in Europe. Nature and environ-

ment series 31. European Committee for the Conservation

of Nature and Natural Resources, Strasbourg, DE.

Dijkema, K.S. 1990. Salt and brackish marshes around the Baltic

Sea and adjacent parts of the North Sea: their vegetation and

management. Biological Conservation 51: 191–209.
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2008. Habitat preferences and distribution characteristics are

indicative of species long-term persistence in the Estonian

flora. Biodiversity and Conservation 17: 3531–3550.

Thompson, K., Bakker, J.P. & Bekker, R.M. 1997. Soil seed banks

of north west Europe: methodology, density and longevity. Cam-

bridge University Press, Cambridge, UK.

Van de Riet, B.P., Barendregt, A., Brouns, K., Hefting, M.M. &

Verhoeven, J.T.A. 2010. Nutrient limitation in species-rich

Calthion grasslands in relation to opportunities for restoration

in a peat meadow landscape. Applied Vegetation Science 13:

315–325.

Van Dijk, J., Stroetenga, M., van Bodegom, P.M. & Aerts, R.

2007. The contribution of rewetting to vegetation restoration

of degraded peat meadows. Applied Vegetation Science 10:

315–324.

Van Duren, I.C. & Pegtel, D.M. 2000. Nutrient limitation in wet,

drained and rewetted fen meadows: evaluation of methods

and results. Plant and Soil 220: 35–47.

Van Wijnen, H.J. & Bakker, J.P. 1997. Nitrogen accumulation

and plant species replacement in three salt marsh systems in

theWadden Sea. Journal of Coastal Conservation 3: 19–26.

Van Wijnen, H.J. & Bakker, J.P. 1999. Nitrogen and phosphorus

limitation in a coastal barrier salt marsh: the implications for

vegetation succession. Journal of Ecology 87: 265–272.

Vestergaard, P. 1998. Vegetation ecology of coastal meadows in

Southeastern Denmark. Opera Botanica 134: 1–72.

Wolters, M. & Bakker, J.P. 2002. Soil seed bank and driftline

composition along a successional gradient on a temperate

salt marsh.Applied Vegetation Science 5: 55–62.

Wanner, A. 2009 Management, biodiversity and restoration potential

of salt grassland vegetation of the Baltic Sea: analyses along a com-

plex ecological gradient. PhD Thesis, University of Hamburg,

Hamburg, DE. Available at: http://www.sub.uni-hamburg.

de/opus/volltexte/2010/4596/, accessed on June 06, 2011.

WRB 2006.World reference base for soil resources. World soil resources

reports 103. FAO, Rome, IT.

Supporting information

Additional supporting information may be found in the

online version of this article:

Appendix S1. Relative occurrence of species in

relevés of differently managed sites. Species with relative

occurrence value at least 0.05 in at least one of the man-

agement groups are presented in the table. Species are

ordered in a decreasing order of occurrence. Number of

relevés per each group: managed sites – 120; restored sites

– 60; abandoned sites – 100. *Denotes species which could

be used as indicators of restoration success (typical species

of Boreal Baltic coastal grasslands).

Please note: Wiley-Blackwell are not responsible for

the content or functionality of any supporting materials

supplied by the authors. Any queries (other than missing

material) should be directed to the corresponding author

for the article.

Applied Vegetation Science
230 Doi: 10.1111/j.1654-109X.2011.01167.x© 2011 International Association for Vegetation Science

Effects of reed encroachment on Baltic grasslands M. Sammul et al.



V



Kauer, K., Kõlli, R., Viiralt, R., Köster, T., Noormets, M., Laidna, T., 
Keres, I., Parol, A., Varul, T., Selge, A., Raave, H. 2012.

 THE EFFECT OF CUT PLANT RESIDUES MANAGEMENT 
AND FERTILIZATION ON THE DRY MATTER YIELD OF 

SWARDS AND ON CARBON CONTENT IN SOIL.
Communications in Soil Science and Plant Analysis 

(accepted for publication).



1 

 

The Effect of Cut Plant Residues Management and Fertilization on the Dry Matter 
Yield of Swards and on Carbon Content of Soil 

 
KARIN KAUER1, RAIMO KÕLLI1, REIN VIIRALT1, TIINA KÖSTER2, MERRIT 

NOORMETS1, TOOMAS LAIDNA1, INDREK KERES1, ARGAADI PAROL1, TRIIN 
VARUL1, ARE SELGE1 AND HENN RAAVE1 

 
1Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, 
Kreutzwaldi 1, 51014 Tartu, Estonia 
2Agricultural Research Centre, Teaduse 4/6, 75501 Saku, Estonia 
  
Address correspondence to Karin Kauer, Estonian University of Life Sciences, Institute of 
Agricultural and Environmental Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia. E-mail: 
karin.kauer@emu.ee 
 
Abstract 
The goal of this research was to study the impact of cut plant residues returned to or removed 
from the grassland sward, on the dry matter yield of swards and on the organic carbon (Corg) 
concentration of soil. The experiment was carried out during 2004-2008. The variables of the 
experiment were: (i) sward type: turfgrass sward (Festuca rubra rubra and Poa pratensis) 
and grass-clover sward (Phleum pratense, Lolium perenne and Trifolium repens); (ii) 
treatment of residues: the cut plant residues were returned (RRT) to the plots or removed 
(RRM) from the plots after the mowing. The fertilizer treatments were as follows: N0P0K0, 
N80P11K48, N160P22K96 and N400P56K240 kg ha-1 for the turfgrass sward and N0P0K0 and 
N80P26K50 kg ha-1 for the grass-clover sward. Corg and Ntot concentrations in the 20 cm soil 
layer were measured at the beginning and at the end of the experiment at depths of 0-5 cm 
and 5-20 cm. 
Nitrogen was returned as plant residues to the grass-clover sward in treatment N0P0K0 at 190 
kg ha-1 and N80P26K50 at 204 kg ha-1 and consequently the returned cut plant residues 
increased the yield by 31% and 22%, respectively. The amount of N returned as residues to 
turfgrass sward was 31-236 kg ha-1 but it had no significant influence on the sward dry matter 
yield. 
During the five years of the experiment the Corg content in 0-5 cm soil layer of grass-clover 
sward in treatment RRT increased by 42.9% and in RRM by 32.0% as an average of both 
fertilization treatments. At the depth 5-20 cm the Corg concentration did not change in 
treatment RRT but in treatment RRM with fertilization, the Corg concentration decreased by 
8.2%. In turfgrass soil the Corg concentration increased in RRT treatment by 21.6% and in 
treatment RRM by 7.2% during 5 years. In the lower soil layer the concentration of Corg 
decreased with removal and returning of plant residues. The fertilization did not influence the 
changes of Corg concentration in turfgrass swards soil.  
 
Keywords turfgrass, grasses, white clover, sward dry matter yield, soil organic carbon stock, 
nitrogen 
 
Introduction 
Land use change can lead to changes in soil properties, including the soil carbon (Houghton, 
1999) and nitrogen (Potter et al., 1996) cycles. The loss of soil organic carbon (Corg) by 
conversion of natural vegetation to cultivated use is well known (Schlesinger, 1985; Mann, 
1986; Post and Mann, 1990; Davidson and Ackerman, 1993). Much of this loss in soil Corg 
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can be attributed to reduced inputs of organic matter, increased decomposability of crop 
residues, and tillage effects that decrease the amount of physical protection to decomposition. 
The reverse process of turning open field sites into grassland is an opportunity to increase 
carbon sequestration in the soil (Lal et al., 1999). The higher rates of organic carbon in 
grasslands soils compared with arable systems is explained partly by the greater supply of C 
to the soil under grassland (Jackson et al., 1996) and partly by the increased residence time of 
C resulting from the absence of disturbance by tilling. Carbon from plants enters the soil 
organic carbon pool in the form of either above-ground phytomass, litter or root material. The 
predictions of the magnitude of the increase in soil organic carbon are associated with great 
uncertainty (Vleeshouwers and Verhagen, 2002; Freibauer et al., 2004). Based on Janssens et 
al. (2005) the average change of C stock estimated for European grasslands is 0.6 t ha-1 y-1. 
According to IPCC (2001) the value is about 0.8 Mg C ha-1 year-1 during a 50 year period.  
Recent experimental evidence demonstrates that the type and diversity of plant species in 
grasslands plays an important role for carbon transfer into the soil and is able to modify 
carbon stock under a given land use scheme (Tilman et al., 2006; Steinbeiss et al., 2008;). 
Also the grasslands’ ability to sequester the carbon is influenced by plant management e.g. 
cutting regimes and fertilization (Johnston et al., 1994; Conant et al., 2001; Eriksen and 
Jensen, 2001). When used for cutting, most of the herbage is exported from the grasslands 
and carbon stock is increased by root biomass. An alternative option, when grasslands are 
used as set-aside land, the mown material will be left on the field to decompose. The 
decomposition of returned material depends on the chemical composition of plants 
(Gunnarsson and Marstorp, 2002), that influences the dry matter yield of sward, soil Ntot and 
Corg concentrations. There is lack of research concerning the decomposition of cut plant 
residues and its impact on grassland productivity, soil Ntot and Corg concentrations. The 
impact on plant productivity has only been studied with turfgrass swards which have resulted 
in fast decomposition on the plant surface (Starr and DeRoo, 1981; Kopp and Guillard, 2002; 
Qian et al., 2003; Kauer et al., 2008). The mowing frequency of natural, semi-natural and 
conservation grasslands is lower than in turfgrass swards. Therefore, the material left on the 
plant surface is significantly further in its growth stages and has larger biodiversity.  
Our hypothesis was that different plant species have various impacts on the soil Corg 
concentration and consequently the carbon stock. The soil Corg concentration also varies if 
the plant residues after mowing are left to decompose on the field.  
The objective of this work was to study the impact of cut plant residues of turfgrass and 
grass-white clover and fertilization on the dry matter yield of swards and soil Corg 
concentration. 

 
Material and Methods 
Background of experimental site  
The field experiment was carried out at the Experimental Station Eerika of the Estonian 
University of Life Sciences (58°23'32" N latitude, 26°41'31" E longitude; elevation 60 m 
above sea level). The soil of the experimental field was a Stagnic Luvisol according to the 
WRB classification (FAO 2006). The field was previously under barley for three years. In 
autumn 2002 the area was ploughed. Soil samples were collected at depths of 0-20 cm in 
May 2003 before sowing. The soil Ntot and Corg concentration at depth of 0-20 cm was 1.49 
g N kg-1 and 14.7 g Corg kg-1, pH 1M KCl-solution was 5.5, plant available P content was 
39.6 and K content 79.7 mg kg-1. The contents of plant available elements (P and K) in the 
soil were determined by the AL-method (Egner et al., 1960). 
In the spring of 2003 the site was cultivated and sown with two different seed mixtures: (i) a 
turfgrass mixture (Festuca rubra rubra 50% and Poa pratensis 50%) (hereafter turfgrass 
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sward); (ii) a grass-clover mixture (Phleum pratense 34%, Lolium perenne 38% and 
Trifolium repens 28%) (hereafter grass-clover sward). The percentages indicate the 
proportion of seeds of a given species in the seed mixture. The swards were unfertilized 
during the period between the sward establishment in 2003 and May 2004.  
 
Fertilization of swards 
The fertilizer treatments for turfgrass sward were as follows: N0P0K0 (hereafter TGN0) as 
control, N80P11K48 (TGN80), N160P22K96 (TGN160) and N400P56K240 (TGN400) kg ha-1. The N 
as (NH4)NO3 and K as KCl fertilizer was applied by hand to the plots in 2 to 4 splits 
depending on the ratio of the N, P and K during the vegetation period. The P fertilizer as 
Ca(H2PO4)2 was applied to the plots in 1 split at the beginning of May. 
The experimental treatments for the grass-clover sward were divided based on fertilizer 
application as follows: N0P0K0 (GCN0) as control and N80P26K50 (GCN80). N fertilizer rates 
were applied in July after the second cutting. P and K fertilizers were applied in spring, at the 
end of April just after beginning of the growing season. 
The experimental design was a randomized complete block with four replicates of each of 
four fertilization treatments, with a plot size of 1 x 7 m for each treatment plot.  
 
Mowing of swards 
The turfgrass sward was mown with a rotary lawn mower at 5 cm height when the height of 
grass was approximately 7-8 cm. The mowing frequency was 13-15 times per growing season 
and it depended on the rates of grass growth. The grass-clover sward was cut during the 
growing season 4-5 times with the sickle-bar mower at 4 cm. The first time the grass-clover 
sward cut was when the grasses were at the end of tillering and leaf tubes were beginning to 
form.  
After mowing the cut plant residues were either returned to the plots (hereafter RRT) or were 
removed from them (hereafter RRM). In the RRT treatment, plots of turfgrass sward, 
immediately after weighing the fresh turfgrass clippings were returned and spread evenly 
over the plots from which they had been removed: Subsequently the whole plot was re-
mowed (“mulched”). 
 
Dry matter yield of swards 
The dry matter yield of swards was measured in 2004-2007. The material mown in each plot 
was weighed after every mowing. After the cutting and weighing procedure the plant sample 
was collected for the dry matter (DM) measurement. The dry matter content was determined 
by drying the sample in a forced-draught oven for 6 hours at 105°C.  
 
N content in the plants and N uptake by the plant 
In 2007 the N concentration of plant samples from the mown material, in RRT and RRM 
treatments with different fertilization regimes, was measured. The uptake of N by plants was 
calculated as follows: 

Uptake of N (kg ha-1) = (DM yield (kg ha-1) * N content in residues (mg g-1))/1000. 
 
Soil and thatch sampling 
In September 2008 soil samples from each plot at depths of 0-5 and 5-20 cm were collected. 
Soil was air dried and passed through a 2-mm sieve before analysis. In autumn of 2008 when 
the experiment ended, the thickness of thatch layer of the turfgrass was measured. For this 
purpose, ten samples (soil drill diameter 3.5 cm) were taken from each plot. The thickness of 
the thatch layer was measured with a plastic ruler.  
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Plant and soil analysis 
The Ntot concentration in soil and plants was analyzed by a dry combustion method in a 
varioMAX CNS elemental analyzer (ELEMENTAR, Germany). Organic carbon in the soil 
was determined by wet oxidation with dichromate according to the method of Walkley and 
Black (1934) and modified by Tyurin (1951). 
 
The stock of soil organic carbon 
The soil Corg stock (t ha-1) was calculated for two depths (0-5 and 5-20 cm) as follows:  

Corg stock = BD x Corg x D / 10 
where Corg is organic carbon content (mg g-1); BD is soil bulk density (g cm-3), and D is soil 
sampling depth (cm).  
We estimated the bulk density (BD) using the Adams (1973) equation: 

BD = 100 / ((OM / 10 / 0.244) + ((100 - (OM / 10)) / 1.64)), 
where OM is the organic matter content of soil (mg g-1): we assumed that OM contains 58% 
Corg (Mann, 1986). 
 
Statistical analysis 
Statistical analyses were carried out using the software program “STATISTICA” version 7.0 
(StatSoft Inc.). Factorial ANOVA and one-way ANOVA were applied to test the effect of 
different management regimes (removal of plant residues or returning the residues, 
fertilization) on the dry matter yield of swards, soil Ntot and Corg concentration, Corg stock 
and Corg change per year. Fisher’s LSD test for homogeneous groups was used for testing 
the significance of differences between treatments. The level of statistical significance was 
set at P < 0.05.  
 
Results  
Effect of plant residues on the dry matter yield of swards 
Taking the average of 2004-2007 returning plant residues increased significantly only the dry 
matter yield of the grass-clover sward (F (1, 254) = 39.983, P = 0.0000). The effect was 
largest in the unfertilized treatment where the dry matter yield was increased by 30.8% 
(Table 1). With fertilization (GCN80) the value was 22.4%. Due to the fertilization effect 
only (RRM treatment) the yield was increased by 18%.  
The clippings yield of turfgrass was not influenced by returning the clippings to the sward (F 
(1, 2046) = 2.9294, P = 0.0871). The only exception was treatment TGN160, where the yield 
was increased due to returning of grass clippings (P < 0.05). The yield of turfgrass sward was 
mainly influenced by fertilization (F (3, 2044) = 269.67, P = 0.0000).  
 
The effect of plant residues on the plant N content and soil Ntot and Corg concentration 
Nitrogen uptake when plant residues were returned ranged from 31-236 kg N ha-1 in the 
turfgrass sward and 190-204 kg N ha-1 in the grass-clover sward (Table 2). Returning the 
residues did not increase the Ntot content in plants occupying the turfgrass sward compared 
to removing. Ntot content was however affected by fertilization in turfgrass sward. In the 
grass-clover sward a significant effect of plant residues on the N content in plant was 
observed when considering the fertilized treatment. Returning the plant residues did not have 
a statistically significant effect on the N uptake by plants, also in the GCN80 treatment 
mentioned previously.  
Considering the average of all treatments, the Ntot and Corg concentrations in the soil of 
grass-clover sward at depth of 0-5 cm increased over the five years of the study (Table 3). 
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The Corg concentration increased with returning of plant residues by 42.9% and with 
removal of plant residues by 32.0%. TotN concentrations increased in unfertilized treatment 
RRM by 23.5% and in RRT 40.3%. Fertilization further increased Ntot contents by 31.5% 
and 49.0%, respectively. The Ntot and Corg concentration in the lower soil layer (5-20 cm) of 
unfertilized treatments was not influenced by returning residues, but in fertilized treatments 
the Ntot and Corg concentrations were higher in the RRT treatment than in RRM one. In the 
turfgrass soil upper layer (0-5 cm) the Corg content was increased in RRM (by 21.6%) as 
well as in RRT (by 7.2%). The Ntot content at 0-5 cm did not change significantly when 
grass clippings were returned but decreased when they were removed (15.7%, P < 0.05). In 
the lower layer of turfgrass (5-20 cm) the Ntot content decreased in all treatments. 
Fertilization did not influence the Ntot or Corg content of turfgrass soil. 
The C:N ratio of turfgrass soil was higher compared to grass-clover soil. The ratio did not 
vary significantly during the campaign (5 years) (Table 3).  
 
The effect of plant residues on soil Corg stock of swards 
Over the five years of the experiment, similarly to the Corg content, the Corg stock was 
increased more in the soil of grass-clover sward, where returning plant residues increased the 
value at 0-5 cm by 0.76 t ha-1 y-1 (Table 4). The increase was 0.58 t ha-1 y-1 when residues 
were removed. In the top soil (0-5 cm) of the turfgrass sward the Corg stock was increased by 
0.33-0.45 t ha-1 y-1 when residues were returned and by 0.10-0.15 t ha-1 y-1 when they were 
removed. In the lower soil layer (5-20 cm) a decrease in Corg stock occurred. It was 
decreased by 0.20-0.44 t ha-1y-1 in grass-clover and by 0.74-0.96 t ha-1 in turfgrass sward 
(when grass clippings were removed). The reduction of Corg was lower when residues were 
returned. 
 
Thatch layer formation 
The thickness of the resulting thatch layer of the turfgrass sward was significantly higher in 
treatments in which grass clippings were returned and the fertilization rate was 160-400 kg N 
ha-1 (F (3, 306) = 17.350, P = 0.0000) (Figure 1). The thickness of the thatch layer in the 
TG400 treatment was 3.2 cm when residues were returned, but 2.5 cm when they were 
removed. There was no thatch layer in grass-clover sward. 
 
Discussion 
Our results indicate that the amount of N returned with plant residues had a significantly 
lower effect on the dry matter yield of turfgrass sward than expected from previous studies 
(Starr and DeRoo, 1981; Heckman et al., 2000; Kopp and Guillard, 2002). This may be due 
to the limited amount of N in the plant residues available for the growing plants. This is likely 
since, when returning plant residues, the amount of mineralized N (measured as N content in 
plants) did not change significantly during the experiment. In addition, the N contents of 
turfgrass swards in RRT as well as in RRM treatment were similar. If the amount of N added 
with returned residues had influenced the amount of mineralized N in the soil, the N content 
in RRT treatment would have been higher than in RRM treatments. The soil enrichment by 
mineralized N from turfgrass clippings may have been hindered by the thatch layer formed on 
the surface of turfgrass sward. Thatch accumulation occurs when turfgrass production of 
organic matter exceeds the decomposition rate (Beard, 1973). Turfgrass sward was mowed on 
average once a week. According to studies by Kauer et al. (2007) and Kopp and Guillard 
(2004) the decomposition rates of turfgrass residues in different fertilization treatments were 
the same and therefore the thatch layer was significantly thicker wherever large amounts of 
plant residues were returned. A thicker thatch layer could have reduced the contact surface 
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between turfgrass clippings and soil. The decomposition occurred mainly on the surface of 
the thatch layer on top of the herbage. The decomposition rate of plant residues could have 
been decreased due to their drying as was seen in a previous study (Kauer et al., 2011). Thus, 
the transfer of N into soil was hindered and a part of the N in plant residues could have been 
used for decomposition of the residues. Furthermore, part of the nitrogen, perhaps favoured 
by mulching the turfgrass clippings by lawnmower, may have been volatilized and lost to the 
atmosphere. It has been found that the amount of volatilized nitrogen could form 10-20% of 
total mineralized N (Janzen and McGinn, 1991). According to Whitehead et al. (1988) NH3 
volatilization may amount to 20-47% of herbage N in laboratory experiments. Overall the N 
content of turfgrass plant residues was high in our study. If we assume that plants contain 400 
g C kg-1, the C:N ratio of returned plant residues would be 9-13, depending on the 
fertilization rate. The optimum C:N ratio for rapid decomposition of organic matter is 
between 15:1 and 25:1 (McLeod, 1982). The lower than optimal C:N ratio indicates that there 
is a surplus of nitrogen for decomposers and nitrogen in plants may be easily decomposable 
(Ross et al., 2002). Consequently, a higher amount of nitrogen due to fertilization does not 
increase soil Ntot content, as the nitrogen will be used for decomposition or volatilized. In the 
turfgrass treatment more nitrogen was removed with residues than was provided with 
fertilizers, but this positive balance between input and output did not increase the soil Ntot 
content. The reason may be that, during decomposition of the thatch layer formed in the 
RRM treatment, an N deficit could occur and nitrogen become, immobilized from the soil 
decreasing the soil Ntot content. The higher C:N ratio in turfgrass sward also indicates 
reduced N mineralization in the soil. In grass-clover sward no thatch layer was formed. One 
of the explanations could be that the mowing frequency was less and the surface contact 
between returned residues and soil was better compared to the turfgrass sward. The C:N ratio 
(assuming that plants contain 400 mg C g-1) in returned grass-clover residues was 15-16. This 
may be connected to the better decomposition conditions for plant residues and its impact on 
the nutrient cycle; hence the grass-clover plant residues had a significant impact on the sward 
dry matter yield. Better N mineralization conditions are also confirmed by the lower soil C:N 
ratio, compared to the turfgrass sward. The lower C:N ratio reflects the higher rate of N 
mineralization (Elgersma and Hassink, 1997).  
Consequently, the soil C org content and stock was mostly influenced by the composition of 
the species of the sward. The composition of species in the sward had more impact because 
the below-ground carbon input of different species shows significant variation. Wedin et al. 
(1995) showed 25-fold differences in below-ground net primary productivity, whereas above-
ground productivity only varied twofold. Fornara and Tilman (2008) found during their study 
that the presence of legumes significantly increased root biomass production compared to the 
grasses sward. While in the grass-clover sward the Corg and stock increased more, it can be 
assumed that the root biomass was higher than in turfgrass sward. The soil Corg content of 
both swards increased mainly in the top layer and decreased significantly in the lower layer. 
This indicates that the impact of different plant species and plant residues does not reach the 
deeper soil profiles. As 70 to 75 % of the root biomass in grasslands is located in the top 15 
cm of the soil (Gill et al., 1999) organic carbon and nitrogen concentrations increase in the 
main rooting zone. According to Steinbeiss et al. (2008) the carbon concentration in deeper 
layers is reduced because the carbon below root zone will be leached to deeper layers. They 
conclude that plant derived carbon is preferentially mineralized and adsorbed to soil particles, 
while mobilized soil carbon is transported further down the soil profile.  
The stronger effect of plant species in grass-clover sward (compared to turfgrass sward) on 
the soil Corg and Ntot content is caused by properties of white clover. Legume derived N is 
qualitatively important for building up soil organic matter and storing more C (Drinkwater et 
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al., 1998; Resh et al., 2002). Addition of legumes improves soil nutrient cycling which 
enhances the retention of newly and residing C and N in soil (De Deyn et al., 2011). 
De Deyn et al (2011) point out in their research that changes in quality (e.g. C:N ratio) rather 
than quantity of plant community with legumes (Rochon et al., 2004) were primary drivers of 
rapid increase in soil C accumulation rates. Consequently in our experiment, the effect of the 
mixture of plant species on the soil Corg concentration is higher in grass-clover sward. In 
grass-clover sward the amount of nitrogen removed with plants exceeded the amount of 
nitrogen provided with fertilizers. Nevertheless, the soil Ntot content increased and therefore 
the nitrogen concentration increased mostly through clover’s ability to bind nitrogen from the 
atmosphere. A legume that can derive N from symbiotic fixation would be expected to have a 
concomitant positive effect on both C and N added to the soil (Wu et al., 2006). 
By returning the plant residues the Corg content and stock in the soil top layer was increased, 
compared to the treatment in which residues were removed. The effect of returning the 
residues on the soil carbon stock was smaller in grass-clover sward. By returning the residues 
in grass-clover sward the Corg in the soil top layer was increased by only 0.18 t ha-1y-1 
(average of fertilization regimes) more than when residues were removed. In the lower layer 
(5-20 cm) the effect was larger (0.30 t ha-1 y-1) and it occurred because in the lower soil layer 
of the RRM fertilized treatment the Corg content decreased, compared to unfertilized 
treatment. The decrease of Corg concentration may have caused reduction of the root biomass 
in the soil by fertilization (Ennik et al., 1980). The effect of treatment of plant residues is 
higher in turfgrass sward than in grass-clover sward. As a result of returning plant residues 
the difference in Corg as an average of fertilization regimes was 0.26 t ha-1y-1 in the upper 
layer of the turfgrass sward (in the lower layer 0.37 t ha-1y-1), compared to the treatment 
where residues were removed. If we sum Corg stock increase of both layers, the effect of 
turfgrass sward plant residues was slightly higher compared to the grass-clover sward (0.62 t 
ha-1y-1 and 0.48 t ha-1y-1, respectively), although more phytomass was returned to the grass-
clover sward (on average 7.8 t DM ha-1 y-1) compared to the turfgrass sward (1.3-5.9 t DM ha-

1 y-1). The effect of plant residues of the grass-clover sward could have been smaller because 
the biochemical composition of plant residues which became part of the soil organic matter 
was different. The thatch layer formed on the turfgrass sward surface remains a factor as 
discussed earlier. Based on the other studies, the thatch layer is recalcitrant to decompose 
because the high lignin content (Yao et al., 2009). Lignin degradation products contribute to 
an increase in Corg content in the soil (Takeda, 1998). The plant residues of grass-clover 
sward had better decomposition conditions and the thatch layer on surface did not form. 
These residues became part of soil organic matter and were of better quality than the thatch 
layer of turfgrass sward. High quality plant residues (high N, low lignin concentrations) 
mineralize rapidly, but may not contribute much to the maintenance of soil organic matter 
(Handayanto et al., 1997). Thus, the larger amount of recalcitrant material on turfgrass sward 
became part of soil organic matter compared to the grass-clover sward and the increase of 
Corg content was higher in turfgrass sward soil compared to grass-clover sward. 
It is often stated that the productivity of grassland and Corg content in soil are positively 
linked (Karlen and Cambardella, 1996), hence increasing the sward productivity may be one 
of the main reasons to upgrade soil C sequestration. Among obvious benefits for phytomass 
production, fertilization has been proposed as a technique for enhancing soil C storage 
(Rasmussen and Rohde, 1988; Conant et al., 2001; Fornara and Tilman, 2008). At the same 
time, several authors have concluded that, by adding large amount of phytomass into the soil, 
the C concentration will not be increased (Gill et al., 2002; Fontaine et al., 2004a; De Deyn et 
al., 2011), because Corg is more influenced by the quality of the material returned to the soil 
(De Deyn et al., 2011). In our experiment the Corg content was not affected by returning 
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either different (turfgrass sward) nor the same amount (grass-clover sward) of phytomass to 
the soil. The Corg content of turfgrass sward at a soil depth of 0-5 cm increased equally in 
every fertilization treatment as well as in the control. According to Steinbeiss et al. (2008), 
the higher the input, the more soil organic material was decomposed. However, the input did 
not increase the soil organic matter content. They concluded that the litter input may have 
induced a priming of microbial decomposition in soil that resulted in faster turnover rates and 
a mobilization of organic carbon already present in the soil, as found in other investigations 
(Fontaine et al., 2004b). As a result of the ’priming effect’ the increased C input into the soil 
may cause higher decomposition of soil organic matter resulting in no differences on C org 
content due to the varying amounts of residues returned. Soil organic matter contains 95% of 
the total nitrogen in the soil (Stevenson, 1994). Therefore, the soil Corg and N are closely 
related and hence the change in Corg content would cause a similar change in nitrogen 
content. Piovanelli et al. (2006) found that soil carbon and nitrogen concentrations are highly 
correlated under different tillage systems. Our results on C:N ratios also showed rather small 
variations between different fertilization regimes. Further, different treatments of plant 
residues did not have a significant effect on the soil C:N ratio.  
 
Conclusions 
The change of carbon and N content in the grassland soil depends to a great extent on the 
species of the sward, their properties and the treatment they undergo. The carbon stock 
increases more in soil of grass-clover than in soil of turfgrass sward. Leaving the plant 
residues on the grassland after mowing increases the soil Corg stock, mostly in the soil upper 
layer. The effect of plant residues on the C stock is higher in turfgrass sward. 
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Table 1. The effect of returning plant residues on the dry matter (DM) yield (kg ha-1) of 
swards during 2004-2007. 

Fertilization rate, kg N ha-1 RRT1 RRM2 

Turfgrass sward 
TGN0 1330a3A4 1496aA 

TGN80 2780aB 2581aB 
TGN160 3888bC 3290aC 
TGN400 5924aD 5647aD 

Grass-clover sward 
GCN0 7465bA 5168aA 
GCN80 8162bA 6336aB 

1RRT – plant residues were returned to the plots. 
2RRM – plant residues were removed to the plots. 
3Different small letters within each row indicate a significant effect (P < 0.05) of returning 
plant residues on the DM yield of sward within a fertilization regime. 
4Different capital letters within column indicate a significant effect (P < 0.05) of fertilization 
on the DM yield of sward. 
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Table 2. The dry matter (DM) yield of swards, Ntot concentration in the plants and the N 
uptake by plants in 2007. 

Fertilization 
rate,  

kg N ha-1 

RRT1 RRM2 RRT RRM RRT RRM 
DM yield of sward, 

kg ha-1 
Ntot content in plant, 

mg g-1 
N uptake by plant, 

kg N ha-1 
Turfgrass sward 

TGN0 990a3A4 1140aA 31aA 30aA 31aA 34aA 
TGN80 2510aB 2320aB 34aB 34aB 85aB 79aB 
TGN160 3540bC 2900aC 38aC 37aC 135bC 99aC 
TGN400 5480aD 5150aD 43aD 43aD 236aD 221aD 

Grass-clover sward 
GCN0 7787bA 4469aA 24aA 24aA 190bA 107aA 
GCN80 7723bA 6210aB 26bB 24aA 204bA 149aB 

1RRT – plant residues were returned to the plots. 
2RRM – plant residues were removed to the plots. 
3Different small letters within each row indicate a significant effect (P < 0.05) of returning 
plant residues on the DM yield of swards, Ntot concentration in plants and N uptake by 
plants.  
4Different capital letters within column indicate a significant effect (P < 0.05) of fertilization 
on the DM yield of swards, Ntot content in plants and N uptake by plants. 
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Table 3. Dependence of the soil Ntot and Corg concentrations and C:N ratio in the soil of 
turfgrass and grass-clover sward on plant residue management and fertilization.  

Fertilization 
rate, 

kg N ha-1 

Arable1 RRT2 RRM3 Arable RRT RRM Arable RRT RRM 

Ntot, mg g-1 Corg, mg g-1 C:N 
Turfgrass 0-5 cm 

TGN0 1.49b4A5 1.52bA 1.08aA 14.7a1A2 18.0cA 15.9bA 9.9aA 11.9bA 14.7cB 
TGN80 1.49bA 1.54bA 1.27aB 14.7aA 17.6cA 15.7bA 9.9aA 10.8bA 12.0cA 

TGN160 1.49bA 1.58cA 1.39aB 14.7aA 17.4cA 15.8bA 9.9aA 11.0bA 11.3bA 
TGN400 1.49bA 1.56cA 1.28aB 14.7aA 18.4cA 15.5bA 9.9aA 11.8bA 12.1bA 

Grass-clover 0-5 cm 
GCN0 1.49aA 2.09cA 1.84bA 14.7aA 20.8cA 19.3bA 9.9aA 10.0aB 10.5bB 
GCN80 1.49aA 2.22cB 1.96bB 14.7aA 21.2cA 19.5bA 9.9bA 9.5aA 9.9bA 

 Turfgrass 5-20 cm 
TGN0 1.49bA 1.18aA 1.16aA 14.7cA 13.4bA 12.2aA 9.9aA 11.4cB 10.5bB 
TGN80 1.49bA 1.17aA 1.18aA 14.7cA 13.2bA 12.5aA 9.9aA 11.3cB 10.6bB 

TGN160 1.49bA 1.22aA 1.10aA 14.7cA 13.6bA 12.3aA 9.9aA 11.2bB 11.2bB 
TGN400 1.49bA 1.23aA 1.17aA 14.7cA 13.1bA 12.7aA 9.9aA 10.7bB 10.9bB 

Grass-clover 5-20 cm 
GCN0 1.49aA 1.49aA 1.48aA 14.7aA 14.5aB 14.1aB 9.8bA 9.7bA 9.5aA 
GCN80 1.49aA 1.55bA 1.42aA 14.7bA 14.7bB 13.5aC 9.8bA 9.5aA 9.5aA 

1Arable – arable land before the conversion to grassland in 2003. 
2RRT – plant residues were returned to the plots. 
3RRM – plant residues were removed to the plots. 
4Different small letters within each row indicate significant influence (P < 0.05) of returning 
plant residues on soil Ntot and Corg concentrations and C:N ratio at the given soil depth. 
5Different capital letters within each column indicate significant influence (P < 0.05) of 
fertilization on soil Ntot and Corg concentrations and C:N ratio at the given soil depth. 
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Table 4. Soil Corg stock and its changes in the soil of turfgrass and grass-clover sward, as a 
function of plant residues management and fertilization.  

Fertilization 
rate, 

kg N ha-1 

Arable1 RRT2 RRM3 RRT RRM 

Corg stock, t ha-1 Change of Corg stock, t ha-1 y-1 
Turfgrass 0-5 cm 

TGN0 10.5a4A5 12.6cA 11.3bA 0.41bA 0.15aA 

TGN80 10.5aA 12.3cA 11.1bA 0.35bA 0.13aA 

TGN160 10.5aA 12.2cA 11.2bA 0.33bA 0.14aA 
TGN400 10.5aA 12.8cA 11.0bA 0.45bA 0.10aA 

Grass-clover 0-5 cm 

GCN0 10.5aA 14.1cB 13.3bB 0.73bB 0.56aB 
GCN80 10.5aA 14.4cB 13.5bB 0.78bB 0.59aB 

Turfgrass 5-20 cm 
TGN0 31.5cA 29.1bA 26.7aA -0.48aA -0.96bC 

TGN80 31.5cA 28.8bA 27.3aA -0.54aA -0.84bC 
TGN160 31.5cA 29.5bA 27.0aA -0.40aA -0.90bC 
TGN400 31.5cA 28.6bA 27.8aA -0.59aA -0.74bC 

Grass-clover 5-20 cm 
GCN0 31.5bA 31.2bB 30.5aB -0.51aB -0.20bA 

GCN80 31.5bA 31.5bB 29.3aB 0.13aB -0.44bB 
1Arable – arable land before the conversion to grassland in 2003. 
2RRT – plant residues were returned to the plots. 
3RRM – plant residues were removed to the plots. 
4Small letters within each row indicate a significant influence (P < 0.05) of returning plant 
residues on soil Corg content and change of Corg stock in soil at given depth. 
5Capital letters within each column indicate a significant influence (P < 0.05) of fertilization 
on soil Corg content and change of Corg stock in soil at given depth. 
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Figure 1. The thickness of thatch layer of turfgrass sward with different fertilization regimes 
in RRM and RRT treatments in 2008 at the end of the experiment. Vertical bars denote 0.95 
confidence intervals.  
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