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1. INTRODUCTION

Spring oilseed rape (Brassica napus L. var. oleifera subvar. annua) is an
important oilseed crop, the area of which has increased significantly in
northern countries of Europe (Treu, Emberlin, 2000), including Estonia
(Veromann et al., 2006a). This has resulted in an increased number of
pests as monocultures offer unlimited food resources and reproduction
opportunities (Hokkanen, 2000; Cook, Denholm, 2008). Due to the
increased occurrence of pests in oilseed rape, the use of pesticides has become
an almost inevitable part of cultivating these crops (Alford ez al., 2003).
In addition, oilseed rape, as a fast growing crop, needs a high amount of
nutrients and thus needs more fertilizers than graminaceous crops (Holmes,
1980; Barraclough, 1989; Grant, Bailey, 1993; Orlovius, 2003).

Spring oilseed rape is predominantly autogamous and visits of insect
pollinators are not essential for the final seed yield (Williams ez /.,
1987). Despite this, adequate pollination of spring oilseed rape can have
positive effects such as reduction of the flowering period and raceme
production, acceleration of ripening, increases in seed weight (Williams
et al., 1987; Rosa et al., 2011; Bommarco et al., 2012), seed oil content
(Free, 1993; Bommarco ez a/., 2012) and seed yield (Steffan-Dewenter,
2003; Morandin, Winston, 2005; Sabbahi ez 2/, 2005; Chifflet ez al.,
2011). Hence, it is profitable to encourage a high number of pollinators
in oilseed rape fields.

The economically most important and abundant pollinators of spring
oilseed rape are bees (Klein ez al., 2007; Ali er al., 2011a). However,
a general and widespread shortage of bee-pollinators is predicted in
agricultural areas of America (Kremen ez al., 2004; Currie ez al., 2010),
Asia (Klein ez al., 2003) and Europe (Williams ez 4/., 1991; Williams,
1996; Giray ez al., 2010). The main reason for this is probably the loss
and degradation of habitats and food resources due to changes in land-
use and agricultural practice (Williams ez al., 1993; Mind ez al., 2002;
Sepp et al., 2004; Goulson et al., 2005; Ockinger, Smith, 2007; Potts
et al., 2010), including the intensive use of pesticides (Osborne ez /.,
1999; Miranda ez al., 2003; Maini ez al., 2010), as well as changes in
climate and the effects of predators and parasites (Williams, 1980).

Oilseed rape, as a mass flowering crop, provides highly rewarding resources
of both nectar and pollen for bees and therefore promotes colony growth
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and bee abundance (Westphal ez al., 2003, 2009). Thus, it is vital that
husbandry of the oilseed rape crop helps to sustain and not to diminish
bee populations. Unfortunately, the application of pesticides to the crop
may contribute to the decline of wild bees and honey bees (Miranda ez
al., 2003; Laurino ez al., 2011; Krupke e 4l., 2012) as they may come
into contact with poisoning compounds (Gels ez a/., 2002; Schneider
et al., 2012). This may happen especially when pesticides are applied
during flowering when bees are foraging on the crop (Thompson, Maus,
2007). Pesticide effects on bees may be lethal or sub-lethal: in certain
circumstances, the sub-lethal effects may cause more harm than lethal

doses since they affect the survival of the brood and colony (Thompson,
2001).

To avoid the toxic effects of pesticides on bees the application of
insecticides is often not permitted during the flowering period of a given
crop, but, despite this, the residues of the compounds still contaminate
nectar and pollen in sub-lethal doses via both active and passive transport
(Thompson, 2001). In addition, pyrethroids, most often sprayed on
flowering oilseed crops, have been reported to be repellent to honey bees
(Rieth, Levin, 1988; Thompson, 2001) but there is evidence that, in
some instances, the attractiveness of a food resource may override the

repellent effect (Thompson, 2003).

The results of honey bee studies are often extrapolated to native
pollinators, including bumble bees, although their foraging behaviour
is different and they are more vulnerable: colonies are smaller, they do
not have the trophallaxis which could diminish the amount of pesticide
residues possibly reaching the larval food and, for a long period in late
spring, only the queens are collecting food, and thus are exposed to
pesticides (Alford, 1975). Hence, special studies are needed to explain
the impact of sub-lethal effects of pesticides on bumble bees. Further, the
sub-lethal effects of pesticides on adult foragers may not be observable
without special methods used in experiments of insect physiology. For
example, the patterns of discontinuous gas exchange have been used for
characterizing the physiological state of an insect, while several stress
factors, including chemical ones, can affect it (Kestler, 1991).

So, taking into account several benefits of oilseed rape cross-pollination

(Rosa et al., 2011; Chifflet et al., 2011; Bommarco et al., 2012) it is
profitable to encourage high number of bees in oilseed rape fields. On
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the other hand, the bees visiting oilseed rape flowers need to be protected
against the negative effects of pesticides. In order to favour and protect
the pollinators enough knowledge is needed — unfortunately there are
still many unanswered questions. To fill the gap in our knowledge the
current thesis examines the impact of oilseed rape (as a crop with a high
nutrient demand) foliar fertilization with different microfertilizers on
the number of flower visiting bees (honey bees, bumble bees and solitary
bees) through the number of flowers and food resources (nectar and
pollen production). In addition, we examined the repellent effect of the
non-systemic insecticide Fastac 50 EC (a.i. alpha-cypermethrin) on the
number of foraging honey bees on spring oilseed rape fields and the effect
of low concentrations of Fastac 50 EC on the metabolic rate, respiratory
pattern and total water loss rate of bumble bee Bombus terrestris foragers.
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2. REVIEW OF THE LITERATURE
2.1. Oilseed rape

Spring oilseed rape (Brassica napus L. var. oleifera subvar. annua) is an
important oilseed crop; its growing area has increased significantly in
northern countries of Europe, including Estonia (Veromann ez al.,
2006a), in recent decades (Treu, Emberlin, 2000). Oilseed rape has
spring and winter forms but wintering conditions for the latter are
usually not favourable in the Estonian climate. Today oilseed rape is
cultivated and processed for many different purposes: oil for human
nutrition, a renewable raw material for the chemical industry, a source
of regenerative energy, a source of high energy and protein content for
animal nutrition in the form of rape cake and meal, a catch crop for
green manuring and as a forage crop (Orlovius, 2003).

Oilseed rape is a typical cruciferous plant with yellow (or in some
cultivars, white) flowers arranged in elongated terminal racemes. Each
flower has four sepals, four petals and, usually, six stamens, four of which
are longer and two shorter than the style. The flower bears four partly-
hidden nectar glands (nectaries) at the base of the six stamens, two at
the inner bases of the short stamens and two outside the ring of stamens
(Eisikowitch, 1981; Rosa ez al., 2010). Flowering extends from 22 to 45
days (Radchenko, 1964; Free, 1993; Delaplane, Mayer, 2000) depending

on weather conditions.

Oilseed rape seeds are small and the colour varies from black to dark
brown. Several studies have shown that the average yield of oilseed rape
is affected by fertilization (Haneklaus ez /., 1999; Sidlauskas, Bernotas,
2003; Szulc ez al., 2003; Rathke ez al., 2006). Oilseed rape as a fast
growing crop needs a high amount of nutrients — more than graminaceous
crops (Holmes, 1980; Barraclough, 1989; Grant, Bailey, 1993; Orlovius,
2003). Crop production handbooks in Estonia (Kirblane, 1996; Kaarli,
2004) recommend complex fertilizers together with microelements for
oilseed rape fertilization.

The expansion of the oilseed rape growing area in Europe has created
good conditions for pests, as monocultures offer unlimited food
resources and reproduction opportunities — thus, the number of pests has
been increasing (Hokkanen, 2000; Cook, Denholm, 2008). There are
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several pests of oilseed rape in Europe, but the pollen beetle, Meligethes
aeneus (Fab.) (Coleoptera: Nitidulidae) and the cabbage seed weevil,
Ceutorhynchus obstrictus (Marsh.) (Coleoptera: Curculionidae) are the
two most important pests of the flowering phase (Alford ez al., 2003), also
in Estonia (Veromann ez 4l., 2006a), causing yield loss through damage
to flower buds and pods, respectively. Due to the increased occurrence of
pests in oilseed rape, the use of pesticides has become an almost inevitable
part of cultivating these crops (Alford ez al., 2003). However, it has been
found that intensive growing technology of spring oilseed rape, based
on pesticide application, enhances the new generation of pollen beetles
(Veromann et al., 2008). In addition, the frequent use of pyrethroids has
resulted in resistance of pollen beetle to this pesticide in many European
countries (Richardson, 2008; Zimmer, Nauen, 2011).

2.1.1. Pollination requirements of oilseed rape (I)

Pollination is a mutually beneficial relationship which in most cases
takes place between a plant and insect: the pollen from the anthers
will be transported to the stigmas of the same or different flowers and
as a reward the insect gets food — mostly nectar and pollen. Oilseed
rape is commonly considered to be a self-pollinating species but
actually has entomophilous flowers capable of both self- and cross-
pollination — nevertheless, insect pollinators are not essential for the
final seed yield (Williams ez 4/., 1987). However, flower morphology
and behaviour of the oilseed rape flower encourage cross-pollination
at first, but self-pollination later (Delaplane, Mayer, 2000; Rosa ez
al., 2010). Before the corolla fully expands, the four long stamens
dehisce and release pollen outwards. Anthers on the two short stamens
release pollen below the stigma which lengthens during flowering to
reach the height of the anthers of the long stamens. When the flower
is old, the long stamens bend towards the flower centre so that they
become directed towards the stigma, and self-pollination can occur
(Eisikowitch, 1981; Williams, 1985; Free, 1993; Bell, Cresswell,
1998; Delaplane, Mayer, 2000; Rosa ¢z 4/., 2010). In the case of cross-
pollination, more pollen can reach the stigmas, particularly pollen
from the short stamens (Free, 1993).

Bees are the economically most important and abundant pollinators of

spring oilseed rape (Klein ez al., 2007; Ali ez al., 2011a) — all bee species
successfully transfer rape pollen from anthers to stigmas. There are several
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advantages of adequate pollination of spring oilseed rape: reduction of
the flowering period and of raceme production, acceleration of ripening
and increases of seed weight (Williams ez a/., 1987; Rosa et al., 2011;
Bommarco et al., 2012) and seed oil content (Free, 1993; Bommarco
et al., 2012). Cross-pollination with pollen from short stamens is
significantly superior to that from long stamens, and gives a 14% greater
weight of seed per pod (Free, 1993; Steffan-Dewenter, 2003). Cross-
pollination also raises seed yield (Steffan-Dewenter, 2003; Morandin,
Winston, 2005; Sabbahi ez al., 2005; Chifflet ez al., 2011). Altogether,
the seed yield of oilseed rape could be increased by up to 25 — 46 %
(Delaplane, Mayer 2000; Sabbahi ez a/., 2005). Thus, a high number of
pollinators in oilseed rape fields should be favoured.

2.1.2. The composition of pollinators on oilseed rape

The composition of flower visitors to oilseed rape varies according to
different authors. Langridge and Goodman (1982) found that, of the
total insects counted on oilseed rape flowers, 71.4% were honey bees,
14.3% hoverflies, 12.1% small Diptera and the remaining 2.2% were
made up of blowflies, native bees, Lepidoptera, one Hemiptera and one
Coleoptera. Rosa ¢z al. (2011) found that Hymenoptera representatives
were the most prevalent (92.3%, among which 99.8% were honey bees)
but some Diptera, Lepidoptera and Coleoptera also visited oilseed rape
flowers. According to Delaplane and Mayer (2000), 64% of bee visitors
on oilseed crop were honey bees and 36% different wild bees. Karise
et al. (2004) found that 54% of oilseed rape flower visitors were bees
(Apoidea), 45% dipterans (Diptera) and 1% butterflies (Lepidoptera)
and bugs (Hemiptera).

On the basis of different studies it can be said that honey bees are the main
pollinators of oilseed rape and can account for up to 95% of all insect
pollinators of this crop (Mesquida ez a/., 1988; Adegas, Couto, 1992;
Blight ez al., 1997; Koltowski, 2001; Rosa ez al., 2011). According to
Koltowski (2001), solitary bees can account for about 4%, or sometimes
9%, of all insect pollinators on oilseed rape flowers. Bumble bees being
important pollinators of many agricultural crops, however, make up only
2% of all insect pollinators in rape crops (Cresswell, 1999; Koltowski,
2001). So, although many species of bumble bee and solitary bee may
visit a crop, their proportion is often quite low (Free, 1993; Varis, 1995;
Karise et al., 2004).
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2.2. Bees (Apoidea)
2.2.1. Foraging behaviour of bees

Bees are the most important pollinators as they need to feed not only
themselves but also their colony; they have to gather a large amount of
food fast — that means they need to visit a high number of flowers (Corbet
et al., 1991). Most bees collect only two food items from flowers: nectar,
which provides bees with energy, and pollen, which provides them with
protein necessary for the growth of larvae (Rasheed, Harder, 1997).
Bumble bees consume pollen throughout their entire development
whereas honey bee larvae are fed, during their early development, by
glandular secretions of adult workers, which eat pollen both to feed the
larvae (Dobson, Peng, 1997; Hrassnigg, Crailsheim, 1998; Babendreier
et al., 2004) and to satisfy their own protein needs (Smeets, Duchateau,
2003). Nectar as a liquid substance serves as an attraction for bees and
reward for their pollination service (Baker, Baker, 1973) and is a proper
medium for supporting the digestion of pollen grains (Roulston, Cane,
2000). In addition, nectar is important as an easily assimilable energy
source (Faegri, van der Pijl, 1979).

According to the optimal foraging theory, bees try to maximize the
benefit and minimize the costs (Pettersson, Sjodin, 2000). Hence, the
food collected from the flower — the reward — has to exceed the energy
spent on receiving it. Bees have some specialities which help to maximize
the benefit — flower constancy, a well developed memory and good
learning ability. Both, memory and the learning capacity of insects are
usually under-estimated. Laboratory studies as well as those in nature
have demonstrated that honey bees learning is fast and comprises various
levels of cognitive processing, such as generalization, context-dependency,
concept formation, configuration and categorization (Menzel, Giurfa,
2001; Gegear, Thomson, 2004; Gross et al., 2009; Sandoz, 2011). Well
developed learning and memory helps the honey bee forager to find her
way back to the hive (Dyer ez al., 2008; Cruse, Wehner, 2011; Pahl ez 4.,
2011). Raine and Chittka (2008) demonstrated that the learning speed
of bumble bees is correlated with foraging success: colonies that learn
faster achieve greater fitness.

Foraging bees often show a kind of flower constancy favouring some
and bypassing others that might offer a reward (Free, 1970; Gegear,
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Thomson, 2004) although the level of flower constancy may vary even
among species of the same genera (Free, 1970). Bees test various flower
types until they find one that offers a reward (Pohtio, Terds, 1995)
developing in that way a flower colour preference which is claimed not
to be an innate characteristic (Waser, Price, 1983; Gumbert, Kunze,
2001). Flower constancy, which probably can occur due to their well
developed memory and learning, make bees the best pollinators from the
plant’s point of view as it ensures that less pollen is wasted.

The most important signals for the bees’ recognition of a food source while
foraging are thought to be olfactory signals (Menzel ez /., 1993; Leonard
et al., 2011). The chemical signals may function as indirect cues: young
bees remember the smell of the food they ate inside the hive and search
for it during their first foraging trip; or directly as long or short distance
attractants. Bees are able to differentiate a large number of olfactory
signals and learn to predict which flowers offer rewards and which do
not (Laska ez al., 1999; Gumbert, Kunze, 2001) but they still restrict the
number of scent components they use in their searching (Pham-Delegue
et al., 1997; Laloi ez al., 2000). It has been found that olfactory learning
performance depends on the circadian rhythmicity being the highest in
the morning (Lehmann ez 4/., 2011). During a honey bee’s first foraging
trip in the morning, it has to learn the most profitable food source for
that day which it can then later harvest. Odours are also used by homing
foragers to advertise profitable food sources (Farina ez al., 2007). It is
considered possible that bees may avoid plants treated with pesticides due
to the repellent odours of the compounds present (Shires ez 2/., 1984).

2.2.2. Oilseed rape as food resource for bees (I)

Large fields of oilseed rape in flower are important food resources for
bees enhancing both nectar and pollen resources abundantly (Westphal
et al., 2009). Flowering at a time when there are few other cultivated
food plants available for honey bees, a rape crop may be visited from a
distance of 3.5—4 km from bee hives and fruit trees may be neglected in
favour of rape (Free, 1993). Furthermore, many beckeepers move their
colonies onto or near to oilseed rape crops to benefit from the nectar and
pollen it produces (Williams, 1980; Williams, Cook, 1982; Williams
et al., 1993; Carreck et al., 1997). There has even been a concern that
oilseed rape crops lead to reduced wild plant pollination (Diekétter ez
al., 2010; Holzschuh ez /., 2011).
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Oilseed rape is an especially attractive food plant for bees because of the
high nectar production of its flowers and its high sugar content. The
nectar of oilseed rape flowers contains carbohydrates, such as sucrose,
glucose, fructose and ribose (Pierre ez al., 1999). Nectar volume can vary
greatly from 0.2 pl per flower up to 6 pl per flower (Free, 1993; Davis
et al., 1994; Pierre et al., 1999) and may be affected by genotype (Pierre
et al., 1999), cultivar (Davis et al., 1994), flower age (Williams, 1980)
and local environmental conditions (Williams, 1985; Rathcke, 1992).
Nectar production has been reported to be greater in the morning and
early afternoon than midday (Williams, 1985) and to decrease towards
the end of the day, while the sugar concentration increases toward the
end of the day (Meyerhoff, 1958; Radchenko, 1964). The flowers are
able to replenish the level of nectar completely within 30 min of being
emptied which makes them very attractive to bees. Nectar production
even increases if bee density is high, and flowers are visited more than
three times per day (Williams, 1985).

Oilseed rape flowers produce a lot of pollen which contains proteins,
lipids, carbohydrates, starch, sterols, vitamins and minerals (Day ez al.,
1990; Herbert, 1992). All are important nutrients for brood rearing and
development of young worker bees, particularly the protein content
(Winston, 1987; Hrassnigg, Crailsheim, 1998). The pollen of oilseed
rape contains more of the three most important amino acids (leucine,
valine and isoleucine) for bee survival and development than other field
crops flowering at the same time (Cook ez al., 2003).

The growing of mass-flowering oilseed rape crops greatly enhances
nectar and pollen resource availability in agricultural areas and, when
appropriately managed, has potential to promote the abundance, as well
as the fitness, of bee populations (Westphal ez /., 2003, 2009).

2.3. Pollinator decline in agricultural landscapes (I)

Bees are the most important pollinators of almost all terrestrial ecosystems
because they provide a vitally important ecosystem service as pollinators
for a wide range of agricultural, horticultural and wild plants (Corbet ez
al., 1991; Williams 1994, 1996; Klein et al., 2007; Kasina et al., 2009;
Pauw, Hawkins, 2011). At the same time, there is clear evidence of recent
declines in both wild and domesticated bee-pollinators (Potts ez /., 2010)
which has been observed in different regions of the world — America
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(Kremen et al., 2004; Currie et al., 2010), Asia (Klein ez 4/., 2003) and
Europe (Williams ez al., 1991; Williams, 1996; Giray et al., 2010). The
decrease in the number of bees is an alarming tendency (Thompson,
2001; Biesmeijer ez al., 2006; Gabriel, Tscharntke, 2007). In 2005, the
economic value of insect pollination in Europe was estimated at 22
billion and in the world at 153 billion € per annum (Gallai ez a/., 2009).

Several factors have been suggested as possible contributors to this decline
(Potts ez al., 2010), e.g. changes in climate and the effects of predators
and parasites (Williams, 1986). However, the main reason is thought
to be the intensification of agriculture, including changes in land-use
causing decrease in food resources and habitats (Osborne ez al., 1991;
Williams ez al., 1993; Mind et al., 2002; Sepp et al., 2004; Goulson
et al., 2005; (“)ckinger, Smith, 2007; Potts et 4l., 2010), and increasing
application of pesticides (Osborne ez al., 1999; Miranda ez al., 2003;
Maini ez al., 2010; Stokstad, 2012). The supply of nectar and pollen is
now often insufficient in European agricultural landscapes to support
healthy bee populations (Goulson ez a/., 2005; Ockinger, Smith, 2007).
Thus, necessary steps need to be taken to halt the loss of pollinators
(Moritz et al., 2010; Pettis, Delaplane, 2010; Winfree, 2010).

2.3.1. The sub-lethal effects of pesticides on bees (I)

Bees foraging on the crop are vulnerable to the toxic effects of pesticides
applied to the crop and this may contribute to the decline of wild bees as
well as honey bees (Corbet ez al., 1991; Miranda ez al., 2003; Laurino ez
al., 2011; Krupke ez al., 2012).

Bees are especially vulnerable to the toxic effects of insecticides applied
during flowering when they are foraging on the crop. They may come
into contact with poisoning compounds through contaminated flower
resources, direct contact with poison or exposure to residues (Gels ez 4/.,
2002; Schneider ez al., 2012). Further, insecticides are often applied in
tank-mixes with fungicides; this may change the effects of both products
on non-target organisms; the toxicity of the insecticide may be greater
when applied in a tank-mix (Thompson, Wilkins, 2003; Muranjan ez
al., 20006). In addition, Free and Ferguson (1980) found that, even when
90% or more of the rape flowers had shed their petals, neither the weight
or percentage of pollen collected, nor the honeybee population on the
crop decreased greatly. So, it must never be assumed that, as the end

18



of flowering approaches, pesticides may be applied without danger to
beneficial insects.

Pesticide effects on bees may be lethal or sub-lethal; most studies have
assessed lethal effects, while only a few have addressed sub-lethal effects.
Chemical companies are obliged to provide mortality data for their
products for all larger organism groups but again less attention has been
paid to the sub-lethal effects. In recent years, this has been an increasing
area of study (Desneux ez al., 2007; Aliouane ez al., 2009; Cresswell, 2011;
Schneider ez al., 2012) and a subject of discussion between scientists
and regulatory authorities (Thompson, Maus, 2007). In addition, many
insecticides have been described as safe to bees because they do not kill
them, although sub-lethal doses may affect pollinators by decreasing
their foraging and navigation abilities (Gels ez a/., 2002).

Sub-lethal doses affect also the survival of the brood and colony and
may thus, under certain circumstances, cause even more harm than
lethal doses. Application of insecticides is often not permitted during
the flowering period of a given crop. Even when insecticides are not
sprayed on flowers but on flower buds, the residues of the compounds
still contaminate nectar and pollen in sub-lethal doses via both active
and passive transport (Thompson, 2001). Contamination may occur
after application of the compounds to other parts of plants (Ferguson,
1987), to the soil (Jaycox, 1964; Krupke ez al., 2012) or on seeds (Sur,
Stork, 2003). Contaminated nectar and pollen poses a potential danger
not only to forager bees but also to bees in the hive and to brood. The
toxicity of pesticides to brood has been investigated far less than their
toxicity for adults (Alix, Vergnet, 2007).

Sub-lethal doses may affect bees’ division of labour (Tasei, 2001; reviewed
by Thompson, 2003), development and longevity (Wu ez al., 2011),
foraging behaviour (Thompson, 2003; Koskor ez /., 2009; Decourtye ez
al., 2011; Schneider ez al., 2012), discrimination of odours (Decourtye ez
al., 2005; Aliouane et al., 2009), communication and orientation abilities
(Cox, Wilson, 1984; Vandame ez al., 1995; Bortolotti ez al., 2003; Yang
et al., 2008), learning capacity (Decourtye ez al., 1999, 2003; Guez et 4/.,
2001; Ramirez-Romero et al., 2005; Aliouane ez al., 2009), reproduction
(Stoner ez al., 1985; Johansen, Mayer, 1990; reviewed by Thompson,
2003), thermoregulation (Jagers op Akkerhuis ez /., 1999a; Belzunces
et al., 2001) and susceptibility to pathogens (Alaux ez al., 2010; Vidau
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et al., 2011; Pettis et al., 2012). Some pesticides do not affect adult bees,
but affect brood so that young adults emerging from cocoons may have
malformed wings or other deformations (Tasei, 2001).

Pyrethroids, which are the insecticides most often sprayed on flowering
oilseed crops, contain a repellent substance which should keep honey
bees away from treated fields for some time after application (Rieth,
Levin, 1988; Thompson, 2001) but this is still in question in the field
situation. In conventional farming, application of many insecticides
(e.g., pyrethroids), considered to be safe for honey bees, is permitted to
the oilseed rape crop whilst it is in flower. Despite this, 57 out of 117
honey bee poisoning incidents in the UK during 1994-2003 resulted
from spray applications to flowering crops; 17 of these incidents were
through approved use of the products (Barnett ez /., 2007). So, some
insecticides may be regarded as safe because they repel bees, although in
some instances, the attractiveness of a food resource may override the
repellent effect (Thompson, 2003). The repellency of pyrethroids may
also decrease when they are mixed with fungicides (Thompson, Wilkins,
2003).

It is also problematic to distinguish repellency from a sub-lethal effect.
Bees feel a strong irritation when they come into contact with pyrethroids
and, trying to get rid of it, comb the chemical on to their mouthparts and
antennae. On receiving a small dose of poison they return to the nest to
heal themselves, thereby avoiding contact with a lethal dose (Thompson,
2003). Thus, the repellent effect of pesticide to bees does not appear in
repellency but in a small dose of sub-lethal disease-causing effect.

In addition, the results of studies carried out with honey bees are often
extrapolated to native pollinators, including bumble bees. However,
bumble bees are more vulnerable than honey bees as their colonies are
smaller and they do not have the trophallaxis that could diminish the
amount of pesticide residues possibly reaching larval food. In addition,
bumble bee queens are exposed to pesticides for a long period in late
spring while collecting food and establishing their nests. Bumble bees’
foraging behaviour is also different from that of honey bees (Alford,
1975; Thompson, Hunt, 1999). There is a need to protect foraging
bumble bees from direct overspray during the early morning and late
evening when pesticides, which are repellent but highly toxic, are applied
(i.e. pyrethroids) as the restrictions for application are often imposed on
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the base of the foraging timetable of honey bees although it is different
from that of bumble bees (Thompson, 2001).

Pesticide risk assessments for honey bees are based on hazard ratios
which rely on application rates and toxicity data that are unlikely to
be appropriate for bumble bees. Bumble bees are active at different
times and on different crop species and are, therefore, likely to have
different exposure profiles. Unlike honey bees, deaths of bumble bees
due to pesticides are unlikely to be reported, since the bees are not kept
domestically and will die in small numbers (Thompson, Hunt, 1999).

Sub-lethal doses of insecticides can be more harmful to bees than lethal
doses as they appear to have no effect; in reality it has lead to a serious
pollination crisis which is currently sharply raised in England and USA
(Stokstad, 2006). To utilise fully the native pollinator service the use of
pesticides should be corrected accordingly.

2.3.2. The sub-lethal effects of insecticides on respiration (I)

The effect of sub-lethal doses can sometimes be observed and proved
only through physiological changes in insects. The physiological state
of an insect is commonly estimated by its metabolic rate and respiratory
patterns. In the case of bees, it is difficult to examine the effects of
insecticides on respiration patterns because there is little data on their
normal respiration patterns. However, this has been an area of increasing
interest during the past decade.

Since water is a key element in every living organism, most insects have
probably evolved mechanisms to prevent excessive water loss (Klowden,
2002). Resting insects often exhibit discontinuous gas exchange (DGE)
cycles, a function of which may be the reduction of respiratory water loss
(Levy, Schneiderman, 1966; Lighton, 1994; White ez a/., 2007; Schimpf
et al., 2009; Williams ez a/., 2010) through the large inner surface of the
tracheal system.

According to Kestler (1971, 1985), in the state of DGE, the spiracles
are closed most of the time. At low oxygen rates inside the trachea the
spiracular valves flutter, allowing oxygen to enter the tracheal system.
As larger amounts of carbon dioxide accumulate in the tracheae and

haemolymph (Wobschall, Hetz, 2004), the spiracles open and allow the
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gas to escape. So, DGE cycles consist of three phases: closed (C) phase
during which spiracles are closed and there is no external gas exchange;
flutter (F) phase where spiracles rapidly open and close, allowing bulk
inflow of air, and open (O) phase where spiracles are open to allow
unrestricted gas exchange (Chown e al, 2006). As compared with
continuous respiration, loss of carbon dioxide along with evaporated
water occurs only discontinuously during the brief open phases of the
spiracles. Cyclic gas exchange (CGE) (described by Lighton, 1996;
Marais, Chown, 2003; Gibbs, Johnson, 2004; Marais ez al., 2005) has
no closed phase, still, the opening of spiracles is alternated by a F period
with a low level of CO, release. In this, the cycle length is shorter and
CO, release rarely decreases to zero.

There are different views about the origin of DGE, as reviewed by
Chown (2002) and Chown et 2/ (2006). In addition to the water
retention, there are also hypotheses that DGE serves as an adaptation for
coping with hypercapnia and/or hypoxia in soil-living insects (Lighton,
1998; Vogt, Appel, 2000; Lighton ez al., 2004) and protection against
the oxidative damage during the periods with low metabolic cost
(Hetz, Bradley, 2005; Terblanche ez al., 2008). Boardman ez /. (2012)
suggested a possible signalling role for reactive oxygen species rather than
the previous idea of DGE protecting the organism against the oxidative
damage. Probably the newest neural hypothesis claims that DGE results
as a consequence of energy-saving once the brain relinquishes control of
gas exchange to the segmental ganglia (Chown, 2011; Matthews, White,
2011). So, although the phenomenon of discontinuous gas exchange has
been extensively studied in insects, its adaptive significance is a subject
of considerable debate.

The existence and the precise pattern of DGE depends on the species
(Lighton, 1994, 1996; Slama, 1999; Chown ez al., 2006; Chown, 2011),
individual characteristics (Marais, Chown, 2003; Gibbs, Johnson, 2004;
Karise ez al., 2010; Woods, 2011), life stage of the individuals (Beekman,
van Stratum, 1999; Mind ez 4/., 2005, 2006), metabolic rate (Moerbitz,
Hertz, 2010) and environmental conditions like temperature (Lighton,
Lovegrove, 1990; Lighton 1996; Vogt, Appel, 2000; Kovac et al., 2007;
Karise ez al., 2010), relative humidity (Duncan ez 4/, 2002; Lighton,
2007; Slama ez al., 2007; Schimpf ez al., 2009) and the amount of
oxygen or carbon dioxide in the air (Lighton, 1998; Vogt, Appel, 2000;
Lighton ez al., 2004). It has been found that DGE cycles are longer in
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species from xeric environments (White ez /., 2007), while cyclic and
continuous patterns are more prevalent in mesic habitats (Marais ez 4/,

2005).

DGE patterns have been used to characterize the physiological state of
an insect, as several stress factors, including chemical ones, can affect
them (Kestler, 1991). Although knowledge of the sub-lethal effects of
pesticides on insect physiology is poor, it is known that treatments of
arthropods with pyrethroids cause neurotoxic effects in parts of the
nervous system, including the central nervous system and sensory, motor
or neurosecretory neurons (Corbett, 1974; Jagers op Akkerhuis ez /.,
1995). Because the closing and opening of spiracular valves is controlled
by the nervous system, the neurotoxic effects may also include interference
by DGE cycles. In pupae of the cabbage butterfly Pieris brassicae, after
treatment with original pyrethrum, the DGE cycles disappeared and
metamorphosis was disrupted (Harak ez al., 1999; Jogar ez al., 2008).

Pyrethroids, as well as many other insecticides, can induce increased water
loss rate (WLR) in arthropods (Gerolt, 1976, 1983), due to production
of diuretic hormones (Jagers op Akkerhuis ez /., 1999b). This process
could be reversible if the insect could replenish its water reserves. Since
the pyrethroids often affect motion as well, causing a knockdown effect,
death may come through desiccation (Jagers op Akkerhuis ez al., 1995;
Jagers op Akkerhuis ez a/., 1999b; Thompson, 2003).
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3. AIMS AND HYPOTHESES OF THE STUDY

1) Oilseed rape is a crop with high nutrient demand and thus needs
fertilization (Holmes, 1980; Barraclough, 1989; Grant, Bailey,
1993; Orlovius, 2003). On the other hand, the crop provides
highly rewarding food resources for bees (Westphal ez a/., 2003,
2009) and, at the same time, benefits from cross-pollination,
which improves both the quantity and quality of the seed
produced (Free, 1993; Sabbahi ez 4/., 2005; Chifflet ez al., 2011;
Bommarco ez al., 2012). Therefore, the foraging activities of bees
have significant economic consequences for seed production,
and, because of this, it is extremely important that factors that
lower their pollinating activity are minimised (Thompson, Maus,
2007). Hence, it is profitable for growers to encourage a high
number of pollinators in oilseed rape fields.

The aim: To explain the effect of foliar fertilization with different
microfertilizers on flower density, nectar productivity and the number
of pollen grains produced per flower of spring oilseed rape, and, through
these factors, on the number of flower visiting bees (Apoidea). (II)

The hypothesis: we assume that additional foliar fertilization with
microfertilizers increases bees’ food resources (nectar and pollen
production) and the number of flowers on spring oilseed rape and thus
also the number of flower visiting bees (Apoidea).

2) Due to the increased occurrence of pests in oilseed rape, the use
of pesticides has become an almost inevitable part of cultivating
these crops (Alford ez al., 2003). Unfortunately, bees foraging
on the crop are vulnerable to the toxic effects of insecticides,
especially when applied during flowering when bees are foraging
on the crop (Thompson, Maus, 2007). To avoid the toxic effects
of pesticides on bees a repellent has been added to pesticides —e.g.
pyrethroids, which are most often sprayed on flowering oilseed
crops (Thompson, 2001). However, there is a need to evaluate
pesticide effects on foraging behaviour of bees to guarantee crop
pollination, because results obtained in the laboratory may not
match with those obtained in the field (Thompson, Maus, 2007).
Repellent effect of pyrethroids to bees is still in question in the
field situation.
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The aim: To examine if honey bees (Apis mellifera L.) avoid the repellent
insecticide Fastac 50 EC (a.i. alpha-cypermethrin) in their food plant
choice. (IIT)

The hypothesis: owing to the repellency of insecticide, the number of
honey bees (Apis mellifera L.) is lower on insecticide-treated oilseed rape
than on untreated oilseed rape.

3) Effects of insecticides on non-target organisms may be lethal or
sub-lethal. At present, there is still little knowledge about the
sub-lethal impacts of insecticides on the physiological state of
bees. Therefore, special studies are needed to explain possible
sub-lethal effects of insecticides on bees, since these effects may
not be observable without special methods used in experiments
of insect physiology. Although knowledge about the sub-lethal
effects of insecticides on insect physiology is poor, it is known
that treatment of arthropods with pyrethroids cause neurotoxic
effects in parts of the nervous system, including the central
nervous system and sensory, motor or neurosecretory neurons
(Corbett, 1974; Jagers op Akkerhuis ez al., 1995). Because
the closing and opening of spiracular valves is controlled by
the nervous system, the neurotoxic effects may also include
interference of gas exchange cycles.

The aim: To examine the effect of low concentrations of Fastac 50 EC
(a.i. alpha-cypermethrin) on the metabolic rate, respiratory pattern and

total water loss rate of bumble bee (Bombus terrestris L.) foragers. (IV)

The hypothesis: insecticides cause lethal water loss through respiratory
failure in the bumble bee (Bombus terrestris L.) as a non-target organism.
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4. MATERIAL AND METHODS

4.1. Field experiments
4.1.1. Study sites and subjects

Small-scale field experiments were conducted at the experimental station
of the Estonian University of Life Sciences (58°21’ latitude 260 39
longitude) (II, III). The field experiments were conducted on the seed
production fields of Pilsu farm (III) in Tartu County, Estonia (58°14’
latitude 26° 16’ longitude), in 2003-2005.

In 2004 and 2005, small-scale field experiments were conducted on the
experimental station of spring oilseed rape Brassica napus L. var. oleifera
subvar. annua to test the effect of microfertilizers on the number of
flowers and food resources for bees: honey bees, bumble bees and solitary

bees (Apoidea) (II).

To test the effect of Fastac 50 EC (a.i. alpha-cypermethrin 50 g ') on
honey bees (Apis mellifera L.) field experiment and small-scale field
experiments were conducted on spring oilseed rape B. napus L. var.
oleifera subvar. annua fields in 2003, 2004 and 2005 (III).

In all experiments, the spring oilseed rape cultivar “Maskot', bred and
produced by the Swedish company Weibull, was used. Technical data of
the variety is as follows: raw fat content 40-43%, 1000 seed weight 3.5—
4.5 g, glucosinolates 20 pmol g, lodging resistance 6-8 points, height
of plant 98-108 cm, growth period 90-108 days (Velicka, 2003).

4.1.2. Experimental design
4.1.2.1. Fertilization treatments

The impact of microfertilizers on the number of flower visiting bees
through the number of flowers and bee food resources on spring oilseed
rape was studied in small-scale field experiments in two years, 2004 and
2005 (IT). The soil in the experimental field was slightly acidic (pH,,
6.2) Stagnic luvisol (FAO classification LV st, 2006) with a loamy texture:
humus content 2.4%, P — 77.66 mg kg!, K- 169.8 mg kg™, Ca — 5648
mg kg, S —13.54 mg kg'. In 2004, spring oilseed rape seeds were sown
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on 5 May, and, in 2005, on 9 May at 200 germinating seeds per m?, a
sowing depth of 2-3(4) cm, and after a pre-crop of potato.

In both years, the experiment consisted of 32 plots (10 m*each), eight
treatments with four replicates of each. Control plots received no
fertilizer, the other plots received a complex fertilizer alone (Amsterdam
Fertilizers B.V., The Netherlands), or the complex fertilizer plus one of
six different microfertilizers (Phosyn PL.C., York, United Kingdom).
The treatments were:

1. 0 (no mineral fertilizers);

2. OptiCrop (Opti) (only the mineral complex fertilizer OptiCrop
NPK 21-08-12 + S + Mg + B + Ca, the amount of nitrogen
applied 120 kg ha™);

3. Opti + HydroPlus™ Boron (Opti + B) (consumption rate of B
2 1 hal);

4. Opti + HydroPlus™ Micro Copper (Opti + Cu) (consumption
rate of Cu 0.5 1 ha).

5. Opti + Hydromag 300 (Opti + Mg) (consumption rate of Mg
7 L ha');

6. Opti + HydroPlus™ Micro Manganese (Opti + Mn)
(consumption rate of Mn 1 [ ha');

7. Opti + HydroPlus™ Micro Molybdenum (Opti + Mo)
(consumption rate of Mo 0.25 | ha'');

8. Opti + Sulphur F3000 (Opti + S) (consumption rate of S 7 1 ha).

Prior to sowing, the whole field was sprayed with the soil-applied
herbicide EK Trifluralin (0.15 | ha). The mineral complex fertilizer
OptiCrop was used (except for treatment 0). Liquid microfertilizers
(spray volume 400 | ha!) were sprayed on to the oilseed rape leaves when
the plants had reached the growth stage (GS) 27-31 according to the
BBCH scale (Lancashire ez al., 1991). The flowering period of the crop
lasted from 5 to 22 July in 2004, and from 28 June to 18 July in 2005.

4.1.2.2. Insecticide treatments

To study the repellent effect of the insecticide Fastac 50 EC on the
density of the honey bee, two experiments were carried out on spring
oilseed rape crops in 2003-2005 (III). A commercial formulation of
alpha-cypermethrin (Fastac 50 EC, a.i. 50 g I'; BASE Limburgerhof,
Germany) was used at a rate of 0.15 [ ha'.
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Experiment 1: effect of Fastac 50 EC treatment intensity on the
number of honey bees in small-scale field experiments

The first experiment with the insecticide was performed on small patches
of spring oilseed rape treated once or twice with the insecticide to
determine whether honey bees discriminate between differently treated
plants. The design of the experiment was a randomized block with twelve
1 x 10 m? plots with a distance of 1 m between each. The observation
area was surrounded with a 5 ha field of summer wheat. Three treatments
were used: unsprayed, once sprayed and sprayed twice, each replicated 4
times. In the sprayed-once treatment, the insecticide was applied when
rape plants were at the growth stage 2—4 true leaves (GS 10, according to
Lancashire ez al., 1991). For the twice-sprayed treatment, the first spray
was applied at the same time as the once-sprayed plots with an additional
application at the stage of first flowers (GS 61-62). The lengths of
flowering periods differed according to weather conditions and lasted

from 2 weeks (2004) to 3.5 weeks (2005).

Experiment 2: honey bee abundance before and after Fastac 50 EC
treatment in field experiment

The second experiment with the insecticide was carried out on a seed
production field of spring oilseed rape to test the abundance of honey
bees before and after insecticide application. The experiment was
conducted in July 2003. A spring oilseed rape field (4 ha) was divided
into two parts (approximately 2 ha): one part was treated with Fastac 50
EC at the mid-flowering stage (GS 65—66, according to Lancashire ez al.,
1991) and the other was left untreated. Within both fields, seven 1 x 10
m? observation plots were marked 8 days before the treatment. Six honey
bee colonies were brought close to the crops (200 m away) 2 days before
flowering started (late bud stage, GS 60). To prevent direct poisoning of
honey bees, the hives were closed before the insecticide application and

kept closed for 24 h.

4.1.3. Counting of bees and flowers
In the small-scale field experiments, the flower visiting bees (honey
bees II, III, bumble bees II, solitary bees II) and flowers (II, III) were
counted twice a week during the flowering period of the crop, in case

of the insecticide treatment study (III) starting at 24 h after the second
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spray application. In the field experiment at Pilsu, flower and bee counts
were made 8 days before and 1 day and 8 days after insecticide treatment

(IT1).

During bee counts, the observer walked slowly along the plot and
recorded all bees foraging on the oilseed rape on each 10 m? plot.
Flowers were counted simultaneously with flower visiting bees on an
area of 1 m? within each plot. The observations were made on sunny
days when there was no rain or fog between 11:00 and 16:00 (around
midday) when temperature was above 16°C and wind speed did not
exceed 6 m s'. (II, III)

4.1.4. Measurement of nectar and pollen production

In order to evaluate the impact of microfertilizers on food resources
of bees on spring oilseed rape, pollen and nectar production were

quantified (III).

Nectar production was measured from five flowers in each plot three
times during the flowering period of the crop in 2004. The measurement
was carried out in late morning at full flowering of the plants. Each flower
was previously covered with a voile bag for 24 h to exclude floral visitors
and to prevent nectar consumption the day before nectar measurement.
Nectar production was measured in the field by inserting a 1 pl capillary
into the flower corolla tube. It should be noted that nectar productivity
can only be measured when there is no precipitation during 24 h. As, in
2005, there was little rain on almost all days of the flowering period of
spring oilseed rape, nectar production was analysed only for 2004.

In 2004 and 2005, after anthesis, pollen production was quantified for 5
flowers in each plot at the same time as flower visiting bees and flowers
were counted. The flowers were collected randomly from the plant main
raceme and stored separately. These racemes were previously isolated to
avoid consumption of the pollen by pollen beetles (Meligethes sp.). The
flowers with pollen were later acetolysed (Faegri, Iverson, 1989) to digest
both the floral tissue and pollen content, leaving pollen exines intact.
The separated pollen was dispersed in distilled water (1 ml). The pollen
grains were counted with a light microscope using a Fuchs-Rosenthal
chamber (3.2 mm?). These data were used to calculate the number of
pollen grains per flower.
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4.2. Laboratory experiments
4.2.1. Subjects

Colonies (Natupol hives) of the bumble bee Bombus terrestris L. were
purchased from Koppert Biological Systems B.V. (Berkel en Rodenrijs,
The Netherlands) to study the effect of low concentrations of Fastac 50
EC (a.i. alpha-cypermethrin 50 g I''; BASF SE, D-67056 Ludwigshafen,
Germany) on the metabolic rate, respiratory pattern and total water loss
rate of bumble bee B. rerrestris foragers (IV).

4.2.2. Laboratory equipment and measurements

Bumble bees

The hives were kept at room temperature and the bees fed with dried
honey bee pollen and a sugar solution (30%). The bees used in the
experiment were caught as they emerged naturally from the hive entrance
tunnel; this ensured that all of them were foragers.

Respirometry

An infrared gas analyser (IRGA, Infralyt-4, VEB, Junkalor, Dessau),
adapted for entomological research, was used in the first experiment,
to record the CO, signals and metabolic rates (VCO, ml h') at 8°C.
The IRGA was calibrated at different flow rates using calibration gases
(Trigergase, VEB, Junkalor, Dessau) with gas injection (Kuusik ez al.,
2002; Martin et al., 2004; Mind et al., 2005, 20006). The rate of carbon
dioxide release was measured (VCO, ml h) at an air flow rate of 120
ml min™, a pressure compensated URAS 26 (ABB Analytical, Frankfurt,
Germany), covering a measuring range of 0 to 500 ppm. The data from
the analyser were sampled at a rate of 10 Hz to PC via the analog output.
The CO, and H,O were eliminated from the flow-through system air by
DRIERITE and a molecular sieve.

The LI-7000 differential CO_/H,O Analyser (LiCor, Lincoln, Nebraska,
USA), designed for laboratory and field research applications, was used in
the second experiment to record water loss (VH, O pl h') parallel to the
bursts of CO, releases in bumble bee foragers at 18°C. Air flow in LI-7000
was regulated at 166 ml min™ (101 h"). The CO, and H O were eliminated
from the air used in the flow-through system by NaOH and Mg(CIO,)).
The IRGA was calibrated using NIST-traceable standard gases (for CO,).
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Infrared-actography

The LI-7000 was combined with an infrared (IR) actograph to record
abdominal movements. The actograph has also been used as an insect IR
cardiograph or optocardiograph (Hetz, 1994; Hetz ez al., 1999; Mind er
al., 2006; Karise et al., 2010). Two IR-emitting diodes (TSA6203) were
placed on one side (ventral side of the insect abdomen) and two sensor
diodes (BP104) were placed on the opposite side of the insect chamber.
Abdominal movements caused changes in the light transmitters, which
were converted into voltages and recorded as spikes.

Treatments

Fastac 50 EC was used to measure its effect on bumble bee respiratory
patterns and water loss. We diluted the Fastac 50 EC to 0.04% (20 parts
per million (ppm) of alpha-cypermethrin), which corresponds to the
registered field rate in Estonia of 20 g a.i. ha'. For our experiments, the
field dosage of Fastac 50 EC was diluted with distilled water to 0.004% (2
ppm of alpha-cypermethrin) and 0.002% (1 ppm of alpha-cypermethrin)
which are accordingly 10 and 20 times lower concentrations than
recommended for treating flowering rape fields against pests. The bumble
bees were dipped into the Fastac 50 EC solution or distilled water as
control for 10 seconds (Saba, 1971). Following dipping, each bee was
air-dried on filter paper. This dipping method is widely used in various
insect toxicology experiments with differing solvents or submergence
times (5 sec to 1 min) by both insect larvae (Isayama ez 4l., 2005; Cetin
et al., 2006; Erler et al., 2010) and adults (Sibul ez /., 2004; Azimi ez al.,
2009). In the case of bumble bees, the dipping method has been used as
an alternative method in contact tests (van der Steen, 2001).

The measurements

The measurements lasted for six hours per individual bumble bee. All
individuals were measured in the flow-through respirometer for three
hours after which the insect chamber was opened and the bumble bee
taken out for treatment. The treatment, according to the prescribed
scheme (different concentrations of Fastac 50 EC or distilled water), was
carried out immediately and the bee then returned to the insect chamber
for the next three hours.

In the first experiment, the metabolic rate and the frequency of bursts

of CO, releases of B. terrestris foragers were measured at 8°C. Bumble
bees are very active insects and tend to maintain high body temperature
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by shivering and contracting their flight muscles. The temperature was
chosen to prevent flight muscle activity in bees (Goller, Esch, 1990;
Kuusik ez al., 2002) and eventually the regular DGE appeared in most
of individuals.

In the second experiment, muscle activity, respiration rate and WLR
were measured at 18°C. Bumble bees often experience this temperature
when foraging. For bumble bees it is important to keep their thoracic
temperature high for several reasons: to minimise pre-flight warm-up
time when exploiting different inflorescences and to minimise escape
time when avoiding predators (Nich ez /., 2006). That is why many
bumble bee individuals shorten the length of the DGE cycles or do
not show DGE at all at 18°C. Therefore, we did not count the clear
cycles of discontinuous gas exchange at this temperature; instead, we
examined the change in the respiratory and abdominal activity patterns.
The higher metabolic rate also increases the WLR of the insect; therefore
the differences in WLR should be more easily detectable.

The dose of alpha-cypermethrin bumble bees received (measured from
ground-up bumble bee bodies) was 0.995 + 0.227 pg g (0.004%) and
0.87 £ 0.18 pg g (0.002%) (analysed by Agricultural Research Centre,
Laboratory for Residues and Contaminants, Teaduse 4/6, Saku, 75501
Harjumaa, Estonia). The method used in the chemical analysis was EN
12393-1,2,3: 1998 GC-ECD/NPD, GC-MS, LC-MS/MS; Norwegian
Crop Research Institute Pesticide Lab, M04.

The longevity of bumble bees

Bumble bees treated with Fastac 50 EC solutions of both concentrations
or distilled water, as described above, were kept at room temperature in
the dark. Each bee was placed in a separate chamber and provided with
30% sugar solution as food. The bumble bees were checked daily until
death. They were considered dead when they did not move antennae or
legs and did not respond to tactile stimulation. Then death was confirmed
using LI-7000 (Jogar ez al., 2008).

4.3. Data acquisition and statistics
Statistical analyses were performed using the software package
STATISTICA (StatSoft, Inc., Tulsa, Oklahoma). To determine the

correlations between two factors Pearson (II) and Spearman (III)
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correlations were used. To compare the mean values between the groups
t-test (III), paired t-test (IV), Kruskal-Wallis test (IV) and ANOVA
(IL, III) were used. Differences between means were inspected using
Fisher’s protected significant difference post hoc analysis (I). Data were
normalised where necessary (II).

Computerised data acquisition and analysis were performed using the
DAS 1401 A/D (analog-digital) hardware and the software TestPoint
(Keitley, Metrabyte, USA) with a sampling rate of 10 Hz (IV). The LI-
7000 analyser was connected to a computer to record CO, production
in ppm using LiCor software. Mean metabolic rates were automatically
calculated by a statistical program by averaging data over 3 h periods after
excess CO, and H,O, which had entered the system during handling,
had left the system.
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5. RESULTS

5.1. The impact of foliar fertilization on the number of flowers,
food resources and on the number of bees (Apoidea) on spring
oilseed rape (II)

5.1.1. Flower density

In both years (2004 and 2005), the abundance of flowers was significantly
higher on fertilized than on unfertilized plots (£, 15 = 2.83, p = 0.01
in 2004; me = 2.85, p = 0.01 in 2005). No significant differences
between differently fertilized plots, including plots fertilized only with

the complex fertilizer OptiCrop, were found (II Figure 1).
5.1.2. Food resources for bees

Except for fertilization with manganese or only with the complex fertilizer
OptiCrop, the production of nectar in 2004 was significantly higher
on fertilized than on unfertilized plots (qu = 2.48, p = 0.02). Plots
fertilized with OptiCrop plus manganese had significantly lower nectar
production than plots fertilized with OptiCrop plus one of the other
five microfertilizers (II Figure 2). Even plots fertilized with OptiCrop
alone resulted in more flowers than plots fertilized with OptiCrop plus

manganese.

The production of pollen was in both years, especially in 2005, higher on
fertilized than on unfertilized plots (II Figure 3) but the differences were
not statistically significant (Fz248 = 1.15, p = 0.33 in 2004; F7’344 =2.02,
2 = 0.05 in 2005). However, when summarizing over these two years,
the effect of treatment became significant (I Table 1). In addition, there
was no statistically significant interaction between year and treatment
on the number of pollen grains produced per flower which means that
the impact of different treatments followed the same trend in both years,
being higher on fertilized than on unfertilized plots.

5.1.3. The number of flower visiting bees

In both years, the number of flower visiting bees was higher on fertilized
than on unfertilized plots (II Figure 4) but the difference was statistically
significant only in 2004 (F7 = 2.62, p = 0.01 in 2004; F7 = 1.24,

,184 ,216
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p = 0.28 in 2005). When summarizing over two years, the effect of
treatment was significant (II Table 2). Moreover, there was no statistically
significant interaction between the year and treatment on the number of
flower visiting bees which means that the impact of different treatments
followed the same trend in both years being higher on fertilized than on
unfertilized plots.

5.1.4. Correlations between flower visiting bees and the number
of flowers and food resources of spring oilseed rape

A significant positive correlation between the number of flower visiting
bees and the number of flowers was found in both years (r = 0.59, p <
0.01 in 2004; r = 0.69, p < 0.01 in 2005). The number of flower visiting
bees correlated also moderately with nectar production (r = 0.41, p <
0.01) and, in 2005, weakly with pollen production (r = 0.21, p < 0.01).

5.2. The impact of Fastac 50 EC on bees

5.2.1. The impact of Fastac 50 EC treatment intensity on the
number of honey bees in small-scale field experiments (III)

The total number of bees differed significantly between experimental years
(F, = 3.7, p =0.03). Nevertheless, there was no significant difference

2,177~
in the number of honey bees per 1000 flowers between treatments either

during the whole observation period (£, .= 0.3, p = 0.8 in 2003; F,

57 33~
Table 1. The Spearman Rank Order Correlations between the number of honey bees
and the number of flowers on the experimental plots (10 m?). In bold letters statisti-
cally significant correlations at p < 0.05 are indicated.

Year Trial N Spearman R P
2003 Untreated 20 0.44 0.06
Once-treated 20 0.33 0.16
Twice-treated 20 0.68 <0.01
2004 Untreated 12 0.26 0.39
Once-treated 12 0.14 0.66
Twice-treated 12 0.68 0.02
2005 Untreated 28 0.10 0.63
Once-treated 28 0.11 0.59
Twice-treated 28 0.74 <0.01
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Figure 1. The number of flowers per 1 m? on three observation days on seed produc-
tion crops adjacent to each other. The dots indicate the mean value and the whiskers
indicate the standard error. *** — p < 0.05, n.s. — statistically not significant.

0.7, p = 0.5 in 2004; F,, = 0.04, p = 0.9 in 2005) (III Figure 1) or 24
h after spraying of flowers (GS 61-62) (F,,= 0.5, p = 0.6 in 2003; F,

= 1.6, p = 0.3 in 2004; F,, = 0.2, p = 081n2005) manyoftheyears
However, flower densmes dlfTered 51gn1ﬁcantly between the treatments
in all years (£, ,= 5.2, p < 0.01 in 2003; F, ,, = 8.4, p < 0.01 in 2004;
F .. =82p< 0 01 in 2005). There were positive correlations between

2,81
flower densities and the abundance of honey bees on the flower-rich

patches (Table 1, III Figure 2).

5.2.2. Honey bee abundance before and after Fastac 50 EC
treatment in field conditions (III)

In field conditions, 24 h after spraying, the number of honey bees per
1000 flowers on the Fastac 50 EC treated crop was significantly higher
than on the untreated crop (¢ = 4.4, df = 12, p < 0.01). However, 8 days
before and 8 days after the insecticide application the number of honey
bees per 1000 flowers between the Fastac 50 EC treated and untreated
crops did not differ significantly (accordingly = 1.7,df =12, p=0.12 and
t=0.2,df =12, p = 0.9) (III Figure 3). The insecticide application took
place during the peak flowering period, when the differences in flower
numbers appear most clearly, the food resource was significantly higher
on the treated field than on the untreated field (24 h after treatment: ¢ =
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2.2, df = 12, p = 0.048) (Figure 1). These differences did not appear at
the beginning and at the end of flowering (accordingly 7 = 1.5, df = 12,
»=02and = 0.04, df = 12, p = 0.9).

5.2.3. The impact of Fastac 50 EC on the DGE of bumble bees
(Bombus terrestris) (IV)

5.2.3.1. The experiment at 8°C

At low temperature the untreated resting bumble bee foragers exhibited
rthythmic gas exchange patterns. 0.004% Fastac 50 EC solution changed the
respiratory patterns of bumble bees. The numbers of bursts of CO, releases
and the mean metabolic rates decreased significantly (IV Table 1). Treating
the bees with 0.002% solution also caused a decrease in the numbers
of bursts of CO, releases, although the difference was not statistically
significant. The mean metabolic rate decreased significantly. Dipping the
bumble bees into distilled water as a control affected neither the frequency
of bursts of CO, releases nor the mean metabolic rate (IV Table 1).

5.2.3.2. The experiment at 18°C

The time for bumble bees to calm down and show CGE or DGE cycles
were longer at 18°C — activity was higher than at low temperature.
Depending on the activity type which the certain specimen belonged
to (R. Karise, unpublished) the bumble bees showed different patterns
of muscle activity (not locomotor activity) before the treatment. Some
bumble bees showed the DGE pattern already 10-30 minutes after
insertion into the insect chamber, whilst others needed more time to
calm down before showing regular CGE or DGE. Longer or shorter
periods of CGE or DGE usually interchanged the periods of active
ventilation.

Treating the bees with 0.004 % Fastac 50 EC solution caused rapid
disappearance of both rhythmic release of CO, and muscle activity (IV
Figure 1A, B). In DGE, the bumble bee uses muscle work only during
the short O period to aid gas exchange; after treatment, regular cycles
disappeared and a long-lasting muscle tremor appeared. As a result of the
treatment with the 0.004% solution the metabolic rate in one individual
increased and in others decreased significantly. However, no significant

effect on WLR was found (IV Table 2).
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Treating the bees with 0.002% Fastac 50 EC solution did not disrupt
either the regular bursts of CO, releases or muscle activity (IV Figure
2A, B) but the DGE was replaced by CGE (IV Figure 3A, B). In the case
of CGE, the level of CO, release does not fall to near zero as happens

during DGE. The treatment resulted in significantly lower metabolic
rates but no significant effect on WLR was found (IV Table 2).

Treating the bees with distilled water did not disrupt either the DGE, if
it had been present before the treatment, nor the muscle activity of the
bumble bee foragers. The metabolic rate and WLR also did not change
significantly (IV Table 2).

The simultaneous measurement ensured the exact coincidence of the
bursts of CO, and H O release (IV Figure 4). However, during activity,
the H O release was not recognisably higher compared to the WLR in
the C-phase. Respiratory transpiration constituted only a small part, less
than 10% of total transpiration in the bumble bee foragers.

5.2.3.3. The effect of Fastac 50 EC on bumble bee longevity

The mortality rate of bumble bees treated with different Fastac 50 EC
solutions was affected by the solution concentration (H (2, N = 30)
= 11.73, p < 0.01). Treatment with 0.002% solution did not shorten
the life span of the bees significantly compared to those treated with
distilled water (p > 0.05) (IV Figure 5). However, most individuals
treated with the higher concentration solution (0.004%) died within
1-3 days, although individual variation was observed (one specimen
lived for 8 days, another 16 days). The bee which lived for 16 days after
the treatment was also repeatedly controlled in the respirometer, which
showed that the normal DGE or CGE recurred 48 hours after treatment
and this pattern persisted at least until day 4. Also muscle activity
recurred on day 3. On day 6, there was neither DGE nor regular CGE.
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6. DISCUSSION

6.1. The impact of spring oilseed rape foliar fertilization on the
number of flowers and food resources provided for bees

Our results showed that oilseed rape fertilization increased the number
of flowers as well as the production of nectar and pollen per flower.
However, foliar fertilization with different microfertilizers in addition to
the mineral complex fertilizer OptiCrop had no effect on the number of
flowers and pollen compared to the plots fertilized only with OptiCrop,
but affected the production of nectar.

The positive effect of fertilization on the number of flowers can be
explained by the fact that oilseed rape, as a fast growing crop, needs
a high amount of nutrients; otherwise its growth will slow down and,
as a result, the number of flowers produced is also lower. In the case of
resource deficiency, oilseed rape plants probably preserve the size of flowers
rather than the number of flowers (Cresswell ez 4/., 2001). Although the
application of microfertilizers had no additional effect on the number of
flowers and pollen production, the relevance of micronutrients should
not be underestimated — their importance for plant physiology lies
in their influence on enzyme reactions and therefore deficiencies may
severely limit crop yields (Orlovius, 2003). Balanced nutrition of oilseed
rape is important to ensure optimum seed yield and quality as well as the
most economic response to applied fertilizer (Grant, Bailey, 1993).

In both years, especially in 2005, the production of pollen was higher
on fertilized than on unfertilized plots but the difference was not
statistically significant probably because of high variability of pollen
production. When summarizing over the years, the effect of treatment
became significant being higher on fertilized plots than on unfertilized
plots. Such an effect of fertilization can probably again be explained by
the fact that oilseed rape, as a fast growing crop, needs a high amount
of nutrients — otherwise its viability decreases. Recently, considerable
attention has been paid to pollen dissemination by pollinators (Hayter,
Cresswell, 2006; Chifflet ez /., 2011) and the influence of other factors
on pollen transfer and gene flow (Beckie ez al., 2003; Devaux ez al., 2008;
Sausse et al., 2012) in connection with potential problems associated
with the adoption of genetically modified oilseed rape. However, the
effect of fertilization on pollen production has not received attention so
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far, although this could affect the number of effective pollinators, bees,
on oilseed rape.

Nectar production per flower in our study appeared to be inhibited by
additional manganese. Manganese increases plant height, leaf area per
plant and dry weight of the aerial parts (Ali ez 4/, 2011b), and apparently,
plants contribute less to nectar production. Several authors have studied
the dependence of nectar production of oilseed rape flowers on varietal
(Mohr, Jay, 1990; Kotowski, 2001) and genetic differences (Pierre ez
al., 1999) but not the effect of fertilization on nectar production. As
several factors have been found to affect nectar production and nectar
standing crop, e.g. evaporation and absorption (Corbet, 2003), final
conclusions cannot be done on the basis of one study year, although a
preliminary trend is evident. The topic of the effect of fertilization on
nectar production needs further research.

6.2. The number of flower visiting bees on spring oilseed rape
with different fertilization treatments

Our results showed that, in 2004, the number of flower visiting bees was
significantly higher on fertilized than on unfertilized plots. In 2005, a
similar trend appeared but the difference was not statistically significant.
However, when summarizing over two years, the effect of treatment
was significant. These results can be explained by the number of flowers
and food resources offered on differently fertilized plots. The density of
flower visiting bees — honey bees, bumble bees and solitary bees — on
spring oilseed rape correlated strongly with flower density. Rosa ez al.
(2011) also found a significant positive correlation between the number
of oilseed rape flowers and the number of honey bees. In addition, the
number of flower visiting bees in our study correlated moderately with
nectar production and weakly with pollen production (but only in 2005).

Most bees collect only two food items from flowers: nectar, which
provides bees with energy, and pollen, which provides them with protein
necessary for growth of larvae (Rasheed, Harder, 1997). According to the
optimal foraging theory, bees try to maximize the benefit and minimize
the costs (Pettersson, Sjodin, 2000). Hence, the food collected from the
flower — the reward — has to exceed the energy spent on searching for
food. The positive correlation between the number of flower visiting bees
and the number of flowers found in this experiment concurs with this
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theory. It is energetically more profitable to choose denser flower areas
in order to expend less energy in flying between flowers (Cartar, Real,
1997). As the nectar of oilseed rape flowers can be replenished within
half an hour of depletion (Pierre er al., 1999), encountering empty
flowers is unlikely.

6.3. Impact of Fastac 50 EC on the honey bee abundance

The number of foraging honey bees in small-scale field experiments did
not differ between the patches treated with Fastac 50 EC once or twice and
those not treated with the insecticide. No repellent effect of the insecticide
on honey bees was found even 24 h after spraying although Fastac 50 EC
has been reported to maintain repellency to bees for 48 h after treatment
(Thompson, 2001). These results persisted through three observation years
regardless of varying flower and honey bee densities. We also found that
on flower-rich observation plots, the numbers of bees and flowers were
positively correlated, whereas on sparse patches no such correlation was
found. According to the theory of optimal foraging, animals distribute
themselves among differently rewarding food resources so that the average
amount of food per individual remains equal (Alonso ez 4/., 1995). Despite
the theory, flower-rich patches of oilseed rape were even more attractive
for the bees. Thus, the density of oilseed rape flowers most likely played
a major role in choice of foraging area. The large scale field experiment
confirmed this result. The field with the higher food resource attracted
more bees regardless of the Fastac 50 EC treatment.

Fastac 50 EC (a.i. alpha-cypermethrin) did not show repellency to honey
bees in small-scale field experiments or in the field experiment. Instead,
flower density seemed to be the main signal for honey bees probably
overriding the possible repellent effect. Fastac 50 EC has been reported
to be repellent for honey bees at least for 48 h. Most studies on repellency
have been performed in the laboratory or in semi-field conditions but
these may not reflect the real situation in field conditions (Thompson,
2003). Mayer and Lunden (1999) found no repellent effect of alpha-
cypermethrin on bees applied at the field rate to flowering oilseed rape.
Evidence for repellency may also be questioned by the detection of
cypermethrin residues in honey and wax (Pareja ez al., 2011).

Fastac 50 EC is commonly used to control pollen beetles in oilseed rape
which contributes to higher flower densities as the damage caused by the
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larvae to the flowering structures is prevented. So, treated crops may be
even more attractive to bees than untreated crops as these may often have
higher flower densities. Residues of alpha-cypermethrin on oilseed rape
leaf surfaces have been shown to be toxic for more than 3 days following
insecticide application and may kill up to 25 % of bees that come into
contact with them (Cox, 1996). Choudary and Sharma (2008) proved
the persistence of another pyrethroid, lambda-cyhalothrin, residues in
the nectar and pollen of mustard at least 72 h after treatment. Thus, in
field conditions, honey bees can become contaminated with the residues
of insecticides even if the hives have been kept closed for some time after
spraying as suggested by chemical companies.

6.4. Impact of Fastac 50 EC on the respiration of bumble bees

Our results show that Fastac 50 EC has a dose dependent after-effect on
bumble bee respiratory rhythms, metabolic rate and muscle activity but
has no effect on WLR. The regular periods of discontinuous or cyclic
gas exchange disappeared during the first 30 minutes after treatment
with 0.004% Fastac 50 EC solution. This treatment also shortened the
lifespan of bumble bees. Contact with 0.002% Fastac 50 EC solution did
not provoke that kind of drastic disappearance of rhythmic gas exchange
and the longevity of bumble bees did not change compared to control
bees treated with distilled water.

We found a decline in metabolic rates of bumble bees after contact
with Fastac 50 EC, a pyrethroid insecticide. Some other researches also
interpret the reduction in metabolic rate as a generalized response to
stressors (e.g., toxins, insecticides, heat and cold) that could lead to a
reduction in respiratory water loss (Hoffmann, Parsons, 1989; Chown,
Gaston, 1999). By contrast, Kestler (1991) claims that negative stressors
raise standard metabolic rate of resting insects. Jogar ez al. (2006) also
described the rise in metabolic rates after treatment with Neem EC in
Colorado potato beetles. Sibul ez a/. (2004), however, did not see any
change in metabolic rates of pine weevils after contact with Neem EC.
These results suggest that the effect of pesticides on metabolic rates of
insects depends largely on both insect species and pesticide formulation.

Meanwhile, the existence and nature of carbon dioxide emission patterns
also depends on many factors which include environmental conditions

(Kestler, 1971; Dingha et al., 2005; Terblanche ez al., 2008; Karise ez
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al., 2010), metabolic rate (Kestler, 1991; Sibul ez al., 2004; Jogar ez al.,
20006), the life stage of the insect (Beekman, Stratum, 1999; Mind ez 4l.,
2005, 20006) and several stress factors (Kestler, 1991; Lighton, Lovegrove,
1990; Kovac ez al., 2007). Normally bumble bees show DGE cycles as a
sign of calming down or resting. The events of calming down are clearly
observed on the respirograms of bumble bees (Karise ez 4/., 2010).

According to Kestler (1991), the pathological CO, release patterns can be
divided into phases: latency phase with closed-flutter-ventilation (CFV),
followed by continuous respiration with small irregular bursts of CO,
releases. Kestler considers this to be a reversible excitation phase being
a typical stress index for sub-lethal doses of neurotoxic pesticides. The
reversible excitation phase devolves to an irreversible excitation phase
with no bursts of cyclic CO, release. At that time, the spiracles stay open
and are paralysed.

The respiratory rhythms of bumble bees altered clearly after treatment
with alpha-cypermethrin, the neurotoxic active ingredient of Fastac 50
EC. Contact with the 0.004% solution caused rapid disappearance of
the respiration cycles in most of the foragers. Contact with the 0.002%
solution of Fastac 50 EC changed the classical CFO (closed-flutter-
open) cycles to FV (futter-ventilation) cycles within about the first 30
minutes; later the bouts of CO, releases disappeared. If the large bouts
of CO, releases occurred after treatment, these were rather FV cycles
instead of CFO cycles. Two specimens out of six showed large bursts
of CO, releases after the treatment, others showed varying rates of
released CO, of a relatively low but smooth level. We saw the shift from
cyclic towards continuous respiratory behaviour along with decreasing
metabolic rate due to non-ability of bumble bees to keep the spiracles
closed. The diminishing muscle work after the treatment with the
neurotoxic chemical (Zafeiridou, Theophilidis, 2006; Woodman ez 4.,
2008) is most likely the result of paralysis, not the result of calming
down. In unstressed insects, the decreasing metabolic rate is a sign of
calming down and therefore the shift towards classical DGE should
appear (Bradley, 2007; Gray, Chown, 2008; Moerbitz, Hetz, 2010).

It seems reasonable to conclude that a dose of 0.004% Fastac 50 EC is not
sub-lethal, but lethal. For most individuals, the symptoms of intoxication
were irreversible. The fact that at least two individuals lived for longer (8
and 16 days), shows that this concentration must be near the lethal dose
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for bumble bees but indicates also the heterogeneity of the B. terrestris
population in the context of alpha-cypermethrin immunity. We interpret
that, according to Kestler’s (1991) classification, the bumble bees must
have been in reversible excitation phase only. The three hour period must
have been too short to see total recovery from the intoxication. We saw
the reappearance of the regular DGE in the bumble bees which survived
the higher dose and lived for 8 or 16 days after treatment.

Total water loss did not differ significantly after dipping the bees into
distilled water or into the Fastac 50 EC solution of either concentration
although metabolic rate decreased significantly after the insecticide
treatments. However, the WLR showed a tendency to increase after
treatment of the bees with the 0.004% solution, while decreasing after
treatment with 0.002% solution or distilled water. The decreasing WLR
is normal when metabolic rate decreases. At lower metabolic rate the
gas exchange including WLR is lower. The slightly higher WLR after
the treatment with 0.004% Fastac 50 EC solution was not caused by
muscular excitation, since this would have been seen on the actograph
recordings. We suppose that, due to paralysis, the spiracles of the bumble
bees may have been open (continuous CO, release) after treatment and
along with the outflow of CO,, the water vapour was also washed out
from the tissues of moribund insects. Total water loss has been showed to
be higher during continuous, compared to discontinuous, CO, release

(Matthews, White, 2012).

Several studies reveal that respiratory water loss comprises mostly a small
fraction of total water loss, even when the spiracles are open (Quinlan,
Hadley, 1993; Quinlan, Lighton, 1999; Chown, 2002; Gibbs, Johnsson,
2004; Lighton er al., 2004). We suppose that, for bumble bees,
respiratory water loss probably does not play a very important role and
the non-ability to DGE and desiccation thereafter was not the direct
cause of death. The importance of respiratory water loss differs between
insect species (Lamprecht ez a/., 2009) depending more or less on water
permeability of the cuticle. Bumble bees feed mostly on liquid food and
therefore they need to discharge excess water, and the water permeability
of their cuticle is high (Nicolson, 2009). A characteristic of bee water
balance is the rapid mobilisation of ingested dietary water from the
crop to the haemolymph, allowing rapid correction of haemolymph
osmotic pressure (Willmer, 1986). Besides, in larger bees like Xylocopa
and Bombus sp, the metabolic water may be in excess during flight and
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occasionally these bees eliminate water by spitting or by defaecation
(Bertsch, 1984; Willmer, Stone, 1997). Because of these characteristics
of bumble bee physiology, which allow them to be less judicious about
respiratory patterns, and based on our results, we do not believe that
death resulted from desiccation, even if the pyrethroid had increased
the diuretic event. Still, the DGE cycles may confer a fitness benefit
to the bumble bee B. terrestris. We did not find proof for the theory
of DGE cycles functioning as a water saving mechanism; rather our
results support the oxidative damage hypothesis (Hetz, Bradley, 2005).
Probably, the intoxicated bumble bees were paralysed and their spiracles
were open: the freely entering oxygen could have been the key factor
diminishing their fitness. This kind of research may benefit from precise
observation under the microscope on the behaviour of the spiracles
during intoxication.

6.5. Implications to promote and
protect bees on spring oilseed rape

There have been several agricultural changes in Europe during recent
decades, e.g. homogenization of farmland landscapes and increase
in application of chemicals, one of the main reasons for that being
policy changes (Stoate ez al., 2009). The intensification of agriculture
has brought along several environmental problems, including loss of
biodiversity (Benton ez al., 2003). One of the concerns of biodiversity
is the pollination crisis in the world. There is clear evidence of recent
declines in both wild and domesticated bee-pollinators (Potts ez 4.,
2010) which have been observed in different regions of the world
— America (Kremen et al., 2004; Currie et al., 2010), Asia (Klein et
al., 2003) and Europe (Williams ez a/., 1991; Williams, 1996; Giray
et al., 2010). The principal factor is likely to have been the loss and
degradation of habitats and of food resources due to changes in land-use
and agricultural practice (Osborne ez al., 1991; Williams ez al., 1993;
Mind ez al., 2002; Sepp et al., 2004; Goulson ez al., 2005; Ockinger,
Smith, 2007; Potts ez al., 2010), including the intensive use of pesticides
(Osborne et al., 1999; Miranda et al., 2003; Maini ezt al., 2010). At
the same time, bees are the most important pollinators of almost all
terrestrial ecosystems because they provide a vitally important ecosystem
service as pollinators for a wide range of agricultural, horticultural and
wild plants (Corbet ez al., 1991; Williams 1994, 1996; Klein ez al.,
2007; Pauw, Hawkins, 2011).
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To mitigate the negative effects of agriculture on pollinators, necessary
steps need to be taken but this requires enough knowledge. Oilseed rape
is a very attractive food plant for bees offering ample additional food
resources (Westphal ez /., 2003, 2009) and, at the same time, benefits
from cross-pollination, including improving both the quantity and
quality of the seed produced (Free, 1993; Sabbahi ez 4/, 2005; Chifflet
et al., 2011; Bommarco et al., 2012). Therefore, the foraging activities of
bees have significant economic consequences for seed production, thus
factors that lower their pollinating activity on oilseed rape should be
minimised (Thompson, Maus, 2007). As spring oilseed rape is a crop
with high nutrient demand and, on the other hand, often needs the
application of pesticides, the effect of these factors on bees, as the most
important pollinators of oilseed rape, needs to be explained.

The results of our study showed that, to secure a higher number of
pollinators for achieving higher seed yield and other benefits deriving
from cross-pollinating, spring oilseed rape should receive proper complex
fertilization. Applied microfertilizers turned out to be useless in terms of
increasing the number of pollinators. In addition, our study tends to
confirm that Fastac 50 EC does not show repellency for honey bees in
field conditions although it has been reported to maintain a repellent
effect to bees for 48 h after treatment. It seems that the attractiveness of
high flower density overrides the repellent effect. Thus, oilseed rape fields
treated with Fastac 50 EC against pollen beetles contribute to higher
flower densities and are even more attractive to bees. Our results also
showed that Fastac 50 EC has a dose dependent effect on bumble bee
respiratory rhythms, metabolic rate and muscle activity but has no effect
on water loss rate. Even solutions with lower concentrations of Fastac 50
EC (solution with 0.004% Fastac 50 EC, 2 ppm of alpha-cypermethrin)
than the registered field rate in Estonia (20 ppm) affected significantly
the physiology of bumble bees.

The sub-lethal doses of pesticides bees encounter do affect the
physiological state of the pollinators, being thus one possible reason for
global pollinator decline. Pollinators have evolved to recognize different
signals and react respectively. As the application of pesticides is a quite
new phenomenon from the evolutionary perspective, no co-evolving
has occurred and the pollinators are not able to recognize the hazards.
It is obligatory for chemical companies to provide mortality data for
their products for all larger organism groups. Unfortunately, the results
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of laboratory and semi-field studies do not reflect the situation in field
conditions as additional factors may affect the choices of bees, e.g. high
flower density which seemed to be the main signal for bees in our studies.

One of the possibilities to mitigate the negative effects of pesticides
would be to close honey bee hives during pesticide treatment but it
has been shown that the residues on leaf surfaces can be toxic for more
than 3 days following insecticide application (Cox, 1996; Thompson,
2003). So, honey bees may still come into contact with sub-lethal doses
of pesticides which have multiple negative effects (Yang ez al., 2008;
Aliouane et al., 2009; Decourtye et al., 2011; Wu ez al., 2011; Pettis
et al., 2012; Schneider et al., 2012). In addition, the nests of native
pollinators cannot be closed.

The management of pests on oilseed rape throughout Europe relies heavily
on chemical pesticides, most often applied routinely and prophylactically,
often without regard to pest incidence (Williams, 2004). This leads to
the over-use of pesticides, which reduces the economic competitiveness
of the crop and threatens biological diversity. Thus, the need for pesticide
application on oilseed rape should certainly be previously monitored. In
addition, the pests of oilseed rape have several natural enemies which
have the potential to contribute to biological control (Veromann ez
al., 2006b; Veromann et al., 2006¢; Ekbom, 2010). The protection of
pollinators against the negative effects of agriculture, including pesticides,
should be supported by policy, e.g. through appropriate measures like
agri-environment schemes of the European Union common agricultural
policy (K&ster et al., 2009).
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7. CONCLUSIONS

Spring oilseed rape (Brassica napus L. var. oleifera subvar. annua) is an
important oilseed crop, the area of which has increased significantly in
northern Europe, including Estonia. Spring oilseed rape is predominantly
autogamous but cross-pollination can have several positive effects,
including higher seed yield and better quality. Hence, it is profitable to
encourage a high number of pollinators in oilseed rape fields. On the other
hand, the bees visiting oilseed rape flowers need to be protected against
negative effects of pesticides which have become an almost inevitable part
of cultivating these crops. In order to favour and protect pollinators of
oilseed rape appropriate knowledge is needed. Thus, as spring oilseed rape
is a crop with high nutrient demand and, on the other hand, often needs
the application of pesticides, the effect of these factors on bees, as the
most important pollinators of oilseed rape, needs to be explained. The
results of the current work shed light on some of these issues:

* The density of flower visiting bees — honey bees, bumble bees and
solitary bees — on spring oilseed rape correlated strongly with flower
density (II). In addition, the number of flower visiting bees corre-
lated moderately with nectar production and weakly with pollen
production (but only in 2005).

* Oilseed rape fertilization increased the number of flowers as well as
the production of nectar and pollen per flower thus increasing food
reserves of bees (II). However, foliar fertilization with different mi-
crofertilizers, in addition to the mineral complex fertilizer OptiCrop,
had no effect on the number of flowers and pollen production com-
pared to the plots fertilized only with OptiCrop, but affected the
production of nectar (which appeared to be inhibited by additional
manganese).

* To secure a higher number of pollinators for achieving higher seed
yield and other benefits deriving from cross-pollination spring oil-
seed rape should receive correct complex fertilization (II). Applied
microfertilizers turned out to be useless in terms of increasing the
number of pollinators.

* The number of foraging honey bees did not differ between the patch-
es treated with the pyrethroid insecticide Fastac 50 EC (a.i. alpha-
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cypermethrin) and those not treated with the insecticide. Thus, the
results of our study tend to confirm that Fastac 50 EC does not show
repellency for honey bees in field conditions (III). No repellent effect
of the insecticide on honey bees was found even 24 h after spraying
although Fastac 50 EC has been reported to maintain repellency to
bees for 48 h after treatment.

Our experiments (III) indicate that honey bees foraging on spring
oilseed rape were most attracted by high flower density which prob-
ably overrided the repellent effect of the insecticide. Controlling pol-
len beetles in oilseed rape with the Fastac 50 EC may contribute to
higher flower densities.

Treating bumble bees at 8°C with 10 times lower concentrations of
insecticide (solution with 0.004% Fastac 50 EC, 2 ppm of alpha-cy-
permethrin) than the registred field rate in Estonia (20 ppm) changed
the respiratory patterns of bumble bees: the number of bursts of CO,
releases and the mean metabolic rates decreased significantly (IV).
20 times lower concentrations also decreased significantly the mean
metabolic rates.

Treating bumble bees at 18°C with 10 times lower concentrations of
the recommended field dosage the rythmic release of CO, and mus-
cle activity disappeared (IV). Treatment with 20 times lower con-
centrations of the recommended field dosage did not disrupt either
regular bursts of CO, releases or muscle activity but discontinuous
gas exchange was replaced by cyclic gas exchange. Both concentra-
tions, at 18°C, changed the mean metabolic rates significantly.

We found no significant effect of the solutions with 0.004% or
0.002% Fastac 50 EC on water loss rate in bumble bees although
the treatments changed their respiratory patterns (IV). Thus, we did
not find evidence for the theory of discontinuous gas exchange func-
tioning as a water saving mechanism.

An after-effect of 0.004% Fastac 50 EC solution was a significant
decrease in the longevity of bumble bees (IV).

The results of the current research lead us to conclude that to favour bees
as the main pollinators of spring oilseed rape the crop should receive
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correct complex fertilization to assure sufficient food resources for bees.
It is obligatory for chemical companies to provide mortality data for
their products for all larger organism groups. Unfortunately, the results
of laboratory and semi-field studies do not reflect the situation in field
conditions as additional factors may affect the choices of bees, e.g. high
flower density which seemed to be the main signal for bees in our studies.
In addition, the sub-lethal dose of pesticides bees encounter do affect the
physiological state of the pollinators, being thus one possible reason for
global pollinator decline. Pollinators have evolved to recognize different
signals and react respectively. As the application of pesticides is quite a
new phenomenon from the evolutionary perspective, no co-evolving has
occurred and the pollinators are not able to recognize the hazards.

Pesticides should not be applied routinely and prophylactically without
regard to pest incidence but the need for pesticide application should
be previously monitored. The protection of pollinators against negative
effects of pesticides should be supported by policy, e.g. through
appropriate measures like agri-environment schemes of the European
Union common agricultural policy. In addition to decreasing the amount
of pesticides used further research on the ecotoxicity, after-effects and
sub-lethal effects of pesticides is needed and more environmentally
friendly growing technologies should be developed (e.g. entomovector-
technology and biopesticides).
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SUMMARY IN ESTONIAN

Vietamise ja pestitsiidide kasutamise moju
mesilaselaadsetele (Apoidea) suvirapsil

Suviraps (Brassica napus L. var. oleifera subvar. annua) on oluline
olikultuur, mille kasvupind on Phja-Euroopas, k.a Eestis viimasel paaril
aastakiimnel oluliselt suurenenud. Kiirekasvulise kultuurina vajab raps
palju toitaineid, mistottu korralikke saake saadakse piisaval vietamisel.
Raps on peamiselt isetolmlev, kuid risttolmlemisel paraneb seemnete
kvaliteet ja kvantiteet. Seega mojutavad mesilased kui rapsi peamised
tolmeldajad ka rapsikasvatuse majanduslikke niitajaid, mistottu on
otstarbekas soodustada nende kohalolekut rapsipdldudel. Viimasel ajal
on aga nii Euroopa, Ameerika kui ka Aasia po6llumajandusmaastikes
tiheldatud tolmeldajate arvukuse drastilist langust, mille peapohjuseks
peetakse intensiivistunud pollumajandusest tulenevat maakasutuse
muutust ja suurenenud pestitsiidide kasutust.

Rapsi kasvupinna suurenemine on loonud soodsad tingimused ka
rapsi kahjuritele, keda torjutakse keemiliste insektitsiididega. Samas
on raps oite korge nekrtaritootlikkuse ning selle suure suhkrusisalduse
tottu viga atraktiivne toidutaim mesilastele, mistottu on neil suur oht
sattuda kontakti taimekaitsevahenditega. Selle viltimiseks on hakatud
tootma mesilastele repellentseid pestitsiide, kuid nende eemalepeletav
toime péllutingimustes on osutunud problemaatiliseks. Uldiselt piirdub
uute pestitsiidide viljatdotamisel nende méju uurimine kasulikele
putukatele peamiselt toksilisuse mdiramistega. Kuid putukaile méjuvad
ka pestitsiidide subletaalsed doosid, mis v6ivad muuta niiteks mesilaste
kiditumist ning avaldada moju pere eluvoimele. Problemaatiline on
ka meemesilastega kui peamiste mudelorganismidega ldbiviidud
katsetulemuste automaatne iilekandmine looduslikele mesilaselaadsetele
tolmeldajatele, kuigi nende kiitumismustrites on olulisi erinevusi.
Pestitsiidide subletaalsed ning jireltoimed ei pruugi avalduda alati
kditumises. Selleks, et paremini méista muutusi, mida kemikaalid
organismis pohjustavad, on kiitumuslikke uuringuid vaja toetada
tusioloogiliste katsetega.

Lihtudes nendest probleemidest oli kidesoleva doktoritoo eesmirkideks
selgitada: 1) kas lehekaudne lisavietamine mikrovietistega mojutab
suvirapsi oite tihedust ning nektari- ja 6ietolmu produktsiooni ning
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seeldbi ka 6isi kiilastavate mesilaselaadsete (Apoidea) — meemesilaste,
kimalaste ja erakmesilaste — arvukust? (II), 2) kas meemesilased
(Apis mellifera L.) vildivad oma toiduvalikus mesilastele repellentse
insektitsiidiga Fastac 50 EC pritsitud 6isi? (III), 3) kas madalad Fastac
50 EC kontsentratsioonid méjutavad karukimalaste (Bombus terrestris

L.) hingamistsiikleid ja hingamisel tekkivat veekadu (IV)?

Antud uurimuse tulemusenaleiti, et suvirapsi oisi kiilastavate meemesilaste,
kimalaste ja erakmesilaste arvukus korreleerus positiivselt oite tihedusega
(IT). Mesilaste arvukus korreleerus méodukalt ka nektariproduktsiooniga
ning 2005. aastal nérgalt dietolmu produktsiooniga. Rapsi kiilvieelne
vietamine kompleksvietisega suurendas nii 6ite arvu kui ka nekrari- ja
oietolmu produktsiooni ning sellega suurenes mesilaste toiduressurss.
Mikrovietistega lehekaudne lisavietamine ei mojutanud 6ite arvu ega
oietolmu produktsiooni, kuid mojutas oluliselt nektaritoodangut,
kusjuures mangaani lisamine méjus vorreldes teiste lehekaudselt lisatud
mikrovietistega viimasele parssivalt. Antud uurimuse tulemustest jireldub:
selleks, et tagada korgemat saaki ja teisigi risttolmeldamisest tulenevaid
paremusi on tolmeldajate arvukuse soodustamiseks oluline vietada
suvirapsi kompleksvietistega. Lehekaudne mikrovietistega lisavietamine
antud uurimuses tolmeldajate arvukust oluliselt ei méjutanud.

Insektitsiidi Fastac 50 EC (toimeaine alfa-tsiipermetriin 50 g 17)
repellentsuse  testimine nditas, et meemesilaste arvukus antud
insektitsiidiga td6deldud ja td6tlemata rapsitaimedel ei erinenud. Sellest
jareldub, et vastupidiselt tootekirjeldusele, ei peletanud Fastac 50 EC
pollutingimustes meemesilasi (ITI). Antud insektisiidi repellentset toimet
ei tuvastatud ka 24 tundi pérast pritsimist, kuigi ametlikel andmetel
peletab Fastac 50 EC meemesilasi pritsitud alalt 48 tunni jooksul.
Katsed niitasid, et meemesilastele oli kdige olulisemaks signaaliks dite
tihedus, mis kaalus iile insektitsiidi peletava moju. Kuivord pestitsiidiga
t66deldud rapsipoldudel on kahjurite hukkumise tottu 6isi rohkem, siis
on raps mesilastele atraktiivsem ning tihtlasi ka ohtlikum.

Fisioloogilised uuringud niitasid, et insektitsiidi Fastac 50 EC
subletaalsed doosid mojutasid oluliselt kimalaste hingamisriitme,
ainevahetust ja lihaste aktiivsust (IV). Kimalaste t66tlemine insektitsiidi
lahusega, mis oli 10 korda lahjem (0.004% Fastac 50 EC lahus, alfa-
tsiipermetriini 2 ppm) kui on Eestis tegelik registreeritud pritsimisnorm
(20 ppm), vihendas 8°C juures (mil kimalased on rahulikud ja hingavad
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enamasti katkendlikult) mddramisel oluliselt CO, viljalasete arvu ning
keskmist ainevahetuse taset. Viimast vihendas oluliselt ka 20 korda
lahjema lahusega (0.002% Fastac 50 EC lahus, alfa-tstipermetriini 1 ppm)
to6tlemine. Kui sama katse viidi libi 18°C juures (sel temperatuuril
kiiakse tavaliselt ka p6llul toitu kogumas), siis esimeses variandis (0,004%
Fastac 50 EC), kadusid riitmilised CO, viljalasked ning lihaste aktiivsus.
Teises variandis (0.002% Fastac 50 EC) ei kadunud regulaarsed CO,
viljalasked ega ilmnenud hiired lihaste t66s, kuid katkendlik hingamine
asendus tsiiklilise hingamisega, mille puhul CO, viljalaske tase enam
nullini ei jéua ehk hingamisel ’suletud faas’ puudub. Mélemad Fastac
50 EC kontsentratsioonid méjutasid 18°C juures oluliselt ka keskmist
ainevahetuse taset. Fastac EC 0.004% lahusega t66tlemise jirelmojuna
vihenes oluliselt kimalaste eluiga. Samas ei tuvastatud selle insektitsiidi
olulist méju veekaole. Seega ei leitud kinnitust teooriale, et katkendlik
hingamine toimib kui vett sd4stev mehhanism.

Kiesoleva uurimustod tulemustest jireldub, et mesilastele kui suvirapsi
peamistele tolmeldajatele piisava toiduvaru tagamiseks on suvirapsi vaja
vietada kompleksvietisega. Pestitsiide tootvatele ettevotetele on  kiill
kohustuslik lisada koigile oma toodetele info letaalsete dooside kohta,
kuid kahjuks ei peegelda laboris ja viikesemahulistes pollukatsetes tehtud
uurimused alati tegelikku olukorda pallutingimustes. Siin voivad mesilaste
valikuid méjutada mitmed neile olulised faktorid, nt 6ite tihedus, mis oli
meie uurimuses nende kditumisel peamiseks signaaliks. Lisaks mojutavad
insektitsiidide subletaalsed doosid tolmeldajate fiisioloogilist seisundit,
mis voib olla nende arvukuse globaalse vihenemise tiheks voimalikuks
pohjuseks. Tolmeldajad on evolutsioonis kohastunud #ra tundma
erinevaid signaale ning vastavalt nendele kidituma. Kuna pestitsiidide
kasutamine on selles protsessis kiillaltki uus nihtus, ei ole tolmeldajad
nendega veel kohastunud ja riske dra tundma 6ppinud.

Pestitsiide ei tohiks kasutada rutiinselt ja lihtsalt profiilaktika mottes,
vaid vajadust nende jirele tuleks pollul eelnevalt seirata. Tolmeldajate
kaitsmist pestitsiidide negatiivsete méjude eest tuleks toetada ka
labi poliitikate, nt libi Euroopa Liidu tihise péllumajanduspoliitika
rakendatava pollumajandusliku  keskkonnatoetuse meetme. Lisaks
pestitsiidide kasutamise vihendamisele tuleks lidbi viia tdiendavaid
uurimusi pestitsiidide toksilisusest, jireltoimetest ning nérkade dooside
mojust elusorganismidele ning vilja tootada keskkonnasobralikumaid
kasvatustehnoloogiaid (nt entomovektor-tehnoloogia ja biopestitsiidid).
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Chapter 14
Oilseed Rape, Bees and Integrated Pest
Management

Marika Miind, Ingrid H. Williams, Eneli Viik, and Reet Karise

Abstract As a major mass-llowering crop producing an abundance of nectar and
pollen, oilseed rape is very atiractive 1o honey bees, bumblebees and solitary bees.
It provides a food resource of considerable value in sustaining bee populations in
agroccosystems at a time when bees are in decline. Although the flowers are self-
fertile, they are emomophilous, and pollination studies, both in the glasshouse and
in the field, suggest that bee foraging activities on the crop have many beneficial
effects for the grower, including improving both the quantity and quality of the seed
produced. However, bees foraging on the crop are vulnerable to the effects of insce-
ticides, mostly pyrethroids applied to the crop, particularly when these are applied
during flowering to control inflorescence pests. Effects may be lethal or sub-lethal;
the latter have been little studied but there is growing evidence that insecticides
affect many aspects of bee behaviour and physiology, such as division of labour,
foraging and orientation, reproduction and respiration. Hushandry practices on the
crop must therefore seck to minimise the use of insecticides on the crop, panicu-
larly during flowering, in order to sustain and not diminish bee populations foraging
on the crop. Bees may even have a role in integrated pest management strategies
incorporating biocontrol through their capacity to vector entomopathogenic fungal
spores to the flowering canopy of oilsced rape o kill inflorescence pests,

14.1 Introduction

Oilseed rape (Brassica napus L.) is an oil crop of increasing importance world-
wide. It is the major oilseed crop grown in northern and central Europe with over
5 million ha grown and a production of over 15 million tonnes in 2006 (Eurostal
2009, see also Williams Chapter | this volume). The flowers of oilseed rape yield
abundant nectar and pollen and are very attractive to bees, which consequently are
often abundant on flowering rape crops. The growing of mass-flowering oilseed rape
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crops thus greatly enhances nectar and pollen resource availability in agricultural
arcas and, when appropriately managed, have potential 1o promote the abundance
as well as the fitness of bee populations (Westphal ct al. 2009). Many beekeepers
maove their honey bee colonies to crops of oilseed rape during flowering; honey is
therefore an important by-product of the crop (Williams 1980, Williams and Cook
1982, Williams er al, 1993),

Although commaonly considered to be a self-pollinating species, oilseed rape has
entomophilous flowers capable of both self- and cross-pollination and there is sub-
stantial evidence that seed quantity and quality can be improved by the foraging
activities of bees on the crop.

On the other hand, hees foraging on the crop are vulnerable 10 the woxic effects
of pesticides applied to the crop and this may contribute to the decline of wild bees
as well as honey bees (Corbet et al. 1991, Miranda et al. 2003). Frequent appli-
cations of broad-spectrum, non-selective insecticide compounds, mainly synthetic
pyrethroids, are commonly applied to rape crops throughout Europe each year for
the control of economically-important insect pests in autumn, spring and summer
(sce Williams et al. Chapter 1, Ulber et al. Chapter 13, this volume); some appli-
cations are made during flowering when bees may be foraging on the crop and are
particularly vulnerable to their toxic effects. Further, insecticides are ofien applied
in tank-mixes with fungicides; this may change the effects of both products on non-
targel organisms; the toxicity of the insecticide may be greater when applied in a
tank-mix (Muranjan et al. 2006). Despite research data indicating severe mortality
effects on beneficial insects, less attention has been paid to sub-lethal effects (Gels
et al. 2002, Thompson 2003). There is increasing concern amongst beekeepers that
sub-lethal doses of pesticides may have a significant impact on the behaviour of
honey bees (Pajot 2001) and there is growing evidence that they also affect their
physiology.

The intensification of agriculture has lead o a rapid decline in the species-
richness of farmland (Benon et al. 2003). General and widespread shortage of
bee-pollinators is predicied in agriculiural areas of America (Kremen et al. 2004),
Asia (Klein et al. 2003) and Europe (Williams et al. 1991, Williams 1996). Bees are
important pollinators not only of agriculural ecosystems but of almost all terresirial
ecosysiems because they provide a vitally important ecosystem service as pollina-
tors for a wide range of agricultural, horticultural and wild plamts (Corbet et al.
1991, Williams 1994, 1996, Klein et al. 2007), The decline of bee populations is
therefore currently giving cause for great concern { Williams 1996, Biesmeijer et al.
2006, Gabriel and Tscharnike 2007).

Several factors have been suggested as possible contributors o this decline,
including changes in climate and the effects of predators and parasites (Williams
1986). However, the principal factor is likely to have been the loss and degradation
of habitats and of critical food resources due to changes in land-use and agricul-
tural practice (Osborne et al. 1991, Williams et al. 1993, Miind et al. 2002, Sepp
et al. 2004, Goulson et al. 2005, Ockinger and Smith 2007). The supply of nectar
and pollen is now often insufficient in European agricultural landscapes to support
healthy bee populations (Goulson et al. 2005, Ockinger and Smith 2007). Oilseed
rape, as a mass flowering crop, provides highly rewarding resources of both nectar
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and pollen for bees and therefore promotes colony growth and bee abundance
{Westphal et al. 2003, 2009). Thus it is vital that husbandry of the oilseed rape
erop helps 10 sustain and not 1o diminish bee populations.

It is essential therefore to consider bee populations, their inleractions with the
oilseed rape crop as well as their importance o the wider environment when devel-
oping pest management stralegies [or the crop. Alternatives to chemical insecticides
for pest management are needed to reduce pesticide applications to the crop and
thereby minimize the pressure on beneficial insects such as bees and parasitoids
isee also Ulber et al. Chapter 13 this volume). Due to their morphological and
behavioural characteristics, bees may even be used to aid pest management on the
crop. Their hairy bodies are adapted for carrying pollen grains but they can also be
used to vector antagonistic micro-organisms, such as entomopathogenic fungi for
the control of inflorescence pests. Development of bee-mediated biological control
vector-technology has great potential in integrated pest management strategies for
crop protection (Williams 2004, Williams et al. 2(H5).

This review analyses the importance of oilseed rape as a food resource for hees,
describes its pollination requircments, discusses the vulnerability of bees 1o pesti-
cides applicd 1o the crop and examines the potential for use of bees as entomovectors
within integrated pest management strategies for the control of inflorescence pesis
of oilseed rape.

14.2 QOilseed Rape as a Source of Forage for Bees

14.2.1 The Flower

Oilseed rape is a typical cruciferous plant with yellow (or in some cultivars, white)
Aowers arranged in elongated terminal racemes. Each flower has four sepals, four
petals and, usually, six stamens, four of which are longer and two shorter than the
style. The flower bears four partly-hidden nectar glands (nectaries) at the base of the
six stamens, two at the inner bases of the short stamens and two outside the ring of
stamens {Hasler and Maurizio 1950, Eisikowitch 1981).

The flowers may open at any time of the day, but usually begin to open early in the
morning and most are fully open by 9.00 h. They remain open for up 1o 3 days, clos-
ing slightly at night, but opening fully again the next morning; winter rape lowers
are open for 1-3 days, whereas flowers of spring rape open for 1-2 days. Flowering
extends from 22 10 45 days (Radchenko 1964, Free 1993, Delaplane and Mayer
2000) depending on weather conditions. When the weather 15 cold and damp, the
flowers are open for longer time than in warmer and drier weather (Williams 1983),

14.2.2 Nectar Production

Oilseed rape Howers yield abundant nectar, Mectar volume can vary greatly from
0.2 wl per flower up 1o 6 pl per lower (Free 1993, Davis et al. 1994, Pierre et al.
1999), Pierre et al, (1999) wsted 71 culuvars of winter oilseed rape for floral nectar
volume and found that on average a flower secretes about 2 pl. Nectar volume per
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flower may be affected by genotype (Pierre et al. 1999, cultivar { Davis et al. 1994),
flower age (Williams 1980) and local environmental conditions (Williams 1985,
Rathcke 1992). Nectar production has been reported to decrease towards the end
of the day {Radchenko 1964), and to be greater in the morning and early afternoon
than midday (Williams [985). The flowers are able to replenish the level of nectar
completely within 30 min of being emptied which makes them very attractive to
bees, Nectar production even increases if bee density is high, and flowers are visited
more than three times per day (Williams 1985). In a given genotype, nectar secrelion
can fluctuate from one- to three-fold depending on the time of day (Williams 1985,
Pierre et al. 1999),

Nectar production in the two types of nectaries varies within a single flower. Inner
nectaries begin to secrete nectar before the flowers are fully open and produce much
more nectar than the two outer nectaries (Hasler and Maurizio 1950, Eisikowitch
1981}, whereas, the outer nectaries are more accessible o pollinators than the inner
ones, particularly towards the end of lowering (Davis et al. 1994, Pierre et al. 1999).

Due to the significant heterosis for seed yield, in addition to the conventional
cultivars, hybrid cultivars of oilseed rape were evolved (Riaz et al. 2001). Hybrid
composiles consisting of a male-sterile component and a male-fertile component
have been widely used in the EU. However, the male-sterile lines did not secrete
enough nectar for pollinators. Pierre et al. (1999) demonstrated a clear difference in
nectar production between male-sterile lines and their 1sogenic male-fenile coun-
terparts. Mesquida and Renard (1979) showed that 68% of male-sterile Nowers had
only two of the four nectaries present, 20% had only one nectary and 12% had
none, The remaining nectaries of male sterile flowers were small, with the conse-
quence that male-sterile lowers secreted ten times less nectar than male-fertile ones.
Under different environmental conditions, five male-sterile cybrid (hybrid compos-
ite) lines of *Darmor’ produced from 30% up 1o 90% less nectar than male-fertile
lines (Mesquida et al. 1991). By contrast, Pierre et al. (1999) showed that nectar
production of some of the male-sterile lines, compared with male-fertile genotypes,
was generally not all that low. For example, male sterile *Fu38 Darmor’ produced
2,23 pl of nectar per flower which was greater than the average amount of nectar
produced by male-fertile genotypes

More recently, composite hybrid cultivars have been replaced with restored
hybrid cultivars (Pinochet and Bertrand 2000). Unlike the male-sierile lines of com-
posite hybrid cultivars, the nectar quantities produced by restored lines are similar 1o
those produced by male-fertile oilseed rape cultivars (Pierre et al. 1999). However,
for the breeding of resiored hybrid cultivars and seed production for commercial
growing, the combination of male-sierile and male-fenile lines is sull necessary
(Steflan-Dewenter 2003).

The nectar of vilseed rape flowers contains carbohydrates, such as sucrose, glu-
cose, fructose and ribose (Hasler and Maurizio 1950, Pierre et al. 1999). The sugar
concentration in the nectar is highest at the beginning of the Nowering period
(30.24 /100 ml) and decreases towards the end (10064 g/ 100 ml) (Pernal and Currie
1998). The same temporal trend was observed in different cultivars (Pierre el al.
1999), Similarly, during the life of a flower, sugar concentration of the nectar 15
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greatest when the flower opens, and lowest before it withers (Radchenko 1964),
Nectar production is greatest at the beginning of the day, while the sugar concentra-
tion increasces toward the end of the day (Meyerhoff 1958, Radchenko 1964). Mosl
(95%) of the total nectar carbohydrate per flower is secreted by the inner pair of
glands, because the inner nectaries are directly supplied with phloem alone, whereas
the outer glands, which are poor nectar yielders, lack any vascular supply or are
barely innervated by phloem (Davis et al. 1994).

Climatic factors influence nectar sugar concentration of many plants, including
that of vilseed rape (Corbet et al. 1979); these include temperature, rainfall, rela-
tive humidity of air and sunshine, as well as edaphic factors (Mesquida et al. 1991
For example, at high relative humidity (80-90%) nectar from the inner and outer
nectaries has the same sugar concentration (22-33%), but at a lower range of rcla-
tive humidity the outer nectaries, which are relatively exposed, have a higher sugar
concentration (Eisikowitch 1981].

14.2.3 Pollen Production

Oilsced rape Alowers produce a lot of pollen. For example, the number of pollen
grains produced per flower of the spring vilseed rape cultivar *Drakkar” averaged
125 = 107 (Pertl et al. 2002). Pollen contains proteins, lipids, carbohydrates, starch,
sterols, vitamins, and minerals (Herbert 1992, Day et al. 1990). All are important
nutrients for brood rearing and development of young worker bees, particularly the
protein content (Winston 1987, Hrassnigg and Crailsheim 1998). Pollens from dif-
ferent plant species differ in amino acid composition, concentration or both, and
pollens with high proportions of essential amino acids are assumed to be of greater
nutritional value, Qilseed rape pollen is rich in the amino acids most essential for
bees, i.e., leucing, valine and isoleucine (Cook et al, 2003).

14.3 Pollination Requirements of Oilseed Rape

The flowers of oilseed rape are self-fertile (aviogamous). Before the corolla fully
expands, the four long stamens dehisce and release pollen outward the flower.
Anthers on the two short stamens release pollen below the stigma which lengthens
during flowering o reach the height of the anthers of the long stamens, When the
flower is old, the long stamens bend towards the flower centre so that they become
directed towards the stigma, and self-pollination can occur. Thus the morphology
and behaviour of the oilseed rape Aower encourage cross-pollination at first, but self-
pollination later (Eisikowitch 1981, Williams 1985, Free 1993, Bell and Cresswell
1998, Delaplane and Mayer 2000).

Pollination studies (Williams 1978, 1984, Williams et al. 1986, 1987) have shown
that oilseed rape cultivars set equally well whether self- or cross-pollinated; cultivars
differed in the proportion of seed set from cross-pollination (up o 40%) (Williams
1985). However. in the case of cross-pollination more pollen can reach the stig-
mas, particularly pollen from the short stamens (Free 1993). Cross-pollination with
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pollen from short stamens is significantly superior to that from long stamens, and
gives a 14% greater weight of seed per pod (Free 1993, Sieffan-Dewenter 2003),
Moreover, in a normal population there are individual plants which are self-sterile
or prefer foreign pollen (Rives 1957, Williams et al. 1987, Williams and Simpkins
1989, Becker et al. 1992, Free 1993).

Owerall, most authors agree that pollen vectored by wind, insects or gravity is
necessary for seed production in oilseed rape (Williams 1978, Eisikowitch 1981,
Free 1993, Westcott and Nelson 2000). However, the proportion of pollen vectored
by wind and insects and over what distance, is still debated (Timmons et al. 1995,
Ramsay et al. 2003, Devaux et al. 2008).

Plants grown in the siill air of a glasshouse have poor seed ser (Eisikowitch
1981, Mesquida and Renard 1982, Mesquida et al, 1988); shaking plants to simulate
movernent by wind improves sced set (Williams et al. 1986). Pollination siudies in
the field have shown that plots exposed 1w wind bt caged 10 exclude insects ofien
vield at least as well as open-pollinated plots (Williams 1978, 1984, Williams et al.
1987). Wind has been even suggested to be a primary pollen vector of oilseed rape
(Timmons et al. 1995, Wilkinson et al. 2003}, Under field conditions, the movement
ol plants by wind could increase the sell~pollination of cultivars that auto-pollinate
poorly. Pollen grains may be carried over long distance: from 400 m up o 3,000
m (Scheifler et al. 1995, Hall et al. 2000, Rieger et al. 2002, Beckie e al. 2003,
Devaux et al. 2008). Thus, wind not only causes seli-pollination of flowers by mov-
ing them, but also causes cross-pollination by transporiing considerable quantities of
pollen. But Rieger etal. (2002) have guestioned the efficacy of wind and others have
shown that wind alone is insullicient w attain maximum seed set (Williams 1978,
Eisikowitch 1981, Free 1993, Cresswell et al. 2002, 2004, Ramsay et al. 2003),
Oilseed rape has entomophilic pollen grains, which cannot be transferred by wind
alone; anthers when flicked by insecis or anificially under dry conditions behave
like catapults raising a cloud of pollen grains (Eisikowitch 19811, So, additional
pollination by insects may be necessary.

14.4 Bees as Pollinators of Oilseed Rape

Onlseed rape s visited by honey bees. bumblebees and solitary bees, including
species of Andrena, Halictus and Megachile. Honey bees are usually the most abun-
dant visitors. Rape flowers produce such abundant nectar and at a time when there
are few other cultivated food plants available for them, that honey bees visit rape
crops from a distance of 3.5-4 km from their hives and neglect fruit trees in favour of
rape (Free 1993). Furthermore, many beekeepers move their colonies onio or near o
oilseed rape crops to benefit from the nectar and pollen it produces (Williams 1980,
Williams and Cook 1982, Williams et al. 1993, Carreck et al. 1997). Although many
speeies of bumblebee and solitary bee may visit a crop, their proportion is often quite
low (Free 1993, Varis 1995, Karise et al. 2004). All bee species successfully transfer
rape pollen from anthers 1o stigmas.
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Earlier studies have shown that insect pollination of vilseed rape can lead o
higher seed set and yield (Williams 1978, Williams and Simpkins 1989, Westcoll
and Nelson 2001). According to Free and Nuttall (1968), plants caged with bees
produced 13% more seed than plants caged without bees, Recorded benefit from
bee pollination ranges [rom 13 w 64% more seeds per pod (Williams 1985). But
there are still some guestions about the degree of benefit to seed production from
insect pollinators, Positive effects are dependent on cultivar, environmental growing
conditions, and the compensatory capacity of the crop (Williams and Free 1979,
Williams et al. 1987} and include shorening of the flowering period, reduction of
raceme production, acceleration of ripening (Mesquida and Renard 1981, Williams
1984, Mesquida ct al. 1988), and increases in seed germination rate (Frediani et al.
1987, Kevan and Eisikowitch 1990) and sced oil content (Radchenko 1964, Mishra
and Kaushic 1992).

The influence of honey bees on oilseed rape flowering may be explained by
the fact that flowers are visited early in their development. Such early visiting is
immediately followed by deposition of abundant pollen on the receptive stigmas.
Consequently flowers pollinated in this way wither more quickly. Flower life is
strongly reduced, flowering is shorter, and is more uniform and coordinated than for
plants that are not insect pollinated (Mesquida et al. 1988),

Mesquida and Renard (1979) found that bee pollination slightly increased the
final yield of the male-sterile plants, but significantly increased the yield of the male-
fertile plants, Sabbahi et al. (2005) showed an improvement in rape seed yield of
46% in the presence of three honey bee hives per hectare, compared with the absence
of hives. This suggests that supplemental pollination may increase set of early flow-
ers, evenness of ripening, and ease of harvest (Williams 1978). therefore the plant
would produce fewer llowers (Free 1993), and the flowering period and vegetative
growth would shorten (Mesquida et al. 1988, Free 1993). It increases the number of
seeds per pod, the number of seeds per plant {Steffan-Dewenter 2003}, the evenness
of ripening, thus reducing sced loss at harvesting (Free 1993). Altogether the seed
yield of oilseed rape could be higher by up to 25-46% (Delaplanc and Mayer 2000,
Sabbahi et al. 2005).

14.5 Toxicity to Bees of Insecticides Applied to Oilseed Rape

Bees are especially vulnerable to the toxic effects of insecticides applied during
flowering when they are foraging on the crop. They may be exposed through direct
contact with spray droplets, through chemical residues lefi on the plant surface,
and through feeding on contaminated nectar or pollen, either as adults or larvae,
Effects may be lethal or sub-lethal; most studies have assessed lethal effects, while
only a few have addressed sub-lethal effects. The effects of pesticides on non-target
organisms have been studied extensively. It is obligatory for chemical companics
o provide monality data for their products for all larger organism groups. But,
despite research data indicating the severe mortality rate on bees, less attention has
been paid 1o the sub-lethal effects. In recent years, this has been an increasing arca
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of study and a subject of discussion between scientists and regulatory authorities
{Thompson and Maus 2(K)7).

In addition 10 deficient information of the sub-lethal effects of insecticides, there
exists the problem of extrapolating data from honey bees to bumblebee and other
pollinating bees. Pesticide risk assessments for honey bees are based on hazard
ratios which rely on application rates and toxicity data that are unlikely to be appro-
priate lor bumblebees. The latter are active at different times and on different crop
species and, therefure, are likely to have different exposure profiles. Unlike honey
bees, deaths of bumblebees due o pesticides are unlikely 1o be reported, since the
bees are not kept domestically and die in small numbers ( Thompson and Hunt 1999),
The information on pesticide wxicity on non-Apis bees is scarce, and limited 10
species managed for crop pollination (Ladurner e al. 2003).

14.5.1 Lethal Effects

In conventionzl farming, application of many insecticides (e.g., pyrethroids) con-
sidered 1o be safe for honey bees, is permitied 10 the oilseed rape crop while it is
in flower. Despite this, 57 out of 117 honey bee poisoning incidents in UK during
19942003 resulted from spray applications 1o flowering crops; 17 of these incidents
were through approved use of the products (Barner et al, 2007), Pyrethroids, most
often sprayed on flowering oilseed crops, have been reported to be repellent to honey
bees (Thompson 2001, although this is still in question in the field sitwation. Karise
et al. (2007) found no repellency of alpha-cypermethrin 1o honey bees on oilseed
rape under field conditions but found that flower visitation depended on the density
of flowers present. I any repellency does occur with respect to this insecticide, the
attractiveness of the flower resource is likely 1o override it

In organic farming, pesticides are also needed and many botanical insecticides
are permitted for use in controlling pests. The main ingredient of Neem extracts,
azadirachtin, is considered 1o be safe for honey bees (Zehnder et al, 2007), but has
been found to cause changes in the foraging behaviour in bumblebees (Karise et al.
2006). Pyrethrins are toxic o bees; guassia and rotenone do not harm bees (Zehnder
et al. 2007). The toxicity of botanical compounds to bees tends to be lower than
that of synthetic compounds because their degradation time is shorter and timing of
application helps to minimize harmful effects on beneficial insects ( Kiihne 2008).

14.5.2 Sub-lethal Effects

Studying the sub-lethal effects ol pesticides is complicated due w difficulties in
measuring the effects. Results obtained in the laboratory may not match with those
obtained in the field { Thompson and Maus 2007 ). Under certain circumstances, suh-
lethal effects may cause more harm than lethal doses since they alfect the survival
of the brood and colony, Systemic compounds have been considered safe for pol-
linators when not applied to the flowers. However, the residues of the compounds
still contaminate nectar and pollen in sub-lethal doses via both active and passive
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transport (Thompson 2001, Cutler and Scou-Dupree 2007). Conlamination may
oceur after application of the compounds to other parts of plants (Ferguson 1987},
to the soil (Jaycox 1964) or on seeds (Dikshit et al. 2002, Sur and Stork 2003).
Contaminated nectar and pollen poses a potential danger not only o forager bees
but also to bees in the hive and w brood. The wxicity of pesticides 1o brood has
been investigated far less than toxicity for adults (Alix and Vergnet 2007).

14.5.2.1 Effects on Division of Labour

Division of labour plays an important role in colonies of social insects, Workers
have specific, often age-dependent tasks. Treatment of honey bees with juvenile hor-
mone analogues (synthetic hormone-like compounds used as insecticides), results in
a decreasing ability of young emerging bees to feed larvae, due to the early degen-
eration of the hypopharyngeal glands and precocious foraging ability (Tasei 2001).
Changes in the division of labour of honey bees, such as decreased house clean-
ing ahilities, delayed onset and duration of foraging and handling of neclar, have
also been recorded (reviewed by Thompson 2003). These changes affect both honey
yield and the overwintering of colonies (Thompson et al. 2005).

14.5.2.2 Effects on Foraging and Orientation

Foraging depends on the bee’s ability o discriminate odours, to learn, to com-
municate, and to orentate within its environment; altering these systems may
result in a decrease in foraging. The bees’ orientation and communication ability
have been found to be affected by sub-lethal doses of organophosphorus insecti-
cides (Schricker and Swephen 19700, synthetic pyrethroids (Cox and Wilson 1984,
Vandame et al. 1995) and neonicotinoids (Bortolotti et al. 2003, Yang et al. 2008),
Pyrethroids and neonicotinoids have also been shown to affect both foraging activ-
ity (Thompson 2003) and learning capacities (Decourtye et al. 1999, 2003, Guez
et al. 2001, Ramirez-Romero et al. 2005). Pyrethroids may also affect thermoregu-
lation (Jagers op Akkerhuis et al. 1999b, Beleunces et al. 2001); in cooler climates,
this can lead o decreased Nying ability, The decrease in foraging and in returning
foragers reduces brood production (Thompson 2003), which in turn may weaken a
colony s potential o survive the winter.

14.5.2.3 Effects on Reproduction

All classes of insecticides alTect the reproductive behaviour of bees (reviewed by
Thompson 2003). Reduction of brood may have more damaging consequences for
honey bees than simply the moderate loss of foragers (Haynes 1988, Thompson
et al. 2007). Thompson et al. (2005) have reported 40-95% cgg morality over
2 weeks after diflubenzuron application and 45-60% egg monality over 2 weeks
alter fenoxycarb application, The insect growth regulator fenoxycarb has caused the
death of almost all larvae or developing malformed pupae (Van der Steen and de
Ruijter 1990, Aupinel e al. 2007).
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Besides killing brood, insecticides can cause changes in the development of the
larvae. Contamination of the food by insect growth regulators (Tasei 2001) can
increase development time and cause malformations. In solitary bees, pyrethroids
(Tasei et al. 1988%) and in honey bees, pyrethroids (Tasei et al. 1988) and nconi-
cotinoids (Schmuck et al. 2001) have been found 1o affect their fecundity. Some
organophosphates, pyrethroids and neonicotinoids have affected the honey bee
queen’s status or have interfered with a colony’s ability 1o requeen itself (Stoner
et al. 1985, Thompson et al. 2005). Organophosphates have decreased the longevity
of honey bees (Johansen and Mayer 199}, Neonicotinoids (Tasei et al. 2000) and
organophosphates (Johansen and Mayer 1994} have decreased brood production in
the humblehee.

14.5.2.4 Effects on Respiration

Better understanding of the effects of insecticides in the field benefits from insight
inte their elfects on dilferent physiological lunctions, for example, on respiration,
In the case ol bees, it is difficult w examing the effects of insecticides on respiration
patierns because there is linle data on their normal respiration patierns. However,
this has been an area of increasing interest during the past decade.

Since water is a key element in every living organism, most insects have
probably evolved mechanisms o prevent excessive water loss (Klowden 2002).
Resting insects often exhibit discontinuous gas exchange cycles (DGC), a func-
tion of which may be the reduction ol respiratory water loss {Levy and
Schaeiderman 1966, Lighton 1994) through the large inner surface of the wracheal
system.

According 1o Lighton (1994, 1996), in the state of discontinuous gas exchange,
the spiracles are closed most of the tme. Al low oxygen rates inside the trachea
the spiracular valves fMutter, allowing oxygen o enter the tracheal system. As larger
amounts of carbon dioxide accumulate in the tracheae and haemolymph { Wobschall
and Hetz 2004, the spiracles open and allow the gas to escape. Thus, as compared
with continuous respiration, loss of carbon dioxide along with evaporated water
occurs only discontinuously during the brief open phases of the spiracles. There
are different views about the ongin of DGC, as reviewed by Chown (2002) and
Chown et al. (2006). There are also hypotheses that DOC serves as an adaptation for
coping with hypercapnia and/or hypoxia in soil-living insects (Lighton 1998, Vogt
and Appel 2000, Lighton et al. 2004} or protection against the oxidative damage
during the periods with low metabolic cost (Hetz and Bradley 2005).

The existence and the precise pattern of DGC depend on the species (Lighton
1994, 1996, Slama 1999, Chown et al. 2006), individual characteristics (Marais and
Chown 2003, Gibbs and Johnson 2004, Karise et al. 2010, life stage of the individ-
uals (Beekman and van Stratum 1999, Mind et al. 2005, 2006) and environmental
conditions like temperature (Lighton and Lovegrove 1990, Lighton 1996, Vogt and
Appel 2000, Kovac et al. 2007), relative humidity (Duncan et al. 2002, Lighton
2007, Slama et al. 2007) and the amount of oxygen or carbon dioxide in the air
{Lighton 1998, Vogt and Appel 2000, Lighton et al. 2004).
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DGC patterns have been used to characterize the physiological state of an insect,
as several stress factors, including chemical ones, can affect them (Kestler 1991).
Although knowledge about the sub-lethal effects of pesticides on insect physiology
is scarce, it is known that treatments of arthropods with pyrethroids cause neuro-
toxic effects in parts of the nervous system, including the central nervous system and
sensory, motor or neurosecretory neurons (Corben 1974, Jagers op Akkerhuis et al.
1995). Because the closing and opening of spiracular valves is controlled by the ner-
vous system, the neurotoxic effects may also include interference by DGC. In pupae
of cabbage butterfly Pieris brassicae, afier the treatment with onginal pyrethrum,
the DGCs disappeared and metamorphosis was disrupted (Harak et al. 1994, JGgar
et al, 2008),

Pyrethroids, as well as many other insecticides, can induce increased water loss
in arthropods (Gerolt 1976, 1983), due o production of diuretic hormones (Jagers op
Akkerhuis et al. 1999a). This process could be reversible if the insect could replenish
its water reserves. Since the pyrethroids often affect motion as well, causing the
knockdown effect, death may come through desiceation (Jagers op Akkerhuis et al.
1995, 19994, Thompson 2003),

14.6 Bees as Vectors of Entomopathogenic Fungi for Pest
Control on Oilseed Rape

Bees are covered in an abundance of branched body hair, specially adapted 1o trap
and transport pollen grains from flowers back o the colony or nest site 1o feed 10
brood (Free and Williams 1972), These hairs can also trap and transport the spores of
bacteria and fungi (Batra et al, 1973, Sandu and Waraich 1985). This ability has been
utilized in the development of biocontrol strategies 10 control various plant pests
and diseases on a variety of crops. For example, Thomson et al. (1990) showed that
honey bees could be used to carry spores of the bacteria Psendomaonas fluorescens
{Trevisan) and Erwinia herbicola (Brown) 1o the flowers of apple 1o control fireb-
light discase caused by the bacterium Erwinia amylovara (Burrill). Similarly, honey
bees have vectored spores of the fungus Gliocladium roseum (Bainicer) 1o strawberry
(Peng et al. 1992) and to raspberry (Yu and Sutton 1997) flowers 1o control growth of
the grey mould fungus Borrytis cinerea Pers. More recently, the bumblehee, Bombues
impatiens (Cresson) has been used in the glasshouse, o transport spores of the ento-
mopathogenic fungus Beauveria bassiana (Balsamop-Crivelli) Vuillemin o sweet
pepper flowers 1o control two insect pests, the plant bug, Lyeus lineolaris (Palisol
de Beauvois) and the thrips, Frankliniella occidentalis (Pergande) (Al-maera’awi
et al. 2006).

Bees have similarly been shown able o deliver entomopathogenic lungal spores
tor oilsced rape flowers o infect and kill insect pests living within the flowering
canopy of the oilseed rape crop (Butt et al. 1998, Carreck et al. 2006). The pollen
beetle. Meligethes aeneus (Fabricius) and the cabbage seed weevil, Cewrorfiynchus
assimilis (Paykull) are major inflorescence pests of oilseed rape throughout Europe
(Williams Chapier | this volume): the latter is also a major pest in North America
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{Dosdall and Mason Chapter 6 this volume). The pollen beetle feeds, as an adult,
on pollen in the buds and flowers of the crop, and lays its eggs in the buds. lis
larvae also feed on pollen in the buds and flowers, usually lying alongside the fila-
ments of the stamens. The larvae are mobile, moving up the flowering inflorescence
to younger flowers as they grow (Williams and Free 1978). On maturity, second
instar larvae drop to the ground to pupate in the soil. The cabbage seed weevil
also feeds on pollen in the fowers as well as on young buds, shoots and pods. The
females lay their eges singly in young pods on the flowering racemes, The seed
weevil larva feeds within the pod on the growing seeds and on maturity, bores an
exit hole through the pod wall and drops to the soil to pupate (Williams and Free
1978).

Honey bees foraging from hives, fitted with inoculum dispensers at their
entrances (Fig. 14.1), have been shown 1o effectively deliver conidia of the ento-
mopathogenic fungus, Merarhizium anisopliae (Meischnikoff) Sorokin, 1o the
flowers of oilseed rape plots enclosed in field cages (Fig. 14.2, Buut et al. 1998,
Carreck et al. 2006). Pollen beetles and seed weevils, sampled from the reated
plots, both picked up lethal doses of the conidia from the flowers. When incubated
in the laboratory, the fungus caused infection and monality of both adult and larval
pollen beetles, as well as of adult seed weevils (Figs. 14.3 and 14.4). Pod infestation
by seed weevil larvae was o low 1o determine whether they were also infected
by the fungus. Afer death, the bodies of many of the pest insects showed external
conidiation of the fungus, confirming infection by M. anisopliae (Fig. 14.5).

Conidia of M. amisoplice disseminated imtally from an inoculum source o rape
flowers by honey bees in this way, would probably be further disseminated horizon-
tally within the crop canopy by other isects, such as by bumblebees, [oraging on
the flowers, The inoculum would also be disseminated o the soil below the crop,
as inoculated Alowers shed their petals. How long the conidia can survive on petals
15 not known, but they occur naturally, albeit at a low level, and persist well in soil
{Wanninen et al, 2000, Hokkanen et al. 2003). Laboratory and pot experiments have

Fig. 14.1 Honey bee hive
fitted 2t its entrance with an
incculum dispenser
containing the
entomopathogenic fungus
Metarhizinm anisoplice for
disscmination by the bees 1o
the Aowcering canopy of
nilseed rape {Photo; Ingnd
Williams)
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Fig. 14.2 Oilseed repe plots
enclosed in Acld cages for the
study of bee-mediated
dissemination of the
entomopathogenic fungus
Metarhizium anisoplice
(Photo: Ingnd Willizams)

shown that mature larvae of the pollen beetle are susceptible 1o the fungus, not only
when directly exposed to an inoculum, but also when the inoculum is applied 1o
soil before the insects pupate in 1l (Husberg and Hokkanen 20000, However, in the
semi-field experiments, described above, Carreck et al. (2006) found no effect on
the numbers of new generaton pollen beetle and seed weevil adults that emerged
from pupation, (ollowing dissemination of inoculum by heney bees to the flowering
CTOp canopy,

The effects of M. anisopliae on bees need further investigation as extrapolating
risk from laborawry tests (o bees in the field may be misleading (Alves ct al. 1996)
Butt et al. (1994) showed, in laboratory studies, that the honey bee was susceptihle
o M. anisopliae ¥ 245; when inoculated and then incubated at 30°C, the mean LTy
was 8.5 days. However, they also showed, in the laboratory, that isolates vary in

100 []-HB-F

J [[] +HB-F
] I I W HBF
| [] ' | |

24 April 1 May 8 May 15 May

Fig 14.3 Percentage mortality of adult polien bectles | Meligethes aeneus) on plos of winter
milseed rape when exposed (o honey bees (HB) with and without dispensers contaning, the ento-
mopathogenic fungus Merarhizium anisopliae (F) at their hive entrances {(modified after Carreck
¢t al. 2006)
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Fig. 144 Percentage monality of adult seed weevils {Cearorhynchus abstrictus syn. O, assirmilis)
on plots of winter oilseed rape when exposed 1w honey bees (HB) with and without dispensers con-
raining the entomopathogenic fungus Metarhizium anisopliae (F) al their hive entrances (modified
after Carreck et al. 2006)

Fig. 14.5 Baody of the pollen
bectle, Meligethes aenews,
showing external conidiation
of the fungus, confirming
infection by Merarfuizium
anisoplize (Phowo: Ingrid
Williams)

their temperature tolerances and so may have different effects on honey bees within
the brood nest, where the temperature is maintained at ca. 35°C, than on foragers at
outside temperatures. Some isolates of M. amisopliae are being tesied for the biolog-
ical control of the parasitic mite Varroa destructor Anderson and Trueman in honey
bee colonies (Shaw et al. 2002, Davidson et al. 2003, Kanga et al. 2003, Lodesami
et al. 2003). Carreck et al. (2006) found that, although in field cages where honey
bees were disseminating M. anisapliae inoculum some of the bees that died showed
external conidiation when incubated, declines in colony population size appeared 10
be unrelated to fungal infection, as they were no greater in colonies disseminating
fungal inoculum than in control plos with bees but no inoculum. Population decline
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is usual in honey bee colonies, particularly large ones, when they are confined in
ficld cages with limited forage (Pinzawti 1994). Further, if this strategy were to be
used for pest control in oilseed rape crops some loss of honeybee foragers may be
acceptable as their colonies are managed and w some extent therefore replaceable
by beekeepers. The effect of M. anisoplive on bumblebees foraging on the crop
remains o be investigated.

The effect of M. anisoplizge on key parasitoids of the inflorescence pests of
vilseed rape needs further investigation as Husberg and Hokkanen (2000) found that
the hymenopterous larval endoparasitids of the pollen beetle, Phradis morionellus
(Holmgren) and Diospilus capito (Nees), both key agents in conservation biocon-
trol of the beetle (Ulber Chapter 2 this volume), were also susceptible, although 1o
different extents, 1o spray treatment with the fungus,

14.7 Implications for Biocontrol-Based Integrated
Management of Insect Pests of Oilseed Rape

Oilseed rape, as a widespread mass-flowering crop of agroecosystems of northern
and central Europe, as well as in North America and other regions of the world, pro-
vides an abundant resource of pollen and nectar for bees. Many beekeepers move
their honey bee colonies to oilseed rape crops during flowering; honey is a valuable
by-product from the crop. Loss of food resources for bees in arable landscapes is
probably a major cause of their decline over recent decades in many regions. The
foraging activities of bees on the crop have been shown to improve both the qual-
ity and guantity of seed produced. Husbandry practices on the rape crop should
therefore seek Lo sustain and not diminish bee populations.,

Currently crop protection on oilseed rape, particularly against inflorescence pests
such as the pollen beetle and the cabbage seed weevil, relies heavily on the appli-
cation of pyrethroid insecticides. These kill beneficial insccts, such as bees and
parasitoids (Ulber et al. Chapter 13 this volume) foraging on the crop, particularly
when applied during flowering. They also cause sub-lethal effects, although these
have been linle studied. The recent widespread development in many European
countries of resistance Lo pyrethroids in the pollen beetle (Thieme et al. Chapter
12 this volume) has increased the urgency of developing integrated pest manage-
ment strategies that minimise the use of insecticides on the crop, particularly during
flowering. Further development of biocontrol strategies incorporating parasitoids
and predators is essential to achieve this.

Honey bees also have potential for employment in biocontrol strategics. Their
ability to vector the entomopathogenic fungus M. anisopliae for the control of
inflorescence pests could perhaps be further enhanced by using an early-flowering
cultivar of oilseed rape or turnip rape as a trap crop to concentrate both pest and
honey bee populations. This would facilitate both concentration and horizontal
transfer of the inoculum to its target pest populations before they move onto the
vilseed rape main crop (Cook et al. 2006). However, to be of use in integrated pest
management, any entomopathogenic fungus to be used should be benign both to
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bees. needed to pollinate the crop, and to parasitoids of the pests which contribute
to their biocontrol.
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Abstract

Spring oilseed rape (Brassica napus L. var. oleifera) is an important oilseed crop whose cultivation area has
increased significantly in Estonia. It is predominantly autogamous but cross-pollination can have several positive
effects, including higher seed yield. We studied the effect of fertilization with different foliar microfertilizers on
the flower density and pollen and nectar production of spring oilseed rape as well as the impact of these factors on
the abundance of flower visiting bees — honey bees, bumble bees and solitary bees.

Field experiments were carried out in 2004 and 2005. The field consisted of 32 plots (10 m? each): control plots
(no mineral fertilizers used), plots fertilized with the complex fertilizer OptiCrop (NPK 21-08-12 + S+ Mg+ B +
Ca) alone and plots treated with OptiCrop and one of the six foliar microfertilizers (Mn, S, Cu, B, Mg, Mo). There
were four replicates of each treatment. Flower visiting bees were counted twice a week on sunny days. Flowers
were counted at the same time on an area of 1 m? on each plot. Nectar production by the flowers was measured in
the field by inserting a 1 pul capillary into the corolla tube of flowers isolated for 24 h. Pollen grains were counted
from previously isolated flowers after dissolving the flower tissues.

The density of flower visiting bees (honey bees, bumble bees and solitary bees) on spring oilseed rape depended
mainly on flower density. Fertilization increased not only the number of flowers but also the amount of nectar and
pollen per flower. Additional foliar fertilization had no effect either on the number of flowers or the amount of
pollen grains per flower. Nectar production per flower seemed to be inhibited by additional manganese. Therefore,
to secure higher number of pollinators for achieving higher seed yield and other benefits deriving from cross-
pollination, spring oilseed rape should be given proper complex fertilization. Microfertilizers turned out to be
useless in terms of increasing the number of pollinators.

Key words: Brassica napus L. var. oleifera, spring oilseed rape, Apoidea, flower density, pollen production, nectar
production, foliar fertilization.

Introduction

Spring oilseed rape (Brassica napus L. var. and is used as food for the larvae. The pollen of oilseed

oleifera) is an important oilseed crop, whose production
area has increased significantly in northern countries of
Europe (Treu, Emberlin, 2000), including Estonia. It is
predominantly autogamous and visits of insect pollina-
tors are not essential for the final seed yield (Williams
et al., 1987). However, flower morphology favours first
cross-pollination followed by self-pollination (Delaplane,
Mayer, 2000). Adequate pollination can have positive ef-
fects such as a reduction of the flowering period, a reduc-
tion of raceme production, acceleration of ripening and
an increase of seed weight (Williams et al., 1987). Cross-
pollination also raises the seed yield (Steffan-Dewenter,
2003; Chifflet et al., 2011).

Large fields of oilseed rape in flower are impor-
tant food resources for bees enhancing both nectar and pol-
len reserves abundantly (Westphal et al., 2009; Ménd et al.,
2010). Oilseed rape is an especially attractive food plant
for bees because of the high nectar production of its flow-
ers and its high sugar content (Pierre et al., 1999). Adult
bees use nectar to satisfy their energy and water needs.
Pollen is collected by bees as their only source of protein
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rape contains more of the three most important amino ac-
ids for bee survival and development than other field crops
flowering at the same time (Cook et al., 2003).

Oilseed rape is a fast growing crop which needs
more nutrients than graminaceous crops. Considering
other plant species, it has been found that soil fertilizer
affects the concentration of amino acids in the floral nec-
tar of corncockle, Agrostemma githago (Gardener, Gill-
man, 2001) and soil nitrogen has a positive effect on the
pollen performance of Cucurbita pepo (Lau, Stephenson,
1993). Many studies have focused on the effect of ferti-
lization (Sidlauskas, Bernotas, 2003; Szulc et al., 2003;
Rathke etal., 2006) and pollinators (Steffan-Dewenter,
2003; Sabbahi et al., 2005) on seed yield of oilseed rape
as well as on the effect of ambient temperature condi-
tions on honey bee foraging activity (Blazyté-Cereskiene
et al., 2010). However, none of these studies have dealt
with the impact of fertilization on the resource of the bee
food (nectar and pollen production) provided by oilseed
rape and on the number of the most important pollina-
tors — bees. Taking into account several benefits of cross-
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pollination (Williams et al., 1987) and the pollinators’
contribution to yield increase (Sabbahi et al., 2005), this
gap in knowledge needs to be filled. In this context, the
present study examines the effect of foliar fertilization
on the flower density and nectar productivity of spring
oilseed rape and on the number of pollen grains per flo-
wer in relation to the abundance of flower visiting bees
— honey bees, bumble bees and solitary bees.

Materials and methods

Study plots. The study was carried out in an ex-
perimental field of the Estonian University of Life Sci-
ences near Tartu, Estonia, during the flowering period
of oilseed rape in 2004 and 2005. The spring oilseed
rape variety ‘Mascot’, bred and produced by the Swed-
ish company “Weibull”, was used. Technical data of the
variety: crude fat content 40-43%, 1000 seed weight
3.5-4.5 g, glucosinolate content 20 pmol g, lodging
resistance 6—8 points, plant height 98-108 cm, growth
period 90—108 days (Velicka, 2003). The soil in the study
area was slightly acidic (pH, , 6.2) Stagnic Luvisol (FAO
classification LV st, 2006) with loamy texture: humus
content 2.4%, P—77.66 mg kg, K — 169.8 mg kg, Ca—
5648 mg kg', S—13.54 mg kg''.

In 2004, spring oilseed rape was sown on 5 May
and in 2005 on 9 May at a rate of 200 viable seeds m?,
sowing depth 2-3 (4) cm, pre-crop being potato. In 2004
and 2005, the field consisted of 32 plots (10 m? each).
Control plots received no fertilizer; the other plots re-
ceived a complex fertilizer alone or the complex fertilizer
plus one of the six microfertilizers. There were four rep-
licates of each treatment. The treatments were: 1) 0 (no
mineral fertilizers), 2) OptiCrop (Opti) (only the mineral
complex fertilizer OptiCrop NPK 21-08-12 + S + Mg
+ B + Ca, the amount of nitrogen applied 120 kg ha™),
3) Opti + HydroPlus™ Boron (Opti + B) (consumption
rate 2 1 ha'), 4) Opti + HydroPlus™ Micro Copper (Opti
+ Cu) (consumption rate 0.5 1 ha''), 5) Opti + Hydromag
300 (Opti + Mg) (consumption rate 7 1 ha'), 6) Opti +
HydroPlus™ Micro Manganese (Opti + Mn) (consump-
tion rate 1 1 ha), 7) Opti + HydroPlus™ Micro Molybde-
num (Opti + Mo) (consumption rate 0.25 1 ha''), 8) Opti +
Sulphur F3000 (Opti + S) (consumption rate 7 1 ha™).

Prior to sowing, the whole field was sprayed with
the soil-applied herbicide EK Trifluralin (0.15 1 ha''). The
mineral complex fertilizer OptiCrop NPK 21-08-12 + S +
Mg + B + Ca, the amount of nitrogen applied 120 kg ha™!,
was used (except for treatment 0). Liquid microfertilizers
(spray volume 400 | ha') were foliar-applied when the
plants had reached the growth stage 27-31 according to
the BBCH scale (Lancashire et al., 1991).

Evaluation of flower visiting bees: honey bees,
bumble bees and solitary bees. Flower visiting bees were
counted during the flowering period of the crop (5-22
July 2004 and 28 June to 18 July 2005) on each 10 m?
plot twice a week (altogether 6 observation days in 2004
and 7 observation days in 2005) by walking slowly along
the study plots and recording all bees visiting the flowers
of oilseed rape. The observations were made on sunny
days between 11:00 and 15:00 when temperature was
above 16°C and wind speed did not exceed 6 m s™'.

Evaluation of flower density. Flowers were
counted simultaneously with flower visiting bees on an
area of 1 m? on each plot which was divided into 4 sub-
plots (50 x 50 cm) and the data were summarized.

Evaluation of nectar production. Nectar was
collected from five flowers in each plot three times dur-

ing the flowering period of the crop in 2004. The collec-
tion was carried out in late morning at full flowering of the
plants. Each flower was previously covered with a voile
bag for 24 h to exclude floral visitors and to prevent nectar
consumption the day before nectar measurement. Nectar
production was measured in the field by inserting a 1 pl
capillary into the flower corolla tube. It should be noted
that nectar productivity can only be measured when there
is no rainfall during 24 h. As in 2005 there was little rain
on almost all days of flowering period of spring oilseed
rape, nectar production was analysed only for 2004.

Evaluation of pollen production. In 2004 and
2005, after anthesis, pollen production was quantified for
5 flowers in each plot at the same time as flower visiting
bees and flowers were counted. The flowers were collected
randomly from the plant main raceme and stored sepa-
rately. These racemes were previously isolated to avoid
consumption of the pollen by pollen beetles (Meligethes
sp.). The flowers with pollen were later acetolysed (Faegri,
Iverson, 1989) to digest both the floral tissue and pollen
content, leaving pollen exines intact. Separated pollen was
dispersed in distilled water (1 ml). The pollen grains were
counted with a light microscope using a Fuchs-Rosenthal
chamber (3.2 mm?®). These data were used to calculate the
number of pollen grains per flower.

Climate conditions. The flowering period of
spring oilseed rape was warmer in 2004 (July 19.6°C) and
colder in 2005 (July 16.5°C) than the mean of the past ten
years (July 17.3°C). Ambient temperature was measured
every time before the evaluation of the number of flower
visiting bees and flowers and nectar and pollen production
at the level of the flowers. In 2004, air temperature fluctu-
ated from 21.5°C on the first observation day (5 July) to
26°C on the forth observation day (15 July). In 2005, the
lowest air temperature was recorded on first and last ob-
servation days (28 June and 18 July; 17.8°C and 18.8°C,
respectively). In 2005, the flowering period was rainy
with only two days without any precipitation. In 2004 15
days were without any rain. The amount of precipitation
in July 2004 was 87.8 mm and in July 2005, 113.2 mm.
The mean of the past ten years was 81 mm in July.

Statistical data analysis. Statistical analyses
were performed using Statistica 7. The impact of differ-
ent treatments on the number of flowers, nectar and pollen
production and on the number of flower visiting bees was
analysed with ANOVA — where necessary data were nor-
malised. The differences between means were inspected
using Fisher’s protected significant difference post hoc
analysis. The significance of interactions between year
and treatment on pollen production and the number of
bees were analysed with factorial ANOVA. The relation-
ship between bees and the food resource was analysed
with Pearson correlation analysis — where necessary data
were normalised.

Results and discussion

Flower density on plots with different treat-
ments. In both years (2004 and 2005), the abundance
of flowers was significantly higher on fertilized than on
unfertilized plots (F (7, 184) = 2.83, p = 0.01 in 2004;
F (7, 216) = 2.85, p = 0.01 in 2005). Oilseed rape is a
fast growing crop which needs a high amount of nutrients
from the soil; otherwise its growth will slow down and, as
a result, the number of flowers produced is also lower. In
the case of resource deficiency, oilseed rape plants prob-
ably preserve the size of flowers rather than the number
of flowers (Cresswell et al., 2001).
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There were no significant differences between
differently fertilized plots, including plots fertilized with
the complex fertilizer OptiCrop alone (Fig. 1). Thus, the
number of flowers depended directly on complex fertili-
zation and addition of different foliar microfertilizers to
the complex fertilizer OptiCrop did not have any signifi-
cant impact on increasing the number of flowers.

Nectar production on plots with different treat-
ments. Fertilization influences the nectar production of
oilseed rape flowers. Except for fertilization with man-
ganese or with the complex fertilizer OptiCrop alone, the
production of nectar in 2004 was significantly higher on
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fertilized than on unfertilized plots (F (7, 312) = 2.48,
p = 0.02). Unlike flower productivity, nectar production
gains from foliar fertilization, except that supplementary
manganese appeared to inhibit nectar production (Fig. 2).
Plots fertilized with OptiCrop plus manganese had sig-
nificantly lower nectar production than those fertilized
with OptiCrop plus one of the other five microfertiliz-
ers. Flowers from plants fertilized with manganese had
even less nectar than those fertilized with pure OptiCrop.
Manganese increases plant height, leaf area per plant and
dry weight of the aerial parts (Ali et al., 2011), and appar-
ently, plants contribute less to nectar production.
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Figure 1. The number of flowers on plots with different treatments in 2004 (left) and 2005 (right)
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Note. The letters above the boxes indicate statistically
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Figure 2. Nectar production of spring oilseed rape
flowers on plots with different treatments in 2004

Several authors have studied the nectar produc-
tion of oilseed rape flowers depending on the varietal
(Mohr, Jay, 1990; Kotowski, 2001) and genetic differ-
ences (Pierre et al., 1999) but not the effect of fertiliza-
tion on nectar production. As several factors affecting
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nectar production and nectar standing crop are docu-
mented, e.g., evaporation and absorption (Corbet, 2003),
final conclusions cannot be drawn on the basis of one
study year, although a preliminary trend is evident. The
topic of the effect of fertilization on nectar production
needs further research.

Pollen production on the plots with different
treatments. In both years (2004 and 2005), there were
no significant differences in pollen production between
differently treated plots (F (7, 248) = 1.15, p = 0.33 in
2004; F (7, 344) = 2.02, p = 0.05 in 2005). However, in
both years, especially in 2005, the pollen production was
higher on fertilized than on unfertilized plots (Fig. 3).
Still, the difference was not statistically significant, prob-
ably because of the high variability of pollen produc-
tion. When summarizing over the two years, the effect of
treatment became significant (Table 1). In addition, there
was no statistically significant interaction between year
and treatment on the number of pollen grains produced
per flower, which means that the impact of different treat-
ments followed the same trend in both years being higher
on fertilized than on unfertilized plots.

Pollen dissemination by pollinators (Hayter,
Cresswell, 2006) and the influence of other factors on pol-
len transfer and gene flow (Beckie et al., 2003; Devaux
etal., 2008) have received considerable attention recently
in connection with potential problems associated with the
adoption of genetically modified oilseed rape. However,
as pollinators visit flowers to have some reward, the ef-
fect of fertilization on pollen production, which in turn
can affect the number of pollinators, deserves attention
as well.
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Figure 3. The number of pollen grains per flower on the plots with different treatments in 2004 (left) and 2005
(right)

Table 1. Factorial ANOVA table of F-values showing the effect of year and treatment on the number of pollen grains
per flower in 2004 and 2005

Effect df SS F P
Year 1 19543 374.5 <0.01
Treatment 7 3643 374.5 <0.01
Interaction between year and treatment 7 6709 0.4 0.92

The number of flower visiting bees on the plots
with different treatments. In 2004, the number of flower
visiting bees was significantly higher on fertilized than
on unfertilized plots (F (7, 184) =2.62, p = 0.01). Similar

of treatment was significant (Table 2). Again, there was
no statistically significant interaction between year and
treatment on the number of flower visiting bees, which
means that the impact of different treatments followed

results were obtained in 2005 but the differences were
not statistically significant (F (7, 216) = 1.24, p = 0.28)
(Fig. 4). When summarizing over the two years, the effect

the same trend in both years being higher on fertilized
than on unfertilized plots.
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Notes. The letters above the boxes indicate statistically significant differences between different treatments (ANOVA Fisher
LSD); n.s. — statistically not significant. The boxes indicate the mean value and the whiskers indicate the standard error of
the mean. Note that there are differences in the scale values of the y-axes.

Figure 4. The mean number of flower visiting bees on the plots with different treatments in 2004 (left) and 2005
(right)

Table 2. Factorial ANOVA table of F-values showing the effect of year and treatment on the number of bees in 2004
and 2005

Effect df SS F p
Year 1 4155 239.8 <0.01
Treatment 7 487 4.0 <0.01
Interaction between year and treatment 7 138 1.1 0.34
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Relations between flower visiting bees and the
food resource of spring oilseed rape. A significant posi-
tive correlation between the number of flower visiting
bees and the number of flowers was found in both years
(r=0.59, p <0.01 in 2004; » = 0.69, p < 0.01 in 2005).
There was also a moderate correlation between nectar
production and the number of flower visiting bees (r =
0.41, p <0.01). For pollen production, a weak correlation
was found in 2005 (r = 0.21, p < 0.01), but not in 2004
(r=-0.01, p=10.93).

The economically most important and abun-
dant pollinators of spring oilseed rape are bees (Klein
etal., 2007). Considering the fact that bees visit flowers
in search of food, the number of bees in the field is af-
fected by existing food resources: the density of flowers
and nectar and pollen content in them. Most bees collect
only two food items from flowers: nectar, which provides
bees with energy, and pollen, which provides them with
protein necessary for growth of larvae (Rasheed, Harder,
1997). According to an optimal foraging theory, bees try to
maximize the benefit and minimize the costs (Pettersson,
Sj6din, 2000). Hence the food collected from the flower —
the reward — has to exceed the energy spent on flying.

The positive correlation between the number of
flower visiting bees and the number of flowers found in
this experiment shows that bees consider the abundance
of the food resource while looking for food, preferring
areas with higher flower density. Karise et al. (2007) also
found that the density of oilseed rape flowers most likely
played a major role in choice of foraging area. It is ener-
getically more profitable to choose denser flower areas
in order to expend less energy in flying between flowers
(Cartar, Real, 1997). As the nectar of oilseed rape flow-
ers can be replenished within half an hour of depletion
(Pierre et al., 1999), encountering empty flowers is un-
likely. Oilseed rape is a favourable food plant for bees
because its flowers provide copiously pollen and nectar.
High-density flower patches may serve as a sign of pre-
sence of vigorous plants which are able to provide abun-
dant food for bees (Karise et al., 2007).

Conclusions

Spring oilseed rape (Brassica napus L. var.
oleifera) is an important oilseed crop, whose production
area has increased significantly in northern Europe, in-
cluding Estonia. Spring oilseed rape is predominantly au-
togamous but cross-pollination can have several positive
effects, including higher seed yield. Hence it is profitable
to encourage high number of pollinators in oilseed rape
fields. The results of the current study allowed us to make
the following conclusions:

1. The density of flower visiting bees — honey
bees, bumble bees and solitary bees on spring oilseed
rape depended mainly on flower density.

2. Fertilization increased not only the number
of flowers but also the amount of nectar and pollen per
flower.

3. Additional foliar fertilization had no effect ei-
ther on the number of flowers or on the amount of pollen
grains per flower. Nectar production per flower appeared
to be inhibited by additional manganese.

4. To secure a higher number of pollinators for
achieving higher seed yield and other benefits deriving
from cross-pollination spring oilseed rape should receive
proper complex fertilization. Microfertilizers turned out
to be useless in terms of increasing the number of pol-
linators.
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TreSimo per lapus jtaka biciy (Apoidea) kiekiui

vasariniuose rapsuose

E. Viik, M. Mind, R. Karise, P. Ladniste, I. H. Williams, A. Luik

Estijos gyvybés moksly universiteto Zemés fikio ir aplinkos moksly institutas

Santrauka

Vasarinis rapsas (Brassica napus L. var. oleifera) yra svarbus aliejinis augalas, kurio auginimo plotai Estijoje
smarkiai padidéjo. Sis augalas yra savidulkis, ir tai yra teigiamas veiksnys, ypa¢ jo sékly derliui. Tirta tre§imo
ivairiomis lapy mikrotraSomis jtaka vasariniy aliejiniy rapsy ziedy tankumui ir ziedadulkiy formavimuisi bei
nektaro i$siskyrimui, taip pat $iy veiksniy jtaka ziedus lankanciy bi¢iy gausai.

Lauko bandymai vykdyti 2004 ir 2005 m. Lauka sudaré 32 laukeliai (10 m?): kontroliniai (netr¢sti mineralinémis
traSomis), tresti tik kompleksinémis traSomis OptiCrop (NPK 21-08-12 + S + Mg + B + Ca), ir trgsti OptiCrop bei
vienomis i3 $esiy mikrotrasy (Mn, S, Cu, B, Mg, Mo). Kiekvienas variantas turéjo keturis pakartojimus. Ziedus
lankancios bités skai¢iuotos du kartus per savaite saulétomis dienomis. Ziedai skaiciuoti tuo pa¢iu metu kiekvieno
laukelio 1 m? plote. Nektaro i§siskyrimas matuotas lauke, 1 pl kapiliara jstacius j 24 valandas izoliuoty ziedy
vainikélio vamzdelj. Ziedadulkiy griideliai skai¢iuoti istirpinus pries tai izoliuoty Ziedy audinius.

Ziedus lankangiy medunesiy, kamaniy ir pavieniy bi¢iy tankumas ant vasariniy rapsy daugiausia priklausé nuo ziedy
tankumo. Tr¢Simas padidino ne tik Ziedy skaiciy, bet ir nektaro bei ziedadulkiy kiekj viename Ziede. Papildomas
trg8imas per lapus neturéjo jtakos nei ziedy, nei ziedadulkiy grudeliy kiekiui. Vieno ziedo nektaro skyrimasi slopino
papildomas trgSimas manganu. Tod¢l, siekiant uztikrinti didesnj kiekj apdulkintojy ir gauti didesnj sékly derliy
bei kita kryzmadulkos teikiama nauda, rapsus reikéty tresti tinkamomis kompleksinémis traSomis. Apdulkintojy

kiekiui mikrotrasSos nebuvo efektyvios.

Reik$miniai zodziai: Brassica napus L. var. oleifera, vasariniai rapsai, Apoidea, ziedy tankumas, ziedadulkiy
formavimasis, nektaro i§siskyrimas, tr¢S§imas per lapus.
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Impact of alpha-cypermethrin on honey
bees foraging on spring oilseed rape

(Brassica napus) flowers in field conditions?
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Abstract

BACKGROUND: Cruciferous oil-bearing crops have gained in importance worldwide. The expansion of the
growing area of these crops has caused a proliferation of pests. Exposure to organophosphate, carbamate and
pyrethroid insecticides has been associated with bee poisoning in food crops. This study examines the repellent
effect of alpha-cypermethrin on the number of foraging honey bees, Apis mellifera L., on fields of spring oilseed
rape, Brassica napus L. var. oleifera.

RESULTS: The first experiment was conducted on differently sprayed 10 m? experimental plots where alpha-
cypermethrin was applied at different times. Another experiment was conducted on a 4ha seed production
field divided into two parts: one part was treated with alpha-cypermethrin and the other was not treated with
this insecticide. The results show that there was no difference in the number of honey bees between alpha-
cypermethrin-treated and untreated patches. The result persisted through three observation years, regardless of
varying flower and honey bee densities.

CONCLUSION: No repellent effect of the insecticide on honey bees was found even 24 h after spraying. The density
of oilseed rape flowers most likely played a major role in choosing the foraging area.
© 2007 Society of Chemical Industry

Keywords: alpha-cypermethrin; Brassica napus L. var. oleifera; Apis mellifera L.; foraging; repellence

1 INTRODUCTION Oilseed rape plants are very attractive to pollinating
The continuous growth of the human population has insects.>* In the case of conventional farming, where
increased the need for agricultural products. During pesticides are widely used, the high attractiveness
the last 50 years the growing area of cruciferous oil- of a plant species may enhance the hazards of
bearing crops has greatly increased.! Vegetable oils pesticide poisoning to bees. Bee poisoning incidents

have been frequently associated with exposure to
pesticides.>® Bees may come into contact with
poisonous compounds through contaminated flower
resources, direct contact with poison or exposure to
residues.®

Application of insecticides is often not permitted
during the flowering period of a given crop. Even when
insecticides are not sprayed on flowers but on flower
buds, the residues of the compounds still contaminate
nectar and pollen in sublethal doses via both active
and passive transport.> Many insecticides have been
described as safe to bees because they do not Kkill

are needed not only in food production but also as
a raw material for fuel. Northern agricultural areas
are unsuitable for the effective cultivation of most oil
crops, but oilseed rape, Brassica napus L. var. oleifera,
is easy to establish and grow in northern temperate
climates.

A major problem with cultivating spring oilseed
rape in northern Europe is that damage caused by
the key pest, the pollen beetle Meligethes aeneus F., is
increasing. Hokkanen? has explained the increase in
the numbers of pollen beetle by ecological changes:

initially, when the host plants were sparse, the high them, although sublethal doses may affect pollinators
reproductive rate of the insect was of no benefit for it; by decreasing their foraging and navigation abilities.5
when the number of host plants became unlimiting, Some pesticides do not affect adult bees but affect
however, their high fecundity became advantageous. brood, so that young adults emerging from cocoons
Owing to the increased occurrence of pests in oilseed may have malformed wings or other deformations.”
rape, the use of pesticides has become an almost However, some insecticides may be regarded as safe
inevitable part of cultivating these crops. because they repel bees, although in some instances,

* Correspondence to: Reet Karise, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
E-mail: reet.karise@emu.ee

TThis paper was presented at the 9th International Symposium Hazards of Pesticides to Bees
(Received 28 February 2006; revised version received 23 November 2006; accepted 1 December 2006)
Published online 19 September 20075 DOI: 10.1002/ps.1445

EWILEY .
£ InterScience*

e,

© 2007 Society of Chemical Industry. Pest Manag Sci 1526—-498X/2007/$30.00

115



R Karise, E Viik, M Mind

such as in the case of oilseed rape, the attractiveness
of a food resource may override the repellent effect.®
The effect of cultivation methods on the abundance
of bees has been studied at landscape scale. Morandin
and Winston® have shown that the abundance of bees
within organic crops is higher than in conventional and
genetically modified crops. One of the explanations
they offered for this observation is that organic crops
are smaller in area, and therefore their environment
could be more suitable for natural bee populations.
These results concur with the studies by Mind ez al.'°
and Sepp ez al.!' However, there is a lack of data
concerning bee abundance on insecticide-treated and
untreated crops when the crops are situated next
to each other. Alpha-cypermethrin is a non-systemic
insecticide with contact and stomach action that may
reduce the foraging ability of bees!? and is reported
to be repellent to them for 48h.> Hence, it can be
assumed that, owing to repellency, the number of
honey bees should be lower on insecticide-treated
food resource patches for at least 24 h after treatment.
This study examines the repellent effect of alpha-
cypermethrin on the number of foraging honey bees
on spring oilseed rape fields.

2 MATERIALS AND METHODS

Two field experiments were carried out on spring
oilseed rape crops to study the repellent effect of
the insecticide alpha-cypermethrin on the density of
honey bees. The experiments were conducted near
Tartu, Estonia, in 2003—2005. In both experiments,
the rape cultivar was ‘Maskot’, and a commercial
alpha-cypermethrin 50gL~! EC (Fastac; BASF,
Limburgerhof, Germany) was used at a rate of 0.15 L.
ha™! (7.5g Al ha™!).

2.1 Experiment 1: effect of alpha-cypermethrin

treatment intensity on the number of honey bees
This experiment was performed to evaluate the impact
of alpha-cypermethrin on the number of foraging
honey bees on small patches of spring oilseed rape
treated once or twice (at different times) with the
insecticide. The observation area consisted of a 5ha
field of summer wheat where a regular array of
patches of spring oilseed rape was sown. The design
of the experiment was a randomized block with twelve
1 x 10m? plots with a distance of 1 m between each.
Three treatments were used: unsprayed, once sprayed
and sprayed twice, each replicated 4 times. In the
sprayed-once treatment the insecticide was applied
when rape plants were in the growth stage of 2—4 true
leaves (GS 10, according to Lancashire ez al.'?). For
the twice-sprayed treatment, the first spray was applied
at the same time as the once-sprayed plots with an
additional application at the stage of first flowers (GS
61-62). The insecticide was applied using a manually
operated sprayer, and, during spraying, plastic screens
prevented the contamination of neighbouring plots.
The insecticide treatments were conducted only on

1086

days when wind speed did not exceed 1-2m s~!.

The cultivation methods between the treatments were
identical.

In all years, the observation period lasted throughout
July, i.e. the flowering period of oilseed rape. The
lengths of flowering periods differed according to
weather conditions and lasted from 2weeks (2004)
to 3.5 weeks (2005). During bee counts, the observer
walked slowly along the plot and recorded all honey
bees foraging on the oilseed rape. The number of
open flowers was determined on 1 m? quadrats within
each plot. Counts were made twice weekly during
the flowering period, starting at 24h after the last
spray application. All bee counts were made on days
when there was no rain, fog or strong wind and
air temperature was over 16°C at around midday
(11.00-16.00h).

2.2 Experiment 2: honey bee abundance before
and after alpha-cypermethrin treatment

The second experiment was carried out on a seed
production crop of spring oilseed rape to test the
abundance of honey bees before and after insecticide
application. The experiment was conducted in July
2003. A spring oilseed rape field (4ha) was divided
into two parts (approximately 2ha): one part was
treated with alpha-cypermethrin and the other was
left untreated. Within both fields, seven 1 x 10 m?
observation plots were marked. Six honey bee colonies
were brought close to the crops (200 m away) 2 days
before flowering started (late bud stage, GS 60). The
insecticide was applied using a motorized field sprayer
when the plants were at the mid-flowering stage (GS
65-66). During spraying, wind speed did not exceed
1-2m s~ !. To prevent direct poisoning of honey bees,
the hives were closed before the insecticide application
and kept closed for 24h. No visible mortality was
detected in close proximity to the hives during the
experiment. The counting of flowers (on 1m? per
plot) and bees (on the whole plot, 10 m?) was made
8 days before and 1 day and 8 days after the insecticide
treatment using the methods described above.

2.3 Data analysis

To test for the effects of the treatments and years on
the number of flowers and the number of bees, one-
way and two-way analysis of variance (ANOVA) was
used. The number of flowers on different observation
plots varied both from day to day and throughout
the flowering period. Therefore, when estimating the
mean density of honey bees, their number was not
taken per unit area but per 1000 flowers. Because
the data of the first experiment were not distributed
normally, Spearman’s correlation was used to test for
correlation between number of flowers and number of
bees. To compare the abundance of bees and flowers
on seed production crops, the z-test was used. The
accepted level of significance was 5% in all cases.

Pest Manag Sci 63:1085-1089 (2007)
DOI: 10.1002/ps
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3 RESULTS

3.1 Experiment 1: effect of alpha-cypermethrin
treatment intensity on the number of honey bees
In all years, there was no significant difference
in the number of bees per 1000 flowers between
the treatments either during the whole observation
period (Fig. 1) (2003: F,33 =0.3, P =0.7; 2004:
F, 30 =0.9, P=0.4; 2005: F,,7 =0.7, P=0.5) or
on the first observation day, i.e. 24 h after the second
spraying (2003: F, ¢ = 0.5, P = 0.6; 2004: F, 9 = 1.6,
P =0.3; 2005: F, 9 = 0.2, P = 0.8). Yet there was a
significant difference in total number of bees between
the years (F, 177 = 3.7, P =0.03). Flower densities
differed significantly between the treatments in all
years (2003: F,57; =5.2, P=0.008; 2004: F,33 =
8.4, P =0.001; 2005: F,g =8.2, P=0.001). An
interesting trend was found: in the case of lower flower
densities, the number of bees did not depend on the
number of flowers, but statistically significant positive
correlations became apparent at a certain level of
flower density (Fig. 2).

3.2 Experiment 2: honey bee abundance before

and after alpha-cypermethrin treatment

The number of bees per 1000 flowers did not differ
between the untreated and treated crops either 1 week
before (z=1.7, df =12, P =0.12) or 1week after
(t=0.2, df =12, P=0.9) the application of the
insecticide (Fig. 3). However, 24 h after spraying, the
number of honey bees per 1000 flowers for the treated
crop was significantly higher than for the untreated
crop (1 =4.4, df =12, P =0.001). An investigation
was carried out to determine whether these differences
in the abundance of honey bees between the crops were
induced by the differences in flower densities. Indeed,
in the middle of the flowering period (counted 24h
after spraying) the density of flowers in the treated
crop was significantly higher than in the untreated
crop (z = 2.2, df = 12, P = 0.048). At the same time,
the number of oilseed rape flowers did not differ
significantly between the untreated and treated crops
at the beginning and at the end of the flowering period
(accordingly: r=1.5, df=12, P=0.2; r=0.04,
df =12, P =0.9). When comparing the abundance
of honey bees for the observation days, the number of
bees was significantly lower for both crops 24 h after
spraying (untreated: F, ;3 = 16.4, P = 0.001; treated:
F, 18 = 3.3, P = 0.05) (Fig. 3).

4 DISCUSSION

This study showed that there was no difference in the
number of foraging honey bees between the patches
treated with alpha-cypermethrin and those not treated
with the insecticide. The result persisted through
three observation years regardless of varying flower
and honey bee densities. No repellent effect of the
insecticide on honey bees was found even 24 h after
spraying. The density of oilseed rape flowers most
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Figure 1. Number of honey bees per 1000 flowers on oilseed rape
crops treated with alpha-cypermethrin or not treated with
alpha-cypermethrin: (a) 2003; (b) 2004; (c) 2005. Means with standard
error are given.

likely played a major role in choosing the foraging
area.

Pyrethroids are known as the insecticides most
repellent to bees.® Pyrethroid repellency can also
reduce the foraging activity of bees.!* Alpha-
cypermethrin has been reported to maintain repellency
to bees for 48 h after treatment.> However, most stud-
ies on repellency have been performed in laboratory
or semi-field conditions. In field conditions, the repel-
lency of pyrethroids may be lower than suggested by
semi-field experiments.® In field studies, Mayer and
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Figure 2. Spearman’s correlations between the number of honey
bees and the number of flowers on the experimental plots (10 m2):
(a) 2003; (b) 2004; (c) 2005; * — P < 0.05; n.s. — not significant.

Lunden!® did not find any repellency to bees for alpha-
cypermethrin applied at the field rate to flowering
oilseed rape. Shires ez al.!® found that, when sprayed
on oilseed rape during periods of peak honey bee forag-
ing activity, alpha-cypermethrin caused a slight decline
in the level of foraging and in the levels of collected
pollen.® Evidence for repellency may also be ques-
tioned by the detection of relatively high residues of
cypermethrin in honey and wax.® The present results
tend to confirm that alpha-cypermethrin does not
show repellency for honey bees in field conditions. If
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Figure 3. Number of honey bees per 1000 flowers on three
observation days on seed production crops adjacent to each other.
Means with standard error and standard *1.96 are given.

*** — P < 0.001; n.s. - not significant.

any repellency does occur with respect to this insec-
ticide, the attractiveness of the flower resource may
override it.

The results of the first experiment showed that
application of the insecticide at the beginning of
flowering had no effect on the number of foraging
honey bees per unit of flowers. Irrespective of the
variable number of bees available in different years,
the trends remained the same. The relative number
of honey bees was connected with floral density: on
dense observation plots, the numbers of bees and
flowers were positively correlated, whereas on sparse
patches no such correlation was found. According
to the theory of optimal foraging, animals distribute
among differently rewarding food resources so that the
average amount of food per specimen remains equal.'”
In spite of this theory, in the first experiment, dense
patches of oilseed rape were even more attractive for
the bees. The data of the second experiment also
uphold the result that the bees visited rich food
patches more often than expected on the basis of
flower resources.

Rape plants are known to be a favoured food source
for bees owing to their high nectar production rate?
and valuable pollen amino acid content. It is also
known that honey bees recruit nestmates to profitable
foraging sites. Newly recruited bees fly directly from
the hive to the vicinity of a food source, and then
proceed to search for its exact location using odour and
other cues.!'® The patches with higher flower densities
may trigger more recruitment of nestmates on fields,
as might have occurred in our second experiment.
However, in the first experiment this could hardly
affect the results because the area itself and the
experimental patches were too small, and the patches
were situated between each other, which would not
permit exact identification of profitable small patches
through waggle dance.

In the second experiment, 24 h after spraying there
was a decline in the number of foragers not only
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on the treated but also on the untreated crop when
compared with the rest of the observation days. As the
abundance of honey bees decreased on both fields, it
can be assumed that this was not related to treatment
but more likely to climatic conditions and/or the start
of flowering of some other attractive food plant species
(e.g. leguminous) nearby. The end of July is the
period when the aftermath of clover starts flowering
on pastures or meadows and may attract bees away
from rape crops.

Coming into direct contact with alpha-cyperme-
thrin, or its residues, may cause death or sublethal
effects in bees. The contact may be either direct
(residues on leaf surfaces) or indirect (spray contami-
nation of the nectar or pollen).® It has been shown that
the residues on leaf surfaces are toxic for more than
3 days following insecticide application and may Kkill
up to 25% of bees that come into contact with them.!®
There is at least one study that shows the presence
of residues of alpha-cypermethrin in small quantities
(0.01 mgkg™!) in the pollen of oilseed rape after insec-
ticide application (10 g Al ha™!).!2 The compound has
an LDs, of 0.319 ug Al bee ! .2° There is also evidence
for the existence of alpha-cypermethrin residues in
dead honey bees.?! The present experiments indicate
that honey bee food crop preference does not depend
on the presence of insecticide residues on flowers but
rather on the flower abundance of the crop plant. The
alpha-cypermethrin formulation Fastac is commonly
used to control pollen beetles in oilseed rape. Con-
trolling this pest contributes to higher flower densities
as the damage caused by the larvae to the flower-
ing structures is prevented. Therefore, treated crops
may often have high flower densities and therefore are
more attractive to bees than crop areas damaged by the
beetle. In field conditions, honey bees can become con-
taminated with residues of alpha-cypermethrin even if
the hives have been kept closed for some time after
spraying. The foraging ability of honey bees depends
on their physiological state. Therefore, it is evident that
reliable data are needed with respect to the effects of
sublethal doses of the insecticide on the transpiration
and respiration of the bees.

ACKNOWLEDGEMENTS

The authors are grateful to M Ajaots and P Laéniste for
crop husbandry, to IH Williams for help in refining the
English of this article and to two anonymous referees
for useful comments and suggestions. This work
was supported by the Estonian Scientific Foundation
(Grants no. 5737, 6722).

REFERENCES
1 Production Yearbook, 57. FAO Statistics Series No. 177. Food and
Agriculture Organization of the United Nations, Rome, 340
pp (2003).

Pest Manag Sci 63:1085-1089 (2007)
DOI: 10.1002/ps

[N

w

S

O]

o

-

®

©

12

14

17

18

19
2

o

2

—

119

Repellent effects of alpha-cypermethrin on honey bees

Hokkanen HMT, The making of a pest: recruitment of
Meligethes aeneus onto oilseed Brassicas. Entomol Exp Appl
95:141-149 (2000).

Free |B, Insect Pollination of Crops. Academic Press, Lon-
don—New York, pp. 172-180 (1993).

Cook SM, Awmack CS, Murray DA and Williams IH, Are
honey bees’ foraging preferences affected by pollen amino
acid composition? Ecol Entomol 28:622—627 (2003).

Thompson HM, Assessing the exposure and toxicity of
pesticides to bumblebees (Bombus sp.). Apidologie 32:305-321
(2001).

Gels JE, Held DW and Potter DA, Hazards of insecticides to
the bumble bees Bombus impatiens (Hymenoptera: Apidae)
foraging on flowering white clover in turf. ¥ Econ Entomol
95:722-728 (2002).

Tasei JN, Effects of insect growth regulators on honey bees and
non-Apis bees. Apidologie 32:527-545 (2001).

Thompson HM, Behavioural effects of pesticides in bees — their
potential for use in risk assessment. Ecotoxicology 12:317-330
(2003).

Morandin LA and Winston ML, Wild bee abundance and seed
production in conventional, organic and genetically modified
canola. Ecol Appl 15:871-881 (2005).

Mind M, Geherman V, Luik A, Martin AJ, Mikk M, Paime-
tova V, er al, Bumble bee diversity on ecological and conven-
tional dairy farms. Acza Biol Univ Daugavp 1:21-25 (2001).

Sepp K, Mikk M, Midnd M and Truu], Bumble bee com-
munities as an indicator for landscape monitoring in
the agri-environmental programme. Landscape Urban Plan
67:173-183 (2004).

van Heemstra-Lequin EAH and van Esch GT, International
Programme on Chemical Safety, Environmental Health Criteria
142 1992-1992. [Online]. Available: http://www.inchem.org/
documents/ehc/ehc/ehcl142.htm [19 December 2005].

Lancashire PD, Bleiholder H, Van Den Boom T, Langelud-
deke P, Stauss S, Weber E, ez al, A uniform decimal code for
growth stages of crops and weeds. Ann Appl Biol 119:561-601
(1991).

Mueller-Beilschmidt D, Toxicology and environmental fate of
synthetic pyrethroids. ¥ Pestic Reform 10:32—37 (1990).

Mayer DF and Lunden JD, Field and laboratory tests of the
effects of fipronil on adult female bees of Apis mellifera,
Megachile rotundata and Nomia melanderi. § Apicult Res
38:191-197 (1999).

Shires SW, Le Blanc J, Murray A, Forbes S and Debray P, A
field trial to assess the effects of a new pyrethroid insecticide,
WL85871, on foraging honeybees in oilseed rape. J Apicult
Res 23:217-226 (1984).

Alonso JC, Alonso JA, Bautista LM and Muioz-Pulido R,
Patch use in cranes: a field test of optimal foraging predictions.
Anim Behav 49:1367-1379 (1995).

Dyer FC, The biology of the dance language. Annu Rev Entomol
47:917-949 (2002).

Cox C, Cypermethrin. ¥ Pestic Reform 16:15-20 (1996).

Material Safery Data Sheet: Alphaguard 100EC — 2003. [Online].
Nufarm UK Limited. Available: http://www.interfarm.co.uk/
safety_data_sheets/SDS%20Alphaguard%20100EC.pdf [19
December 2005].

Barnett EA, Fletcher MR, Hunter K and Sharp EA, Pesticide
poisoning of animals 2000: investigation of suspected
incidents in the United Kingdom. CSL, Department for
Environment, Food and Rural Affairs, Sand Hutton, York,
UK (2002).

1089









Muljar, R., Karise, R., Viik, E., Kuusik, A., Mind, M., Williams, I. H.,
Metspalu, L., Hiiesaar, K., Luik, A., Must, A.

EFFECTS OF FASTAC 50 EC ON BUMBLE BEE BOMBUS
TERRESTRIS L. RESPIRATION: DGE DISAPPEARANCE DOES
NOT LEAD TO INCREASING WATER LOSS

Journal of Insect Physiology (submitted)



O© 00 9 & »n A W NN =

.
W NN = O

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Effects of Fastac 50 EC on bumble bee Bombusterrestris L. respiration: DGE

disappearance does not lead to increasing water loss
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SUMMARY

Sublethal effects of pesticides in insects can be observed through physiological changes,
which are commonly estimated by metabolic rate and respiratory patterns, more
precisely by the patterns of discontinuous gas-exchange (DGE) cycles. The aim of the
present research was to study the effect of some low concentrations of Fastac 50 EC on
the cycles of CO; release and respiratory water loss rates (WLR) in bumble bee Bombus
terrestris foragers. Bumble bees were dipped into 0.004% and 0.002% Fastac 50 EC
solution. Flow-through respirometry was used to record the respiration and WLR three
hours before and after the treatment. The respirometry was combined with infrared
actography to enable simultaneous recording of abdominal movements. Our results
show that Fastac 50 EC has a dose dependent after-effect on bumble bee respiratory
rhythms and muscle activity but doesn’t affect WLR. Treatment with 0.004% Fastac 50
EC solution resulted in disappearance of the respiration cycles; also the lifespan of
treated bumble bees was significantly shorter. Treatment with 0.002% Fastac 50 EC
solution had no significant effect on respiration patterns or longevity. We found no
evidence for the DGE cycles functioning as a water saving mechanism, our results rather

support the oxidative damage hypothesis.

Key words: Fastac 50 EC, DGE, WLR, Bombus terrestris L.
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INTRODUCTION

The abundance of native pollinators has declined rapidly over recent years in intensively
managed agricultural landscapes (Ménd et al., 2002; Carvell et al., 2006; Potts et al., 2010).
Among other reasons the intensive use of pesticides has been claimed to play an important
role in this decline (Wickramasinghe et al., 2004; Potts et al., 2010; Stokstad, 2012).
Insecticide application on flowering crops is mainly prohibited, although many products are
allowed to be used at times when honey bees are not foraging. Unfortunately, these
restrictions do not prevent bee contact with pesticide residues and do not consider behavioural
aspects of bumble bees and other wild bees (Corbet et al., 1993; Thompson, 2001; Karise et
al., 2007). Also, compared to lethal doses, sub-lethal doses of toxicants might be even more
detrimental to bee populations causing chronic effects which, over a longer time-scale and in
interaction with other stressors, may lead to decline of the species (Thompson, 2001, 2003).

The effects of sub-lethal pesticide doses can sometimes be observed and proved only
through physiological changes in insects. The physiological state of an insect is commonly
estimated and characterized by the metabolic rate and respiratory patterns, more precisely by
the patterns of discontinuous gas-exchange (DGE) cycles (Kestler 1985, 1991). DGE is a
nerve controlled system that reacts easily to slight changes in stress level.

Cyclic release of CO, during gas exchange (Kestler, 1971, 1985) is common in many
insect species. This is a range of respiratory gas exchange patterns from continuous to
periodic. The pattern is called discontinuous (DGE) (Lighton, 1996; Hetz and Bradley 2005;
Chown et al., 2006) when it involves the closing of the spiracles of the insect tracheae
(constriction phase, C) during which no CO, release occurs; the C-phase is followed by a
period of intermittent CO, release (flutter phase, F) and, thereafter, a rapid opening of
spiracles (open phase, O). The O-phase often coincides with contraction of abdominal
muscles or active ventilation. According to Kestler (2003), this active ventilation is a strategy
to conserve water. The cyclic gas exchange pattern (CGE) (Lighton, 1996; Marais and
Chown, 2003; Gibbs and Johnson, 2004; Marais et al., 2005) has no C-phase, the opening of
spiracles is alternated by a F-period with a low level of CO, release. In CGE, the cycle length
is shorter and CO; release rarely decreases to zero. The precise pattern of cyclic respiration in
insects depends on many factors: metabolic rate (Moerbitz and Hetz, 2010), insect species
(Chown 2011) with its intrinsic needs for environmental conditions (Quinlan and Hadley,
1993; Basson and Terblanche, 2011), individual traits (Gray and Chown, 2008; Woods,
2011), stressors (Kestler, 1991; Zafeiridou and Theophilidis, 2006) and to the conditions
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(Karise et al., 2010) the specimen is exposed to during the experiment. Most likely several
factors work together to influence the expression of DGE cycles (Chown, 2002).

There are different hypotheses and contradictory explanations about the function of
DGE, as reviewed by Chown (2002) and Chown et al. (2006). The newest hypotheses
consider oxidative damage (Hetz and Bradley, 2005), signalling role for reactive oxygen
species (Boardman et al., 2012) and neural regulation of the ventilation patterns (Matthews
and White, 2011). Still, the most widely discussed has been the hygric hypothesis, which,
starting with Buck (1958) has later been supported by many other researches (Kestler, 1980,
1982; Slama, 1988, 1999; Lighton et al., 1993; Terblanche et al., 2008). Despite some
counter-arguments (Lighton et al., 2004; Lighton and Turner, 2008), the hygric hypothesis is
still the one with most support (Schimpf et al., 2009, 2012; Williams et al., 2010).

Despite many different hypotheses on the function of DGE none exclude others, rather it
suggests a basis for combined existence (Forster and Hetz, 2010). There is proof that DGE
cycles do confer a fitness benefit. Schimpf et al. (2012) showed that desert insects that
exchange gases discontinuously are more likely to survive desiccating conditions than those
that do not. Although respiratory water loss usually represents only a small fraction of total
water loss (Lighton, 1994; Chown, 2002; Dingha et al., 2005; Lamprecht et al., 2009) the
lower water loss due to DGE may be significant in extending survival in some conditions
(Schimpf et al.,, 2012). The pesticide derived excessive diuresis in insects may lead to
increasing stress becoming determinative in surviving toxicosis.

Pyrethroids are often sprayed on the flowering oilseed crops to control the pollen beetle
Meligethes aeneus (Fabricius, 1775) which attacks buds and flowers. The beginning of
flowering in turn attracts large numbers of pollinators which may come into contact with
pesticides or their residues on flowers. The objective of the present investigation was to
clarify whether the effect of an insecticide results from water loss, as it could be assumed
according to the hygric hypothesis, or whether there are other factors that play an important
role. Our precise aim was to study the effect of some low concentrations of Fastac 50 EC (a.i.
alpha-cypermethrin) on the cycles of CO, release and respiratory water loss rate (WLR) of

bumble bee Bombus terrestris (Linnaeus, 1758) foragers.
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MATERIALS AND METHODS
Insects
Colonies (Natupol hives) of the bumble bee B. terrestris were purchased from Koppert
Biological Systems B.V. (Berkel en Rodenrijs, The Netherlands). The hives were kept at
room temperature and the bees fed with dried honey bee pollen and a sugar solution (30%).
The bees used in the experiment were caught as they emerged naturally from the hive

entrance tunnel; it means that all of them were foragers.

Respirometry

An infrared gas analyser (IRGA, Infralyt-4, VEB, Junkalor, Dessau), adapted for
entomological research, was used in the first experiment, to record the CO, signals and
metabolic rates (VCO, ml h™") at 8°C. The IRGA was calibrated at different flow rates using
calibration gases (Tragergase, VEB, Junkalor, Dessau) with gas injection (Kuusik et al., 2002;
Martin et al., 2004; Mind et al., 2005, 2006). The rate of carbon dioxide release was
measured (VCO, ml h™) at an air flow rate of 120 ml min™', a pressure compensated URAS 26
(ABB Analytical, Frankfurt, Germany), covering a measuring range of 0 to 500 ppm. The
data from the analyzer were sampled at a rate of 10 Hz to PC via the analog output. The CO,
and H,O were eliminated from the flow-through system air by DRIERITE and a molecular
sieve.

The LI-7000 differential CO,/H,O Analyzer (LiCor, Lincoln, Nebraska, USA), designed
for laboratory and field research applications, was used in the second experiment, to record
water loss (VHO pl h™) parallel to the bursts of CO, releases in bumble bee foragers at 18°C.
Air flow in LI-7000 was regulated at 166 ml min” (10 1 h™"). The CO, and H,O were
eliminated from the air used in the flow-through system by NaOH and Mg(ClO4,). The IRGA
was calibrated using NIST-traceable standard gases (for CO,).

Infrared-actography
The LI-7000 was combined with an infrared (IR) actograph to record abdominal movements.
The actograph has also been used as an insect IR cardiograph or optocardiograph (Hetz, 1994;
Hetz et al., 1999; Ménd et al., 2006; Karise et al., 2010). Two IR-emitting diodes (TSA6203)
were placed on one side (ventral side of the insect abdomen) and two sensor diodes (BP104)
were placed on the opposite side of the insect chamber. Abdominal movements caused

changes in the light transmitters, which were converted into voltages and recorded as spikes.
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Treatments
A commercial formulation of alpha-cypermethrin (Fastac 50 EC, a.i. 50 g/l, BASF SE, D-
67056 Ludwigshafen, Germany) was used to measure its effect on bumble bee respiratory
patterns and water loss. We diluted the Fastac 50 EC to 0.04% (20 ppm of alpha-
cypermethrin), which corresponds to the registered field rate in Estonia of 20 g a.i. ha™. For
our experiments, the field dosage of Fastac 50 EC was diluted with distilled water to 0.004%
(2 ppm of alpha-cypermethrin) and 0.002% (1 ppm of alpha-cypermethrin) which are
accordingly 10 and 20 times lower concentrations than recommended for treating flowering
rape fields against pests. The bumble bees were dipped into the alpha-cypermethrin solution
or distilled water as control for 10 seconds (Saba, 1971). Following dipping, each bee was air-
dried on filter paper. This dipping method is widely used in various insect toxicology
experiments with differing solvents or submergence times (5 sec to 1 min) by both insect
larvae (Isayama et al., 2005; Cetin et al., 2006; Erler et al., 2010) and adults (Sibul et al.,
2004; Azimi et al., 2009). In the case of bumble bees, the dipping method has been used as an

alternative method in contact tests (van der Steen, 2001).

The measurements
The measurements lasted for six hours per individual bumble bee. All individuals were
measured in the flow-through respirometer for three hours after which the insect chamber was
opened and the bumble bee taken out for treatment. The treatment, according to the prescribed
scheme (different concentrations of Fastac 50 EC or distilled water), was carried out
immediately and the bee was placed back into the insect chamber for the next three hours.

In the first experiment, the metabolic rate and the frequency of bursts of CO, releases of
B. terrestris foragers were measured at 8°C. Bumble bees are very active insects and tend to
maintain high body temperature by shivering and contractions of flight muscles. The
temperature was chosen to prevent flight muscle activity in the bumble bees (Goller and Esch,
1990; Kuusik et al., 2002) and eventually the regular DGE appeared in most of the
individuals.

In the second experiment, muscle activity, respiration rate and WLR were measured at
18°C. Bumble bees often experience this temperature when foraging. For bumble bees it is
important to keep their thoracic temperature high for several reasons: to minimise pre-flight
warm-up time when exploiting different inflorescences and to minimise escape time when

avoiding predators (Nieh et al., 2006). That is why many bumble bee individuals shorten the
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length of the DGE cycles or do not show DGE at all at 18°C. Therefore, we did not count the
clear cycles of discontinuous gas exchange at this temperature; instead, we examined the
change in the respiratory and abdominal activity patterns. The higher metabolic rate increases
also the WLR of the insect; therefore the differences in WLR should be more easily
detectable.

The dose of alpha-cypermethrin bumble bees received (measured from ground-up
bumble bee bodies) was 0.995 + 0.227 pg/g (0.004%) and 0.87 + 0.18 pg/g (0.002%)
(analyzed by Agricultural Research Centre, Laboratory for Residues and Contaminants,
Teaduse 4/6, Saku, 75501 Harjumaa, Estonia). The method used in the chemical analysis was
EN 12393-1,2,3: 1998 GC-ECD/NPD, GC-MS, LC-MS/MS; Norwegian Crop Research
Institute Pesticide Lab, M04.

The longevity of bumble bees
Bumble bees treated with Fastac 50 EC solutions of both concentrations or distilled water, as
described above, were kept at room temperature in the dark. Each bee was placed in a
separate chamber and provided with 30% sugar solution as food. The bumble bees were
checked daily until death. The bumble bees were considered dead when they did not move
antennae or legs and did not respond to tactile stimulation. Then death was confirmed using

LI-7000 (Jogar et al., 2008).

Data acquisition and statistics
Computerised data acquisition and analysis were performed using the DAS 1401 A/D
(analog-digital) hardware and the software TestPoint (Keitley, Metrabyte, USA) with a
sampling rate of 10 Hz. The LI-7000 analyser was connected to a computer to record CO,
production in parts per million (ppm) using LiCor software. Mean metabolic rates were
automatically calculated by a statistical program by averaging data over 3 h periods after
excess CO, and H,O which entered the system during handling had left the system. Paired t-
tests and Kruskal-Wallis test were used in statistical analysis (StatSoft ver.10, Inc./USA).

Mean values are presented with + s.e.m.
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RESULTS
The experiment at 8°C
The untreated resting bumble bee foragers exhibited rhythmic gas exchange patterns at low
temperature. The results of all the treatments are presented in Table 1. The solution with
0.004% Fastac 50 EC changed the respiratory patterns. The numbers of bursts of CO, releases
and the mean metabolic rates decreased significantly. Treating the bees with 0.002% solution
also caused a decrease in the numbers of bursts of CO; releases, although the difference was
not statistically significant. The mean metabolic rate decreased significantly. Dipping the
bumble bees into distilled water as a control affected neither the frequency of bursts of CO,

releases nor the mean metabolic rate (Table 1).

The experiment at 18°C

At 18°C, bumble bees were more active: the time to calm down and show CGE or DGE
cycles were longer. During the first three hours of the experiments (before the treatment) the
bumble bees showed different patterns of muscle activity (not locomotor activity). This was
directly dependent on which activity type the specimen belonged to (R. Karise, unpublished).
Some bumble bees need more time to calm down before showing regular CGE or DGE;
others show the discontinuous respiration pattern already 10-30 minutes after inserting the bee
into the insect chamber. Usually longer or shorter periods of CGE or DGE interchange the
periods of active ventilation.

Treating the bees with 0.004 % Fastac 50 EC solution caused rapid disappearance of both
rhythmic release of CO, and muscle activity (Fig. 1A,B). In DGE, the bumble bee uses
muscle work only during the short O period to aid gas exchange; after treatment regular
cycles disappeared and a long-lasting muscle tremor appeared. The change in metabolic rates
after the treatment was significant: in one individual the metabolic rate increased, in others it
decreased. Fastac 50 EC had no significant effect on WLR (Table 2).

Treatment with 0.002% Fastac 50 EC solution did not disrupt either the regular bursts of
CO; releases or muscle activity (Fig. 2A,B). However, the DGE was replaced by CGE (Fig.
3A,B), by which the level of CO; release did not reach near zero as happens during DGE.
Similarly to the effect of the stronger solution, the metabolic rates of the bumble bees
decreased significantly. The WLR did not change significantly (Table 2).

Dipping the bumble bees into distilled water disrupted neither the DGE, if it had been
present before the treatment, nor the muscle activity of the bumble bee foragers. The

metabolic rate and WLR did not change significantly (Table 2).
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Respiratory transpiration constituted only a small part, less than 10% of total transpiration
in the bumble bee foragers. Also during activity, the H>O release was not recognisably higher
compared to the WLR in the C-phase. The simultaneous measurement ensured the exact

coincidence of the bursts of CO, and H,O release (Fig. 4).

The effect of Fastac 50 EC on bumble bee longevity
The mortality rate of bumble bees treated with different Fastac 50 EC solutions was affected
by the solution concentration (H (2, N=30)=11.736 p=0.003). Most individuals treated with
the higher concentration solution (0.004%) died within 1-3 days, although individual variation
was observed (one specimen lived for 8 days, another 16 days). The bee which lived for 16
days after the treatment was also repeatedly controlled in the respirometer, which showed that
the normal DGE or CGE recurred 48 hours after treatment and this pattern persisted at least
until day 4. Also muscle activity recurred on day 3. On day 6, there was neither DGE nor
regular CGE. Treatment with 0.002% solution did not shorten the life span of the bees

significantly compared to those treated with distilled water (p>0.05) (Fig. 5).

DISCUSSION

Our results show that Fastac 50 EC has a dose dependent after-effect on bumble bee
respiratory rhythms, metabolic rate and muscle activity but has no effect on WLR. The
regular periods of discontinuous or cyclic gas exchange disappeared during the first 30
minutes after treatment with 0.004% Fastac 50 EC solution. This treatment also shortened the
lifespan of bumble bees. Contact with 0.002% Fastac 50 EC solution did not provoke that
kind of drastic disappearance of rhythmic gas exchange and the longevity of bumble bees did
not change compared to control bees treated with distilled water.

The existence and nature of carbon dioxide emission patterns depends on many factors.
These include environmental conditions (Kestler, 1971; Dingha et al., 2005; Terblanche et al.,
2008; Karise et al., 2010), metabolic rate (Kestler, 1991; Sibul et al., 2004; Jogar et al., 2006),
the life stage of the insect (Beekman and Stratum, 1999; Miénd et al., 2005, 2006) and several
stress factors (Kestler, 1991; Lighton and Lovegrove, 1990; Kovac et al., 2007). Normally
bumble bees show DGE cycles as a sign of calming down or resting. The events of calming
down are clearly observed on the respirograms of bumble bees (Karise et al., 2010).

Kestler (1991) claims that negative stressors raise standard metabolic rate of resting
insects. Jogar et al. (2006) also described the rise in metabolic rates after treatment with Neem

EC in Colorado potato beetles. By contrast, our results show a decline in metabolic rates of
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bumble bees after contact with Fastac, a pyrethroid insecticide. Some other researches also
interpret the reduction in metabolic rate as a generalized response to stressors (e.g., toxins,
insecticides, heat and cold) that could lead to a reduction in respiratory water loss (Hoffmann
and Parsons, 1989; Chown and Gaston, 1999). Sibul et al. (2004), however, did not see any
change in metabolic rates of pine weevils after contact with Neem EC. These results suggest
that the effect of pesticides on metabolic rates of insects depends largely on both insect
species and pesticide formulation.

According to Kestler (1991), the pathological CO, release patterns can be divided into
phases: latency phase with closed-flutter-ventilation (CFV), followed by continuous
respiration with small irregular bursts of CO, releases. Kestler considers this as a reversible
excitation phase being a typical stress index for sublethal doses of neurotoxic pesticides. The
reversible excitation phase devolves to an irreversible excitation phase with no bursts of
cyclic CO; release. At that time, the spiracles stay open and are paralysed.

We found clear alteration in respiratory thythms of bumble bees after treatment with
alpha-cypermethrin, the neurotoxic active ingredient of Fastac 50 EC. Contact with the
0.004% solution caused rapid disappearance of the respiration cycles in most of the foragers.
Contact with the 0.002% solution of Fastac 50 EC changed the classical CFO cycles to FV
cycles within about the first 30 minutes, later the bouts of CO, releases disappeared. If the
large bouts of CO, releases occurred after treatment, these were rather FV cycles instead of
CFO cycles. Two specimens out of six showed large bursts of CO, releases after the
treatment, others showed varying rates of released CO, of a relatively low but smooth level.
We saw the shift from cyclic towards continuous respiratory behaviour along with decreasing
metabolic rate due to non-ability of bumble bees to keep the spiracles closed. The diminishing
muscle work after the treatment with the neurotoxic chemical (Zafeiridou and Theophilidis,
2006; Woodman et al., 2008) is most likely the result of paralysis, not the result of calming
down. In unstressed insects the decreasing metabolic rate is a sign of calming down and
therefore the shift towards classical DGE should appear (Bradley, 2007; Gray and Chown,
2008; Moerbitz and Hetz, 2010).

It seems reasonable to conclude that a dose of 0.004% Fastac 50 EC is not sub-lethal, but
lethal. For most individuals, the symptoms of intoxication were irreversible. The fact that at
least two specimens lived for longer (8 and 16 days), shows that this concentration must be
near the lethal dose for bumble bees but indicates also the heterogeneity of B. terrestris
population in the context of alpha-cypermethrin immunity. We interpret that, according to

Kestler’s (1991) classification, the bumble bees must have been in reversible excitation phase
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only. The three hour period must have been too short to see total recovery from the
intoxication. We saw the reappearance of the regular DGE in the bumble bees which survived
the higher dose and lived for 8 or 16 days after treatment.

In spite of significantly decreasing metabolic rate, total water loss did not differ
significantly after dipping the bees into distilled water or into the Fastac 50 EC solution of
either concentration. However, the WLR showed a trend to increase after treatment of the
bees with the 0.004% solution, while decreasing after treatment with 0.002% solution or
distilled water. The decreasing WLR is normal when metabolic rate decreases. At lower
metabolic rate the gas exchange including WLR is lower. The slightly higher WLR after the
treatment with 0.004% Fastac 50 EC solution was not caused by muscular excitation, since
this would have been seen on the actograph recordings. We suppose that, due to paralysis, the
spiracles of the bumble bees may have been open (continuous CO; release) after treatment
and along with the outflow of CO,, the water vapour was also washed out from the tissues of
moribund insects. Total water loss has been showed to be higher during continuous, compared
to discontinuous, CO, release (Matthews and White, 2012).

Several studies reveal that respiratory water loss comprises mostly a small fraction of
total water loss, even when the spiracles are open (Quinlan and Hadley, 1993; Quinlan and
Lighton, 1999; Chown, 2002; Gibbs and Johnsson, 2004; Lighton et al., 2004). We suppose
that, for bumble bees, respiratory water loss probably does not play a very important role and
the non-ability to DGE and desiccation thereafter was not the direct cause of death. The
importance of respiratory water loss differs between insect species (Lamprecht et al., 2009)
depending more or less on water permeability of the cuticle. Bumble bees feed mostly on
liquid food and therefore they need to discharge excess water, and the water permeability of
their cuticle is high (Nicolson, 2009). A characteristic of bee water balance is the rapid
mobilisation of ingested dietary water from the crop to the haemolymph, allowing rapid
correction of haemolymph osmotic pressure (Willmer, 1986). Besides, in larger bees like
Xylocopa and Bombus sp, the metabolic water may be in excess during flight and occasionally
these bees eliminate water by spitting or by defaecation (Bertsch, 1984; Willmer and Stone,
1997). Because of these characteristics of bumble bee physiology, which allow them to be
less judicious about respiratory patterns, and based on our results, we do not believe that
death resulted from desiccation, even if the pyrethroid had increased the diuretic event. Still,
the DGE cycles may confer a fitness benefit for the bumble bee B. terrestris. We did not find
proof for the theory of DGE cycles functioning as a water saving mechanism; rather our

results support the oxidative damage hypothesis (Hetz and Bradley, 2005). Probably, the
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intoxicated bumble bees were paralysed and their spiracles were open: the freely entering
oxygen could have been the key factor diminishing their fitness. This kind of research may
benefit from precise observation under the microscope on the behaviour of the spiracles

during intoxication.
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Fig. 1. (A) The periods of DGE observable in the left part of the figure (before the treatment)
are terminated by the treatment (marked by arrow) with 0.004% Fastac 50 EC solution. (B)
Simultaneous recording of the IR-actograph shows the disappearance of activity periods after

the treatment. (C) Detail of the shaded area in A demonstrating continuous respiration.

Fig. 2. (A) The alternating periods of DGE and activity, observable in the left part of the
figure (before the treatment), are replaced after the treatment with 0.002% Fastac 50 EC
solution (marked by arrow), by periods of CGE, observable in the right part of the figure. (B)
Simultaneous recording of the IR-actograph shows that this solution does not cause muscle
paralysis, although the irregular rhythmic activity is supressed. The rectangles at A indicate

the sections zoomed out on the Figs 3A and 3B.

Fig. 3. (A) The section of Fig. 2A (shaded area, left part) demonstrates the DGE pattern,
where a modification from short C-phase to long C-phase can be seen. (B) The section of Fig.
2A (shaded area, right part) demonstrates the CGE rhythms, during which the CO, release

does not reach near zero.

Fig. 4. Simultaneous recording of WLR (upper trace) and CO; release (lower trace) in bumble
bee foragers. Clear DGC with smaller and larger bursts of CO, are observable in the left part
of the figure and in the right part of the figure a brief activity period can be seen.

Fig. 5. The longevity of bumble bee foragers after treatment with with 0.002% and 0.004%

Fastac 50 EC solution and distilled water. Different letters upon the boxes indicate

statistically significant differences between groups.
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Table 1. The mean metabolic rates (VCO, ml h™) and the numbers of bursts of CO, releases
of forager bumble bees treated with 0.002% and 0.004% Fastac 50 EC solution and distilled
water as control at 8°C

Treatment Indiv. Metabolic rate No of bursts of CO,
(VCO, mlh™) releases
Before After Before After
0.004% 1 0.177 0.162 8 1
Fastac 50 2 0.178 0.133 7 2
EC 3 0.164 0.151 18 0
4 0.203 0.134 22 3
5 0.182 0.141 19 0
6 0.153 0.116 9 2
t=4.318 df=5 p=0.008 t=4.49 df=5 p=0.006
0.002% 1 0.213 0.204 9 4
Fastac 50 2 0.201 0.202 5 1
EC 3 0.189 0.183 34 14
4 0.193 0.184 3 2
5 0.185 0.176 12 11
6 0.201 0.196 8 6
t=3.853 df=5 p=0.012 t=1.85 df=5 p=0.124
Dist. water 1 0.197 0.197 20 15
2 0.193 0.116 18 11
3 0.205 0.204 7 4
4 0.154 0.103 9
5 0.168 0.168 16 11
6 0.186 0.183 6 10

t=1.605 df=5 p=0.169

t=1.62 df=5 p=0.166
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Table 2. The mean metabolic rates (VCO, m h™) and WLR (VH.O ul h™) of forager bumble
bees treated with 0.002% and 0.004% Fastac 50 EC solution and distilled water as control at

18°C
Treatment  Indiv. Metabolic rate WLR
(VCO,; ml h™h) (VH,0 ulh)
Before After Before After
0.004% 1 0.267 0318 1.94 2.10
Fastac 50 2 0.270 0.169 1.66 3.52
EC 3 0.466 0.224 2.34 1.46
4 0.411 0.236 2.30 6.10
5 0.469 0.329 1.80 1.15
6 0.376 0.255 2.01 2.85
t=3.036 df=5 p=0.029 t=-1.171 df=5 p=0.294
0.002% 1 0.625 0.376 2.68 4.66
Fastac 50 2 0.581 0.494 3.49 2.93
EC 3 0.660 0.219 0.14 0.22
4 0.695 0.146 4.06 1.37
5 0.335 0.188 1.39 0.57
6 0.617 0.259 8.23 1.81
t=4.217 df=5 p=0.008 t=1.194 df=5 p=0.286
Dist. water 1 1.290 0.078 3.19 3.01
2 0.061 0.024 8.13 3.24
3 0.114 0.064 2.84 2.45
4 0.089 0.050 2.79 2.83
5 0.152 0.119 6.35 4.17
6 0.415 0.198 5.23 3.75
t=1.378 df=5 p=0.227 t=1.993 df=5 p=0.103
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