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ABBREVIATIONS
	
a.i. 		  active ingredient
C		  closed
CFO		  closed-flutter-open
CGE		  cyclic gas exchange
CFV		  closed-flutter-ventilation
DGE		  discontinuous gas exchange
F 	  	 flutter
FV		  flutter-ventilation
GS		  growth stage of (oilseed rape) plants
IR		  infrared
IRGA		  infrared gas analyser
O 		  open
ppm		  parts per million
VCO2		  rate of CO2 emission
WLR		  water loss rate
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1. INTRODUCTION

Spring oilseed rape (Brassica napus L. var. oleifera subvar. annua) is an 
important oilseed crop, the area of which has increased significantly in 
northern countries of Europe (Treu, Emberlin, 2000), including Estonia 
(Veromann et al., 2006a). This has resulted in an increased number of 
pests as monocultures offer unlimited food resources and reproduction 
opportunities (Hokkanen, 2000; Cook, Denholm, 2008). Due to the 
increased occurrence of pests in oilseed rape, the use of pesticides has become 
an almost inevitable part of cultivating these crops (Alford et al., 2003). 
In addition, oilseed rape, as a fast growing crop, needs a high amount of 
nutrients and thus needs more fertilizers than graminaceous crops (Holmes, 
1980; Barraclough, 1989; Grant, Bailey, 1993; Orlovius, 2003).  

Spring oilseed rape is predominantly autogamous and visits of insect 
pollinators are not essential for the final seed yield (Williams et al., 
1987). Despite this, adequate pollination of spring oilseed rape can have 
positive effects such as reduction of the flowering period and raceme 
production, acceleration of ripening, increases in seed weight (Williams 
et al., 1987; Rosa et al., 2011; Bommarco et al., 2012), seed oil content 
(Free, 1993; Bommarco et al., 2012) and seed yield (Steffan-Dewenter, 
2003; Morandin, Winston, 2005; Sabbahi et al., 2005; Chifflet et al., 
2011). Hence, it is profitable to encourage a high number of pollinators 
in oilseed rape fields.  

The economically most important and abundant pollinators of spring 
oilseed rape are bees (Klein et al., 2007; Ali et al., 2011a). However, 
a general and widespread shortage of bee-pollinators is predicted in 
agricultural areas of America (Kremen et al., 2004; Currie et al., 2010), 
Asia (Klein et al., 2003) and Europe (Williams et al., 1991; Williams, 
1996; Giray et al., 2010). The main reason for this is probably the loss 
and degradation of habitats and food resources due to changes in land-
use and agricultural practice (Williams et al., 1993; Mänd et al., 2002; 
Sepp et al., 2004; Goulson et al., 2005; Öckinger, Smith, 2007; Potts 
et al., 2010), including the intensive use of pesticides (Osborne et al., 
1999; Miranda et al., 2003; Maini et al., 2010), as well as changes in 
climate and the effects of predators and parasites (Williams, 1986).

Oilseed rape, as a mass flowering crop, provides highly rewarding resources 
of both nectar and pollen for bees and therefore promotes colony growth 
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and bee abundance (Westphal et al., 2003, 2009). Thus, it is vital that 
husbandry of the oilseed rape crop helps to sustain and not to diminish 
bee populations. Unfortunately, the application of pesticides to the crop 
may contribute to the decline of wild bees and honey bees (Miranda et 
al., 2003; Laurino et al., 2011; Krupke et al., 2012) as they may come 
into contact with poisoning compounds (Gels et al., 2002; Schneider 
et al., 2012). This may happen especially when pesticides are applied 
during flowering when bees are foraging on the crop (Thompson, Maus, 
2007). Pesticide effects on bees may be lethal or sub-lethal: in certain 
circumstances, the sub-lethal effects may cause more harm than lethal 
doses since they affect the survival of the brood and colony (Thompson, 
2001).  

To avoid the toxic effects of pesticides on bees the application of 
insecticides is often not permitted during the flowering period of a given 
crop, but, despite this, the residues of the compounds still contaminate 
nectar and pollen in sub-lethal doses via both active and passive transport 
(Thompson, 2001). In addition, pyrethroids, most often sprayed on 
flowering oilseed crops, have been reported to be repellent to honey bees 
(Rieth, Levin, 1988; Thompson, 2001) but there is evidence that, in 
some instances, the attractiveness of a food resource may override the 
repellent effect (Thompson, 2003). 

The results of honey bee studies are often extrapolated to native 
pollinators, including bumble bees, although their foraging behaviour 
is different and they are more vulnerable: colonies are smaller, they do 
not have the trophallaxis which could diminish the amount of pesticide 
residues possibly reaching the larval food and, for a long period in late 
spring, only the queens are collecting food, and thus are exposed to 
pesticides (Alford, 1975). Hence, special studies are needed to explain 
the impact of sub-lethal effects of pesticides on bumble bees. Further, the 
sub-lethal effects of pesticides on adult foragers may not be observable 
without special methods used in experiments of insect physiology. For 
example, the patterns of discontinuous gas exchange have been used for 
characterizing the physiological state of an insect, while several stress 
factors, including chemical ones, can affect it (Kestler, 1991). 

So, taking into account several benefits of oilseed rape cross-pollination 
(Rosa et al., 2011; Chifflet et al., 2011; Bommarco et al., 2012) it is 
profitable to encourage high number of bees in oilseed rape fields. On 
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the other hand, the bees visiting oilseed rape flowers need to be protected 
against the negative effects of pesticides. In order to favour and protect 
the pollinators enough knowledge is needed – unfortunately there are 
still many unanswered questions. To fill the gap in our knowledge the 
current thesis examines the impact of oilseed rape (as a crop with a high 
nutrient demand) foliar fertilization with different microfertilizers on 
the number of flower visiting bees (honey bees, bumble bees and solitary 
bees) through the number of flowers and food resources (nectar and 
pollen production). In addition, we examined the repellent effect of the 
non-systemic insecticide Fastac 50 EC (a.i. alpha-cypermethrin) on the 
number of foraging honey bees on spring oilseed rape fields and the effect 
of low concentrations of Fastac 50 EC on the metabolic rate, respiratory 
pattern and total water loss rate of bumble bee Bombus terrestris foragers.
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2. REVIEW OF THE LITERATURE

2.1. Oilseed rape

Spring oilseed rape (Brassica napus L. var. oleifera subvar. annua) is an 
important oilseed crop; its growing area has increased significantly in 
northern countries of Europe, including Estonia (Veromann et al., 
2006a), in recent decades (Treu, Emberlin, 2000). Oilseed rape has 
spring and winter forms but wintering conditions for the latter are 
usually not favourable in the Estonian climate. Today oilseed rape is 
cultivated and processed for many different purposes: oil for human 
nutrition, a renewable raw material for the chemical industry, a source 
of regenerative energy, a source of high energy and protein content for 
animal nutrition in the form of rape cake and meal, a catch crop for 
green manuring and as a forage crop (Orlovius, 2003). 

Oilseed rape is a typical cruciferous plant with yellow (or in some 
cultivars, white) flowers arranged in elongated terminal racemes. Each 
flower has four sepals, four petals and, usually, six stamens, four of which 
are longer and two shorter than the style. The flower bears four partly-
hidden nectar glands (nectaries) at the base of the six stamens, two at 
the inner bases of the short stamens and two outside the ring of stamens 
(Eisikowitch, 1981; Rosa et al., 2010). Flowering extends from 22 to 45 
days (Radchenko, 1964; Free, 1993; Delaplane, Mayer, 2000) depending 
on weather conditions. 

Oilseed rape seeds are small and the colour varies from black to dark 
brown. Several studies have shown that the average yield of oilseed rape 
is affected by fertilization (Haneklaus et al., 1999; Sidlauskas, Bernotas, 
2003; Szulc et al., 2003; Rathke et al., 2006). Oilseed rape as a fast 
growing crop needs a high amount of nutrients – more than graminaceous 
crops (Holmes, 1980; Barraclough, 1989; Grant, Bailey, 1993; Orlovius, 
2003). Crop production handbooks in Estonia (Kärblane, 1996; Kaarli, 
2004) recommend complex fertilizers together with microelements for 
oilseed rape fertilization. 

The expansion of the oilseed rape growing area in Europe has created 
good conditions for pests, as monocultures offer unlimited food 
resources and reproduction opportunities – thus, the number of pests has 
been increasing (Hokkanen, 2000; Cook, Denholm, 2008). There are 
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several pests of oilseed rape in Europe, but the pollen beetle, Meligethes 
aeneus (Fab.) (Coleoptera: Nitidulidae) and the cabbage seed weevil, 
Ceutorhynchus obstrictus (Marsh.) (Coleoptera: Curculionidae) are the 
two most important pests of the flowering phase (Alford et al., 2003), also 
in Estonia (Veromann et al., 2006a), causing yield loss through damage 
to flower buds and pods, respectively. Due to the increased occurrence of 
pests in oilseed rape, the use of pesticides has become an almost inevitable 
part of cultivating these crops (Alford et al., 2003). However, it has been 
found that intensive growing technology of spring oilseed rape, based 
on pesticide application, enhances the new generation of pollen beetles 
(Veromann et al., 2008). In addition, the frequent use of pyrethroids has 
resulted in resistance of pollen beetle to this pesticide in many European 
countries (Richardson, 2008; Zimmer, Nauen, 2011). 

2.1.1. Pollination requirements of oilseed rape (I)

Pollination is a mutually beneficial relationship which in most cases 
takes place between a plant and insect: the pollen from the anthers 
will be transported to the stigmas of the same or different flowers and 
as a reward the insect gets food – mostly nectar and pollen. Oilseed 
rape is commonly considered to be a self-pollinating species but 
actually has entomophilous flowers capable of both self- and cross-
pollination – nevertheless, insect pollinators are not essential for the 
final seed yield (Williams et al., 1987). However, flower morphology 
and behaviour of the oilseed rape flower encourage cross-pollination 
at first, but self-pollination later (Delaplane, Mayer, 2000; Rosa et 
al., 2010). Before the corolla fully expands, the four long stamens 
dehisce and release pollen outwards. Anthers on the two short stamens 
release pollen below the stigma which lengthens during flowering to 
reach the height of the anthers of the long stamens. When the flower 
is old, the long stamens bend towards the flower centre so that they 
become directed towards the stigma, and self-pollination can occur 
(Eisikowitch, 1981; Williams, 1985; Free, 1993; Bell, Cresswell, 
1998; Delaplane, Mayer, 2000; Rosa et al., 2010). In the case of cross-
pollination, more pollen can reach the stigmas, particularly pollen 
from the short stamens (Free, 1993). 

Bees are the economically most important and abundant pollinators of 
spring oilseed rape (Klein et al., 2007; Ali et al., 2011a) – all bee species 
successfully transfer rape pollen from anthers to stigmas. There are several 
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advantages of adequate pollination of spring oilseed rape:  reduction of 
the flowering period and of raceme production, acceleration of ripening 
and increases of seed weight (Williams et al., 1987; Rosa et al., 2011; 
Bommarco et al., 2012) and seed oil content (Free, 1993; Bommarco 
et al., 2012). Cross-pollination with pollen from short stamens is 
significantly superior to that from long stamens, and gives a 14% greater 
weight of seed per pod (Free, 1993; Steffan-Dewenter, 2003). Cross-
pollination also raises seed yield (Steffan-Dewenter, 2003; Morandin, 
Winston, 2005; Sabbahi et al., 2005; Chifflet et al., 2011). Altogether, 
the seed yield of oilseed rape could be increased by up to 25 – 46 % 
(Delaplane, Mayer 2000; Sabbahi et al., 2005). Thus, a high number of 
pollinators in oilseed rape fields should be favoured. 

2.1.2. The composition of pollinators on oilseed rape

The composition of flower visitors to oilseed rape varies according to 
different authors. Langridge and Goodman (1982) found that, of the 
total insects counted on oilseed rape flowers, 71.4% were honey bees, 
14.3% hoverflies, 12.1% small Diptera and the remaining 2.2% were 
made up of blowflies, native bees, Lepidoptera, one Hemiptera and one 
Coleoptera. Rosa et al. (2011) found that Hymenoptera representatives 
were the most prevalent (92.3%, among which 99.8% were honey bees) 
but some Diptera, Lepidoptera and Coleoptera also visited oilseed rape 
flowers. According to Delaplane and Mayer (2000), 64% of bee visitors 
on oilseed crop were honey bees and 36% different wild bees. Karise 
et al. (2004) found that 54% of oilseed rape flower visitors were bees 
(Apoidea), 45% dipterans (Diptera) and 1% butterflies (Lepidoptera) 
and bugs (Hemiptera). 

On the basis of different studies it can be said that honey bees are the main 
pollinators of oilseed rape and can account for up to 95% of all insect 
pollinators of this crop (Mesquida et al., 1988; Adegas, Couto, 1992; 
Blight et al., 1997; Koltowski, 2001; Rosa et al., 2011). According to 
Koltowski (2001), solitary bees can account for about 4%, or sometimes 
9%, of all insect pollinators on oilseed rape flowers. Bumble bees being 
important pollinators of many agricultural crops, however, make up only 
2% of all insect pollinators in rape crops (Cresswell, 1999; Koltowski, 
2001). So, although many species of bumble bee and solitary bee may 
visit a crop, their proportion is often quite low (Free, 1993; Varis, 1995; 
Karise et al., 2004).
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2.2. Bees (Apoidea) 

2.2.1. Foraging behaviour of bees

Bees are the most important pollinators as they need to feed not only 
themselves but also their colony; they have to gather a large amount of 
food fast – that means they need to visit a high number of flowers (Corbet 
et al., 1991). Most bees collect only two food items from flowers: nectar, 
which provides bees with energy, and pollen, which provides them with 
protein necessary for the growth of larvae (Rasheed, Harder, 1997). 
Bumble bees consume pollen throughout their entire development 
whereas honey bee larvae are fed, during their early development, by 
glandular secretions of adult workers, which eat pollen both to feed the 
larvae (Dobson, Peng, 1997; Hrassnigg, Crailsheim, 1998; Babendreier 
et al., 2004) and to satisfy their own protein needs (Smeets, Duchateau, 
2003). Nectar as a liquid substance serves as an attraction for bees and 
reward for their pollination service (Baker, Baker, 1973) and is a proper 
medium for supporting the digestion of pollen grains (Roulston, Cane, 
2000). In addition, nectar is important as an easily assimilable energy 
source (Faegri, van der Pijl, 1979). 

According to the optimal foraging theory, bees try to maximize the 
benefit and minimize the costs (Pettersson, Sjödin, 2000). Hence, the 
food collected from the flower – the reward – has to exceed the energy 
spent on receiving it. Bees have some specialities which help to maximize 
the benefit – flower constancy, a well developed memory and good 
learning ability. Both, memory and the learning capacity of insects are 
usually under-estimated. Laboratory studies as well as those in nature 
have demonstrated that honey bees learning is fast and comprises various 
levels of cognitive processing, such as generalization, context-dependency, 
concept formation, configuration and categorization (Menzel, Giurfa, 
2001; Gegear, Thomson, 2004; Gross et al., 2009; Sandoz, 2011). Well 
developed learning and memory helps the honey bee forager to find her 
way back to the hive (Dyer et al., 2008; Cruse, Wehner, 2011; Pahl et al., 
2011). Raine and Chittka (2008) demonstrated that the learning speed 
of bumble bees is correlated with foraging success: colonies that learn 
faster achieve greater fitness.

Foraging bees often show a kind of flower constancy favouring some 
and bypassing others that might offer a reward (Free, 1970; Gegear, 



16

Thomson, 2004) although the level of flower constancy may vary even 
among species of the same genera (Free, 1970). Bees test various flower 
types until they find one that offers a reward (Pohtio, Teräs, 1995) 
developing in that way a flower colour preference which is claimed not 
to be an innate characteristic (Waser, Price, 1983; Gumbert, Kunze, 
2001). Flower constancy, which probably can occur due to their well 
developed memory and learning, make bees the best pollinators from the 
plant’s point of view as it ensures that less pollen is wasted. 

The most important signals for the bees’ recognition of a food source while 
foraging are thought to be olfactory signals (Menzel et al., 1993; Leonard 
et al., 2011). The chemical signals may function as indirect cues: young 
bees remember the smell of the food they ate inside the hive and search 
for it during their first foraging trip; or directly as long or short distance 
attractants. Bees are able to differentiate a large number of olfactory 
signals and learn to predict which flowers offer rewards and which do 
not (Laska et al., 1999; Gumbert, Kunze, 2001) but they still restrict the 
number of scent components they use in their searching (Pham-Delègue 
et al., 1997; Laloi et al., 2000). It has been found that olfactory learning 
performance depends on the circadian rhythmicity being the highest in 
the morning (Lehmann et al., 2011). During a honey bee’s first foraging 
trip in the morning, it has to learn the most profitable food source for 
that day which it can then later harvest. Odours are also used by homing 
foragers to advertise profitable food sources (Farina et al., 2007). It is 
considered possible that bees may avoid plants treated with pesticides due 
to the repellent odours of the compounds present (Shires et al., 1984).

2.2.2. Oilseed rape as food resource for bees (I)

Large fields of oilseed rape in flower are important food resources for 
bees enhancing both nectar and pollen resources abundantly (Westphal 
et al., 2009). Flowering at a time when there are few other cultivated 
food plants available for honey bees, a rape crop may be visited from a 
distance of 3.5–4 km from bee hives and fruit trees may be neglected in 
favour of rape (Free, 1993). Furthermore, many beekeepers move their 
colonies onto or near to oilseed rape crops to benefit from the nectar and 
pollen it produces (Williams, 1980; Williams, Cook, 1982; Williams 
et al., 1993; Carreck et al., 1997). There has even been a concern that 
oilseed rape crops lead to reduced wild plant pollination (Diekötter et 
al., 2010; Holzschuh et al., 2011).
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Oilseed rape is an especially attractive food plant for bees because of the 
high nectar production of its flowers and its high sugar content. The 
nectar of oilseed rape flowers contains carbohydrates, such as sucrose, 
glucose, fructose and ribose (Pierre et al., 1999). Nectar volume can vary 
greatly from 0.2 µl per flower up to 6 µl per flower (Free, 1993; Davis 
et al., 1994; Pierre et al., 1999) and may be affected by genotype (Pierre 
et al., 1999), cultivar (Davis et al., 1994), flower age (Williams, 1980) 
and local environmental conditions (Williams, 1985; Rathcke, 1992). 
Nectar production has been reported to be greater in the morning and 
early afternoon than midday (Williams, 1985) and to decrease towards 
the end of the day, while the sugar concentration increases toward the 
end of the day (Meyerhoff, 1958; Radchenko, 1964). The flowers are 
able to replenish the level of nectar completely within 30 min of being 
emptied which makes them very attractive to bees. Nectar production 
even increases if bee density is high, and flowers are visited more than 
three times per day (Williams, 1985). 

Oilseed rape flowers produce a lot of pollen which contains proteins, 
lipids, carbohydrates, starch, sterols, vitamins and minerals (Day et al., 
1990; Herbert, 1992). All are important nutrients for brood rearing and 
development of young worker bees, particularly the protein content 
(Winston, 1987; Hrassnigg, Crailsheim, 1998). The pollen of oilseed 
rape contains more of the three most important amino acids (leucine, 
valine and isoleucine) for bee survival and development than other field 
crops flowering at the same time (Cook et al., 2003).   
 
The growing of mass-flowering oilseed rape crops greatly enhances 
nectar and pollen resource availability in agricultural areas and, when 
appropriately managed, has potential to promote the abundance, as well 
as the fitness, of bee populations (Westphal et al., 2003, 2009).

2.3. Pollinator decline in agricultural landscapes (I)

Bees are the most important pollinators of almost all terrestrial ecosystems 
because they provide a vitally important ecosystem service as pollinators 
for a wide range of agricultural, horticultural and wild plants (Corbet et 
al., 1991; Williams 1994, 1996; Klein et al., 2007; Kasina et al., 2009; 
Pauw, Hawkins, 2011). At the same time, there is clear evidence of recent 
declines in both wild and domesticated bee-pollinators (Potts et al., 2010) 
which has been observed in different regions of the world – America 
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(Kremen et al., 2004; Currie et al., 2010), Asia (Klein et al., 2003) and 
Europe (Williams et al., 1991; Williams, 1996; Giray et al., 2010). The 
decrease in the number of bees is an alarming tendency (Thompson, 
2001; Biesmeijer et al., 2006; Gabriel, Tscharntke, 2007). In 2005, the 
economic value of insect pollination in Europe was estimated at 22 
billion and in the world at 153 billion € per annum (Gallai et al., 2009). 

Several factors have been suggested as possible contributors to this decline 
(Potts et al., 2010), e.g. changes in climate and the effects of predators 
and parasites (Williams, 1986). However, the main reason is thought 
to be the intensification of agriculture, including changes in land-use 
causing decrease in food resources and habitats (Osborne et al., 1991; 
Williams et al., 1993; Mänd et al., 2002; Sepp et al., 2004; Goulson 
et al., 2005; Öckinger, Smith, 2007; Potts et al., 2010), and increasing 
application of pesticides (Osborne et al., 1999; Miranda et al., 2003; 
Maini et al., 2010; Stokstad, 2012). The supply of nectar and pollen is 
now often insufficient in European agricultural landscapes to support 
healthy bee populations (Goulson et al., 2005; Öckinger, Smith, 2007). 
Thus, necessary steps need to be taken to halt the loss of pollinators 
(Moritz et al., 2010; Pettis, Delaplane, 2010; Winfree, 2010). 

2.3.1. The sub-lethal effects of pesticides on bees (I)

Bees foraging on the crop are vulnerable to the toxic effects of pesticides 
applied to the crop and this may contribute to the decline of wild bees as 
well as honey bees (Corbet et al., 1991; Miranda et al., 2003; Laurino et 
al., 2011; Krupke et al., 2012). 

Bees are especially vulnerable to the toxic effects of insecticides applied 
during flowering when they are foraging on the crop. They may come 
into contact with poisoning compounds through contaminated flower 
resources, direct contact with poison or exposure to residues (Gels et al., 
2002; Schneider et al., 2012). Further, insecticides are often applied in 
tank-mixes with fungicides; this may change the effects of both products 
on non-target organisms; the toxicity of the insecticide may be greater 
when applied in a tank-mix (Thompson, Wilkins, 2003; Muranjan et 
al., 2006). In addition, Free and Ferguson (1980) found that, even when 
90% or more of the rape flowers had shed their petals, neither the weight 
or percentage of pollen collected, nor the honeybee population on the 
crop decreased greatly. So, it must never be assumed that, as the end 
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of flowering approaches, pesticides may be applied without danger to 
beneficial insects.

Pesticide effects on bees may be lethal or sub-lethal; most studies have 
assessed lethal effects, while only a few have addressed sub-lethal effects. 
Chemical companies are obliged to provide mortality data for their 
products for all larger organism groups but again less attention has been 
paid to the sub-lethal effects. In recent years, this has been an increasing 
area of study (Desneux et al., 2007; Aliouane et al., 2009; Cresswell, 2011; 
Schneider et al., 2012) and a subject of discussion between scientists 
and regulatory authorities (Thompson, Maus, 2007). In addition, many 
insecticides have been described as safe to bees because they do not kill 
them, although sub-lethal doses may affect pollinators by decreasing 
their foraging and navigation abilities (Gels et al., 2002).

Sub-lethal doses affect also the survival of the brood and colony and 
may thus, under certain circumstances, cause even more harm than 
lethal doses. Application of insecticides is often not permitted during 
the flowering period of a given crop. Even when insecticides are not 
sprayed on flowers but on flower buds, the residues of the compounds 
still contaminate nectar and pollen in sub-lethal doses via both active 
and passive transport (Thompson, 2001). Contamination may occur 
after application of the compounds to other parts of plants (Ferguson, 
1987), to the soil (Jaycox, 1964; Krupke et al., 2012) or on seeds (Sur, 
Stork, 2003). Contaminated nectar and pollen poses a potential danger 
not only to forager bees but also to bees in the hive and to brood. The 
toxicity of pesticides to brood has been investigated far less than their 
toxicity for adults (Alix, Vergnet, 2007).

Sub-lethal doses may affect bees’ division of labour (Tasei, 2001; reviewed 
by Thompson, 2003), development and longevity (Wu et al., 2011), 
foraging behaviour (Thompson, 2003; Koskor et al., 2009; Decourtye et 
al., 2011; Schneider et al., 2012), discrimination of odours (Decourtye et 
al., 2005; Aliouane et al., 2009), communication and orientation abilities 
(Cox, Wilson, 1984; Vandame et al., 1995; Bortolotti et al., 2003; Yang 
et al., 2008), learning capacity (Decourtye et al., 1999, 2003; Guez et al., 
2001; Ramirez-Romero et al., 2005; Aliouane et al., 2009), reproduction 
(Stoner et al., 1985; Johansen, Mayer, 1990; reviewed by Thompson, 
2003), thermoregulation (Jagers op Akkerhuis et al., 1999a; Belzunces 
et al., 2001) and susceptibility to pathogens (Alaux et al., 2010; Vidau 
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et al., 2011; Pettis et al., 2012). Some pesticides do not affect adult bees, 
but affect brood so that young adults emerging from cocoons may have 
malformed wings or other deformations (Tasei, 2001).

Pyrethroids, which are the insecticides most often sprayed on flowering 
oilseed crops, contain a repellent substance which should keep honey 
bees away from treated fields for some time after application (Rieth, 
Levin, 1988; Thompson, 2001) but this is still in question in the field 
situation. In conventional farming, application of many insecticides 
(e.g., pyrethroids), considered to be safe for honey bees, is permitted to 
the oilseed rape crop whilst it is in flower. Despite this, 57 out of 117 
honey bee poisoning incidents in the UK during 1994-2003 resulted 
from spray applications to flowering crops; 17 of these incidents were 
through approved use of the products (Barnett et al., 2007). So, some 
insecticides may be regarded as safe because they repel bees, although in 
some instances, the attractiveness of a food resource may override the 
repellent effect (Thompson, 2003). The repellency of pyrethroids may 
also decrease when they are mixed with fungicides (Thompson, Wilkins, 
2003).

It is also problematic to distinguish repellency from a sub-lethal effect. 
Bees feel a strong irritation when they come into contact with pyrethroids 
and, trying to get rid of it, comb the chemical on to their mouthparts and 
antennae. On receiving a small dose of poison they return to the nest to 
heal themselves, thereby avoiding contact with a lethal dose (Thompson, 
2003). Thus, the repellent effect of pesticide to bees does not appear in 
repellency but in a small dose of sub-lethal disease-causing effect.     

In addition, the results of studies carried out with honey bees are often 
extrapolated to native pollinators, including bumble bees. However, 
bumble bees are more vulnerable than honey bees as their colonies are 
smaller and they do not have the trophallaxis that could diminish the 
amount of pesticide residues possibly reaching larval food. In addition, 
bumble bee queens are exposed to pesticides for a long period in late 
spring while collecting food and establishing their nests. Bumble bees’ 
foraging behaviour is also different from that of honey bees (Alford, 
1975; Thompson, Hunt, 1999). There is a need to protect foraging 
bumble bees from direct overspray during the early morning and late 
evening when pesticides, which are repellent but highly toxic, are applied 
(i.e. pyrethroids) as the restrictions for application are often imposed on 
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the base of the foraging timetable of honey bees although it is different 
from that of bumble bees (Thompson, 2001). 

Pesticide risk assessments for honey bees are based on hazard ratios 
which rely on application rates and toxicity data that are unlikely to 
be appropriate for bumble bees. Bumble bees are active at different 
times and on different crop species and are, therefore, likely to have 
different exposure profiles. Unlike honey bees, deaths of bumble bees 
due to pesticides are unlikely to be reported, since the bees are not kept 
domestically and will die in small numbers (Thompson, Hunt, 1999). 

Sub-lethal doses of insecticides can be more harmful to bees than lethal 
doses as they appear to have no effect; in reality it has lead to a serious 
pollination crisis which is currently sharply raised in England and USA 
(Stokstad, 2006). To utilise fully the native pollinator service the use of 
pesticides should be corrected accordingly. 

2.3.2. The sub-lethal effects of insecticides on respiration (I)

The effect of sub-lethal doses can sometimes be observed and proved 
only through physiological changes in insects. The physiological state 
of an insect is commonly estimated by its metabolic rate and respiratory 
patterns. In the case of bees, it is difficult to examine the effects of 
insecticides on respiration patterns because there is little data on their 
normal respiration patterns. However, this has been an area of increasing 
interest during the past decade.

Since water is a key element in every living organism, most insects have 
probably evolved mechanisms to prevent excessive water loss (Klowden, 
2002). Resting insects often exhibit discontinuous gas exchange (DGE) 
cycles, a function of which may be the reduction of respiratory water loss 
(Levy, Schneiderman, 1966; Lighton, 1994; White et al., 2007; Schimpf 
et al., 2009; Williams et al., 2010) through the large inner surface of the 
tracheal system.

According to Kestler (1971, 1985), in the state of DGE, the spiracles 
are closed most of the time. At low oxygen rates inside the trachea the 
spiracular valves flutter, allowing oxygen to enter the tracheal system. 
As larger amounts of carbon dioxide accumulate in the tracheae and 
haemolymph (Wobschall, Hetz, 2004), the spiracles open and allow the 
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gas to escape. So, DGE cycles consist of three phases: closed (C) phase 
during which spiracles are closed and there is no external gas exchange; 
flutter (F) phase where spiracles rapidly open and close, allowing bulk 
inflow of air, and open (O) phase where spiracles are open to allow 
unrestricted gas exchange (Chown et al., 2006). As compared with 
continuous respiration, loss of carbon dioxide along with evaporated 
water occurs only discontinuously during the brief open phases of the 
spiracles. Cyclic gas exchange (CGE) (described by Lighton, 1996; 
Marais, Chown, 2003; Gibbs, Johnson, 2004; Marais et al., 2005) has 
no closed phase, still, the opening of spiracles is alternated by a F period 
with a low level of CO2 release. In this, the cycle length is shorter and 
CO2 release rarely decreases to zero. 

There are different views about the origin of DGE, as reviewed by 
Chown (2002) and Chown et al. (2006). In addition to the water 
retention, there are also hypotheses that DGE serves as an adaptation for 
coping with hypercapnia and/or hypoxia in soil-living insects (Lighton, 
1998; Vogt, Appel, 2000; Lighton et al., 2004) and protection against 
the oxidative damage during the periods with low metabolic cost 
(Hetz, Bradley, 2005; Terblanche et al., 2008). Boardman et al. (2012) 
suggested a possible signalling role for reactive oxygen species rather than 
the previous idea of DGE protecting the organism against the oxidative 
damage. Probably the newest neural hypothesis claims that DGE results 
as a consequence of energy-saving once the brain relinquishes control of 
gas exchange to the segmental ganglia (Chown, 2011; Matthews, White, 
2011). So, although the phenomenon of discontinuous gas exchange has 
been extensively studied in insects, its adaptive significance is a subject 
of considerable debate.

The existence and the precise pattern of DGE depends on the species 
(Lighton, 1994, 1996; Slama, 1999; Chown et al., 2006; Chown, 2011), 
individual characteristics (Marais, Chown, 2003; Gibbs, Johnson, 2004; 
Karise et al., 2010; Woods, 2011), life stage of the individuals (Beekman, 
van Stratum, 1999; Mänd et al., 2005, 2006), metabolic rate (Moerbitz, 
Hertz, 2010) and environmental conditions like temperature (Lighton, 
Lovegrove, 1990; Lighton 1996; Vogt, Appel, 2000; Kovac et al., 2007; 
Karise et al., 2010), relative humidity (Duncan et al., 2002; Lighton, 
2007; Slama et al., 2007; Schimpf et al., 2009) and the amount of 
oxygen or carbon dioxide in the air (Lighton, 1998; Vogt, Appel, 2000; 
Lighton et al., 2004). It has been found that DGE cycles are longer in 
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species from xeric environments (White et al., 2007), while cyclic and 
continuous patterns are more prevalent in mesic habitats (Marais et al., 
2005).  

DGE patterns have been used to characterize the physiological state of 
an insect, as several stress factors, including chemical ones, can affect 
them (Kestler, 1991). Although knowledge of the sub-lethal effects of 
pesticides on insect physiology is poor, it is known that treatments of 
arthropods with pyrethroids cause neurotoxic effects in parts of the 
nervous system, including the central nervous system and sensory, motor 
or neurosecretory neurons (Corbett, 1974; Jagers op Akkerhuis et al., 
1995). Because the closing and opening of spiracular valves is controlled 
by the nervous system, the neurotoxic effects may also include interference 
by DGE cycles. In pupae of the cabbage butterfly Pieris brassicae, after 
treatment with original pyrethrum, the DGE cycles disappeared and 
metamorphosis was disrupted (Harak et al., 1999; Jõgar et al., 2008). 

Pyrethroids, as well as many other insecticides, can induce increased water 
loss rate (WLR) in arthropods (Gerolt, 1976, 1983), due to production 
of diuretic hormones (Jagers op Akkerhuis et al., 1999b). This process 
could be reversible if the insect could replenish its water reserves. Since 
the pyrethroids often affect motion as well, causing a knockdown effect, 
death may come through desiccation (Jagers op Akkerhuis et al., 1995; 
Jagers op Akkerhuis et al., 1999b; Thompson, 2003).
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3. AIMS AND HYPOTHESES OF THE STUDY

1)	 Oilseed rape is a crop with high nutrient demand and thus needs 
fertilization (Holmes, 1980; Barraclough, 1989; Grant, Bailey, 
1993; Orlovius, 2003). On the other hand, the crop provides 
highly rewarding food resources for bees (Westphal et al., 2003, 
2009) and, at the same time, benefits from cross-pollination, 
which improves both the quantity and quality of the seed 
produced (Free, 1993; Sabbahi et al., 2005; Chifflet et al., 2011; 
Bommarco et al., 2012). Therefore, the foraging activities of bees 
have significant economic consequences for seed production, 
and, because of this, it is extremely important that factors that 
lower their pollinating activity are minimised (Thompson, Maus, 
2007). Hence, it is profitable for growers to encourage a high 
number of pollinators in oilseed rape fields. 

The aim: To explain the effect of foliar fertilization with different 
microfertilizers on flower density, nectar productivity and the number 
of pollen grains produced per flower of spring oilseed rape, and, through 
these factors, on the number of flower visiting bees (Apoidea). (II)

The hypothesis: we assume that additional foliar fertilization with 
microfertilizers increases bees’ food resources (nectar and pollen 
production) and the number of flowers on spring oilseed rape and thus 
also the number of flower visiting bees (Apoidea). 

2)	 Due to the increased occurrence of pests in oilseed rape, the use 
of pesticides has become an almost inevitable part of cultivating 
these crops (Alford et al., 2003). Unfortunately, bees foraging 
on the crop are vulnerable to the toxic effects of insecticides, 
especially when applied during flowering when bees are foraging 
on the crop (Thompson, Maus, 2007). To avoid the toxic effects 
of pesticides on bees a repellent has been added to pesticides – e.g.  
pyrethroids, which are most often sprayed on flowering oilseed 
crops (Thompson, 2001).  However, there is a need to evaluate 
pesticide effects on foraging behaviour of bees to guarantee crop 
pollination, because results obtained in the laboratory may not 
match with those obtained in the field (Thompson, Maus, 2007).  
Repellent effect of pyrethroids to bees is still in question in the 
field situation. 
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The aim: To examine if honey bees (Apis mellifera L.) avoid the repellent 
insecticide Fastac 50 EC (a.i. alpha-cypermethrin) in their food plant 
choice. (III)

The hypothesis: owing to the repellency of insecticide, the number of 
honey bees (Apis mellifera L.) is lower on insecticide-treated oilseed rape 
than on untreated oilseed rape. 

3)	 Effects of insecticides on non-target organisms may be lethal or 
sub-lethal. At present, there is still little knowledge about the 
sub-lethal impacts of insecticides on the physiological state of 
bees. Therefore, special studies are needed to explain possible 
sub-lethal effects of insecticides on bees, since these effects may 
not be observable without special methods used in experiments 
of insect physiology. Although knowledge about the sub-lethal 
effects of insecticides on insect physiology is poor, it is known 
that treatment of arthropods with pyrethroids cause neurotoxic 
effects in parts of the nervous system, including the central 
nervous system and sensory, motor or neurosecretory neurons 
(Corbett, 1974; Jagers op Akkerhuis et al., 1995). Because 
the closing and opening of spiracular valves is controlled by 
the nervous system, the neurotoxic effects may also include 
interference of gas exchange cycles. 

The aim: To examine the effect of low concentrations of Fastac 50 EC 
(a.i. alpha-cypermethrin) on the metabolic rate, respiratory pattern and 
total water loss rate of bumble bee (Bombus terrestris L.) foragers. (IV) 

The hypothesis: insecticides cause lethal water loss through respiratory 
failure in the bumble bee (Bombus terrestris L.) as a non-target organism.
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4. MATERIAL AND METHODS

4.1. Field experiments

4.1.1. Study sites and subjects

Small-scale field experiments were conducted at the experimental station 
of the Estonian University of Life Sciences (58º21’ latitude 26º 39’ 
longitude) (II, III). The field experiments were conducted on the seed 
production fields of Pilsu farm (III) in Tartu County, Estonia (58º14’ 
latitude 26º 16’ longitude), in 2003-2005. 

In 2004 and 2005, small-scale field experiments were conducted on the 
experimental station of spring oilseed rape Brassica napus L. var. oleifera 
subvar. annua to test the effect of microfertilizers on the number of 
flowers and food resources for bees: honey bees, bumble bees and solitary 
bees (Apoidea) (II). 

To test the effect of Fastac 50 EC (a.i. alpha-cypermethrin 50 g l-1) on 
honey bees (Apis mellifera L.) field experiment and small-scale field 
experiments were conducted on spring oilseed rape B. napus L. var. 
oleifera subvar. annua fields in 2003, 2004 and 2005 (III).  

In all experiments, the spring oilseed rape cultivar ´Maskot`, bred and 
produced by the Swedish company Weibull, was used. Technical data of 
the variety is as follows: raw fat content 40–43%, 1000 seed weight 3.5–
4.5 g, glucosinolates 20 µmol g-1, lodging resistance 6–8 points, height 
of plant 98–108 cm, growth period 90–108 days (Velička, 2003). 

4.1.2. Experimental design

4.1.2.1. Fertilization treatments

The impact of microfertilizers on the number of flower visiting bees 
through the number of flowers and bee food resources on spring oilseed 
rape was studied in small-scale field experiments in two years, 2004 and 
2005 (II). The soil in the experimental field was slightly acidic (pHKCl 
6.2) Stagnic luvisol (FAO classification LV st, 2006) with a loamy texture: 
humus content 2.4%, P – 77.66 mg kg-1, K – 169.8 mg kg-1, Ca – 5648 
mg kg-1, S – 13.54 mg kg-1. In 2004, spring oilseed rape seeds were sown 
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on 5 May, and, in 2005, on 9 May at 200 germinating seeds per m2, a 
sowing depth of 2–3(4) cm, and after a pre-crop of potato. 

In both years, the experiment consisted of 32 plots (10 m2 each), eight 
treatments with four replicates of each. Control plots received no 
fertilizer, the other plots received a complex fertilizer alone (Amsterdam 
Fertilizers B.V., The Netherlands), or the complex fertilizer plus one of 
six different microfertilizers (Phosyn P.L.C., York, United Kingdom). 
The treatments were: 

1.	 0 (no mineral fertilizers); 
2.	 OptiCrop (Opti) (only the mineral complex fertilizer OptiCrop 

NPK 21-08-12 + S + Mg + B + Ca, the amount of nitrogen 
applied 120 kg ha-1);

3.	 Opti + HydroPlusTM Boron (Opti + B) (consumption rate of B 
2 l ha-1); 

4.	 Opti + HydroPlusTM Micro Copper (Opti + Cu) (consumption 
rate of Cu 0.5 l ha-1).

5.	 Opti + Hydromag 300 (Opti + Mg) (consumption rate of Mg 
7 l ha-1); 

6.	 Opti + HydroPlusTM Micro Manganese (Opti + Mn) 
(consumption rate of Mn 1 l ha-1); 

7.	 Opti + HydroPlusTM Micro Molybdenum (Opti + Mo) 
(consumption rate of Mo 0.25 l ha-1); 

8.	 Opti + Sulphur F3000 (Opti + S) (consumption rate of S 7 l ha-1). 

Prior to sowing, the whole field was sprayed with the soil-applied 
herbicide EK Trifluralin (0.15 l ha-1). The mineral complex fertilizer 
OptiCrop was used (except for treatment 0). Liquid microfertilizers 
(spray volume 400 l ha-1) were sprayed on to the oilseed rape leaves when 
the plants had reached the growth stage (GS) 27-31 according to the 
BBCH scale (Lancashire et al., 1991). The flowering period of the crop 
lasted from 5 to 22 July in 2004, and from 28 June to 18 July in 2005.

4.1.2.2. Insecticide treatments

To study the repellent effect of the insecticide Fastac 50 EC on the 
density of the honey bee, two experiments were carried out on spring 
oilseed rape crops in 2003-2005 (III). A commercial formulation of 
alpha-cypermethrin (Fastac 50 EC, a.i. 50 g l-1; BASF, Limburgerhof, 
Germany) was used at a rate of 0.15 l ha-1.  
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Experiment 1: effect of Fastac 50 EC treatment intensity on the 
number of honey bees in small-scale field experiments

The first experiment with the insecticide was performed on small patches 
of spring oilseed rape treated once or twice with the insecticide to 
determine whether honey bees discriminate between differently treated 
plants. The design of the experiment was a randomized block with twelve 
1 x 10 m2 plots with a distance of 1 m between each. The observation 
area was surrounded with a 5 ha field of summer wheat. Three treatments 
were used: unsprayed, once sprayed and sprayed twice, each replicated 4 
times. In the sprayed-once treatment, the insecticide was applied when 
rape plants were at the growth stage 2–4 true leaves (GS 10, according to 
Lancashire et al., 1991). For the twice-sprayed treatment, the first spray 
was applied at the same time as the once-sprayed plots with an additional 
application at the stage of first flowers (GS 61–62). The lengths of 
flowering periods differed according to weather conditions and lasted 
from 2 weeks (2004) to 3.5 weeks (2005). 

Experiment 2: honey bee abundance before and after Fastac 50 EC 
treatment in field experiment

The second experiment with the insecticide was carried out on a seed 
production field of spring oilseed rape to test the abundance of honey 
bees before and after insecticide application. The experiment was 
conducted in July 2003. A spring oilseed rape field (4 ha) was divided 
into two parts (approximately 2 ha): one part was treated with Fastac 50 
EC at the mid-flowering stage (GS 65–66, according to Lancashire et al., 
1991) and the other was left untreated. Within both fields, seven 1 × 10 
m2 observation plots were marked 8 days before the treatment. Six honey 
bee colonies were brought close to the crops (200 m away) 2 days before 
flowering started (late bud stage, GS 60). To prevent direct poisoning of 
honey bees, the hives were closed before the insecticide application and 
kept closed for 24 h.

4.1.3. Counting of bees and flowers

In the small-scale field experiments, the flower visiting bees (honey 
bees II, III, bumble bees II, solitary bees II) and flowers (II, III) were 
counted twice a week during the flowering period of the crop, in case 
of the insecticide treatment study (III) starting at 24 h after the second 
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spray application. In the field experiment at Pilsu, flower and bee counts 
were made 8 days before and 1 day and 8 days after insecticide treatment 
(III). 

During bee counts, the observer walked slowly along the plot and 
recorded all bees foraging on the oilseed rape on each 10 m2 plot. 
Flowers were counted simultaneously with flower visiting bees on an 
area of 1 m2 within each plot. The observations were made on sunny 
days when there was no rain or fog between 11:00 and 16:00 (around 
midday) when temperature was above 16ºC and wind speed did not 
exceed 6 m s-1. (II, III)

4.1.4. Measurement of nectar and pollen production

In order to evaluate the impact of microfertilizers on food resources 
of bees on spring oilseed rape, pollen and nectar production were 
quantified (III). 

Nectar production was measured from five flowers in each plot three 
times during the flowering period of the crop in 2004. The measurement 
was carried out in late morning at full flowering of the plants. Each flower 
was previously covered with a voile bag for 24 h to exclude floral visitors 
and to prevent nectar consumption the day before nectar measurement. 
Nectar production was measured in the field by inserting a 1 μl capillary 
into the flower corolla tube. It should be noted that nectar productivity 
can only be measured when there is no precipitation during 24 h. As, in 
2005, there was little rain on almost all days of the flowering period of 
spring oilseed rape, nectar production was analysed only for 2004. 

In 2004 and 2005, after anthesis, pollen production was quantified for 5 
flowers in each plot at the same time as flower visiting bees and flowers 
were counted. The flowers were collected randomly from the plant main 
raceme and stored separately. These racemes were previously isolated to 
avoid consumption of the pollen by pollen beetles (Meligethes sp.). The 
flowers with pollen were later acetolysed (Faegri, Iverson, 1989) to digest 
both the floral tissue and pollen content, leaving pollen exines intact. 
The separated pollen was dispersed in distilled water (1 ml). The pollen 
grains were counted with a light microscope using a Fuchs-Rosenthal 
chamber (3.2 mm3). These data were used to calculate the number of 
pollen grains per flower. 
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4.2. Laboratory experiments

4.2.1. Subjects

Colonies (Natupol hives) of the bumble bee Bombus terrestris L. were 
purchased from Koppert Biological Systems B.V. (Berkel en Rodenrijs, 
The Netherlands) to study the effect of low concentrations of Fastac 50 
EC (a.i. alpha-cypermethrin 50 g l-1; BASF SE, D-67056 Ludwigshafen, 
Germany) on the metabolic rate, respiratory pattern and total water loss 
rate of bumble bee B. terrestris foragers (IV). 

4.2.2. Laboratory equipment and measurements

Bumble bees
The hives were kept at room temperature and the bees fed with dried 
honey bee pollen and a sugar solution (30%). The bees used in the 
experiment were caught as they emerged naturally from the hive entrance 
tunnel; this ensured that all of them were foragers.

Respirometry
An infrared gas analyser (IRGA, Infralyt-4, VEB, Junkalor, Dessau), 
adapted for entomological research, was used in the first experiment, 
to record the CO2 signals and metabolic rates (VCO2 ml h-1) at 8ºC. 
The IRGA was calibrated at different flow rates using calibration gases 
(Trägergase, VEB, Junkalor, Dessau) with gas injection (Kuusik et al., 
2002; Martin et al., 2004; Mänd et al., 2005, 2006). The rate of carbon 
dioxide release was measured (VCO2 ml h-1) at an air flow rate of 120 
ml min-1, a pressure compensated URAS 26 (ABB Analytical, Frankfurt, 
Germany), covering a measuring range of 0 to 500 ppm. The data from 
the analyser were sampled at a rate of 10 Hz to PC via the analog output. 
The CO2 and H2O were eliminated from the flow-through system air by 
DRIERITE and a molecular sieve.

The LI-7000 differential CO2/H2O Analyser (LiCor, Lincoln, Nebraska, 
USA), designed for laboratory and field research applications, was used in 
the second experiment to record water loss (VH2O μl h-1) parallel to the 
bursts of CO2 releases in bumble bee foragers at 18°C. Air flow in LI-7000 
was regulated at 166 ml min-1 (10 l h-1). The CO2 and H2O were eliminated 
from the air used in the flow-through system by NaOH and Mg(ClO42). 
The IRGA was calibrated using NIST-traceable standard gases (for CO2). 
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Infrared-actography
The LI-7000 was combined with an infrared (IR) actograph to record 
abdominal movements. The actograph has also been used as an insect IR 
cardiograph or optocardiograph (Hetz, 1994; Hetz et al., 1999; Mänd et 
al., 2006; Karise et al., 2010). Two IR-emitting diodes (TSA6203) were 
placed on one side (ventral side of the insect abdomen) and two sensor 
diodes (BP104) were placed on the opposite side of the insect chamber. 
Abdominal movements caused changes in the light transmitters, which 
were converted into voltages and recorded as spikes. 

Treatments
Fastac 50 EC was used to measure its effect on bumble bee respiratory 
patterns and water loss. We diluted the Fastac 50 EC to 0.04% (20 parts 
per million (ppm) of alpha-cypermethrin), which corresponds to the 
registered field rate in Estonia of 20 g a.i. ha-1. For our experiments, the 
field dosage of Fastac 50 EC was diluted with distilled water to 0.004% (2 
ppm of alpha-cypermethrin) and 0.002% (1 ppm of alpha-cypermethrin) 
which are accordingly 10 and 20 times lower concentrations than 
recommended for treating flowering rape fields against pests. The bumble 
bees were dipped into the Fastac 50 EC solution or distilled water as 
control for 10 seconds (Saba, 1971). Following dipping, each bee was 
air-dried on filter paper. This dipping method is widely used in various 
insect toxicology experiments with differing solvents or submergence 
times (5 sec to 1 min) by both insect larvae (Isayama et al., 2005; Cetin 
et al., 2006; Erler et al., 2010) and adults (Sibul et al., 2004; Azimi et al., 
2009). In the case of bumble bees, the dipping method has been used as 
an alternative method in contact tests (van der Steen, 2001).

The measurements
The measurements lasted for six hours per individual bumble bee. All 
individuals were measured in the flow-through respirometer for three 
hours after which the insect chamber was opened and the bumble bee 
taken out for treatment. The treatment, according to the prescribed 
scheme (different concentrations of Fastac 50 EC or distilled water), was 
carried out immediately and the bee then returned to the insect chamber 
for the next three hours. 

In the first experiment, the metabolic rate and the frequency of bursts 
of CO2 releases of B. terrestris foragers were measured at 8°C. Bumble 
bees are very active insects and tend to maintain high body temperature 



32

by shivering and contracting their flight muscles. The temperature was 
chosen to prevent flight muscle activity in bees (Goller, Esch, 1990; 
Kuusik et al., 2002) and eventually the regular DGE appeared in most 
of individuals. 

In the second experiment, muscle activity, respiration rate and WLR 
were measured at 18°C. Bumble bees often experience this temperature 
when foraging. For bumble bees it is important to keep their thoracic 
temperature high for several reasons: to minimise pre-flight warm-up 
time when exploiting different inflorescences and to minimise escape 
time when avoiding predators (Nieh et al., 2006). That is why many 
bumble bee individuals shorten the length of the DGE cycles or do 
not show DGE at all at 18°C. Therefore, we did not count the clear 
cycles of discontinuous gas exchange at this temperature; instead, we 
examined the change in the respiratory and abdominal activity patterns. 
The higher metabolic rate also increases the WLR of the insect; therefore 
the differences in WLR should be more easily detectable.

The dose of alpha-cypermethrin bumble bees received (measured from 
ground-up bumble bee bodies) was 0.995 ± 0.227 μg g-1 (0.004%) and 
0.87 ± 0.18 μg g-1 (0.002%) (analysed by Agricultural Research Centre, 
Laboratory for Residues and Contaminants, Teaduse 4/6, Saku, 75501 
Harjumaa, Estonia). The method used in the chemical analysis was EN 
12393-1,2,3: 1998 GC-ECD/NPD, GC-MS, LC-MS/MS; Norwegian 
Crop Research Institute Pesticide Lab, M04.

The longevity of bumble bees
Bumble bees treated with Fastac 50 EC solutions of both concentrations 
or distilled water, as described above, were kept at room temperature in 
the dark. Each bee was placed in a separate chamber and provided with 
30% sugar solution as food. The bumble bees were checked daily until 
death. They were considered dead when they did not move antennae or 
legs and did not respond to tactile stimulation. Then death was confirmed 
using LI-7000 (Jõgar et al., 2008).

4.3. Data acquisition and statistics

Statistical analyses were performed using the software package 
STATISTICA (StatSoft, Inc., Tulsa, Oklahoma). To determine the 
correlations between two factors Pearson (II) and Spearman (III) 
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correlations were used. To compare the mean values between the groups 
t-test (III), paired t-test (IV), Kruskal-Wallis test (IV) and ANOVA 
(II, III) were used. Differences between means were inspected using 
Fisher’s protected significant difference post hoc analysis (II). Data were 
normalised where necessary (II). 

Computerised data acquisition and analysis were performed using the 
DAS 1401 A/D (analog-digital) hardware and the software TestPoint 
(Keitley, Metrabyte, USA) with a sampling rate of 10 Hz (IV). The LI-
7000 analyser was connected to a computer to record CO2 production 
in ppm using LiCor software. Mean metabolic rates were automatically 
calculated by a statistical program by averaging data over 3 h periods after 
excess CO2 and H2O, which had entered the system during handling, 
had left the system. 
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5. RESULTS

5.1. The impact of foliar fertilization on the number of flowers, 
food resources and on the number of bees (Apoidea) on spring 

oilseed rape (II)

5.1.1. Flower density

In both years (2004 and 2005), the abundance of flowers was significantly 
higher on fertilized than on unfertilized plots (F7,184 = 2.83, p = 0.01 
in 2004; F7,216 = 2.85, p = 0.01 in 2005). No significant differences 
between differently fertilized plots, including plots fertilized only with 
the complex fertilizer OptiCrop, were found (II Figure 1). 

5.1.2. Food resources for bees

Except for fertilization with manganese or only with the complex fertilizer 
OptiCrop, the production of nectar in 2004 was significantly higher 
on fertilized than on unfertilized plots (F7,312 = 2.48, p = 0.02). Plots 
fertilized with OptiCrop plus manganese had significantly lower nectar 
production than plots fertilized with OptiCrop plus one of the other 
five microfertilizers (II Figure 2). Even plots fertilized with OptiCrop 
alone resulted in more flowers than plots fertilized with OptiCrop plus 
manganese.

The production of pollen was in both years, especially in 2005, higher on 
fertilized than on unfertilized plots (II Figure 3) but the differences were 
not statistically significant (F7,248 = 1.15, p = 0.33 in 2004; F7,344 = 2.02, 
p = 0.05 in 2005). However, when summarizing over these two years, 
the effect of treatment became significant (II Table 1). In addition, there 
was no statistically significant interaction between year and treatment 
on the number of pollen grains produced per flower which means that 
the impact of different treatments followed the same trend in both years, 
being higher on fertilized than on unfertilized plots.

5.1.3. The number of flower visiting bees

In both years, the number of flower visiting bees was higher on fertilized 
than on unfertilized plots (II Figure 4) but the difference was statistically 
significant only in 2004 (F7,184 = 2.62, p = 0.01 in 2004; F7,216 = 1.24, 
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p = 0.28 in 2005). When summarizing over two years, the effect of 
treatment was significant (II Table 2). Moreover, there was no statistically 
significant interaction between the year and treatment on the number of 
flower visiting bees which means that the impact of different treatments 
followed the same trend in both years being higher on fertilized than on 
unfertilized plots. 

5.1.4. Correlations between flower visiting bees and the number  
of flowers and food resources of spring oilseed rape

A significant positive correlation between the number of flower visiting 
bees and the number of flowers was found in both years (r = 0.59, p < 
0.01 in 2004; r = 0.69, p < 0.01 in 2005). The number of flower visiting 
bees correlated also moderately with nectar production (r = 0.41, p < 
0.01) and, in 2005, weakly with pollen production (r = 0.21, p < 0.01). 

5.2. The impact of Fastac 50 EC on bees

5.2.1. The impact of Fastac 50 EC treatment intensity on the  
number of honey bees in small-scale field experiments (III)

The total number of bees differed significantly between experimental years 
(F2,177 = 3.7, p = 0.03). Nevertheless, there was no significant difference 
in the number of honey bees per 1000 flowers between treatments either 
during the whole observation period (F2,57 = 0.3, p = 0.8 in 2003; F2,33 = 

Table 1. The Spearman Rank Order Correlations between the number of honey bees 
and the number of flowers on the experimental plots (10 m2). In bold letters statisti-
cally significant correlations at p ≤ 0.05 are indicated.

Year Trial N Spearman R p
2003 Untreated 20 0.44 0.06

Once-treated 20 0.33 0.16
Twice-treated 20 0.68 <0.01

2004 Untreated 12 0.26 0.39
Once-treated 12 0.14 0.66
Twice-treated 12 0.68 0.02

2005 Untreated 28 0.10 0.63
Once-treated 28 0.11 0.59

  Twice-treated 28 0.74 <0.01
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0.7, p = 0.5 in 2004; F2,81 = 0.04, p = 0.9 in 2005) (III Figure 1) or 24 
h after spraying of flowers (GS 61-62) (F2,9 = 0.5, p = 0.6 in 2003; F2,9 
= 1.6, p = 0.3 in 2004; F2,9 = 0.2, p = 0.8 in 2005) in any of the years. 
However, flower densities differed significantly between the treatments 
in all years (F2,57 = 5.2, p < 0.01 in 2003; F2,33 = 8.4, p < 0.01 in 2004; 
F2,81 = 8.2, p < 0.01 in 2005). There were positive correlations between 
flower densities and the abundance of honey bees on the flower-rich 
patches (Table 1, III Figure 2).  

5.2.2. Honey bee abundance before and after Fastac 50 EC 
treatment in field conditions (III)

In field conditions, 24 h after spraying, the number of honey bees per 
1000 flowers on the Fastac 50 EC treated crop was significantly higher 
than on the untreated crop (t = 4.4, df = 12, p < 0.01). However, 8 days 
before and 8 days after the insecticide application the number of honey 
bees per 1000 flowers between the Fastac 50 EC treated and untreated 
crops did not differ significantly (accordingly t = 1.7, df = 12, p = 0.12 and 
t = 0.2, df = 12, p = 0.9) (III Figure 3). The insecticide application took 
place during the peak flowering period, when the differences in flower 
numbers appear most clearly, the food resource was significantly higher 
on the treated field than on the untreated field (24 h after treatment: t = 

Figure 1. The number of flowers per 1 m2 on three observation days on seed produc-
tion crops adjacent to each other. The dots indicate the mean value and the whiskers 
indicate the standard error. *** – p ≤ 0.05, n.s. – statistically not significant. 
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2.2, df = 12, p = 0.048) (Figure 1). These differences did not appear at 
the beginning and at the end of flowering (accordingly t = 1.5, df = 12, 
p = 0.2 and t = 0.04, df = 12, p = 0.9).

5.2.3. The impact of Fastac 50 EC on the DGE of bumble bees 
(Bombus terrestris) (IV)

5.2.3.1. The experiment at 8ºC

At low temperature the untreated resting bumble bee foragers exhibited 
rhythmic gas exchange patterns. 0.004% Fastac 50 EC solution changed the 
respiratory patterns of bumble bees. The numbers of bursts of CO2 releases 
and the mean metabolic rates decreased significantly (IV Table 1). Treating 
the bees with 0.002% solution also caused a decrease in the numbers 
of bursts of CO2 releases, although the difference was not statistically 
significant. The mean metabolic rate decreased significantly. Dipping the 
bumble bees into distilled water as a control affected neither the frequency 
of bursts of CO2 releases nor the mean metabolic rate (IV Table 1).

5.2.3.2. The experiment at 18ºC

The time for bumble bees to calm down and show CGE or DGE cycles 
were longer at 18°C – activity was higher than at low temperature. 
Depending on the activity type which the certain specimen belonged 
to (R. Karise, unpublished) the bumble bees showed different patterns 
of muscle activity (not locomotor activity) before the treatment. Some 
bumble bees showed the DGE pattern already 10-30 minutes after 
insertion into the insect chamber, whilst others needed more time to 
calm down before showing regular CGE or DGE. Longer or shorter 
periods of CGE or DGE usually interchanged the periods of active 
ventilation.

Treating the bees with 0.004 % Fastac 50 EC solution caused rapid 
disappearance of both rhythmic release of CO2 and muscle activity (IV 
Figure 1A, B). In DGE, the bumble bee uses muscle work only during 
the short O period to aid gas exchange; after treatment, regular cycles 
disappeared and a long-lasting muscle tremor appeared. As a result of the 
treatment with the 0.004% solution the metabolic rate in one individual 
increased and in others decreased significantly. However, no significant 
effect on WLR was found (IV Table 2).
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Treating the bees with 0.002% Fastac 50 EC solution did not disrupt 
either the regular bursts of CO2 releases or muscle activity (IV Figure 
2A, B) but the DGE was replaced by CGE (IV Figure 3A, B). In the case 
of CGE, the level of CO2 release does not fall to near zero as happens 
during DGE. The treatment resulted in significantly lower metabolic 
rates but no significant effect on WLR was found (IV Table 2).

Treating the bees with distilled water did not disrupt either the DGE, if 
it had been present before the treatment, nor the muscle activity of the 
bumble bee foragers. The metabolic rate and WLR also did not change 
significantly (IV Table 2).

The simultaneous measurement ensured the exact coincidence of the 
bursts of CO2 and H2O release (IV Figure 4). However, during activity, 
the H2O release was not recognisably higher compared to the WLR in 
the C-phase. Respiratory transpiration constituted only a small part, less 
than 10% of total transpiration in the bumble bee foragers.

5.2.3.3. The effect of Fastac 50 EC on bumble bee longevity

The mortality rate of bumble bees treated with different Fastac 50 EC 
solutions was affected by the solution concentration (H (2, N = 30) 
= 11.73, p < 0.01). Treatment with 0.002% solution did not shorten 
the life span of the bees significantly compared to those treated with 
distilled water (p > 0.05) (IV Figure 5). However, most individuals 
treated with the higher concentration solution (0.004%) died within 
1-3 days, although individual variation was observed (one specimen 
lived for 8 days, another 16 days). The bee which lived for 16 days after 
the treatment was also repeatedly controlled in the respirometer, which 
showed that the normal DGE or CGE recurred 48 hours after treatment 
and this pattern persisted at least until day 4. Also muscle activity 
recurred on day 3. On day 6, there was neither DGE nor regular CGE. 
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6. DISCUSSION

6.1. The impact of spring oilseed rape foliar fertilization on the 
number of flowers and food resources provided for bees

Our results showed that oilseed rape fertilization increased the number 
of flowers as well as the production of nectar and pollen per flower. 
However,  foliar fertilization with different microfertilizers in addition to 
the mineral complex fertilizer OptiCrop had no effect on the number of 
flowers and pollen compared to the plots fertilized only with OptiCrop, 
but affected the production of nectar.

The positive effect of fertilization on the number of flowers can be 
explained by the fact that oilseed rape, as a fast growing crop, needs 
a high amount of nutrients; otherwise its growth will slow down and, 
as a result, the number of flowers produced is also lower. In the case of 
resource deficiency, oilseed rape plants probably preserve the size of flowers 
rather than the number of flowers (Cresswell et al., 2001). Although the 
application of microfertilizers had no additional effect on the number of 
flowers and pollen production, the relevance of micronutrients should 
not be underestimated – their importance for plant physiology lies 
in their influence on enzyme reactions and therefore deficiencies may 
severely limit crop yields (Orlovius, 2003). Balanced nutrition of oilseed 
rape is important to ensure optimum seed yield and quality as well as the 
most economic response to applied fertilizer (Grant, Bailey, 1993). 

In both years, especially in 2005, the production of pollen was higher 
on fertilized than on unfertilized plots but the difference was not 
statistically significant probably because of high variability of pollen 
production. When summarizing over the years, the effect of treatment 
became significant being higher on fertilized plots than on unfertilized 
plots. Such an effect of fertilization can probably again be explained by 
the fact that oilseed rape, as a fast growing crop, needs a high amount 
of nutrients – otherwise its viability decreases. Recently, considerable 
attention has been paid to pollen dissemination by pollinators (Hayter, 
Cresswell, 2006; Chifflet et al., 2011) and the influence of other factors 
on pollen transfer and gene flow (Beckie et al., 2003; Devaux et al., 2008; 
Sausse et al., 2012) in connection with potential problems associated 
with the adoption of genetically modified oilseed rape. However, the 
effect of fertilization on pollen production has not received attention so 



40

far, although this could affect the number of effective pollinators, bees, 
on oilseed rape.  

Nectar production per flower in our study appeared to be inhibited by 
additional manganese. Manganese increases plant height, leaf area per 
plant and dry weight of the aerial parts (Ali et al., 2011b), and apparently, 
plants contribute less to nectar production. Several authors have studied 
the dependence of nectar production of oilseed rape flowers on varietal 
(Mohr, Jay, 1990; Kotowski, 2001) and genetic differences (Pierre et 
al., 1999) but not the effect of fertilization on nectar production. As 
several factors have been found to affect nectar production and nectar 
standing crop, e.g. evaporation and absorption (Corbet, 2003), final 
conclusions cannot be done on the basis of one study year, although a 
preliminary trend is evident. The topic of the effect of fertilization on 
nectar production needs further research. 

6.2. The number of flower visiting bees on spring oilseed rape  
with different fertilization treatments

Our results showed that, in 2004, the number of flower visiting bees was 
significantly higher on fertilized than on unfertilized plots. In 2005, a 
similar trend appeared but the difference was not statistically significant. 
However, when summarizing over two years, the effect of treatment 
was significant. These results can be explained by the number of flowers 
and food resources offered on differently fertilized plots. The density of 
flower visiting bees – honey bees, bumble bees and solitary bees – on 
spring oilseed rape correlated strongly with flower density. Rosa et al. 
(2011) also found a significant positive correlation between the number 
of oilseed rape flowers and the number of honey bees. In addition, the 
number of flower visiting bees in our study correlated moderately with 
nectar production and weakly with pollen production (but only in 2005). 

Most bees collect only two food items from flowers: nectar, which 
provides bees with energy, and pollen, which provides them with protein 
necessary for growth of larvae (Rasheed, Harder, 1997). According to the 
optimal foraging theory, bees try to maximize the benefit and minimize 
the costs (Pettersson, Sjödin, 2000). Hence, the food collected from the 
flower – the reward – has to exceed the energy spent on searching for 
food. The positive correlation between the number of flower visiting bees 
and the number of flowers found in this experiment concurs with this 
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theory. It is energetically more profitable to choose denser flower areas 
in order to expend less energy in flying between flowers (Cartar, Real, 
1997). As the nectar of oilseed rape flowers can be replenished within 
half an hour of depletion (Pierre et al., 1999), encountering empty 
flowers is unlikely. 

6.3. Impact of Fastac 50 EC on the honey bee abundance

The number of foraging honey bees in small-scale field experiments did 
not differ between the patches treated with Fastac 50 EC once or twice and 
those not treated with the insecticide. No repellent effect of the insecticide 
on honey bees was found even 24 h after spraying although Fastac 50 EC 
has been reported to maintain repellency to bees for 48 h after treatment 
(Thompson, 2001). These results persisted through three observation years 
regardless of varying flower and honey bee densities. We also found that 
on flower-rich observation plots, the numbers of bees and flowers were 
positively correlated, whereas on sparse patches no such correlation was 
found. According to the theory of optimal foraging, animals distribute 
themselves among differently rewarding food resources so that the average 
amount of food per individual remains equal (Alonso et al., 1995). Despite 
the theory, flower-rich patches of oilseed rape were even more attractive 
for the bees. Thus, the density of oilseed rape flowers most likely played 
a major role in choice of foraging area. The large scale field experiment 
confirmed this result. The field with the higher food resource attracted 
more bees regardless of the Fastac 50 EC treatment. 

Fastac 50 EC (a.i. alpha-cypermethrin) did not show repellency to honey 
bees in small-scale field experiments or in the field experiment. Instead, 
flower density seemed to be the main signal for honey bees probably 
overriding the possible repellent effect. Fastac 50 EC has been reported 
to be repellent for honey bees at least for 48 h. Most studies on repellency 
have been performed in the laboratory or in semi-field conditions but 
these may not reflect the real situation in field conditions (Thompson, 
2003). Mayer and Lunden (1999) found no repellent effect of alpha-
cypermethrin on bees applied at the field rate to flowering oilseed rape. 
Evidence for repellency may also be questioned by the detection of 
cypermethrin residues in honey and wax (Pareja et al., 2011). 

Fastac 50 EC is commonly used to control pollen beetles in oilseed rape 
which contributes to higher flower densities as the damage caused by the 



42

larvae to the flowering structures is prevented. So, treated crops may be 
even more attractive to bees than untreated crops as these may often have 
higher flower densities. Residues of alpha-cypermethrin on  oilseed rape 
leaf surfaces have been shown to be toxic for more than 3 days following 
insecticide application and may kill up to 25 % of bees that come into 
contact with them (Cox, 1996). Choudary and Sharma (2008) proved 
the persistence of another pyrethroid, lambda-cyhalothrin, residues in 
the nectar and pollen of mustard at least 72 h after treatment. Thus, in 
field conditions, honey bees can become contaminated with the residues 
of insecticides even if the hives have been kept closed for some time after 
spraying as suggested by chemical companies. 

6.4. Impact of Fastac 50 EC on the respiration of bumble bees

Our results show that Fastac 50 EC has a dose dependent after-effect on 
bumble bee respiratory rhythms, metabolic rate and muscle activity but 
has no effect on WLR. The regular periods of discontinuous or cyclic 
gas exchange disappeared during the first 30 minutes after treatment 
with 0.004% Fastac 50 EC solution. This treatment also shortened the 
lifespan of bumble bees. Contact with 0.002% Fastac 50 EC solution did 
not provoke that kind of drastic disappearance of rhythmic gas exchange 
and the longevity of bumble bees did not change compared to control 
bees treated with distilled water.

We found a decline in metabolic rates of bumble bees after contact 
with Fastac 50 EC, a pyrethroid insecticide. Some other researches also 
interpret the reduction in metabolic rate as a generalized response to 
stressors (e.g., toxins, insecticides, heat and cold) that could lead to a 
reduction in respiratory water loss (Hoffmann, Parsons, 1989; Chown, 
Gaston, 1999). By contrast, Kestler (1991) claims that negative stressors 
raise standard metabolic rate of resting insects. Jõgar et al. (2006) also 
described the rise in metabolic rates after treatment with Neem EC in 
Colorado potato beetles. Sibul et al. (2004), however, did not see any 
change in metabolic rates of pine weevils after contact with Neem EC. 
These results suggest that the effect of pesticides on metabolic rates of 
insects depends largely on both insect species and pesticide formulation. 

Meanwhile, the existence and nature of carbon dioxide emission patterns 
also depends on many factors which include environmental conditions 
(Kestler, 1971; Dingha et al., 2005; Terblanche et al., 2008; Karise et 



43

al., 2010), metabolic rate (Kestler, 1991; Sibul et al., 2004; Jõgar et al., 
2006), the life stage of the insect (Beekman, Stratum, 1999; Mänd et al., 
2005, 2006) and several stress factors (Kestler, 1991; Lighton, Lovegrove, 
1990; Kovac et al., 2007). Normally bumble bees show DGE cycles as a 
sign of calming down or resting. The events of calming down are clearly 
observed on the respirograms of bumble bees (Karise et al., 2010).

According to Kestler (1991), the pathological CO2 release patterns can be 
divided into phases: latency phase with closed-flutter-ventilation (CFV), 
followed by continuous respiration with small irregular bursts of CO2 
releases. Kestler considers this to be a reversible excitation phase being 
a typical stress index for sub-lethal doses of neurotoxic pesticides. The 
reversible excitation phase devolves to an irreversible excitation phase 
with no bursts of cyclic CO2 release. At that time, the spiracles stay open 
and are paralysed. 

The respiratory rhythms of bumble bees altered clearly after treatment 
with alpha-cypermethrin, the neurotoxic active ingredient of Fastac 50 
EC. Contact with the 0.004% solution caused rapid disappearance of 
the respiration cycles in most of the foragers. Contact with the 0.002% 
solution of Fastac 50 EC changed the classical CFO (closed-flutter-
open) cycles to FV (flutter-ventilation) cycles within about the first 30 
minutes; later the bouts of CO2 releases disappeared. If the large bouts 
of CO2 releases occurred after treatment, these were rather FV cycles 
instead of CFO cycles. Two specimens out of six showed large bursts 
of CO2 releases after the treatment, others showed varying rates of 
released CO2 of a relatively low but smooth level. We saw the shift from 
cyclic towards continuous respiratory behaviour along with decreasing 
metabolic rate due to non-ability of bumble bees to keep the spiracles 
closed. The diminishing muscle work after the treatment with the 
neurotoxic chemical (Zafeiridou, Theophilidis, 2006; Woodman et al., 
2008) is most likely the result of paralysis, not the result of calming 
down. In unstressed insects, the decreasing metabolic rate is a sign of 
calming down and therefore the shift towards classical DGE should 
appear (Bradley, 2007; Gray, Chown, 2008; Moerbitz, Hetz, 2010).

It seems reasonable to conclude that a dose of 0.004% Fastac 50 EC is not 
sub-lethal, but lethal. For most individuals, the symptoms of intoxication 
were irreversible. The fact that at least two individuals lived for longer (8 
and 16 days), shows that this concentration must be near the lethal dose 
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for bumble bees but indicates also the heterogeneity of the B. terrestris 
population in the context of alpha-cypermethrin immunity. We interpret 
that, according to Kestler´s (1991) classification, the bumble bees must 
have been in reversible excitation phase only. The three hour period must 
have been too short to see total recovery from the intoxication. We saw 
the reappearance of the regular DGE in the bumble bees which survived 
the higher dose and lived for 8 or 16 days after treatment.

Total water loss did not differ significantly after dipping the bees into 
distilled water or into the Fastac 50 EC solution of either concentration 
although metabolic rate decreased significantly after the insecticide 
treatments. However, the WLR showed a tendency to increase after 
treatment of the bees with the 0.004% solution, while decreasing after 
treatment with 0.002% solution or distilled water. The decreasing WLR 
is normal when metabolic rate decreases. At lower metabolic rate the 
gas exchange including WLR is lower. The slightly higher WLR after 
the treatment with 0.004% Fastac 50 EC solution was not caused by 
muscular excitation, since this would have been seen on the actograph 
recordings. We suppose that, due to paralysis, the spiracles of the bumble 
bees may have been open (continuous CO2 release) after treatment and 
along with the outflow of CO2, the water vapour was also washed out 
from the tissues of moribund insects. Total water loss has been showed to 
be higher during continuous, compared to discontinuous, CO2 release 
(Matthews, White, 2012).

Several studies reveal that respiratory water loss comprises mostly a small 
fraction of total water loss, even when the spiracles are open (Quinlan, 
Hadley, 1993; Quinlan, Lighton, 1999; Chown, 2002; Gibbs, Johnsson, 
2004; Lighton et al., 2004). We suppose that, for bumble bees, 
respiratory water loss probably does not play a very important role and 
the non-ability to DGE and desiccation thereafter was not the direct 
cause of death. The importance of respiratory water loss differs between 
insect species (Lamprecht et al., 2009) depending more or less on water 
permeability of the cuticle. Bumble bees feed mostly on liquid food and 
therefore they need to discharge excess water, and the water permeability 
of their cuticle is high (Nicolson, 2009). A characteristic of bee water 
balance is the rapid mobilisation of ingested dietary water from the 
crop to the haemolymph, allowing rapid correction of haemolymph 
osmotic pressure (Willmer, 1986). Besides, in larger bees like Xylocopa 
and Bombus sp, the metabolic water may be in excess during flight and 



45

occasionally these bees eliminate water by spitting or by defaecation 
(Bertsch, 1984; Willmer, Stone, 1997). Because of these characteristics 
of bumble bee physiology, which allow them to be less judicious about 
respiratory patterns, and based on our results, we do not believe that 
death resulted from desiccation, even if the pyrethroid had increased 
the diuretic event. Still, the DGE cycles may confer a fitness benefit 
to the bumble bee B. terrestris. We did not find proof for the theory 
of DGE cycles functioning as a water saving mechanism; rather our 
results support the oxidative damage hypothesis (Hetz, Bradley, 2005). 
Probably, the intoxicated bumble bees were paralysed and their spiracles 
were open: the freely entering oxygen could have been the key factor 
diminishing their fitness. This kind of research may benefit from precise 
observation under the microscope on the behaviour of the spiracles 
during intoxication.

6.5. Implications to promote and  
protect bees on spring oilseed rape

There have been several agricultural changes in Europe during recent 
decades, e.g. homogenization of farmland landscapes and increase 
in application of chemicals, one of the main reasons for that being 
policy changes (Stoate et al., 2009). The intensification of agriculture 
has brought along several environmental problems, including loss of 
biodiversity (Benton et al., 2003). One of the concerns of biodiversity 
is the pollination crisis in the world. There is clear evidence of recent 
declines in both wild and domesticated bee-pollinators (Potts et al., 
2010) which have been observed in different regions of the world 
– America (Kremen et al., 2004; Currie et al., 2010), Asia (Klein et 
al., 2003) and Europe (Williams et al., 1991; Williams, 1996; Giray 
et al., 2010). The principal factor is likely to have been the loss and 
degradation of habitats and of food resources due to changes in land-use 
and agricultural practice (Osborne et al., 1991; Williams et al., 1993; 
Mänd et al., 2002; Sepp et al., 2004; Goulson et al., 2005; Öckinger, 
Smith, 2007; Potts et al., 2010), including the intensive use of pesticides 
(Osborne et al., 1999; Miranda et al., 2003; Maini et al., 2010). At 
the same time, bees are the most important pollinators of almost all 
terrestrial ecosystems because they provide a vitally important ecosystem 
service as pollinators for a wide range of agricultural, horticultural and 
wild plants (Corbet et al., 1991; Williams 1994, 1996; Klein et al., 
2007; Pauw, Hawkins, 2011).
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To mitigate the negative effects of agriculture on pollinators, necessary 
steps need to be taken but this requires enough knowledge. Oilseed rape 
is a very attractive food plant for bees offering ample additional food 
resources (Westphal et al., 2003, 2009) and, at the same time, benefits 
from cross-pollination, including improving both the quantity and 
quality of the seed produced (Free, 1993; Sabbahi et al., 2005; Chifflet 
et al., 2011; Bommarco et al., 2012). Therefore, the foraging activities of 
bees have significant economic consequences for seed production, thus 
factors that lower their pollinating activity on oilseed rape should be 
minimised (Thompson, Maus, 2007). As spring oilseed rape is a crop 
with high nutrient demand and, on the other hand, often needs the 
application of pesticides, the effect of these factors on bees, as the most 
important pollinators of oilseed rape, needs to be explained. 

The results of our study showed that, to secure a higher number of 
pollinators for achieving higher seed yield and other benefits deriving 
from cross-pollinating, spring oilseed rape should receive proper complex 
fertilization. Applied microfertilizers turned out to be useless in terms of 
increasing the number of pollinators. In addition, our study tends to 
confirm that Fastac 50 EC does not show repellency for honey bees in 
field conditions although it has been reported to maintain a repellent 
effect to bees for 48 h after treatment. It seems that the attractiveness of 
high flower density overrides the repellent effect. Thus, oilseed rape fields 
treated with Fastac 50 EC against pollen beetles contribute to higher 
flower densities and are even more attractive to bees. Our results also 
showed that Fastac 50 EC has a dose dependent effect on bumble bee 
respiratory rhythms, metabolic rate and muscle activity but has no effect 
on water loss rate. Even solutions with lower concentrations of Fastac 50 
EC (solution with 0.004% Fastac 50 EC, 2 ppm of alpha-cypermethrin) 
than the registered field rate in Estonia (20 ppm) affected significantly 
the physiology of bumble bees.  

The sub-lethal doses of pesticides bees encounter do affect the 
physiological state of the pollinators, being thus one possible reason for 
global pollinator decline. Pollinators have evolved to recognize different 
signals and react respectively. As the application of pesticides is a quite 
new phenomenon from the evolutionary perspective, no co-evolving 
has occurred and the pollinators are not able to recognize the hazards. 
It is obligatory for chemical companies to provide mortality data for 
their products for all larger organism groups. Unfortunately, the results 
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of laboratory and semi-field studies do not reflect the situation in field 
conditions as additional factors may affect the choices of bees, e.g. high 
flower density which seemed to be the main signal for bees in our studies. 

One of the possibilities to mitigate the negative effects of pesticides 
would be to close honey bee hives during pesticide treatment but it 
has been shown that the residues on leaf surfaces can be toxic for more 
than 3 days following insecticide application (Cox, 1996; Thompson, 
2003). So, honey bees may still come into contact with sub-lethal doses 
of pesticides which have multiple negative effects (Yang et al., 2008; 
Aliouane et al., 2009; Decourtye et al., 2011; Wu et al., 2011; Pettis 
et al., 2012; Schneider et al., 2012). In addition, the nests of native 
pollinators cannot be closed. 

The management of pests on oilseed rape throughout Europe relies heavily 
on chemical pesticides, most often applied routinely and prophylactically, 
often without regard to pest incidence (Williams, 2004). This leads to 
the over-use of pesticides, which reduces the economic competitiveness 
of the crop and threatens biological diversity. Thus, the need for pesticide 
application on oilseed rape should certainly be previously monitored. In 
addition, the pests of oilseed rape have several natural enemies which 
have the potential to contribute to biological control (Veromann et 
al., 2006b; Veromann et al., 2006c; Ekbom, 2010). The protection of 
pollinators against the negative effects of agriculture, including pesticides, 
should be supported by policy, e.g. through appropriate measures like 
agri-environment schemes of the European Union common agricultural 
policy (Köster et al., 2009).  
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7. CONCLUSIONS

Spring oilseed rape (Brassica napus L. var. oleifera subvar. annua) is an 
important oilseed crop, the area of which has increased significantly in 
northern Europe, including Estonia. Spring oilseed rape is predominantly 
autogamous but cross-pollination can have several positive effects, 
including higher seed yield and better quality. Hence, it is profitable to 
encourage a high number of pollinators in oilseed rape fields. On the other 
hand, the bees visiting oilseed rape flowers need to be protected against 
negative effects of pesticides which have become an almost inevitable part 
of cultivating these crops. In order to favour and protect pollinators of 
oilseed rape appropriate knowledge is needed. Thus, as spring oilseed rape 
is a crop with high nutrient demand and, on the other hand, often needs 
the application of pesticides, the effect of these factors on bees, as the 
most important pollinators of oilseed rape, needs to be explained. The 
results of the current work shed light on some of these issues: 

•	 The density of flower visiting bees – honey bees, bumble bees and 
solitary bees – on spring oilseed rape correlated strongly with flower 
density (II). In addition, the number of flower visiting bees corre-
lated moderately with nectar production and weakly with pollen 
production (but only in 2005). 

•	 Oilseed rape fertilization increased the number of flowers as well as 
the production of nectar and pollen per flower thus increasing food 
reserves of bees (II). However, foliar fertilization with different mi-
crofertilizers, in addition to the mineral complex fertilizer OptiCrop, 
had no effect on the number of flowers and pollen production com-
pared to the plots fertilized only with OptiCrop, but affected the 
production of nectar (which appeared to be inhibited by additional 
manganese).

•	 To secure a higher number of pollinators for achieving higher seed 
yield and other benefits deriving from cross-pollination spring oil-
seed rape should receive correct complex fertilization (II). Applied 
microfertilizers turned out to be useless in terms of increasing the 
number of pollinators. 

•	 The number of foraging honey bees did not differ between the patch-
es treated with the pyrethroid insecticide Fastac 50 EC (a.i. alpha-



49

cypermethrin) and those not treated with the insecticide. Thus, the 
results of our study tend to confirm that Fastac 50 EC does not show 
repellency for honey bees in field conditions (III). No repellent effect 
of the insecticide on honey bees was found even 24 h after spraying 
although Fastac 50 EC has been reported to maintain repellency to 
bees for 48 h after treatment.

•	 Our experiments (III) indicate that honey bees foraging on spring 
oilseed rape were most attracted by high flower density which prob-
ably overrided the repellent effect of the insecticide. Controlling pol-
len beetles in oilseed rape with the Fastac 50 EC may contribute to 
higher flower densities.

•	 Treating bumble bees at 8ºC with 10 times lower concentrations of 
insecticide (solution with 0.004% Fastac 50 EC, 2 ppm of alpha-cy-
permethrin) than the registred field rate in Estonia (20 ppm) changed 
the respiratory patterns of bumble bees: the number of bursts of CO2 
releases and the mean metabolic rates decreased significantly (IV). 
20 times lower concentrations also decreased significantly the mean 
metabolic rates. 

•	 Treating bumble bees at 18ºC with 10 times lower concentrations of 
the recommended field dosage the rythmic release of CO2 and mus-
cle activity disappeared (IV). Treatment with 20 times lower con-
centrations of the recommended field dosage did not disrupt either 
regular bursts of CO2 releases or muscle activity but discontinuous 
gas exchange was replaced by cyclic gas exchange. Both concentra-
tions, at 18ºC, changed the mean metabolic rates significantly.

•	 We found no significant effect of the solutions with 0.004% or 
0.002% Fastac 50 EC on water loss rate in bumble bees although 
the treatments changed their respiratory patterns (IV). Thus, we did 
not find evidence for the theory of discontinuous gas exchange func-
tioning as a water saving mechanism.

•	 An after-effect of 0.004% Fastac 50 EC solution was a significant 
decrease in the longevity of bumble bees (IV). 

The results of the current research lead us to conclude that to favour bees 
as the main pollinators of spring oilseed rape the crop should receive 
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correct complex fertilization to assure sufficient food resources for bees. 
It is obligatory for chemical companies to provide mortality data for 
their products for all larger organism groups. Unfortunately, the results 
of laboratory and semi-field studies do not reflect the situation in field 
conditions as additional factors may affect the choices of bees, e.g. high 
flower density which seemed to be the main signal for bees in our studies. 
In addition, the sub-lethal dose of pesticides bees encounter do affect the 
physiological state of the pollinators, being thus one possible reason for 
global pollinator decline. Pollinators have evolved to recognize different 
signals and react respectively. As the application of pesticides is quite a 
new phenomenon from the evolutionary perspective, no co-evolving has 
occurred and the pollinators are not able to recognize the hazards. 

Pesticides should not be applied routinely and prophylactically without 
regard to pest incidence but the need for pesticide application should 
be previously monitored. The protection of pollinators against negative 
effects of pesticides should be supported by policy, e.g. through 
appropriate measures like agri-environment schemes of the European 
Union common agricultural policy. In addition to decreasing the amount 
of pesticides used further research on the ecotoxicity, after-effects and 
sub-lethal effects of pesticides is needed and more environmentally 
friendly growing technologies should be developed (e.g. entomovector-
technology and biopesticides).  
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SUMMARY IN ESTONIAN

Väetamise ja pestitsiidide kasutamise mõju  
mesilaselaadsetele (Apoidea) suvirapsil

Suviraps (Brassica napus L. var. oleifera subvar. annua) on oluline 
õlikultuur, mille kasvupind on Põhja-Euroopas, k.a Eestis viimasel paaril 
aastakümnel oluliselt suurenenud. Kiirekasvulise kultuurina vajab raps 
palju toitaineid, mistõttu korralikke saake saadakse piisaval väetamisel. 
Raps on peamiselt isetolmlev, kuid risttolmlemisel paraneb seemnete 
kvaliteet ja kvantiteet. Seega mõjutavad mesilased kui rapsi peamised 
tolmeldajad ka rapsikasvatuse majanduslikke näitajaid, mistõttu on 
otstarbekas soodustada nende kohalolekut rapsipõldudel. Viimasel ajal 
on aga nii Euroopa, Ameerika kui ka Aasia põllumajandusmaastikes 
täheldatud tolmeldajate arvukuse drastilist langust, mille peapõhjuseks 
peetakse intensiivistunud põllumajandusest tulenevat maakasutuse 
muutust ja suurenenud pestitsiidide kasutust.  

Rapsi kasvupinna suurenemine on loonud soodsad tingimused ka 
rapsi kahjuritele, keda tõrjutakse keemiliste insektitsiididega. Samas 
on raps õite kõrge nektaritootlikkuse ning selle suure suhkrusisalduse 
tõttu väga atraktiivne toidutaim mesilastele, mistõttu on  neil suur oht 
sattuda kontakti taimekaitsevahenditega. Selle vältimiseks on hakatud 
tootma mesilastele repellentseid pestitsiide, kuid nende eemalepeletav 
toime põllutingimustes on osutunud problemaatiliseks. Üldiselt piirdub 
uute pestitsiidide väljatöötamisel nende mõju uurimine kasulikele 
putukatele peamiselt toksilisuse määramistega. Kuid putukaile mõjuvad 
ka pestitsiidide subletaalsed doosid, mis võivad muuta näiteks mesilaste 
käitumist ning avaldada mõju pere eluvõimele. Problemaatiline on 
ka meemesilastega kui peamiste mudelorganismidega läbiviidud 
katsetulemuste automaatne ülekandmine looduslikele mesilaselaadsetele 
tolmeldajatele, kuigi nende käitumismustrites on olulisi erinevusi. 
Pestitsiidide subletaalsed  ning järeltoimed ei pruugi avalduda alati 
käitumises. Selleks, et paremini mõista muutusi, mida kemikaalid 
organismis põhjustavad, on käitumuslikke uuringuid vaja toetada 
füsioloogiliste katsetega. 

Lähtudes nendest probleemidest oli käesoleva doktoritöö eesmärkideks 
selgitada: 1) kas lehekaudne lisaväetamine mikroväetistega mõjutab 
suvirapsi õite tihedust ning nektari- ja õietolmu produktsiooni ning 
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seeläbi ka õisi külastavate mesilaselaadsete (Apoidea) – meemesilaste, 
kimalaste ja erakmesilaste – arvukust? (II), 2) kas meemesilased 
(Apis mellifera L.) väldivad oma toiduvalikus mesilastele repellentse 
insektitsiidiga Fastac 50 EC pritsitud õisi? (III), 3) kas madalad Fastac 
50 EC kontsentratsioonid mõjutavad karukimalaste (Bombus terrestris 
L.) hingamistsükleid ja hingamisel tekkivat veekadu (IV)?

Antud uurimuse tulemusena leiti, et suvirapsi õisi külastavate meemesilaste, 
kimalaste ja erakmesilaste arvukus korreleerus positiivselt õite tihedusega 
(II). Mesilaste arvukus korreleerus mõõdukalt ka nektariproduktsiooniga 
ning 2005. aastal nõrgalt õietolmu produktsiooniga. Rapsi külvieelne 
väetamine kompleksväetisega suurendas nii õite arvu kui ka nektari- ja 
õietolmu produktsiooni ning sellega suurenes mesilaste toiduressurss. 
Mikroväetistega lehekaudne lisaväetamine ei mõjutanud õite arvu ega 
õietolmu produktsiooni, kuid mõjutas oluliselt nektaritoodangut, 
kusjuures mangaani lisamine mõjus võrreldes teiste lehekaudselt lisatud 
mikroväetistega viimasele pärssivalt. Antud uurimuse tulemustest järeldub: 
selleks, et tagada kõrgemat saaki ja teisigi risttolmeldamisest tulenevaid 
paremusi on tolmeldajate arvukuse soodustamiseks oluline väetada 
suvirapsi kompleksväetistega. Lehekaudne mikroväetistega lisaväetamine 
antud uurimuses tolmeldajate arvukust oluliselt ei mõjutanud.

Insektitsiidi Fastac 50 EC (toimeaine alfa-tsüpermetriin 50 g l-1) 
repellentsuse testimine näitas, et meemesilaste arvukus antud 
insektitsiidiga töödeldud ja töötlemata rapsitaimedel ei erinenud. Sellest 
järeldub, et vastupidiselt tootekirjeldusele, ei peletanud Fastac 50 EC 
põllutingimustes meemesilasi (III). Antud insektisiidi repellentset toimet 
ei tuvastatud  ka 24 tundi pärast pritsimist, kuigi ametlikel  andmetel 
peletab Fastac 50 EC meemesilasi pritsitud alalt 48 tunni jooksul. 
Katsed näitasid, et meemesilastele oli kõige olulisemaks signaaliks õite 
tihedus, mis kaalus üle insektitsiidi peletava mõju. Kuivõrd pestitsiidiga 
töödeldud rapsipõldudel on kahjurite hukkumise tõttu õisi rohkem, siis 
on raps mesilastele atraktiivsem ning ühtlasi ka ohtlikum.

Füsioloogilised uuringud näitasid, et insektitsiidi Fastac 50 EC 
subletaalsed doosid mõjutasid oluliselt kimalaste hingamisrütme, 
ainevahetust ja lihaste aktiivsust (IV). Kimalaste töötlemine insektitsiidi 
lahusega, mis oli 10 korda lahjem (0.004% Fastac 50 EC lahus, alfa-
tsüpermetriini 2 ppm) kui on Eestis tegelik registreeritud pritsimisnorm 
(20 ppm), vähendas 8ºC juures (mil kimalased on rahulikud ja hingavad 
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enamasti katkendlikult) määramisel oluliselt CO2 väljalasete arvu ning 
keskmist ainevahetuse taset. Viimast vähendas oluliselt ka 20 korda 
lahjema lahusega (0.002% Fastac 50 EC lahus, alfa-tsüpermetriini 1 ppm) 
töötlemine. Kui sama katse viidi läbi 18ºC juures (sel temperatuuril 
käiakse tavaliselt ka põllul toitu kogumas), siis esimeses variandis (0,004% 
Fastac 50 EC), kadusid rütmilised CO2 väljalasked ning lihaste aktiivsus. 
Teises variandis (0.002% Fastac 50 EC) ei kadunud regulaarsed CO2 
väljalasked ega ilmnenud häired lihaste töös, kuid katkendlik hingamine 
asendus tsüklilise hingamisega, mille puhul CO2 väljalaske tase enam 
nullini ei jõua ehk hingamisel ’suletud faas’ puudub. Mõlemad Fastac 
50 EC kontsentratsioonid mõjutasid 18ºC juures oluliselt ka keskmist 
ainevahetuse taset. Fastac EC 0.004% lahusega töötlemise järelmõjuna 
vähenes oluliselt kimalaste eluiga. Samas ei tuvastatud selle insektitsiidi 
olulist mõju veekaole. Seega ei leitud kinnitust teooriale, et katkendlik 
hingamine toimib kui vett säästev mehhanism.

Käesoleva uurimustöö tulemustest järeldub, et mesilastele kui suvirapsi 
peamistele tolmeldajatele piisava toiduvaru tagamiseks on suvirapsi vaja 
väetada kompleksväetisega. Pestitsiide tootvatele ettevõtetele on  küll 
kohustuslik lisada kõigile oma toodetele info letaalsete dooside kohta, 
kuid kahjuks ei peegelda laboris ja väikesemahulistes põllukatsetes tehtud 
uurimused alati tegelikku olukorda põllutingimustes. Siin võivad mesilaste 
valikuid mõjutada mitmed neile olulised faktorid, nt õite tihedus, mis oli 
meie uurimuses nende käitumisel peamiseks signaaliks. Lisaks mõjutavad 
insektitsiidide subletaalsed doosid tolmeldajate füsioloogilist seisundit, 
mis võib olla nende arvukuse globaalse vähenemise üheks võimalikuks 
põhjuseks. Tolmeldajad on evolutsioonis kohastunud ära tundma 
erinevaid signaale ning vastavalt nendele käituma. Kuna pestitsiidide 
kasutamine on selles protsessis küllaltki uus nähtus, ei ole tolmeldajad 
nendega veel kohastunud ja riske ära tundma õppinud. 

Pestitsiide ei tohiks kasutada rutiinselt ja lihtsalt profülaktika mõttes, 
vaid vajadust nende järele tuleks põllul eelnevalt seirata.  Tolmeldajate 
kaitsmist pestitsiidide negatiivsete mõjude eest tuleks toetada ka 
läbi poliitikate, nt läbi Euroopa Liidu ühise põllumajanduspoliitika 
rakendatava põllumajandusliku keskkonnatoetuse meetme. Lisaks 
pestitsiidide kasutamise vähendamisele tuleks läbi viia täiendavaid 
uurimusi pestitsiidide toksilisusest, järeltoimetest ning nõrkade dooside 
mõjust elusorganismidele ning välja töötada keskkonnasõbralikumaid 
kasvatustehnoloogiaid (nt entomovektor-tehnoloogia ja biopestitsiidid).   
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Abstract
Spring	 oilseed	 rape	 (Brassica napus	 L.	 var.	oleifera)	 is	 an	 important	 oilseed	 crop	whose	 cultivation	 area	 has	
increased	significantly	in	Estonia.	It	is	predominantly	autogamous	but	cross-pollination	can	have	several	positive	
effects,	including	higher	seed	yield.	We	studied	the	effect	of	fertilization	with	different	foliar	microfertilizers	on	
the	flower	density	and	pollen	and	nectar	production	of	spring	oilseed	rape	as	well	as	the	impact	of	these	factors	on	
the	abundance	of	flower	visiting	bees	–	honey	bees,	bumble	bees	and	solitary	bees.	
Field	experiments	were	carried	out	in	2004	and	2005.	The	field	consisted	of	32	plots	(10	m2	each):	control	plots	
(no	mineral	fertilizers	used),	plots	fertilized	with	the	complex	fertilizer	OptiCrop	(NPK	21-08-12	+	S	+	Mg	+	B	+	
Ca)	alone	and	plots	treated	with	OptiCrop	and	one	of	the	six	foliar	microfertilizers	(Mn,	S,	Cu,	B,	Mg,	Mo).	There	
were	four	replicates	of	each	treatment.	Flower	visiting	bees	were	counted	twice	a	week	on	sunny	days.	Flowers	
were	counted	at	the	same	time	on	an	area	of	1	m2	on	each	plot.	Nectar	production	by	the	flowers	was	measured	in	
the	field	by	inserting	a	1	μl	capillary	into	the	corolla	tube	of	flowers	isolated	for	24	h.	Pollen	grains	were	counted	
from	previously	isolated	flowers	after	dissolving	the	flower	tissues.	
The	density	of	flower	visiting	bees	(honey	bees,	bumble	bees	and	solitary	bees)	on	spring	oilseed	rape	depended	
mainly	on	flower	density.	Fertilization	increased	not	only	the	number	of	flowers	but	also	the	amount	of	nectar	and	
pollen	per	flower.	Additional	foliar	fertilization	had	no	effect	either	on	the	number	of	flowers	or	the	amount	of	
pollen	grains	per	flower.	Nectar	production	per	flower	seemed	to	be	inhibited	by	additional	manganese.	Therefore,	
to	 secure	higher	number	of	pollinators	 for	achieving	higher	 seed	yield	and	other	benefits	deriving	 from	cross-
pollination,	 spring	oilseed	 rape	 should	be	given	proper	 complex	 fertilization.	Microfertilizers	 turned	out	 to	be	
useless	in	terms	of	increasing	the	number	of	pollinators.	

Key	words:	Brassica napus	L.	var.	oleifera,	spring	oilseed	rape,	Apoidea,	flower	density,	pollen	production,	nectar	
production,	foliar	fertilization.	

Introduction
Spring	 oilseed	 rape	 (Brassica napus	 L.	 var.	

oleifera)	is	an	important	oilseed	crop,	whose	production	
area	has	increased	significantly	in	northern	countries	of	
Europe	 (Treu,	Emberlin,	2000),	 including	Estonia.	 It	 is	
predominantly	autogamous	and	visits	of	 insect	pollina-
tors	 are	not	 essential	 for	 the	final	 seed	yield	 (Williams	
et	al.,	1987).	However,	flower	morphology	favours	first	
cross-pollination	followed	by	self-pollination	(Delaplane,	
Mayer,	2000).	Adequate	pollination	can	have	positive	ef-
fects	such	as	a	reduction	of	the	flowering	period,	a	reduc-
tion	of	 raceme	production,	acceleration	of	 ripening	and	
an	increase	of	seed	weight	(Williams	et	al.,	1987).	Cross-
pollination	also	raises	the	seed	yield	(Steffan-Dewenter,	
2003;	Chifflet	et	al.,	2011).	

Large	fields	of	oilseed	rape	in	flower	are	impor-
tant	food	resources	for	bees	enhancing	both	nectar	and	pol-
len	reserves	abundantly	(Westphal	et	al.,	2009;	Mänd	et	al.,	
2010).	Oilseed	rape	is	an	especially	attractive	food	plant	
for	bees	because	of	the	high	nectar	production	of	its	flow-
ers	and	its	high	sugar	content	(Pierre	et	al.,	1999).	Adult	
bees	 use	 nectar	 to	 satisfy	 their	 energy	 and	water	 needs.	
Pollen	is	collected	by	bees	as	their	only	source	of	protein	

and	is	used	as	food	for	 the	larvae.	The	pollen	of	oilseed	
rape	contains	more	of	the	three	most	important	amino	ac-
ids	for	bee	survival	and	development	than	other	field	crops	
flowering	at	the	same	time	(Cook	et	al.,	2003).	

Oilseed	rape	is	a	fast	growing	crop	which	needs	
more	 nutrients	 than	 graminaceous	 crops.	 Considering	
other	plant	species,	it	has	been	found	that	soil	fertilizer	
affects	the	concentration	of	amino	acids	in	the	floral	nec-
tar	of	corncockle,	Agrostemma githago	(Gardener,	Gill-
man,	2001)	and	soil	nitrogen	has	a	positive	effect	on	the	
pollen	performance	of	Cucurbita pepo	(Lau,	Stephenson,	
1993).	Many	studies	have	focused	on	the	effect	of	ferti-
lization	(Sidlauskas,	Bernotas,	2003;	Szulc	et	al.,	2003;	
Rathke	 et al.,	 2006)	 and	 pollinators	 (Steffan-Dewenter,	
2003;	Sabbahi	et	al.,	2005)	on	seed	yield	of	oilseed	rape	
as	well	 as	 on	 the	 effect	of	 ambient	 temperature	 condi-
tions	on	honey	bee	foraging	activity	(Blažytė-Čereškienė	
et	al.,	2010).	However,	none	of	these	studies	have	dealt	
with	the	impact	of	fertilization	on	the	resource	of	the	bee	
food	(nectar	and	pollen	production)	provided	by	oilseed	
rape	and	on	 the	number	of	 the	most	 important	pollina-
tors	–	bees.	Taking	into	account	several	benefits	of	cross-
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pollination	 (Williams	 et	 al.,	 1987)	 and	 the	 pollinators’	
contribution	to	yield	increase	(Sabbahi	et	al.,	2005),	this	
gap	in	knowledge	needs	to	be	filled.	In	this	context,	the	
present	 study	 examines	 the	 effect	 of	 foliar	 fertilization	
on	 the	flower	 density	and	nectar	productivity	of	 spring	
oilseed	rape	and	on	the	number	of	pollen	grains	per	flo-
wer	in	relation	to	the	abundance	of	flower	visiting	bees	
–	honey	bees,	bumble	bees	and	solitary	bees. 

Materials and methods
Study plots.	The	study	was	carried	out	in	an	ex-

perimental	field	of	 the	Estonian	University	of	Life	Sci-
ences	 near	 Tartu,	 Estonia,	 during	 the	 flowering	 period	
of	 oilseed	 rape	 in	 2004	 and	 2005.	 The	 spring	 oilseed	
rape	variety	‘Mascot’,	bred	and	produced	by	the	Swed-
ish	company	“Weibull”,	was	used.	Technical	data	of	the	
variety:	 crude	 fat	 content	 40–43%,	 1000	 seed	 weight	
3.5–4.5	 g,	 glucosinolate	 content	 20	 µmol	 g-1,	 lodging	
resistance	 6–8	 points,	 plant	 height	 98–108	 cm,	 growth	
period	90–108	days	(Velička,	2003).	The	soil	in	the	study	
area	was	slightly	acidic	(pHKCl	6.2)	Stagnic Luvisol	(FAO	
classification	 LV	 st,	 2006)	 with	 loamy	 texture:	 humus	
content	2.4%,	P	–	77.66	mg	kg-1,	K	–	169.8	mg	kg-1,	Ca	–	
5648 mg	kg-1,	S	–	13.54	mg	kg-1.	

In	2004,	spring	oilseed	rape	was	sown	on	5	May	
and	in	2005	on	9	May	at	a	rate	of	200	viable	seeds	m-2,	
sowing	depth	2–3	(4)	cm,	pre-crop	being	potato.	In	2004	
and	2005,	 the	field	 consisted	of	32	plots	 (10	m2	each).	
Control	 plots	 received	 no	 fertilizer;	 the	 other	 plots	 re-
ceived	a	complex	fertilizer	alone	or	the	complex	fertilizer	
plus	one	of	the	six	microfertilizers.	There	were	four	rep-
licates	of	each	treatment.	The	treatments	were:	1)	0	(no	
mineral	fertilizers),	2)	OptiCrop	(Opti)	(only	the	mineral	
complex	 fertilizer	 OptiCrop	 NPK	 21-08-12	 +	 S	 +	 Mg	
+	B	+	Ca,	the	amount	of	nitrogen	applied	120	kg	ha-1),												
3)	Opti	+	HydroPlusTM	Boron	(Opti	+	B)	(consumption	
rate	2 l ha-1),	4)	Opti	+	HydroPlusTM	Micro	Copper	(Opti	
+	Cu)	(consumption	rate	0.5	l	ha-1),	5)	Opti	+	Hydromag	
300	(Opti	+	Mg)	(consumption	rate	7	1	ha-1),	6)	Opti	+	
HydroPlusTM	Micro	Manganese	(Opti	+	Mn)	(consump-
tion	rate	1	l	ha-1),	7)	Opti	+	HydroPlusTM	Micro	Molybde-
num	(Opti	+	Mo)	(consumption	rate	0.25	l	ha-1),	8)	Opti	+	
Sulphur	F3000	(Opti	+	S)	(consumption	rate	7	1	ha-1).	

Prior	to	sowing,	the	whole	field	was	sprayed	with	
the	soil-applied	herbicide	EK	Trifluralin	(0.15	l	ha-1).	The	
mineral	complex	fertilizer	OptiCrop	NPK	21-08-12	+	S	+	
Mg	+	B	+	Ca,	the	amount	of	nitrogen	applied	120	kg	ha-1,	
was	used	(except	for	treatment	0).	Liquid	microfertilizers	
(spray	volume	400	 l	ha-1)	were	 foliar-applied	when	 the	
plants	had	reached	the	growth	stage	27–31	according	to	
the	BBCH	scale	(Lancashire	et	al.,	1991).	

Evaluation of flower visiting bees: honey bees, 
bumble bees and solitary bees.	Flower	visiting	bees	were	
counted	 during	 the	flowering	 period	 of	 the	 crop	 (5–22	
July	2004	and	28	June	to	18	July	2005)	on	each	10	m2 
plot	twice	a	week	(altogether	6	observation	days	in	2004	
and	7	observation	days	in	2005)	by	walking	slowly	along	
the	study	plots	and	recording	all	bees	visiting	the	flowers	
of	oilseed	 rape.	The	observations	were	made	on	 sunny	
days	 between	 11:00	 and	 15:00	 when	 temperature	 was	
above	16ºC	and	wind	speed	did	not	exceed	6	m	s-1.	

Evaluation of flower density.	 Flowers	 were	
counted	simultaneously	with	flower	visiting	bees	on	an	
area	of	1	m2	on	each	plot	which	was	divided	into	4	sub-
plots	(50	×	50	cm)	and	the	data	were	summarized.	

Evaluation of nectar production.	 Nectar	 was	
collected	from	five	flowers	in	each	plot	three	times	dur-

ing	the	flowering	period	of	the	crop	in	2004.	The	collec-
tion	was	carried	out	in	late	morning	at	full	flowering	of	the	
plants.	Each	flower	was	previously	covered	with	a	voile	
bag	for	24	h	to	exclude	floral	visitors	and	to	prevent	nectar	
consumption	the	day	before	nectar	measurement.	Nectar	
production	was	measured	in	the	field	by	inserting	a	1	μl	
capillary	 into	 the	flower	corolla	 tube.	 It	should	be	noted	
that	nectar	productivity	can	only	be	measured	when	there	
is	no	rainfall	during	24	h.	As	in	2005	there	was	little	rain	
on	almost	all	days	of	flowering	period	of	 spring	oilseed	
rape,	nectar	production	was	analysed	only	for	2004.	

Evaluation of pollen production.	 In	 2004	 and	
2005,	after	anthesis,	pollen	production	was	quantified	for	
5	flowers	in	each	plot	at	the	same	time	as	flower	visiting	
bees	and	flowers	were	counted.	The	flowers	were	collected	
randomly	 from	 the	 plant	 main	 raceme	 and	 stored	 sepa-
rately.	 These	 racemes	 were	 previously	 isolated	 to	 avoid	
consumption	of	 the	pollen	by	pollen	beetles	(Meligethes 
sp.).	The	flowers	with	pollen	were	later	acetolysed	(Faegri,	
Iverson,	1989)	to	digest	both	the	floral	 tissue	and	pollen	
content,	leaving	pollen	exines	intact.	Separated	pollen	was	
dispersed	in	distilled	water	(1	ml).	The	pollen	grains	were	
counted	with	a	light	microscope	using	a	Fuchs-Rosenthal	
chamber	(3.2	mm3).	These	data	were	used	to	calculate	the	
number	of	pollen	grains	per	flower.	

Climate conditions.	 The	 flowering	 period	 of	
spring	oilseed	rape	was	warmer	in	2004	(July	19.6ºC)	and	
colder	in	2005	(July	16.5ºC)	than	the	mean	of	the	past	ten	
years	(July	17.3ºC).	Ambient	temperature	was	measured	
every	time	before	the	evaluation	of	the	number	of	flower	
visiting	bees	and	flowers	and	nectar	and	pollen	production	
at	the	level	of	the	flowers.	In	2004,	air	temperature	fluctu-
ated	from	21.5ºC	on	the	first	observation	day	(5	July)	to	
26ºC	on	the	forth	observation	day	(15	July).	In	2005,	the	
lowest	air	temperature	was	recorded	on	first	and	last	ob-
servation	days	(28	June	and	18	July;	17.8ºC	and	18.8ºC,	
respectively).	 In	 2005,	 the	 flowering	 period	 was	 rainy	
with	only	two	days	without	any	precipitation.	In	2004	15	
days	were	without	any	rain.	The	amount	of	precipitation	
in	July	2004	was	87.8	mm	and	in	July	2005,	113.2	mm.	
The	mean	of	the	past	ten	years	was	81	mm	in	July.	

Statistical data analysis.	 Statistical	 analyses	
were	performed	using	Statistica 7.	The	impact	of	differ-
ent	treatments	on	the	number	of	flowers,	nectar	and	pollen	
production	and	on	the	number	of	flower	visiting	bees	was	
analysed	with	ANOVA	–	where	necessary	data	were	nor-
malised.	The	differences	between	means	were	inspected	
using	 Fisher’s	 protected	 significant	 difference	 post	 hoc	
analysis.	The	 significance	 of	 interactions	 between	 year	
and	 treatment	 on	 pollen	 production	 and	 the	 number	 of	
bees	were	analysed	with	factorial ANOVA.	The	relation-
ship	between	bees	 and	 the	 food	 resource	was	 analysed	
with	Pearson	correlation	analysis	–	where	necessary	data	
were	normalised.	

Results and discussion
Flower density on plots with different treat-

ments.	 In	 both	 years	 (2004	 and	 2005),	 the	 abundance	
of	flowers	was	significantly	higher	on	fertilized	than	on	
unfertilized	plots	 (F	 (7,	184)	=	2.83,	p	=	0.01	 in	2004;	
F	 (7,	216)	=	2.85,	p	=	0.01	 in	2005).	Oilseed	rape	 is	a	
fast	growing	crop	which	needs	a	high	amount	of	nutrients	
from	the	soil;	otherwise	its	growth	will	slow	down	and,	as	
a	result,	the	number	of	flowers	produced	is	also	lower.	In	
the	case	of	resource	deficiency,	oilseed	rape	plants	prob-
ably	preserve	the	size	of	flowers	rather	than	the	number	
of	flowers	(Cresswell	et	al.,	2001).	
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There	were	no	 significant	 differences	 between	
differently	fertilized	plots,	including	plots	fertilized	with	
the	complex	fertilizer	OptiCrop	alone	(Fig.	1).	Thus,	the	
number	of	flowers	depended	directly	on	complex	fertili-
zation	and	addition	of	different	foliar	microfertilizers	to	
the	complex	fertilizer	OptiCrop	did	not	have	any	signifi-
cant	impact	on	increasing	the	number	of	flowers.	

Nectar production on plots with different treat-
ments.	Fertilization	 influences	 the	nectar	production	of	
oilseed	 rape	flowers.	Except	 for	 fertilization	with	man-
ganese	or	with	the	complex	fertilizer	OptiCrop	alone,	the	
production	of	nectar	in	2004	was	significantly	higher	on	

fertilized	 than	on	 unfertilized	 plots	 (F	 (7,	312)	 =	2.48,	
p	=	0.02).	Unlike	flower	productivity,	nectar	production	
gains	from	foliar	fertilization,	except	that	supplementary	
manganese	appeared	to	inhibit	nectar	production	(Fig.	2).	
Plots	 fertilized	with	OptiCrop	plus	manganese	had	sig-
nificantly	 lower	 nectar	 production	 than	 those	 fertilized	
with	OptiCrop	 plus	 one	of	 the	 other	 five	microfertiliz-
ers.	Flowers	from	plants	fertilized	with	manganese	had	
even	less	nectar	than	those	fertilized	with	pure	OptiCrop.	
Manganese	increases	plant	height,	leaf	area	per	plant	and	
dry	weight	of	the	aerial	parts	(Ali	et	al.,	2011),	and	appar-
ently,	plants	contribute	less	to	nectar	production.	

Note.	The	letters	above	the	boxes	indicate	statistically	significant	differences	between	treatments	(ANOVA,	Fisher	LSD	test).	
The	boxes	indicate	the	mean	value	and	the	whiskers	indicate	the	standard	error	of	the	mean.	

Figure 1.	The	number	of	flowers	on	plots	with	different	treatments	in	2004	(left)	and	2005	(right)	

Note.	 The	 letters	 above	 the	 boxes	 indicate	 statistically	
significant	differences	between	treatments	(ANOVA,	Fisher	
LSD	 test).	 The	 boxes	 indicate	 the	 mean	 value	 and	 the	
whiskers	indicate	the	standard	error	of	the	mean.	

Figure 2.	 Nectar	 production	 of	 spring	 oilseed	 rape	
flowers	on	plots	with	different	treatments	in	2004	

Several	authors	have	studied	the	nectar	produc-
tion	 of	 oilseed	 rape	 flowers	 depending	 on	 the	 varietal	
(Mohr,	 Jay,	 1990;	 Kotowski,	 2001)	 and	 genetic	 differ-
ences	(Pierre	et	al.,	1999)	but	not	the	effect	of	fertiliza-
tion	 on	 nectar	 production.	As	 several	 factors	 affecting	

nectar	 production	 and	 nectar	 standing	 crop	 are	 docu-
mented,	e.g.,	evaporation	and	absorption	(Corbet,	2003),	
final	 conclusions	 cannot	 be	 drawn	on	 the	 basis	of	 one	
study	year,	although	a	preliminary	trend	is	evident.	The	
topic	of	 the	 effect	of	 fertilization	on	 nectar	 production	
needs	further	research.	

Pollen production on the plots with different 
treatments.	 In	 both	 years	 (2004	 and	2005),	 there	were	
no	 significant	differences	 in	pollen	production	between	
differently	 treated	plots	 (F	 (7,	248)	=	1.15,	p	=	0.33	 in	
2004;	F	(7,	344)	=	2.02,	p	=	0.05	in	2005).	However,	in	
both	years,	especially	in	2005,	the	pollen	production	was	
higher	 on	 fertilized	 than	 on	 unfertilized	 plots	 (Fig. 3).	
Still,	the	difference	was	not	statistically	significant,	prob-
ably	 because	 of	 the	 high	 variability	 of	 pollen	 produc-
tion.	When	summarizing	over	the	two	years,	the	effect	of	
treatment	became	significant	(Table	1).	In	addition,	there	
was	no	statistically	significant	 interaction	between	year	
and	treatment	on	 the	number	of	pollen	grains	produced	
per	flower,	which	means	that	the	impact	of	different	treat-
ments	followed	the	same	trend	in	both	years	being	higher	
on	fertilized	than	on	unfertilized	plots.	

Pollen	 dissemination	 by	 pollinators	 (Hayter,	
Cresswell,	2006)	and	the	influence	of	other	factors	on	pol-
len	transfer	and	gene	flow	(Beckie	et	al.,	2003;	Devaux	
et al.,	2008)	have	received	considerable	attention	recently	
in	connection	with	potential	problems	associated	with	the	
adoption	of	genetically	modified	oilseed	rape.	However,	
as	pollinators	visit	flowers	to	have	some	reward,	the	ef-
fect	of	 fertilization	on	pollen	production,	which	 in	 turn	
can	affect	 the	number	of	pollinators,	deserves	attention	
as	well.	
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Note.	The	boxes	indicate	the	mean	value	and	the	whiskers	indicate	the	standard	error	of	the	mean;	n.s.	–	statistically	not	
significant.	

Figure 3.	The	 number	 of	 pollen	 grains	 per	flower	 on	 the	 plots	 with	 different	 treatments	 in	 2004	 (left)	 and	 2005	
(right)	

Table 1.	Factorial	ANOVA	table	of	F-values	showing	the	effect	of	year	and	treatment	on	the	number	of	pollen	grains	
per	flower	in	2004	and	2005	

Effect df SS F p
Year 1 19543 374.5 <0.01
Treatment 7 3643 374.5 <0.01
Interaction	between	year	and	treatment 7 6709 0.4 0.92

The number of flower visiting bees on the plots 
with different treatments.	In	2004,	the	number	of	flower	
visiting	bees	was	significantly	higher	on	 fertilized	 than	
on	unfertilized	plots	(F	(7,	184)	=	2.62,	p	=	0.01).	Similar	
results	 were	 obtained	 in	 2005	 but	 the	 differences	 were	
not	statistically	significant	(F	(7,	216)	=	1.24,	p	=	0.28)	
(Fig.	4).	When	summarizing	over	the	two	years,	the	effect	

of	treatment	was	significant	(Table	2).	Again,	there	was	
no	 statistically	significant	 interaction	between	year	and	
treatment	on	 the	number	of	flower	visiting	bees,	which	
means	 that	 the	 impact	 of	 different	 treatments	 followed	
the	 same	 trend	 in	both	years	being	higher	on	 fertilized	
than	on	unfertilized	plots.	

Notes.	The	letters	above	the	boxes	indicate	statistically	significant	differences	between	different	treatments	(ANOVA	Fisher	
LSD);	n.s.	–	statistically	not	significant.	The	boxes	indicate	the	mean	value	and	the	whiskers	indicate	the	standard	error	of	
the	mean.	Note	that	there	are	differences	in	the	scale	values	of	the	y-axes.	

Figure 4.	The	mean	number	of	flower	visiting	bees	on	the	plots	with	different	 treatments	 in	2004	(left)	and	2005	
(right)	

Table 2.	Factorial	ANOVA	table	of	F-values	showing	the	effect	of	year	and	treatment	on	the	number	of	bees	in	2004	
and	2005	

Effect df SS F p
Year 1 4155 239.8 <0.01
Treatment 7 487 4.0 <0.01
Interaction	between	year	and	treatment 7 138 1.1 0.34
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Relations between flower visiting bees and the 
food resource of spring oilseed rape.	A	significant	posi-
tive	 correlation	 between	 the	 number	 of	 flower	 visiting	
bees	and	the	number	of	flowers	was	found	in	both	years	
(r	=	0.59,	p	<	0.01	in	2004;	r	=	0.69,	p	<	0.01	in	2005).	
There	 was	 also	 a	 moderate	 correlation	 between	 nectar	
production	and	 the	number	of	flower	visiting	bees	 (r	=	
0.41,	p	<	0.01).	For	pollen	production,	a	weak	correlation	
was	found	in	2005	(r	=	0.21,	p	<	0.01),	but	not	in	2004								
(r	=	−0.01,	p	=	0.93).	

The	 economically	 most	 important	 and	 abun-
dant	 pollinators	 of	 spring	 oilseed	 rape	 are	 bees	 (Klein	
et al.,	2007).	Considering	 the	 fact	 that	bees	visit	flowers	
in	 search	of	 food,	 the	number	of	 bees	 in	 the	field	 is	 af-
fected	by	existing	food	resources:	 the	density	of	flowers	
and	nectar	and	pollen	content	in	them.	Most	bees	collect	
only	two	food	items	from	flowers:	nectar,	which	provides	
bees	with	energy,	and	pollen,	which	provides	 them	with	
protein	necessary	for	growth	of	larvae	(Rasheed,	Harder,	
1997).	According	to	an	optimal	foraging	theory,	bees	try	to	
maximize	the	benefit	and	minimize	the	costs	(Pettersson,	
Sjödin,	2000).	Hence	the	food	collected	from	the	flower	–	
the	reward	–	has	to	exceed	the	energy	spent	on	flying.	

The	positive	correlation	between	the	number	of	
flower	visiting	bees	and	the	number	of	flowers	found	in	
this	experiment	shows	that	bees	consider	the	abundance	
of	 the	 food	 resource	while	 looking	 for	 food,	preferring	
areas	with	higher	flower	density.	Karise	et	al.	(2007)	also	
found	that	the	density	of	oilseed	rape	flowers	most	likely	
played	a	major	role	in	choice	of	foraging	area.	It	is	ener-
getically	more	profitable	 to	 choose	denser	flower	 areas	
in	order	to	expend	less	energy	in	flying	between	flowers	
(Cartar,	Real,	1997).	As	the	nectar	of	oilseed	rape	flow-
ers	can	be	replenished	within	half	an	hour	of	depletion	
(Pierre	et	al.,	1999),	encountering	empty	flowers	 is	un-
likely.	Oilseed	 rape	 is	 a	 favourable	 food	plant	 for	bees	
because	its	flowers	provide	copiously	pollen	and	nectar.	
High-density	flower	patches	may	serve	as	a	sign	of	pre-
sence	of	vigorous	plants	which	are	able	to	provide	abun-
dant	food	for	bees	(Karise	et	al.,	2007).	

Conclusions
Spring	 oilseed	 rape	 (Brassica napus	 L.	 var.	

oleifera)	is	an	important	oilseed	crop,	whose	production	
area	has	 increased	 significantly	 in	 northern	Europe,	 in-
cluding	Estonia.	Spring	oilseed	rape	is	predominantly	au-
togamous	but	cross-pollination	can	have	several	positive	
effects,	including	higher	seed	yield.	Hence	it	is	profitable	
to	encourage	high	number	of	pollinators	in	oilseed	rape	
fields.	The	results	of	the	current	study	allowed	us	to	make	
the	following	conclusions:	

1.	The	density	of	flower	visiting	bees	–	honey	
bees,	 bumble	 bees	 and	 solitary	 bees	 on	 spring	 oilseed	
rape	depended	mainly	on	flower	density.	

2.	 Fertilization	 increased	 not	only	 the	 number	
of	flowers	but	also	the	amount	of	nectar	and	pollen	per	
flower.	

3.	Additional	foliar	fertilization	had	no	effect	ei-
ther	on	the	number	of	flowers	or	on	the	amount	of	pollen	
grains	per	flower.	Nectar	production	per	flower	appeared	
to	be	inhibited	by	additional	manganese.	

4.	To	secure	a	higher	number	of	pollinators	for	
achieving	higher	 seed	yield	and	other	benefits	deriving	
from	cross-pollination	spring	oilseed	rape	should	receive	
proper	complex	fertilization.	Microfertilizers	turned	out	
to	be	useless	 in	 terms	of	 increasing	 the	number	of	pol-
linators.	
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Tręšimo per lapus įtaka bičių (Apoidea) kiekiui                  
vasariniuose rapsuose 

E.	Viik,	M.	Mänd,	R.	Karise,	P.	Lääniste,	I.	H.	Williams,	A.	Luik	
Estijos	gyvybės	mokslų	universiteto	Žemės	ūkio	ir	aplinkos	mokslų	institutas	

Santrauka 
Vasarinis	 rapsas	 (Brassica napus	 L.	 var.	 oleifera)	 yra	 svarbus	 aliejinis	 augalas,	 kurio	 auginimo	 plotai	 Estijoje	
smarkiai	padidėjo.	Šis	augalas	yra	savidulkis,	 ir	 tai	yra	 teigiamas	veiksnys,	ypač	 jo	sėklų	derliui.	Tirta	 tręšimo	
įvairiomis	 lapų	mikrotrąšomis	 įtaka	 vasarinių	 aliejinių	 rapsų	 žiedų	 tankumui	 ir	 žiedadulkių	 formavimuisi	 bei	
nektaro	išsiskyrimui,	taip	pat	šių	veiksnių	įtaka	žiedus	lankančių	bičių	gausai.	
Lauko	bandymai	vykdyti	2004	ir	2005	m.	Lauką	sudarė	32	laukeliai	(10	m2):	kontroliniai	(netręšti	mineralinėmis	
trąšomis),	tręšti	tik	kompleksinėmis	trąšomis	OptiCrop	(NPK	21-08-12	+	S	+	Mg	+	B	+	Ca),	ir	tręšti	OptiCrop	bei	
vienomis	iš	šešių	mikrotrąšų	(Mn,	S,	Cu,	B,	Mg,	Mo).	Kiekvienas	variantas	turėjo	keturis	pakartojimus.	Žiedus	
lankančios	bitės	skaičiuotos	du	kartus	per	savaitę	saulėtomis	dienomis.	Žiedai	skaičiuoti	tuo	pačiu	metu	kiekvieno	
laukelio	1	m2	plote.	Nektaro	 išsiskyrimas	matuotas	 lauke,	1	μl	kapiliarą	 įstačius	 į	 24	valandas	 izoliuotų	žiedų	
vainikėlio	vamzdelį.	Žiedadulkių	grūdeliai	skaičiuoti	ištirpinus	prieš	tai	izoliuotų	žiedų	audinius.	
Žiedus	lankančių	medunešių,	kamanių	ir	pavienių	bičių	tankumas	ant	vasarinių	rapsų	daugiausia	priklausė	nuo	žiedų	
tankumo.	Tręšimas	padidino	ne	tik	žiedų	skaičių,	bet	ir	nektaro	bei	žiedadulkių	kiekį	viename	žiede.	Papildomas	
tręšimas	per	lapus	neturėjo	įtakos	nei	žiedų,	nei	žiedadulkių	grūdelių	kiekiui.	Vieno	žiedo	nektaro	skyrimąsi	slopino	
papildomas	 tręšimas	manganu.	Todėl,	siekiant	užtikrinti	didesnį	kiekį	apdulkintojų	 ir	gauti	didesnį	sėklų	derlių	
bei	kitą	kryžmadulkos	teikiamą	naudą,	rapsus	reikėtų	tręšti	tinkamomis	kompleksinėmis	trąšomis.	Apdulkintojų	
kiekiui	mikrotrąšos	nebuvo	efektyvios.	

Reikšminiai	 žodžiai:	 Brassica napus	 L.	 var.	 oleifera,	 vasariniai	 rapsai,	 Apoidea,	 žiedų	 tankumas,	 žiedadulkių	
formavimasis,	nektaro	išsiskyrimas,	tręšimas	per	lapus.	
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Impact of alpha-cypermethrin on honey
bees foraging on spring oilseed rape
(Brassica napus) flowers in field conditions†

Reet Karise,∗ Eneli Viik and Marika Mänd
Institute of Agricultural and Environmental Sciences, Estonian Agricultural University, Kreutzwaldi 1, 51014, Tartu, Estonia

Abstract

BACKGROUND: Cruciferous oil-bearing crops have gained in importance worldwide. The expansion of the
growing area of these crops has caused a proliferation of pests. Exposure to organophosphate, carbamate and
pyrethroid insecticides has been associated with bee poisoning in food crops. This study examines the repellent
effect of alpha-cypermethrin on the number of foraging honey bees, Apis mellifera L., on fields of spring oilseed
rape, Brassica napus L. var. oleifera.

RESULTS: The first experiment was conducted on differently sprayed 10 m2 experimental plots where alpha-
cypermethrin was applied at different times. Another experiment was conducted on a 4 ha seed production
field divided into two parts: one part was treated with alpha-cypermethrin and the other was not treated with
this insecticide. The results show that there was no difference in the number of honey bees between alpha-
cypermethrin-treated and untreated patches. The result persisted through three observation years, regardless of
varying flower and honey bee densities.

CONCLUSION: No repellent effect of the insecticide on honey bees was found even 24 h after spraying. The density
of oilseed rape flowers most likely played a major role in choosing the foraging area.
 2007 Society of Chemical Industry

Keywords: alpha-cypermethrin; Brassica napus L. var. oleifera; Apis mellifera L.; foraging; repellence

1 INTRODUCTION
The continuous growth of the human population has
increased the need for agricultural products. During
the last 50 years the growing area of cruciferous oil-
bearing crops has greatly increased.1 Vegetable oils
are needed not only in food production but also as
a raw material for fuel. Northern agricultural areas
are unsuitable for the effective cultivation of most oil
crops, but oilseed rape, Brassica napus L. var. oleifera,
is easy to establish and grow in northern temperate
climates.

A major problem with cultivating spring oilseed
rape in northern Europe is that damage caused by
the key pest, the pollen beetle Meligethes aeneus F., is
increasing. Hokkanen2 has explained the increase in
the numbers of pollen beetle by ecological changes:
initially, when the host plants were sparse, the high
reproductive rate of the insect was of no benefit for it;
when the number of host plants became unlimiting,
however, their high fecundity became advantageous.
Owing to the increased occurrence of pests in oilseed
rape, the use of pesticides has become an almost
inevitable part of cultivating these crops.

Oilseed rape plants are very attractive to pollinating
insects.3,4 In the case of conventional farming, where
pesticides are widely used, the high attractiveness
of a plant species may enhance the hazards of
pesticide poisoning to bees. Bee poisoning incidents
have been frequently associated with exposure to
pesticides.5,6 Bees may come into contact with
poisonous compounds through contaminated flower
resources, direct contact with poison or exposure to
residues.6

Application of insecticides is often not permitted
during the flowering period of a given crop. Even when
insecticides are not sprayed on flowers but on flower
buds, the residues of the compounds still contaminate
nectar and pollen in sublethal doses via both active
and passive transport.5 Many insecticides have been
described as safe to bees because they do not kill
them, although sublethal doses may affect pollinators
by decreasing their foraging and navigation abilities.6

Some pesticides do not affect adult bees but affect
brood, so that young adults emerging from cocoons
may have malformed wings or other deformations.7

However, some insecticides may be regarded as safe
because they repel bees, although in some instances,

∗ Correspondence to: Reet Karise, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
E-mail: reet.karise@emu.ee
†This paper was presented at the 9th International Symposium Hazards of Pesticides to Bees
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Published online 19 September 2007; DOI: 10.1002/ps.1445

 2007 Society of Chemical Industry. Pest Manag Sci 1526–498X/2007/$30.00
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such as in the case of oilseed rape, the attractiveness
of a food resource may override the repellent effect.8

The effect of cultivation methods on the abundance
of bees has been studied at landscape scale. Morandin
and Winston9 have shown that the abundance of bees
within organic crops is higher than in conventional and
genetically modified crops. One of the explanations
they offered for this observation is that organic crops
are smaller in area, and therefore their environment
could be more suitable for natural bee populations.
These results concur with the studies by Mänd et al.10

and Sepp et al.11 However, there is a lack of data
concerning bee abundance on insecticide-treated and
untreated crops when the crops are situated next
to each other. Alpha-cypermethrin is a non-systemic
insecticide with contact and stomach action that may
reduce the foraging ability of bees12 and is reported
to be repellent to them for 48 h.5 Hence, it can be
assumed that, owing to repellency, the number of
honey bees should be lower on insecticide-treated
food resource patches for at least 24 h after treatment.
This study examines the repellent effect of alpha-
cypermethrin on the number of foraging honey bees
on spring oilseed rape fields.

2 MATERIALS AND METHODS
Two field experiments were carried out on spring
oilseed rape crops to study the repellent effect of
the insecticide alpha-cypermethrin on the density of
honey bees. The experiments were conducted near
Tartu, Estonia, in 2003–2005. In both experiments,
the rape cultivar was ‘Maskot’, and a commercial
alpha-cypermethrin 50 g L−1 EC (Fastac; BASF,
Limburgerhof, Germany) was used at a rate of 0.15 L
ha−1 (7.5 g AI ha−1).

2.1 Experiment 1: effect of alpha-cypermethrin
treatment intensity on the number of honey bees
This experiment was performed to evaluate the impact
of alpha-cypermethrin on the number of foraging
honey bees on small patches of spring oilseed rape
treated once or twice (at different times) with the
insecticide. The observation area consisted of a 5 ha
field of summer wheat where a regular array of
patches of spring oilseed rape was sown. The design
of the experiment was a randomized block with twelve
1 × 10 m2 plots with a distance of 1 m between each.
Three treatments were used: unsprayed, once sprayed
and sprayed twice, each replicated 4 times. In the
sprayed-once treatment the insecticide was applied
when rape plants were in the growth stage of 2–4 true
leaves (GS 10, according to Lancashire et al.13). For
the twice-sprayed treatment, the first spray was applied
at the same time as the once-sprayed plots with an
additional application at the stage of first flowers (GS
61–62). The insecticide was applied using a manually
operated sprayer, and, during spraying, plastic screens
prevented the contamination of neighbouring plots.
The insecticide treatments were conducted only on

days when wind speed did not exceed 1–2 m s−1.
The cultivation methods between the treatments were
identical.

In all years, the observation period lasted throughout
July, i.e. the flowering period of oilseed rape. The
lengths of flowering periods differed according to
weather conditions and lasted from 2 weeks (2004)
to 3.5 weeks (2005). During bee counts, the observer
walked slowly along the plot and recorded all honey
bees foraging on the oilseed rape. The number of
open flowers was determined on 1 m2 quadrats within
each plot. Counts were made twice weekly during
the flowering period, starting at 24 h after the last
spray application. All bee counts were made on days
when there was no rain, fog or strong wind and
air temperature was over 16 ◦C at around midday
(11.00–16.00 h).

2.2 Experiment 2: honey bee abundance before
and after alpha-cypermethrin treatment
The second experiment was carried out on a seed
production crop of spring oilseed rape to test the
abundance of honey bees before and after insecticide
application. The experiment was conducted in July
2003. A spring oilseed rape field (4 ha) was divided
into two parts (approximately 2 ha): one part was
treated with alpha-cypermethrin and the other was
left untreated. Within both fields, seven 1 × 10 m2

observation plots were marked. Six honey bee colonies
were brought close to the crops (200 m away) 2 days
before flowering started (late bud stage, GS 60). The
insecticide was applied using a motorized field sprayer
when the plants were at the mid-flowering stage (GS
65–66). During spraying, wind speed did not exceed
1–2 m s−1. To prevent direct poisoning of honey bees,
the hives were closed before the insecticide application
and kept closed for 24 h. No visible mortality was
detected in close proximity to the hives during the
experiment. The counting of flowers (on 1 m2 per
plot) and bees (on the whole plot, 10 m2) was made
8 days before and 1 day and 8 days after the insecticide
treatment using the methods described above.

2.3 Data analysis
To test for the effects of the treatments and years on
the number of flowers and the number of bees, one-
way and two-way analysis of variance (ANOVA) was
used. The number of flowers on different observation
plots varied both from day to day and throughout
the flowering period. Therefore, when estimating the
mean density of honey bees, their number was not
taken per unit area but per 1000 flowers. Because
the data of the first experiment were not distributed
normally, Spearman’s correlation was used to test for
correlation between number of flowers and number of
bees. To compare the abundance of bees and flowers
on seed production crops, the t-test was used. The
accepted level of significance was 5% in all cases.
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3 RESULTS
3.1 Experiment 1: effect of alpha-cypermethrin
treatment intensity on the number of honey bees
In all years, there was no significant difference
in the number of bees per 1000 flowers between
the treatments either during the whole observation
period (Fig. 1) (2003: F2,38 = 0.3, P = 0.7; 2004:
F2,29 = 0.9, P = 0.4; 2005: F2,27 = 0.7, P = 0.5) or
on the first observation day, i.e. 24 h after the second
spraying (2003: F2,9 = 0.5, P = 0.6; 2004: F2,9 = 1.6,
P = 0.3; 2005: F2,9 = 0.2, P = 0.8). Yet there was a
significant difference in total number of bees between
the years (F2,177 = 3.7, P = 0.03). Flower densities
differed significantly between the treatments in all
years (2003: F2,57 = 5.2, P = 0.008; 2004: F2,33 =
8.4, P = 0.001; 2005: F2,81 = 8.2, P = 0.001). An
interesting trend was found: in the case of lower flower
densities, the number of bees did not depend on the
number of flowers, but statistically significant positive
correlations became apparent at a certain level of
flower density (Fig. 2).

3.2 Experiment 2: honey bee abundance before
and after alpha-cypermethrin treatment
The number of bees per 1000 flowers did not differ
between the untreated and treated crops either 1 week
before (t = 1.7, df = 12, P = 0.12) or 1 week after
(t = 0.2, df = 12, P = 0.9) the application of the
insecticide (Fig. 3). However, 24 h after spraying, the
number of honey bees per 1000 flowers for the treated
crop was significantly higher than for the untreated
crop (t = 4.4, df = 12, P = 0.001). An investigation
was carried out to determine whether these differences
in the abundance of honey bees between the crops were
induced by the differences in flower densities. Indeed,
in the middle of the flowering period (counted 24 h
after spraying) the density of flowers in the treated
crop was significantly higher than in the untreated
crop (t = 2.2, df = 12, P = 0.048). At the same time,
the number of oilseed rape flowers did not differ
significantly between the untreated and treated crops
at the beginning and at the end of the flowering period
(accordingly: t = 1.5, df = 12, P = 0.2; t = 0.04,
df = 12, P = 0.9). When comparing the abundance
of honey bees for the observation days, the number of
bees was significantly lower for both crops 24 h after
spraying (untreated: F2,18 = 16.4, P = 0.001; treated:
F2,18 = 3.3, P = 0.05) (Fig. 3).

4 DISCUSSION
This study showed that there was no difference in the
number of foraging honey bees between the patches
treated with alpha-cypermethrin and those not treated
with the insecticide. The result persisted through
three observation years regardless of varying flower
and honey bee densities. No repellent effect of the
insecticide on honey bees was found even 24 h after
spraying. The density of oilseed rape flowers most
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Figure 1. Number of honey bees per 1000 flowers on oilseed rape
crops treated with alpha-cypermethrin or not treated with
alpha-cypermethrin: (a) 2003; (b) 2004; (c) 2005. Means with standard
error are given.

likely played a major role in choosing the foraging
area.

Pyrethroids are known as the insecticides most
repellent to bees.8 Pyrethroid repellency can also
reduce the foraging activity of bees.14 Alpha-
cypermethrin has been reported to maintain repellency
to bees for 48 h after treatment.5 However, most stud-
ies on repellency have been performed in laboratory
or semi-field conditions. In field conditions, the repel-
lency of pyrethroids may be lower than suggested by
semi-field experiments.8 In field studies, Mayer and

Pest Manag Sci 63:1085–1089 (2007) 1087
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Figure 2. Spearman’s correlations between the number of honey
bees and the number of flowers on the experimental plots (10 m2):
(a) 2003; (b) 2004; (c) 2005; ∗ − P < 0.05; n.s. – not significant.

Lunden15 did not find any repellency to bees for alpha-
cypermethrin applied at the field rate to flowering
oilseed rape. Shires et al.16 found that, when sprayed
on oilseed rape during periods of peak honey bee forag-
ing activity, alpha-cypermethrin caused a slight decline
in the level of foraging and in the levels of collected
pollen.8 Evidence for repellency may also be ques-
tioned by the detection of relatively high residues of
cypermethrin in honey and wax.8 The present results
tend to confirm that alpha-cypermethrin does not
show repellency for honey bees in field conditions. If
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Figure 3. Number of honey bees per 1000 flowers on three
observation days on seed production crops adjacent to each other.
Means with standard error and standard ∗1.96 are given.
∗∗∗ − P < 0.001; n.s. – not significant.

any repellency does occur with respect to this insec-
ticide, the attractiveness of the flower resource may
override it.

The results of the first experiment showed that
application of the insecticide at the beginning of
flowering had no effect on the number of foraging
honey bees per unit of flowers. Irrespective of the
variable number of bees available in different years,
the trends remained the same. The relative number
of honey bees was connected with floral density: on
dense observation plots, the numbers of bees and
flowers were positively correlated, whereas on sparse
patches no such correlation was found. According
to the theory of optimal foraging, animals distribute
among differently rewarding food resources so that the
average amount of food per specimen remains equal.17

In spite of this theory, in the first experiment, dense
patches of oilseed rape were even more attractive for
the bees. The data of the second experiment also
uphold the result that the bees visited rich food
patches more often than expected on the basis of
flower resources.

Rape plants are known to be a favoured food source
for bees owing to their high nectar production rate3

and valuable pollen amino acid content.4 It is also
known that honey bees recruit nestmates to profitable
foraging sites. Newly recruited bees fly directly from
the hive to the vicinity of a food source, and then
proceed to search for its exact location using odour and
other cues.18 The patches with higher flower densities
may trigger more recruitment of nestmates on fields,
as might have occurred in our second experiment.
However, in the first experiment this could hardly
affect the results because the area itself and the
experimental patches were too small, and the patches
were situated between each other, which would not
permit exact identification of profitable small patches
through waggle dance.

In the second experiment, 24 h after spraying there
was a decline in the number of foragers not only
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on the treated but also on the untreated crop when
compared with the rest of the observation days. As the
abundance of honey bees decreased on both fields, it
can be assumed that this was not related to treatment
but more likely to climatic conditions and/or the start
of flowering of some other attractive food plant species
(e.g. leguminous) nearby. The end of July is the
period when the aftermath of clover starts flowering
on pastures or meadows and may attract bees away
from rape crops.

Coming into direct contact with alpha-cyperme-
thrin, or its residues, may cause death or sublethal
effects in bees. The contact may be either direct
(residues on leaf surfaces) or indirect (spray contami-
nation of the nectar or pollen).6 It has been shown that
the residues on leaf surfaces are toxic for more than
3 days following insecticide application and may kill
up to 25% of bees that come into contact with them.19

There is at least one study that shows the presence
of residues of alpha-cypermethrin in small quantities
(0.01 mg kg−1) in the pollen of oilseed rape after insec-
ticide application (10 g AI ha−1).12 The compound has
an LD50 of 0.319 µg AI bee−1.20 There is also evidence
for the existence of alpha-cypermethrin residues in
dead honey bees.21 The present experiments indicate
that honey bee food crop preference does not depend
on the presence of insecticide residues on flowers but
rather on the flower abundance of the crop plant. The
alpha-cypermethrin formulation Fastac is commonly
used to control pollen beetles in oilseed rape. Con-
trolling this pest contributes to higher flower densities
as the damage caused by the larvae to the flower-
ing structures is prevented. Therefore, treated crops
may often have high flower densities and therefore are
more attractive to bees than crop areas damaged by the
beetle. In field conditions, honey bees can become con-
taminated with residues of alpha-cypermethrin even if
the hives have been kept closed for some time after
spraying. The foraging ability of honey bees depends
on their physiological state. Therefore, it is evident that
reliable data are needed with respect to the effects of
sublethal doses of the insecticide on the transpiration
and respiration of the bees.
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SUMMARY 13

Sublethal effects of pesticides in insects can be observed through physiological changes, 14

which are commonly estimated by metabolic rate and respiratory patterns, more 15

precisely by the patterns of discontinuous gas-exchange (DGE) cycles. The aim of the 16

present research was to study the effect of some low concentrations of Fastac 50 EC on 17

the cycles of CO2 release and respiratory water loss rates (WLR) in bumble bee Bombus 18

terrestris foragers. Bumble bees were dipped into 0.004% and 0.002% Fastac 50 EC 19

solution. Flow-through respirometry was used to record the respiration and WLR three 20

hours before and after the treatment. The respirometry was combined with infrared 21

actography to enable simultaneous recording of abdominal movements. Our results 22

show that Fastac 50 EC has a dose dependent after-effect on bumble bee respiratory 23

rhythms and muscle activity but doesn’t affect WLR. Treatment with 0.004% Fastac 50 24

EC solution resulted in disappearance of the respiration cycles; also the lifespan of 25

treated bumble bees was significantly shorter. Treatment with 0.002% Fastac 50 EC 26

solution had no significant effect on respiration patterns or longevity. We found no 27

evidence for the DGE cycles functioning as a water saving mechanism, our results rather 28

support the oxidative damage hypothesis.  29

30
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INTRODUCTION32

The abundance of native pollinators has declined rapidly over recent years in intensively 33

managed agricultural landscapes (Mänd et al., 2002; Carvell et al., 2006; Potts et al., 2010). 34

Among other reasons the intensive use of pesticides has been claimed to play an important 35

role in this decline (Wickramasinghe et al., 2004; Potts et al., 2010; Stokstad, 2012). 36

Insecticide application on flowering crops is mainly prohibited, although many products are 37

allowed to be used at times when honey bees are not foraging. Unfortunately, these 38

restrictions do not prevent bee contact with pesticide residues and do not consider behavioural 39

aspects of bumble bees and other wild bees (Corbet et al., 1993; Thompson, 2001; Karise et 40

al., 2007). Also, compared to lethal doses, sub-lethal doses of toxicants might be even more 41

detrimental to bee populations causing chronic effects which, over a longer time-scale and in 42

interaction with other stressors, may lead to decline of the species (Thompson, 2001, 2003). 43

The effects of sub-lethal pesticide doses can sometimes be observed and proved only 44

through physiological changes in insects. The physiological state of an insect is commonly 45

estimated and characterized by the metabolic rate and respiratory patterns, more precisely by46

the patterns of discontinuous gas-exchange (DGE) cycles (Kestler 1985, 1991). DGE is a 47

nerve controlled system that reacts easily to slight changes in stress level.  48

Cyclic release of CO2 during gas exchange (Kestler, 1971, 1985) is common in many 49

insect species. This is a range of respiratory gas exchange patterns from continuous to 50

periodic. The pattern is called discontinuous (DGE) (Lighton, 1996; Hetz and Bradley 2005; 51

Chown et al., 2006) when it involves the closing of the spiracles of the insect tracheae 52

(constriction phase, C) during which no CO2 release occurs; the C-phase is followed by a 53

period of intermittent CO2 release (flutter phase, F) and, thereafter, a rapid opening of 54

spiracles (open phase, O). The O-phase often coincides with contraction of abdominal 55

muscles or active ventilation. According to Kestler (2003), this active ventilation is a strategy 56

to conserve water. The cyclic gas exchange pattern (CGE) (Lighton, 1996; Marais and 57

Chown, 2003; Gibbs and Johnson, 2004; Marais et al., 2005) has no C-phase, the opening of 58

spiracles is alternated by a F-period with a low level of CO2 release. In CGE, the cycle length 59

is shorter and CO2 release rarely decreases to zero. The precise pattern of cyclic respiration in 60

insects depends on many factors: metabolic rate (Moerbitz and Hetz, 2010), insect species 61

(Chown 2011) with its intrinsic needs for environmental conditions (Quinlan and Hadley, 62

1993; Basson and Terblanche, 2011), individual traits (Gray and Chown, 2008; Woods, 63

2011), stressors (Kestler, 1991; Zafeiridou and Theophilidis, 2006) and to the conditions 64
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(Karise et al., 2010) the specimen is exposed to during the experiment. Most likely several 65

factors work together to influence the expression of DGE cycles (Chown, 2002). 66

There are different hypotheses and contradictory explanations about the function of 67

DGE, as reviewed by Chown (2002) and Chown et al. (2006). The newest hypotheses 68

consider oxidative damage (Hetz and Bradley, 2005), signalling role for reactive oxygen 69

species (Boardman et al., 2012) and neural regulation of the ventilation patterns (Matthews 70

and White, 2011). Still, the most widely discussed has been the hygric hypothesis, which, 71

starting with Buck (1958) has later been supported by many other researches (Kestler, 1980, 72

1982; Slama, 1988, 1999; Lighton et al., 1993; Terblanche et al., 2008). Despite some 73

counter-arguments (Lighton et al., 2004; Lighton and Turner, 2008), the hygric hypothesis is 74

still the one with most support (Schimpf et al., 2009, 2012; Williams et al., 2010).  75

Despite many different hypotheses on the function of DGE none exclude others, rather it 76

suggests a basis for combined existence (Förster and Hetz, 2010). There is proof that DGE 77

cycles do confer a fitness benefit. Schimpf et al. (2012) showed that desert insects that 78

exchange gases discontinuously are more likely to survive desiccating conditions than those 79

that do not. Although respiratory water loss usually represents only a small fraction of total 80

water loss (Lighton, 1994; Chown, 2002; Dingha et al., 2005; Lamprecht et al., 2009) the 81

lower water loss due to DGE may be significant in extending survival in some conditions 82

(Schimpf et al., 2012). The pesticide derived excessive diuresis in insects may lead to 83

increasing stress becoming determinative in surviving toxicosis. 84

Pyrethroids are often sprayed on the flowering oilseed crops to control the pollen beetle 85

Meligethes aeneus (Fabricius, 1775) which attacks buds and flowers. The beginning of 86

flowering in turn attracts large numbers of pollinators which may come into contact with 87

pesticides or their residues on flowers. The objective of the present investigation was to 88

clarify whether the effect of an insecticide results from water loss, as it could be assumed 89

according to the hygric hypothesis, or whether there are other factors that play an important 90

role. Our precise aim was to study the effect of some low concentrations of Fastac 50 EC (a.i. 91

alpha-cypermethrin) on the cycles of CO2 release and respiratory water loss rate (WLR) of 92

bumble bee Bombus terrestris (Linnaeus, 1758) foragers. 93

94

95

96

97

98
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MATERIALS AND METHODS 99

Insects 100 

Colonies (Natupol hives) of the bumble bee B. terrestris were purchased from Koppert 101 

Biological Systems B.V. (Berkel en Rodenrijs, The Netherlands). The hives were kept at 102 

room temperature and the bees fed with dried honey bee pollen and a sugar solution (30%). 103 

The bees used in the experiment were caught as they emerged naturally from the hive 104 

entrance tunnel; it means that all of them were foragers.105 

106 

Respirometry 107 

An infrared gas analyser (IRGA, Infralyt-4, VEB, Junkalor, Dessau), adapted for 108 

entomological research, was used in the first experiment, to record the CO2 signals and 109 

metabolic rates (VCO2 ml h-1) at 8°C. The IRGA was calibrated at different flow rates using 110 

calibration gases (Trägergase, VEB, Junkalor, Dessau) with gas injection (Kuusik et al., 2002; 111 

Martin et al., 2004; Mänd et al., 2005, 2006). The rate of carbon dioxide release was 112 

measured (VCO2 ml h-1) at an air flow rate of 120 ml min-1, a pressure compensated URAS 26 113 

(ABB Analytical, Frankfurt, Germany), covering a measuring range of 0 to 500 ppm. The 114 

data from the analyzer were sampled at a rate of 10 Hz to PC via the analog output. The CO2115 

and H2O were eliminated from the flow-through system air by DRIERITE and a molecular 116 

sieve. 117 

The LI-7000 differential CO2/H2O Analyzer (LiCor, Lincoln, Nebraska, USA), designed 118 

for laboratory and field research applications, was used in the second experiment, to record 119 

water loss (VH2O l h-1) parallel to the bursts of CO2 releases in bumble bee foragers at 18°C. 120 

Air flow in LI-7000 was regulated at 166 ml min-1 (10 l h-1). The CO2 and H2O were 121 

eliminated from the air used in the flow-through system by NaOH and Mg(ClO42). The IRGA 122 

was calibrated using NIST-traceable standard gases (for CO2).123 

124 

Infrared-actography 125 

The LI-7000 was combined with an infrared (IR) actograph to record abdominal movements. 126 

The actograph has also been used as an insect IR cardiograph or optocardiograph (Hetz, 1994; 127 

Hetz et al., 1999; Mänd et al., 2006; Karise et al., 2010). Two IR-emitting diodes (TSA6203) 128 

were placed on one side (ventral side of the insect abdomen) and two sensor diodes (BP104) 129 

were placed on the opposite side of the insect chamber. Abdominal movements caused 130 

changes in the light transmitters, which were converted into voltages and recorded as spikes.  131 

132 
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133 

Treatments 134 

A commercial formulation of alpha-cypermethrin (Fastac 50 EC, a.i. 50 g/l, BASF SE, D-135 

67056 Ludwigshafen, Germany) was used to measure its effect on bumble bee respiratory 136 

patterns and water loss. We diluted the Fastac 50 EC to 0.04% (20 ppm of alpha-137 

cypermethrin), which corresponds to the registered field rate in Estonia of 20 g a.i. ha-1. For 138 

our experiments, the field dosage of Fastac 50 EC was diluted with distilled water to 0.004% 139 

(2 ppm of alpha-cypermethrin) and 0.002% (1 ppm of alpha-cypermethrin) which are 140 

accordingly 10 and 20 times lower concentrations than recommended for treating flowering 141 

rape fields against pests. The bumble bees were dipped into the alpha-cypermethrin solution 142 

or distilled water as control for 10 seconds (Saba, 1971). Following dipping, each bee was air-143 

dried on filter paper. This dipping method is widely used in various insect toxicology 144 

experiments with differing solvents or submergence times (5 sec to 1 min) by both insect 145 

larvae (Isayama et al., 2005; Cetin et al., 2006; Erler et al., 2010) and adults (Sibul et al., 146 

2004; Azimi et al., 2009). In the case of bumble bees, the dipping method has been used as an 147 

alternative method in contact tests (van der Steen, 2001). 148 

149 

The measurements 150 

The measurements lasted for six hours per individual bumble bee. All individuals were 151 

measured in the flow-through respirometer for three hours after which the insect chamber was 152 

opened and the bumble bee taken out for treatment. The treatment, according to the prescribed 153 

scheme (different concentrations of Fastac 50 EC or distilled water), was carried out 154 

immediately and the bee was placed back into the insect chamber for the next three hours.  155 

In the first experiment, the metabolic rate and the frequency of bursts of CO2 releases of 156 

B. terrestris foragers were measured at 8°C. Bumble bees are very active insects and tend to 157 

maintain high body temperature by shivering and contractions of flight muscles. The 158 

temperature was chosen to prevent flight muscle activity in the bumble bees (Goller and Esch, 159 

1990; Kuusik et al., 2002) and eventually the regular DGE appeared in most of the 160 

individuals.  161 

In the second experiment, muscle activity, respiration rate and WLR were measured at 162 

18°C. Bumble bees often experience this temperature when foraging. For bumble bees it is 163 

important to keep their thoracic temperature high for several reasons: to minimise pre-flight 164 

warm-up time when exploiting different inflorescences and to minimise escape time when 165 

avoiding predators (Nieh et al., 2006). That is why many bumble bee individuals shorten the 166 



128

length of the DGE cycles or do not show DGE at all at 18°C. Therefore, we did not count the 167 

clear cycles of discontinuous gas exchange at this temperature; instead, we examined the 168 

change in the respiratory and abdominal activity patterns. The higher metabolic rate increases 169 

also the WLR of the insect; therefore the differences in WLR should be more easily 170 

detectable. 171 

The dose of alpha-cypermethrin bumble bees received (measured from ground-up 172 

bumble bee bodies) was 0.995 ± 0.227 g/g (0.004%) and 0.87 ± 0.18 g/g (0.002%) 173 

(analyzed by Agricultural Research Centre, Laboratory for Residues and Contaminants, 174 

Teaduse 4/6, Saku, 75501 Harjumaa, Estonia). The method used in the chemical analysis was 175 

EN 12393-1,2,3: 1998 GC-ECD/NPD, GC-MS, LC-MS/MS; Norwegian Crop Research 176 

Institute Pesticide Lab, M04. 177 

178 

The longevity of bumble bees 179 

Bumble bees treated with Fastac 50 EC solutions of both concentrations or distilled water, as 180 

described above, were kept at room temperature in the dark. Each bee was placed in a 181 

separate chamber and provided with 30% sugar solution as food. The bumble bees were 182 

checked daily until death. The bumble bees were considered dead when they did not move 183 

antennae or legs and did not respond to tactile stimulation. Then death was confirmed using 184 

LI-7000 (Jõgar et al., 2008). 185 

186 

Data acquisition and statistics 187 

Computerised data acquisition and analysis were performed using the DAS 1401 A/D 188 

(analog-digital) hardware and the software TestPoint (Keitley, Metrabyte, USA) with a 189 

sampling rate of 10 Hz. The LI-7000 analyser was connected to a computer to record CO2190 

production in parts per million (ppm) using LiCor software. Mean metabolic rates were 191 

automatically calculated by a statistical program by averaging data over 3 h periods after 192 

excess CO2 and H2O which entered the system during handling had left the system. Paired t-193 

tests and Kruskal-Wallis test were used in statistical analysis (StatSoft ver.10, Inc./USA). 194 

Mean values are presented with ± s.e.m. 195 

196 

197 

198 

199 

200 
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RESULTS 201 

The experiment at 8°C  202 

The untreated resting bumble bee foragers exhibited rhythmic gas exchange patterns at low 203 

temperature. The results of all the treatments are presented in Table 1. The solution with 204 

0.004% Fastac 50 EC changed the respiratory patterns. The numbers of bursts of CO2 releases 205 

and the mean metabolic rates decreased significantly. Treating the bees with 0.002% solution 206 

also caused a decrease in the numbers of bursts of CO2 releases, although the difference was 207 

not statistically significant. The mean metabolic rate decreased significantly. Dipping the 208 

bumble bees into distilled water as a control affected neither the frequency of bursts of CO2209 

releases nor the mean metabolic rate (Table 1). 210 

211 

The experiment at 18°C 212 

At 18°C, bumble bees were more active: the time to calm down and show CGE or DGE 213 

cycles were longer. During the first three hours of the experiments (before the treatment) the 214 

bumble bees showed different patterns of muscle activity (not locomotor activity). This was 215 

directly dependent on which activity type the specimen belonged to (R. Karise, unpublished). 216 

Some bumble bees need more time to calm down before showing regular CGE or DGE; 217 

others show the discontinuous respiration pattern already 10-30 minutes after inserting the bee 218 

into the insect chamber. Usually longer or shorter periods of CGE or DGE interchange the 219 

periods of active ventilation.  220 

Treating the bees with 0.004 % Fastac 50 EC solution caused rapid disappearance of both 221 

rhythmic release of CO2 and muscle activity (Fig. 1A,B). In DGE, the bumble bee uses 222 

muscle work only during the short O period to aid gas exchange; after treatment regular 223 

cycles disappeared and a long-lasting muscle tremor appeared. The change in metabolic rates 224 

after the treatment was significant: in one individual the metabolic rate increased, in others it 225 

decreased. Fastac 50 EC had no significant effect on WLR (Table 2). 226 

Treatment with 0.002% Fastac 50 EC solution did not disrupt either the regular bursts of 227 

CO2 releases or muscle activity (Fig. 2A,B). However, the DGE was replaced by CGE (Fig. 228 

3A,B), by which the level of CO2 release did not reach near zero as happens during DGE. 229 

Similarly to the effect of the stronger solution, the metabolic rates of the bumble bees 230 

decreased significantly. The WLR did not change significantly (Table 2).  231 

Dipping the bumble bees into distilled water disrupted neither the DGE, if it had been 232 

present before the treatment, nor the muscle activity of the bumble bee foragers. The 233 

metabolic rate and WLR did not change significantly (Table 2). 234 
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Respiratory transpiration constituted only a small part, less than 10% of total transpiration 235 

in the bumble bee foragers. Also during activity, the H2O release was not recognisably higher 236 

compared to the WLR in the C-phase. The simultaneous measurement ensured the exact 237 

coincidence of the bursts of CO2 and H2O release (Fig. 4). 238 

239 

The effect of Fastac 50 EC on bumble bee longevity 240 

The mortality rate of bumble bees treated with different Fastac 50 EC solutions was affected 241 

by the solution concentration (H (2, N=30)=11.736 p=0.003). Most individuals treated with 242 

the higher concentration solution (0.004%) died within 1-3 days, although individual variation 243 

was observed (one specimen lived for 8 days, another 16 days). The bee which lived for 16 244 

days after the treatment was also repeatedly controlled in the respirometer, which showed that 245 

the normal DGE or CGE recurred 48 hours after treatment and this pattern persisted at least 246 

until day 4. Also muscle activity recurred on day 3. On day 6, there was neither DGE nor 247 

regular CGE. Treatment with 0.002% solution did not shorten the life span of the bees 248 

significantly compared to those treated with distilled water (p>0.05) (Fig. 5).  249 

250 

DISCUSSION 251 

Our results show that Fastac 50 EC has a dose dependent after-effect on bumble bee 252 

respiratory rhythms, metabolic rate and muscle activity but has no effect on WLR. The 253 

regular periods of discontinuous or cyclic gas exchange disappeared during the first 30 254 

minutes after treatment with 0.004% Fastac 50 EC solution. This treatment also shortened the 255 

lifespan of bumble bees. Contact with 0.002% Fastac 50 EC solution did not provoke that 256 

kind of drastic disappearance of rhythmic gas exchange and the longevity of bumble bees did 257 

not change compared to control bees treated with distilled water. 258 

The existence and nature of carbon dioxide emission patterns depends on many factors. 259 

These include environmental conditions (Kestler, 1971; Dingha et al., 2005; Terblanche et al., 260 

2008; Karise et al., 2010), metabolic rate (Kestler, 1991; Sibul et al., 2004; Jõgar et al., 2006), 261 

the life stage of the insect (Beekman and Stratum, 1999; Mänd et al., 2005, 2006) and several 262 

stress factors (Kestler, 1991; Lighton and Lovegrove, 1990; Kovac et al., 2007). Normally 263 

bumble bees show DGE cycles as a sign of calming down or resting. The events of calming 264 

down are clearly observed on the respirograms of bumble bees (Karise et al., 2010). 265 

Kestler (1991) claims that negative stressors raise standard metabolic rate of resting 266 

insects. Jõgar et al. (2006) also described the rise in metabolic rates after treatment with Neem 267 

EC in Colorado potato beetles. By contrast, our results show a decline in metabolic rates of 268 
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bumble bees after contact with Fastac, a pyrethroid insecticide. Some other researches also 269 

interpret the reduction in metabolic rate as a generalized response to stressors (e.g., toxins, 270 

insecticides, heat and cold) that could lead to a reduction in respiratory water loss (Hoffmann 271 

and Parsons, 1989; Chown and Gaston, 1999). Sibul et al. (2004), however, did not see any 272 

change in metabolic rates of pine weevils after contact with Neem EC. These results suggest 273 

that the effect of pesticides on metabolic rates of insects depends largely on both insect 274 

species and pesticide formulation.  275 

According to Kestler (1991), the pathological CO2 release patterns can be divided into 276 

phases: latency phase with closed-flutter-ventilation (CFV), followed by continuous 277 

respiration with small irregular bursts of CO2 releases. Kestler considers this as a reversible 278 

excitation phase being a typical stress index for sublethal doses of neurotoxic pesticides. The 279 

reversible excitation phase devolves to an irreversible excitation phase with no bursts of 280 

cyclic CO2 release. At that time, the spiracles stay open and are paralysed.  281 

We found clear alteration in respiratory rhythms of bumble bees after treatment with 282 

alpha-cypermethrin, the neurotoxic active ingredient of Fastac 50 EC. Contact with the 283 

0.004% solution caused rapid disappearance of the respiration cycles in most of the foragers. 284 

Contact with the 0.002% solution of Fastac 50 EC changed the classical CFO cycles to FV 285 

cycles within about the first 30 minutes, later the bouts of CO2 releases disappeared. If the 286 

large bouts of CO2 releases occurred after treatment, these were rather FV cycles instead of 287 

CFO cycles. Two specimens out of six showed large bursts of CO2 releases after the 288 

treatment, others showed varying rates of released CO2 of a relatively low but smooth level. 289 

We saw the shift from cyclic towards continuous respiratory behaviour along with decreasing 290 

metabolic rate due to non-ability of bumble bees to keep the spiracles closed. The diminishing 291 

muscle work after the treatment with the neurotoxic chemical (Zafeiridou and Theophilidis, 292 

2006; Woodman et al., 2008) is most likely the result of paralysis, not the result of calming 293 

down. In unstressed insects the decreasing metabolic rate is a sign of calming down and 294 

therefore the shift towards classical DGE should appear (Bradley, 2007; Gray and Chown, 295 

2008; Moerbitz and Hetz, 2010). 296 

It seems reasonable to conclude that a dose of 0.004% Fastac 50 EC is not sub-lethal, but 297 

lethal. For most individuals, the symptoms of intoxication were irreversible. The fact that at 298 

least two specimens lived for longer (8 and 16 days), shows that this concentration must be 299 

near the lethal dose for bumble bees but indicates also the heterogeneity of B. terrestris300 

population in the context of alpha-cypermethrin immunity. We interpret that, according to 301 

Kestler´s (1991) classification, the bumble bees must have been in reversible excitation phase 302 
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only. The three hour period must have been too short to see total recovery from the 303 

intoxication. We saw the reappearance of the regular DGE in the bumble bees which survived 304 

the higher dose and lived for 8 or 16 days after treatment. 305 

In spite of significantly decreasing metabolic rate, total water loss did not differ 306 

significantly after dipping the bees into distilled water or into the Fastac 50 EC solution of 307 

either concentration. However, the WLR showed a trend to increase after treatment of the 308 

bees with the 0.004% solution, while decreasing after treatment with 0.002% solution or 309 

distilled water. The decreasing WLR is normal when metabolic rate decreases. At lower 310 

metabolic rate the gas exchange including WLR is lower. The slightly higher WLR after the 311 

treatment with 0.004% Fastac 50 EC solution was not caused by muscular excitation, since 312 

this would have been seen on the actograph recordings. We suppose that, due to paralysis, the 313 

spiracles of the bumble bees may have been open (continuous CO2 release) after treatment 314 

and along with the outflow of CO2, the water vapour was also washed out from the tissues of 315 

moribund insects. Total water loss has been showed to be higher during continuous, compared 316 

to discontinuous, CO2 release (Matthews and White, 2012). 317 

Several studies reveal that respiratory water loss comprises mostly a small fraction of 318 

total water loss, even when the spiracles are open (Quinlan and Hadley, 1993; Quinlan and 319 

Lighton, 1999; Chown, 2002; Gibbs and Johnsson, 2004; Lighton et al., 2004). We suppose 320 

that, for bumble bees, respiratory water loss probably does not play a very important role and 321 

the non-ability to DGE and desiccation thereafter was not the direct cause of death. The 322 

importance of respiratory water loss differs between insect species (Lamprecht et al., 2009) 323 

depending more or less on water permeability of the cuticle. Bumble bees feed mostly on 324 

liquid food and therefore they need to discharge excess water, and the water permeability of 325 

their cuticle is high (Nicolson, 2009). A characteristic of bee water balance is the rapid 326 

mobilisation of ingested dietary water from the crop to the haemolymph, allowing rapid 327 

correction of haemolymph osmotic pressure (Willmer, 1986). Besides, in larger bees like 328 

Xylocopa and Bombus sp, the metabolic water may be in excess during flight and occasionally 329 

these bees eliminate water by spitting or by defaecation (Bertsch, 1984; Willmer and Stone, 330 

1997). Because of these characteristics of bumble bee physiology, which allow them to be 331 

less judicious about respiratory patterns, and based on our results, we do not believe that  332 

death resulted from desiccation, even if the pyrethroid had increased the diuretic event. Still, 333 

the DGE cycles may confer a fitness benefit for the bumble bee B. terrestris. We did not find 334 

proof for the theory of DGE cycles functioning as a water saving mechanism; rather our 335 

results support the oxidative damage hypothesis (Hetz and Bradley, 2005). Probably, the 336 
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intoxicated bumble bees were paralysed and their spiracles were open: the freely entering 337 

oxygen could have been the key factor diminishing their fitness. This kind of research may 338 

benefit from precise observation under the microscope on the behaviour of the spiracles 339 

during intoxication. 340 
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Fig. 1. (A) The periods of DGE observable in the left part of the figure (before the treatment) 546 

are terminated by the treatment (marked by arrow) with 0.004% Fastac 50 EC solution. (B) 547 

Simultaneous recording of the IR-actograph shows the disappearance of activity periods after 548 

the treatment. (C) Detail of the shaded area in A demonstrating continuous respiration. 549 

550 

Fig. 2. (A) The alternating periods of DGE and activity, observable in the left part of the 551 

figure (before the treatment), are replaced after the treatment with 0.002% Fastac 50 EC 552 

solution (marked by arrow), by periods of CGE, observable in the right part of the figure. (B) 553 

Simultaneous recording of the IR-actograph shows that this solution does not cause muscle 554 

paralysis, although the irregular rhythmic activity is supressed. The rectangles at A indicate 555 

the sections zoomed out on the Figs 3A and 3B. 556 

557 

Fig. 3. (A) The section of Fig. 2A (shaded area, left part) demonstrates the DGE pattern, 558 

where a modification from short C-phase to long C-phase can be seen. (B) The section of Fig. 559 

2A (shaded area, right part) demonstrates the CGE rhythms, during which the CO2 release 560 

does not reach near zero.  561 

562 

Fig. 4. Simultaneous recording of WLR (upper trace) and CO2 release (lower trace) in bumble 563 

bee foragers. Clear DGC with smaller and larger bursts of CO2 are observable in the left part 564 

of the figure and in the right part of the figure a brief activity period can be seen. 565 

566 

Fig. 5. The longevity of bumble bee foragers after treatment with with 0.002% and 0.004% 567 

Fastac 50 EC solution and distilled water. Different letters upon the boxes indicate 568 

statistically significant differences between groups. 569 
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Table 1. The mean metabolic rates (VCO2 ml h-1) and the numbers of bursts of CO2 releases 

of forager bumble bees treated with 0.002% and 0.004% Fastac 50 EC solution and distilled 

water as control at 8°C

Treatment Indiv. Metabolic rate 

(VCO2 ml h-1)

No of bursts of CO2

releases 

Before After Before After 

0.004% 

Fastac 50 

EC 

1 0.177 0.162 8 1 

2 0.178 0.133 7 2 

3 0.164 0.151 18 0 

4 0.203 0.134 22 3 

5 0.182 0.141 19 0 

6 0.153 0.116 9 2 

 t=4.318 df=5 p=0.008 t=4.49 df=5 p=0.006

0.002% 

Fastac 50 

EC 

1 0.213 0.204 9 4 

2 0.201 0.202 5 1 

3 0.189 0.183 34 14 

4 0.193 0.184 3 2 

5 0.185 0.176 12 11 

6 0.201 0.196 8 6 

 t=3.853 df=5 p=0.012 t=1.85 df=5 p=0.124 

Dist. water 1 0.197 0.197 20 15 

2 0.193 0.116 18 11 

3 0.205 0.204 7 4 

4 0.154 0.103 9 9 

5 0.168 0.168 16 11 

6 0.186 0.183 6 10 

 t=1.605 df=5 p=0.169 t=1.62 df=5 p=0.166 
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Table 2. The mean metabolic rates (VCO2 ml h-1) and WLR (VH2O l h-1) of forager bumble 

bees treated with 0.002% and 0.004% Fastac 50 EC solution and distilled water as control at 

18° C

Treatment Indiv. Metabolic rate 

(VCO2 ml h-1)

WLR 

(VH2O l h-1)

Before After Before After 

0.004% 

Fastac 50 

EC 

1 0.267 0.318 1.94 2.10 

2 0.270 0.169 1.66 3.52 

3 0.466 0.224 2.34 1.46 

4 0.411 0.236 2.30 6.10 

5 0.469 0.329 1.80 1.15 

6 0.376 0.255 2.01 2.85 

 t= 3.036 df=5 p=0.029 t= -1.171 df=5 p=0.294 

0.002% 

Fastac 50 

EC 

1 0.625 0.376 2.68 4.66 

2 0.581 0.494 3.49 2.93 

3 0.660 0.219 0.14 0.22 

4 0.695 0.146 4.06 1.37 

5 0.335 0.188 1.39 0.57 

6 0.617 0.259 8.23 1.81 

 t= 4.217 df=5 p=0.008 t= 1.194 df=5 p=0.286 

Dist. water 1 1.290 0.078 3.19 3.01 

2 0.061 0.024 8.13 3.24 

3 0.114 0.064 2.84 2.45 

4 0.089 0.050 2.79 2.83 

5 0.152 0.119 6.35 4.17 

6 0.415 0.198 5.23 3.75 

 t=1.378 df=5 p=0.227 t= 1.993 df=5 p=0.103 



143

0 1 2 3 4 5 6

Time (hours)

-1
V

C
O

(m
l 
h

)
2

  
 

0

1

2

3

4A

Time (hours)

Vo
lts

0 1 2 3 4 5 6
0

1

2

3

4B



144

0 5 10 15 20
Time (min)

0

1

2

3

4

 VC
O

2 
(m

l h
-1

)  
C

-1
V

C
O

(m
l 
h

)
2
  
 

0 1 2 3 4 5 6

Time (hours)

0

1

2

3

4A



145

Time (hours)

Vo
lts

0 1 2 3 4 5 6
0

1

2

3

4B

0 5 10 15 20
Time (min)

0

1

2

3

4

 VC
O

2 
(m

l h
-1

)  

A



146

0 5 10 15 20
Time (min)

0

1

2

3

4

 VC
O

2 
(m

l h
-1

)  
B



147

0.004% 0.002% Dist. water
The treatment

0

4

8

12

16

20

24

28
D

ay
s

 Median 
 25%-75% 
 Non-Outlier Range 
 Extremes

a

b b



148

CURRICULUM VITAE

First name:	 Eneli
Surname:	 Viik
Citizenship:	 Estonian
Date of birth:	 20.07.1982

Employment:
	 Agricultural Research Centre, Department of 
	 Agricultural Research and Monitoring, 
	 Riia 24D, 51010, Tartu, Estonia 
	 Phone: +372 7 480 941, 
	 e-mail: eneli.viik@pmk.agri.ee 
Position:	 Chief specialist

Academic degree:
	 Master’s degree (MSc) “The impact of foliar fertilizing 

on the number of pollinators of spring oilseed rape”, 
Estonian University of Life Sciences, 2006 

Education:	
2006–2012	 Estonian University of Life Sciences, doctoral studies, 

entomology 
2004-2006	 Estonian University of Life Sciences, master studies, 

plant protection 
2000-2004	 Estonian Agricultural University, bachelor studies,  

landscape protection and management
1997-2000	 Jõgeva Co-educational Gymnasium 
1989-1997	 Sadala Middle School

Foreign languages:	 English

Professional Employment:	
2007–present	 Agricultural Research Centre, chief specialist

Current research program:
	 Biosciences and Environment, Agricultural Sciences 

(The effect of growing technologies on insect visitors of 
oilseed rape flowers)



149

Participation in research projects:	
2012–2015	 ESF grant No 9450: „Impact of pesticide residues on 

the foraging behaviour and physiology of pollinators“. 
PhD student

2011–2012	 ESF grant No 8895: „Impact of host plants on the  
major pests of cruciferous plants and their parasitoids in 
different cropping systems“. PhD student 

2009–…	 TF project SF0170057s09: „Plant protection for sus-
tainable crop production“. Investigator

2008–2011 	 ESF grant No 7391: „Foraging behaviour of pollinators 
in farmland: use of bumble bee colonies for increasing 
the seed yield of entomophilous crops“. PhD student

2006–2008	 TF project SF0172655s04: „Development of environ-
mentally friendly plant protection II“. Investigator

2004–2007	 ESF grant No 5737: „Foraging behaviour of pollinators 
in farmland: use of bumble bee colonies for increasing 
the seed yield of entomophilous crops”. MSc student, 
PhD student

Organisation membership	 Estonian Plant Protection Organization 
– member since 2004

Awards:	 Diploma in the field of agricultural sciences for scientific 
study “The effect of different growing technologies to 
the number of pollinators of spring oilseed rape”

Training and special courses	
20.04–23.04.2009	 NordForsk workshop “Mutualistic interac-

tions”, University of Copenhagen, Denmark, 
venue: Estonia

04.11–09.11.2007	 BeeNOVA PhD course “Insect Pathology”, Uni-
versity of Copenhagen, Denmark

01.09–08.09.2007	 NOVA-BOVA intensive course “Beekeeping 
Techniques in Cold Climates”, Latvia Univer-
sity of Agriculture, Latvia

20.05–27.05.2007	 NOVA-BOVA PhD course “Weed Biology and 
Management”, Lithuanian University of Agri-
culture, Lithuania

09.09–16.09.2006	 NOVA PhD course “Insect Pollinators and Polli-
nation Ecology”, University of Helsinki, Finland



150

14.03–22.03.2006	 NOVA-BOVA MSc course “Agroecology in the 
Baltic States Today”, Lithuanian University of 
Agriculture, Latvia University of  Agriculture, 
Estonian University of Life Sciences, Lithuania, 
Latvia, Estonia

10.10–14.10.2005	 NOVA-BOVA postgraduate course “Non-
Chemical Weed Control”, Lithuanin University 
of Agriculture, Lithuania

06.09–12.09.2004	 PhD course “Social Insects”, Swedish University 
of Agricultural Sciences, Sweden



151

ELULOOKIRJELDUS

Nimi:	 Eneli Viik
Kodakondsus:	Eesti
Sünniaeg:	 20.07.1982

Töökoht:	 Põllumajandusuuringute Keskus, 
	 Põllumajandusseire ja uuringute osakond, 
	 Riia 24D, 51010, Tartu 
	 Telefon: +372 7 480 941, 
	 e-mail: eneli.viik@pmk.agri.ee 
 
Ametikoht:	 Peaspetsialist

Teaduskraad:	 Põllumajandusteaduste magister (MSc) taimekaitse eri-
alal, väitekiri “Juurevälise väetamise mõju suvirapsi tol-
meldajate arvukusele”, EMÜ, 2006  

Hariduskäik:	
2006–2012	 EMÜ, doktorantuur, entomoloogia
2004–2006	 EMÜ, magistriõpe, taimekaitse 
2000–2004	 EPMÜ, bakalaureuseõpe, maastikukaitse ja -hooldus
1997–2000	 Jõgeva Ühisgümnaasium 
1989–1997	 Sadala Põhikool

Keelteoskus:	 Inglise keel

Teenistuskäik:	
2007–	 Põllumajandusuuringute Keskus, peaspetsialist

Teadustöö põhisuunad:
	 Bio- ja keskkonnateadused, põllumajandusteadus. Kas-

vatustehnoloogiate mõju suvirapsi õisi külastavatele pu-
tukatele

Osalemine uurimisprojektides:	
2012–2015	 ETF grant nr 9450: „Pestitsiidijääkide mõju tolmeldaja-

te korjekäitumisele ja füsioloogiale“. Doktorant
2011–2012	 ETF grant nr 8895: „Peremeestaimede mõju ristõieliste 

õlikultuuride võtmekahjuritele ja nende parasitoididele 



152

erinevates viljelustingimustes“. Doktorant 
2009–…	 Sihtfinantseeritav teema SF0170057s09: „Taimekaitse 

jätkusuutlikule taimekasvatusele“, Täitja
2008–2011 	 ETF grant nr 7391: „Tolmeldajate korjekäitumine põllu-

majandusmaastikes: põllumajandusliku tegevuse mõju“. 
Doktorant  

2006–2008	 Sihtfinantseeritav teema SF0172655s04: „Keskkonna-
säästliku taimekaitsetehnoloogia arendamine II“. Täitja

2004–2007	 ETF grant nr 5737: „Tolmeldajate korjekäitumine põl-
lumajandusmaastikes: kimalasperede kasutamine ento-
mofiilsete kultuurtaimede seemnesaagi tõstmiseks”. Ma-
gistrant, doktorant 

Organisatsiooniline tegevus:
	 Eesti Taimekaitse Selts – liige alates 2004

Teaduspreemiad:
	 Diplom põllumajandusteaduste valdkonnas teadustöö 

“Erinevate kasvatustehnoloogiate mõju suvirapsi tol-
meldajate arvukusele” eest

Erialane enesetäiendus:	
20.04–23.04.2009	 NordForsk seminar “Mutualistic interactions”, 

Kopenhaageni Ülikool, Taani, toimumiskoht: 
Eesti

04.11–09.11.2007	 BeeNOVA doktorikursus “Insect Pathology”, 
Kopenhaageni Ülikool, Taani 

01.09–08.09.2007	 NOVA-BOVA intensiivkursus “Beekeeping 
Techniques in Cold Climates”, Läti Põllumajan-
dusülikool, Läti

20.05–27.05.2007	 NOVA-BOVA doktorikursus “Weed Biology 
and Management”, Leedu Põllumajandusüli-
kool, Leedu

09.09–16.09.2006	 NOVA doktorikursus “Insect Pollinators and 
Pollination Ecology”, Helsingi Ülikool, Soome

14.03–22.03.2006	 NOVA-BOVA magistrantide kursus “Agroeco-
logy in the Baltic States Today”, Leedu Põllu-
majandusülikool, Läti Põllumajandusülikool, 
Eesti Maaülikool, Leedu, Läti, Eesti



153

10.10–14.10.2005	 NOVA-BOVA magistrantide kursus “Non-
Chemical Weed Control”, Leedu Põllumajan-
dusülikool, Leedu

06.09–12.09.2004	 Doktorikursus “Social Insects”, Rootsi Põlluma-
jandusteaduste Ülikool, Rootsi



154

LIST OF PUBLICATIONS

1.1. Publications indexed in the ISI Web of Science database:

Muljar, R., Karise, R., Viik, E., Kuusik A., Mänd, M.,Williams, I. H., 
Metspalu, L., Hiiesaar K., Luik, A., Must, A. Effects of Fastac 50 EC 
on bumble bee Bombus terrestris L. respiration: DGE disappearance 
does not lead to increasing water loss. Journal of Insect Physiology 
(submitted)

Viik, E., Mänd, M., Karise, R., Lääniste, P., Williams, I. H., Luik, A. 2012. 
The impact of foliar fertilization on the number of bees (Apoidea) on 
spring oilseed rape. Žemdirbystė=Agriculture, 99 (1), 41-46.

Karise, R., Viik, E., Mänd, M. 2007. Impact of alpha-cypermethrin on 
honey bees foraging on spring oilseed rape (Brassica napus) flowers in 
field conditions. Pest Management Science, 63, 1085–1089.

1.2. Papers publised in other peer-reviewed international journals 
with a registered code:

Muljar, R., Viik, E., Marja, R., Svilponis, E., Jõgar, K., Karise, R., 
Mänd, M. 2010. The effect of field size on the number of bumble 
bees. Agronomy Research, 8, 351–357.

Koskor, E., Muljar, R., Drenkhan, K., Karise, R., Bender, A., Viik, E., 
Luik, A., Mänd, M. 2009. The chronic effect of the botanical insec-
ticide Neem EC on the pollen forage of the bumble bee Bombus ter-
restris L. Agronomy Research, 7, 341–346.

1.3. Papers in Estonian and in other peer-reviewed research 
journals with a local editorial board:

Karise, R., Mänd, M., Viik, E., Martin, A.-J., Lääniste, P. 2004. Flower 
visitors on spring oilseed rape in different cropping system. Latvian 
Journal of Agronomy, 7, 6–11.

Mänd, M., Karise, R., Viik, E., Metspalu, L., Lääniste, P., Luik, A. 2004. 
The effect of microfertilisers on the number of pollen beetles on spring 
oilseed rape. Latvian Journal of Agronomy, 7, 30–33.



155

3.1. Papers published in books listed in the ISI Web of Proceedings:

Mänd, M., Williams, I.H., Viik, E., Karise, R. 2010. Oilseed rape, bees 
and integrated pest management. In: (Ed. Williams, I.H.) Biocon-
trol-Based Integrated Management of Oilseed Rape Pests. Springer 
Dordrecht Heidelberg, London, New York, p. 357–379.       

3.2. Papers published in books by Estonian or foreign publishers 
not listed in the ISI Web of Proceedings:

Mõtte, M., Raa, I., Viik, E. 2011. MAKi meetmete rakendamise analüüs. 
Trükises: (koostanud Aamisepp, M., Matveev, E.) Põllumajandus ja 
maaelu 2011. Maamajanduse Infokeskus, Jäneda, lk. 48–56. 

3.4. Articles/presentations published in conference proceedings not 
listed in the ISI Web of Proceedings:

Köster, T., Vask, K., Koorberg, P., Selge, I., Viik, E. 2009. Do We Need 
Broad and Shallow Agri-Environment Schemes? – Outcomes of Ex-
post Evaluation of Estonian Rural Development Plan 2004-2006. In: 
Rural Development 2009. The Fourth International Scientific Con-
ference. Proceedings I. Lithuania: Lithuanian University of Agricul-
ture, p. 219-224.

3.5. Articles/presentations published in local conference 
proceedings:

Viik, E., Mänd, M., Karise, R., Koskor, E., Jõgar, K., Kevväi, R., Mar-
tin, A., Grishakova, M. 2007. Põllumajandusliku keskkonnameetme 
rakendamise mõju kimalaste liigirikkusele. Agronoomia 2007, 145–
148.

Karise, R., Viik, E., Mänd, M. 2006. Insektitsiidide mõju mesilaste kor-
jekäitumisele. Agronoomia 2006, 241–244.

Mänd, M., Metspalu, L., Viik, E., Lääniste, P., Luik, A. 2006. Lehek-
audse väetamise mõju hiilamardika arvukusele suvirapsil. Agronoom-
ia 2006, 232–235.



156

Koskor, E., Mänd, M., Karise, R., Viik, E., Bender, A., Viiralt, R. 2005. 
Karukimalase (Bombus terrestris L.) hommikuse ja õhtuse õietol-
mukorje erinevused. Agronoomia 2005, 234–236.

Karise, R., Mänd, M., Ivask, M., Viik, E., Koskor, E. 2005. Kimalase 
õietolmukämpude kalorsus ja seda mõjutavad tegurid. Transactions 
of the EAU 231–233. 

Viik, E., Mänd, M., Rebane, A., Karise, R., Koskor, E. 2005. Lehek-
audse väetamise mõju suvirapsi õite nektariproduktsioonile. Transac-
tions of the EAU, 93–95. 

Mänd, M., Viik, E., Karise, R., Krikuhhin, T., Koskor, E., Lääniste, P. 
2005. Väetamise mõju suvirapsi õietolmu produktsioonile. Agro-
noomia 2005, 96–98.

Karise, R., Mänd, M., Viik, E., Lääniste, P., Martin, A-J. 2004. Mesi-
laselaadsete arvukus suvirapsil erinevate viljelusviiside korral. Agro-
noomia 2004, 88–90.

6.3. Popular science articles:

Viik, E., Mänd, M. 2008. Eesti põllumajandusmaastiku seire: kimalasi 
soodustavad väiksemad põllud. Mahepõllumajanduse Leht, 46 (5), 4.

Viik, E., Vask, K. 2008. ELi põllumajanduspoliitika vajab hindamist. 
Mahepõllumajanduse Leht, 43 (2), 12–14.

Viik, E., Vask, K. 2008. EL-i põllumajanduspoliitika vajab hindamist. 
Maamajandus, august 2008, 42–44. 


