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Abstract

We introduce the concept of a Misspecification Equilibrium to dynamic

macroeconomics. Agents choose between a list of misspecified econometric

models and base their selection on relative forecast performance. A Misspecifi-

cation Equilibrium is an equilibrium stochastic process in which agents forecast

optimally given their choices, with the forecasting model parameters and pre-

dictor proportions endogenously determined. For appropriate conditions on the

exogenous driving process and the degree of feedback of expectations, the Mis-

specification Equilibrium will exhibit Intrinsic Heterogeneity. With Intrinsic

Heterogeneity more than one misspecified model receives positive weight in the

distribution of predictors across agents, even in the neoclassical limit in which

only the most successful predictors are used.

JEL Classifications: C62; D83; D84; E30

Key Words: Cobweb model, heterogeneous beliefs, adaptive learning, ratio-

nal expectations.

1 Introduction

Despite its dominance in dynamic macroeconomic models, the Rational Expectations
Hypothesis has limitations. A frequently cited drawback to the rational expecta-
tions approach is that in effect it assumes that agents know the underlying economic
structure. In response to this criticism one popular alternative is to model agents
as econometricians (Evans and Honkapohja 2001). This adaptive learning approach

∗We are greatly indebted to Garey Ramey for early discussions. We thank Jim Bullard, Cars
Hommes, Didier Sornette, and participants at the 2002 CeNDEF Workshop on Economic Dynam-
ics for helpful comments. This material is based upon work supported by the National Science
Foundation under Grant No. 0136848.
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typically assumes agents have a correctly specified model with unknown parameters.
Agents then use a reasonable estimator to obtain their coefficient estimates. In many
models these beliefs converge to rational expectations.

In practice, however, econometricians often misspecify their models. Economic
forecasters who use VAR’s purposely limit the number of variables and the number
of lags because of degree of freedom problems. If agents are expected to behave like
econometricians then they can also be expected to misspecify their models. (Evans
and Honkapohja 2001, Chapter 13) consider models with agents underparameterizing
the law of motion, and show the existence of a Restricted Perceptions Equilibrium
(RPE) in which agents form their beliefs optimally given their misspecification.1 The
issue of underparameterization is also emphasized by (Evans and Ramey 2001), who
examine the implications of optimally chosen expectations within the simple adaptive
expectations class.

In this paper we examine expectation formation in an environment where agents
must forecast using an underparameterized econometric model. More specifically we
confront agents with a list of misspecified econometric models, but, given this restric-
tion, assume that agents forecast optimally. Agents choose between these optimal
underparameterized models based on their relative mean success.

We investigate this approach in a linear stochastic framework, developing the
analysis in the context of the cobweb model. Because the economic model is self-
referential, in the sense that expectation formation affects the law of motion for
the endogenous variables, the optimal parameters of each misspecified econometric
model depend on the proportions of agents using the different models. We define a new
equilibrium concept, called aMisspecification Equilibrium, in which these proportions
are consistent with optimal forecasting from each econometric model. We show that
for some economic model parameters and exogenous driving variables, agents will
be distributed heterogeneously between the various predictors, even as we approach
the limiting case in which agents choose only between the best performing statistical
models. We say that a Misspecification Equilibrium with such a property exhibits
Intrinsic Heterogeneity.

Heterogeneity in expectations has been considered previously in papers by (Townsend
1983), who takes a fully rational learning approach, starting with given priors, and
(Haltiwanger and Waldman 1985) who assume that a certain fraction of agents are
not rational. In adaptive learning models (Honkapohja and Mitra 2001) allow agents
to have different specific learning rules. The seminal least squares learning paper by
(Bray and Savin 1986) also allows for heterogeneity in priors. However, these pa-
pers all assume an ad hoc degree of heterogeneity, and, with least squares or Bayesian
learning, the heterogeneity disappears in the limit. (Evans, Honkapohja and Marimon

1Sargent (1999) developed the implications of policy makers estimating and forecasting using a
misspecified model.
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2001) allow for stochastic heterogeneity in learning rules, but again the heterogenous
expectations is only transitory.

(Brock and Hommes 1997) were among the first to model heterogeneous expec-
tations as an endogenous outcome.2 (Brock and Hommes 1997) examine a cobweb
model in which agents choose a predictor from a set of costly alternatives. Agents
base this choice on the most recent realized profits of the alternatives in a cobweb
model. If agents are boundedly rational in the sense that their ‘intensity of choice’
between predictors is finite (that is, they do not fully optimize), then there will be
heterogeneity and the degree of heterogeneity will vary in a complex manner.

Brock and Hommes illustrate these results in a particular case of rational versus
myopic beliefs. Because agents always react to recent changes in profits their pre-
dictor choice will oscillate along with the equilibrium price. Our model is closely
related to Brock and Hommes. Like their model, we assume that the map from pre-
dictor benefits to predictor choice resembles a multinomial logit. The multinomial
logit has proven to be an important approach to modeling economic choices,3 and has
been increasingly employed in recent work in dynamic macroeconomics. Extensions
of the (Brock and Hommes 1997) predictor selection dynamic appear in (Brock and
deFountnouvelle 2000), (Brock and Hommes 1998, 2000), (Brock, Hommes, and Wa-
gener 2001), (Branch 2002a, 2002b) and (Hommes 2001). (Brock and Durlauf 2001)
extend the framework so that agent specific choices depend on the expected choices
of others.

There are three important departures in our model. First, agents do not choose
between a costly accurate forecast and a costless unsophisticated forecast; rather,
they are forced to choose between equally misspecified costless models. Second, in
line with the econometric learning literature, each forecasting model is optimal, given
the misspecification. Third, we assume that agents make their choices based on
unconditional mean payoffs rather than on the most recent period’s realized payoff.
This is more appropriate in a stochastic environment since otherwise agents would
frequently be misled by single period anomalies. We will show that even if agents
optimally choose between these misspecified models heterogeneity can arise. Given
that agents base decisions on mean profits it is not at all obvious that heterogeneity
would be possible if the ‘intensity of choice’ is large. Indeed, we will show that
instances of asymptotically homogeneous expectations also arise.

The main difference in our results is that, unlike previous work, we derive hetero-
geneity as a possible equilibrium outcome of a self-referential model in which agents
are constrained to underparameterize. In particular we examine the case in which
agents are fully rational except that they misspecify by omitting at least one relevant

2(Sethi and Franke 1995) also find heterogeneity, as an outcome of evolution in a model of sto-
chastic strategic complementarities, and (Evans and Ramey 1992) permit heterogeneous expectations
due to heterogeneous calculation costs.

3See, for example, (Manski and McFadden 1981).
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variable or lag. We focus on the cobweb model for two reasons. First, we want to stay
close to (Brock and Hommes 1997) in order to highlight the key differences. Second,
the cobweb model is the simplest self-referential model that effectively illustrates the
intuition of Intrinsic Heterogeneity.

We obtain conditions under which there is an equilibrium with agents heteroge-
neously split between the misspecified models even as the ‘intensity of choice’ becomes
arbitrarily large. The intuition for this possibility is as follows. Suppose the cobweb
price is driven by a two-dimensional vector of demand shocks. If both components of
the demand shock matter for predicting prices, and if the feedback through expecta-
tions is sufficiently large, then there will be an incentive to deviate from homogeneity.
If all agents coordinate on the same model the negative feedback through expectations
will make the consensus model less useful for forecasting. In these instances an agent
could profit by forecasting with the alternative model. With Intrinsic Heterogeneity
the equilibrium is such that beliefs and predictor proportions drive expected profits
to be identical.

The plan for this paper is as follows. Section 2 introduces the set-up in a general
cobweb model. We obtain an existence result for Misspecification Equilibria, and
give conditions under which the model exhibits Intrinsic Heterogeneity. Section 3
extends and illustates these results for the special case of a process driven by a two
dimensional VAR(1) shock with agents choosing between two underparameterized
models. Section 4 shows that a Misspecification Equilibrium can be attained under
real-time learning. Section 5 concludes and describes future work.

2 Model

In this section we consider a self-referential stochastic process that is driven by vector
autoregressive exogenous shocks. We assume that agents’ expectations are based
on one of a set of misspecified models of the economy, each taking the form of an
underparameterization of the process. In the terminology of (Brock and Hommes
1997) we are in effect treating forecasts based on a fully correctly specified model as
prohibitively costly, and those based on the misspecified models are equally and much
less costly. (For convenience we will normalize this cost to zero). Much previous work
has assumed a particular structure of agents’ misspecification. We allow the choice
of the misspecified model to be endogenous.

We develop our model as a version of the Adaptively Rational Equilibrium Dy-
namics (A.R.E.D.) of Brock and Hommes (1997) in which we constrain agents to
choose between underparameterized models. Agents consider the unconditional ex-
pected payoff of the various possible underparameterizations and select between them
according to their relative payoffs. Using the selected model they form their expec-
tations as the optimal linear projection given this choice. In our Misspecification
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Equilibrium, the projection parameters and predictor proportions are jointly deter-
mined and generate the equilibrium stochastic process.

We think that our emphasis on underparameterization is reasonable. The adaptive
learning literature has argued in favor of modeling agents as econometricians as a
plausible deviation from the rational expectations assumption. But, econometricians
misspecify their econometric models. Computational time and limits on degrees of
freedom make it impossible for an econometrician to include all economically relevant
variables and lags. Our model in effect imposes such restrictions on agents, but
otherwise requires them to behave optimally. A striking finding of our framework is
that this can lead to the use of heterogeneous forecasting models.

We develop the model in stages. We first show that, for given predictor pro-
portions, there exists a Restricted Perceptions Equilibrium (RPE) in which agents’
misspecified beliefs are verified by the actual equilibrium process. We next allow
for predictor proportions to be endogenously determined, and show the existence of
a Misspecification Equilibrium. Finally, we formally define Intrinsic Heterogeneity
and state a condition under which this will arise.

2.1 Set-up

We consider a cobweb model of the form

pt = −φpet + γ′zt + vt (1)

where vt is white noise. Although there are several well-known economic models that
fit the form (1), we focus on the “cobweb” model in order to keep a close connection
between our model and (Brock and Hommes 1997). zt is a vector of observable
demand disturbances, which will be further specified below.

We normally expect φ > 0 in the cobweb model, which corresponds to upward
sloping supply curves and downward sloping demand curves. Bray and Savin (1986)
showed that φ > −1 was the condition for the model to be stable under least squares
learning. In this paper we focus on the negative feedback case of φ > 0 and leave
φ < 0 for future work.4

In the cobweb model firms have a one-period production lag. We assume that
firms have quadratic costs given by FQ∗

t +
1

2
G(Q∗

t )
2, where Q∗

t is planned output and
F ≥ 0, G > 0. In addition we allow for exogenous productivity shocks realized after
production decisions are made so that total quantity is Qt = Q∗

t + κt. Here κt is iid

4Equation (1) with −1 < φ < 0 takes the same form as a Lucas-type monetary model. In future
work we will pursue the possibility of heterogeneity in that model.
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with zero mean. Firms aim to maximize expected profits.5 Thus,

max
Q∗

t

Et−1πt = Et−1

[
pt (Q

∗

t + κt)− FQ∗

t −
1

2
G(Q∗

t )
2

]

= Q∗

tEt−1pt + Et−1(ptκt)− FQ∗

t −
1

2
G(Q∗

t )
2

Solving this problem leads to the supply relation6

Q∗

t = G−1pet (2)

where pet = Et−1pt. Then actual supply follows Qt = G−1pet + κt.

Demand is given by
Qt = C −Dpt + h′ζ t (3)

where ζt is an m × 1 vector of demand shocks that follows a zero-mean stationary
VAR(n) process and D > 0. The ζt process is assumed independent of κt. Setting
demand equal to actual supply we have the following stochastic equilibrium price
process

pt = −(DG)−1pet +D−1h′ζt −D−1κt, (4)

where, for convenience, we have expressed pt and pet in deviation from the mean form.

It is convenient to rewrite the model in terms of an exogenous VAR(1) process.
Defining

z′t = (ζ ′t, ζ
′

t−1, · · · , ζ
′

t−n+1)

we can write zt in its standard VAR(1) form

zt = Azt−1 + εt

for appropriately defined A and appropriately defined εt, which is exogenous white
noise. Here zt is mn× 1 and A is mn ×mn. We denote the covariance matrix of zt
as Ω = Ezz′, and Ω is assumed to be positive definite. Setting

φ = (DG)−1, γ′ = (D−1h′, 0, . . . , 0) and vt = −D−1κt

we can rewrite (4) in the form (1).

5It would be possible to extend the model to incorporate risk by assuming agents respond to
variances of profits as well as expected profits. We make the expected profits assumption to keep
the model as simple as possible.

6We have set, without loss of generality, F = 0. We are also assuming that agents treat
Et−1(ptκt) as a constant independent of the choice of Q∗

t
. That this is a reasonable assumption can

be verified by (4) below.
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2.2 Model Misspecification

To close the model we need to specify the determination of pet . We assume that there
areK econometric models available to form expectations and that model j = 1, . . . , K
uses kj < mn explanatory variables. The market expectation is given by the weighted
sum of the individual expectations

pet =
K∑
j=1

njp
e
j,t (5)

where pej,t = bj′xj
t−1, xj

t = ujzt. The kj ×m matrix uj is a selector matrix that picks
out those elements of zt used in predictor j and bj is kj × 1. Thus, kj is the number
of elements in zt that predictor j uses. We can rewrite (5) as

pet =
K∑
j=1

njb
j′ujzt−1

This set-up forces agents to underparameterize the variables included in their
information set and/or the number of lags of those variables. We believe this is a
reasonable approximation of actual expectation formation. Cognitive and computing
time constraints (as well as degrees of freedom) restrict the number of variables even
the most diligent econometricians use in their models. Our form of misspecification
makes agents be (at least somewhat) parsimonious in their expectation formation.

We next specify the determination of the parameters bj. In a fully specified econo-
metric model, and under rational expectations, all variables zt would be included and
the coefficients used to form pet would be given by the least squares projection of pt
on zt. Here each predictor is constrained to use a subset xj

t of relevant variables, and
thus each predictor differs from rational expectations. However, we will insist that
the beliefs bj are formed optimally in the sense that bj is the least squares projection
of pt on ujzt−1. That is, b

j must satisfy

Eujzt−1
(
pt − bj′ujzt−1

)
= 0

Even though agents will never be “fully” accurate, they will be as accurate as possible
given the variables in their information set.

2.3 Misspecification Equilibrium

Given the belief process (5) the actual law of motion (ALM) for this economy is

pt =

[
γ′A− φ

(
K∑
j=1

njb
j′uj

)]
zt−1 + γ′εt + vt
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or
pt = ξ′zt−1 + γ′εt + vt, (6)

where

ξ′ = γ′A− φ

(
K∑
j=1

njb
j′uj

)
. (7)

Here n = [n1, · · · , nK]
′ and b = [b1, · · · , bK]. Given these equations and the parameter

orthogonality condition we obtain

bj =
(
ujΩuj′

)
−1

ujΩξ. (8)

We now introduce the concept of Restricted Perceptions Equilibrium (RPE).7 An
RPE is an equilibrium process for pt such that the parameters bj are optimal given
the misspecification. Note that, like a rational expectations equilibrium, an RPE is
self-referential in that the optimal beliefs depend on the vector of parameters ξ which
depend in turn on the vector of beliefs b. Thus, an RPE can be defined as a process
(6) such that ξ is a solution to (7) and (8) for fixed n.

Substituting (8) into (7) yields

ξ′ = γ′A− φ
K∑
j=1

njξ
′Ωuj′

(
ujΩuj′

)
−1

uj

or

ξ =

[
I + φ

K∑
j=1

nju
j′
(
ujΩuj′

)
−1

ujΩ

]−1
A′γ (9)

For a given n an RPE exists (and is unique), provided the inverse in (9) exists.

In the Misspecification Equilibrium, which we define below, n is determined en-
dogenously. Equation (9) gives a well-defined mapping ξ = ξ(n) provided the in-
dicated inverse exists for all n in the unit simplex. We therefore assume that the
following condition holds:

Condition �: � �= 0 for all n in the unit simplex S = {n ∈ R
K : ni ≥

0 and
∑K

i=1 ni = 1}, where

� = det

(
I + φ

K∑
j=1

nju
j′
(
ujΩuj′

)
−1

ujΩ

)
.

Condition � is a necessary and sufficient condition for the existence of a unique RPE

for all n ∈ S.

We have the following result:

7See (Evans and Honkapohja 2001) for a definition and examples. The concept introduced here
extends the concept of RPE to incorporate multiple misspecified models.
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Proposition 1 For φ ≥ 0 sufficiently small, Condition � is satisfied and hence for
all n there exists a unique RPE.

All proofs are contained in the Appendix. In the next Section we demonstrate that
Condition � holds for all φ ≥ 0 in the case of a bivariate process.

We now embed the RPE into an equilibrium concept in which n is endogenously
determined by the mean profits of each predictor. We will call this a Misspecification
Equilibrium. Note that the profits of each predictor depend on the parameters ξ
which in turn depend on n.

In order to discuss the mapping for predictor proportions we need the profits for
predictor j, which are given by

πj
t = pt

(
φDpei,t −Dvt

)
−

1

2
φD

(
pei,t

)
2

= [ξ(n)′zt−1 + γ′εt + vt]
[
φDbj′ujzt−1 −Dvt

]
−

1

2
φD

(
bj′ujzt−1

)2
,

where, again, we have expressed profits in deviation from mean form. Taking uncon-
ditional expectations of profits yields

Eπj
t = φDbj′ujΩ

(
ξ(n)−

1

2
uj′bj

)
−DEv2t .

Evaluating expected profits in an RPE (i.e. plugging in (8)) leads to

Eπj = φDξ(n)′Ωuj′(ujΩuj′)−1ujΩ

(
ξ(n)−

1

2
uj′(ujΩuj′)−1ujΩξ(n)

)
−DEv2t . (10)

Note that Eπj is well-defined and finite for all n, provided Condition ∆ holds so that
ξ(n) is well-defined. It will be convenient to denote the function given by (10) as

F̃j(n) : S → R, for j = 1, . . . ,K,

and to define F̃ (n) : S → R
K by F̃ (n) = (F̃1(n), . . . , F̃K(n))

′. Note that F̃j(n) and
F̃ (n) are continuous on S provided Condition ∆ holds.

We now follow (Brock and Hommes 1997) in assuming that the predictor propor-
tions follow a multinomial logit (MNL) law of motion. Brock and Hommes consider
the cobweb model without noise where agents choose between rational and naive ex-
pectations. Agents adapt their choices based on the most recent relative predictor
success.8 This clearly would not be appropriate in the stochastic framework employed

8(Branch 2002) shows that many of the qualitative properties in the model without noise carry
over to a model with small demand disturbances.
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here and we instead assume that agents base their decision on unconditional expected
relative payoffs.

The MNL approach leads to the following mapping, for each predictor i,

ni =
exp{αEπi}∑K

j=1 exp{αEπj}
, (11)

where α > 0. Note that ni > 0 for α and the Eπj finite and that
∑

j nj = 1. Again,
it will be convenient to denote the map defined by (11) as

H̃α(Eπ1, . . . , EπK) : RK → S,

and clearly H̃α is continuous. The parameter α is called the ‘intensity of choice,’ and
parameterizes one dimension of agents’ bounded rationality. As α → +∞ we obtain
the ‘neoclassical’ case of full optimization. We will be interested in the conditions in
which heterogeneity can arise in the neoclassical case. We remark that our choice of
payoff function Eπj allows us to consider the fixed point of a map rather than the
solution to a difference equation as in Brock and Hommes.

We now define the mapping

T̃α : S → S where T̃α = H̃α ◦ F̃ .

Under Condition ∆ this map is well-defined and continuous. T̃α maps a vector of
predictor choices, n, through the belief parameter mapping ξ into a vector of expected
profits and then to a new predictor choice n. We are now in a position to present our
central equilibrium concept:

Definition A Misspecification Equilibrium (ME) is a fixed point, n∗, of T̃α.

Applying the Brouwer Fixed Point Theorem we immediately have:

Theorem 2 Assume Condition ∆. There exists a Misspecification Equilibrium.

In general we cannot rule out multiple equilibria. Let

Nα = {n∗|T̃α(n
∗) = n∗}.

For α finite and Eπj finite, it is apparent that all components are positive for every
fixed point n∗. Thus, heterogeneity for finite α is simply a by-product of the MNL
assumption, which ensures that all predictors are used even if they differ in terms of
their performance. However, it is of interest to know if heterogeneity continues to arise
if agents are highly sensitive to relative performance, so that they only use predictors
that are not dominated in performance. This leads to the following concept:
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Definition A model is said to exhibit Intrinsic Heterogeneity if (i) an ME exists for
all α > 0 and (ii) there exists n̄ < 1 such that n∗

j ≤ n̄, j = 1, . . . , K, for all α and all
ME n∗ ∈ Nα.

It can be shown that a model with intrinsic heterogeneity arises whenever the
following additional condition is satisfied.

Condition P: Let ei denote the K× 1 coordinate vector with 1 in position i and
0 elsewhere. Condition P is said to be satisfied if for each i = 1, . . . ,K there exists
j �= i such that F̃j(ei)− F̃i(ei) > 0.

Theorem 3 Assume Condition ∆ and also Condition P. Then the model exhibits
intrinsic heterogeneity.

The next section will present a simple example to illustrate our concepts. In par-
ticular we present cases in which Condition P holds and the model exhibits Intrinsic
Heterogeneity.

3 Example: Bivariate Case

To illustrate the properties of a Misspecification Equilibrium we will simplify the
model by considering a special case in which detailed results can be obtained. In this
section we assume that zt is a two-dimensional stationary VAR(1) zt = Azt−1 + εt,
where A is 2 × 2, with eigenvalues inside the unit circle, and Eεtε

′

t = Σε is positive
definite. Each misspecified model will omit one explanatory variable and thus K = 2
and kj = 1 for j = 1, 2. This is the simplest possible illustration of our framework,
and we will see that it can generate cases with Intrinsic Heterogeneity.

With bivariate demand shocks the predictors are now

pe
1,t = b1u1zt−1 = b1z1,t−1

pe
2,t = b2u2zt−1 = b2z2,t−1

Plugging these predictors into the law of motion for price and collecting terms leads
to

pt = ξ
1
z1,t−1 + ξ

2
z2,t−1 + ηt (12)[

1 + n1φ φn1ρ
φn2ρ̃ 1 + n2φ

] [
ξ
1

ξ
2

]
= A′γ, (13)

where

ρ =
Ez1tz2t
Ez2

1t

, ρ̃ =
Ez1tz2t
Ez2

2t

,

and ηt = γ′εt + vt. We remark that Eztz
′

t is entirely governed by A and Σε.
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From the general results of the preceding section we know that a Misspecification
Equilibrium exists for φ ≥ 0 sufficiently small. For the bivariate case existence can
be shown for all φ ≥ 0. Furthermore, we will show that this equilibrium is unique.

3.1 Misspecification Equilibrium

If condition � is satisfied then this guarantees a unique ξ
1
, ξ

2
for each n′ = (n1, n2),

and a unique RPE. Since n2 = 1 − n1, in this section we define the key functions in
terms of n1 rather than n. Thus, in particular, if Condition ∆ holds then (13) defines
a continuous map ξ = ξ(n1).

Proposition 4 In the bivariate model, Condition � is satisfied for all φ ≥ 0. Hence
there exists a unique RPE for every n1 ∈ [0, 1].

From Theorem 2 it follows that there exists a ME. By developing the details we
can obtain additional results. The profit functions are given by

Eπ1 =
1

2
φD

(
ξ2
1
(n1)− ξ2

2
(n1)ρ

2
)
Ez2

1t + φD (ξ
1
(n1) + ξ

2
(n1)ρ) ξ2(n1)Ez1z2 −Dσ2v

Eπ2 =
1

2
φD

(
ξ2
2
(n1)− ξ2

1
(n1)ρ̃

2
)
Ez2

2t + φD (ξ
2
(n1) + ξ

1
(n1)ρ̃) ξ1(n1)Ez1z2 −Dσ2v,

and we define
F (n1) = Eπ1 − Eπ2.

In order to prove existence of a unique ME, we need to show that the profit difference
function F (ξ(n1)) is monotonic.

Lemma 5 In the bivariate model, the function F (n1) is monotonically decreasing for
all φ ≥ 0.

We remark that it is possible to instead have a positive slope for the profit dif-
ference function F (n1) when φ < 0. In this case it will be possible to have multiple
equilibria. Examples with φ < 0 are the focus of future research.

The predictor proportion mapping (11) can be written

n1 =
1

2
tanh

[α
2

(
Eπ1 − Eπ2

)]
+

1

2
≡ Hα(Eπ1 − Eπ2),

where Hα : R → [0, 1] is a strictly increasing function. Note that we use F and Hα in
place of F̃ and H̃α to emphasize that in contrast to the previous section the domain
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of F and the range of Hα is now [0, 1] instead of the unit simplex S. This will simplify
some of the arguments below.

Because Condition � is satisfied for all φ ≥ 0, there exists a well defined mapping
Tα = Hα ◦ F . Tα : [0, 1] → [0, 1], which is continuous. From Lemma 5 it follows that
Tα is a continuous, decreasing function for each α. It immediately follows that there
is a unique fixed point, i.e., we have:

Proposition 6 Suppose zt is a bivariate VAR(1). If φ ≥ 0 the model has a unique
Misspecification Equilibrium.

Theorem 6 demonstrates that there is a unique equilibrium in the belief parameters
and the proportion of agents using the two misspecified models. It does not tell us
how agents are distributed between the predictors. Our main interest is in showing
that it is possible for there to be intrinsic heterogeneity. Unlike (Brock and Hommes
1997) who obtain heterogeneity as an automatic implication of assuming that α is
finite, we want to show that there exists cases of heterogeneity even in the limit as
α → ∞. We now take up this issue.

3.2 Intrinsic Heterogeneity

The previous section established uniqueness of the misspecification equilibrium. We
now discuss more specific properties of this equilibrium.

From the equations for expected profit, it can be shown that9

F (1) ≷ 0 iff ξ2
1
(1) ≷ ξ2

2
(1)Q, and

F (0) ≷ 0 iff ξ2
1
(0) ≷ ξ2

2
(0)Q

where Q =
Ez

2

2

Ez
2

1

> 0. Furthermore, from (13) we have

ξ2
1
(0)

ξ2
2
(0)

=
(1 + φ)2 (γ1a11 + γ2a21)

2

(γ1a12 + γ2a22 − φρ̃(γ1a11 + γ2a21))
2
≡ B0

ξ2
1
(1)

ξ2
2
(1)

=
(γ

1
a11 + γ

2
a21 − φρ(γ

1
a12 + γ

2
a22))

2

(1 + φ)2 (γ1a12 + γ2a22)
2

≡ B1

These expressions assume that the denominators of the expressions are non-zero.
Recall that Q, ρ, and ρ̃ are determined by A and Σε. The above results and Lemma
5 imply:

Lemma 7 There are three possible cases depending on φ, γ, A and Σε.

9The Appendix contains additional details of these derivations.
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1. Condition P: F (0) > 0 and F (1) < 0. Condition P is satisfied when B1 < Q <
B0.

2. Condition P0: F (0) < 0 and F (1) < 0. Condition P0 is satisfied when Q > B0.

3. Condition P1: F (0) > 0 and F (1) > 0. Condition P1 is satisfied when Q < B1.

Below we give numerical examples of when each condition may arise.

Under Condition P0, F (1) < 0 implies that model 2 is always more profitable.
Under Condition P1, model 1 is always more profitable. In these cases we anticipate
homogeneous expectations as the ‘intensity of choice’ α → ∞. However, if Condition
P obtains there is an incentive to deviate from the consensus selection. We have the
following result.

Proposition 8 Consider again the model with zt a bivariate VAR(1) and φ ≥ 0.
The unique Misspecification Equilibrium n∗

1
has one of the following properties:

1. Condition P implies that as α → ∞, n∗

1
→ n̂1 ∈ (0, 1) where F (n̂1) = 0. That

is, the model has Intrinsic Heterogeneity.

2. Condition P0 implies that as α → ∞, n∗

1
→ 0.

3. Condition P1 implies that as α → ∞, n∗

1
→ 1.

Proposition 8 establishes the possibility of Intrinsic Heterogeneity. We discuss
the intuition further below. This result is novel because, for high α, rationality of
agents is bounded only through their model parameterizations. Agents fully optimize
given their (misspecified) model of the economy. In Brock and Hommes’ A.R.E.D.
heterogeneity arises because of calculation costs and, most importantly, because with
finite α a proportion of agents do not optimize in the sense that they do not fully
respond to profit differences. Only in a (nonstochastic) steady-state will agents be
evenly distributed across predictors.10 In our model, agents optimize given their
misspecification, all predictors are equally “sophisticated” and costless, and Intrinsic
Heterogeneity can arise as part of a stochastic equilibrium. Most interestingly, it is
the self-referential feature of the model, combined with underparameterization, that
generates this heterogeneity.

10This is because in (Brock and Hommes’ 1997) set-up all predictors return the same forecast in
a steady-state. Hence if a predictor is costless, then it will return the same steady-state net benefit
as all other costless predictors. In our model, the nature of the equilibrium forces each predictor to
return the same mean profit as α→∞.
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3.3 Connection to the Rational Expectations Equilibrium

Our equilibrium differs from the Restricted Perceptions Equilibrium in (Evans and
Honkapohja 2001). There agents also underparameterize, but the law of motion is
imposed and all agents are homogeneous in their misspecification. These expecta-
tions differ from rational expectations by ignoring relevant information. Since all
agents ignore the same information in their perceived law of motion it is clear that
in equilibrium the parameters of the model will differ from a Rational Expectations
Equilibrium (REE). In a Misspecification Equilibrium with Intrinsic Heterogeneity,
each agent uses an underparameterized model, but aggregate expectations are con-
ditioned on all available information. In principle, it is conceivable that a ME could
reproduce the REE. In this subsection we use the bivariate example to show that
this is not the case: the price process in a ME will differ from the process in an REE.

Recall that
pt = −φpet + γ′Azt−1 + ηt (14)

where γ is (2 × 1), A is (2 × 2) with elements aij for j = 1, 2, and ηt = γ′εt + vt.
Under rational expectations

pet = Et−1pt (15)

An REE is a stochastic process pt that satisfies (14) and (15). The cobweb model has
a unique REE given by

pt = ξ̂1z1,t−1 + ξ̂2z2,t−1 + ηt

where

ξ̂1 = (1 + φ)−1 (γ1a11 + γ2a21)

ξ̂
2

= (1 + φ)−1 (γ
1
a12 + γ

2
a22)

The parameters in a Misspecification Equilibrium are given by[
1 + n∗

1
φ φn∗

1
ρ

φ(1− n∗
1
)ρ̃ 1 + (1− n∗

1
)φ

] [
ξ
1

ξ2

]
= A′γ, (16)

where n∗
1
∈ Nα. We saw that a non-trivial solution to (16) exists for all φ ≥ 0 and is

given by[
ξ
1

ξ2

]
=

1

�

[
(1 + (1− n∗

1
)φ)(γ

1
a11 + γ

2
a21)− φn∗

1
ρ(γ

1
a12 + γ

2
a22)

(1 + n∗
1
φ)(γ1a12 + γ2a22)− φ(1− n∗

1
)ρ̃(γ1a11 + γ2a21)

]

where � = (1 + n∗

1
φ) (1 + (1− n∗

1
)φ)− φ2n∗

1
ρρ̃.

Clearly the REE parameters (ξ̂1, ξ̂2)
′ differ from the ME parameters (ξ1, ξ2)

′. For
example, consider the case when the random variables z1,t, z2,t are uncorrelated. Then

ξ1 = (1 + n∗
1
φ)−1 (γ1a11 + γ2a21)

ξ
2

= (1 + (1− n∗
1
)φ)−1 (γ

1
a12 + γ

2
a22) .
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3.4 Further Discussion

The intuition behind Condition P and the existence of Intrinsic Heterogeneity is
subtle. In a cobweb model the exogenous shocks z have both a direct and an indirect
effect on price. The direct effect is simply the γ′zt term. The indirect effect depends
on the way in which agents incorporate z into their expectations. It is the interplay
between the direct and indirect effects that makes intrinsic heterogeneity possible. In
this subsection we illustrate the intuition through a simple example.

Suppose that the components z1,t, z2,t are uncorrelated. Then the RPE is given
by [

ξ1
ξ
2

]
=

[
(1 + n1φ)

−1 0
0 (1 + (1− n1)φ)

−1

] [
γ1a11 + γ2a21
γ
1
a12 + γ

2
a22

]
Recall that

pt = ξ1z1,t−1 + ξ2z2,t−1 + ηt

Now set φ = 0. This is the case where there is no feedback from expectations to
price. In this special case

ξ
1

= (γ
1
a11 + γ

2
a21)

ξ2 = (γ1a12 + γ2a22)

The parameters ξ1, ξ2 are completely determined by the direct effect γ′A. For φ > 0,
the RPE parameters are

ξ
1

= (1 + n1φ)
−1 (γ

1
a11 + γ

2
a21)

ξ
2

= (1 + (1− n1)φ)
−1 (γ

1
a12 + γ

2
a22) ,

and now depend both on the direct effect γ′A and the indirect effect of expectations
through n1 and φ. Note in particular that as n1 → 1 we have |ξ1(n1)| ↓ and |ξ2(n1)| ↑.
For a fixed φ the indirect effect depends on n1. As agents mass onto a particular
predictor it diminishes the effect of that variable. This is because of the self-referential
feature of the cobweb model that leads to an indirect effect on prices opposite to the
direct effect of that variable. This makes z1,t a less useful predictor than before, and
thus the z2,t component becomes more profitable. The opposite happens as n1 → 0
and consequently there is a unique n1 in which both predictors fare equally well in
terms of mean profits. This proportion is the limit point of Intrinsic Heterogeneity.

Condition P places conditions on the indirect and direct effects and on the relative
importance of the two exogenous variables. In our simple example of uncorrelated
shocks Condition P is equivalent to

(γ
1
a11 + γ

2
a21)

2

(1 + φ)2 (γ1a12 + γ2a22)
2
< Q <

(1 + φ)2 (γ
1
a11 + γ

2
a21)

2

(γ1a12 + γ2a22)
2

16



where Q =
Ez2

2

Ez2
1

. When there is no feedback (φ = 0) there does not exist a matrix

A and Σε which satisfies Condition P. Intrinsic Heterogeneity does not exist in this
instance. Because there is no indirect effect from expectations, and expectations
have no bearing on price, agents will choose the model that forecasts price best. As
φ increases, the range of admissible Q increases. Given A, γ and Q, condition P will
hold for φ > 0 sufficiently large.

3.5 Numerical Examples

We illustrate our results numerically. Figure 1 gives the T-maps for various values of
α. The upper part of the figure shows the T-maps corresponding to (starting from
n1 = 0 and moving clockwise) α = 2, α = 20, α = 50, α = 100, α = 200, α = 2000.
We set

A =

[
.3 .10
.10 .7

]
,

γ′ = [.7, .5],

Σε =

[
.7 .2
.2 .6

]
,

and φ = 2. The bottom portion of the figure is the profit difference function F (n1).

INSERT FIGURE 1 HERE

The matrix A and parameter φ have been chosen so that Condition P holds, i.e.
F (1) < 0. The proof of Proposition 8 shows that as α → ∞

Hα(x) →




1 if x > 0
0 if x < 0
1/2 if x = 0

and clearly this will govern the behavior of Tα = Hα ◦ F . Figure 1 illustrates how as
α increases the inverse S-shape becomes more pronounced. The dashed line is the 45-
degree line and all fixed points of the T-map will intersect this line. As α increases the
fixed point declines from above .5 to about .22, which is the point at which F (n̂1) = 0.
The Misspecification Equilibrium continues to exhibit heterogeneity even as α → ∞.

Figures 2 illustrates how heterogeneity may disappear as α → ∞. We now set

A =

[
.93 .10
.10 .2

]
,

so that Condition P does not hold and instead condition P1 is satisfied. For low
values of α some agents continue to use z2 even though it returns a lower expected
payoff. However, as α → ∞ all agents behave optimally and the proportion using z2
goes to zero.

17



INSERT FIGURE 2 HERE

Figure 3 shows the role φ plays in the degree of Intrinsic Heterogeneity. This
graph depicts the T-map for various increasing values of φ. Notice that as φ increases
the fixed point of the T-map moves further to the left. In this example, z1 has a
stronger influence on the price than z2. When z2 has a stronger effect, the fixed point
will move to the right.

INSERT FIGURE 3 HERE

Note that in a Misspecification Equilibrium, in a model with Intrinsic Heterogene-
ity, all predictors have the same average return as the intensity of choice α becomes
large. When α is finite there can be differences in the relative performance of pre-
dictors, but as α → +∞ the mean returns across predictor must converge given
our assumption of costless (or equally costly) predictors. Heterogeneity arises in the
costless case of (Brock and Hommes 1997) only in the steady-state in which differ-
ent predictors make identical forecasts. Our results arise in a stochastic equilibrium
in which different predictors produce different forecasts, but achieve identical mean
performance, as α → +∞.

4 Stability under Real-Time Learning

In this section we address whether the equilibrium is attainable under real-time learn-
ing of the type emphasized in (Evans and Honkapohja 2001). In a Misspecification
Equilibrium agents misspecify, but their forecasts are the optimal linear projections
given their underparameterization. Furthermore, agents choose which component of
the exogenous process to omit based on unconditional mean profits. We now sub-
stitute optimal linear projections with real-time estimates formed via recursive least
squares (RLS).11 We also assume that agents choose their model each period based
on a real-time estimate of mean profits.

Prices now depend on time-varying parameters

pt = ξ1(b
1

t−1, n1,t−1)z1,t−1 + ξ2(b
2

t−1, n1,t−1)z2,t−1 + ηt

in which b1t−1, b
2

t−1 are updated by RLS

b1t = b1t−1 + t−1R−1

1,t z1,t−1
(
pt − b1t−1z1,t−1

)
b2t = b2t−1 + t−1R−1

2,t z2,t−1
(
pt − b2t−1z2,t−1

)
11For an overview of stability under RLS in dynamic macroeconomics see (Evans and Honkapohja

2001).
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where

R1,t = R1,t−1 + t−1(z2
1,t−1 −R1,t−1)

R2,t = R2,t−1 + t−1(z2
2,t−1 −R2,t−1)

The Rj,t, j = 1, 2 are recursive estimates of the variances of the explanatory variables
zj.

Given these beliefs agents estimate the mean profits associated with each model

Êπ1,t = Êπ1,t−1 + t−1
(
π1,t − Êπ1,t−1

)
Êπ2,t = Êπ2,t−1 + t−1

(
π2,t − Êπ2,t−1

)
The mean profits map into predictor proportions according to the law of motion

nj,t =
exp

[
αÊπj,t

]
∑

2

j=1 exp
[
αÊπk,t

]
The dynamic version of the model exhibits real-time learning in the sense that agents
adaptively update previous estimates of their belief parameters and the mean profits
from those beliefs. Agents now choose their model in each time period based on these
recursive estimates. We are interested in whether the sequence of estimates b1t , b

2

t and
predictor proportions n1,t converge to the Misspecification Equilibrium.12 Our aim is
to use numerical illustrations to show that the equilibrium can be stable under real-
time learning. It is beyond the scope of this paper to establish analytical convergence
results for this learning rule.

We continue with a particular parameterization that generated Intrinsic Hetero-
geneity in the previous section. We set

A =

[
.3 .1
.1 .7

]
, Σε =

[
.7 .2
.2 .6

]
,

γ′ = [.7, .5], and φ = 2, and simulate the model for 100,000 time periods. We set the
initial value of the VAR equal to a realization of its white noise shock, i.e., z0 = ε0.
The initial value for n1,0 is 0.82, a value that was chosen to lie away from the end points
and the ME. Initial estimated mean profits are equal to the realized profits under the
initial conditions. The initial belief parameters were set to b1

0
= 1, b2

0
= 2. The initial

estimated variances R1,0, R2,0 are the identity matrices. We choose α = 100.

Figure 4 illustrates the results of a representative simulation. The top panel
plots the simulated proportion n1,t against time. The middle and bottom panels plot

12Since we conduct the analysis numerically, we are being deliberately vague in what sense these
sequences converge.
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the simulated law of motion parameters ξ1,t, ξ2,t. In each plot the solid horizontal
line represents the respective variables’ values in the Misspecification Equilibrium
with Intrinsic Heterogeneity. As can be seen, there appears to be convergence to
the ME. Initially there is considerable volatility in the proportion of agents who
choose predictor 1. This volatility gradually dampens until the proportion approaches
its equilibrium value. The dampening is much quicker in belief parameters as they
approach their equilibrium values in a short period of time. Similar convergence
results were obtained for other parameter settings but the qualitative results were
affected by α. For larger values of α it takes longer for the predictor proportions to
settle down near the equilibrium values. However, the system appears to be stable
for all α > 0.

INSERT FIGURE 4 HERE

The intuition behind the stability is as follows. In our parameterization there is
a unique ME with Intrinsic Heterogeneity. Heterogeneity arises because Condition P
guarantees that under, say, z1 homogeneity agents will have an incentive to mass on
z2, and vice-versa. For large α agents mass on the predictor that returns the highest
mean profit. In our simulations the proportions of agents are initially well away from
the ME. This implies that one predictor has a higher profit than the other. In the
next period agents mass onto that predictor. Because Condition P holds, in the next
period agents mass onto the other predictor. As the rapid switching occurs agents
update parameter estimates, which converge quickly, and accumulate data on relative
mean forecast performance. As they learn about mean relative forecast performance,
the volatility in predictor selection dampens and there is convergence towards the
Misspecification Equilibrium.

In the light of (Brock and Hommes 1997) our results may seem surprising. How-
ever, in (Brock and Hommes 1997) the model is deterministic, the predictor choice
is between a costly stabilizing predictor and a costless destabilizing predictor, and
predictor fitness is the most recent period’s realized profits. The stability results in
our model are the result of agents looking at the mean relative performance of the
predictors using the whole history of profits. This feature seems more appropriate
within the stochastic model we examine, and is a key feature generating our numerical
stability results.

5 Conclusion

This paper demonstrates how to obtain heterogeneous expectations as an equilibrium
outcome in a model with optimizing agents. Our set-up is the standard cobweb model
in which rational expectations was originally developed. We obtain our results with
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a discrete choice model for predictors, when agents are constrained to choose from a
set of misspecified models. As in (Brock and Hommes 1997) the proportion of agents
using the different predictors depends on their relative performance according to an
intensity of choice parameter. As the intensity of choice increases agents will select
only the most successful predictors. In (Brock and Hommes 1997) heterogeneity
of expectations is a reflection of finite intensities of choice and disappears in the
neoclassical limit. One of the main contributions of this paper is to show that
heterogeneity can remain for high intensities of choice as a result of the availability
of multiple misspecified models.

Because of limits in cognition, knowledge of the economy, degrees of freedom, etc.,
we assume that agents must underparameterize by neglecting a variable or lag from
their forecasting model. The importance of misspecification is widely recognized in
applied econometrics and one that we believe should be reflected in realistic mod-
els of bounded rationality. Although we constrain agents to choose from a list of
misspecified models, at the same time we require that the parameters of each chosen
model are formed optimally in the sense that forecast errors are orthogonal to the
explanatory variables of that model.

Our major theoretical contribution is to obtain existence results for a Misspeci-
fication Equilibrium within this framework and to obtain a suitable condition under
which heterogeneous expectations persists for high intensities of choice. When this
condition is satisfied we say the model exhibits Intrinsic Heterogeneity.

Our central finding that misspecification can lead to heterogeneous expectations
is not at all obvious. If the intensity of choice is large, a key requirement for this
possibility is that the model be self-referential, i.e., that there be feedback from
expectations to actual outcomes. Heterogeneous expectations are not a necessary
outcome when the intensity of choice is large, but do arise under a suitable joint
condition on the model and the exogenous driving processes. We illustrate the results
in a simple bivariate model. In particular, we show that, ceteris paribus, Intrinsic
Heterogeneity arises when the parameter governing the self-referential extent of the
model is sufficiently large. This surprising feature of self-referential models has not
been noted in previous work.

In this paper we have focused on the cobweb model. In future work, we will
examine the framework in a Lucas-type monetary model. The Lucas-type model
shares a similar reduced-form as the cobweb model, but expectations have a positive
feedback on price. Since the self-referential feature of these models is central, a model
with positive feedback can be expected to yield distinct results.
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A Appendix

Proof of Proposition 1. Consider the matrix

[�] =

(
I + φ

K∑
j=1

njΩ′uj
′

(
ujΩuj

′

)−1
uj

)
.

The absolute value of the indicated sum has a maximum value when considered as a
function of n ∈ S. Hence for |φ| sufficiently small [�] is strictly diagonally dominant
(see Horn and Johnson (1985), p. 302) for all n ∈ S. Strictly diagonally dominant
matrices have non-zero determinants and hence are invertible.

Proof of Theorem 3. Suppose to the contrary that the model does not exhibit
intrinsic heterogeneity. From Theorem 2 we know that a ME exists for every α.
Since the model does not have intrinsic heterogeneity, then for all n̄ < 1 there are
infinitely many α such that n∗k > n̄ for some component k = 1, . . . , K where n∗ ∈ Nα.
Hence there exists a sequence indexed by ŝ such that α(ŝ) → ∞ with fixed points
n∗(ŝ) satisfying n∗k(ŝ)(ŝ) → 1. It follows that for some i ∈ {1, . . . , K} there exists a

subsequence indexed by s such that α(s) → ∞ and n∗i (s) → 1. The expected profit
functions F̃j(n) are continuous and hence for this sequence

Eπk(s)−Eπi(s) → F̃k(ei)− F̃i(ei),

for all k = 1, . . . , K, where ei is the unit coordinate vector with component i equal to
one. However, condition P implies that there exists j �= i such that F̃j(ei)−F̃i(ei) > 0.
It follows from (11) that

n∗i (s) =
1

1 +
∑

k �=i exp{α(s)(Eπk(s)− Eπi(s)}
.

Thus n∗i (s) → 0 as s → ∞. This contradicts n∗i (s) → 1 and hence the model must
exhibit intrinsic heterogeneity.

Proof of Proposition 4. We want to show

� = (1 + n1φ) ((1 + φ)− φn1)− φ2ρρ̃
(
n1 − n21

)
> 0

or equivalently
� = φ2 (ρρ̃− 1)n21 + φ2 (1− ρρ̃)n1 + (1 + φ)

The equation � is a quadratic concave in φ. Evaluated at the end points (n1 = 0
and n1 = 1) � > 0. The quadratic is maximized at n1 = 1/2 and returns a value
of �(1/2) = (1/2)φ2 + (1 + φ) > 0. Since � is concave and is positive at both its
extrema, we conclude that Condition � is satisfied.
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Proof of Lemma 5. We can rewrite (13) as

S(n1)ξ = A′γ,

where ξ′ = (ξ1, ξ2) and S(n1) is the indicated 2× 2 matrix. Differentiating we obtain
(dS)ξ + S(dξ) = 0 and

dξ

dn1
= −S−1

dS

dn1
ξ.

It is easily seen that
dS

dn1
= φ

(
1 ρ
−ρ̃ −1

)
.

Somewhat abusing notation, it is now convenient to rewrite F (n1) as F (ξ(n1)). To
establish the result we compute dF/dn1 = (dF/dξ)′(dξ/dn1). It can be verified that

(
dF

dξ
)′ = φD(1− r2)Ez21ξ

′
(

1 0
0 −Q

)
,

where Q = Ez22/Ez21.

Thus

dF/dn1 = −φ2D(1− r2)Ez21ξ
′K(n1)ξ, where

K =

(
1 0
0 −Q

)
S−1

(
1 ρ
−ρ̃ −1

)
.

Here r2 = ρρ̃ with 0 ≤ r2 < 1. Computation of K yields

K(n1) =

(
1+φ(1−n1(1−r2))

1+φ+φ2(1−r2)n1(1−n1)
√
Qr(1+φ)

1+φ+φ2(1−r2)n1(1−n1)√
Qr(1+φ)

1+φ+φ2(1−r2)n1(1−n1)
Q(1+φr2+φ(1−r2)n1)
1+φ+φ2(1−r2)n1(1−n1)

)
.

K(n1) is symmetric with K11(n1) > 0 and

det(K(n1)) =
Q(1− r2)

1 + φ+ φ2(1− r2)n1(1− n1)
> 0.

Thus K(n1) is positive definite and ξ′K(n1)ξ ≥ 0 for all ξ. The result follows since
dF/dn1 ≤ 0 for all 0 ≤ n1 ≤ 1.

Further Details For Section 3.2. Using the profit functions derived above we
can find

F (1)

Ez21
= −φD{(ξ21(1)ρ̃− ξ22(1)ρ)ρ+ (1/2)(ξ22(1)−

ρ̃2ξ21(1))Q− (1/2)(ξ21(1)− ρ2ξ22(1))}

F (0)

Ez22
= φD{ρ̃[ξ22(0)ρ− ξ21(0)ρ̃] + (1/2)[(ξ21(0)−

ξ22(0)ρ
2)Q−1 − (ξ22(0)− ξ21(0)ρ̃

2)]}

23



Thus, for example,

F (1) < 0 if
[
ξ21(1)− ξ22(1)

] (
Qρ̃2 − 1

)
> 0.

Using Qρ̃2 = r2 < 1 it follows that

F (1) < 0 if
[
ξ21(1)− ξ22(1)

]
< 0.

Proof of Proposition 8. Take part (1), which states that Condition P implies
Intrinsic Heterogeneity. We will establish that (i) for each α, ∃n∗1(α) ∈ Nα uniquely,
(ii) ∃ {α(s)}s s.t. α(s) → ∞ ⇒ n∗1(α(s)) → n̂1 where n̂1 ∈ N∞ ≡ {n1 ∈ [0, 1] :
for α → ∞ n1 = Tα(n1)} and (iii) F (n̂1) = 0.

Claim (i) that there exists a unique fixed point n∗1(α) for each α comes directly
from Theorem 6.

Claim (ii) is that there is a sequence α(s) indexed by s defined so that as α(s) → ∞
the corresponding sequence of fixed points from claim (i) n∗1(α(s)) → n̂1. That there
exists a sequence α(s) → ∞ and a similarly corresponding sequence n∗1(α) follows
from claim (i) and since α ∈ R+ there are infinitely many such sequences. Theorem
6 used Brouwer’s theorem and Lemma 5 to establish that there exists a unique fixed
point for each α. Hence there exists a limit to the sequence of fixed points indexed
by s and define it to be n∗1(α(s)) → n̂1. By construction, n̂1 ∈ N∞.

Claim (iii) is that F (n̂1) = 0. Assume n̂1 ∈ N∞, Condition P, and F (n̂1) �= 0. It
follows that F (n̂1) > 0 or F (n̂1) < 0. Recall, n1(α) = Hα(F (n1)). By definition, as
α → ∞

Hα(x) →




1 if x > 0
0 if x < 0
1/2 if x = 0

So we have n∗1(α) → n̂1 ∈ {0, 1}. But, assuming Condition P implies F (1) < 0 and
F (0) > 0. Hence, n̂1 is not an ME which contradicts our initial assumption. It must
be the case that, with Condition P, F (n̂1) = 0.

Note now that Lemma 5 establishes n̂1 is the unique point where F (n̂1) = 0.
Thus, we conclude that Condition P implies n∗1(α) → n̂1 where F (n̂1) = 0.

A similar argument establishes parts (2) and (3) of the proposition. Note that
Condition P1 implies F (1) > 0 and F (0) > 0 and Condition P0 has F (1) < 0 and
F (0) < 0. The monotonicity of F means that ∀n1, α F (n1(α)) �= 0 and the result
follows immediately from above.
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Figure 1:  T-map for various values of α and f =2. 
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Figure 2.  T-map for various values of α and f=2 for the case of no Intrinsic Heterogeneity and 
predictor 1 homogeneity. 
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Figure 3.  T-map for α=2000 and f=.5,1,2,5,10,20 for the case of Intrinsic Heterogeneity.  Note 
that as f increases the fixed point of the T-map. 
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Figure 4.  Real-time learning simulations. 
 

 

 

 

 

 

 

 

 

 

 

 

 


