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Extensive calculations are reported for electron collision strengths, rate coefficients, and transitions probabilities
for a wide range of transitions in Fe II. The collision strengths were calculated in the close-coupling approximation
using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method in connection with
adjustable configuration expansions and a semiempirical fine-tuning procedure is employed for an accurate
representation of the target wave functions. The energy correction was also used in the scattering calculations by
adding to Hamiltonian matrices prior to transformation to intermediate coupling. The spin-orbit interaction term
was added to the final Hamiltonian matrices in scattering calculations. The close-coupling expansion contains
340 fine-structure levels of Fe II and includes all levels of the 3d64s, 3d54s2, 3d7, and 3d64p configurations, plus
a few lowest levels of the 3d54s4p configuration. The effective collision strengths are obtained by averaging
the electron collision strengths over a Maxwellian distribution of velocities at electron temperatures in the range
from 102 to 105 K and are reported for all possible inelastic transitions between the 340 fine-structure levels. The
present results are more extensive than the previous calculations and considerably expand the existing data sets
for Fe II, allowing a more detailed treatment of the available measured spectra from different space observatories.
Comparison with other calculations for collision rates and available experimental radiative rates is used to place
uncertainty bounds on our collision strengths and to assess the likely uncertainties in the existing data sets.

DOI: 10.1103/PhysRevA.98.012706

I. INTRODUCTION

Accurate radiative and collision atomic data for iron-peak
elements are of great importance in the analysis and diagnostics
of a broad range of stellar and nebular spectra [1–5]. The singly
ionized iron-peak elements are the dominant ionization stage
and there is a need of accurate data for many lines to cover
the broad metallicity ranges. The experimental atomic data are
scarce and usually limited to a small number of transitions.
The computational laboratory astrophysics represents a major
source of such extensive high-quality atomic data.

The Fe II ion is the most abundant of iron-peak elements with
a large number of lines in a broad wavelength region from the
infrared to ultraviolet and has received extra special attention
for the theoretical and experimental studies of the transition
and collision rates. The Fe II forbidden lines in the near-IR
and mid-IR band are prominent in the interstellar shocked gas
and nebulae [3,4]. The 16 lowest Fe II levels can be easily
excited because of small excitation energies. The transitions
between these levels give rise to lines in the IR wavelength
region in the 1 to 2.5 μm ground-based observations. The
ratios of these lines provide excellent density diagnostics to
the ne = 103–105 cm−3 emitting region. The uncertainty in
atomic data for the Fe II ion is the challenging limitation in
the interpretation of line intensities. Despite the increased
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activities to produce atomic data of progressively larger size
and better accuracy, the current Fe II spectral models still
remain of limited accuracy and predictions and observations
disagree by up to several factors in some cases.

The earlier theoretical works of increasing size and sophis-
tication include Baluja et al. [6], Berrington et al. [7], Pradhan
and Berrington [8], and Zhang and Pradhan [9]. Pradhan and
Berrington included 38 selected quartet and sextet terms of the
3d64s, 3d7, and 3d64p configurations in the nonrelativistic
calculation to obtain collision strengths between these 38
LS terms. They noted strong coupling between the terms
of the 3d64s and 3d64p configurations. Later, based on the
assumption that the relativistic effects in Fe II are not very
important compared to electron-electron correlation effects,
Zhang and Pradhan [9] used a pair coupling transformation
to determine collision strengths for the selected fine-structure
transitions from the 38 LS-state results of Pradhan and
Berrington [8]. These data for a long time have been used
for diagnostics of astrophysical plasmas and they still can be
found as recommended atomic data for Fe II in the CHIANTI
database [10].

Two additional separate R-matrix calculations have been
performed later by Bautista and Pradhan [11,12] in order to
complement the Zhang and Pradhan [9] work by including
the low-lying doublet and sextet even-parity states that were
excluded from previous computations. Their first calculation
includes the lowest 18 LS levels of Fe II, and the second cal-
culation includes five additional terms, resulting in a 23-state
LS-coupled approximation. Comparing the rate coefficients,
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they estimated uncertainties to be about 30% for most of
the transitions considered. However, due to the omission of
the higher lying 3d64p levels these calculations cannot be
considered as consistent. The quite different rate coefficients
obtained from these three 38-state, 18-state, and 23-state
models indicate that convergence has not yet been achieved.

A new set of sophisticated calculations for the electron
scattering on Fe II has been proposed by Burke et al. [13] to be
carried out at Queen’s University of Belfast based on their
newly developed parallel R-matrix program PRMAT. They
expressed the confidence that the rapidly increasing power and
availability of parallel computers should enable converged ef-
fective collision strengths to be calculated for electron collision
with open d-shell iron peak elements over the next several
years. As part of this program, Ramsbottom et al. [14–16]
performed extensive LS-coupling R-matrix calculations using
the PRMAT codes to study the convergence of configuration-
interaction (CI) and close-coupling (CC) expansions in Fe II.

Their first model [14] included all 38 quartet and sextet
LS-coupled states which can be formed from the three target
configurations 3d64s, 3d7, and 3d64p and they analyzed effec-
tive collision strengths for 112 quartet-to-sextet transitions. A
limited comparison is made with earlier theoretical work and
large differences have been found to occur at the temperatures
considered. In particular, it is found that the inclusion or omis-
sion of some (N+1)-bound configurations in the Hamiltonian
matrices describing the collision process can have a huge effect
on the resulting effective collision strengths, by up to a factor of
four in some cases. This model was extended by Ramsbottom
et al. [15] to include the additional levels which arise from the
3d54s2 and 3d54s4p configurations, giving 113 LS-coupled
quartet and sextet target states. They concluded that in order
to obtain close to converged low-energy partial wave collision
strengths 21 further configuration functions should be included
in the CI expansion of the target, incorporating two-electron
excitations from the 3s and 3p shells to the 3d shell. This model
was used by Ramsbottom et al. [16] to generate total effective
collision strengths for 1785 transitions in Fe II between the
considered quartet and sextet LS states, but they ignored all
doublet states.

Later, Ramsbottom et al. [17,18] performed a Breit-Pauli
R-matrix (BPRM) calculation by including 262 fine-structure
levels of the 100 LS terms belonging to the 3d64s, 3d7,
and 3d64p configurations in the CC expansion. The results
from the first calculation [17] are restricted to the transitions
among the 16 lowest levels of Fe II corresponding to the
3d64s 6D,3d7 4F,3d64s 4D, and 3d7 4P multiplets, whereas
the second calculation [18] included only the optically allowed
lines for transitions from the 3d64s and 3d7 even-parity
states to the 3d64p odd-parity levels. Their target expansions
included a limited number of configurations, namely, the
main spectroscopic configurations plus additional correlation
effects incorporated via the single 3d64d configuration. The
large influence of the CI effects learned in the previous LS

calculations [14–16] was ignored here, probably due to the
great computational efforts required to incorporate the effects
in the Breit-Pauli approach. These BPRM calculations show
significant differences from earlier calculations; however, they
cannot be considered as complete or converged due to the
limitations indicated above.

Bautista et al. [19] calculated radiative transition and colli-
sion rates for the forbidden transitions between the 52 lowest
even-parity levels of the 3d64s, 3d7, and 3d54s2 configurations
and used their data in spectral modeling of Fe II emission
in the infrared and optical regions and absorption in the
UV region. In these calculations, they used several available
computer codes to estimate uncertainties from the dispersion
in atomic data obtained in different models. The thermally
averaged collision strengths for forbidden transitions in Fe II

have been estimated to have uncertainties of about 50% or
less for stronger transitions, but much greater for the weaker
transitions reaching factors of two or more in some cases.

A general conclusion from the above short review is that not
a single available calculation has yet achieved convergence
so as to provide accurate atomic parameters. The problem
is mainly computational; the very large number of energy
levels and transitions involved in the spectrum requires big
CC expansions, whereas the accurate representation of the
open 3d-shell target states requires extensive CI expansions.
Each calculation for such a complex atomic system as Fe II is
a compromise in the choice of scattering model and the tar-
get representation depending on the available supercomputer
allocations and the codes used. Most target representations of
Fe II in previous calculations yield very inaccurate energies for
the excited terms of the system, mainly due to computational
restrictions on the target expansions. That in turn hampers the
accuracy of resonance structures which may provide dominant
contribution to the spin-forbidden or weak transitions. All
previous calculations were performed by employing essen-
tially the same method, namely, the widely used R-matrix
close-coupling code of the Belfast group. As pointed out by
Ramsbottom et al. [15], a tremendous challenge for electron
collision calculations of open-shell systems such as Fe II is the
accurate target description which is difficult to achieve with
standard CI procedures. The individual orbitals in the 3d64s,
3d7, 3d54s2, 3d64p, and 3d54s4p target configurations are
very term dependent. Hence, computer codes that require a
set of orthogonal one-electron orbitals, such as RMATRXI
and RMATRXII or their parallel extensions, can only account
for such term dependence by large CI expansions, involving
a number of specially designed pseudo-orbitals. In this case,
even experienced users need to consider a careful balance of
the N-electron target structure and the (N+1)-electron collision
problem.

Our B-spline R-matrix (BSR) method with nonorthogonal
orbitals [20] is an alternative approach, which has several
advantages for complex target systems such as Fe II. The use
of term-dependent, and therefore nonorthogonal, sets of one-
electron orbitals generally allows for a highly accurate target
description with relatively smaller configuration expansions.
This was first illustrated in the nonrelativistic benchmark
calculations for electron collisions with Fe II [21] where the
flexibility of the code allowed us to generate a target description
of unprecedented accuracy for collision calculations. The
purpose of the present work is to perform more elaborate and
extensive calculations for the electron scattering from Fe II by
using highly accurate target wave functions and by including
fine-structure effects in the close-coupling expansions through
the Breit-Pauli Hamiltonian. The direct use of the Breit-Pauli
approach, however, is computationally not feasible for such
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FIG. 1. Schematic diagram of the lower part of the Fe II spectrum.

complicated system as Fe II due to very extensive configuration
expansions. The calculations, therefore, were carried out in
two stages. First we consider the nonrelativistic LS transitions
between all states of the 3d64s, 3d7, 3d54s2, 3d64p, and
3d54s4p target configurations giving rise to 261 overall LS
terms. These data were then used to generate the Breit-Pauli
Hamiltonian matrix for the transitions between fine-structure
levels using the standard recoupling procedure. At this stage,
for more accurate description of the spin-orbit mixing of
different terms, the target LS energies were adjusted to the
experimental values using the fine-tuning procedure, designed
to represent the observed fine-structure splitting as accurately
as possible. This procedure is close to the fine-tuning method
which was successfully used by Hibbert and co-workers
[22,23] for accurate calculations of the different radiative
rates in Fe II. The available computer allocations allowed us
to include 340 fine-structure levels of Fe II in the final close-
coupling expansion. This set includes all levels of the 3d64s,
3d54s2, 3d7, and 3d64p configurations, plus a few lowest
levels of the 3d54s4p configuration. The final set of effective
collision strengths includes the 57 630 transitions between the
340 fine-structure levels.

II. COMPUTATIONAL METHODS

A. Target wave function calculations

Figure 1 shows the energy level diagram of the lower part
of the Fe II spectrum considered in the present calculations.
The large number of possible terms resulting from the approx-
imately half-open 3d shell, in combination with the near de-
generacy of the 3d7, 3d64s, 3d54s2, and other configurations,
results in very complex spectra that are strongly influenced by
configuration interaction. The electron correlation among the
outer 3d, 4s, and 4p electrons is also expected to be important.
The inclusion of the correlation effects requires considering at
least single and double promotions of the valence electrons to
the excited orbitals. In the case of the open 3d shell, inclusion of
all important promotions leads to extremely large configuration

expansions and makes it difficult to obtain accurate wave
functions within standard multiconfiguration Hartree-Fock
(MCHF) or configuration-interaction methods.

Another complication arises from the term dependence of
the valence orbitals, which slows down the convergence of
the multiconfiguration expansions. An important aspect of the
present approach, which distinguishes it substantially from
nearly all other methods commonly used to describe electron-
atom collisions, is the possibility of using nonorthogonal
one-electron orbitals in the multiconfiguration description of
the N -electron target states. As a result, accurate description of
both the energy levels and oscillator strengths can be achieved
with more compact CI expansions. In traditional methods with
an orthogonal set of one-electron orbitals, a similar accuracy
can, in principle, be achieved by very large expansions using
additional correlated pseudo-orbitals. In the calculations of the
Fe II target states, we tried to account for all main correlation
effects, while bearing in mind that the final multiconfiguration
expansion still needs to be dealt with in the subsequent
scattering calculation with one more electron to couple.

In the present work, we used the MCHF code of Froese-
Fischer et al. [24] in combination with our CI code with
nonorthogonal orbitals to generate the target wave functions.
First, the inner 1s, 2s, 2p, 3s, and 3p orbitals were obtained
from a Hartree-Fock calculation of the ground state. Keeping
these orbitals frozen, we then generated the 3d, 4s, and 4p

valence orbitals specifically for each principal configuration in
the term-average approximation. The term dependence of the
valence orbitals was found to be noticeable but not extremely
strong, with maximum change of mean radius up to 10%.
However, the corresponding corrections in the configuration
energies are around 0.2 Ry, which makes the inclusion of term
dependence very important for accurate calculation of the term
energies. The above spectroscopic orbitals were supplemented
with the 4l and 5l (l = 0–3) correlated orbitals. The correlation
orbitals were also determined for each principal configuration
separately and were generated with the MCHF program [24]
for one specific term. These orbitals are then used for all terms
of a given configuration.

The final configuration expansions contain all the most
important one- and two-electron excitations from the valence
3d, 4s, and 4p orbitals of the principal configurations. In-
clusion of all possible promotions for the given case of the
open 3d shell leads to very large configuration expansions,
with thousands of individual atomic configuration states dif-
fering in the intermediate terms. As illustrated in the recent
calculations of oscillator strengths [23], convergence of the
multiconfiguration expansions in Fe II is very slow, resulting
in the expansion with tens of thousands of configurations. Such
target expansions cannot be used in the scattering calculations.
In the previous scattering calculations discussed above it is not
clear how the specific target expansions were designed. Most
likely these calculations included only so many configurations
as allowed by the available computational resources. In the
present approach, we attempted to include the most important
correlation effects for the Fe II target states, and at the same
time kept the target expansions to a reasonable size. To
do that, we first analyzed the extended target expansions
which contains all double promotions to determine the main
correlation configurations.

012706-3



S. S. TAYAL AND O. ZATSARINNY PHYSICAL REVIEW A 98, 012706 (2018)

TABLE I. Main correlation contributions.

Main configuration Correlation configuration Contribution

3d64s 3d44d2
1 4s 0.0394

3d54p2
2 0.0288

3d54d14s 0.0284
3d44f 2

1 4s 0.0254
3d54p24f2 0.0215

3d65s3 0.0210
3d7 3d54d2

1 0.0467
3d54f 2

1 0.0245
3d54p2

1 0.0240
3d64d1 0.0239

3d54s2 3d54p2
3 0.1808

3d54s5s3 0.0371
3d44d14s2 0.0336
3d34d2

1 4s2 0.0304
3d44s4p24f2 0.0258
3d34f 2

1 4s2 0.0236
3d44s4p2

2 0.0236
3d55s2

3 0.0234
3d54d2

3 0.0228
3d54s4d3 0.0211

3d64p 3d54p5s2 0.0502
3d44d2

1 4p 0.0397
3d65p3 0.0370

3d54d14p 0.0345
3d44f 2

1 4p 0.0298
3d54f25s2 0.0286
3d55s25p2 0.0240
3d54s25s2 0.0226
3d54d24f2 0.0203
3d54d25p2 0.0196

3d54s4p 3d54s5p3 0.0497
3d54p34d3 0.0494

3d34d2
1 4s4p 0.0426

3d34f 2
1 4s4p 0.0223

3d44p24f2 0.0216
3d55s35p3 0.0182
3d54s4f3 0.0180

In Table I, we list the main correlation configurations
together with their average mixing coefficients. The orbitals
with an additional subindex are the correlated orbitals from
different nonorthogonal sets. Note that the correlated orbitals
differ considerably from the corresponding spectroscopic or-
bitals and have mean radii close to the valence 3d, 4s, and
4p orbitals in the principal configurations. As seen from the
table, the correlation pattern for different principal config-
urations is different and cannot be considered on the same
footing. It may be noted that the major correlation corrections
come from the 3d2-4d2 substitution, along with other double
promotions 3d2-4p2 and 3d2-4f 2. Such configurations were
only partly included in previous calculations. For example,
Ramsbottom et al. [16] and Bautista et al. [19] included
3d54d2 configurations, but none of the 3d44d24s or 3d34d24s2

configurations. This may bring an imbalance in the relative
position of terms. The above double substitution reflects the
3d inner-shell correlation, which is expected to be different
for the 3d64s, 3d7, and 3d54s2 principal configurations due to

different numbers of 3d electrons. Ramsbottom et al. [16] also
found a large contribution from the double promotion of the
more deep 3p shell. This promotion reflects the 3p inner-shell
correlation which is expected to be the same for all considered
states and thereby would not effect the relative position of
terms. For this reason, we did not include such configurations
in the present expansions.

As seen from Table I, we additionally found that the 3d-4f

promotion also contributes significantly to correlation effects.
No such configurations were included in the previous calcula-
tions. Note that 4f correlated orbitals have a mean radius close
to the 3d orbital, and this explains its large influence. For the
3d64s states it is also important to include the 3d-4s intershell
correlation, which is reflected in the large contributions of the
3d54p2 and 3d54p4f configurations, which correspond to the
dipole interactions 3d4s-4p2 and 3d4s-4p4f , respectively.
The same concerns the 3d-4p intershell correlation in the
3d64p states. This is reflected in the large contribution of
the 3d54p5s configuration that corresponds to the 3d4p-4p5s

dipole interaction. The 3d64s2 states show strong mixing with
the 3d64p2 configuration, and for the 3d64s4p states the va-
lence correlation between two outer electrons is reflected in the
large contribution of the 3d54s5p and 3d54p4d configurations.

The above analysis allows us to choose the most important
configurations which should be included in the final target
expansions and, at the same time, to keep these expansions of
manageable size, appropriate for the scattering calculations.
We chose to keep all configurations with mixing coefficients
more than ∼0.025. This resulted in CI expansions of size from
200 to 400 for each LS target state, suitable for the scattering
calculations with the modern computational facilities. At this
stage we also applied the first semiempirical correction using
the above cutoff parameter to adjust the theoretical LS energies
to experiment obtained by taking a weighted average over
the fine-structure levels [25]. Due to different convergence of
different terms, this required varying cutoff parameters in the
range from 0.015 to 0.030 for the different terms. With this
procedure, we managed to reach agreement with the observed
LS energies of less than 0.1 eV for all included states.

As the next step, we obtained the J -dependent target states
by diagonalizing the Breit-Pauli Hamiltonian on the basis
of multiconfiguration LS wave functions described above,
using the configuration-interaction procedure and nonorthog-
onal orbitals [26,27]. The target expansion, for total angular
momentum J and parity π , have the form

�βJπ =
∑
αLS

C(βJπ ; αLSπ )�αLSπ . (1)

We included all one-electron Breit-Pauli operators, and no cut-
off factor has been applied at this stage. The final target expan-
sions contain on average 1000 configurations and still can be
used in the collision calculations with available computational
resources. Note that functions �αLSπ in the above equation are
the multiconfigurational expansions from the LS calculations,
where coefficients for individual configurations were frozen.
The diagonalization of the Breit-Pauli atomic Hamiltonian
provides then only the coefficients C(βJπ ; αLSπ ), which
describe the spin-orbit mixing of different LS terms. Accurate
representation of the term mixing is very important for accurate
description of transitions between the fine-structure levels.
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This mixing crucially depends on both the spin-orbit interac-
tion and the energy separation between the LS states. In order
to improve the term mixing, we made additional semiempirical
corrections to the energies of the �αLSπ functions in such a
way that the final fine-structure LSJ levels agree with the
observed levels as closely as possible. These corrections are
relatively small (less than 0.1 eV) but considerably improve
the agreement with observed spectrum of the Fe II discussed
below. Such fine-tuning of the LS terms is frequently used
in the structure calculations [22,23] and aims to improve the
description of the forbidden fine-structure transitions which
crucially depends on the mixing coefficients.

B. Collision calculations

For the scattering calculations we employed the parallelized
version of the BSR code [20] which is based on the R-
matrix method. The BSR code was substantially modified and
extended for the present calculations. The distinctive feature of
the code is the use of B splines as a universal basis to represent
the scattering orbitals in the inner region, r � a. Hence, the
R-matrix expansion in this region takes the form

�k(x1, . . . ,xN+1)

= A
∑
ij

�̄i(x1, . . . ,xN ; r̂N+1σN+1) r−1
N+1 Bj (rN+1) aijk

+
∑

i

χi(x1, . . . ,xN+1) bik. (2)

Here A denotes the antisymmetrization operator, �̄i are
the channel functions, while the splines Bj (r) represent the
continuum orbitals. The principal advantage of B splines is that
they form an effectively complete basis, and hence no Buttle
correction to the R matrix is needed in this case. The amplitudes
of the wave functions at the boundary, which are required for
the evaluation of the R matrix, are given by the coefficient
of the last spline, which is the only spline with nonzero value
at the boundary.

The other important feature of the present code concerns
the orthogonality requirements for the one-electron radial
functions. The χi function in the above equation is additional
(N+1)-electron bound states. In the standard R-matrix calcu-
lations [28], the latter are included one configuration at a time
to ensure completeness of the total trial wave function and
to compensate for orthogonality constraints imposed on the
continuum orbitals. The use of nonorthogonal orbitals allows
us to reduce or even to avoid the introduction of additional
(N+1)-electron terms in the R-matrix expansion. We impose
only limited orthogonal conditions to the continuum orbitals.
In the present calculations we only require the orthogonality
of continuum orbitals to the bound orbitals in the filled 1s,
2s, 2p, 3s, and 3p shells. No orthogonality constraints to
the spectroscopic excited orbitals or the correlated orbitals
were imposed. Thus the (N+1)-electron configurations χi can
be completely avoided. This allows us to use much more
extensive multiconfiguration expansions for target states and
avoid the pseudoresonance structure which usually appears in
the standard R-matrix calculations due to inconsistency of the
scattering and bound parts of the close-coupling expansions.

The BSR code previously was applied for several iron
ions [29–31] in the direct Breit-Pauli mode. That means the
calculations of collision strengths in the intermediate coupling
by including fine-structure effects directly in the solutions
of scattering equations. In the present case of Fe II, such
direct Breit-Pauli calculations are not possible due to extensive
target expansions and the large number of scattering channels.
Therefore, we chose to perform calculations in two stages, first
the LS calculations for transitions between LS terms, and then
a transformation of the Hamiltonian matrix in the inner region
to the intermediate coupling. This scheme provides the same
level of accuracy, but avoids repeating calculations of matrix
elements for the nonrelativistic Hamiltonian for the different
J values.

In the first step, we obtained the nonrelativistic Hamiltonian
matrices in the inner region for the close-coupling equation
containing all LS terms of the 3d64s, 3d54s2, 3d7, 3d64p, and
3d54s4p configurations. Overall it includes 261 LS levels, and
the CC expansions for the e-Fe II scattering problem contains
up to 818 different scattering channels in the LS-coupling
scheme. We consider all partial waves up to L = 50 and
total spin S = 0–3, with the overall number of partial waves
equaling 510. The continuum orbitals in the internal region
with radius a = 25 a0 were represented by 78 B splines of
order 8. This leads to the Hamiltonian matrices with dimen-
sions up to 60 000. The characteristic feature of the present
Fe II calculation is the large configuration expansions for the
total scattering functions and the extremely large number
of different two-electron matrix elements. Partly this is due
to open 3d-shell configurations, but the main complication
comes from the huge number of overlap factors due to the
nonorthogonal orbitals. This required further optimization of
the code for the determination of the angular coefficients
and subsequent construction of the Hamiltonian matrix. In
particular, the previous standard procedure to calculate first
the angular coefficient using the BSR_BREIT program and
then set up the Hamiltonian matrix using the BSR_MAT
program cannot be applied in the present case due to the
large size of the intermediate files of the angular coefficients
that may reach several hundreds of Gb. We combined these
two programs into one, BSR_BMAT, to calculate the angular
coefficients for given configurations and then dynamically
added the corresponding integrals to the Hamiltonian matrix.
This procedure treats the Hamiltonian matrix in parts, and adds
to the flexibility of performing calculations. The calculation
of one partial wave required from 1 to 24 hours on the
supercomputer with 1000 processors.

Having calculated the LS Hamiltonian matrix, the Breit-
Pauli matrices have been then constructed using the transfor-
mation to the intermediate coupling scheme. It was performed
in three steps. First, we modified the LS Hamiltonian matrices
according to the fine-tuning of LS term energies discussed
above. In the case of the orthogonal one-electron orbitals this
is a trivial procedure which is reduced just to modification of
the diagonal matrix elements. In the case of nonorthogonal
orbitals, the Schrödinger equation reduces to the generalized
eigenvalue problem

HC = SCE, (3)
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where S is the overlap matrix. Let us denote the energy
corrections by the diagonal matrix D. As discussed in the BSR
description [20], the above matrix equation is then transformed
to

(H + S1/2DS1/2)C = SCE, (4)

where the final correction is defined by the S1/2DS1/2 term.
This correction was added to the Hamiltonian matrix in the
internal region for all partial waves.

In the next step, we transform the Hamiltonian matrices in
the internal region to the jK coupling using the equation

H (αiLiSiJi liKiJ ; αf Lf Sf Jf lf Kf J )

=
∑
LS

TLS,JiKi
H (αiLiliLSiS; αf Lf lf LSf S) TLS,Jf Kf

, (5)

where the transformation coefficient is given by

TLS,JiKi

= 〈[(Lili)L,(Sis)S],J |[(LiSi)Ji,li]Ki,s,J 〉
= (−1)(s−li+J−Ji )

√
(2L + 1)(2S + 1)(2Ji + 1)(2Ki + 1)

×
{
L S J

s Ki Si

}{
Li li L

Ki Si Ji

}
. (6)

Now we can use term-coupling coefficients from Eq. (1) to
transform Hamiltonian matrices in the jK coupling to full
intermediate coupling:

H (βiJi liKiJ ; βf Jf lf Kf J )

=
∑

αiLiSiαf Lf Sf

C(βiJi ; αiLiSi)

×H (αiLiSiJi liKiJ ; αf Lf Sf Jf lf Kf J ) C(βiJi ; αiLiSi).

(7)

This part of the calculations was performed with the program
BSR_RECOUP which is a new program in the BSR complex.

In the last, third step, the final Hamiltonian matrices were
augmented by adding the spin-orbit interaction term related to
the scattering electron. Thus the above scheme is completely
equivalent to the direct Breit-Pauli calculations. The advantage
is its flexibility. Computationally, this scheme allows us to
divide the full calculations in the moderate three steps and
consider much more extensive models as used in the Breit-Pauli
calculations for simpler atomic systems. It also allows us to
avoid repeating calculations of the same LS matrix elements
for the different J . The above scheme also allows us to apply
the energy fine-tuning of the LS terms, that in turn improves the
description of the target spin-orbit mixing which is important
for spin-forbidden transitions between fine-structure levels of
Fe II. It was an important reason in choosing this computational
scheme.

Our final intermediate-coupling model contains 340 fine-
structure levels of Fe II and includes all levels of the 3d64s,
3d54s2, 3d7, and 3d64p configurations, plus a few lowest levels
of the 3d54s4p configuration. This model will be afterwards
denoted as BSR-340. At present, we are not able to include
all 716 fine-structure levels for the above configurations,
mainly due to the computational reasons. Direct numerical
calculations were performed for 82 partial waves, with total

electronic angular momentum up to J = 40, for both even and
odd parities. This requires inclusion of all LS partial waves
up to L = 50. The maximum number of channels in a single
partial wave was 2354. With a basis size of 78 B splines, this
required the diagonalization of matrices with dimensions up to
160 000. The calculations were carried out with parallelized
versions of the BSR complex, using supercomputers with
distributed memory. Such extensive calculations were made
possible by the NSF XSEDE grant.

The asymptotic solutions in the outer region and sub-
sequently the collision parameters were calculated with
the parallel version of the STGF program [32]. In the resonance
region for impact energies below the excitation energy of the
highest level included in the CC expansion, we used a fine
energy step of 10−4 Ry to properly map resonance structures.
For energies above the highest excitation threshold included
in the CC expansion, the collision strengths vary smoothly,
and hence we chose a coarser electron energy step of 10−2

Ry. We calculated collision strengths up to 10 Ry, which is
enough to achieve the asymptotic region. Altogether, 12 000
energies for the colliding electron were considered. For even
higher energies, we extrapolated collision strengths 	 using
the well-known asymptotic energy dependence of the various
types of transitions. The included partial waves are sufficient to
achieve convergence for forbidden transitions at all energies.
Additional partial wave contributions are needed for high
electron energies in the case of the dipole-allowed transitions.
These contributions were estimated with a top-up procedure
based on the Coulomb-Bethe method or on geometric series
approximation.

To obtain effective collision strengths ϒ(Te), we convoluted
the collision strength 	 with a Maxwellian distribution for
electron temperature Te, i.e.,

ϒi−j (Te) =
∫ ∞

Eth

dE 	i−j (E) exp

(
E − Eth

kTe

)
. (8)

Here Eth is the i-j transition energy and k is the Boltzmann
constant. We calculated ϒ for temperatures from 102 to 105 K.

III. RESULTS AND DISCUSSION

A. Target energies and radiative parameters

Table II compares the calculated target excitation energies
with the experimental values. Experimental excitation energies
are taken from the NIST compilation [25] where possible, but
for some of the higher lying levels no observed values are
available. Note that the NIST database presents the excitation
energies with accuracy up to 9 significant digits. The full
list of levels included in the present scattering calculations
is given in the Supplemental Material [37]. As in the NIST
compilation, the levels in the table are ordered according to
their LS terms. The energy level position is defined by the
index given in the first column. This index will be referred to in
the following discussion to denote a particular transition. The
present excitation energies agree closely with experimental
energies; the difference for most levels is less than 0.01 eV.
The order of the levels also agrees with the observed spectrum
for most of the levels, with the first different ordering detected
only for level 106. The agreement with the experimental
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TABLE II. Excitation level energies and lifetimes for Fe II.

Level Energy (eV) Lifetime (s)

Index Configuration Term J Present NISTa Diff. Present B2016b HD2011c Expt.

1 3d6(5D)4s a 6D 9/2 0.00000 0.00000 0.000
2 7/2 0.04744 0.04771 0.000 4.67 × 102 4.72 × 102 4.67 × 102

3 5/2 0.08244 0.08278 0.000 6.35 × 102 6.37 × 102 6.33 × 102

4 3/2 0.10658 0.10695 0.000 1.39 × 103 1.39 × 103 1.39 × 103

5 1/2 0.12077 0.12114 0.000 5.28 × 103 5.29 × 103 5.29 × 103

6 3d7 a 4F 9/2 0.22723 0.23217 −0.005 3.87 × 104 1.47 × 104 7.06 × 103

7 7/2 0.30092 0.30130 0.000 1.70 × 102 1.69 × 102 1.66 × 102

8 5/2 0.35525 0.35186 0.003 2.53 × 102 2.51 × 102 2.48 × 102

9 3/2 0.39264 0.38652 0.006 7.02 × 102 6.94 × 102 6.84 × 102

10 3d6(5D)4s a 4D 7/2 0.98570 0.98633 −0.001 8.12 × 101 6.76 × 101 7.12 × 101

11 5/2 1.04058 1.04047 0.000 8.88 × 101 7.25 × 101 7.70 × 101

12 3/2 1.07705 1.07624 0.001 1.00 × 102 7.94 × 101 8.60 × 101

13 1/2 1.09811 1.09686 0.001 1.08 × 102 7.94 × 101 9.24 × 101

14 3d7 a 4P 5/2 1.66597 1.67062 −0.005 3.03 × 101 2.00 × 101 1.91 × 101

15 3/2 1.69561 1.69526 0.000 3.46 × 101 2.20 × 101 2.10 × 101

16 1/2 1.72941 1.72398 0.005 3.48 × 101 2.20 × 101 2.10 × 101

17 3d7 a 2G 9/2 1.96117 1.96449 −0.003 4.47 4.81 3.98
18 7/2 2.03119 2.02955 0.002 8.15 8.85 7.25
19 3d7 a 2P 3/2 2.27492 2.27643 −0.002 5.71 5.15 4.54
20 1/2 2.34326 2.34166 0.002 9.85 9.01 7.89
21 3d7 a 2H 11/2 2.52034 2.52187 −0.002 5.67 × 101 6.67 × 101 5.12 × 101

23 9/2 2.58197 2.57959 0.002 1.40 × 101 1.65 × 101 1.28 × 101

22 3d7 a 2D 5/2 2.53930 2.54378 −0.004 2.33 2.30 1.89
26 3/2 2.64821 2.64186 0.006 1.74 1.77 1.50
24 3d6(3P )4s b 4P 5/2 2.58690 2.58266 0.004 9.67 × 10−1 8.62 × 10−1 8.56 × 10−1

30 3/2 2.70529 2.70435 0.001 7.78 × 10−1 6.99 × 10−1 6.88 × 10−1

31 1/2 2.78459 2.77846 0.006 7.08 × 10−1 6.62 × 10−1 6.26 × 10−1

25 3d6(3H )4s a 4H 13/2 2.63882 2.63486 0.004 2.19 1.83 2.10
27 11/2 2.65744 2.65703 0.000 2.34 1.89 2.24
28 9/2 2.67312 2.67578 −0.003 2.46 2.04 2.33
29 7/2 2.68694 2.69193 −0.005 2.61 2.25 2.49
32 3d6(3F )4s b 4F 9/2 2.80250 2.80665 −0.004 9.00 × 10−1 9.26 × 10−1 8.30 × 10−1

33 7/2 2.82671 2.82812 −0.001 1.06 1.08 9.87 × 10−1

34 5/2 2.84584 2.84412 0.002 1.33 1.33 1.24
35 3/2 2.86020 2.85552 0.005 1.72 1.66 1.61
36 3d54s2 a 6S 5/2 2.89310 2.89102 0.002 2.25 × 10−1 2.41 × 10−1 2.33 × 10−1 0.23(3)d

37 3d6(3G)4s a 4G 11/2 3.15197 3.15277 −0.001 9.34 × 10−1 9.09 × 10−1 9.60 × 10−1 0.75(1)e

39 9/2 3.20112 3.19945 0.002 8.76 × 10−1 8.47 × 10−1 8.62 × 10−1

40 7/2 3.22278 3.22131 0.001 8.60 × 10−1 7.63 × 10−1 8.64 × 10−1

41 5/2 3.22964 3.23046 −0.001 8.74 × 10−1 7.58 × 10−1 8.75 × 10−1 0.65(2)e

38 3d6(3P )4s b 2P 3/2 3.19432 3.19725 −0.003 1.71 1.87 1.46
44 1/2 3.34251 3.33923 0.003 1.39 1.52 1.20
42 3d6(3H )4s b 2H 11/2 3.24671 3.24469 0.002 4.18 5.75 3.71 3.8 (3)e

43 9/2 3.26469 3.26733 −0.003 9.64 1.33 × 101 1.16 × 101

45 3d6(3F )4s a 2F 7/2 3.38551 3.38662 −0.001 1.76 1.77 1.52
46 5/2 3.42483 3.42449 0.000 2.91 2.90 2.53
47 3d6(3G)4s b 2G 9/2 3.76784 3.76770 0.000 3.94 3.42 3.49
48 7/2 3.81417 3.81431 −0.000 4.09 3.52 3.63
49 3d6(3D)4s b 4D 1/2 3.88885 3.88870 −0.000 6.32 × 10−1 5.92 × 10−1 6.27 × 10−1 0.54(3)e

50 3/2 3.88836 3.88919 −0.000 6.38 × 10−1 5.99 × 10−1 6.38 × 10−1

51 5/2 3.89333 3.89161 0.002 6.31 × 10−1 5.92 × 10−1 6.34 × 10−1

52 7/2 3.90676 3.90342 0.003 5.75 × 10−1 5.46 × 10−1 5.78 × 10−1 0.53(3)d

53 3d7 b 2F 5/2 3.94353 3.94416 −0.001 3.32 2.50
54 7/2 3.96910 3.96738 0.002 2.63 2.13
55 3d6(1I )4s a 2I 13/2 4.07746 4.07606 0.001 2.61 2.38
56 11/2 4.07887 4.08031 −0.001 3.19 2.91
57 3d6(1G)4s c 2G 9/2 4.14972 4.14932 0.000 9.84 × 10−1 7.30 × 10−1
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TABLE II. (Continued.)

Level Energy (eV) Lifetime (s)

Index Configuration Term J Present NISTa Diff. Present B2016b HD2011c Expt.

58 7/2 4.15387 4.15363 0.000 1.03 6.58 × 10−1

59 3d6(3D)4s b 2D 3/2 4.46916 4.47910 −0.010 7.71 × 10−1 6.48 × 10−1

60 5/2 4.50381 4.49479 0.009 6.12 × 10−1 5.13 × 10−1

61 3d6(1S)4s a 2S 1/2 4.61565 4.61559 0.000 5.68 × 10−1 5.19 × 10−1

62 3d6(1D)4s c 2D 5/2 4.72457 4.73176 −0.007 6.45 × 10−1 6.59 × 10−1

63 3/2 4.74727 4.73799 0.009 5.76 × 10−1 5.65 × 10−1

64 3d6(5D)4p z 6Do 9/2 4.76109 4.76831 −0.007 3.17 × 10−9 3.68 × 10−9(7)f

65 7/2 4.79029 4.79324 −0.003 3.19 × 10−9 3.67 × 10−9(9)
66 5/2 4.81801 4.81790 0.000 3.20 × 10−9 3.69 × 10−9(5)
67 3/2 4.83953 4.83702 0.003 3.21 × 10−9 3.73 × 10−9(7)
68 1/2 4.85299 4.84894 0.004 3.21 × 10−9 3.68 × 10−9(11)
69 3d6(5D)4p z 6F o 11/2 5.19807 5.20338 −0.005 2.58 × 10−9 3.20 × 10−9(5)
70 9/2 5.21950 5.22157 −0.002 2.63 × 10−9 3.28 × 10−9(4)
71 7/2 5.23748 5.23673 0.001 2.65 × 10−9 3.25 × 10−9(6)
72 5/2 5.25162 5.24885 0.003 2.66 × 10−9 3.30 × 10−9(5)
73 3/2 5.26140 5.25709 0.004 2.67 × 10−9 3.45 × 10−9(12)
74 1/2 5.26713 5.26187 0.005 2.68 × 10−9

75 3d6(5D)4p z 6P o 7/2 5.29210 5.28895 0.003 2.93 × 10−9 3.71 × 10−9(4)
76 5/2 5.36066 5.36090 −0.000 2.91 × 10−9 3.75 × 10−9(10)
77 3/2 5.40511 5.40831 −0.003 2.89 × 10−9 3.70 × 10−9(12)
78 3d6(5D)4p z 4F o 9/2 5.48707 5.48414 0.003 3.29 × 10−9 3.72 × 10−9(10)
80 7/2 5.55079 5.54877 0.002 3.14 × 10−9 3.59 × 10−9(10)
85 5/2 5.58996 5.58920 0.001 3.16 × 10−9 3.55 × 10−9(8)
87 3/2 5.61459 5.61522 −0.001 3.20 × 10−9

79 3d6(5D)4p z 4Do 7/2 5.50965 5.51071 −0.001 2.74 × 10−9 2.97 × 10−9(4)
81 5/2 5.55187 5.55261 −0.001 2.76 × 10−9 2.90 × 10−9(6)
84 3/2 5.58449 5.58477 −0.000 2.74 × 10−9 2.91 × 10−9(9)
86 1/2 5.60521 5.60489 0.000 2.69 × 10−9

88 3d6(5D)4p z 4P o 5/2 5.82516 5.82322 0.002 3.20 × 10−9 3.27 × 10−9(6)
89 3/2 5.87575 5.87559 0.000 3.21 × 10−9 3.23 × 10−9(9)
90 1/2 5.90427 5.90488 −0.001 3.21 × 10−9

100 3d5(6S)4s4p z 8P o 5/2 6.48856 6.48435 0.004 7.57 × 10−6

101 7/2 6.51981 6.51944 0.000 5.27 × 10−6

102 9/2 6.56098 6.56697 −0.006 7.60 × 10−5

138 3d5(6S)4s4p y 6P o 3/2 7.69120 7.68391 0.007 4.19 × 10−9 3.90 × 10−9(20)g

139 5/2 7.69997 7.69310 0.007 4.05 × 10−9 3.80 × 10−9(20)
145 7/2 7.70479 7.70830 −0.004 3.79 × 10−9 3.65 × 10−9(20)

aNIST [25].
bBautista et al. [19].
cDeb and Hibbert [23].
dRostohar et al. [33].
eGurell et al. [34].
fSchnabel et al. [35].
gLi et al. [36].

energy levels is considerably better than in any other previous
scattering calculations for Fe II, due to the semiempirical fine-
tuning procedure discussed above. Our fine-tuning procedure
is designed not just to get close agreement with observed
energies; this procedure also includes all strong CI effects and
leads to better spin-orbit term mixing.

The radiative data, along with collision strengths, are the
important part of the plasma modeling. The Fe II spectrum
contains many metastable levels. They decay to lower levels
only via forbidden electric quadrupole (E2) and magnetic
dipole (M1) transitions. Table III contains the present results for

the line strengths, oscillator strengths, and decay probabilities
for both dipole-allowed (E1) and dipole-forbidden (M1 and
E2) transitions between all levels included in our scattering
calculations. These results can be used to estimate the lifetimes
of the excited levels. Comparison of the present lifetimes with
available experimental values and the most recent theoretical
calculations is given in Table II.

First we discuss the low-lying even-parity metastable states.
The comprehensive comparison of the lifetimes for the first 52
levels in Fe II has been recently provided by Bautista et al. [19].
Their recommended values are based on the analysis of data
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TABLE III. Line strengths, oscillator strengths, and transition
probabilities for E1, E2, and M1 transitions in Fe II.

i k Type λ (Å) S fik Aki (s−1)

1 2 E2 259883.22 3.30 3.15 × 10−15 3.89 × 10−10

1 2 M1 259883.22 1.12 × 101 1.74 × 10−8 2.14 × 10−3

1 3 E2 149771.44 9.02 × 10−1 4.51 × 10−15 2.23 × 10−9

1 6 E2 53401.69 1.74 × 10−2 1.92 × 10−15 4.49 × 10−9

1 6 M1 53401.69 1.34 × 10−3 1.01 × 10−11 2.37 × 10−5

1 7 E2 41149.94 4.43 × 10−3 1.07 × 10−15 5.26 × 10−9

1 7 M1 41149.94 1.59 × 10−4 1.57 × 10−12 7.71 × 10−6

1 8 E2 35236.32 3.40 × 10−4 1.30 × 10−16 1.17 × 10−9

1 10 E2 12570.21 7.06 × 10−3 5.97 × 10−14 3.15 × 10−6

1 10 M1 12570.21 3.17 × 10−3 1.02 × 10−10 5.38 × 10−3

1 64 E1 2600.17 2.39 × 101 2.79 × 10−1 2.75 × 108

1 65 E1 2586.65 6.84 8.03 × 10−2 1.00 × 108

1 69 E1 2382.76 3.11 × 101 3.96 × 10−1 3.88 × 108

1 70 E1 2374.46 3.17 4.05 × 10−2 4.80 × 107

1 71 E1 2367.59 2.60 × 10−2 3.33 × 10−4 4.96 × 105

1 75 E1 2344.21 1.16 × 101 1.50 × 10−1 2.27 × 108

1 78 E1 2260.78 1.72 × 10−1 2.31 × 10−3 3.02 × 106

1 79 E1 2249.88 1.34 × 10−1 1.81 × 10−3 2.98 × 106

1 80 E1 2234.45 1.40 × 10−3 1.90 × 10−5 3.17 × 104

obtained from different computational models. The lifetimes of
Deb and Hibbert [23] are based on a large-scale CI calculation
of the M1 and E1 transitions among the levels belonging to
the 3d64s, 3d7, and 3d54s2 configurations. They used very
extensive CI expansions, including the 3s and 3p electron
promotions, and they also applied semiempirical corrections
to the diagonal elements of the Hamiltonian matrix so that the
energy eigenvalues matched experimental energy differences.
To estimate the accuracy of lifetimes for the metastable levels,
Fig. 2 displays the ratios of lifetimes for the lowest 63 levels
in Fe II. As seen from the figure, most of the lifetimes agree,
with a few exceptions, within 20%, with average difference
being about 12%. The dispersion between lifetimes obtained
in different models can serve as an uncertainty indicator;
however, further analysis is needed for the individual levels
and transitions.

The biggest difference was found for the level 3d7 4F 9/2,
but there is close agreement for other J levels of this term.
This can be explained by the fact that the lifetime for the
4F 9/2 level is mainly determined by a single M1 transition,
3d7 4F 9/2–3d64s 4D9/2, to the ground state. For the higher
4F 7/2,5/2,1/2 levels, the lifetime is determined by the M1
transitions within a multiplet. The dipole M1 matrix elements
do not involve the radial functions, and M1 transition rates
within a multiplet depend only on the energy difference and
the leading configuration coefficient. For this reason, most
calculations provide close results for spectroscopically pure
states, where the leading coefficient is close to unity. For
transitions between levels from different LS states, the rates are
strongly dependent on the mixing between different LS terms,
usually on rather small CI coefficients in the wave functions
for the two levels. These coefficients strongly depend on the
model, and the different methods for such transitions give
very different results, which even differ by several orders of
magnitude.

For other states presented in Table II, the difference between
lifetimes mainly depends on the LS term and configuration
mixing, and to a lesser extent on the J value. This indicates
the importance of configuration mixing and correct energy
difference, whereas the spin-orbit mixing inside the given
multiplet is approximately the same. A large difference (around
35%) was also found for the 3d7 4P and 3d6(3P )4s 2H levels.
The lifetimes of the 3d7 4P levels are mainly determined by the
E2 transitions to the lower 3d7 4F states. Because the matrix
elements here are defined by the leading configurations with
coefficients close to unity, the differences between calculations
are most likely due to the different values for the quadrupole
radial integrals. The radial integrals, in turn, depend on the 3d

orbital. In the present calculations we use the configuration-
dependent 3d orbitals which include the corresponding re-
laxation effects. The lifetimes of the 3d6(3P )4s 2H levels
are also mainly defined by the E2 transitions to the 3d7 4P

levels due to large admixture of the 4G term. In this case, the
spin-orbit interaction plays the decisive role and the differences
between calculations are again due to the differing values of the
term-mixing coefficients. All calculations agree with available
experimental values within 25%, with the dispersion between
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FIG. 2. Left panel: Comparison of lifetimes for the first 63 even-parity metastable levels in Fe II. Red circles, Deb and Hibbert [23]; black
squares, Bautista et al. [19]; circles with error bars, experimental data [33–36]. Right panel: Comparison of the present radiative rates for the
forbidden E2 and M1 transitions with the CIV3 calculation by Deb and Hibbert [23].
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TABLE IV. Comparison of transition probabilities (s−1) for selected E1 lines of Fe II. Numbers in parentheses are the experimental
uncertainties in percent.

Upper Lower Upper Lower
Level Level Present Ref. [35] Level Level Present Ref. [35]

z 6Do
9/2 a 6D9/2 2.75 × 108 2.35 × 108(6) z 4F o

5/2 a 4F 5/2 6.53 × 106 1.13 × 107(13)
a 6D7/2 4.02 × 107 3.63 × 107(6) a 4F 3/2 2.12 × 106 3.27 × 106(24)
a 4D7/2 2.13 × 105 3.31 × 105(8) a 4D5/2 8.60 × 106 1.06 × 107(24)

z 6Do
7/2 a 6D9/2 1.00 × 108 9.26 × 107(6) a 4D3/2 2.60 × 108 2.14 × 108(13)

a 6D7/2 1.41 × 108 1.16 × 108(6) a 4P 5/2 2.03 × 105 1.92 × 105(14)
a 6D5/2 7.19 × 107 6.36 × 107(6) a 4P 3/2 9.09 × 105 9.80 × 105(13)
a 4D7/2 2.18 × 105 2.78 × 105(8) b 4F 5/2 2.05 × 105 2.37 × 105(24)

z 6Do
5/2 a 6D7/2 1.63 × 108 1.43 × 108(6) a 4G7/2 2.48 × 105 2.48 × 105(30)

a 6D5/2 5.36 × 107 4.84 × 107(8) z 4F o
3/2 a 6D3/2 1.72 × 106 1.67 × 106(12)

a 6D3/2 9.51 × 107 7.92 × 107(6) a 4F 5/2 2.38 × 107 2.89 × 107(12)
a 4D5/2 1.92 × 105 2.31 × 105(8) a 4F 3/2 1.01 × 107 1.89 × 107(12)

z 6Do
3/2 a 6D5/2 2.08 × 108 1.72 × 108(6) a 4D5/2 1.08 × 106 2.78 × 105(12)

a 6D3/2 3.91 × 106 4.30 × 106(8) a 4D3/2 2.74 × 107 2.89 × 107(12)
a 6D1/2 9.93 × 107 9.14 × 107(6) a 4D1/2 2.46 × 108 1.89 × 108(12)
a 4D3/2 1.38 × 105 2.04 × 105(8) a 4P 1/2 3.52 × 105 3.00 × 105(12)

z 6Do
1/2 a 6D3/2 2.49 × 108 2.13 × 108(7) b 4F 3/2 1.96 × 105 1.89 × 105(24)

a 6D1/2 6.21 × 107 5.76 × 107(7) a 4G5/2 3.26 × 105 5.45 × 105(24)
z 6F o

11/2 a 6D9/2 3.88 × 108 3.13 × 108(2) z 4Do
7/2 a 6D9/2 2.98 × 106 5.32 × 106(24)

z 6F o
9/2 a 6D9/2 4.80 × 107 4.80 × 107(6) a 4F 9/2 5.52 × 107 7.09 × 107(6)

a 6D7/2 3.29 × 108 2.51 × 108(6) a 4F 7/2 2.03 × 107 3.04 × 107(6)
a 4D7/2 3.58 × 106 5.12 × 106(24) a 4F 5/2 1.87 × 106 3.17 × 106(24)

z 6F o
7/2 a 6D7/2 1.19 × 108 1.14 × 108(6) a 4D7/2 2.77 × 108 2.15 × 108(6)

a 6D5/2 2.54 × 108 1.88 × 108(6) a 4P 5/2 5.75 × 106 8.86 × 106(24)
a 4D5/2 3.44 × 106 5.20 × 106(24) b 4P 5/2 4.83 × 105 7.22 × 105(14)

z 6F o
5/2 a 6D5/2 1.67 × 108 1.40 × 108(6) b 4F 9/2 5.15 × 105 7.22 × 105(13)

a 6D3/2 1.94 × 108 1.50 × 108(6) z 4Do
5/2 a 4F 7/2 4.74 × 107 6.23 × 107(6)

a 4D7/2 1.08 × 105 2.70 × 106(8) a 4F 5/2 2.64 × 107 3.59 × 107(6)
z 6F o

3/2 a 6D5/2 3.41 × 107 3.13 × 107(24) a 4D7/2 6.74 × 107 5.70 × 107(6)
a 6D3/2 2.12 × 108 1.52 × 108(7) a 4D5/2 2.08 × 108 1.69 × 108(6)
a 6D1/2 1.25 × 108 1.04 × 108(7) a 4D3/2 2.95 × 106 4.75 × 106(8)

z 6F o
1/2 a 6D3/2 7.49 × 107 6.88 × 107(11) a 4P 5/2 1.08 × 106 1.27 × 106(24)

a 6D1/2 2.97 × 108 2.33 × 108(11) a 4P 3/2 4.67 × 106 6.12 × 106(13)
z 6P o

7/2 a 6D9/2 2.27 × 108 1.70 × 108(11) b 4P 5/2 1.02 × 105 4.43 × 105(13)
a 6D7/2 7.79 × 107 6.03 × 107(11) b 4P 3/2 3.49 × 105 4.86 × 105(14)
a 6D5/2 3.21 × 107 3.21 × 107(11) b 4F 7/2 4.89 × 105 1.00 × 106(13)
a 4D7/2 1.73 × 106 2.21 × 106(23) z 4Do

3/2 a 6D3/2 1.35 × 106 1.98 × 106(9)
a 6S5/2 2.28 × 106 4.22 × 106(23) a 6D1/2 5.05 × 105 6.05 × 105(24)

z 6P o
3/2 a 6D5/2 8.22 × 107 5.89 × 107(11) a 4F 5/2 5.03 × 107 6.49 × 107(7)

a 6D3/2 1.42 × 108 1.18 × 108(11) a 4F 3/2 2.80 × 107 3.85 × 107(24)
a 6D1/2 1.18 × 108 8.99 × 107(11) a 4D5/2 1.14 × 108 9.35 × 107(7)

z 4F o
9/2 a 6D9/2 3.02 × 106 4.23 × 106(24) a 4D3/2 1.52 × 108 1.21 × 108(7)

a 4F 9/2 2.60 × 107 3.89 × 107(6) a 4D1/2 1.12 × 107 1.54 × 107(24)
a 4F 7/2 2.44 × 106 3.89 × 106(8) a 4P 3/2 2.90 × 106 3.85 × 106(9)
a 4D7/2 2.67 × 108 2.17 × 108(6) a 4P 1/2 3.00 × 106 3.63 × 106(9)
b 4F 9/2 1.45 × 105 1.72 × 105(24) b 4P 3/2 2.28 × 105 2.20 × 105(26)

z 4F o
7/2 a 6D7/2 3.71 × 106 4.41 × 106(13) b 4F 5/2 5.32 × 105 8.36 × 105(24)

a 6D5/2 3.54 × 106 3.87 × 106(13) z 4P o
5/2 a 4D7/2 2.05 × 108 1.79 × 108(13)

a 4F 9/2 2.83 × 107 3.44 × 107(13) a 4D5/2 5.99 × 107 5.72 × 107(13)
a 4F 7/2 9.02 × 106 1.51 × 107(13) a 4D3/2 8.24 × 106 7.28 × 106(13)
a 4F 5/2 2.33 × 106 3.87 × 106(13) a 4P 5/2 2.83 × 107 4.29 × 107(24)
a 4D5/2 2.69 × 108 2.15 × 108(13) a 4P 3/2 1.02 × 107 1.79 × 107(13)
b 4P 5/2 1.50 × 105 1.72 × 105(24) a 4D3/2 9.50 × 107 8.80 × 107(7)
b 4F 7/2 1.98 × 105 2.26 × 105(24) a 4D1/2 1.66 × 107 1.63 × 107(9)

z 4F o
5/2 a 6D5/2 3.08 × 106 3.49 × 106(13) a 4P 5/2 1.90 × 107 2.01 × 107(9)

a 6D3/2 2.10 × 106 2.37 × 106(13) a 4P 3/2 5.87 × 106 9.43 × 106(9)
a 4F 7/2 2.89 × 107 3.38 × 107(13) a 4P 1/2 1.55 × 107 2.39 × 107(9)
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theory and experiment being on the same level as the dispersion
of lifetimes obtained in different models.

Comparison of the radiative rates for transitions between
individual levels provides more detailed information about
agreement between existing data sets. Comparison with the
recent CIV3 calculation [23] is given in Fig. 2 for all forbidden
E2 and M1 transitions between the first 63 metastable levels
in Fe II. Overall good agreement was found for the stronger
lines with A values greater than 10−2 s−1, where radiative rates
are estimated to be accurate within 20%–30%, or better. As
seen from the figure, the weaker transition rates are much less
reliable. Both our and CIV3 calculations use the experimental
energies, not only for transition energies, but also to enhance
the accuracy of the CI mixing coefficients in the wave func-
tions through the fine-tuning procedure. However, dispersion
between individual radiative rates increases considerably as
their absolute values decrease, to several orders of magnitude.
The weak transitions are usually driven by coupling with other
configurations or small term admixing. In order to obtain the
accurate radiative rate for such transitions one needs to check
the convergence in each individual case.

Lifetimes of the higher levels with index 63 and more are
defined by strong electric-dipole E1 transitions. Comparison
with the experimental data in Table II shows that the present
calculations reproduce these lifetimes within 10%–25%. The
same accuracy may be expected for the strong E1 radiative
rates. There are a huge number of different experimental
measurements and theoretical calculations for the individual
E1 transitions. Most of them are presented in the NIST
critical compilation. Overall comparison with the existing data
is out of scope of the present work. Our main goal here
is the calculation of scattering parameters. Note that cross
sections for the dipole-allowed transitions at high electron
energies are directly proportional to the oscillator strengths,
whereas the main contribution to the rate coefficient for the
weak spin-forbidden transitions comes from the resonance
excitation. In order to illustrate the accuracy of our A values
for the individual E1 transitions, Table IV compares our
radiative rates with the selected experimental data taken from
the most recent measurements [35]. These measurements
report absolute transition probabilities of 140 Fe II lines in
the wavelength range 220–780 nm, with overall uncertainties
estimated to be 6% for the strong and up to 26% for the
weak transitions. This large set of experimental data can be
used for a reliability check of theoretical data. As seen from
the table, there is a good agreement in the limits of 25%
between experiment and theory for the strong spin-allowed
transitions with A values greater than 107 s−1. Agreement
with weaker lines is more scattered. Weak lines are usually
related to the spin-forbidden or two-electron transitions, and
depend strongly on the configuration and term mixing. The
term mixing in our calculations is handled with our fine-tuning
process. As seen from the table, in most cases it results in an
accuracy of 20%–50% for transitions with A values greater
than 105 s−1. For weaker transitions the disagreement may
reach several orders of magnitude. We omit such transitions
from comparison because this comparison will not provide
any useful information.

The above comparison of radiative rates and lifetimes with
experimental values is given primarily to illustrate the accuracy

of the present target wave functions. We illustrated that our
target states accurately reproduce the strong E1 as well as M1
and E2 transitions in Fe II. Note that our target expansions
are restricted in size to keep further scattering calculations
manageable. Further improvement of the accuracy of radiative
data, especially for the weaker lines, requires the further
extension of the configuration expansions. Such calculations
devoted to the detailed analysis of the individual radiative lines
will be presented in a separate paper.

B. Collision strengths and thermally averaged
collision strengths

We begin our discussion with collision strengths for the fine-
structure forbidden transitions between the low-lying levels of
Fe II. Figure 3 shows collision strengths for excitation of the
3d64s 6D7/2 and 3d7 4D9/2 levels from the ground 3d64s 6D9/2

level. The same transitions were also discussed by Ramsbottom
et al. [17]. We concentrate on the low-energy resonance region
up to 0.5 Ry, where collision strength exhibits rich resonance
structures. The resonance structures considerably exceed the
background collision strength and provide dominant contri-
bution to the rate coefficients at lower temperatures. It is a
typical behavior for the forbidden transitions found in many
other electron-ion scattering processes.

The resonance structure exhibits a set of Rydberg series
of resonances converging to the different target thresholds.
For the 3d64s 6D9/2–3d64s 6D7/2 (1-2) transition, the most
noticeable Rydberg series are lying below the 3d64s 4D7/2,
3d64p 4D9/2, and 3d64p 6F 11/2 thresholds. Most likely, these
series of the narrow resonances are related to the 3d64snl or
3d64pnl states, created by trapping of the scattering electron to
the highly excited nl states with simultaneous 4s-4p excitation
of the valence 4s electron (or just changing the coupling
scheme). Note that above the 3d64p 6F threshold the resonance
structures diminish considerably and do not contribute much
to the excitation process. There is also a set of strong and wide
resonances, especially in the region from 0.2 to 0.3 Ry. The
large width of these resonances indicates strong interaction
between the 3d electrons. We suggest that these resonances
have the principal configuration 3d74p or 3d8. Comparisons
are made with most recent and extensive R-matrix calculations
available in the literature. We will use the following abbrevia-
tions for different calculations: RM-142 for the 142 target-state
R-matrix calculations of Zhang and Pradhan [9]; RM-262 for
the 262 target-state R-matrix calculations of Ramsbottom et al.
[17]; RM-AV for the effective collision strengths obtained by
Bautista et al. [19] as an average from different R-matrix
calculations. The present calculations will be denoted as
BSR-340. The resonance structure for this transition is very
close in form to the resonance structure found in the RM-262
calculations of Ramsbottom et al. [17], but differs in many
details from the resonance structure found in the RM-142
calculations of Zhang and Pradhan [9]. The RM-142 resonance
structure is not as strong, partly because Zhang and Pradhan’s
CC expansion does not include the 3d7 double excitation terms
lying in this energy region.

The Maxwellian averaged effective collision strength for the
3d64s 6D9/2–3d64s 6D7/2 transition is presented in Fig. 3, lower
panels. As seen from the Fig. 3, the rate coefficients obtained in
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FIG. 3. Upper panel: Collision strengths for the 3d64s 6D9/2–3d64s 6D7/2 (1-2) and 3d64s 6D9/2–3d7 4D9/2 (1-6) fine-structure transitions.
Lower panel: Effective collision strength for the (1-2) and (1-6) transitions. Solid curve, present BSR-340 model; dash-dotted curve, the
RM-262 calculations of Ramsbottom et al. [17]; dashed curve, the RM-142 calculations of Zhang and Pradhan [9]; solid rectangles, the RM-AV
calculations of Bautista et al. [19].

different models are rather different both in magnitude and in
the temperature behavior. The closest agreement is obtained
with the RM-262 calculations of Ramsbottom et al. [17],
however, only for higher temperatures. For low temperature
around 500 K, our rates show the maximum which is absent
in the RM-262 calculations. As seen from the figure, this
low-temperature maximum is due to the resonances lying close
to excitation thresholds. This set of strong resonances is shifted
to the higher energies in the RM-262 calculations due to the
higher excitation thresholds in the RM-262 model. Strong
dependence of the resonance structure and its contribution to
the rate coefficients on the position of excitation thresholds was
also clearly illustrated by Bautista et al. [19]. By comparing
the results from various models Bautista et al. [19] found
that the collision strengths for transitions among levels of the
3d64s 6D ground multiplet are greatly enhanced when the
excitation threshold are shifted to experimental values. Our
target thresholds are very close to the experimental values,
so we may expect the most accurate representation of the
resonance structure in our scattering calculations. The RM-142
rate coefficients of Zhang and Pradhan [9] considerably exceed
the present results for all temperatures, whereas the recom-
mended rate coefficients of Bautista et al. [19] are considerably
lower than all other rates. This indicates that these calculations
predict different values of both the resonance contributions
and the background collision strengths. The same trends were
found to occur for all other fine-structure transitions among the
ground-state levels.

Transition 3d64s 6D9/2–3d7 4D9/2 (1-6) in Fig. 3 represents
the transition between different terms. We again see a rich
resonance structure which, however, is less intense in mag-
nitude than for the (1-2) transition considered above. Our
resonance structure qualitatively agrees with the resonance
structure from the RM-262 calculations; however, there is
noticeable difference in the positions and widths of strong
resonances in the region from 0.2 to 0.3 Ry. The different
calculations again predict rather different rate coefficients. For
this transition our effective collision strengths are closest to
the RM-AV results of Bautista et al. The RM-262 rates show a
maximum at intermediate temperatures which is not predicted
in our calculations. The RM-142 rate coefficients considerably
exceed other results, especially at low temperatures. It may
be pointed out that the recoupling transformation method
employed in these calculations does not appear to reproduce
the resonance structure accurately enough. We suggest that
the contribution of some high-lying resonances in the RM-262
model is highly overestimated. Rate coefficients from different
calculations converge to each other at high temperatures,
indicating the similar background collision strengths in the
different models.

Above examples show that there are considerable discrep-
ancies between the existing calculations for the rate coeffi-
cients of forbidden transitions in Fe II. A global comparison
between the present BSR-346 results and the effective collision
strengths obtained previously is presented in Fig. 4 at three
different temperatures. In this figure we consider only the
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FIG. 4. Comparison of effective collision strengths obtained in the present BSR-340 model with the RM-262 [17] (upper panels) and RM-142
[9] (lower panels) for three temperatures. Also indicated in the panels is the average deviation σ from the BSR-340 results. Comparison includes
the forbidden transitions between the first 52 even-parity levels of Fe II.

forbidden transitions among low-lying even-parity states. As
seen from the figure, the worst agreement between calculations
is observed at low temperatures, with average deviations of
around 22%; however, for the individual transitions some
rates exhibit substantial disagreement. At low temperatures,
the effective collision strength crucially depends on the near-
threshold resonance structure. This resonance structure de-
pends in turn on the target excitation energies and the size of
CC expansions. We use the experimental excitation thresholds
and employed the most extensive CC expansion, which allows
us to argue that the present resonance structure is most
accurate. The energy mesh used in the RM-142 calculation
is much coarser than in the other calculations. This also
may lead to a poor account of the resonance contributions.
Note also that the resonance structure for the forbidden
transitions extends mainly up to ∼0.4 Ry, the region where
the channels of odd-parity states 3d64p begin to open. For
higher electron energies the resonance contribution greatly
diminishes.

As seen from the Fig. 4, agreement considerably improves
for the intermediate temperatures around T = 104 K. The aver-
age deviation for these temperatures decreases to 15%. Except
for a few transitions, the agreement further improves for the
higher temperatures, indicating that all calculations generally
agree on background cross sections, and the differences are
mostly due to the resonance structures. However, there are
transitions where the disagreement increases with temperature,
though the influence of the resonance structure is minimal.
There may be several reasons for this. It may be caused by
partial wave convergence, different target-state expansions
and thereby different background collision strengths, or the

appearance of pseudoresonance structures at higher electron
energies. There are many examples of the strong pseudores-
onance structures that can substantially change the cross
sections (see, e.g., [38]). This reason appears the most probable
as to why the RM-142 calculation shows very different rates
for some transitions, whereas the majority of the rates are in
very close agreement with the present calculations at T = 105

K. Overall, the comparison in Fig. 4 can serve as an accuracy
estimation for the existing data sets.

The forbidden transitions between the 52 lowest levels
were recently investigated carefully by Bautista et al. [19].
They used two different methods, specifically R-matrix+ICFT
and the fully relativistic DARC approach [39]. They also
investigated the sensitivity of collision strengths to the details
of the scattering calculations, such as size of the target and
close-coupling expansions, shifting the excitation thresholds
to the experimental positions, or size of the R-matrix box.
The comparison of effective collision strengths from different
models was presented at 104 K, the temperature where Fe II

is most frequently found. The statistical dispersion of results
from different models is assumed as an accuracy indicator.
In particular, they estimated uncertainties in the range of
10%-20% for excitations from the lower nine levels. How-
ever, if the complete collision inventory is considered, the
effective collision strength discrepancies vary widely, reaching
factors of two or more in some cases. Figure 5 compares
our effective collision strengths with the recommended data
of Bautista et al. obtained as the average of results from
their numerous models (denoted as RM-AV). We see large
discrepancies between these two sets, which are much larger
than the differences with the RM-142 and the RM-262 effective
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FIG. 5. Comparison of effective collision strengths obtained in
the present BSR-340 model with the RM-AV results of Bautista et al.
[19] at temperature of 104 K.

collision strengths discussed above. Overall, the RM-AV ef-
fective collision strengths are systematically lower than the
present results, with the average relative deviation of more than
50%. Note that for the subset of data presented in their paper
as a comparison of different models, much better agreement is
found with the DARC results than with the R-matrix+ICFT
calculations. We may conclude that the averaging of the
“chaotic” data sets does not lead to better accuracy. Instead,
the accuracy estimations based on the careful analysis of the
convergence of target and close-coupling expansions are more
preferable.

Now we turn to the discussion of the electric-dipole transi-
tions which involve the 3d64p and 3d54s4p odd-parity levels
of Fe II. Examples of collision strengths and thermally averaged
collision strengths for electron-impact excitation to the lowest
odd-parity states are given in Fig. 6. We choose excitation
of the 3d64p 6Do

9/2 and 3d64p 6Fo
11/2 levels from the ground

3d64s 6D9/2 level as these were also discussed by Zhang
and Pradhan [9] and Ramsbottom et al. [18]. Both of these
transitions are the strong electric-dipole transitions, which
exhibit the characteristic ln(E) behavior at almost all energies.
The resonance structure at low energies is very scarce and
provides only a limited contribution to the rate coefficients. For
the 3d64s 6D9/2–3d64p 6Do

9/2 (1-64) transition, our collision
strengths agree closely with the RM-142 calculations by Zhang
and Pradhan, and are systematically lower by 20%–30% than
the RM-262 results of Ramsbottom et al. This difference can
be caused by several reasons. First, we should be sure that all
partial wave contributions were correctly incorporated. Due to
the long-range nature of the Coulomb potential, the dominant
contribution to the dipole-allowed transitions comes from the
partial waves with large total orbital momentum, especially
for higher electron energies. Ramsbottom et al. [18] devoted a
large part of their discussion to this problem and concluded
that in order to obtain convergence of the electron-impact
excitation collision strengths for the allowed transitions in
Fe II, it is necessary to include contributions from partial waves

up to about L = 50 explicitly, with additional accounting for
contributions from even higher partial waves via a top-up
procedure. They also suggested that the incomplete partial
wave contribution in the RM-142 calculations of Zhang and
Pradhan was the primary reason for disagreement between
these two calculations. We argue that the partial wave conver-
gence can be reached for much lower L. Our collision strengths
obtained with direct calculations up to L = 50, followed by
the top-up procedure, differ only in limits of 1%–2% from
the test results with direct calculations up to L = 25 and
followed by the top-up procedure. Besides, all discussed
collision strengths behave asymptotically as ln(E). This fact
also indicates that top-up correction was correctly implied in all
calculations.

The differences with the RM-262 collision strengths are
most likely due to the different representation of target states,
and as a consequence, differences in oscillator strengths for
the electric-dipole transitions. For higher energies, collision
strengths for dipole-allowed transitions are proportional to the
oscillator strengths, so their accuracy is very important for
accurate description of the scattering process at higher ener-
gies. Our oscillator strength for the 3d64s 6D9/2–3d64p 6Do

9/2
transition is 0.279, which is 12% lower than the f -value of
0.311 from the RM-262 calculations. This partly explains why
our collision strengths are systematically lower than the RM-
262 results. Note that our oscillator strength is even larger than
the experimental oscillator strength of 0.238 derived from the
radiative rates of Schnabel et al. [35] presented in Table IV. We
then may suppose that actual collision strengths should be even
lower than presented in Fig. 6. The corresponding Maxwellian
averaged effective collision strengths for this transition, plotted
in the lower panel in Fig. 6, show agreement and disagreement
similar to those for the corresponding collision strengths. Our
effective collision strengths are systematically lower than the
RM-262 values, and agree closely with the RM-142 data at
higher temperatures. The RM-142 data exceed our effective
collision strengths at temperatures below 5000 K, which may
indicate the larger contribution of the resonances in their
calculations. Note that we compare the RM-142 effective
collision strengths based on the CHIANTI database [10], which
provides a more extended set of data than provided in the
original publication [9].

A similar picture is observed for the
3d64s 6D9/2–3d64p 6Fo

11/2 transition, presented in the
left panel of Fig. 6. Again the RM-262 collision strengths
exceed the present results, whereas our collision strengths
agree closely with the RM-142 data for all electron energies.
The curves have similar shape but different slope which is
defined by the oscillator strength. Our oscillator strength for
this transition, 0.396, is lower by 12% than the f value of 0.446
from the RM-262 calculations, but exceeds the experimental
value of 0.319 [35]. The corresponding Maxwellian averaged
effective collision strengths from RM-262 and the present
calculations differ in the same proportion as the collision
strengths. The RM-142 calculation agrees with the present
results only for higher temperatures, whereas it exceeds both
the present and RM-262 effective collision strengths at lower
temperature below 104 K. It can be explained by overestimated
resonance contributions in the LS plus frame transformation
method employed in the RM-142 calculations.

012706-14



ELECTRON-IMPACT EXCITATION OF FORBIDDEN AND … PHYSICAL REVIEW A 98, 012706 (2018)

0 1 2 3 4 5 6 7
0

50

100

150

200

250

C
ol
lis
io
n
S
tre
ng
th

Incident Electron Energy (Ry)

3d64s 6D9/2 - 3d
64p 6Do9/2

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

C
ol
lis
io
n
S
tre
ng
th

Incident Electron Energy (Ry)

3d64s 6D9/2 - 3d
64p 6Fo11/2

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

20

40

60

BSR-340
RM-262
RM-142

E
ffe
ct
iv
e
C
ol
lis
io
n
S
tre
ng
th

Log Electron Temperature (K)
2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

20

40

60

80

BSR-340
RM-262
RM-142

E
ffe
ct
iv
e
C
ol
lis
io
n
S
tre
ng
th

Log Electron Temperature (K)

FIG. 6. Upper panels: Collision strengths for the 3d64s6D9/2–3d64p6Do
9/2 (1-64) and 3d64s 6D9/2–3d64p 6F o

11/2 (1-69) fine-structure
transitions. Lower panels: Effective collision strength for the (1-64) and (1-69) transitions. Solid curve, present BSR-340 model; dot-dashed
curve, the RM-262 calculations of Ramsbottom et al. [17]; dashed curve, the RM-142 calculations of Zhang and Pradhan [9].

The overall comparison of the effective collision strengths
for the electric-dipole-allowed transitions is given in Fig. 7
for temperature T = 104 K. Dispersion between the present
and RM-262 results is considerable, with the average relative

deviation around 42%. The general tendency is that the RM-
262 effective collision strengths exceed the present values for
the most of the transitions. If we consider only the transitions
from the levels of the ground configuration (presented in the
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FIG. 7. Comparison of effective collision strengths obtained in the present BSR-340 model with RM-262 [17] (left panel) and RM-142 [9]
(right panel) for electron temperature T = 104 K. Also indicated in the panels is the average deviation σ from the BSR-340 results. The squares
in the left panel represent transitions from the ground level only.
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figure with squares), the agreement is much better, with the
average relative deviation of around 10%. The large differences
appear for transitions between excited states, beginning for
transitions from the first excited 3d7 4F term. Some differences
reach several orders of magnitude, both for weak and strong
transitions. Such large differences may be due to the different
target representations in the two calculations. The restricted
target expansions used in the RM-142 calculation leads to
inaccurate oscillator strengths and consequently to inaccurate
collision strengths. The average deviation of our results from
the RM-142 calculation is approximately on the same level
as from the RM-262 results; however, the deviation here is
more chaotic, with no systematic trend. Note that comparison
with the RM-142 calculation in Fig. 7 additionally includes the
nondipole transitions which are not presented in the RM-262
results.

The entire tables of energies, radiative rates, and effective
collision strengths for all temperatures and transitions included
in the present BSR-340 model can be found in the Supplemen-
tal Material [37].

IV. SUMMARY

We have presented effective collision strengths and radiative
parameters for all transitions among the 340 fine-structure
levels of Fe II, belonging to the lowest 3d64s, 3d54s2, 3d7,
3d64p, and 3d54s4p configurations. The present results con-
siderably expand the existing data sets for Fe II, allowing a
more detailed treatment of the available measured spectra
from different astrophysical sources. The calculations were
performed with the advanced BSR code [20] which employs
the R-matrix method in the B-spline basis. The BSR codes
are considerably modified and extended in order to deal with
this extremely complicated atomic system. To represent the
target states, we use extensive multiconfiguration expansions
with carefully chosen configurations. We also employ the
term-dependent one-electron orbitals for correct representation
of the relaxation effects. To further improve the accuracy
of our final collision rates, experimental energies through
the fine-tuning process have been used, not only for target
level energies, but also to enhance the accuracy of the term-
mixing coefficients in the wave functions. This is a distinctive
feature of the present calculations that allows us to generate a
more accurate description of the Fe II target states than those
employed before.

Comparison is made between our work and results available
in existing databases. This comparison shows that previous cal-
culations of collision strengths for many transitions are much
more uncertain than previously thought. We offer arguments in
favor of our results being the most accurate, where differences
occur. This is based on the more accurate representation of
target states and more extensive close-coupling expansions. It
is difficult to place uncertainty bounds on our collision rates.
Transitions from the ground multiplet levels are probably cor-
rect to within about 10%. For transitions between excited states
better accuracy is expected for levels within the well-defined
main configurations. Such transitions should be reliable to
within 20%–30% or better. For transitions between levels
with strong configuration and term mixing, the accuracy of
collision strengths is dependent on the accuracy of the mixing.
Our fine-tuning process is designed to represent that mixing
as accurately as possible. This allows us to assume that an
accuracy of about 20%–50% can be achieved in these cases too.
This conclusion is supported by the comparison of our radiative
rates with available experimental data. If additional factors
specific for scattering calculations (such as careful considera-
tion of the resonance structure and partial wave convergence)
are treated properly, the accuracy of collision rates should
be comparable with the accuracy of radiative rates. Thus, the
agreement of our radiative rates with experimental values can
also serve as an accuracy estimation for the collision rates. For
many transitions this agreement is within 20%–50%; however,
for some weak transitions the disagreement can reach to orders
of magnitude. These transitions are related to the case where
there are considerable cancellation effects due to CI or term
mixing, and in this case small changes in mixing can lead to
substantial changes in the final collision rates. Such transitions
if needed should be considered in the specifically designed cal-
culations, which are concentrated in the individual transitions.
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