
ABSTRACT

COMPUTER AND INFORMATION SCIENCE

BARNWELL, KEITHW. A. B.S. MOREHOUSE COLLEGE, 1991

DEVELOPING A HYPER MEDIA INTERFACE
AS A NAVIGATIONAL TOOL

FOR AN OBJECT ORIENTED DATABASE MANAGEMENT SYSTEM

Advisor: Dr. Roy George

Thesis dated May, 1995

A common difBculty associated with any large scale information base is traversing

the repository in a coherent and purposeful manner. The scope and diversity of the media

therein tends to be more of a distraction rather than a source of information. This

phenomena is particularly relevant in current hypertext or hypermedia systems and is often

referred to as becoming "lost in hyperspace".

A solution to this hyperspace problem involves modeling the hyper system after the

structured links associated with a database schema. The database schema inherently

defines the formations necessary for the two basic forms ofnavigation in a hyperbase -

structural and associative.

In order to depict the semantic relationships between nodes and links in a hyper

system a model that is both readable and logic-oriented is necessary. Such a model can be

expressed through conceptual graph notation. This paper documents the design of a

hyper-media interface as a navigational tool for an object oriented database management

system called 02. The navigational paths through the database are represented as a

conceptual graph model.

DEVELOPING A HYPER MEDIA INTERFACE

AS A NAVIGATIONAL TOOL

FOR AN OBJECT ORIENTED DATABASE MANAGEMENT SYSTEM

A THESIS

SUBMITTED TO THE FACULTY OF CLARK ATLANTA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF COMPUTER SCIENCE

BY

KEITH BARNWELL

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

ATLANTA, GEORGIA

MAY, 1995

© 1995

KEITH W. A. BARNWELL

All Rights Reserved

ACKNOWLEDGEMENTS

Special thanks to my advisor, Dr. George, members ofmy thesis defense committee. Dr.

Srikanth, and Dr. Perry, and to the faculty of the Computer and Information Science

Department.

li

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

LIST OF TABLES v

LIST OF ILLUSTRATIONS vi

INTRODUCTION 1

PARTI. OVERVIEW

Chapter

I. HYPER SYSTEMS 5

Limitations ofCurrent H5^er Systems 10

II. THE OODB DATABASE MODEL SOLUTION 13

Limitations of the OODB Model 16

m. THE CONCEPTUAL GRAPH AS AMEANS OF
REPRESENTATION 17

PART 2. CURRENT IMPLEMENTATION

IV. &4C/OODB MODEL 24

V. &4C/HYPERMODEL 28

VI. &4C/CONCEPTUAL GRAPHMODEL 32

Vn. DEMONSTRATION OF &4C/ 34

PART 3. FUTURE IMPLEMENTATION

Vin. CONCLUSION 44

FutureWork 46

iii

Appendix

1. &4t/00DB SCHEMADEFINITION 48

2. SAMPLE &4t/APPLICATION CODE 51

Method bodies of the class University 53
Method bodies of the class School 59
Sample Hyper Access Code 62

REFERENCES 66

iv

Appendix

1. &4C/00DB SCHEMADEFINITION 48

2. SAMPLE &4C/APPLICATION CODE 51

Method bodies of the class University 53
Method bodies of the class School 59
Sample Hyper Access Code 62

REFERENCES 66

iv

LIST OF TABLES

Table Page

1. Table ofAttributes 27

LIST OF ILLUSTRATIONS

Figure Page

1. A Simple Hypermodel 6

2. An Example Power Index Expression 8

3. Example of a Generalized Association 15

4. Three Conceptual Graph Forms 19

5. Conceptual Graph Showing a Generic Class 23

6. i'^C/OODBModel 26

7. Pilot Presentation 35

8. An Editable Tuple Display 36

9. A Selectable List of the Universities 37

10. Iconic Representation of a University 38

11. iS<4C/Hyper Access Presentation 40

12. Hyper Presentation Showing First Level 41

13. &4f/Hyper Presentation Showing Second Level 42

vi

INTRODUCTION

A multimedia database presents an interesting challenge to the novice user who

wishes to quickly peruse its contents. This problem is compounded by the inclusion of

unformatted media (Tanaka and Qiang 1992) such as text, video, images and sound. This

type ofmedia is difficult to retrieve with an ad hoc querying facihty unless some

appropriate viewer is used to look at the data. Even if the database is designed to model

complex real world situations as in an object oriented system, the interface is often as

complicated as the system itself Consider for example an information base filled with an

encyclopedic knowledge on diverse topics. This library can present an interesting

challenge to a user who wishes to compare and contrast segments of information from

different subject areas. Although, this is a reahstic request, the user is responsible for

examining each subject area separately, and then identifying common areas of interest.

This task is not only time consuming, but its success greatly depends on the analytical

powers of the user. Some users may find it difficult to identify common trends simply

because they encountered too many distracting bits of information.

However, if the system provided a mechanism where the user is presented with

information units that are related to each other, then it would be easier to complete the

aforementioned task. The user is now able to selectively identify viable access paths

through the enterprise in order to view common trends in the data. In the scenario

1

2

described previously, given a subject area, the user can select information of interest and

follow predefined links that may span different topics. This desirable feature led to the

development ofhypertext and hypermedia databases. Hypertext traditionally refers to text

based information repositories, whereas hypermedia encompasses text as well as other

media (Bruza and van derWeide 1990). Both of these systems involve representing the

enterprise as a collection of information units and providing a means of traversal via

associations.

In order to emphasize the difference between these types of systems and traditional

databases, the term hyper 'wUl be used as a separate or conjunctive adjective when

referring to processes that support hypertext or hypermedia concepts. Generally, the

purpose ofhyper systems is to allow users to selectively identify and view units of

information (Faloustos et al. 1990). This flexibihty affords a more analytical view of the

data in the enterprise by giving the user the power to interpret information in various

ways. However, given the flexibihty and scope of a hyper system, a common phenomena

occurs when a user encounters several possible information alternatives and inadvertently

selects a path that does not enhance the current information context. In other words, the

user is sidetracked fi:om his original query, and finds it almost impossible to relocate his

original frame ofreference. The broader the scope of information presented, the easier it

is to become overwhelmed or sidetracked. This resulting disorientation is referred to as

becoming "lost in hyperspace" (Bruza and van derWeide 1990).

Attempts to solve this hyperspace problem range fi-om improving the architecture

of the hyper model (Bruza and van derWeide 1990) to using the schematics of an existing

3

database model as a means ofproviding some structure to the hyper system (Wang and

Hitchcock 1991). The first approach addresses the flaws of the hyper model and provide

internal solutions to the problem This strategy involves several refinements of the hyper

model itself The latter technique ofutilizing a traditional database model enhances the

structure and generahty ofthe hyper model with database features such as type hierarchy

and querying facihties.

In spite ofthe relative successes ofboth of these methodologies, the semantic

nature of the hyper model still require interpretation. Neither hyper graph notations or

database schemas can fixUy express the meaning of the associations between different

categories of information units. A representation that is both readable and logic-oriented

is essential to effectively communicate the intricacies of the hyper network. Such a

representation can be expressed through conceptual graphs. Conceptual graphs are used

to depict relationships between diverse and abstract categories of information or concepts

(Sowa 1993). In addition, the semantic nature ofthe resulting network can be illustrated.

This paper explores the current issues involved in the development of a hyper

system and discusses the utilization ofconceptual graphs as a means ofproviding adequate

representation ofthe hyper network. The fact that conceptual graphs are important as a

source of documentation for the proper maintenance of the hyper system is also discussed.

In addition, an implementation of a hyper system using an existing database model, namely

the object oriented database model, is presented, and a conceptual graph is generated as a

formal notation for the system. The system prototype, called SAU, resides on a SUN

workstation and features a showcase ofthe Atlanta area universities. SAU provides a

4

graphical hyper interface to a multimedia database implemented using an object oriented

database management system called 02, Version 4.4.5.

Finally, comparisons are made between SAUs hyper interface and the traditional

object oriented database, and the benefits of the conceptual graph as a means of

maintaining the database is discussed. Some future enhancements to the SAUprototype is

also presented.

CHAPTER I

HYPER SYSTEMS

The primary purpose of a hyper system, whether text based or other, is to provide

a single flexible, and coherent interface (Conklin 1987) to complex large scale information

repositories. Essentially, a hyper system involves packaging information into discrete

categories called nodes and providing a means of traversal fi:om node to node in a flexible

and intuitive manner via associations called links. Node content may be portions of text,

sound, graphics or video images, or combinations ofall of the above (Tompa 89), and

links are created based on the author's interpretation of the associations between various

information vmits. The resulting semantic network is sometimes referred to as a

hyperdocument or hyperlibrary (Schatz 89) and is a representation of the information

content as a meaningful whole.

The simplest approach to the architecture of a hyper system is to use an imphcit

labelled directed graph (Tompa 89). This model consists of a finite set ofnodes or

information units, a set of labels, and a set ofdirected labelled edges or links (see Figure

1). In this model, there are no expUcit provisions for groups or sets ofnodes and Unks,

therefore a series of iterations may be required to display generic information. Other

common architectures utilize first-order logic and hypergraphs (Tompa 89).

5

6

Figure 1. A simple hypermodel as a labelled directed graph.
The current node is marked by an X. Adapted from Tompa 89.

The hypergraph data model emphasizes the difiference in structure and content

(Tompa 89). In this model, the database state includes additional concepts such as pages

of data objects, readers for viewing data content, and a mapping function to correlate

nodes with data content. Pages, like labels, are atomic imits, and readers are used to

interpret and view the contents of a page. This model allows the creation of links between

collections ofnodes, and views that correspond to virtual hypergraphs.

As an expansion to the hypergraph concept of separating structure from content,

7

some researchers (Bruza and van derWeide 1990) (Tanaka and Qiang 1992) introduce the

notion of a two level hypermedia architecture. Bruza separates the levels by referring to

the top layer as a hyperindex and the bottom layer is the hyperbase. The hyperindex

provides an abstract view of the xmderlying hyperbase. Nodes in the hyperindex

correspond to sets of information nodes in the hyperbase. Users can traverse through the

index, and expand or refine the current context by selecting specific information

corresponding to an index node or retreating from the hyperbase to the hyperindex. The

hyperindex also facihtates the notion of index expressions which consist of the set of all

selected entries. General index expressions can be used to generate sub-expressions which

eventually translate to the most specific expression corresponding to a node in the

hyperbase. The resulting lattice of index expressions is called a power index expression

(Bruza and van der Weide 1990, 82). See Figure 2 for an example.

8

Figure 2. An example power index expression. e represents
the empty index expression.

Another two-leveled approach to the hyperspace problem is to provide a type and

view schema architecture (Tanaka and Qiang 1992). The type schema corresponds to the

attribute and logical structure ofobjects, whereas the view schema represents conceptual

objects which are virtual groupings ofthe physical objects themselves. An implementation

of this architecture may utilize an imderlying OODBMS to generate the type schema, since

its objects and associations correspond directly to the class hierarchy. The view schema

9

can then be generated from the abstract groupings (the classes in the OODB) or portions

of object instances in the type schema. The resulting hyper model is therefore dependent

on the imderlying architecture ofthe existing database model, namely the OODB. This

strategy ofusing a database model as a framework for the hyperbase is demonstrated in

the SAUprototype, and will be discussed further in Chapter H.

Other concepts that are introduced to the hypermedia architecture as a result of

utilizing the OODB model include structured types and annotated versions of links and

nodes (Wang and Hitchcock 1991). All of these functions are based on object oriented

precepts. A node type is viewed as an abstract data type which describes structure, and

may have attributes as well as content. Node types fall into the two general categories of

primitive or base types and structured types that are created from combinations of

primitive types. Link types can be annotational or referential. Annotative links allow the

creation of annotations within the contents of a single node, and referential links create

associations between the contents of several nodes.

There are several ways that users can traverse the network ofnodes and links

formulated from a hyper architecture. The two basic forms ofnavigation are categorized

as structural or associative (Bruza and van der Weide 1990). Structural navigation allows

the traversal from node to node based on an imderlying hierarchy. If as is typical in

hypertext systems, the hyperbase is modeled after a document structure, structural

navigation follows the predefined links between chapters or section and, according to

Bruza, either "enlarges or refines the current context". For the hyper model that is

generated from an imderlying database, structural navigation entails following the natural

10

IS-A or IS-PART-OF hierarchies that are inherent to the data model.

Associative navigation, on the other hand, allows a "change of context" via cross

referential links between related material. These links may be formulated based on

footnote or other references in a hypertext system, for example, or some other common

trend identified by the author of the hyperdocument. Referential links may also be

generated dynamically by search mechanisms or a querying engine.

One other form ofnavigation introduced with the two level hypermedia

architecture is inter-layer navigation (Bruza and verWeide 1990). This allows users to

move between the indexed and expanded layers of the hypermedia network. This type of

traversal is not to be confused with an expansion or refinement of the current context.

Whereas, context enlargement or refinement occurs within the hyperindex itself inter¬

layer navigation occurs between the top layer and the hyperbase, and expands or refines

the database view. A third form ofnavigation related to traversing the hyper index is

Query By Navigation (Bruza and van der Weide 1990). This entails the user traversing or

browsing the hyperindex imtil a node of interest is identified. This type ofnavigation is

facilitated by the power index expression lattice structure described earlier.

It should be noted that the two leveled architectures offer the most flexibility and

diversity for inter-node traversal or navigation through the hyper document. Users can

not only change, but can expand or refine the current context. In addition, the closure

offered by such a system allows room for optimization.

Limitations of Current Hyper Systems

The fact that information is scattered through an interconnected web ofnodes and

11

links introduces the possibility of a user becoming entangled in the network. As the

number ofnodes and links increases, the niunber of alternate paths to any specific goal

also increase. Although this increases the flexibility ofthe network, the opportunity to

backtrack safely after following a sidetrack diminishes. Sidetracks usually occur when a

user has to guess at the interpretation of the associations between information nodes. If

the user guesses incorrectly then an inadvertent change of context occurs. In other words

the user is now responsible for creating, and managing new links, and choosing existing

links. The resulting disorientation that may occur is a common problem of current hyper

systems.

There are several solutions to address this hyperspace problem. The usual

approach is to provide a browser or a book-mark to facilitate orientation in the network

(Bruza and van der Weide 1990). Browsers maintain the current position in the

hypermedia map, while book-marks are place holders in the map. Other approaches

attempt to improve the architecture of the hyper system itselfwith two-layered

mechanisms discussed previously. The top layer can be viewed as an index to the

underlying layer, and users can retreat to the index as a means of recovering or expanding

the current context.

Another related problem ofhyper systems has to do with the fact that most of

these systems rely only on a browsing mechanism and limited textual search capability to

locate information elements (Gallagher et al. 1990). This usually results in the user being

bombarded by irrelevant information and fiuther contributes to disorientation. The

systems that employ a database schema address this problem by providing more powerful

12

search mechanisms via a querying engine (Schatz 1989).

One other major drawback of current hypertext systems is their unsuitability for

environments other than which they were specifically designed (190). Most

hyperdocuments are modeled using a bottom-up approach simply because the

expansiveness of the information base makes the task of composing material into separate

nodes and providing associations between them very comphcated. Also, the lack of a

structure for defining types ofnodes and links allows the construction ofmeaningless links

and associations. Again, the systems that employ an inherent database model to construct

the hyperbase allow the creation of types for nodes and links. In addition, the object

oriented database model allows the creation ofversions and annotations ofnodes and

links.

CHAPTER n

THE OODB DATABASE MODEL SOLUTION

The benefits of the database model solution to address the problems associated

with disorientation in a hyper network is apparent. The fact that a traditional database

model is used to organize the data store, and a hyper interface is used for data

manipulation offers a distinct advantage. The hyper network benefits from the structured

schematics offered by the underlying database, and the traditional text based or browsing

mechanisms used to retrieve information elements can be enhanced by the querying

facilities offered by the database.

This chapter examines in detail the benefits and limitations ofusing an object

oriented database management system to generate a data model for a hyper system

Mapping the features of the OODB to the hyper model requires an examination of the

OODB model itself The primitives of an OODB model are classes of objects, their means

ofmanipulation as defined in methods, and the generalized associations between them

(Rumbaugh et al. 1991). These associations are usually in the form of IS-PART-OF and

IS-A relationships. Objects correspond to abstract data entities, and are categorized by

common elements of structure and behavior, into classes. Each object is an instance of a

particular class. Classes embody the structure of an object by providing an abstract data

type definition, and dictate the behavior or set ofoperations for manipulating objects via

13

14

methods. In addition, the visibihty ofobjects, methods and attributes ofthe objects
themselves are also specified.

The associations formed in the OODB are classified via embedded classes,

inheritance relationships, and between classes and objects themselves. An embedded class

is defined as an attribute of its parent class. An inherited class may possess some or all of

the quahties of its parent class, and each object instance belongs to a particular class

definition. Embedded and inherited classes form IS-PART-OF associations and objects

are related to classes via IS-A generalizations (see Figure 3).

15

DEPARTMENT
Involvcd-In

RESEARCH

(b)

(SCHOOL)
Arts <& Sciences

(c)

Figure 3. (a) Example of a generalized association between
2 classes. (b) An IS-PART-OF association. (c) An implicit
IS-A association.

Given the inherent OODB concepts discussed above, a direct correlation can be

drawn between classes ofobjects, mter-class relationships, object instances, and node and

link types, node content and structure. The OODB model can therefore be used to

automatically generate a basic hyper network which can be modified and maintained via

traditional database mechanisms.

16

Limitations of the OODB Model

Although the object oriented data model as it exists provides some useful

mechanisms for the development of a basic hyper network, it cannot be used to model the

entire hyperdocument. This is due to the current limitations ofexisting object oriented

programming environs (Tanaka and Qiang 1992). The OODB model only dictates nodes

and links that correspond directly to the imderlying data model. In a traditional

hyperdocument, however, traversals between nodes that do not conform to the existing

classifications of the OODB model via links that do not necessarily correlate with the

intrinsic associations between classes is also possible.

Another serious limitation that is prevalent among traditional database

environments is that there are no mechanisms to support the dynamic creation and

modification ofnode and link types and the creation ofviews or versions of the data in the

enterprise. In the conventional OODB the database schema is fixed and classes cannot be

created or modified dynamically, and each object instance, although modifiable, is not

allowed different versions.

These limitations can be addressed with extensions to the OODB model that allow

the dynamic creation and modification of classes and versions of the object instances

themselves. The prototype will demonstrate such an extension.

CHAPTERm

THE CONCEPTUAL GRAPH AS A MEANS OF REPRESENTATION

Although the object oriented data model can be used to structurally organize the

hyperdocument, it does not provide a formal notation to accurately convey the semantic

associations that exist in the network. Early hyper models also fail to convey in a concise,

readable format the semantic relationships between information nodes and links. The

major deterrent is that it is difficult to communicate the author's interpretation of

associations between categories of information. One common misinterpretation, for

example, involves links that are unidirectional where the user may traverse the information

link in the wrong direction.

In order to document clearly this intended meaning of information categories and

associations, it is necessary to choose a notation that allows for detailed semantic

expression and conveys it in a readable format. The model of choice is a conceptual graph

which incorporates logic considerations in relationships between concepts. A concept

may map to simple entities, situations or contexts such as states, processes, or events, or

to other conceptual relations. This flexibility allows conceptual graphs to be easily

translated to predicate calculus or directly mapped to other systems of logic, entity

relationships models, or object oriented data models.

Conceptual graphs are formally defined (Sowa 1990) as a "system of logic based

17

18

on .. . existential graphs . . . and the semantic network of artificial intelligence." They

serve as a translation mechanism for other diagrammatic representations and embody the

literal meaning ofnatural languages. Natural language notions such as coreference

(relations between the same individual instance), quantification (such as every or almost

all), and higher order types (these contain instances that are types themselves - eg. model,

species, color, and shape) are all addressed via conceptual graphs. The simplest way to

demonstrate the various forms and notations that are available in conceptual graphs is by

example. Figure 3 shows an example of forms for a simple conceptual graph that

represents the meaning of the situation or conceptA cat chasing a mouse. From this

example one can derive that the conceptual graph notation provides symbolic

representations that explicitly dictate the agent andpatient of the conceptual relation.

There is no room for misinterpretation. The agent of the relation chase is the cat, and the

patient is the mouse. Any correct interpretation of this graph will not allow, for example,

the construction of the conceptA mouse chasing a cat.

19

Figure 4. Three conceptual graph forms for the meaning of A
cat chasing a mouse.

Further examination ofFigure 4 indicate that concepts are represented pictorially

by boxes and denote entities, actions, properties, or events. Boxes are composed of a type

section and a corresponding referent field. Referents may refer to specific named

instances or quantifiers of a particular type. The basic forms ofreferents allowed in

conceptual graphs include existential, individual and literal.

Existential referents are denoted by the symbol * and specify the existence of an

20

instance of a type - this can be mapped directly to the existential quantifier 3 in predicate

logic. Individual referents are symbolized by # followed by a imique identifier. These

markers, as they are sometimes called, can be mapped to logic constants or serial numbers

m a database. Literals are the form or value of entities and correspond to logic constants

or programming language Literals. Referents may allow other logic considerations like

the universal quantifier V and queries (denoted by the ? symbol). Furthermore, in order to

save space, the pictorial conceptual graph can be represented in linear form with square

brackets denoting boxes and rounded parentheses for circles as in the followmg:

[CAT] <- (AGNT) <- [CHASE] -> (PTNT) -> [MOUSE]

Since conceptual graphs contain a rich library of symbolic and logical notations,

relations are divided into three basic categories. These areprimitive, starter set, and

defined.

The primitive category encompasses the dyadic relation LINK and is used to

derive other conceptual relations.

The starter set is an assortment ofacceptable elementary conceptual relations. It

contains recomihended rules mandated by researchers m linguistics and artificial

inteUigence. Some examples include the following Sowa 1990):

• Case relations that show the connection between the action or state and
the subject or entities represented. These include agent (AGNT), patient
(PTNT), state (STAT), experience (EXPR), recipient (RCPT), instrument
(INST), destination (DEST), and result (RSLT).

21

Spatial relations which range from the generic location (LOC) to
the more specific prepositions such as (D4)> (ON), and (ABOV).

Attributes that range from (ATTR) to characteristics (CHRC) and
part (PART).

Intersentential relations which are those relations that have
referents that may represent several conceptual graphs themselves.
They include before (BFOR), after (AFTR), cause (CAUS),
purpose (PURP), method (METH), and the logical (AND) and
(OR).

Mathematical relations which denote measure (MEAS), greater
than (>), less-than (<), equal (=), not-equal {*), average (AVG)
count (CNT), and fimctional arguments (ARGl) or (ARG2).

Metarelations that describe the relation between concept types and
relations, and conceptual graphs. Kind (KIND), subtype (SUBT),
description (DSCR), statement (STMT), and representation
(REPR) are all metarelations.

The third branch of conceptual relations is the defined category. This classification

entails any relation used in logic, relational databases, or entity-relationship diagrams.

These relations are predefined by their original frame of reference. In other words, the

dialect ofexisting database models are also incorporated as part of the conceptual graph

notation.

As shown from the above examples, the rules for conceptual graphs are general

enough to encompass varying systems of logic, as well as other diagrammatic and

notational representation. However, there is enough specificity and flexibility to

accommodate the nuances ofnatural languages. This duality allows conceptual graphs to

be used as a universal mechanism for expressing the syntax and semantics of any given

system.

22

To demonstrate the translation of an object oriented data model to a conceptual

graph, Figure 5 shows the representation of a generic class definition which has two sub¬

classes and three methods. The definition includes the universal quantifier V which implies

every instance of the class. The nested graph shows that ?c has subclasses *ca and *cb,

and methods 1, 2 and 3.

23

Figure 5. Conceptual graph showing a generic class
definition.

CHAPTER IV

SAU OODB MODEL

An object oriented data model allows the user to manipulate classes ofobjects via

predefined methods. In the SAU apphcation, seven primary classes of objects are defined.

They are as follows:

UNIVERSITY This class possesses general attributes such as Name,
Location, Acreage, Population and History.

RESOURCE RESOURCE objects are associated with UNIVERSITY
objects and depict the general resources associated with
each imiversity, such as its Ubrary and computing facihties.

SCHOOL Objects ofthis class are embedded within objects of class
UNIVERSITY. They possess attributes such as Name,
Dean, and a pictorial representation of the school's primary
building.

DEPARTMENTS - School objects have embedded links to objects of this class.
Research Projects is the main attribute ofthis class and is
represented as an embedded object ofthe class
RESEARCH.

RESEARCH RESEARCH objects define the categories of research
associated with individual departments.

FACULTY FACULTY objects contain information on the Name,
Education, and Specialty of faculty members for each
department. Sets ofthese objects are associated with
objects ofthe class DEPARTMENT via embedded links.

24

25

STUDENTS - These objects are similar to the FACULTY objects in the
sense that they are also embedded in objects of the class
DEPARTMENT. They contain relevant attributes such as
current GPA and Major.

The above classes and their interrelationships are depicted in Figure 6.

In the SAUOODB model, each class has several predefined methods and

attributes. Attributes define the structure of objects and methods are used for data

manipulation. See table 1 for a description of the major attributes and methods associated

with the classes in the SAUOODB model.

26

Y

Figure 6 SAU OODB Model (OMT symbolic notation).

27

Table 1.—Table showing classes, attributes and methods of the SAU OODB Model.

CLASS NAME Major Attributes Methods

UNIVERSITY Name (string) Edit

Type (string) Display
Location (Address) Add Resource

History (Sound)
Logo (Bitmap)
Picture (Image)

Add School

RESOURCE Name (string) Edit

Type (string)
Picture (Image)

Display

SCHOOL Name (string) Edit
Dean (string) Display
Dean's Picture (Image) Add
School's Picture (Image) Department

DEPARTMENT Name (string) Edit
Chair (string) Display
Chair's Picture (Image) Add Faculty
Department's Picture (Image) Member

Add Student

FACULTY Name (string) Edit
Credentials (Sound)
Picture (Image)

Display

STUDENT Name (String) Edit

Statement (String)
Picture (Image)

Display

CHAPTER V

SAU HYPER MODEL

The 5^ ^7 interface must be engaging and flexible enough to allow varying

interpretations of the data in the enterprise. This entails allowing users not only to select a

university of interest and explore its attributes, but to compare and contrast common

elements associated with these objects. A user should be able to display the faculty and

students associated with a university, for example, as well as define and follow common

trends in the research projects sponsored by each institution. Providing an interface that

facilitates this dynamic interpretation of the data in the enterprise generally requires a

model that incorporates the definition and creation ofnodes and hnks.

An elementary hyper model for the SAU prototype can be generated from the

underlying object oriented database. However, the dynamics of the hyper interface that

are not supported by the imderlying OODB must be incorporated as extensions to the

traditional model. This necessity influenced the choice of the 02 Object Oriented

Database Management System Version 4.4.5 as the implementation instrument. 02

facihtates the major characteristics of traditional hyper systems. To allow the ad hoc

creation of information nodes and links, for instance, a meta schema (02 User Manual

1993) allows the dynamic evolution of classes and associations. Furthermore, versions of

object instances and their associations are allowed which can facihtate the creation of

28

29

diflFerent user views in the hyper network.

This chapter explores the possible navigational paths through the SAU database

made possible by its hyper interface. The interface allows users the same flexibihty offered

by traditional hyper systems.

SAU supports the two most common forms ofhyper navigation in a database -

structural and associative. Structural navigation follows the IS-PART-OF and IS-A

associations that are already a part ofthe object oriented database. In the SAU application

there are several of these types ofassociations (refer to Figure 6). For instance, there is an

IS-PART-OF association between the classes UNIVERSITY and RESOURCE, and

between DEPARTMENT and FACULTY. IS-A generalizations are implicit in the data

model and are formed whenever an object instance of a particular class is created.

Associative navigation is the traversal across broad categories in the UoD.

Whereas the SAU OODB model only allows associative links between information

categories that map directly to a predefined class, its hyper interface allows typed links

between nodes that may contain portions ofone or several classes. For instance, a link

fi-om Clark Atlanta University to Georgia Tech is a specific instance of a typed link

between objects ofthe class University. However, typed links are also defined for

comparisons between schools fi’om the same or different universities. A comparison that

includes the number ofdepartments in schools across universities implies that a typed

information segment be created that includes the attribute name fi'om the class

UNIVERSITY and SCHOOL and the number ofdepartments. These attributes do not

correspond to any one class in the OODB model.

30

Accessing information through a hyper interface may also involve some logical

decision(s) being made. This method of accessing information may use either structural or

associative navigations, however, at some point in the traversal the result of a condition

determines the intermediate or final outcomes. Consider for example, a request to identify

all the Universities that are privately funded and that have a Computer Science

department. The traversal of such a link may not necessarily include all of the university

nodes even if such a path already exists. All of the universities that are publicly funded

need to be skipped. In addition, all of the universities without a Computer Science

department must not be included. Generally, such logically influenced access paths may

be controlled either by identifying attributes or the results of a query, or both. The hyper

link described above, for instance, may be determined by some attribute of the class

UNIVERSITY which identifies whether it is public or private, along with some querying

facility to determine whether a Computer Science department exists. It should be noted

that the identifying attribute and querying facility are all provided via the underlying

database model.

To further illustrate the effectiveness ofusing an existing data model to formulate

a hyper interface SAU allows nodes to be created that contain information from the direct

results of a database query. This type of node is dynamic in the sense that the information

it represents will reflect any modifications performed on the contents of the database.

Therefore, it is not necessary to update the node content whenever a database change

occurs. Furthermore, since the entire structure of the hyper network is closely related to

the database model, any changes to the existing model will be automatically reflected not

31

only in node content but in the associations or links themselves.

For a demonstration of some ofthe hyper links formed by the 5/4 f/ interface, refer

to chapter Vn.

CHAPTER VI

SAU CONCEPTUAL GRAPH MODEL

Given the complexity and scope ofthe inter-relationships that exist and that may

be formed between information nodes and links, it is necessary to maintain a dynamic, and

logic oriented model which captures all of its semantic constraints. This model should be

structured enough to allow developers to keep track of the existing hyper web, yet

readable and flexible enough to allow users to understand the patterns of associations that

exist and create their own. Since the OODB model itself suggests some ofthe

associations and links of the database, it would also be helpful to extract direct

correlations jfrom the object model. The SAU apphcation utilizes the conceptual graph

style ofnotation to document its hyper interface, since it not only captures logic in

relations but can be mapped directly to the underlying OODB.

The initial conceptual model for the hyper interface can easily be generated from

the underlying OODB. The association between the class UNIVERSITY and

RESOURCE as depicted in Figure 3 is directly translated to the linear conceptual graph

segment as in

[UNIVERSITY] <- (HAS) -> [RESOURCE]

One other common access paths or hyper hnks documented in the database follows

32

33

the heiarchy of embedded classes. For instance, the link from a University object to a

School object can be depicted in conceptual graph notation for the general case and for

specific instances as in

[UNIVERSITY: CAU] <- (PART) -> [SCHOOL: Business]

This notation can be repeated at various levels of detail and would suffice to

document the entire SAU hypermodel.

CHAPTER Vn

DEMONSTRATION OF SAU

This chapter is devoted to a briefpictorial demonstration of the 5,4C/prototype.

The demonstration walks the user through the traditional object oriented database access

methods and then displays some of the common access paths already defined by the hyper

interface. The demonstration was run on a SUNOS workstation with OpenLook graphical

user interface. Screen images were captured using Snapshot version 3.3.

Images are included to give the reader an idea of the look and feel of the SAU

prototype. Since the application is not completely populated with real data, test data is

used wherever appropriate. The primary objective is to demonstrate the ease with which

the interface allows the user to view complex, varied, and informative views of the data in

the enterprise.

Figure 7 shows the main icon or presentation which pilots the rest of the

application. A pull down menu of the application level programs is also shown. The two

major entries are the DB Interface and the Hyper Interface selections.

34

35

Figure 7. SAU pilot presentation showing main menu
selections DB Interface and Hyper Interface.

Selecting the DB Interface allows the user to display all of the traditional database

application programs. These include the Add University and Display Universities entries

(refer to Figure 7). The Add University selection triggers a data entry window which

contains the tuple of attributes associated with the class UNIVERSITY (see Figure 8).

This presentation is modifiable and clicking on the "Pencil" button stores any changes

made to the database, provided that certain constraints are met. These constraints include

duplicate checking, and required field entries. A method menu is displayed by clicking on

the right mouse button for those fields that correspond to objects themselves. Clicking on

the "Eraser" abandons any changes made to the presentation.

36

Figure 8. An editable tuple display resulting from the Add
University selection.

37

The Display Universities entry triggers a selectable list of all of the universities

stored in the database (see Figure 9).

Figure 9. A selectable list of the universities in the SAU
database.

From this list the user can select a university by name and be presented vvdth an iconic

representation of the selected entry. Clicking the right mouse button on this icon causes a

display of a menu showing all the available methods attached to the class University (see

Figure 10). The user can perform updates to the university object itselfby selecting the

Updates entry or access other information associated with the object via the Display entry.

38

SAU

SfiU fl Shoucasa of fttlanta's Universities

SAU

^ai^l
I updates fr Edit
* Display (E Add a Resource

Add a School

/ Add/Hodify Map Coordinates
Load Canpus Map

Figure 10. Iconic representation of a university with
associated methods,

Displays, like edits, can be performed on each ofthe tuple ofvisible attributes.

Pictorial and sound attributes can be read via the appropriated methods which are selected

by clicking the right mouse button on the corresponding entry fields. In addition, the

resources associated with the university can be accessed via a selectable list for edits or

viewing, by selecting the Display Resources method.

TheDisplay entry also contains the method that facilitates stepping through the

heiarchy ofembedded objects in the database. This method is called Display Schools, and

when selected, allows the user to select from a list of all the schools associated with a

particular university. From this point on the DB Interface repeats in form, allov^ng the

39

user to select for editing or displaying objects associated with the classes Department,

Research Projects, Faculty, and Student.

The Hyper Interface application program creates a point and click scenario for

accessing data in the enterprise. This interface is supported by the semantic network of

the hyperdocument. Selecting this program displays a two entry menu containing the main

entry point. Hyper Access, and a means ofupdating the city map, called EditMap. The

Hyper Access selection triggers a presentation like the one shown in Figure 11. This

figure displays a map ofAtlanta with a super imposed layer of icons representing objects

of the class University. Each icon is placed on the map according to relative positions.

This presentation is the information content or hyperbase of the enterprise.

40

SKwoao* liilwr*iMw

lilrpll!li:itHlliiyij|iil

insilKiHijlinllLHHiyi-lllIxfi
f* ■3HBjkKmiBVBSB«wnBh5mS«fS>

JpL?.jli|ih!|;|ujmlfi;:|:#i

Figure 11. SAU Hyper Access presentation.

The accompanying presentation is a hyper graph showing the corresponding nodes

and any associated links. The hyper graph in Figure 11 corresponds to the top level

hyperindex layer. This layer is used to display the current access path traversed by the

user and actually pilots the user via the hyperdocument through the information in the

database. For example, selecting a node from Figure 11 highlights the selected node and

displays a pictorial representation of the corresponding University object (see Figure 12).

At the same time an audio segment containing the contents of the history attribute is

played. In addition, the user is presented with the option of displaying the resources

41

Figure 12. SAU hyper presentation showing first level of
display for an expanded view of the university node.

associated with the university. After the user erases the university image, or finishes

perusing the resource information, a display of the campus map with a layer of

superimposed School objects placed according to relative positions is triggered (see

Figure 13). A hyper graph demonstrating the path of traversal in the form of a simple

directed graph is also shown. This graph in turn contains the nodes corresponding to

all the associated School objects.

42

Figure 13. SAU hyper access presentation showing second
level of display for the expanded university node.

TheHyperAccess application program repeats in form to allow the user to view all the

information in the database. Although not shown, modifications to existing node content

and the addition ofnew nodes and links are allowed interactively via the hyper graphs.

These actions will trigger the appropriate database updates in future revisions of the SAU

prototype.

Ease ofuse and power to present comprehensive views of the database is clearly

demonstrated through the Hyper Interface application program. This facility offers a

single, and coherent outlook on the enterprise, and also allows the user to interact with the

43

data. Compared to the regular DB Interface, users will prefer to use this interface to

peruse the information contained in the database.

CHAPTER Vm

CONCLUSION

The demonstration ofSAUclearly shows that a hyper interface provides a useful

tool for viewing and interpreting complex information in the enterprise. The fact that the

interface itselfwas easily generated from the underlying database model suggests that this

approach is a feasible mechanism for enhancing the power and generality of existing hyper

systems. This two-leveled architecture also addresses some of the common problems

associated with hyper systems. The abstract interpretation of the top layer allows it to be

used as an index so that users can retreat from more specific to general contexts. The

specificity offered by the bottom layer enables continual refinement of the current context.

This ability of inter-layer navigation can be used as an effective strategy for recovering

from a too narrow context to one that allows the user to explore other navigational

options within the enterprise. Furthermore, the predefined data manipulation mechanisms

offered by the underlying database, in this instance method definitions, is used to provide a

means ofviewing information about node content. In other words, the readers for

viewing the content of a node are actually predefined methods that belong to the class that

corresponds to the node type. If the node content contains a bitmap image, for instance,

the predefined method to display the image is readily available as part of the underlying

database.

44

45

One other benefit of the two-layered approach is that it provides the means of

creating abstractions or structured types for information nodes and associations. These

abstractions can be used to structurally organize the hyperdocument and allow the

creation ofmultiple instance versions within the enterprise. In the SAUprototype, the

abstractions are provided as part of the general class schema of the object oriented

database management system. Classes are used to provide structure to information nodes,

and the associations formed between classes allow the creation of typed links. In addition,

the search for and creation ofnew associations is augmented by the ad hoc querying

facilities that are included as part of the 02 database management system.

Using 02 to implement the SAU prototype overcomes the limitations of the

OODB model as it relates to the dynamic creation of hyper nodes and links. 02 allows

runtime modifications of the database schema and the creation ofversions ofobject

instances within the enterprise. Since the hyper interface is derived from the database

model, any changes to the schema is automatically refiected in the nodes and links

themselves. Therefore, the ability to create new classes facilitates the dynamic creation of

node types and associations. In addition, the ability to create versions of object instances

allows versions of node content within the hyper network.

Using the conceptual graph style ofnotation to document the hyper interface of

the prototype system allows the author to represent in sufficient detail the semantics

behind the network of information nodes and links. Since the network is subject to

interpretation, the documentation of the associations between categories of information is

imperative to readability and maintainability. The capacity for conceptual graphs to

46

illustrate the meaning behind relations, and to do so in a manner that offers varying levels

ofdetail, makes it an ideal tool to document hyper systems. The conceptual graph

notation is also desirable because of its direct correlation to database paradigms. The SAU

OODB model was easily translated to a conceptual graph model. This conceptual model

forms the basis for documenting the h5^er interface.

For future development, the conceptual graph will serve as a reminder ofprior

interpretations of the data within the enterprise. Maintaining the hyper network will be

easier since its semantics are documented pictorially. Therefore, the authoring of

information nodes and links for future versions of the SAUprototype will be facilitated.

FutureWork

This section provides an indication of future revisions to the SAUapplication. The

primary focus of all revisions will be to make improvements to the hypermedia interface

while attempting to minimize the resulting disorientation that may occur from navigating

through the database. The intent is to provide ease of access to the information in the

enterprise. In addition, the user should be able to define additional views that show

correlations between units of information. Currently, the application only allows limited

definition of such views, namely only associations between existing classes. These

associations follow the structural links in the database. Implementation of the traversal

between associative links in the enterprise is an immediate concern. Currently the hyper

graph facility allows the insertion ofnew links between instances of any class. This

capability will be used to define pre-existing and user defined associations. In addition.

47

future revisions will utilize the meta schema definition of02 to allow users to interactively

create new classes and associations.

Another current limitation of the SAU prototype is that there are no separate

versions of the data in the enterprise. This possibility can easily be facilitated by the

version creating mechanisms in 02, however the initial data in the enterprise does not

support such interpretations as yet. As the database is populated with more realistic and

complete data, opportunities to create separate versions will be more readily available.

When 5,41/is completed with regards to its hyper interface and data content it will

not only serve as a true showcase ofAtlanta's area universities, but as a model for future

development of hyper interfaces for object oriented databases. The hyper interface is

generic in the sense that it does not depend on data content, but uses the generality

afforded by the object oriented database schema to create its semantic network of nodes

and links. Therefore, in principle, a hyper interface can be automatically generated from

an underlying OODB. Since the SAU prototype documents this generation via conceptual

graphs, this notation can be used as a formal guideline for replicating the process.

As mentioned before, the process ofgenerating the hyper interface is independent

of data content. Therefore, any data system that can be supported by the object oriented

data model may suffice. This includes software documentation repositories. Computer

Aided Design systems, and other complex information enterprises. A hyper interface will

facilitate ease ofuse and allow such systems to be easily maintained and configurable.

Future spinoffs ofSAUmay include example of such systems.

APPENDIX 1

SAU OODB SCHEMA DEFINITION

class University
type tuple (public name : string,

public type : string,
public location : Address,
public acreage : integer,
public population : integer,
public established: Date,
public history : Sound,
public picture : Bitpic,

private Resources : set (Resource),
private Schools : set (School),
...)

method public edit: integer,
public Add_Resource,
public Display_Resources,
public Add_School,
public Display_Schools,

end;

class School

type tuple (public name : string,
public dean : string,
private Departments : set (Department)
...)

method public edit: integer,
public Add_Department,
public DisplayJDepartments,

end

48

49

class Resource

type tuple (public name : string,
public owner ; string,
public picture : Bitpic,
public description: Sound
...)

method
end

class Department
type tuple (public name : string,

public chairperson : string,
public degrees : list (string),
public majors ; list (string),
public num_faculty : integer,
public num_students ; integer,

private Research_Projects : set (Research),
private Faculty : set (Faculty),
private Students ; set (Student)
...)

method public Add_Research_Project,
public DisplayResearchProjects,
public Add_Faculty_Member,
public Display_Faculty,
public Add_Student,
public Display_Students,

end;

class Research

type tuple (public name ; string,
public sponsor : string,
public director : string,
public description: Sound
...)

end
method

50

class Faculty
type tuple (public name : string,

method
end;

public degree : string,
public alma_mater: string,
public specialty : string,
public statement ; Sound,
public photo id : Bitmap,
■■■)

class Student
type tuple (public name : string,

public major : string,
public statement: Sound,
public photo_id : Bitmap,
...)

end;
method

APPENDIX 2

SAMPLE SAU APPLICATION CODE

/***** The Showcase ofAtlanta's Universities (SAU) application

application sau
program

init,
restart (why ; integer,

...),

public Describe_Application,
public Display_Authors,
public Display_Universities,
public Add_University,
public HyperAccess,
public edit_map,
public disp^raph

end;

transaction body init in application sau {
commit; /* launch restart */

};

!***** Dialoger (imported from o2kit)
**

***** Dialoger is a named object which serves for*
***** * displaying messages
***** * making multiple selections
*****!

import schema o2kit name Dialoger;
import schema o2kit class Box;

51

52

run body { Dialoger = new Box;};

/***** Date (imported from o2kit)

i|ci|ci|i:|i :|c^

import schema o2kit class Date;

/***** Bitmap (imported from o2kit)

import schema o2kit class Bitmap;
create class Bitpic
inherit Bitmap
public

end;

/***** Image (imported from o2kit)

4c :|c :|cl|E^

import schema o21cit class Image;

/***** Percistency roots.
4c4c!|c4ci|c4:i|ci|c4e4c4c4c4ci|c4c4c4c4c4c4c4c4ci|c4c4ci|c4ci|c4c4c4ci|ci|ci|c4c4c4c4c4c4c4c4ci|c4c4c4c4c4ci|ci|cit:i|ci|ci|c4c4c^

name Universities: set(University);
name Atlanta : Univmap;
run body { Atlanta = new Univmap;};

53

Method bodies of the class University

method body init in class University {
/*MAY NEED TO PASS ATTR. AS PARAMETERS HERE*/
self->established = new Date (0, 0, 0);

};

method body title: string in class University
{ /* use University name as title */
return self->name;

};

method body menu: list (string) in class University {
return list ("display", "edit",

"Add_School", "Display_Schools",
"Add_Resource", "Display_Resources");

};

method body edit: integer in class University {
o2 extern set (string) Exist_Univ_Names;
o2 University univ;
o2 University temp = new University;
o2 string oldname = self->name;
o2 string un;

Lk_presentation uvp, tmpp, cp = lk_current_presentationO;

int wval;

temp = (o2 University) self->deep_copy;
tmpp = univtpl (self);
uvp = univtpl (self);

lk_map (tmpp, LK_COORDINATE, 0, LK_SCREEN, 200, 300);
wval = lk_wait (tmpp);
if (wval= LK_SAVE)
/* user saves edits */
{

lk_consult (tmpp, temp);

if (temp->name ="")
{ /* University name is required */

54

Dialoger->message("Name is required",
lk_consult (uvp, self);

lk_delete_presentation (tmpp);
return LKERASE;

}

for (un in Exist_Univ_Names where un= temp->name)
if (temp->name != oldname)
{ /* Duplicate Universities are not allowed */
Dialoger->message("Duplicate name",
lk_consult (uvp, self);

lk_delete_presentation (tmpp);
return LK ERASE;

)
}
lk_consult (tmpp, self);

Exist_Univ_Names += set (self->name);
Exist_Univ_Names -= set (oldname);

self->reffesh_all;

lk_delete_presentation (uvp);
lk_deletej3resentation (tmpp);
return wval;

};

method body bitmap: tuple (width : integer,
height: integer,
bitsmap: bits)

in class University {

if (self->picture != nil)
return *(self->picture);

};

55

method body Add_School in class University {
o2 School sch = new School;
o2 School school = new School;
o2 list(string) sch_names;
Lk_presentation scp;
int wval;

scp = schtpl (school);

school->disable_method ("edit");
school->disable_method ("display");
school->disable_method ("Display_Departments");

lk_map (scp, LK_COORDINATE, 0, LK_SCREEN, 200, 100);
wval = lk_wait (scp);
if (wval= LK_SAVE)
{ /* user saves edits */
lk_consult (scp, school);

if (school->name ="")
{ /* School name is required */
Dialoger->message("Name is required","");
lk_delete_presentation (scp);
return;

}
for (sch in self->Schools)
/* collect all Schools that belong to this University */
sch_names += list(sch->name);

if ((school->name in sch_names)!=-!)
{ /* Duplicate Schools are not allowed */
Dialoger->message("Duplicate School","");
lk_delete_presentation (scp);
return;

}

transaction;
self->Schools += set(school);
validate;

}
lk_delete_presentation (scp);

56

method body DispIay_Schools in class University {
o2 extern set (string) Exist_Sch_Names;
o2 string college, edname;
o2 list(string) school_names;
o2 School sch = new School;

Lkjresentation scp;
int wval;

Exist_Sch_Names = set
for (sch in self->Schools) {
/* collect all Schools for this University */
school_names += list (sch->name);
Exist_Sch_Names += set (sch->name);

}

if (count(school_names))
/* get user selection */
college = Dialoger->selection("Select a school",school_names)

else

{
Dialoger->message("No data found",
return;

}

if (count(college))
{
for (sch in self->Schools)
/* find and display selected School */
if (college— sch->name)
break;

edname = "scobj";
scp = ictpl (sch, edname);
lk_map (scp, LK_COORDINATE, 0, 0, 200, 100);
wval = lk_wait (scp);
lk_delete_presentation (scp);
/*display (sch);*/

}
/* commit; */

};

method body Add_Resource in class University {
o2 Resource resource = new Resource;

57

o2 Resource reso = new Resource;
o2 list(string) reso_names;
Lk_presentation rsp;
int wval;

rsp = resotpl (resource);

resource->disable_method ("edit");
resource->disable_method ("display");

lk_map (rsp, LK_COORDINATE, 0, LK_SCREEN, 200, 100);
wval = lk_wait (rsp);

if(wval= LK_SAVE)
{ /* user saves edits */
lk_consult (rsp, resource);
if (resource->name="")
{ /* Resource name is required */
Dialoger->message("Name is required","");
lk_delete_presentation (rsp);
return;

}
for (reso in self->Resources)
/* collect all Resources for this University */
reso_names += list (reso->name);

if ((resource->name in reso_names) != -1)
{ /* duplicate Resources not allowed */
Dialoger->message("Duplicate Resource","");
lk_delete_presentation (rsp);
return;

}
transaction;
self->Resources += set(resource);
validate;

}
lk_delete_presentation (rsp);

};

method body Display_Resources in class University {
o2 string res_name;
o2 list(string) res_names;
o2 Resource reso = new Resource;

58

for (reso in self->Resources)
/* collect all Resources for this University */
res_names += list(reso->name);

if (count(res_names))
/* get user selection */
res_name = Dialoger->selection("Select a resource",res_names)

else

{
Dialoger->message("No data found",
return;

}

if (count(res_name))
{ /* find and display selected Resource */
for (reso in self->Resources)
if (res_name= reso->nanie)
break;

reso->display;
}

};

59

Method bodies of the class School

method body init in class School {

self->name =

};

method body title: string in class School
{ /* use School name as title */
return self->name;

};

method body menu: list (string) in class School {
return list ("display", "edit",

"Add_Department", "Display_Departments");
};

method body edit: integer in class School {
o2 extern set (string) Exist_Sch_Names;
o2 set (School) schs;
o2 School school;
o2 School temp = new School;
o2 string oldname = self->name;

o2 string sn;

Lk_presentation scp, tmpp;

int wval;

temp = (o2 School) self->deep_copy;
tmpp = schtpl (self);
scp = schtpl (self);

lk:_map (tmpp, LK_COORDINATE, 0, LK_SCREEN, 200, 200);
wval = lk;_wait (tmpp);
if(wval= LK_SAVE)
/* user saves edits */
{
Ik consult (tmpp, temp);
if (temp->name ="")
{ /* School name is required */
Dialoger->message("Name is required","");

60

lk;_consult (scp, self);
lk_delete_presentation (tmpp);
return LK_ERASE;

}

for (sn in Exist_Sch_Names where sn= temp->name)
if (temp->name != oldname)
{ /* Duplicate Universities are not allowed */
Dialoger->message("Duplicate name",

llc_consult (scp, self);
lk_delete_presentation (tmpp);
return LKERASE;

}
}
lk_consult (tmpp, self);

Exist_Sch_Names -= set (oldname);
Exist_Sch_Names += set (self->name);

self->refresh_all;

lk_delete_presentation (scp);
lk_delete_presentation (tmpp);
return wval;

};

method body Add_Department in class School (
o2 Department department = new Department;
o2 Department dept = new Department;
o2 list(string) dept_names;
Lk_presentation dpp;
int wval;

department->disable_method ("edit");
department->disable_method ("display");
department->disable_method ("Display_Faculty");
department->disable_method ("Display_Students");
department->disable_method ("Display_Projects");

dpp = deptpl (department);

61

lk_map (dpp, LK_COORDINATE, 0, LK_SCREEN, 200, 100);
wval = lk_wait (dpp);

if (wval= LK_SAVE)
{ /* user saves edits */
lk_consult (dpp, department);
if (department->name ="")
{ /* Depatment name is required */
Dialoger->message("Name is required","");
lk_delete_presentation (dpp);
return;

}
for (dept in self->Departments)
/* get all Departments for this School */
dept_names += list(dept->name);

if ((department->name in dept_names) != -1)
{ /* diplicate departments now allowed */
Dialoger->message("Duplicate Department","");
lk_delete_presentation (dpp);
return;

}

transaction;
self->Departments += set(department);
validate;

}
lk_delete_presentation (dpp);

method body Display_Departments in class School (

o2 extern set (string) Exist_Dpt_Names;
o2 string dept_name, edname;
o2 list(string) dept_names;
o2 Department dept = new Department;
Lk_presentation dpp;
int wval;

for (dept in self->Departments) {
/* get Departments for this School */
dept_names += list (dept->name);
Exist_Dpt_Names += set (dept->name);

}

62

if (count(dept_names))
/* get user selection */
dept_name = Dialoger->selection("Select a department",dept_names)

else

{
Dialoger->message("No data found",
return;

}

if (count(dept_name))
{ /* find and display selected Department */
for (dept in self->Departments)
if (dept_name= dept->name)
break;

edname = "dpobj";
dpp = ictpl (dept, edname);
lk_map (dpp, LK_COORDINATE, 0, 0, 200, 100);
wval = lk_wait (dpp);
lk_deletejpresentation (dpp);

}

Sample Hyper Access Code

function build^ph_pres (gph: Sau_Graph): integer;

function body build_gph_pres (gph; Sau_Graph): integer {

Lk_mask node_mask = lk_object ("nilmenu", 0, 0, 0);
Lk_presentation gphp;
Lk_resource res_graph[l];

o2 GraphDialoger gd = new GraphDialoger;
char objectstring [16];

strcpy (objectstring, gd->initialize);
gph->dialoger = gd;

res_graph[0].name = "dialoger";
res^raph[0].value = (char *) malloc (strlen (objectstring) + 1);
strcpy (res_jraph[0].value, objectstring);

63

gd->set_trigger_event (0, Sauindex, "expand_node");
/*

gd->set_trigger_event (1, Sauindex, "select_a_link");
gd->set_trigger_event (2, Sauindex, "paste_a_node");
gd->set_trigger_event (3, Sauindex, "delete_a_node");
gd->set_trigger_event (6, Sauindex, "prejnsertjink");

*/

gd->set_trigger_event (4, Sauindex, "postjnsertjink");
gd->set_trigger_event (5, Sauindex, "add_a_node");

printf ("after triggers\n");
gphp = lk;_present (gph, Ik;_object (0, 0, 0,

lk_specific ("uvgraph", 1, res_^raph, "graph",
I, &node_mask)));

printf ("after lk_present\n");
return gphp;

};

64

function buildjinks (root: Sau_Node): Sau_Graph;

function body build_links (root: Sau_Node): Sau_Graph {

o2 University uv = new University;
o2 Resource rs; o2 set (Resource) rss;
o2 School sc = new School; o2 set (School) scs;
o2 Department dp = new Department; o2 set (Department) dps;
o2 Research rc; o2 set (Research) res;
o2 Faculty fc; o2 set (Faculty) fes;
o2 Student st; o2 set (Student) sts;

o2 Sau_Graph gph = new Sau_Graph;

gph->nodes = set (root);

if (root->content->class_of= uv->class_of) {
o2query (scs, "element (select x.Schools from x in Universities\

where x= $1)", root->content);

printf ("in build_links\n");
for (sc in scs) {
o2 Sau_Node nsc = new Sau_Node;
o2 Sau_Link uv_sc = new Sau_Link;

printf ("in build_links\n");
nsc->content = sc;

uv_sc->drawing = listO;
uv_sc->label = "school";
uv_sc->from = root;
uv_sc->to = nsc;

gph->nodes += set (nsc);
gph->links += set (uv_sc);

}
}

if (root->content->class_of= sc->class_of) {
SchoolEntry = (o2 School) root->content;
o2query (dps, "select x from x in SchooLEntry.Departments");

65

printf ("after queryVn");
for (dp in dps) {
o2 Sau_Node ndp = new Sau_Node;
o2 Sau_Link sc_dp = new Sau_Link;

ndp->content = dp;

sc_dp->drawing = listQ;
sc_dp->label = "dept";
sc_dp->from = root;
sc_dp->to = ndp;

gph->nodes += set (ndp);
gph->Iinks += set (sc_dp);

}
}

if (root->content->class_of= dp->class_of) {
DepartmentEntry = (o2 Department) root->content;
o2query (sts, "select x from x in DepartmentEntry.Students");

for (st in sts) {
o2 Sau_Node nst = new Sau_Node;
o2 Sau_Link dp_st = new Sau_Link;

nst->content = st;

dp_st->drawing = listQ;
dp_st->label = "school";
dp_st->from = root;
dp_st->to = nst;

gph->nodes += set (nst);
gph->links += set (dp_st);

}
}

gph->origin = tuple (x: 0, y: 0);
gph->real_size = tuple (width: 300, height: 400);
gph->screen_size = tuple (width: 700, height: 700);

return gph;
};

REFERENCES

Bnaza, P. D., and Th. P. van derWeide. 1990. Two Level
Hypermedia - An Improved Architecture for Hypertext. Database and Expert Systems
Applications: Proceedings of the International Conference in Vienna. Austria. 1990.

Conklin, Jeff. Hypertext: an Introduction and Survey. IEEE
Computer.

Delisle, Norman, and Mayer Schwartz. 1986. Neptune: a
Hypertext System for CAD Applications. 1986 ACM.

Faloustos, Christos, Raymond Lee, Catherine Plaisant, and Ben
Shneiderman. 1990. Incorporating String Search in a Hypertext System: User
Interface and Signature File Design Issues. Hypermedia. Vol. 2, No. 3, 1990. Taylor
Graham Publishing, London, UK.

Gallagher, Leonard, Richard Futura, and P. David Stotts. 1990.
Hypermedia. Increasing the Power ofHypertext Search with Relational Queries. Vol
2Nol 1990.

02 Technology. 1993. The 02 User Manual. Version 4.4.
Released December 1993.

Rambaugh, James, Michal Blaha, William Premerlan, Frederick
Eddy, and William Lorensen. 1991. Object-Oriented Modeling and Design. Prentice
Hall, Englewoods Cliffs, NJ 07632. 1991.

Schatz, Bruce R., and Michael A. Caplinger. 1989. Searching in
a Hyperlibrary. 1989 IEEE.

Sowa, John F.
1993 a. Relating Diagrams to Logic. Conceptual Graphs for Knowledge Representation: First

International Conference on Conceptual Structures. ICCS'93. Quebec City, Canada,
August 4-7, 1993.

1993b. Logical Foundations for representing object-oriented systems. Journal of

66

67

Experimental and Theoretical Artificial Intelligence TJETAIV

Tanaka, Katsumi, and Qing Qiang, 1992. Two-Level Schemata and
Generalized Links forHypertext Database Models. Proceedings of the 2nd Far East
Workshop on Future Database Systems. Kyoto Japan. April 26-28. 1992.

Tompa, Frank W. M. 1989. A Data Model for Flexible Hypertext
Systems. ACM Transactions on Information Systems, TdVSS-lOO. January 1989.

Wang, B., and P. Hitchcock. 1991. Intersect. A General Purpose
Hypertext System Based on an Object Oriented Database". Datatabase and Expert
Systems Applications: Proceedings of the International Conference in Berlin. Federal
Republic OfGermany. 1991.

