
IMPLEMENTING DEADLOCK DETECTION IN DISTRIBUTED PROCESSING

A THESIS

SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR

THE DEGREE OF MASTER OF SCIENCE

BY

KWABENA BIMPONG-BOTA

DEPARTMENT OF MATHEMATICAL AND COMPUTER SCIENCES

ATLANTA. GEORGIA

DECEMBER 1985

DEDICATION

This work is dedicated to Veronica and to Akosua, who, through no

fault of theirs, had to endure the hardship of my absence while I pur¬

sued my studies in the United States. To them I say, "Kafra, kafra."

ii

ACKNOWLEDGEMENTS

I wish to thank my advisor. Dr. Nazir Warsi, for suggesting this

topic and for overseeing its* successful completion to the fullest extent

possible. I appreciate very much his profound interest in the whole

project. Thanks also go to the Chairperson of the Department of Mathe¬

matical and Computer Sciences, Dr. Benjamin J. Martin, for establishing a

most serene and academic atmosphere in the department to stimulate us,

the students, to pursue our courses to our satisfaction. To Dr. Bennett

Setzer a big thank you is due for the various engaging courses he taught

me. His patience and time for grading all those papers promptly was most

admired and appreciated. I also want to thank all those classmates, most

of whom have long completed their programs, for their moral support and

encouragement.

This list of thank you's will not be complete without thanking the

United States Department of Energy as well as the National Science Founda¬

tion for providing the scholarship for this program. The Department of

Physics of the University, Professor Ronald Mickens, and all the academic

staff, deserve special commendation for serving as the channel through

which all these funds eventually reached me.

Lastly, I thank my brother Kofi Bota and sister-in-law, Marian, for

accommodating me these past three years, while I enriched my academic port¬

folio. To my dear nephew. Master Danqua, a big thanks for providing a

belly full of laughter at times of low tide.

ABSTRACT

BIMPONG-BOTA, KWABENA M.S., ATLANTA UNIVERSITY, 1984

IMPLEMENTING DEADLOCK DETECTION IN DISTRIBUTED PROCESSING

Thesis Advisor: Professor Nazir Warsi

Thesis dated: December 1985

Many protocols have been published on the topic of deadlock detec¬

tion in distributed processing. A survey has been made on four of these

varied schemes. The method of "distributed locking and distributed

deadlock detection protocol" has been selected for implementation.

Data structures and various routines for this particular protocol

have been fully developed, and the resulting program exhaustively tested.

In all test cases, results were positive and based on these results, we

believe we have succeeded in implementing a deadlock detecting scheme

for distributed processing.

iv

TABLE OF CONTENTS

Page

DEDICATION ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

LIST OF FIGURES vii

CHAPTER ONE - INTRODUCTION 1

Introduction to Deadlock Detection 1

Purpose of the Thesis 1

Major Conclusion 2

CHAPTER TWO - SURVEY OF DEADLOCK DETECTION SCHEMES

FOR DISTRIBUTED SYSTEMS 3

Introduction and Definition of Deadlock 3

Deadlock Problem Statement and Assumptions 5

Centralized Approach to Deadlock Detection 6

Decentralized Approach to Deadlock Detection 7

Hierarchical Approach to Deadlock Detection 9

Distributed Locking and Deadlock Approach 13

CHAPTER THREE - IMPLEMENTATION OF DEADLOCK DETECTION 17

Gligor-Shattuck-Menasce-Muntz Protocol 17

Discussion of Data Structures 17

Pascal Language Implementation of Algorithm 19

Performance Test on Algorithm 21

CHAPTER FOUR - CONCLUSIONS 26

V

Page

APPENDICES 29

APPENDIX A - Program Listing of Pascal Implementation of

Deadlock Detecting Algorithm 29

APPENDIX B - Listing of Four Sample Runs 55

BIBLIOGRAPHY 76

vi

LIST OF FIGURES

Figure Page

1 Comparison of resource allocation and

Wait-for graph 4

2 Local Wait-for graph and corresponding

global graph 6

3 Hierarchical Wait-for graph 10

4 Wait-for graph for Sample Run I 21

5 Wait-for graph for Sample Run II 22

6 Wait-for graph for Sample Run III 24

7 Wait-for graph for Sample Run IV 25

vii

CHAPTER ONE

INTRODUCTION

Introduction to Deadlock Detection

Many protocols have been published for deadlock detection in distri¬

buted systems in the recent past, mostly because of the renewed interest

in distributed processing. With most of these published protocols, im¬

plementation is almost impossible simply because first, the communication

system, as we know it today, is not able to handle the volume of traffic

fast enough, thus resulting in late updates of multi-site, geographically,

spatially connected system data. Second, most of the algorithms are such

that implementation will involve using complex data structures which will

be difficult to tract.

Purpose of the Thesis

The purpose of this thesis is to select, among these varied and known

protocols, an algorithm which can be implemented in terms of simplicity

in data structures and less complexity in specification. The ultimate

goal of this work is to have a deadlock detection scheme for distributed

systems available and pending future improvements in communication tech¬

nology. A side goal is to have a deadlock detecting scheme for a local

network with various nodes which need to work together. An example of

usage of this scheme will be a network of all local banking institutions

in metropolitan Atlanta.

1

Major Conclusion

In this work, we have made a survey of some of the available proto¬

cols for detecting deadlock in distributed systems. In Chapter Two, the

centralized approach, the decentralized approach, the hierarchical ap¬

proach, and the distributed locking and distributed deadlock detection

protocols are discussed. In all these schemes, the major disadvantage

was the question of communication delays. Apart from this phenomenon, it

is found that some of these protocols are more complex than others in

terms of protocol definition and data structure representation. We

selected among these the distributed locking and deadlock protocol.

In Chapter Three, the data structures for the selected protocol are

fully discussed and various routines are developed. The resulting program

has been tested with four different sets of chain of events, with varying

degrees of complexity. In each test case, the outcome was positive. In

view of the success of these tests, we believe we have succeeded in the

pursuit of our objective as outlined in the Purpose of the Thesis section.

2

CHAPTER TWO

SURVEY OF DEADLOCK DETECTION SCHEMES FOR DISTRIBUTED SYSTEMS

Introduction and Definition of Deadlock

Deadlock is a state of a connected system as follows: “A set of

processes is in deadlock state when every process in the set is waiting

for an event that can only be caused by another process in the set.''^

Necessary Conditions for a Deadlock State

The necessary conditions giving rise to a deadlock is described in

the literature. Basically, there are two methods for dealing with the

deadlock state. A protocol could be used to ensure that the system never

enters a deadlock state; alternatively, the system is allowed to enter a

deadlock state and then try to recover. In this thesis, we pursue the

latter protocol which involves, first, a deadlock detection scheme,

followed by a recovery scheme. We shall not explore the recovery scheme

to any detail.

Deadlock Detection

To detect a deadlock state, an algorithm must be invoked periodically

or continuously to determine whether a deadlock has occurred.

Ij. Peterson, and A. Silberschatz, Operating System Concepts (New
York: Addison Wesley Publishing, 1983), p. 260.

3

4

In order to do so the system must:

a. update and maintain Information about transactions;

b. provide an algorithm that uses the above information to deter¬

mine whether the system has entered a deadlock state.2
In this chapter we describe a few of the deadlock detection schemes

that have been proposed in the literature. We place emphasis on the

Gligor-Shattuck-Menasce-Muntz protocol, which we propose to implement.

The backbone of all the schemes is the construction and maintenance

of a Wait-for (WF) graph, which is a condensed form of the traditional

resource allocation graph. Figure 1 shows the difference between a

resource allocation graph and an equivalent Wait-for graph.

Fig. 1. Resource allocation graph and equivalent Wait-for graph.

2lbid., p. 260.

Deadlock Problem Statement and Assumptions

Assumption

Assume only a single resource of each type.

Deadlock Problem

A. Each site (Si) has a resource (Ri).

B. Processes/transactions originating at any site (Si) request a re¬

source (Ri). In general many processes may have been granted the

right to use the resource (Ri).

C. Two types of deadlocks can occur:

1. Local deadlock at a site: Transactions Tl, T2,...Tn have been

granted permission for Ri at Si. If T requests the use of Ri

and T holds a resource (say R), which is required by any Ti to

complete its duty, then, there is a deadlock.

2. Global deadlock involving two or more sites: Suppose Tl has a

resource RI and requests R2 which is held by T2. Now T2 request:

RI. Then this is a global deadlock involving SI and S2.

Potential deadlocks arise when a transaction is blocked.^ To detect

any deadlock, a WF graph is created at each site. In general a cycle in

a WF graph suggests a deadlock state, but not all cycles result in real

deadlocks. Sometimes, there are false deadlocks, therefore, a decision

as to whether a deadlock is real or not must be built into the protocol

for deadlock detection.

^D. Menasce, and R. Muntz, "Locking and Deadlock Detection in Distri-
tributed Data Base," in IEEE Transaction on Software Engineering vol. SE-5
(May, 1979), pp. 195-20?:

5

6

There are a number of different methods for organizing the WF graph.

This fact has given rise to a number of different approaches to tackle
deadlock detection problems. A few of these available protocols are

described in the following sections.

Centralized Approach to Deadlock Detection

Description

In the centralized approach, a global WF graph is constructed and

maintained by a single deadlock detector/coordinator. The central dead¬

lock coordinator builds the global WF graph for information received from

all sites in the network. Whenever a transaction (T) either inserts or

removes an edge in its local graph, it must notify the detector of this
modification. Upon receipt of such a message, the detector updates its

global graph. Figure 2 exemplifies two local networks with a correspond¬

ing view from the central global graph.

Fig. 2. Local Wait-for graph with corresponding global Wait-for graph.

Invocation of Deadlock Detecting Algorithm

When the deadlock detecting algorithm is invoked, the detector

searches its global graph. If a cycle is found, a victim is selected and

7

rolled back. The detector notifies all the sites that a particular tran¬

saction has been selected as a victim. The sites, in turn, roll back the

victimized transaction.

Problems with the Centralized Approach

The first problem with the centralized scheme is the unnecessary

roll backs resulting as a consequence of two situations:

a. false cycles may exist in the global WF graph;

b. unnecessary roll backs resulting when a deadlock has indeed

occurred and a victim has been picked, while at the same time

one of the processes was aborted for reasons unrelated to the

deadlock (such as a transaction exceeding its allocated time

quantum).

Secondly, even though the centralized method may be practical and

efficient for local networks, high cost factors, arising from the inter¬

connection of fairly large spatially connected network systems, does go

against it. For example, we certainly do not want deadlocks which involve

only resources located at southern California to be detected at the East

Coast.

Thirdly, we have the problem of robustness (the vulnerability of the

central site to various types of hardware failure) and thus an additional

overhead associated with having to monitor hardware failures.

Decentralized Approach to Deadlock Detection

Description

In the "decentralized approach" to deadlock detection, there does

8

not exist a central detector/coordinator. All nodes in the network share

in the responsibility for detecting deadlocks.^
An important component for the decentralized scheme of deadlock

detection is the process management module (PMM) which is located at each

site. All resource requests and releases go through the PMM.

When a PMM finds out that a local resource can not be currently al¬

located to a process that is requesting it, it initiates and creates an

ordered blocked process list (OBPL) with a process entry for the blocked

process. This list is built up or expanded until:

1. a deadlock is detected;

2. it is ascertained that there is no deadlock; or

3. it is determined that there is not enough information to con¬

tinue expansion.

The detection of deadlock amounts to a repetition of a process name

in an OBPL. If no deadlock is detected, then the OBPL is aborted.

Problems with the Decentralized Approach

A major drawback to Goldman's protocol is the factor involved in

repeated construction of the OBPL, some of which are eventually aborted.

Secondly, abortions of OBPLs are sources of false deadlock detection;

the reason for false deadlocks is that abortions at nonlocal sites might

not be reflected soon enough in other copies of OBPLs. Thirdly, even

though repeated checking of the last process status minimizes false dead¬

locks, multiple copies of an OBPL is an undesirable waste of resources.

^B. Goldman, Deadlock Detection in Computer Networks (Cambridge: MIT
Cambridge Technical Rep. MIT-LCS TR-185, [1977J), p.

Hierarchical Approach to Deadlock Detection

General Description

The hierarchical deadlock detection algorithm is a distributed al¬

gorithm. Just like the centralized and decentralized approaches, each

site maintains its own local graph to take care of local transactions in¬

volving local resources. In contrast, however, the WF graph is distri¬

buted over a number of detectors or controllers. These controllers are

organized into a tree, where each leaf controller is assigned the respon¬

sibility of overseeing each local subdata base WF graph. Each nonleaf

controller maintains a WF graph which contains relevant information from

the graphs of the controllers in the subtree below it.

Symbolic Description of Hierarchical Approach

The whole system, say database system, (DBS) is viewed as the union

of a set of subsystems DBSi's such that DBSioDBSj for joi. The hier¬

archy is such that at the bottomost level we have the leaves of a tree

called Leaf Controllers (LKs) and Nonleaf Controllers (NLKs).

1. Every subdata base DBSi is assigned a leaf controller (LKi)

which maintains a WF graph WF(LKi). This graph contains all

the nodes of the global WF associated with a transaction incar¬

nation (a collection of resources acting on behalf of a transac¬

tion). Leaf controllers have additional nodes called input-

ports and output-ports. Input-ports are associated with inci¬

dent directed arcs and output-ports are associated with outgoing

arcs. They are denoted by I(LKi,T), and 0(LKi,T) respectively.

9

10

2. Nonleaf controllers tnaintaln a graph called an input-output-

ports (lOP) graph. Nodes of an lOP are associated with input

(i-node) ports and output (o-nodes) ports of leaf controllers.

A hierarchical WF graph is shown in Figure 3.

Fig. 3. Hierarchical Wait-for graph.

In Figure 3, A, B and C are controllers such that C is a nonleaf,

lowest common ancestor of A and B which are leaves.

Protocol Description

Suppose that node Ti appears in the local WF graph of controllers A

and B. Then Ti must also appear in the local WF graph of;

1. controller C

2. every controller in the path from C to A

3. every controller in the path from C to B.

Additionally, if Ti and Tj appear in the WF graph of controller D, and

11

there is a path from Ti to Tj in the WF graphs of one of the sons of D,

then an edge <Ti,Tj> must be in the WF graph of D.

Properties of Hierarchical Protocol

1. Deadlocks which involve resources of a single subdata base DBSi are

detected by the formation of a cycle in the WF graph of the leaf

controller associated to DBSi.

2. Deadlocks which involve resources controlled by the leaf controllers

(i.e., resources spanning different controllers) are detected by the

formation of a cycle in the lOP graph of the nonleaf controller,

which is the lowest common ancestor of the leaf controllers involved.

Reflection of Lock Releases in Graphs

An unlock operation will cause an arc (may be more) to be deleted

from a WF graph of a leaf controller. All the i-o paths (if any) which

contained this arc are broken. A report is made to the father of the LK.

There, other arcs are broken in the nonleaf controllers which send mes¬

sages to their fathers. This propagation continues up in the hierarchy

until the deletion of an arc from a graph does not cause any i-o path to

be broken.

The above description requires continuous updates of nonleaf control¬

lers. A variation will be a mixture of continuous and periodic updates,

depending on the volume of transactions. A varied approach can be used

when appropriate. As an example, the information concerning connections

between input- and output-ports can be sent periodically. This strategy

would reduce the amount of traffic generated but is likely to result in

a deadlock existing for far too long a time. One other method intermedi-

12

ate to continuous and periodic deadlock detection is to report connnec-

tions between input- and output-ports after they have persisted longer

than some threshold. A careful choice of this threshold can result in

less traffic being generated than with periodic checking.

Deadlock Resolution

Whenever an i-o arc is received by an NLK, the name of the controller

which generated the arc will be stored with the arc. Then, when an NLK

detects a deadlock cycle, it can send down the tree to its appropriate

sons a message which will continue to propagate down (through the appro¬

priate son) until it reaches the leaves of the tree. At this point the

LKs can report directly to the NLK, which detected the deadlock, all the

necessary information to implement the desired policy of deadlock resolu¬

tion. The criteria involved in optimal transaction victimization is a

policy issue and will be pursued in this thesis.

An alternative, which might result in a nonoptimal choice of victim,

is to select the transaction to be pre-empted from those which appear in

the lOP graph only; in this instance no additional messages are propagated.

Hierarchy Establishment

The performance of the hierarchical protocol, in terms of the over¬

head of message traffic cost, can be minimized if the hierarchy is appro¬

priately chosen. Given a set of leaf controllers assigned to the nodes

of a computer network, given the DBS traffic pattern, and given the cost

of sending messages between every pair of nodes in the network, the pro¬

blem becomes finding a hierarchy which minimizes the total cost incurred

13

in using the protocol. The general optimization problem is the subject

of current research effort.

Problems with Hierarchical Protocol

Though the concept involved in this scheme is simple, the problem of

keeping tract of parts of a graph at different places is a nontrivial

task. Communication limitations are also a problem.

Distributed Locking and Deadlock Approach5~6

Description

This approach differs from the already described approaches in the

following way: There exists a distributed control mechanism as well as a

distributed deadlock detection mechanism.

Fully distributed protocol for deadlock detection requires that each

site of the distributed system construct and maintain a graph for deadlock

detection. To ensure that each site maintains as accurate a view of the

process and resource status as possible, per-site concurrency controller

exchange messages that cause additions and deletions of graph nodes and

arcs.

Definitions for Protocol

To make the description of this protocol more meaningful, some defi¬

nition of terms are in order.

^D. Menasce, and R. Muntz, "Locking and Deadlock Detection in Distri¬
buted Data Base," in IEEE Transaction on Software Engineering, vol. SE-5
(May, 1979), pp. 195-lUr.

®Y.D. Gligor, and S.H. Shattuck, "On Deadlock Detection in Distri¬
buted Systems, in IEEE Transaction on Software Engineering vol. SE-6, 5
(September, 1980), pp. 435-39.

14

Controllers

Transaction (T) -

Blocking

Set(T) CBS(T)] -

a deadlock detection mechanism associated with a re¬

source; it also builds and maintains a WF graph,

a sequence of actions which can be either read, write,

lock, unlock operations; transactions request re¬

sources by sending requests to the controller of the

resource.

the set of all unblocked transactions which can be

reached by following a directed path in the WF graph

starting at the node associated with transaction T.

This is the set of transactions which are ultimately

blocking transaction T.

Potential Blocking

Set(T) CPBS{T)] - the set of waiting transactions reachable from T.

Site-of-origin

COS(T)] - node at which T is started.

Waiting Tran¬

saction [W(T)] - a transaction T requesting a nonlocal resource.

Transaction Execution

Transaction execution can be described as follows. A transaction

starts at a site of origin, where it enters the system. The transac¬

tion starts running at this site, performing local operations until non¬

local data are necessary. Then a lock request in the appropriate mode is

built and sent to the controller for the requested resource. This con¬

troller will either accept or reject the lock, sending the reply to the

site of origin of the transaction. If there are multiple copies of data.

15

lock requests have to be sent to all controllers which keep a copy of the

data.

Distributed Protocol Description

All controller's decisions to accept or reject lock requests are

based solely on information kept at the controller's site. For detection

of deadlocks, a WF graph is maintained at each site by the controllers.

The following definitions are relevant to the protocol description that

follows:

1. A directed arc (T', T") in WF graph at site S for resource R

indicates T' is blocked by T".

2. Unblocked T is a vertex with outdegree zero - i.e., a node with

no outgoing arcs.

3. The blocking set of T, BS(T)= T'|T' is unblocked from T .

4. The site-of-origin (T) is denoted by 0S(T) and WF{R) is the WF

graph for R at its site.

5. A transaction T requesting a nonlocal resources is a waiting

transaction.

6. Potential-blocking set for T - PBS(T)= T'|T' is waiting and

is reachable from T .

7. S(R) denotes site of R.

Protocol Rules

Assume Tl, T2,...Tk hold R and T requests R

Rule 0: T is marked WAITING if R is a nonlocal resource

Rule 1: (1) Add an arc (T,Ti) for i=l,2,...,k in WF{R)

16

Rule 2:

(2) If cycle detected in WF(R) then deadlock detected.

Take appropriate measure.

(3) For each T' belonging to BS(T) send {T,T') to 0S(T)

if 0S(T)<>S(R)

(4) For each T' belonging to BS{T) send (T,T') to OS(T')

if 0S{T’)<>S{R)

(5) Create PBS{T)

(1) For each pair (T,T') received at S(R), add arcs (T,T')

to WF(R)

(2) If cycle is detected then deadlock has occurred; take

appropriate measure.

(3) If T' is blocked and 0S(T)<>S{R) then for each T" be¬

longing to BS(T) at this site (R), send (T,T”) if

0S(T")<>S(R).

(4) If T is waiting and 0S{T)=S(R) then for each T“ be¬

longing to PBS(T) send (T",T') to 0S(T")<>S{R)

(5) Discard potential blocking pair (T,T") and mark T

nonwaiting.

Problems

This approach of deadlock suffers from delays in message delivery

just like in the other approaches of deadlock detection. A second pro¬

blem is that the "condensed" form of the WF graph does not make it possible

to reflect, adequately, the relative positions of waiting transactions.

Third, if a transaction in the middle of a chain requests a release of a

resource, for example through abortion or through victimization in a dead¬

lock recovery scheme, a cascading effect of arc changes generate a flood

of messages that can severely impair the performance of the whole system.

CHAPTER THREE

IMPLEMENTATION OF A DEADLOCK DETECTION SCHEME

61igor-Shattuck-Menasce-Muntz Protocol

The modified Menasce-Muntz approach, proposed by Gligor-Shattuck and

outlined in the last section of Chapter Two is a good candidate for imple¬

mentation of deadlock detection. Even though it has a problem with data

flow in the communication system, which limitation is shared by all dis¬

cussed protocols, we feel it has the potential of being developed into an

excellent deadlock detecting protocol. The specification of this particu¬

lar protocol is such that most of its demands can easily be simulated on

the digital computer. We also feel that it will provide a neat method

for deadlock detection pending future improvements in data transmission

technology.

The method is chosen because of its neat data structure representa¬

tion.

Discussion of Data Structures

Resources

Every resource in the network has a definite site at which it is

located; when a transaction requests a resource, the resource could be

locked by another transaction or it could be available for locking by the

requesting transaction. We therefore select a record representation for

resources with three attributes: SITE, LOCK, and L0CKED8Y.

17

Transactions

Similar to resources, every transaction has a SITE. When a transac¬

tion requests for a nonlocal resource it is marked as WAITING. A transac¬

tion Is blocked and must wait for another transaction to release a lock;

this condition requires that the OUTDEGREE of the requesting transaction

be imcremented by one and the INDEGREE of the waited for transaction like¬

wise Incremented by one. If it happens that the transaction being waited

for Is nonblocked then a BLOCKINGSET must be built for the requesting

transaction. On the otherhand, if the transaction being waited for is it¬

self in a waiting state then a POTENTIAL-BLOCKINGSET must be built for the

requesting transaction. Associated with the blockingset and potential-

blockingset are counters which we call BLOCKSETCOUNT and PBLOCKSETCOUNT.

All transactions that wait for another transaction to release a lock must

be maintained as a set which we call INNODES. Lastly, since the whole

process of transaction actions are dynamic we need a pointer, LINK, to

show the position of a transaction being waited for. A record structure

is selected to represent all these varied attributes of a transaction.

Blockingset and Potential-Blockingset

Sets are conceptually easy to deal with; however, because their

manipulations are hard to physically output, we choose arrays as the

structure for implementation purposes. Dynamic arrays could have been

chosen, but it will merely have increased the complexity of the overall

data structure of the algorithm.

18

Buffer

In the algorithm for deadlock detection, messages are normally sent

over to different sites. There are physical constraints in the real sys¬

tem, for example, delays in communication. To simulate this constraint,

a general purpose (that is global) storage is introduced by way of what

we call BUFFER. The first field, PENDING, indicates the fact that the

contents of that entry as a set is not transmitted yet. The fields NODEl

and N0DE2 stand for a pair that need to be transmitted to a designated

site stored in the SITE field.

Wait-for (WF) Graph

The Wait-for graph at a site is structured as an array of transac¬

tions. Every transaction in the WF graph is designed as a headnode.

Through this headnode, a field, LINK, points to a chain of transactions

connected to this headnode. Thus, the overall WF graph at a site is an

adjacency linked list of records.

Pascal Language Implementation of Algorithm

The deadlock detecting algorithm is implemented with the following

list of routines. The routines are fully documented in the program list¬

ing under Appendix A, however, we give a brief description of what they

do.

Procedures and Functions Used

INITIALIZE - For establishing the layout of resources and transac¬

tions in the system.

19

20

REQUEST

ADDARC

DEADLDETECT

CREATEBLOCKSET -

BUFFERTRIPLE -

SENDPAIR

CREATEPBLOCKSET -

RECEIVE

This is invoked when a transaction requests a re¬

source. A side effect is triggering of the state

GRANTED to be true or not.

Used in adding a pair of transactions <T1, T2> to the

WF graph at a site.

When invoked, this routine checks to see if a deadlock

state exists at a given site.

Used in adding a member to the blockingset of a tran¬

saction.

This routine adds a triple <T1, T2, SITE> to the

Buffer. At the same time the state of the entry is

set as PENDING, meaning that it is unused.

This routine works on the blockingset of a transac¬

tion. It makes the choice of the triple to be sent

over to the buffer through invocation of the BUFFER-

TRIPLE routine.

Used in building potential-blockingset of a transac-

ti on.

Used in fetching the contents of the BUFFER. Data

fetched is sent to appropriate site.

DEADLDETECT is invoked and if not true other actions

like checking waiting state of transactions, deleting

potential blocking pairs and removal of waiting marks

are performed.

This routine invokes other routines when a resource

is not granted to a transaction.

MANIPULATE

21

SHOWGRAPH - Displays WF graph at a given site.

SHOWMESSAGES - Displays the contents of the buffer any time it is

invoked.

Performance Test on Algorithm

The deadlock detecting program has been tested with varied sets of

chain of events. For all the test cases, resources Ri and R(i+10), and

Transactions Ti and T(i+10), are preassigned to site Si, where i starts

from 1 and ends at 10. Full documentation of the test runs are listed

under Appendix B.

Test Sample I

Small scale initial local request are made followed by nonlocal re¬

quests of resources. The sequence of events are as follows:

1: Transactions Ti request for Ri; (1 = < i < = 3)

2: TI requests for R2

3: T2 requests for R3

4: T3 requests for RI

A graphical representation of this chain of events is shown in Figure 4.

Fig. 4. Wait-for graph for Sample Run I.

22

As Shown in WF graph a cycle exists in this graph. This conclusion is

confirmed by the sample run.

Test Sample II

A larger chain of events similar to Sample Run I but with Transac¬

tions making multiple resources requests.

1: Transaction Ti request for Ri; (1 = , i < = 10)

2: Tl requests for R3

3: Tl requests for R4

4: T2 requests for Rl

5: T2 requests for R3

6: T2 requests for R5

7: T3 requests for R5

8: T4 requests for R2

9: T4 requests for R4

10: T5 requests for R4

11: T5 requests for Rl

Resulting WF graph is shown in Figure 5.

Fig. 5. WF graph for Sample Run II.

23

There are several cycles in the WF graph; two of these involve nodes 3,

4, 5, and nodes 1, 4, 3, 5. The program again confirms the fact that

there is a cycle in the graph.

Test Sample III

This involves a mixed initial request involving local and nonlocal

resources. The sequence of events are as follows:

1: T1 requests for R2

2: T2 requests for F3

3: T3 requests for R4

4: T4 requests for R7

5; T5 requests for R5

6: T6 requests for R1

7: T7 requests for R6

8; T8 requests for R8

9: T9 requests for RIO

10: TIO requests for R9

11* T2 requests for R2

12: T7 requests for R3

13: T1 requests for R6

14: T3 requests for R7

15: T4 requests for R8

16: T8 requests for R9

17: TIO requests for R5

18: T5 requests for RIO

19: T9 requests for R4

24

Graphically, we have the situation in Figure 6.

Fig. 6. Graph of Sample Run III.

There are cycles in both subgraphs and the program again confirms

this fact.

Test Sample Run lY

For this test multiple requests are made by transactions in an ar¬

bitrary manner. The resources are made from both local and nonlocal

sources. The sequence of events are as follows and are shown in Figure

7.

1: T1 requests for resources R4, R2, R7, R6

2: T2 requests for resources R3, R4, R6

3: T4 requests for R3

4: T5 requests R3, R4

5: T6 requests R5, R3

25

6: T7 requests R6, R8

7: T8 requests R5, R8

8: T9 requests R4

9: TIO requests R4, R9, Rl, R7, R8

The graph shown in Figure 7 shows that there are no cycles. Again the

program confirms that there are no cycles in the system.

Fig. 7. Graph for Sample Run lY.

The graph shows that there are no cycles. Again the program confirms

that there are no cycles in the system.

CHAPTER FOUR

CONCLUSIONS

In this final chapter, we summarize the work we have done on the

topic of "Implementation of deadlock detection in distributed systems."

In Chapter One, we stated our objective in pursuing this topic; we

also gave a general definition of a deadlock state and cited the condi¬

tions leading to a deadlock state. Deadlock resolution was not discussed

but mention was made of two methods for avoiding a deadlock state. One

of them was to do nothing to avoid deadlocks but rather try to detect and

resolve them as they occur.

Chapter Two made a survey of some of the available deadlock detecting

protocols. The merits and demerits of the centralized approach, decen¬

tralized approach, hierarchical approach and distributed locking and dead¬

lock approach were mentioned. In summary, we describe them as follows:

1. The centralized approach uses a global WF graph with the aid of

a single detector at a single site. High cost factor resulting

from connecting spatially spaced sites was one of the drawbacks

of this protocol. Also a single site as the brain of a whole

system will make a system, overall, vulnerable to sudden failure

in the event of any component failure at this selected single

site.

2. The decentralized protocol builds an OBPL with the aid of a PMM

at every site of the network. Detection of deadlock is done by

26

27

by the PMM. The major disadvantage of this protocol was that

too many OBPLs are built. This proliferation of OBPLs give

seed to a lot of false deadlocks.

3. The hierarchical deadlock detection algorithm is a distributed

algorithm. The WF graph is spread out over all the sites in a

tree structure. Some of the sites perform dual roles in terms

of maintaining their local graphs as well as playing a major

part in the overall tree structure of the system in a manner

to be explained shortly. Coordination of data in this protocol

is done by the so-called Leaf and Non-leaf controllers. Non¬

leaf controllers maintain lOP graphs which detect deadlock in¬

volving different sites. Local deadlocks are detected by the

Leaf-controllers at the subdata base. The major disadvantages

of the hierarchical model of deadlock detection is the large

volume of message traffic generated in this system. Optimiza¬

tion of the performance of this protocol is still the subject

of current research.

4. In the distributed locking and distributed deadlock approach,

there is distributed control as well as distributed locking

mechanism. Per-site concurrency controllers exchange messages

that cause updates to take place in the WF graph at each site.

Detection of deadlocks and decisions to accept or reject re¬

quests are based solely on information kept at a controllers*

site. A disadvantage of this scheme is the flood of messages

in the system. Despite this flaw we selected this protocol for

28

implementation based on the fact that it is clearly defined and

as such capable of implementation with less complexity.

Chapter Three has been used to fully develop the distributed locking

and distributed deadlock approach. Data structures were discussed for

the scheme and routines written to implement the protocol in a most effi¬

cient manner. The resulting program was used to test four artificial

but realistic chain of events with varying level of complexity. All the

results were positive. Based on these sample tests, we conclude that we

have achieved our initial objective of developing an implementable dead¬

lock detecting algorithm which can be useful at the present time in a

system whose nodes are not far removed from each other.

APPENDIX A

PROGRAM LISTING OF PASCAL IMPLEMENTATION OF

DEADLOCK DETECTING ALGORITHM

{ }

{ }

{ IMPLEMENTAHON OF DEADLOCK DETECTION ALGORITHM USING THE GLIGOR-)

{ SHATTUCK-MENASCE-MUNTZ PROTOCOL }

{ }

{ PROGRAMMER; KWABENA BIMPONG-BOTA }

{ ADVISOR : DR. NAZIR WARSI }

{ }

{ PROGRAM WRITTEN IN PARTIAL FULFILLMENT OF MASTERS DEGREE REQUIREMENT }

{ IN COMPUTER SCIENCE AT ATLANTA UNIVERSITY, ATLANTA)

{ j

29

30

{ THIS PROGRAM IS USED FOR DEADLOCK DETECTION IN A DISTRIBUTED NETWORK)

{ }

{)

{ ALGORITHM)

{AO : WHEN A TRANSACTION T REQUESTS A NONLOCAL RESOURCE, IT IS MARKED }

{ AS WAITING TRANSACTION)

{ }

(A1 : THE RESOURCE T CANNOT BE GRANTED TO T BECAUSE IT IS BEING HELD }

{ BY TRANSACTIONS T1 ,T2,... ,TK. ADD AN ARC FROM TRANSACTION T TO }

(EACH OF THE TRANSACTIONS IN THE SET [T2.T2,...TK].)

(IF THE ADDITION OF THESE ARCS CAUSE A CYCLE TO BE FORMED AT ANY }

{ OF THESE SITES THEN A DEADLOCK IS DETECTED AND APPROPRIATE STEPS}

{ ARE REQUIRED TO RESOLVE THE DEADLOCK. }

{ THE BLOCKING PAIR <T,TP> IS SENT TO OS(T) IF OS(T) IS DIFFERENT }

{ FROM OS(TP) AND TO OS(TP) IF OS(TP) IS DIFFERENT FROM CURRENT }

{ SITE. BUILD A POTENTIAL BLOCKING SET FOR T. }

{ }

{A2.0: A BLOCKING PAIR <T,TP> IS RECEIVED. ADD AN ARC FROM T TO TP AT }

{ THIS SITE. IF A CYCLE IS FORMED, THEN A DEADLOCK EXISTS, AND }

{ MUST BE RESOLVED BY AN APPROPRIATE ACTION }

31

{A2.1: IF TP IS BLOCKED AND OS(T) IS NOT EQUAL TO CURRENT SITE, THEN }

{ FOR EACH TRANSACTION TP2 IN THE BLOCKING SET OF T, SEND THE }

{ BLOCKING PAIR <T,TP2> TO OS(TP2) IF OS(TP2) IS DIFFERENT FROM }

{ CURRENT SITE }

{ }

{A2.2; IF T IS WAITING AND OS(T)=CURRENT SITE THEN, FOR EACH POTENTIAL }

{ BLOCKING PAIR (TP2,T), SEND THE BLOCKING PAIR <TP2,TP> TO OS(TP2)}

{ IF OS(TP2) IS DIFFERENT FROM CURRENT SITE. THEN DISCARD THE POT-}

{ ENTIAL BLOCKING PAIRS <TP2,T> AND ERASE WAITING MARK OF T }

{ }

{ }

{DISCUSSION OF DATA STRUCTURES }

{ }

(THE PROGRAM BUILDS A WAIT-FOR (WF) GRAPH AT DIFFERENT SITES, SI OF THE)

(NETWORK. }

(THE NUMBER OF TRANSACTIONS IN- THE NETWORK IS GIVEN AS N. }

{ }

{THE PROGRAM ALSO DETECTS CYCLES AT A SITE. THE DATA STRUCTURE USED)

{IN BUILDING THE WF GRAPH IS ADJACENCY LISTS OF GRAPH REPRESENTA- }

{TION USING LINKED LISTS OF RECORDS WHICH CONTAIN THE FIELDS; }

{INDEGREE INDEGREE OF TRANSACTION }

{INNODES THE SET OF TRANSACTIONS ADJACENT TO TRANSACTIONS }

32

{OUTDEGREE THE OUTDEGREE OF TRANSACTION

{BLOCKSETCOUNT—NUMBER OF ELEMENTS IN BLOCKSET

{BLOOCINGSET BLOCKING SET OF TRANSACTION

{PBLOCKSETCOUNT—NUMBER OF ELEMENTS IN POTENTIAL BLOCKING SET

{PBLOCKINGSET— POTENTIAL BLOCKING SET OF TRANSACTION

{WAITING— A BOOLEAN FIELD TO INDICATE WAITING STATE OF TRANS

(LINK— A POINTER TO TRANSACTION ADJACENT FROM CURRENT TRANSACTION

(WHEN THE PAIR <I,J> IS RECEIVED AT A SITE OR SENT TO A SITE, THE

{OUTDEGREE FIELD OF <I> IS INCREMENTED BY ONE AND THE INDEGREE

{FIELD OF <J> IS LIKEWISE INCREMENTED BY ONE

{THE LIST OF VERTICES WITH ZERO COUNT IS MAINTAINED AS A STACK

{THE STACK IS LINKED THROUGH THE INDEGREE FIELD OF TRANSACTIONS

{SINCE THIS FIELD IS OF NO USE AFTER THE COUNT HAS BECOME ZERO

{PROTOCOL IMPLEMENTATION OF ALGORITHM USING PASCAL PROGRAM. LANGUAGE

{

{

PROGRAM DEADLOCK (NUM,INPUT,OUTFILE,OUTPUT);

}

}

}

}

}

}

}

}

}

}

)

}

}

CONST SI=10; { NUMBER OF SITES IN THE NETWORK, THIS IS FIXED}

{SIZE OF TRANSACTION/RESOURCE DISTRIBUTION ARRAYS)SK=50;

K0NS=30; { CIRCULAR BUFFER SIZE)

{-

33

}

)

{USER TYPE DECLARATIONS

{

TYPE NEXTNODE="NODE;

NODE=RECORD

VERTEX:INTEGER;

LINX:NEXTNODE;

END;

SETSIZE=ARRAY[l..KONS] OF INTEGER

VERTICES=RECORD

ACTIVE ;BOOLEAN;

INDEGREE:INTEGER;

INNODES:SETSIZE;

OUTDEGREE:INTEGER;

BLOaSETCOUNT: INTEGER;

PBLOCKSETCOUNT:INTEGER;

BLOCKINGSET:SETSIZE;

PBLOCKINGSET:SETSIZE;

WAITING:BOOLEAN;

LINK:NEXTNODE;

{NAME OF TRANSACTION BEING POINTED TO}

{POINTER TO NEXT TRANSACTION)

{FLAG TO INDICATE INVOLVEMENT OF }

{ NODE IN WF GRAPH AT A SITE]

{INDEGREE OF TRANSACTION)

{THE SET OF ALL INCOMMING NODES)

{OUTDEGREE OF TRANSACTION)

{BLOCKING SET COUNT OF TRANSACTION)

{POTEOTIAL BLOCKING SET COUNT)

{BLOCKING SET OF TRANSACTION)

{POTENTIAL BLOKING SET OF TRANS.)

{WAITING MARK ON TRANSACTION)

{POINTER TO OTHER TRANSACTIONS)

END;

34

BUFF = RECORD

PENDING: BOOLEAN;

NODEl;INTEGER;

NODE2;INTEGER;

SITE;INTEGER;

END;

INFO =RECORD

SITE:INTEGER;

END;

RESOURCES=RECORD

SITE:INTEGER;

LOCK:BOOLEAN;

LOCKEDBY:INTEGER;

END;

TRANSACnON=ARRAY[l..SK] OF VERTICES;

{FIELD TO INDICATE STATE OF BUFFER}

(FIRST HALF PAIR OF MESSAGE SENT }

(SECOND HALF PAIR OF MESSAGE SENT }

(SITE TO WHICH MESSAGE IS SENT }

(AUXILLIARY RECORD TYPE FOR TRANS.)

(SITE OF ORIGIN OF TRANSACTIONS }

(SITE AT WHICH RESOURCES IS SITUATED)

(A RESOURCE CAN BE LOCKED)

(TRANSACTION LOCKING RESOURCE }

BU=ARRAY[1..KONS] OF BUFF; (TO STORE MESSAGES TEMPORARILY)

35

{ VARIABLE DECLARATIONS }

VAR I,N,RES,BUFFERCOUNT,THOLD,RR,TR :INTEGER;

BUFFER :BU; {FOR STORING MESSAGES}

R :ARRAY[1..SK] OF RESOURCES;

T :ARRAY[1..SK] OF INFO;

WF ;ARRAY[1..SI] OF TRANSACTION;

TERMINATE,GRANTED,DEAD :BOOLEAN;

{ }

(EXTERNAL FILE DECLARATIONS }

NUM,OUTFILE :TEXT;

(}

(PROCEDURE INITIALIZE }

(}

(EVERY RESOURCE IN THE SYSTEM BELONGS TO A SITE IN THE NETWORK. LIKEWISE)

(EVERY TRANSACTION IN THE SYSTEM ORIGINATES FROM A SITE. THIS PROCEDURE)

(IS USED TO INPUT THE LAYOUT OF RESOURCES AND TRANSACTIONS IN THE SYSTEM)

(THE INFORMATION ABOUT RESOURCES AND TRANSACTIONS ARE KEPT IN A FILE CAL)

(LED NUM.DAT. THE PROCEDURE IS ALSO USED TO INITIALIZE THE EXTERNAL FILE)

{OUTFILE.DAT. }

36

PROCEDURE INITIALIZE(VAR RES.TRANS:INTEGER);

VAR I,J :INTEGER;

BEGIN

RESET(NUM);

REWRITE(OUTFILE);

RES:=0; {INITIALIZE COUNTER FOR RESOURCES}

(’ENTER RESOURCE NUMBER AND ITS CORRESP. SITE NUMBER FROM EXTERNAL FILE)

{’ENTER <0 0> WHEN YOU WISH TO TERMINATE INPUT)

READLN(NUM,I,J);

WHILE (dOO) AND (JOO)) DO

BEGIN

RES:=RES + 1;

R[I].SITE:=J;

{’ENTER NEXT RESOURCE NUMBER AND ITS CORRESP. SITE NUMBER’}

READLN(NUM,I,J);

END; { OF WHILE)

TRANS:=0; {COUNTER FOR TRANSACTION)

{’ENTER TRANSACTION NUMBER AND CORRESP. SITE NUMBER’}

{’ENTER <0 0> TO TERMINATE’}

READLN(NUM,I,J);

37

WHILE (dOO) AND (JOO)) DO

BEGIN

TRANS:*TRANS + 1;

T[I].SITE:=J;

{'ENTER NEXT TRANSACTION NUMBER AND CORRESP. SITE NUMBER’}

READLN(NUM,I,J);
•i,

END; (OF WHILE)

{ DOCUMENT ENTERED DATA INTO OUTPUT EXTERNAL FILE)

WRITELN(OUTFILE,'RESOURCE AND TRANSACTION DISTRIBUTION IN NETWORK');

WRITELN(OUTFILE, 'RESOURCE':9,'SITE':10);

FOR I;-l TO RES DO WRITELN(0UTFILE,I:5,R[I].SITE:12);

WRITELN(OUTFILE);

WRITELN(OUTFILE,'TRANSACTION':12,'SITE':10);

FOR I:=l TO TRANS DO WRITELN(0UTFILE,I:5,T[I].SITE; 15);

END;(OF INITIALIZE)

(PROCEDURE REQUEST }

(A TRANSACTION TR, REQUESTS FOR A RESOURCE, RE. IF THE RESOURCE IS NOT)

{LOCKED THAT IS, LOCK FIELD IS NOT FALSE, THEN THE RESOURCE IS GRANTED,)

{THE LOCK FIELD OF THE RESOURCE IS SET TO TRUE, AND LOCKEDBY FIELD AS- }

{SIGNED TO TR. IF THE RESOURCE BEING REQUESTED FOR IS AT A DIFFERENT }

{SITE FROM THE TRANSACTION, THEN THE TRANSACTION TR IS MARKED WAITING }

{BY SETTING ITS WAITING FIELD TO TRUE. }

38

PROCEDURE REQUEST(TR:INTEGER;RE:INTEGER);

VAR I,J,SITE :INTEGER;

BEGIN

SITE:=R[RE].SITE;

I :=T[TR].SITE;

J :=SITE;

IF lOJ THEN {A REQUEST FOR A NONLOCAL RESOURCE)

WF[I,TR].WAITING;=TRUE

ELSE WF[I,TR].WAITING;=FALSE; {MARK TRANSACTION AS WAITING)

IF NOT R[RE].LOCK THEN

BEGIN

R[RE].LOCK:=TRUE; (PUT A LOCK ON RESOURCE)

GRANTED:=TRUE; {RESOURCE IS ALLOCATED TO REQUESTING TRANSACTION)

R[RE].LOCKEDBY:=TR; {NAME OF TRANSACTION LOCKING RESOURCE)

WRITELNC’TRANSACTION': 11,TR:2,'REQUEST FOR RESOURCE':22,RE:2,'GRANTED':8) ;

WRITELN(OUTFILE,'TRANSACTION':11,TR:2,'REQUEST FOR RESOURCE':22,RE:2,

'IS GRANTED':!!);

END

ELSE

BEGIN

GRANTED:=FALSE;

WRITELNCREQUEST FOR RESOURCE DENIED');

WRITELN(OUTFILE,'TRANSACTION': 11,TR:2,'REQUEST FOR RESOURCE':22,

RE:2,'IS DENIED':11);

THOLD:=R[RE].LOCKEDBY;

END;

END; {OF REQUEST)

39

{)

(PROCEDURE ADDARC }

{ }

(GIVEN A CURRENT SITE AND A PAIR <T1,T2>, THE PROCEDURE ADDS THE PAIR }

(TO THE WAIT-FOR GRAPH AT THAT SITE. ADDITIONALLY, IT ALSO INCREMENTS }

(THE OUTDEGREE OF T1 BY ONE AND THE INDEGREE COUNT OF T2 BY ONE. THE }

(TRANSACTION Tl, INCIDENT TO T2 IS STORED AT THE INNODES FIELD OF T2. }

(IN EFFECT Tl IS WAITING FOR T2. }

PRXEDURE ADDARCCSITE: INTEGER; NODEl, NODE2; INTEGER) ;

VAR PTR,K:NEXTNODE;

J:INTEGER;

BEGIN

NEW(PTR);

PTR*.VERTEX:=NODE2; (N0DE2 IS ADJACENT FROM NODEl)

WF[SITE,NODEl].OUTDEGREE ;=WF[SITE,NODEl].OUTDEGREE + 1;{0UTDEG INCREASED)

WF[SITE,NODE2].INDEGREE:=WF[SITE,NODE2].INDEGREE + 1; (INDEGREE INCREASED)

WF[SITE,NODEl].ACTIVE;=TRUE; (NODEl MARKED AS ACTIVE)

WF[SITE,NODE2].ACTIVE:=TRUE; {NODE2 MARKED AS ACTIVE)

J;=WF[SITE,N0DE2].INDEGREE;

40

WF[SITE,NODE2].INNODES[J]:=NODEl; {BUILD-A SET OF TRANSACTIONS INCIDENT}

{ TO NODE2}

IF WF[SITE,NODEl],LINX=NIL

THEN WF[SITE,NODEl].LINK;=PTR

ELSE

BEGIN

K: =WF[SITE,NODEl] .LINK;

WHILE K'.LINK <> NIL DO K;=K*.LINK;

K\LINK:=PTR

END;(OF ELSE)

END; (OF ADDARC]

(PROCEDURE SHOWMESSAGES }

(THIS PROCEDURE DISPLAYS THE CONTENTS OF THE CURRENT BUFFER. MESSAGES)

(WERE PUT THERE TEMP. UNTIL THEY COULD BE ACCEPTED AT THE INTENDED SITE)

()

PROCEDURE .SHOWMESSAGES(BUFFERCOUNT: INTEGER);

VAR I:INTEGER;

BEGIN

WRITELN(OUTFILE);

WRITELN(OUTFILE,’NUMBER’,’Tl’:8,’T2’:9,’SITE’;12);

FOR I:=l TO BUFFERCOUNT DO

WRITELN(OUTFILE,' ’: 1,1;2,BUFFER[I].MODEl,BUFFER[I].NODE2,BUFFER[I].SITE);

WRITELN(OUTFILE) ;WRITELN(OUTFILE);

END;

41

{ ^)

{PRXEDUliE SHOWGRAF }

()

{GIVEN A PARTICULAR SITE, THIS PROCEDURE DISPLAYS THE WAIT-FOR GRAPH OF}

{THE SITE. THE PROCEDURE LISTS THE OUTDEGREE, INDEGREE,TRANSACTION NUMB)

{AND ALL OTHER NODES ADJACENT TO ALL ACTIVE NODES }

{ }

PROCEDURE SHOWGRAFCSITE;INTEGER);

VAR I:INTEGER;

K:NEXTNODE;

BEGIN

WRITELN(OUTFILE,'ADJACENCY LIST AT SITE':24,SITE;3);

WRITELN(OUTFILE,' ':24,'—':3);

WRITELN(OUTFILE);

WRITELN(OUTFILE, 'OUTDEGREE' :9, 'INDEGREE'; 12, 'TRANSACTION': 12, 'ADJACENT

WRITELN(OUTFILE);

FOR I:=l TO N DO

IF WF[SITE,I].ACTIVE=TRUE THEN

BEGIN

WRITE(OUTFILE,WF[SITE,I] .0UTDEGREE;4,WF[SITE,I] .INDEGREE:13,I:12);

K:=WF[SITE,I].LINK;

IF K<> NIL THEN

42

BEGIN

WRITE(OUTFILE,' >':20);

REPEAT

WRITE(OUTFILE,K*.VERTEX:4);

K:=K\LINK;

UNTIL K=NIL;

END;{OF IF}

WRITELN(OUTFILE);

END;(OF IF)

END;{OF SHOWGRAF)

{PROCEDURE DEADLHANDLE }

{ }

{PRINTS A MEESAGE THAT A DEADLOCK HAS BEEN DETECTED AT A SITE }

PROCEDURE DEADLHANDLECSITE;INTEGER);

BEGIN

DEAD;=TRUE; {FLAG TO INDICATE DEADLOCK EXISTENCE)

WRITELNC’DEADLOCK DETECTED AT SITE:26,SITE:3);

WRITELN(OUTFILE);

WRITELN(OUTFILE);

WRITELN(OUTFILE,’DEADLOCK DETECTED AT SITE:':26,SITE:3);

WRITELN(OUTFILE);

WRITELN(OUTFILE);

END;

43

{FUNCTION DEADLDETECT

(- •)

(THIS BOOLEAN FUNCTION CHEaS IF A GIVEN SITE IS IN A DEADLOCK STATE OR)

(NOT. THE MECHANISM USED IS A STACK TO MONITOR ALL THE TRANSACTIONS AT }

(A SITE WITH ZERO INDEGREE COUNT. AFTER MANIPULATION OF THIS STACK IF IT}

(TURNS OUT THAT THE TOP OF THE STACK IS ZERO THEN THERE IS A DEADLOCK. }

{THE FUNCTION WORKS WITH A COPY OF THE WF-GRAPH OF A SITE }

{ }

FUNCTION DEADLDETECT(SITE:INTEGER)rBOOLEAN;

VAR I,J,K,TOP;INTEGER;

PTRtNEXTNODE; DONE;BOOLEAN; TEMP:TRANSACTION;

BEGIN

TEMP:=WF[SITE]; {COPY GRAPH OF SITE INTO TEMPORARY VARIABLE}

T0P:=0; {INITIALIZE STACK}

FOR I;=l TO N DO {CREATE A LINKED STACK OF VERTICES WITH}

IF TEMP[I].INDEGREE=0 {INDEGREE ZERO}

THEN

BEGIN

TEMP[I].INDEGREE:=TOP;

TOP;=I;

END;

I:=l;

DONE:=FALSE;

WHILE((I<=N) AND NOT DONE) DO

44

BEGIN

IF T0P=0

THEN

BEGIN

DEADLDETECT:=TRUE;

DONE:=TRUE;

END

ELSE J:=TOP;

TOP:=TEMP[TOP].INDEGREE; {UNSTACK A VERTEX)

PTR:=TEMP[J],LINK;

WHILE PTRO NIL DO

BEGIN

{DECREASE THE INDEGREE OF THE VERTEX CONNECTED TO J)

K;=PTR\VERTEX; {K IS LINKED TO J)

TEMP[K].INDEGREE:=TEMP[K].INDEGREE - 1;{DECREASE INDEGREE)

IF TEMP[K].INDEGREE=0 {ADD VERTEX K TO STACK)

THEN

BEGIN

TEMP[K].INDEGREE:=TOP;

TOP:=K;

END; {END OF IF)

PTR:=PTR*.LINK;

END; {OF WHILE PTR <> NIL)

I:*1+1;

45

END; {OF WHILE (I<=N) AND NOT DONE}

IF DONE=FALSE THEN DEADLDETECT:=FALSE;

END; (OF DEADLDETECT}

(PROCEDURE CREATEBLOCKSET }

(GIVEN A PAIR <T1,T2> IF T2 IS NONBLOCKED (THAT IS IF OUTDEGREE OF }

{T2=0), THEN BLOCKINGSETCOUNT OF tl IS INCREASED BY ONE. T2 IS ADDED TO}

(THE BLOCKING SET Tl }

{)

PROCEDURE CREATEBLOCKSET(SITE,Tl,T2:INTEGER);

VAR K :INTEGER;

BEGIN

IF WF[SITE,T2].OUTDEGREE =0 (TRANSACTION BLOCKED}

THEN

BEGIN (INCREASE BLOCKING SET FOR Tl BY 1}

K:=WF[SITE,T1].BL0CKSETC0UNT + 1;

WF[SITE,Tl]. BLOaiNGSET[K]:=T2;

WF[SITE,Tl].BLOaSETCOUNT := K;

END; (OF IF}

END; (OF CREATEBLOCKSET}

46

{PROCEDURE BUFFERTRIPLE }

(THIS IS AN AUXILLIARY PROCEDURE TO PROCEDURE SENDPAIR. ALL IT DOES IS}

(TO UPDATE THE BUFFER PARAMETERS GIVEN THE TRANSACTION PAIR SITE TO BE }

{SENT }

PROCEDURE BUFFERTRIPLE(T1,T2,SITE:INTEGER);

VAR J :INTEGER;

BEGIN

BUFFERCOUNT:=(BUFFERCOUNT + 1) ;

J:=BUFFERCOUNT;

BUFFER[J].N0DE1:=T1; {INCOMING T1 STORED IN FIELD NODEl)

BUFFER[J].NODE2:=T2; {INCOMING T2 STORED IN FIELD NODE2}

BUFFER[J].SITE:=SITE; {INCOMING SITE STORED IN FIELD SITE)

BUFFER[J].PENDING;=TRUE;

END;

{ }

{PROCEDURE SENDPAIR)

{ J

{GIVEN A SITE AND A TRANSACTION T, THE BLOCKING PAIR (T.T’) IS SENT TO)

{THE BUFFER. IF SITE OF ORIGIN OF T IS NOT EQUAL TO SITE THEN THE }

{BUFFER,SITE FIELD OF BUFFER IS SET TO SITE OF ORIGIN OF T; OTHERWISE)

{THE FIELD IS SET TO)

{TO SITE OF ORIGIN OF T’ }

47

PROCEDURE SENDPAIR(SITE,T1:INTEGER);

VAR I,S,J,K,T2 tINTEGER;

BEGIN

{FOR ALL ELEMENTS IN THE BLOCKINGSET FOR T1 DO THE FOLLOWING}

FOR I:=l TO WF[SITE,Tl].BLOCKSETCOUNT DO

BEGIN

K:=T[T1].SITE; {SITE OF ORIGIN OF Tl)

T2:=WF[SITE,T1].BLOCKINGSET[I];

S;=T[T2].SITE; {SITE OF ORIGIN OF T2}

IF K<> SITE THEN BUFFERTRIPLE(T1,T2,K);

IF SO SITE THEN BUFFERTRIPLE(T1 ,T2,S);

END;

END; {OF SENDPAIR)

{PROCEDURE CREATEPOTENTIAL BLOCKINGSET }

{)

{GIVEN A PAIR <T1,T2> IF T2 IS WAITING, THEN INCREASE POTENTIAL }

{BLOCKING SET COUNTER OF Tl BY ONE, T2 IS ADDED TO THE POTENTIAL }

{BLOCKING SET OF Tl }

48

PROCEDURE CREATEPBLOCKSET(SITE,T1,T2:INTEGER);

VAR K :INTEGER;

BEGIN

IF WF[SITE,T2].WAITING=TRUE

THEN

BEGIN {INCREASE POTENTIAL BLOCKING SET BY 1}

K:=(WF[SITE,Tl].PBLOCKSETCOUNT +'l) ;

WF[SITE,T1].PBLOCKINGSET[K]:=T2;

WF[SITE,T1].PBLOCKSETCOUNT;=K;

END; (OF IF)

END; (OF CREATEPBLOCKSET)

(PROCEDURE RECEIVE }

(THIS IS THE IMPLEMENTATION OF THE ALGORITHM A2.0, A2.1, AND A2.2 WITH }

(THE SUPPORT OF THE ROUTINES EXPLAINED ABOVE. }

(THIS PROCEDURE WORKS ON THE CONTENTS OF THE BUFFER. WHEN A TRIPLE }

{<T1,T2,SITE> IS FETCHED FROM THE BUFFER, THE PAIR <T1,T2> IS ADDED TO }

(THE WF(SITE). A CHECK IS MADE TO SEE IF A DEADLOCK STATE IS ESTABLISHED)

(WITH THE ADDITION OF THIS PAIR. IF THERE IS A DEADLOCK THE PROCEDURE }

(THAT HANDLES DEADLOCK IS INVOKED OTHERWISE THE FOLLOWING ARE EXECUTED }

(l.IF T2 IS BLOCKED AND OS(Tl) IS DIFFERENT FROM CURRENT SITE THEN FOR)

(ALL T3 BELONGING TO THE BLOCKING SET OF T1 ADD THE TRIPLE <T1 ,T3,SITE>}

(TO BUFFER WHERE SITE=OS(T3) }

{ 2. IF T1 IS WAITING AND OS(Tl)=CURRENT SITE , THEN, GET ALL TRANSAC- }

(TIONS INCIDENT TO T1~THAT IS GET TRANSACTION NAMES FROM INNODES FIELD)

49

{THEN FOR ALL SUCH TRANSACTIONS T3, IF 0S(T3) IS NOT EQUAL TO CURRENT }

(SITE THEN ADD THE TRIPLE <T3,T2,0S(T3)> UNTO BUFFER. Tl.WAITING TO }

(FALSE; AND ERASE POTENTIAL-BLOCKING PAIR (T3,T1). }

PROCEDURE RECEIVE(VAR BUFER:BU);{THIS WORKS ON THE BUFFER CONTENTS}

VAR MAX,K,T1,T2,T3,I,SITE :INTEGER;

BEGIN

{WORK ON ALL MESSAGES IN BUFFER]

{CLEAR EACH BUFFER AFTER USING ITS CONTENTS)

FOR I;=l TO KONS DO

IF BUFER[I].PENDING<>FALSE {IF BUFFER IS EMPTY, IGNORE)

THEN

BEGIN

Tl:=BUFER[I].NODEl;

T2:=BUFER[I].N0DE2;

SITE;=BUFER[I].SITE;

ADDARC(SITE,T1,T2); {ADD PREVIOUSLY SENT PAIR TO APPROPRIATE SITE)

BUFER[I].PENDING:=FALSE; {MARK BUFFER CONTENTS AS RECEIVED)

IF DEADLDETECT(SITE)

THEN

BEGIN

DEADLHANDLE(SITE);

I:=KONS;

END

ELSE

50

BEGIN

{CHECK IF T2 IS BLOCKED AND 0S(T1)IS SAME AS CURRENT SITE}

IF ((WF[SITE,T2].OUTDEGREE<> 0) AND (T[T1].SITE<>SITE))

THEN

BEGIN

MAX:=WF[SITE,Tlj.BLOCKSETCOUNT; {GET # OF TRANSACTIONS)

{ BLOCKING Tl)

FOR K:=l TO MAX DO

BEGIN

T3;=WF[SITE,T1].BLOCKINGSET[K];

IF T[T3].SITE<> SITE

THEN BUFFERTRIPLE(T1,T3,T[T31.SITE);

END;

END;

{IF Tl IS WAITING AND 0S(T1)=CURRENT SITE DO THE FOLLOWING}

IF ((WF[SITE,T11.WAITING) AND (T[T1].SITE=SITE))

THEN

BEGIN

MAX:=WF[SITE,Tl].INDEGREE; {GET NUMBER OF TRANSACTKWS}

{ AJACENT TO Tl}

{FOR ALL SUCH TRANSACTIONS,IF }

{ OS(T3)<>CURRENT SITE, }

{ THEN SEND <T3,T2> TO 0S(T3)}

FOR K:=l TO MAX DO

BEGIN

51

T3:=WF[SITE,T1].INN0DES[K]; {T3 IS ASJACENT FROM}

IF T[T3].SITE<> SITE

THEN BUFFERTRIPLE(T3,T2,T[T3].SITE);

END;

{ERASE WAITING MARK ON T)

(DISCARD POTENTIAL BLOaiNG SET)

WF[SITE,T1].WAITING;=FALSE;

WF[SITE,T3].PBLOCKSETCOUNT;=0;

END;

END;

END;

END; {OF RECEIVE}

{ }

{PROCEDURE MANIPULATE }

{THIS IS IMPLEMENTATION OF PARTS AO AND A1 OF ALGORITHM. IF A TRANSACTION}

{REQUESTS FOR A RESOURCE AND ITS NOT GRANTED,. THEN IT UPDATES THE WF-GRAPH

{AT THE APPROPRIATE SITE. IT CHECKS IF A DEADLOCK HAS OCCURED WITH THIS}

{UPDATE AT THE SITE. IF NO DEADLOa HAS OCCURED THEN MESSAGES IN BLOCKING}

{PAIRS ARE SENT OVER TO APPROPRIATE SITES. BLOCKINGSETS AND POTENTIAL }

{BLOCKING SETS FOR TRANSACTIONS ARE BUILT }

{ }

PROCEDURE MANIPULATE(T1,T2:INTEGER);

VAR SITE;INTEGER;

52

BEGIN

SITE:=T[T2].SITE;

ADDAEC(SITE,T1,T2);

IF DEADLDETECT(SITE) THEN

BEGIN

DEADLHANDLE(SITE);

TERMINATE;=TRUE;

END

ELSE

BEGIN

CREATEBL0CKSET(SITE,T1,T2);

SENDPAIR(SITE,T1);

CREATEPBL0CKSET(SITE,T1 ,T2);

END;

END;{MANIPULATE)

{ MAIN PROGRAM SECTION }

BEGIN (*MAIN*)

{INITIALIZE THE SYSTEM BY GETTING DATA FROM EXTERNAL FILE NUM.DAT)

{DATA OBTAINED ARE RESOURCE AND TRANSACTION AT SITES)

INITIALIZE(RES,N); {RES—# OF RESOURCES IN NETWORK,N—# OF TRANSACTIONS)

WRITELNC'PLEASE MAKE REQUESTS BY TYPING IN A TRANSACTION NUMBER AND ’);

WRITELNCRESOURCE NUMBER. TERMINATE REQUESTS BY TYPING < 0 0 >’);

53

WRITELN;

WRITELN(OUTFILE);

WRITELN(OUTFILE,'SEQUENCE OF TRANSACTIONS AS THEY COME IN AND RESPONSES’);

WRITELN(OUTFILE);

WRITELN('TRANSACTION NUMBER?';18,'RESOURCE NUMBER?';18);

READLN(TR,RR);

WHILE (TROO) DO

BEGIN

REQUEST(TR,RR); {TRANSACTION TR REQUESTS FOR RESOURCE RR}

IF NOT GRANTED THEN MANIPULATE(TR,THOLD); (THOLD IS THE TRANSACTION)

(HOLDING THE RESOURCE REQUESTED BY TR)

(GET NEXT REQUEST)

WRITELNC'TRANSACTION NUMBER?’:18,'RESOURCE NUMBER?':18);

READLN(TR,RR):

END;

WRITELN(OUTFILE);

WRITELN(OUTFILE,'MESSAGES STORED IN BUFFER BEFORE TRANSMISSION TO SITES’);

WRITELN(OUTFILE,'TRANSACTION REQUESTS:') ;

SHOWMESSAGES(BUFFERCOUNT);

IF (NOT TERMINATE) THEN RECEIVE(BUFFER);

WRITELN(OUTFILE,'TOTAL MESSAGES STORED IN BUFFER DURING RUN');

WRITELN(OUTFILE);

SHOWMESSAGES(BUFFERCOUNT);

54

FOR I:=l TO SI DO

BEGIN

SHOWGRAF(I);

WRITELN(OUTFILE);

WRITELN(OUTFILE);

.END;

IF DEADOTRUE THEN WRITELN(OUTFILE,’NO DEADLOCK STATE’);

END.

APPENDIX B

LISTING OF FOUR SAMPLE RUNS

For all test runs the following assumptions are made for the

distribution of resources and transactions at Ten Sites.

RESOURCE SITE

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 1

12 2

13 3

14 4

15 5

16 6

17 7

18 8

19 9

20 10

55

TRANSACTION SITE

1 1

2 2

3 3

4 4

■ 5 5

6 6

7 7

8 8

9 9

10 10

11 1

12 2

13 3

14 4

15 5

16 6

17 7

18 8

19 9

20 10

57

TEST SAMPLE NUMBER ONE

SEQUENCE OF TRANSACTIONS AS THEY COME IN AND RESPONSES

TRANSACTION 1 REQUEST FOR RESOURCE 1 IS GRANTED

TRANSACTION 2 REQUEST FOR RESOURCE 2 IS GRANTED

TRANSACTION 3 REQUEST FOR RESOURCE 3 IS GRANTED

TRANSACTION 1 REQUEST FOR RESOURCE 2 IS DENIED

TRANSACTION 2 REQUEST FOR RESOURCE 3 IS DENIED

TRANSACTION 3 REQUEST FOR RESOURCE 1 IS DENIED

MESSAGES STORED IN BUFFER BEFORE TRANSMISSION TO SITES

TRANSACTION REQUESTS:

NUMBER T1 T2 SITE

1 1 2 1

2 2 3 2

3 3 1 3

DEADLOCK DETECTED AT SITE: 3

OVERALL MESSAGES STORED IN BUFFER BEFORE DEADLOCK DETECTION AT SITE

58

NUMBER

1

2

3

4

5

6

T1

1

2

3

3

1

2

T2

2

3

1

2

3

1

SITE

1

2

3

3

1

2

ADJACENCY LIST AT SITE 1

OUTDEGREE INDEGREE TRANSACTION

1 1 1

0 1 2

1 0 3

ADJACENT TO,..

> 2

> 1

ADJACENCY

OUTDEGREE

1

1

0

LIST AT SITE 2

INDEGREE TRANSACTION

0 1

1 2

1 3

ADJACENT TO...

> 2

> 3

ADJACENCY LIST AT SITE 3

OUTDEGREE INDEGREE TRANSACTION

0 1 1

1 1 2

3

ADJACENT TO...

> 3

> 1 22 1

59

TEST SAMPLE NUBER TWO

SEQUENCE OF TRANSACTIONS AS THEY COME IN AND RESPONSES

TRANSACTION 1 REQUEST FOR RESOURCE 1 IS GRANTED

TRANSACTION 2 REQUEST FOR RESOURCE 2 IS GRANTED

TRANSACTION 3 REQUEST FOR RESOURCE 3 IS GRANTED

TRANSACTION 4 REQUEST FOR RESOURCE 4 IS GRANTED

TRANSACTION 5 REQUEST FOR RESOURCE 5 IS GRANTED

TRANSACTION 6 REQUEST FOR RESOURCE 6 IS GRANTED

TRANSACTION 7 REQUEST FOR RESOURCE 7 IS GRANTED

TRANSACTION 8 REQUEST FOR RESOURCE 8 IS GRANTED

TRANSACTION 9 REQUEST FOR RESOURCE 9 IS GRANTED

TRANSACTIONIO REQUEST FOR RESOURCEIO IS GRANTED

TRANSACTION 1 REQUEST FOR RESOURCE 3 IS DENIED

TRANSACTION 1 REQUEST FOR RESOURCE 4 IS DENIED

TRANSACTION 2 REQUEST FOR RESOURCE 1 IS DENIED

TRANSACTION 2 REQUEST FOR RESOURCE 3 IS DENIED

TRANSACTION 2 REQUEST FOR RESOURCE 5 IS DENIED

TRANSACTION 3 REQUEST FOR RESOURCE 5 IS DENIED

TRANSACTION 4 REQUEST FOR RESOURCE 2 IS DENIED

TRANSACTION 4 REQUEST FOR RESOURCE 3 IS DENIED

TRANSACTION 5 REQUEST FOR RESOURCE 4 IS DENIED

TRANSACTION 5 REQUEST FOR RESOURCE 1 IS DENIED

60

MESSAGES STORED IN BUFFER BEFORE TRANSMISSION TO SITES

TRANSACTION REQUESTS;

NUMBER T1 T2 SITE

1 1 3 1

2 1 4 1

3 2 1 2

4 2 3 2

5 2 5 2

6 3 5 3

7 4 2 4

8 4 3 4

9 5 4 5

10 5 1 5

61

DEADLOCK DETECTED AT SITE: 5

OVERALL MESSAGES STORED IN BUFFER BEFORE DEADLOCK DETECTION

NUMBER T1 T2 SITE

1 1 3 1

2 1 4 1

3 2 1 2

4
'

2 3 2

5 2 5 2

6 3 5 3

7 4 2 4

8 4 3 4

9 5 4 5

10 5 1 5

11 2 3 2

12 5 3 5

13 4. 1 4

14 1 5 1

15 2 5 2

16 4 5 4

17 1 2 1

18 5 2 5

19 2 4 2

20 3 4 3

62

ADJACENCY LIST AT SITE 1

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO. • •

2 2 1 > 3

1 0 2 > 1

0 1 3

0 1 4

1 0 5 > 1

ADJACENCY LIST AT SITE 2

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO. • •

0 1 1

4 1 2 > 1

0 2 3

1 0 4 > 2

0 1 5

ADJACENCY LIST AT SITE 3

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO. • •

1 0 1 > 3

1 0 2 > 3

1 3 3 > 5

1 0 4 > 3

0 1 5

63

ADJACENCY LIST AT SITE 4

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

1

0

0

2

1

0

1

1

2

0

1

2

3

4

5

> 4

> 2 3

> 4

ADJACENCY LIST AT SITE 5

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

0

1

1

0

1

0

1

1

1

2

3

4

5

> 5

> 5

>3 2 4 13

64

TEST SAMPLE THREE

SEQUENCE OF TRANSACTIONS AS THEY COME IN AND RESPONSES

TRANSACTION 1 REQUEST FOR RESOURCE 2 IS GRANTED

TRANSACTION 2 REQUEST FOR RESOURCE 3 IS GRANTED

TRANSACTION 3 REQUEST FOR RESOURCE 4 IS GRANTED

TRANSACTION 4 REQUEST FOR RESOURCE 7 IS GRANTED

TRANSACTION 5 REQUEST FOR RESOURCE 5 IS GRANTED

TRANSACTION 6 REQUEST FOR RESOURCE 1 IS GRANTED

TRANSACTION 7 REQUEST FOR RESOURCE 6 IS GRANTED

TRANSACTION 8 REQUEST FOR RESOURCE 8 IS GRANTED

TRANSACTION 9 REQUEST FOR RESOURCEIO IS GRANTED

TRANSACTIONIO REQUEST FOR RESOURCE 9 IS GRANTED

TRANSACTION 2 REQUEST FOR RESOURCE 2 IS DENIED

TRANSACTION 7 REQUEST FOR RESOURCE 3 IS DENIED

TRANSACTION 1 REQUEST FOR RESOURCE 6 IS DENIED

TRANSACTION 3 REQUEST FOR RESOURCE 7 IS DENIED

TRANSACTION 4 REQUEST FOR RESOURCE 8 IS DENIED

TRANSACTION 8 REQUEST FOR RESOURCE 9 IS DENIED

TRANSACTIONIO REQUEST FOR RESOURCE 5 IS DENIED

TRANSACTION 5 REQUEST FOR RESOURCEIO IS DENIED

TRANSACTION 9 REQUEST FOR RESOURCE 4 IS DENIED

65

MESSAGES STORED IN BUFFER BEFORE TRANSMISSION TO SITES

TRANSACTION REQUESTS:

NUMBER

1

2

3

4

5

6

7

T1

2

7

1

3

4

8

10

T2

1

2

7

4

8

10

5

SITE

2

7

1

3

4

8

10

8 5 9 5

9 9 3 9

66

DEADLOCK DETECTED AT SITE: 1

OVERALL MESSAGES STORED IN BUFFER BEFORE

NUMBER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

T1

2

7

1

3

4

8

10

5

9

1

2

9

3

4

8

10

5

T2

1

2

7

4

8

10

5

9

3

2

7

4

8

10

5

9

3

SITE

2

7

1

3

4

8

10

5

9

1

2

9

3

4

8

10

5

ADJACENCY LIST AT SITE 1

OUTDEGREE INDEGREE TRANSACTION

2 1 1

1 1 2

DEADLOCK DETECTION

ADJACENT TO...

> 7 2

> 1

0 1 7

67

ADJACENCY LIST AT SITE 2

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

0 1 1

1 1 2 -~> 1

1 0 7 > 2

ADJACENCY LIST AT SITE 3

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO..

1 1 3 > 4

0 1 4

1 0 9 > 3

ADJACENCY LIST AT SITE 4

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

1 0 3 > 4

1 1 4 > 8

0 1 8

ADJACENCY LIST AT SITE 5

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

1 1 5 > 9

0 1 9

1 0 10 > 5

68

ADJACENCY LIST AT SHE 6

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

ADJACENCY LIST AT SITE 7

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

1 0 1 > 7

0 1 2

1 1 7 > 2

ADJACENCY LIST AT SITE 8

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO,..

1 0 4 > 8

1 1 8 > 10

0 1 10

ADJACENCY LIST AT SITE 9

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

0 1 3

1

1

0 5 > 9

1 9 > 31 1

69

ADJACENCY LIST AT SITE 10

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

0 1 5

10 8

1 1 10

TEST SAMPLE FOUR

SEQUENCE OF TRANSACTIONS AS THEY COME IN AND RESPONSES

TRANSACTION 1 REQUEST FOR RESOURCE 4 IS GRANTED

TRANSACTION 1 REQUEST FOR RESOURCE 2 IS GRANTED

TRANSACTION 1 REQUEST FOR RESOURCE 7 IS GRANTED

TRANSACTION 1 REQUEST FOR RESOURCE 6 IS GRANTED

TRANSACTION 2 REQUEST FOR RESOURCE 3 IS GRANTED

TRANSACTION 2 REQUEST FOR RESOURCE 4 IS DENIED

TRANSACTION 2 REQUEST FOR RESOURCE 6 IS DENIED

TRANSACTION 4 REQUEST FOR RESOURCE 3 IS DENIED

TRANSACTION 5 REQUEST FOR RESOURCE 3 IS DENIED

TRANSACTION 5 REQUEST FOR RESOURCE 4 IS DENIED

TRANSACTION 6 REQUEST FOR RESOURCE 5 IS GRANTED

TRANSACTION 6 REQUEST FOR RESOURCE 3 IS DENIED

TRANSACTION 7 REQUEST FOR RESOURCE 6 IS DENIED

TRANSACTION 7 REQUEST FOR RESOURCE 8 IS GRANTED

TRANSACTION 8 REQUEST FOR RESOURCE 5 IS DENIED

> 10

> 5

70

TRANSACTION 8 REQUEST FOR RESOURCE 4 IS DENIED

TRANSACTION 9 REQUEST FOR RESOURCE 4 IS DENIED

TRANSACTIONIO REQUEST FOR RESOURCE 4 IS DENIED

TRANSACTIONIO REQUEST FOR RESOURCE 9 IS GRANTED

TRANSACTIONIO REQUEST FOR RESOURCE 1 IS GRANTED

TRANSACTIONIO REQUEST FOR RESOURCE 7 IS DENIED

TRANSACTIONIO REQUEST FOR RESOURCE 8 IS DENIED

MESSAGES STORED IN BUFFER BEFORE TRANSMISSION TO SITES

TRANSACTION REQUESTS:

NUMBER T1 T2 SITE

1 2 1 2

2 2 1 2

3 2 1 2

4 4 2 4

5 5 2 5

6 5 1 5

7 6 2 6

9 8 6 8

10 8 1 8

11 9 1 9

12 10 1 10

13 10 1 10

14 10 1 10

15 10 7 10

71

OVERALL MESSAGES STORED IN BUFFER BEFORE- DEADLOCK DETECTION

NUMBER T1 T2 sr

1 2 1 2

2 2 1 2

3 2 1 2

4 4 2 4

5 5 2 5

6 5 1 5

7 6 2 6

8 7 1 7

9 8 6 8

10 8 1 8

11 9 1 9

12 10 1 10

13 10 1 10

14 10 1 10

15 10 7 10

16 4 1 4

17 5 1 5

18 6 1 6

19 8 2 8

20 10 1 10

72

ADJACENCY LIST AT SITE 1

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

0

2

1

1

1

1

2

8

0

0

0

0

0

0

1

2

5

7

8

9

10

> 1

> 1

' > 1

> 1

> 1

> 1

1

1

ADJACENCY LIST AT SITE 2

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

0 3 1

3 3 2

10 4

10 5

10 6

> 1

> 2

> 2

> 2

1 1

ADJACENCY LIST AT SITE 3

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

73

ADJACENCY LIST AT SITE 4

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

0 1 1

0 1 2

2 0 4 > 2 1

ADJACENCY LIST AT SITE 5

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

0 2 1

0 1 2

3 0 5 > 2 1

ADJACENCY LIST AT SITE 6

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

0 1 1

0 1 2

2

1

1 6 > 2 1

0 8 > 61 0

74

ADJACENCY LIST AT SITE 7

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

Oil

1 1 7

1 0 10

> 1

> 7

ADJACENCY LIST AT SITE 8

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

0 1 1

0 1 2

0 1 6

3 0 8 > 6 1 2

ADJACENCY LIST AT SITE 9

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

Oil

9 > 11 0

75

ADJACENCY LIST AT SITE 10

OUTDEGREE INDEGREE TRANSACTION ADJACENT TO...

0 4 1

0 1 7

5 0 10 > 1 1

NO DEADLOCK EXISTS

BIBLIOGRAPHY

Goldman, B. "Deadlock Detection in Computer Networks." M.I.T. Cambridge

Tech. Rep., MIT-LCS TR-185, Sept. 1977.

Gligor, V.D.; and Shattuck, S.H. "On Deadlock Detection in Distributed

Systems." IEEE Transaction on Software Engineering vol. SE-6,5

(September, 1980); 435-39.

Harrowitz, E.; and Sahni, S. Fundamentals of Data Structures Using

Pascal (Rockville: Computer Science Press, 1983): 272-319.

Menasce, D.; and Muntz, R. "Locking and Deadlock Detection in Distributed

Data Base." IEEE Transaction on Software Engineering vol. SE-5

(May. 1979): 195-202.

Peterson, J.; A. Silberschatz. Operating System Concepts (Reading: Ad¬

dison Wesley, 1984): 260.

76

