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CHAPTER I

INTRODUCTION

The history of geometry may he divided roughly into four

periods. The first period consists of the synthetic geometry of the

Greeks, including not merely the geometry of Nuclid hut the work on

conics hy Appolonius, and the less formal contributions of many other

writers. The hirth of analytic geometry characterized the second period.

In this period the synthetic geometry of Desargues, Kepler, Roherval, and

other writers of the seventeenth century merged into the coordinate

geometry of Descartes and Fermat, Calculus was applied to geometry in

the third period. This period extended from about 1650 to 1800, and in¬

cluded the names of Cavaliefi, Nerwton, Leibnitz, the Bemoullis,

L’Hopital, Clairattt, Euler, Lagrange, and D’Alembert, The renaisssince

of pure geometry was in the fourth period. This period began with the

nineteenth century and was characterized by the descriptive geometry of

Monge, the projective geometry of Poncelet, the modern synthetic geometry

of Steiner and Von Standt, the modern analytic geometry of Plucker, the

non-Euclidean hypotheses of Lobachevsky, Bolyai, and Rieman^,and the lay¬

ing of the logical foundations of geometry. It was a period of remarkable

richness in the development of all phases of the science.

It is in this fourth period that projective geometry has had

its development, even if its origin is more remote. The origin of any

branch of science can always be traced far back in hitman history, and

this fact is patent in the case of this phase of geometry.

Modem synthetic geometry was created by several investigators

about the same time. It seemed to be the outgrowth of a desire for gen¬

eral methods which should seirve as guides for students in learning

1
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theorems, corollaries, euid problems. Synthetic geometry -vinas first culti¬

vated by Monge, Carnot, and Poncelet in France. It then bore rich fruits

at the hands of Mobius and Steiner in Germany and Switzerland. Finally,

it was developed to still higher perfection by Chasles in France, Von

Staiadt in Germany and Cremona in Italy. The recent contributions have

naturally been of an advanced character, seeking to lay more strictly

logical foundations for the science. In this line the American work by

Professors Veblen and Young is noteworthy.

It is quite impossible to draw the line in the historical devel¬

opment between analytic geometry and synthetic geometry. According to

Klein's definition of geometry, it is the study of the invariants of a

configuration imder a group of trsmsformations. Analytic geometry uses

a coordinate system in the study of the invariants. Synthetic geometry

does not use a coordinate system. Metric geometry is the study of the

invariants of a configuration under a group of motions. In metric

geometry a figure can be moved from place to place without altering its

shape or size. Projective geometry is the study of the invariants of a

configuration under a group of projections. In projective geometry a

figure can be projected from one place to another without altering it.

Thus we have these four branches: synthetic projective geometi^, syn¬

thetic metric geometry, analytic projective geometry and analytic metric

geometry.

The purpose of this thesis is to investigate the properties of

conics from a synthetic and projective standpoint. In this treatment

special use has been made of Pascal's Theorem and its dual and the

Principle of Duality.

I wish to express my very gre%t appreciation to Professor C. B.

Dansby for his sympathetic interest and aid during the preparation of

this thesis



CHAPTER II

POINT AND LINE CONICS

1, Definitions

A point conic is the locus of the points of intersection of

corresponding lines of two projective, coplanar, non-ooncentric flat

pencils.

The order of a point locus in a plane is the greatest ntanber of

its points less than an infinite numher that can he on one straight line.

A line conic is the envelope of the lines joining corresponding

points of two projective, coplanar, non-coaxial point ranges.

The class of a line envelope in a plane is the greatest numher

of its tangents less than an Infinite numher that can pass through one

point.

2. Theorems on Determining Conics

Theorem I.- The point conic passes through the centers of two

generating pencils*

■Proof* The line S S* of the pencil S corresponds to the tangent

of the conic at S*. The tangent is regarded as a line of S*. The line

S* S of S* corresponds to the tangent of the conic at S, Hence the conic

passes through S and S .

Theorem I*,- The lino conic is tangent to the bases of two

generating raises.

Proof* The point of intersection of the point ranges S and S*
corresponds to the point of contact of the conic with S*, When the point

of contact is on S the corresponding point on S* is any point ofi S', which

is not one of the given points.

Theorem II,- Any two points on a conic may he used as centers of

S
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two projective pencils which generate the conic.

Proofs Consider two pencils S(a b c) and S’(a’ b' c') with

a b c ..... a’ b’ c* ..... These pencils generate a conic S S’ A B C.
A

Draw any other line d from S. Draw its corresponding line d’ from S*.

A, B, C, D are any four points on the conic, praw A B and AC. A B meets
S C in a point P. A B meets S D in a point L. S’ B meets A C in a point

Q. s' D meets A C in a point N. S' D meets S C in a point G. S D meets

s' B in a point F.

S(a b c d) = (A B P L) and s'(a' b' c' d') = (A Q C N).

Therefore point ranges A B P L and A Q C are projective. Since the two

point ranges have a self-corresponding point, they are perspective. If

two projective point ranges have a self-corresponding point, then the

point rEinges are perspective. Therefore L N passes through the point of

intersection M of the lines.

Consider two pencils with centers at B and C, any two points on

the conic. B(A S S'D) f (L S F D) ^ (H G S' D) ^ C(A S S* D). Hence the

pencils B(A S S* D) and C(A S S* D) are projective, coplanar, and non-

concentric. Therefore the pencils generate a conic.

Theorem II'.- Any two tangents of a conic can be used as bases

of projective ranges which generate the conic.

Proof: Consider two point raises s and s' with A B C a' B' C'.

These point ranges generate a conic. Select any other point D on s, and

its corresponding point D' on s*. Any four lines on the conic are a, b,

c, d. ^’Jdiii the points of intersection of a b and a c by a line. Line p

joins a b and s c. The points a b and s d are joined by line, 1. The

points s' b and a c are joined by line, q. Line n joins s' d and a c.

The points g' d and s c are joined by line,^ g. Line f joins the points

s d and s' b.
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(a B C D) ~ B(a "b p l) and (A* B* c’ D*) “ C(a q c n). There-
A A

fore B(a B p l) and C(a q c n) are projective pencils iwith a self-

corresponding line. Hence the pencils are perspective. If two projective

pencils have a self-corresponding line, then the pencils are perspective.

The line, m, joins the points h q and p c and passes through

1 n. Consider two point ranges with Bases t and c, any two lines on the

conic. Point range B(a s s*" d) ~ pencil (1 s f d) ~ pencil (n g s* d) ^
point range c(a s, s' d).

Therefore the point ranges B(a s s’ d) and c(a s s’ d) are

projective, coplsinar and non-coaxial. Hence they generate a conic.

Theorem III.- The conic is determined By five of its points.

Proofs Use any two of the five points as centers of pencils

and the other three points to determine a projectivity Between the two

pencils. For, two projective, coplanar, non-concentric flat pencils gen¬

erate a conic. Hence five points determine a conic.

Theorem III’.- The conic is determined by five of its tangents.

Proofs Use any two tangents as Bases of ranges and the other

throe to determine the projectivity between the two rays. For, two

projective, coplanar, non-coaxial point rsinges generate a conic. Therefore

five tangents determine a conic.

3. Pascal*8 Theorem

The opposite sides of a simple hexagon inscribed in a conic

intersect in three collinear points.

Proofs Consider the simple hexagon with vertices 1, 2, 3, 4, 5,

6, on the conic with the three pairs of opposite sides 12,45 meeting at

Lj 2 3, 5 6 meeting at M and 3 4, 6 1 meeting at N. Prove that L, M

N are collinear.

Regard the conic generated By pencils whose centers are S and s'.
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S(i B C D) J (A B P L) and S' (A B C D) j- (A Q C N). But S(A B C D) J
s’(A B C D). For, "by hypothesis the pencils generate a conic.

Cross ratio of S(A BCD) equals cross ratio of s’(A B C D).

This is true because cross ratio of lines joining any four fixed points

on a conic to a variable fifth point is constant.

Therefore (A B P L) ” (A Q C N). For the theorem of Pappus

states that cross ratio is invariant under projection and section.

Hence the point ranges A B P L and A Q C N are projective.

Because any one to one correspondence that preserves cross ratio is a

projectivity.

(a B P L) ^ (a Q C N) . Two projective point ranges having a

self-corresponding point are perspective. That is to say B Q, PC and

L N pass through the same point or they are concurrent. But B Q and

P C meet at M. Therefore L N passes through M. Hence L, M and N are

collinenr.

Converse of Pascal’s Theorem.- If the opposite sides "of a sim¬

ple hexagon intersect in collinear points, the hexagon can be inscribed

in the conic.

Proofs Consider a simple hexagon A B S* D S C, with the oppo¬

site sides intersecting at L, M and H. Consider pencils S(B C D) eind

S*(B C D) and a conic generated by them. Therefore the conic passes

through five points.

Prove that the ccnic passes through the point A. S(A B C D) a

(a B P L). But (A B P L) ” (A Q C K). M is the center of perspectivity.

Therefore ABPL^AQCII^S’CABCD). Hence S(A B C D) a S'(A B C D).
But S(B C D) a S*(B C D). For, they generate a conic. Therefore S A and
S* A meet on the conic.
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4. Brianchon*s Theorem (Dual of Pascal*s Theorm)

The lines ^joining opposite vertices of a simple hexagon cir¬

cumscribed about a conic are concurrent.

Proof* Consider the simple hexagon circumscribed about a conic.

The sides are tangent to the conic. Join the points of intersection of

23, 5 6 by line m. Join the points of intersection of 3 4, 6 1 by line

n. Join the points of intersection of 1 2, 4 6 by line 1. ^’rove that

m, n and 1 are concurrent. Then ;5oin the points of intersection of, 1 Z,

5 6 by line p and 2 3, 6 1 by line q.

Regard the conic generated by point ranges s and s*. s(a b c d)

(a b p l) and s* (a b c d) "" (a q c n). Since s(a bod) and s’ (a b c d)

generate the conic, then s(a b e d) ”* s’(a b c d). Therefore (a b p 1) ” •A A

(a q c n). Then (a b p 1) ~ (a q c n). For, two projective pencils

having a self-corresponding line are perspective. Hence b q, p c and

1 n are -vthe points on a straight line (axis of perspectivity). But b q

and p c are joined by line m (axis of perspectivity). Therefore 1 n is

on m. Hence 1, m and n are concurrent. The point is the Brianchon point.

Converse of Brianchon’s Theorem.- If the lines joining opposite

vertices of a simple hexagon are concurrent the hexagon can be circum¬

scribed about a conic.

Proof* Consider the Simple hexagon, with the lines joining

opposite vertices being concurrent. Consider ranges 8(b c d) and s*(b c d)

and a conic generated by them. Therefore the conic is tangent to five

lines.

Prove that the conic is tangent to line a. s(a b c d)

8’(a b p l). But 8*(a b p l) “ (a q c n). Eenee s^a Is P l) ^ (a q c n)
A 8’(a b c d). Therefore 8(a b c d) a s’(a b c d). But s(b e d) "a
s*(b c d). For, they generate a conic. Therefore s a and s’ a are joined
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by a line which is tangent to the conic, i.e. line a is tangent to the

conic.

5. Limiting Foras of Fas cal *s Theorem and Its Dual

Inscribed Pentagon Theorem.- If a simple pentagon is inscribed

in a conic, then two pairs of non-adjacent sides intersect in points col-

linear with the intersection of the remaining side and the tangent at the

opposite vertex.

Proof: Let —>• Cg (A^ ^ Cg), then Ij^g—> tangent at

Aj ~,Cg . Given the simple pentagon Aj^, B2, S*g,. Sg Inscribed in a

conic. Prove that A ^ ^45* ® ®*23* ^ '^56* ^34* ^ "^^ei
collinear points L, M, N respectively. The lines 12,45 meet at Lj

2 3, 5 6 meet at M; and 3 4, 6 1 meet at N. The opposite sides of a

simple hexagon inscribed in a conic intersect in three collinear points.

Circumscribed Pentagon Theorem.- If a simple pentagon is cir¬

cumscribed about a conic, then two pairs of non-adjacent vertices are

;}oined by lines concurrent with the line joining the remaining vertex to

the point of contact on the opposite side.

Proof: Given the simple pentagon with sides — Cg, bg, s’g,
d^, Sg circumscribed about a conic. To prove that a 'b22» ^ ®45» ^ ®*23*
s Rgg* s* c Sgj^ are concxirrent. The line, 1, joins 1, 2 and 4, 5.
The line m joins 2, 3 and 5, 6. The line, n, joins 3, 4 and 6, 1. This

is true by Brianchon's Theorem.

Inscribed Quadrangle Theorem.- If a simple quadrangle is inscribed

in a conic then the two pairs of opposite sides intersect in points col-

linear with the point of intersection of tangents at pairs of opposite

vertices.

Proof: Consider the simple quadrangle A B S* S inscribed in

the conic vrith A B and S S*j AS and B s' pairs of opposite sides inter-
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secting in L and M respectively. Regard tangents at opposite vertices S

and A intersecting at R, The tangents at opposite vertices B and S inter¬

sect at P, Drair line, 1. Prove L, U, N and P are collinear.

First, consider the Pascal hexagon Aj^rS, Bg, S*^4, Sg, L is
the point of intersection of 1,2 and 4,5. M is the point of intersection

of 2,3 and 5,6, N is the point of intersection of 3,4 and 6,1. Hence

L,M and N are collinear. This is valid by Pascal’s theorem.
Then consider the Pascal hexagon Ag, g, Sg^., In this

case P is the point of intersection of 3,4 and 6,1. L and M remain the

same. Hence by Pascal's Theorem L, M and P are collinear. Therefore

L, M, N and P are collinear.

Circumscribed Quadrilateral Theorem.- If a simple quadrilateral

is circumscribed about a conic then the two pairs of opposite vertices

are joined by lines concurrent with the lines joining the points of

contact at pairs of opposite sides.

Proof: Consider the simple quadrilateral a^ bg s*g Sg cir¬
cumscribed about the conic with a bj^g and s* Sgg; a s^^g and b s*gg
pairs of opposite vertices joined by lines 1 and m respectively. Also

consider the points of contact of opposite sides a^^ and s*g joined by
line n. The points of contact of opposite sides bg and Sg are joined by
line p. Prove that 1, m, n and p are concurrent.

First, consider the simple hexagon a^^ ^ Og, bg, d^, Sg.

The line 1 joins 1,2 and 4,5. ^he points 2,3 and 5,6 are joined by line

m. The line n joins the points 3,4 and 6,1, Hence l,m and n are con¬

current, This is true by Brianchon’s theorem.

Then consider the simple hexagon a-, b- “ 1, s*^* s* Z 4, In^ D
^ O 5 ^

this kexagon line p joins the points 3,4 and 6,1, The lines 1 and m join

1,2 and 4,5; 2,3 and 5,6 respectively. Hence 1, m, and p are concurrent
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lines. Therefore 1, m, n and p are concurrent.

Inscribed Triangle Theorem,- If a triangle is inscribed in a

conic, the tangents at the three vertices meet the opposite sides of the

triangle in three collinear points.

Proof* Let vertices 1 and 2, 3 and 4, 5 and 6 coincide. Use

Pascal*s constxnictlon. The tangents are 1 and 2, 3 and 4, 5 and 6, The

sides are 4 and 5, 2 and 3, 6 and 1, The lines 1,2 and 4,5 meet at L,

The point M is the point of intersection of 2,3 and 5,6, The lines 3,4

and 6,1 meet at H. Hence L, M and H are collinear by Pascal’s theorem.
Circumscribed Triangle Theorem,- If a triangl® is circumscribed

about a conic, the points of contact on the three sides are joined to the

opposite vertices of the triangle by three concurrent lines.

Proof* Let sides 1 and 2, 3 and 4, 5 and 6 coincide. The line

1 joins 1,2 and 4,5, The line m joins 2,3 and 5,6. Line n joins 3,4 and

6,1. Hence the lines joining each vertex to the contact point of the

opposite side are concurrent. This is true by Brianchon's Theorem,

Theorem on Composite Conic,- If the odd numbered vertices of

a simple hexagon are on one straight line and the even numbered are on

another, then the opposite sides intersect in collinear points.

Proof* Consider the simple hexagon with vertices 1,2, 3,4, 5,

6, Vertices 1, 3 and 5 are on one straight line. Vertices 2, 4 and 6

are on another straight line. Use the Pascal construction. Thus 1,2 and

4,5 meet at L| 2,3 and 5,6 meet at M; and 3,4 and 6,1 meet at H. Hence

L, M and N are collinear by Pascal’s Theorem,

Dual of Theorem on Composite Conic,- If the odd numbered sides

of a simple hexagon pass through a point and the even numbered pass

through another point, then the opposite vertices are joined by concurrent

lines
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Proof: Consider the simple hexagon -with sides b2, ®*3» <^4*

85, C0. The line 1 joins 1,2 and 4,5. The points 2,3 and 5,6 are joined

by line, m. The line n joins 3,4 and 6,1. Hence 1, m and n are concur¬

rent lines. This is valid by Brianchon’s Theorem.



CHAPTER III

POLE Am) POLAR RELATIONS

1. Definitions and Theorems

Construct the polar of a point Twith respect to a pair of lines*

Given two lines a and b and a point P« Let Bj, A2 B2« Ag Bg ••*•• be

points of a and b respectively collinear rdth P. Then ^1 h ®i*

A2 ^ ®2* "^l ^1 points on a line p.
The line p is the polar line of P with respect to a and b.

Proof: The shaded triangles are perspective from a line since

their corresponding sides intersect on a line. Therefore the triangles

are perspective from a point by Desargues' Theorem. Two of the vertices

of the triangle are joined by lines which go through a b. Hence p, which

joins the third vertices, goes through a b.

Construct the pole of a line with respect to a pair of points.

Given two points A and B and a line p. Let a^, b^^j a2, b2; ag, bg .....

be lines of A and B respectively concurrent with p. Then a^ b^, ag b^^;
ag bg, ag bgj a^^ bg, ag bj^ are joined by lines meeting in a point P.

The point P is the pole of line p with respect to A and B.

The proof is true by the dual of the proof of the polar of a

point with respect to a pair of lines.

Construct the polar of a point with respect to a triangle.

Given triangle ABC and point P. Let P A, P B, P C meet B C, C A, A B

in A*, B*, C* respectively. Let A B and A* b' intersect in H. Let B C

and B* C’ intersect in K. Let C A and c’ A* intersect in L. Then H, f

and L lie on a line p.

The line p is the polar line of P with respect to triangle

ABC.

12
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Proof: Triangles ABC and A* B' C* are perspective froa P.

Hence they are perspective from a line. This is true by Desargues*

Theorem. That is to say A B and A* B*, B C and B* C*, C A and C* A' meet

in H, K and L on a line p.

Construct the pole of a line with respect to a triangle. Given

triangle ABC and line p. Let p a« p b, p o be to b e, c a, a b

by a’, b*, c’ respectively. Let a b and a* b* be joined by h. Let b c

sold b* c' be joined by k. Let c a and c* a* be joined by 1. Then h, k and

1 meet at a point P.

The point P is the pole of line p with respect to triangle ABC.

Proof: Triangles ABC and A* B* c' are perspective from p.

Hence by Desargues* Theorem they are perspective from a point. That is

to say a b and a' b’, b c and b' c*, c a and o’ a' are joined by lines h,

k and 1 which meet at P,

Construct the polar of a point with respect to a conic. Given

a point P inside, outside or on a conic. Draw through P any two lines

meeting the conic in the points K, M and N, L. Draw E N and L M inter¬

secting at Q. Draw E L and M N intersecting at 0.

The line 0 Q is the polar line of P with respect to the conic.

The inside of a conic is that portion of the plane from which

no real tsmgent can be drawn to the conic.

The outside of a conic is the portion of the plane from which

two real tangents can be drawn to the conic.

Comments: If the point P is inside the conic the polar line

lies entirely outside the conic.

If the point P is outside the conic the polar line cuts across

the conic.

If the point P is on the conic, the polar line is tangent to
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the conic.

Construct the pole of a line with respect to a conic. Given a

line p tangent to the conic, hutting the conic, or entirely outside the

conic. Let Pj and Pg he two points on p. Draw tangents to the conic from
these two points, k and m are the tangents from Pj. Tangents from Pg are

n and 1. Join k n and 1 m by line q. Join k 1 and m n by line o.

The point of intersection of o and q is the pole of line p with

respect to the conic. Call this point P.

Theorem I.- If a complete quadrangle is inscribed in a conic,

each side of the diagonal triangle is the polar line of the opposite

vertex.

Proof* In the diagonal triangle 0 P Q by definition 0 Q is the

polar line of P, OP is the polar line of Q and P Q is the polar line of 0.

Theorem I*.- If a complete quadrilateral is circximscribed about

a conic, each vertex of the diagonal triangle is the pole of the opposite

side.

Proof: In the diagonal triangle o p q by definition o q is the

pole of p, op is the pole of q and p q is the pole of o.

A triangle is a self polar triangle with respect to a conic, if

each side is a polar line of the opposite vertex.

Theorem II.- The diagonal triangle of a complete quadrangle in¬

scribed in a conic is self polar with respect to the conic.

This theorem is proved by the definition of a self polar triangle

and Theorem I.

Theorem III.- The polar line of a given point is unique. That

is to say the polar line 0 Q of a point P is independent of the points

K, M, IT and L used to construct it.

Proof: Let N and L be fixed. Let K and M vary. Prove that
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0 Q does not change. A B Q 0 are four harmonic points by definition, K M

and 0 Q meet at A. L N and 0 Q meet at 5.

Pencil M (a B Q O) are harmonic lines, that is by projecting

A B Q 0 from M. Hence P B L N are harmonic points. But P, N and L are

fixed. Therefore B must be fixed.

Consider the simple quadrangle K L M N* The lines L M and K Nj

L K and M N; 1 and n; m and k intersect in collinear points by the in¬

scribed quadrangle theorem.

Tangents through L and N meet at E, The point E is on 0 B Q and

is fixed because L and N are fixed. Therefore the line has two fixed

points E and B. Hence 0 Q is fixed as K and M vary. Therefore 0 Q is

independent of the points K, M, N and L,

Theorem III*.- The pole of a given line is unique. That is to

say the pole P of a line p is independent of the tangents k, m, n and 1

used to construct it.

Proof: Let tangents n and 1 be fixed. Let tangents k and m

vary. Prove that P does not change, a b q o are four harmonic lines.

The point k m and P are Joined by a. The point 1 n and P are Joined by

b.

Point range m (a b q o) are harmonic points. Hence (p b 1 n)
are harmonic lines. But p, n and 1 are fixdd. Therefore b must be fixed.

Consider the simple quadrilateral k 1 m n. The points 1 m and

k n; 1 k and m nj L and N; M and K are Joined by concurrent lines by the

circvcmscribed quadrilateral theorem.

Points of contact on 1 and n are Joined by line e. The line e

goes through the point o b q and is fixed because 1 and n are fixed.

Therefore the point has two fixed lines e and b. Hence P is fixed as

tangents k and m vary. Therefore P is independent of the lines k, m, n
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and 1*

2. Properties

Harmonic Property,- The polar line, or part of the polar line of

a point P with respect to a conic is the locus of the harmonic conjugate

of P and the two points of intersection of the conic with a variable line

through P,

Proofs In the figure for Theorem III, Section I, on imiqueness

of a polar line, the points L, N, P and B form a harmonic set as previously

proved* Hold K and M fixed* Let N and L vary and pepeat the construc¬

tion* Then B varies and A is fixed*

Comments The locus is the whole polar line if point P is inside

the conic*

The locus is a part of the polar line if point P is outside

the conic*

The locus is part (a point) of the polar line if point P is on

the conic.

Dual of Harmonic Property*- The pole of a line p with respect to

a conic is the locus of the harmonic conjugate of p and the two tangents

to the conic from a variable point on line p*

Proofs In the figure for Theorem III*, Section I, on the

uniqueness of a pole, the lines 1, n, p and b form a harmonic set. Let

k and m be fixed* Vary n and 1, and repeat construction* Then b varies

and a is fixed*

Symmetric Property*- If a point P lies on the polar line of a

point Q, then Q lies on the polar line of P*

Proofs Consider a conic and a point P* Draw the polar line

p of point P* On p take a point Q* Let P Q intersect the conic at R

and S* (Suppose P Q meets the conic). By the hamonic property it fol-
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loTfirs that P Q R S are harmonic points. Hence Q is on the polar line of P

by construction.

Consider the polar line q of point Q. Since P Q R S are harmon¬

ic points, q must pass through P.

Dual of Symmetric Property.- If a line, p, passes through the

pole of a line q, then q passes through the pole of line p. This is true

by the principle of duality.

Two points so situated that the polar line of each with respect

to a conic passes through the other are called con^Jugate points with

respect to the conic.

Two lines so situated that the pole of each with respect to a

conic lies on the other line are called conjugate lines with respect to

the conic.

Theorem IV.- Locus of all points conjugate to a given point P

is the polar line of P.

The proof is true by the symmetric property.

Theorem IV*.- Locus of all lines conjugate to a given line p is

the pole of p.

Projective Property.- If a point P moves along a straight line,

q, the polar line p of P with respect to a conic turns about the pole, Q,

and generates a pencil. The pencil is projective with the range generated

by P on line q.

Proof: Consider only the complete quadrangles K L M N that have

L and M fixed. Because Q and q are fixed by hypothesis. The point range

P on q pencil MP. MP^LK. point range 0 on q. Point range

0 pencil 0 Q, Therefore point range P on q is projective with pencil

0 Q. 0 is the point of intersection of Z L and M N.

Dual of Projective Property.- If a line p forms a pencil of
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lines -with center Q, the pole P of line p ndth respect to a conic moves

along the polar line q, and generates a point range. The point range is

projective with the pencil generated by p through Q.

Proof* Consider only the complete quadrilaterals k 1 m n that

have 1 and m fixed. For q and Q are fixed by hypothesis. The pencil

generated by p throxigh Q X the point range m p. Point range m p 2" poin't

range 1 k. Point range 1 k pencil o with center Q. Pencil o ^ point

range o q. Therefore pencil p with center Q is projective with point range

o q.



CHAPTER IV

INVOLUTIONS

1. Involution on a Line

Six points on a line are in involution in case they can he

grouped in pairs so that a complete quadrangle can be draim, Tdth a

pair of opposite sides through each pair of points.

Construction* Given a line and two pairs of points A, A* and

B, B' and point C to determine the sixth point C'. Draw a line through

A and alsorone through A*. Then draw a line through C intersecting the

line through A at point K, and the line through A* at M. Draw B K

determining N on line A'M. Draw B’M determining L on A K, Then draw

L N determining C*.
An involution is determined whenever enpugh is known to establish

two determining triads of the pro;5ectivity. Consequently the follow¬

ing data are sufficient for this purpose* two pairs of corresponding

elements* one self-corresponding element and a pair of corresponding

elements; two self-corresponding elements.

Theorem I,- If two complete quadrangles have their sides in a

one-to-one correspondence so that five pairs of corresponding sides inter¬

sect in points on a straight line, then the sixth pair also intersect in

a point on the same straight line.
t I

Given points A, A , B, B and C on line 1. K L M N and

K* L* M' n' are complete quadrangles.

Consider triangles ELM and K* L* M*, which are perspective

from line, 1. Therefore by Desargues' Theorem the triangles are perspec¬

tive from a point. That is to say K K* * L L*, MM* pass through the

same point. Call the point S,

19
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Also consider triangles K M N and K* M* N*, nrhich are perspective

from line, 1. Hence ty Desargues* Theorem they are perspective from a

point. That is to say K M M*, N N* pass through the same point, S.

Therefore K K', L L*, M M*, N N’ pass through the point S.

Hence the triangles L M N and L’ M’ N* are perspective from S,

Thus by Desargues* Theorem the triangles L M H and L’ M’ N' are perspective

from line, 1,

But hy construction L M and L* M* meet at B’ on 1, M H and

M' N* meet at A' on 1, Therefore L N and L* H* must meet at a point C*

on line 1,

Theorem II,- An involution on a line is a transformation of

period two.

Proof: K L M N and K* L* M* N’ are complete quadrangles. Con¬

sider an involution on a line, 1, determined by A, A*, B, b'. Given a

point construct the corresponding point Then take where C’^
is and construct the corresp«aiding point c’g. Prove that c'g is identical
with True by Theorem I, Therefore an involution is of period two.

Theorem III, - An involution on a line is a projective trans¬

formation or a projectivity.

Proof: Consider an involution on a line, 1, determined by two

pairs of points A, a’ and B, B*, Given a point C construct C*, Regard

only those complete quadrangles with L and M fixed.

Let C vary. The point range C on 1 is projective with the line

pencil M C, Pencil M C is projective with the point range K on A.L, Point

range E on A L is projective with the line pencil B K, Line pencil B K

is projective with the point range N on A*, Point range N on A* is

projective with line pencil L N, Line pencil L N is projective with the

point range C*on 1,
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Theorem IV,- A projective transformation of period two is an

involution.

Proof* Consider a projectivity A B C..... A A.' B* c'
on a line. Suppose this projectivity is of period two, then A A*, B B*

project into A* A, b' B .....

Consider the involution determined by the two pairs of points

A A* and B b'. Hence an involution is a projective transformation of

period two.

A point that corresponds to itself in an involution is a double

or invariant point.

Theorem V,- if an involution on a line has two double points,

they separate every pair of corresponding points harmonically.

Proof* Consider an involution on a line, 1, determined by

A, A*, B, b' and having two double points. Prove that B b’ separate

the double points harmonically. Given point C construct the corres¬

ponding point c’. Denote the point of intersection of K M and L Ef by P.

Hold A A*, B B*, L and M fixed. Let € vary.

Pencils M C and L C* are projective since an involution is pro¬

jective. The pencils H C and L c’ generate a conic. For, two projective,

coplanar, non-concentric flat pencils generate a conic. The centers of

the pencils are M and L.

Let Pj and Fg/be the intersections of the conic with line, 1.
Prove that and Fg are double points.

As C B*, C' > B, then L C* > L B. Thus P —^ L

and L P —> LB. L B is tangent to the conic at L. As C —^B,

C’ —» B’, then L C’ —> L B*. Thus P > M and M P —> MB. MB

is tangent to the conic at M.

Prove that B B* separate F. and F_ harmonically. Let L M be
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the polar line of B, If the point is outside of the conic its polar line

■with respect to the conic is the chord of contact of the tsmgent from the

point to the conic.

B b’ separate and ?£ harmonically, ^or, the polar line of a

point B ■with respect to a conic is the locus of the harmonic conjugate of

B and the intersection points of the conic ■with a variable line through B.

Steiner*s construction for an involution on a line. Consider an

involution on a line, 1, determined by ■two pairs of points A A* and B B*.
Select any point S not on 1. Craw the pencil S (A A* B B*).

Draw any conic through S determining Aj^ Bj^ A*^ B*^* the lined

Ai (Bj B*j^ and a'j (B*j Bj A^)* The pencils vdth centers Aj^ and A’^^
are projective and have a self-corresponding line (Aj^ A*j). Hence they
are perspective. Determine the axis of perspecti-vity/ u. Denote the

intersections of u and the conic by H and Z.

Given a point C on the line to construct the corresponding point

C’» Dirair S C determinipg on the conic. Draw determining P on u.

Draw A2 P determining c'j^ on the conic. Draw S determining C* on 1.
Draw Aj Cj emd A*j^ C*j^. They should intersect on u.
2. Involution on a Conic

On a conic select four points A, A*, B, B*. Draw the pencils

A (a* B* B) and A* (A B B*), A B* and A* B determine M. A B and A* B*

determine N. M and H. determine ■the axis of perspecti^vity.

Given a point C on the conic to construct C*. Drair A* c

determining P on u. Draw A P determining C’ on the conic.

This correspondence is an involution on the conic.

The involution is determined by ■two pairs of points.

The correspondence is a projectivlty for it is a on4-to-one

correspmidenee that preserves cross ratio.



23

Theorem 71.- The correspondence is of period two and is there¬

fore an involution.

Proof* In the figure for the construction of an involution on

a conic place where C* is and repeat the construction. Draw A* de¬

termining P* on u. Draw A P* determining . Prove C*^ H C, (M P P* N)

Theorem 711.- The lines joining corresponding points of an involu¬

tion on a conic pass through a point 0, The line joining any two points

meets the lines joining the corresponding point in the polar line of 0.

Proof* Consider a conic and on it an involution determined hy

two pairs of points A, A*; B, B*. Draw pencils A (A* b’ B) and A* (ABB*).
The points A, A*, B, B* determine a complete qiradrangle. Draw

the SLxis of perspectivity, u, of the two pencils A (A* B* B) and A* (A B B*).
Denote hy 0 the intersection of A A* and B B*.

Consider any third point C and construct its corresponding point

C*. B C and B* C* intersect in P on u, B C* and B* C intersect in P* on

u. The axis, u, is the polar line of 0,

Prove C C* passes through 0, Use the symmetric property of pole

and polar relations. The polar line, u, of 0 passes through P hy construc¬

tion. Therefore the polar line of P passes through 0. The polar line of

P joins P* to the point when C C* intersects B B*. This point must he 0,

Hence C c’ passes through 0,



CHAPTER V

PROJECTIVITY

1. General Definitions

Any one-to-one correspondence between.the elements of two one

dimensional forms that preseirves cross ratio is a projectivity.

A projectivity is a sequence of perspectitittes*

A projectivity is also a projective transformation.

2, Projectivity on a Line

A projectivity on a line can be constructed by a sequence of

perspectivities. Let lines 1 and 1* coincide. Draw any other line 1"

distinct from 1. It is also distinct from 1*. Project A*, B*, c’ on

1 into A", B", C" on 1" from any point . Draw a line 1 * * ’ from any

point Q on 1" through A, Take any point P2 on the line A A" and project
A", B", C" into A”’, B'*', C'* ’ on l”’. Draw B B-** and C C’' * deter¬

mining Pg. Draw Pg A. therefore by means of three perspectivities A*,
B*, C* are projected into A, B, C on 1.

Steiner’s Construction gives a second construction of a pro¬

ject!vity on a line. Consider a projectivity ABC A A' B' C .....

on a line, 1. Given a point D on 1 to constmct the corresponding point

D*. First, select any point S not on 1. Draw S (A B C A* B* C*). Draw

any conic through S determining points Aj^, B^, C^, A*j^, C’j^. Draw
the lines C^ (a'^, , C*^) and C*]^ (Aj, B^, Cj). The pencils with
centers Cj^ and c'^ are projective and have a self-corresponding line.
Hence the pencils are perspective. Denote the axis of perspectivity by,

u. Denote the intersections of the axis with the conic by H and K. Draw

S D determining Dj^. Draw C’^^ D^^ determining P on u. Draw C^ P determining

24
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D'i. Draw S D'j determining D* on 1.

A projeotivity on a line may "be defined in this way. Consider

two point ranges on 1 ^ 1* and AB C B* c' .....

'&.• c.

This is a projectivity on a line.

The projectivity between superposed forms is said to be hyper¬

bolic when there are two self-corresponding (invariant) elements, para¬

bolic when there is one, and elliptic when there is none.

Regard a projectivity on a line with one invariant point. Consider

the flat pencil a, b, c, d with vertex at and the flat pencil a’, b*,

c*, d’ with vertex at Sg. ^he pencils are perspective. The axis of

perspectivity is r. Let line 1 pass through the intersection of Sg and
r, i.e. Pg. Pj^ is the intersection of r and 1. Then P^ ” ^2* Therefore
ABC .....A A* B* C* ..... has one invariant point (Pj^).

Consider a projectivity on a line with two invariant points.

Consider two perspective flat pencils with centers and Sg. Ihe axis of
perspectivity is r. Let any line 1 cut these pencils in A, B, C, D, A*,

B*, C', D*. Then point ranges ABCD ..... onl and A* B’ C* Dl..jon 1

are projective. This projectivity has two self-corresponding points P^^
and Pg. Pj^ is the intersection of r and 1. Pg is the intersection of
the line Joining Sg with 1. Therefore A B C A A* B* C’ .....

has two invariant points. ABC Pj^ A A* B* C* P^. ABC

^2 A A* B* C’ Pg.
Von Stamdt^s Theorem I.- If a projectivity on a line leaves

three distinct points invariant, then it leaves every point invariant.

In this case the projective transformation is called the identity

trans formation.

l=i
K



26

Proof* Consider ABC onl^ll.
Suppose aEa', bEb*, cEc*. Select any fourth point D on 1, Find

the corresponding point P* on ll. (A B C D) ss (A* B* C* D*), Cross ratio

is invariant \inder projection and section. By assumption (A B CD) —

(a B C D'), Dedekind’s Continuity Postulate states that if A, B, C and K

(cross ratio) are given, then a point D is imiquely determined so that

(a B C D) = K, Therefore D E D*. In this projectivity on a line there

are infinite invariant points.

Theorem II,- If a projectivity on a line has one pair of reci¬

procal corresponding points then every corresponding pair corresponds

reciprocally and the projectivity is sm involution.

Proof I Consider projectivity tt on a line 1. A and A* are

reciprocal corresponding points i.e, *n'(A) zr A* and also (A*) zz A.

Consider any other point P on 1 of the pro jectivity , but

not a double point of the projectivity. Let tv (p) zr P^. Prove that

-w(P*) H P. That is to say prove P and P'reciprocal corresponding points

in the projectivity TT •

Consider the four points A, A*, P, P*. (A A* P P*) n (A* A P* P).

Interchanging the elements of a cross ratio in pairs leaves the value of

the cross ratio unchanged.

Then there is a projectivity tt *, such that A A* PP’
A* A P* P Any one-to-one correspondence between elements of two

one dimensional forms that preserves cross ratio is a projectivity.

But in the projectivity tv' there are three pairs of corres¬

ponding elements. They are A A*, A* A and P p’ . Therefore projectivity

equals projeotivity tv . A projective transformation between two

one dimensional forms is uniquely determined by three pairs of correspond-
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ing elements. But in the projectivity •u *, P' transfoms into P, Thus

every pair of corresponding points correspond reciprocally.

The projectivity vv on 1 is an involution by definition. An

involution on a line is determined by two pairs of corresponding points.

Projectiyity on a Conio

Consider a conic and three pairs of points A, A*| B, B*| C, C*
on it. Draw pencils C (A* B* c’) and C* (A B C). C B* and C* B determine

M. C a' and C* A determine N. M N determine u, axis of perspectivity.

Given D on the conic to construct D* on the conic. Draw c’ D

determining P on u. Draw C P determining D* on the conic.

This correspondence is called a projeotivity on the conic.

This one-to-one correspondence of point on the conic is determined

by three pairs of corresponding points.

Theorem III.- To any four points correspond four points with the

same cross ratio.

Proofs Prove that (A B C D) = (A* B* C* d’), (ABC D) equals

the cross ratio of the lines joining C* to A B G D. Then this cross

ratio of the four lines from C* to A B C D is equal to the cross ratio of

the four points on u. The four points are U, M, P and Q. (if M P Q) equals

the cross ratio of four lines through C. That equals the cross ratio of

the four points A* B* C* D*. That is a projectivity.

If the conic is proper the projectivity has 0, 1 or 2 double

points



CHAPTER VI

PENCIL OP CONICS AND ITS DUAL

1. Pencil of Conics

A pencil of conics is the single infinity of conies through

four points, no three of -vhich are eollinear. These points are base

points.

Desargues* Theorem I.- A pencil of conics cuts any line in the

plane not through any of the four base points in pairs of points in an

involution.

Proof: Consider four points L, M and N and the pencil of

conics determined by them.

Consider a line 1 not through Z, L, M or N. Select any point

D on line 1. There -will be one conic of the pencil through D for five

points of a plane determine a conic. Let H L intersect line 1 at A.

Let M N intersect 1 at A*. Let K N intersect 1 at B. Let L M intersect

1 at C*. Let K M intersect 1 at C. Let N L intersect 1 at C'.

Regard the involution on 1 determined by A A*, B B* and D.

Construct D* corresponding to D in the involution.

Prove that the conic through D passes through D*. Use the

converse of Pascal's Theorem. Use hexagon ^1* ® 2* ^4* ^5* ^6'
Dj^ D’g meets Ng at B. D'g Lg meets Ng Mg at n'. Lg meets Mg D^^ at
K*.

But the points B, N* and k' are colllnear. Therefore the conic

throTigh D passes through D*.
Two conies of the pencil or none at all are tangent to any given

line in a plane.

28
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2. Rajige of Conies

A range of conies Is all the ccnlcs tangent to four given lines,

no three of which are concurrent. These lines are called base lines.

Dual of Desargues* theorem.- The tangents from a point to all

the conics of a range forai pairs of lines in an involution. The proof

is evident by dviality.

Two conics of the range of cosoics or none at all pass through a

given point.



CHAPTER VII

PROBLEMS IN CONSTRUCTION

1. Given Five of Its Points

Construct the conie given the points Bg, Sg*
Find Cg. Draw any line 1 through Drair A^^ Bg aJid Sg determining
L. Draw S*g D^ meeting 1 at N. Draw L N and Bg S*g determining M,
Draw M Sg meeting L in the point required, Cg.

Proof: Since 1,2 and 4,5; 2,3 and 5,6 ; 3,4 and 6,1 meet in

collinear points L, M, N respectively, the conic is the one required.

This is true hy the Converse of Pascal's Thewrem.

2. Given Five of Its Tangents

Given the tangents a^^, 1)2, 8*3, d^, Sg. Find Cg. Select any

point L on a^. Join aj^ bg and d^ Sg by line 1. The point of intersection
of s'j and d^ is joined to L by line, n. Then 1 n and b2 Sg determine
line m. The points m Sg and L are joined by the line required Cg.

Proof: Since 1,2 and 4,5; 2,3 and 5,6; 3,4 and 6,1 are joined

by conctirrent lines 1, m, n respectively, the conic is the one required.

The Converse of Brianchon's Theorem verifies this.

3. Given Ihree of Its Points and Tangents at Two of Them

Construct the conic given the points Aj^ ^ Cg, 83, ^ D4 and

tangents at Aj^ and S*g. Find Sg. Draw any line 1 through A^. Draw
tangents from A^ and S’g meeting at point N. Draw Bg S’g meeting 1 at M.
Draw M N and Aj^ Bg meeting at L. Draw L S*g meeting 1 in a point Sg,
which is the required point. Vary 1 and repeat the operation.

Proof: Since 1,2 and 4,5; 2,3 and 5,6; 3,4 and 6,1 meet in

collinear points L, M, N respectively, the conic is the one required.

This is true by the Converse of Pascal's Theorem.

30



31

4. Given. Three of Its Tangents and Points of Contact of Two of Them

Construct the conic given the tangents a-j 3 C0, b2, s’g ^ and
ttie points of contact of aj^ and s'g. Find Sg. Select any point L on aj^.

Draw line n through the points of contact of and s*g. Through h2 s'g
and L draw line m. Ihe points mn and a^ b2 determine 1. Join 1 s*g sind
L by a line Sg, -which is the required line. Vary L and repeat the opera¬

tion.

Proof: Since 1,2 and 4,5; 2,3 and 5,6; 3,4 and 6,1 are joined

by concurrent lines 1, m, n respectively, the conic is the one required.

This is valid by the Converse of Brianchon's Theorem.

5. Given Four Points and a Tangent at One of Them.

Construct the coaic given the four points — Cg, B2 » S'g, 1)4
and a tangent at A^, Find Sg, Draw any line 1 through Aj* Draw s’j D^

meeting tangent Cg at K, Draw B2 S^g meeting 1 at M, Draw M N and

Ai B2 determining L, Draw L D4 meeting 1 at Sg,
Proof: Since 1,2 and 4,5; 2,3 and 5,6; 3,4 and 6,1 meet in

oollinear points L, M, respectively, the conic is the required conic.

The Converse of Pascal*s Theorem verifies this.

6. (jtven Five Points with Two of Them at Infinity

Construct the conic given the points A^, B2 at infinity, S’j, D^
at infini-fcy, and S^, Find Cg* Draw any line 1 through Draw B2 add

D4 Sg determining, L, Draw S^g D^ meeting 1 at N, Draw L N and Bg S’g
meeting at M, Draw M Sg meeting 1 at Cg, Vary 1 and repeat the operation.

Proof: Since 1,2 and 4,5; 2,3 and 5,6; 3,4 and 6,1 meet in col-

linear L, M, N respectively, the conic is the required conic. This is true

by the Converse of Pascal’s Theorem,

7. Given Two Finite Points, Two Points at Infinity and a Tangent at One
of the Finite Points

Construct the conic given the points ~ Cg, B2 at infinity.
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s’g, at infinity and the tangent at A^. Draw any line 1 through
Draw S'g D^ meeting tangent (1,6) at N, Draw Eg S*j meeting 1 at M. Draw
M N and A^ Bg determining L. Draw L D^ meeting 1 at S^, Vary 1 and repeat
the operation.

Proof: Since 1,2 and 4,5j 2,3 and 5,6; 3,4 and 6,1 meet in

collinear points L, M, K respectively, the conic is the one required.

This is valid by the Converse of Pascal’s Theorem.

8. Given the Asymptotes and a Finite Point

Construct the conic given the asymptotes and Bg on the conic.
Find Sg. Draw any line 1 through A^, In this case draw 1 parallel to
the direction of A^. The lines tangent at A^ and S' g are the asymptotes.
The asymptotes intersect at N, i.e. A^ Cg and S*^ D^. Draw Bg s'g meeting
1 at M. Draw M K and Aj^ Bg determining L. Draw L D^ meeting 1 at Sg.
Vary 1 and repeat the operation.

Proof: Since 1,2 and 4,5; 2,3 and 5,6; 3,4 and 6,1 meet in

collinear points L, M, N respectively, the conic is the required conic.

This is true by the Converse of Pascal’s Theorem.

9. Given Four Tangents and a Line at Infinity

Construct the conic given the lines a^^, b2, s'g, and Sg at
infinity. Select any point L on a^^* Join s’g d^ and L by line n. Through

a^ bg draw 1 parallel to d^. Join bg s’g and 1 n by line m« The points
m Sg and L determine the line Cg. That is to say draw a line through L

parallel to m. Vary L and repeat the operation.

Proof: Since 1,2 and 4,5; 2,3 and 5,6; 3,4 and 6,1 are joined

by concurrent lines 1, m, n respectively, the conic is the required conic.

This is valid by the Converse of Brianchon’s Theorem.

10. Given Three Finite Lines, Two Identical Lines at Infinity and a
Contact Point at' Infinity

Construct the conic given the lines bg, 8*g, d^, a^ ^ cg at
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infinity and a contact point at infinity. Find 85. Select any point L

on aj, i.e. indicate the direction of L at infinity on aj ^ eg. ^e

point of contact on aj is fixed. Draw line m through h2 s's and parallel

to the direction of L. The line through 8*3 d4 parallel to the direction

of the point of contact is n. Draw ft line 1 through m n and parallel to

b2» ^he line through d4 1 and parallel to the direction of L is 85.

Proof: Since 1,2 and 4,5; 2,3 and 5,6; 3,4 and 6,1 are Joined

by concurrent lines 1, m, n respectively, the conic is the required fconie.

This is true by the Converse of Brianchon’s theorem.
11. Given Three Lines and Asymptotes

Construct the conic given the three lines ai = ce, b2, 8*3 = d4;

ai and 8*3 are as^ptotes. The points of contact are on ai and 8*3. Find

85* Select any point L on aj. The line Joining L and the point b2 s'3 is

m. Through a^ b2 draw a line 1 parallel to m. Then Join 1 8*3 and L by

a line 85. Vary L and repeat the operation,

Prodf: The conic is the required conic by the Converse of

Brianchon’s Theorem



CHAPTER VIII

CONCLUSIONS

Pascal's Theorem marks the climax of the classical theory of

projective geometry. Its importance in the synthetic treatment of conies

can hardly he exaggerated. But it has enjoyed a popularity commensurate

■with if not exceeding its importance. Discovered hy its precocious author

at the age of sixteen, studied hy many of the eminent fathers of projective

geometry, this theorem caught the imagination of mathemAticians to an as¬

tonishing degree. As the remarkable properties of the complete 6*-point

were tinfolded, men called it in 'bheir enthusiasm the mystic hexagon. This

is perhaps not surprising in view of the possibility of drawing -with the

aid of the theorem elements of a conic, such as a tangent at a point, ■tan¬

gents from a point, asymptotes, center, etc. The conic itself is represen¬

ted only hy a skeleton of five points. At one time however the theorem

became almost a menace to mathematical progress. Investigators turned

a'way from their search for new truths to devote themselves to finding new

proofs of Pascal’s Theorem,

It is a remarkable fact that while Pascal's Theorem ■was

published in 1640 Brianchon's did not appear until 1806, Needless to

say the principle of duality ■was unknown at the earlier date.

Since the Principle of Duality has been used to a great extent

in this study it is fitting to give a few facts about it, Poncelet and

Uergonne produced the Principle' of Duality, It asserts that from any state¬

ment on theorems concerning the relative position of elements composing a

geometrical configuration, imother statement or theorem can be obtained by

a simple interchange of elements of the configuration ■with their reciprocals.

34
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This thesis has been prepared for the purpose of investigating

the properties of conics through a special method, which is the synthetic

and projective treatment.

The subject has been developed with due attention to the impor¬

tant and recognized principles. The difficulties of the subject were

reduced almost half by the Principle of Duality and the valuable scheme

from Pascal*s Theorem,

The value of the application of the Principle of Duality has

been illustrated in chapters II, III, VI and VII,

The investigation developed in chapters II through VII verifies

that the properties of conics can be proved by the synthetic and projec-

tiye method.

In chapter VII it was verified that it is necessary and suf¬

ficient to have five Independent conditions given to construct a conic.

The symbols that are used in this thesis are defined in the

Appendix.

The theorems that are used, but not proved in the thesis, are

stated in the Appendix.

In the list of figures II, 1 means Chapter II, Section 1.
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APPENDIX

The eymbol “ eacpresses projective relationship.

The symbol “ represents perspective position.A

The symbol ^ means identically equal.
The symbol ( ) represents cross ratio.

The symbol — A* says that A and A* are reciprocal corres¬

ponding points in a projectivity.

The symbol —y is used for the -word approaches. A C, i.e.

A approaches C.

Theorem of Pappus.- Cross ratio is invariant under projection

and section.

Desargues’ Theorem.- If two triangles are perspective from a

point, then they are perspective from a line.

Converse of Desargues* Theorem.- If two triangles are perspective

from a line, then they are perspective from a point.

Dedekind*s Continuity Postulate.- If A, B, C and K (cross ratio)

are given, then a point D is uniquely determined so that (A B C D) — K.
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Figure 1.-Point Conic

Figure 2.-Point Conic

Figure 3.-Point Conic
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Figure 5.-Line Conic



Figure 6.-Pascal’s Hexagon
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Figure 7.-Briaiichoii*s Hexagon
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Figure 9.-Circumscribed Pentagon
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Figtire lO.-Inscrl'bed Quadrangle



Figur® 12.-Inscribed Triangle

Figure 13.-Circumscribed Triangle
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Figure 16.-Polar of a Point -with Respect to a Pair of Lines
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Figure 17,-Polar of a Point with Respect to a Triangle
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Figure 18.-Pole of a Line with Respect to a Triangle
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Figure 21*-Polar of a Point -with Respect to a Conic

Figure 22.-Complete Quadrangle tnscrfbed'in’Conl§* ’J'
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Figure 25.-Pole of a Line with Respect to a Conic

Figure 26.-Complete Quadrilateral Cir-
iurnscriTied ■ABout oBonio
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Figure 28«-Pole mth Respect to a Conic
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Figure 30.-Polar Line of a Conic
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Figure 31♦-Polar Line of a Conic
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Figure 32,-Pole of a Conic
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Figure 33.-Pole of a Conic
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Figure 34.-Pole of a Conic



Figure 35,-Polar Line of a Conic
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Figure 37«-Pole of a Conic
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Figure 38.-Pole of a Conic
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Figure 39.-Involution on a Line
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Figure 40.-Involution on a Line
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Figure 4l.^Involution-on a Line
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^’igure 42,-Involution on a Line
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Figure 4S.-Involution on a Line
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Figure 44.-Steiner's Construction of Involution on a Line
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Figure 45.-Involution on a Conic



70



71



72

Figure 48.-Steiner’s Construction of a Projectivity on a Line
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Figure 49.-One In-variant Element in a Projectivity on a Line
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Figure 50,-Two Invariant Elements in a Projectivlty on a Line
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Figure 51.-ProJ©ctivity on a Conic
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Figure 52.-Pencil of Conics
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Figure 63.-Point Conic
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Figure 55.-Point Conic
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Figure 57|»Point Conic
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Figure 58.-Point Conic
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Figure 59.-Point Conic
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Figure 60.-Point Conic

V



 



Figure 62.-Line Conic



87

Figure 63.-Line Conic


