
ABSTRACT

COMPUTER AND INFORMATION SCIENCE DEPARTMENT

ARAFA, AMR B.S. ARAB ACADEMY FOR SCIENCE AND TECHNOLOGY, 2003

FACE RECOGNITION/CLUSTERING, PERFORMANCE IMPROVEMENTS

Advisor: Professor Roy George

Thesis dated May 2007

This thesis will introduce Face Recognition as an important and crucially needed type of

biometrics. The existing and most widely used Face Recognition algorithms have been

tested and the results will be presented. Additionally, the limitations of the existing FF

methods will be discussed, focusing chiefly on the future of Face Recognition and the

reasons such relatively poor results were achieved in comparison with results from other

Biometrics. Finally, a novel system that enhances the performance of the face matching

for existing FF algorithms (High-speed k-means Image Clustering using the Discrete

Cosine Transform and its comparison with existing methods) will be discussed.

Appendix A focuses on the results obtained from the Haar face detection algorithm,

utilizing different face databases. Appendix B is dedicated to the Matlab code.

FACE RECOGNITION/CLUSTERING - PERFORMANCE IMPROVEMENTS

A THESIS

SUBMITTED TO THE FACULTY OF CLARK ATLANTA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER’S OF COMPUTER SCIENCE

BY

AMR ARAFA

DEPARTMENT OF COMPUTER SCIENCE

ATLANTA, GEORGIA

MAY 2007

R.iK-r^s^

©2007

AMR ARAFA

All Rights Reserved

ACKNOWLEDGEMENTS

First and foremost, I thank my parents for their continuous love and support. I

hope I have made them proud. I thank my supervisor. Dr. Roy George for his support

through out my master’s period and for the tolerance, patience and trust he has always

given me. I specially thank him for allowing me to work in this exciting and very

interesting area ofpattern recognition and image analysis.

I thank Dr. Samir Moghazy from the Physics Department for encouraging me to

join the Computer Science Master’s program and for his truly caring parental support,

which I shall never forget. Dr. Samir, this thesis is dedicated to you. I also thank Dr.

Khalil Shujaee for his support and guidance throughout my period of study at Clark

Atlanta University. I thank Clark Atlanta University’s Computer and Information Science

professors Dr. Hsin-Chu Chen, Dr. Gerry Howe, and Dr. Zhichenq Wang who have been

very helpful and inspiring to me on both personal and academic levels. I thank the Clark

Atlanta University staff for always assuring that everything ran smoothly, and for their

willingness to help me whenever I needed them.

11

TABLE OF CONTENTS

Chapter Page

ACKNOWLEDGMENTS ii

LIST OF FIGURES vi

LIST OF TABLES viii

1. INTRODUCTION 1

1.0 Introduction 1

1.1 Overview 1

1.2 Project Objectives 2

1.3 General Description 3

1.4 System Characteristics 3

1.5 System Functionality 4

1.6 Interface Requirements 4

1.7 Motivation 4

1.8 Applications 5

1.9 System Specifications 6

1.10 Organization Report 6

2. LITERATURE REVIEW ON FACE RECOGNITION 7

2.0 Biometrics 7

2.0.1 Biometrics Attributes 7

2.1 Face Recognition 9

2.1.0 Need For Face Recognition 10

2.1.1 Past Work 11

iii

TABLE OF CONTENTS

(continued)

Chapter Page

2.1.2 Algorithms Used 12

2.1.3 Face Recognition Difficulties 13

2.1.4 The Five Facial Recognition Steps 14

2.1.5 The Current Facial Recognition Vendors 16

2.1.6 Case Study Algorithms 17

2.1.7 Our Testing System 19

2.1.8 The Testing Routine 21

2.1.9 Our Results 21

2.1.10 Using the Face Recognition Algorithms 22

2.1.11 Why The Bad Results? 22

2.1.12 Future of Face Recognition 24

3. IMAGE CLUSTERING LITERATURE REVIEW 26

3.0 Introduction 26

3.1 History 27

3.2 Clustering Algorithms 29

3.2.0 k-means Algorithm 29

3.2.1 Clustering by Fitting Finite Mixture Model 31

3.2.2 GMM Gaussian Mixture Models 35

3.2.3 Image Clustering with Metric, Local Linear Structure and

Affine Symmetry 37

IV

TABLE OF CONTENTS

(continued)

Chapter Page

4. FACE DATABASE CLUSTERING 40

4.0 Introduction 40

4.1 Description ofOur Algorithm 42

4.1.0 Image Clustering Using The k-means Algorithm 43

4.1.1 Speeding up Using The Discrete Cosine Transform 43

4.1.2 Recovering Images from Shortened DCT Signals 45

4.2 Performance Analysis 49

5. USER MANUAL 50

5.0 Introduction 50

5.1 Software Requirement 50

5.2 Getting Started 51

5.3 The Main Screen 51

5.4 Progress Screen... 52

5.5 Showing The Clusters Screen 53

5.6 The Testing Screen 54

5.7 The Saving Screen 54

5.8 The Results 55

5.9 Conclusion 56

APPENDIX A FACE DETECTION SOFTWARE VALIDATION 57

APPENDIX B MATLAB CODES 73

V

TABLE OF CONTENTS

(continued)

Chapter Page

REFERENCES 89

VI

LIST OF FIGURES

Figure Page
1. The System Model 3

2. Comparison ofVarious Biometries 9

3. a) The System Graphical User Interface 20

3. b) The GUI for the Algorithms and the Testing 20

4. The Results in The Command Window 21

5. The Results in a Chart 22

6. a) Max Prant Instutite Database 23

6. b) A Typical Recognition Mistake 23

7. Faces That We Can Still Recognize 25

8. The Regular Matching Process 41

9. The Matching With Only The Center Image 41

10. Center Images Created for Different Clusters 42

11. An Original Image 45

12. Image Vector 46

13. Original DCT and Shortened DCT 46

14. Image Recovered from Shortened DCT Vector 47

15. Cluster Center and Members 48

16. AT&T Database Snapshot 50

17. The Interface After Execution 51

18. Progress Screens 52

19. The Cluster Selection 53

vii

LIST OF FIGURES

(continued)

Figure Page
20. The Testing Screen 54

21. The Saving Screen 54

22. The Result Cluster Folder 55

23. Example ofMIT/CMU Database 59

24. Example ofCMUII Database 60

25. Example ofAT&T Database 61

26. Example of JAFFE Database 62

27. Example ofYALE Database 63

28. Example ofBoth Non-detected Errors and Mistakes in MIT/CMU

Database 64

29. Example ofBoth Non-detected Errors and Mistakes in CMU II

Database 65

30. Example ofBoth Non-detected Errors and Mistakes in AT&T Database 66

31. The Only Mistake in JAFFE Database 67

32. Example ofYALE Results with no Mistakes 68

33. The Results Shown in The Graph 70

34. The Error Ratio with The Description of The Database 71

viii

Table

LIST OF TABLES

Page

1. Comparison of The Face Recognition Techniques 11

2. Different Recognition Methods 12

3. The Comparison on Different Face Databases 69

IX

CHAPTER 1

INTRODUCTION

1.0 Introduction

The humein ability of recognizing faces is quite impressive. Although face

recognition studies date back twenty years, a machine that could imitate the human

brain’s ability to recognize faces under different natural challenges like pose, illumination

and aging, did not exist yet. In the past decade, biometrics has shown a great deal of

success in many applications; however, the need of a contact free authentication system

has become much more of a necessity, while at the same time, it provides one of the best

advantages offered by face recognition. The amoimt of time spent on matching the

entered face with the entire database is both processor intense and time wasting. To

address this issue, in this thesis, a clustering system that works as a pre-process to face

recognition was developed. The idea is to cluster faces that look similar together so that

an entered face would be compared to the most similar cluster first. A comparison was

also made of some important face recognition algorithms over different databases. In

Appendix A the Haar face detection algorithm was also tested over different databases.

1.1 Overview

In this project, a method for automated classification and recognition of face

images from a random set of images is presented using k-means clustering and compared

1

2

with general clustering methods in face clustering. The method is speeded up

considerably, using the Discrete Cosine Transform (DCT) for dimensionality reduction

of image data. The method results in the obtainment of one or more central images, each

representing a different person's face found in the face database. Recognition can then be

implemented by the nearest neighbor technique, or any other suitable technique.

The service includes entering the database location in the memory into the

interface and automatically grouping them into a number of clusters entered by the user,

and displaying the central images for each cluster. The next phase of the project is to

allow the user to save the new clusters to allow the third phase, the recognition. The

recognition phase involves matching an entered face with the central images created

earlier by the system. All this is done in a step-by-step fashion and a user-friendly

interface to widen the range of possible users to the system.

1.2 Project Objectives

The primary goal of this thesis is to design and implement a system that is capable

of successlul face clustering for different face databases. The main objectives of the face

Recognition System is:

• To provide a user-friendly interface.

• To reduce the consumption of the storage devices.

• To speed up the clustering process by applying DCT (Discrete Cosine Transform)

technique

3
1.3 General Description

Face database clustering is a system that clusters faces with similar features in a

one database to ease the subsequent task of recognition. The following diagram shows the

system’s flow chart.

Fig. 1. The system model

1.4 System Characteristics

Other than knowing the basic functions of a computer, no other skills are needed.

Any user will find the system user-friendly and easy to understand. The system does not

take into consideration any assumption or dependency.

1.5System Functionality
4

The system functionalities are explained in the following headings.

• User interface.

• Load location of images, number if images to be clustered and their extension and

number of clusters desired.

• Convert images into vectors.

• Apply DCT into the images.

• Display images and central images.

• Display nearest central image (after matching).

• Save clusters.

1.6 Interface Requirements

The interfaces required are categorized in the following phases. A Graphical User

Interface (GUI) was developed to make it easier for the user to effectively use the system.

From that interface, the user will enter the desired information and the system will then

produce the respective results. The proposed system will work on any computer that has

the ability to run Matlab? andwill run on Windows98/XP or its compatible operating

systems.

1.7 Motivation

The process of clustering is an important function in information processing and

machine learning. Clustering refers to grouping several sets of data into one or more

distinct groups based on certain pre-defmed, or automatically determined, data

5
characteristics. In particular, clustering has been extremely useful in automated

classification of data, as in automated face recognition and helps to speed up the process

of image matching.

1.8 Applications

Face recognition can be used and has been attempted in the following areas [1]:

• Entertainment: In entertainment it has been used for these specific

applications:

i. Virtual reality

ii. Human Robot Interaction

iii. Human Computer Interaction

• Smart Cards: Currently, people carry a variety of smart cards and each of them

has access control. Some of the applications of face recognition are:

i. National ID

ii. Passport

iii. Driving License

iv. Voter Registration

• Information Security: Some of the applications in information security are:

i. TV Parent Control

ii. Personal Device Logon

iii. Desktop Logon

• Law Enforcement and Surveillance: It is one of the areas where it is widely

accepted because of the threat of disruptive forces to civilization.

6
i. CCTV control

ii. Theft control

iii. Terrorist operation and investigation

1.9 System Specifications

In order to measure the performance of the Face Clustering/Recognition system

developed, a different standard face databases was used: AT&T, Gtech, FERET, etc. The

minimum system requirements to run Face Clustering/Reeognition system so that it

works efficiently, are listed below. These requirements are part of the industry-based

standards on which it is developed for Windows XP, Pentium(R) M processor 1.73GB

with 0.99GB ofRAM.

1.10 Organization ofReport

Chapter 2 eontains a literature review of Face recognition. Chapter 3 is a literature

review of image clustering. Chapter 4 contains the face database clustering system.

Chapter 5 is the user manual. Appendix A contains testing of the Haar face detection

software and Appendix B is the Matlab code of our system.

CHAPTER 2

LITERATURE REVIEW ON FACE RECOGNITION

2.0 Biometrics

“Any automatically measurable, robust and distinctive physical characteristic or

personal trait that can be used to identify an individual or verify the claimed identity of an

individual can be considered a biometric” [1]. Here is the definition of the terms used in

the previous paragraph:

• Measurable: Easy to be measured. The characteristic can be easily presented to

the sensor.

• Robust: Does not change over time.

• Distinctive: The differences in the biometric among the population.

In today’s world there are many types of available biometrics that include, but are

not limited to: Iris scan. Retinal scan. Voice recognition. Finger print. Ear geometry. Face

recognition. Hand geometry. Dynamic Signature verification. Keystroke dynamics, DNA

analysis. In fact, any human feature can be considered as a biometric; however, there are

some attributes that should be validated before a feature can be considered as one.

2.0.1 Biometrics Attributes

These attributes include, as discussed in the National Center for State Courts:

7

8

• Verify: Whether or not the Biometric is capable of verification. Verification is the

process by which an input is compared to specific data previously recorded from

the user, to find out if the person is who they claim to be.

• ID: Whether or not the Biometric is capable of identification. Identification is the

process by which an input is compared to a large data set previously recorded

from many people, to determine which person the user is.

• Accuracy: How well the Biometric is able to tell individuals apart. This is

partially determined by the amount of information gathered, as well as the number

ofpossible different data results.

• Reliability: How dependable the Biometric is for recognition purposes.

• Error Rate: This is calculated as the crossing point, when graphed of false

positives and false negatives created using this Biometric.

• Errors: Typical causes of errors for this Biometric.

• False Pos.: How easy it is to create a false positive reading with this biometric, for

example, someone is able to impersonate someone else.

• False Neg.: How easy it is to create a false negative reading with this biometric,

for example, someone is able to avoid identification as oneself

• Security Level: The highest level of security at which this Biometric is capable of

working.

• Long-term Stability: How well this Biometric continues to work without data

updates over long periods of time.

• User Acceptance: How willing the public is to use this Biometric.

9

• Intrusiveness: How much the Biometric is considered to invade one’s privacy or

require interaction by the user.

• Ease ofUse: How easy this Biometric is for both the user and the personnel

involved.

• Low Cost: Whether or not there is a low-cost option for this Biometric to be used.

• Hardware: Type and cost of hardware required to use this Biometric.

• Standards: Whether or not standards exist for this Biometric.

Zeohyr^"Analysis too

Keystroke-
Scan

Hand-Scan

Facial-
Scan

Retbia-
Scan

Iris-Scan Voice-Scan
0 CHpl|ll. IMnatiiBl Miailife Gnip

^ Fan Fiagir liiii Vain Eft SijiitonI alMnaiwm •Httanqi eM •Efliil

(a) (b)

(a) Based on Zephyr Analysis (b) Based on MRTD

Fig. 2. Comparison ofVarious Biometric Features

2.1 Face Recognition

10

2.1.0 Need for Face Recognition

Recognition means the action of acknowledging the existence of a given input. In

this case, the existence of a given face within a database of known faces is being

acknowledged. The necessity of this process is increasing in today’s world as more and

more activities are becoming automated and as a result, people are required to remember

several passwords to access these systems. Biometric systems simplify the task by using

human features to access the systems. In face recognition, the human face is used for

granting access to an individual; therefore, the advantage of face recognition over other

types ofbiometrics can be summarized as follows:

• Uses public information (FACES).

• Involves Contact-Free Process.

• Uses legacy systems.

• Integrates with existing systems.

• No special hardware, other than a camera is needed

For many reasons we can understand how face recognition is a more pleasant

method of identification that uses a contact fi'ee process to allow one to have his face

recognized many times, in many databases, without even realizing it (video-based face

recognition). Also it uses public information (face databases), legacy systems, and can

also integrate with the existing systems. Nevertheless, little has been done to further the

advancement of face recognition; otherwise we would be able to enter restricted access

locations every day, without needing to show identification. Video-based face

recognition has especially had relatively poor testing and research performed, so far.

11

2.1.1 Past Work

One of the foremost works on classifying faces can be traced back to 1888 when

Francis Gabon published his paper titled, “Personal Identification and description”, in

Nature, June 21, 1888, pp 173-177. Some of the work in this field can be traced back to

the 1950’s in psychology when LS Bruner and R. Tagiuri published their work titled,

“The perception of People” in Handbook ofSocial Psychology, Vol-2 pp.634-654,

Reading MA: Addison-Wesley, 1954. But the real work on face recognition began in the

1970’s after T. Kanade [3] and M. D. Kelly [4] published their works on computer

recognition of human faces and visual identification of people by computer. In the past,

the face recognition problem was considered merely as a 2-D pattern recognition problem

and as a result, many of the earlier techniques were based on the distance matching

between two points in a face. Current approaches manage this problem by identifying

3-D objects from 2-D images. During the past few years, availability of hardware and

opportunities in commercial fields have given a thrust to this area. Therefore people have

adapted different techniques to solve this problem. The most widely used approaches are

illustrated in the different techniques of face recognition in the following table [2].

Table 1: Comparison of The Face Recognition Techniques

Appearance Based Feature Based Hybrid Based

This technique uses whole
face region

It uses geometrical
features.

It uses both whole face and

geometrical features
It is applied to specific
regions of face or as a whole

It establishes geometric
features relationships

12

2.1.2 Algorithms Used

Based on the techniques used, there are different methods for recognition. The

following table illustrates some of them.

Table 2: Different Recognition Methods

Holistic Approach Feature Based Approach Hybrid Based

Eigenfaces Pure Geometry Modular EigenFaces

Probabilistic Eigenfaces Dynamic Link Architecture Hybrid Local feature

Fisherfaces, ICA Hidden Markov Model Shape-normalized

Nearest feature Lines Component Based

Algorithms used in face recognition can be classified to image-based face

recognition and video-based face recognition.

1. Image Based Face Recognition

• PCA (Principal Component Analysis)

• ICA (Independent Component Analysis)

• LDA (Linear Discriminant Analysis)

• EBGM (Elastic Bunch Graph Matching)

• HMM (Hybrid Hidden Markov Model)

• Bayesian Framework

• 3-D Morphable Model

• Kernel Methods

Fourier Transform

13

2. Video Based Face Recognition

Basically, video-based face recognition is involved with streams rather than

images; however, it splits the video sequence into number of images, and then does the

detection. In this way, it is also involved with images. As a result, the same methods can

be used for the video-based face recognition; however, it is a much harder task because

of the smaller quality of images extraeted from any given surveillance camera. Hence,

the image size is smaller, therefore a fewer number of pixels are available for a given

feature. Moreover, the orientation of the image will not be consistent, which makes the

takes even more difficult, since the poses of the captured images are likely to be

different from the ones in the databases.

2.1.3 Face Recognition Difficulties

Although face recognition happens to be a very useful and powerful biometric, as
discussed earlier, there are many difficulties that challenge the face recognition process.

These are;

• 3D head pose.

• Illumination.

• Facial expression.

14

or accessories.

• Facial hair

• Occlusion due to other objects

. H

• Aging

2.1.4 The Five Facial Recognition Steps

Generally there are five steps for any complete facial recognition system, starting

from eapturing the image, up to declaring the similarity. Our system involved comparing

templates (step 4), which will be described later on in this thesis.

K I
1. Capture Image.

15

The task of capturing the image, whether by a video camera or a still camera and,

whether the person being captured knows it or not, is based on the application. For

example, many airports now use a video surveillance system to capture faces and perform

facial recognition on them later.2.Find The Face Area.

This is the task of “detecting” the face area in the image captured from step one.

In most scientific papers it is referred to as “face detection,”3.Extract Features (To generate template)

This is the most important step in the face recognition process. It differs from one

face recognition algorithm to another and sometimes it is done manually.

[

4.Compare Templates.

16

The task of comparing the given face with the existing databases is the most time

consuming step in the face recognition process. Therefore, an algorithm to enhance the

matching performance (High-speed k-means Image Clustering using the Discrete Cosine

Transform) was developed, which will be discussed later in this document with the

experiments/results. Comparing the distance can be calculated using different distance

measurement methods such as Euclidean distance, Mahalanobis distance, Hamming

distance, Levenshtein distance, etc.

5. Declare Matches.

The task of declaring the matches according to their similarity with the one that

was input, is considered as the “output” of a facial recognition system.

2.1.5 The Current Facial Recognition Vendors

Here’s a list of some existing facial recognition vendors.

• Images Technologies Inc.

• Neurotechnologija

• C-VIS Computer Vision und Automation GmbH

• DreamMirh Co., Ltd.

• Neven Vision, Inc.

Animetrics Inc.

17

• Geometrix, Inc.

• Cognitec Systems GmbH (my heritage)

• Cybula Ltd.

• Iconquest

• Takumi Vision Technologies, Inc.

• Viisage

• VisionSphere Technologies Inc.

• A4Vision, Inc.

• AcSys Biometrics Corp.

• Identix Inc.

2.1.6 Case Study Algorithms

In this project, five different face recognition systems have been studied and

implemented and they have been compared based on the results. The following is a brief

description of them, followed by their results:

• Face Recognition by PCA

PCA steinds for Principal Component analysis. It extracts the available objects on

the face such as eyes, nose, and mouth, and the relative distance between them. These

features are characteristic to a particular face and known as eigenfaces or principal

components. PCA converts each original image in the training set to eigenfaces. Each

eigenface represents certain features of the face. Therefore, reconstruction of the original

image Ifrom eigenface is possible by adding eigenface in training set in the right

18

proportion. Reconstructed image represents an approximation of the original image;

therefore, in this method, each face is a linear combination of the eigenfaces. Distance

measure methods help in identifying the test image from the eigenface.

• Face Recognition by Gabor Filters

In this method, the face from the original image is projected onto an elastic grid.

Gabor filter bank response for each grid node is calculated.. These nodes are known as

fiducial points, which represents center of the eyes, top of the nose etc. Face recognition

is performed by measuring the similarity of the filter response at each node.

• Face Recognition by Fisherfaces

This method is based on PCA. It uses FLD (Fisher Linear Discriminant) as a

classification algorithm. It gives emphasis on feature sets with vmations such as

illumination condition, facial expression etc. It takes more time in offline learning

compared to on-line learning. It is more robust and measures individual characteristics

accurately. It uses Euclidean distance for recognition

• Face Recognition by Fourier Spectra

Fourier spectra of an input original image split into sine and cosine components

and the output represents the image in frequency domain. In Fourier spectra, each point

represents a particular frequency contained in the spatial image. The amplitude at each

frequency point represents the energy contained in that point. DFT or FFT only contains

a set of samples, which describes the input image. In face recognition, this property is

utilized because energy contained in each person’s face is not uniform. Therefore,

19

frequency domain correlation between test image and images in the database is used as a

measure for recognition.

• Face Recognition by Fourier-Bessel Transform

Fourier-Bessel transform is widely used in analyzing patterns in circular domain

because it represents radial and angular components in an image. In square image, it

represents the distance from the center of the region to one of its comers. For every

image FB coefficients are extracted. Given a test image, its Fourier Bessel coefficients

are compared with the stored coefficients in the database. Distance measure is used for

recognition and the stored image with least distance to test image is confirmed as

detected image.

2.1.7 Our Testing System

A testing system was designed to test the five algorithms described above on the

AT&T face database. A GUI that combines all the above algorithms, and another for

testing them were also developed.

20

please select a face recogniion algorithm

Principal Component Analysis

Fourier-Bessei Transform for Face Recognftion

Fourier Spectra for Face Recognition

Gabor flers for Face Recognition

fisher face recogniion

Exit

BlMENU □ □
all tests

Test Principal Component Analysis

Test Fourier Spectra

Test Gabor filters

Test fisher

Exit

Fig. 3a. The System Graphieal User Interfaces

y ' Oirenlbbcloir (:Ao7«nn<MAfUenWtirk^y H]

Size

r X ; Coffliiiand VViiidow

LastModMed

Feb9,2006 8;07:03 A
Feb27,2006 6:08;^3
Feb 27.2006 6:09:3;
Feb24,2006 5:30:4'
Feb 21,2006 7:13:4-
Feb 21,2006 7:10:5;
Feb 21,2006 7:10:5;
Feb 21,2006 7:10:5;
Feb 21,2006 7:10:5;
Feb 21,2006 7:10:5;
Feb 21,2006 7:10:5;
Feb 21,2006 7:10:5-,
C«U"Yirc 7 m-cJ.

>;

all tests (1,1)

Fig. 3b. The GUI for the Algorithms and the Testing

21

2.1.8 The Testing Routine

The testing routine reads all images and stores them in a variable. Each time

random images are selected (known faces) we can chose the number of known images,

chosen randomly for each person, (the first input of the function) then the recognition

step is done. If the “recognized” face does not correspond to the “true face” a variable is

incremented by one; one error in recognition, and so on.

2.1.9 Our results

The following figure is a snapshot from the results screen. It illustrates the

percentage of a successful recognition for each algorithm. They were later added to a

chart in Figure 5.

Fig. 4. The results in the command window

22

Fig. 5. The results in a chart

2.1.10 Using the Face Recognition Algorithms

Using the face recognition as a reliable system is not yet a good idea. It is enough

to look at the Palm Beach Airport experience to realize how the facial recognition

systems are still in their developing phase. At Palm Beach Airport, there were 15

volunteers with a total number of 250 images. The success rate was less than 50% and

there were 50 False alarms per 5000 passengers, which makes two-three false

alarms/hour per check point. The system was sensitive to eyeglasses, poses, facial hair

and lighting.

2.1.11 Why The Bad Results?

The problem is that many systems still treat images as numbers ofpixels and

perform mathematical calculations to find the differences. For example, observe a

23

sample from the Max Planck Institute for Biological Cybernetics Face Database, which is

a database with the following characteristics:

No. of Subjects Conditions linage Resolution

200
MocbliW
Pose

■)

"7
256 X 256

http: faces.kyb.tuebiiigeii.iupg.de

Fig. 6a. Max Planck Institute for Biological Cybernetics Face Database

If the following example is taken from this database:

Fig. 6b. A Typical Recognition Mistake

Most conventional measures of image similarity would declare images one and

two to be more similar than images one and three, although one and three are images of

24

the same person! Obviously, similarity needs to be computed over attributes more

complex than raw pixel values. This example illustates how the facial recognition task

needs to be looked at from a different angle [5].

2.1.12 Future of Face Recognition

As discussed earlier in this chapter all the existing facial recognition systems treat

face images as a number of pixels. This limited vision ofdealing with the face images has

shown failure. The future of face recognition lies in viewing faces from different

perspectives and attempting to find the important cues in the face that provide

understanding of the differences. It was suggested by a group at MIT [5] that the

communication between the human vision researchers and the computer vision

researchers should be increased because:

• The only system that does seem to work well, even under severely degraded

viewing conditions is the human face recognition [5].

• Together, they can design an automated system that can match, and eventually

exceed the current level ofperformance.

The following questions are important to determine the future of face recognition.

We must know:

1. What are the limits ofhuman face recognition abilities?

It’s impressive how our human face recognition allows us to recognize faces

under severely degraded viewing conditions. Perhaps our human face recognition worked

as a pre-alarm and is the reason for our very survival [5].

25

Prince Charles Woody Allen Bill Clinton Saddam Hussein Richard Nixon Princess Diana.

Fig. 7. Faces that we can still recognize

2. What are some important cues that the human visual system rely upon for judgments

of identity?

We are still trying to find out the important cues on which our human face

recognition rely. We think that understanding the work of caricaturists, minimalist

portrait artists, can help us understand the most important cue in a face [5].

3. Is the human FR innate or learned?

A group of researchers attempted to study the newborn’s behavior towards faces

to help understand whether we were bom with a smart face recognition system or it if is

learned over time, and the results were encouraging. Evidence revealed that newborns

could recognize their mother’s picture and that they showed a preference for face images

over non-face images. Such performance can only be achieved if newborns already

possess at least a rudimentary facial processing mechanism [5].

CHAPTER 3

IMAGE CLUSTERING

LITERATURE REVIEW

3.0 Introduction

Image clustering, also known as image classification or categorization, is a means

for high-level description of image content. In recent years there has been a growing

interest in developing effective methods for searching large image databases based on

image content. There is more than one way of achieving this. For example, one might

wish to cluster the images based on scene content; forest, agricultural, or urban scenes.

Or, perhaps one might wish to cluster all images into groups with the same lighting or

with the same pose, such as faces used in face recognition software. This is a very

difficult thing to achieve because this categorization is based on the identity of the 3-D

objects that the images represent, but where the observer’s viewpoint has varied between

images. Another way to group similar images together is by their actual chromatic

content.

The two main approaches for image database interface, applied to existing

systems are: “search-by-query” and “browsing.” Most approaches to image database

management have focused on the “search-by-query”" method. In content-based search,

the goal is to retrieve the most similar images to a query image introduced to the system.

The images belonging to the query-image category are the images we wish to retrieve

26

27

first and characterize each category's unifying characteristics. A second approach to

categorization of image information is to view it as a clustering task, unsupervised or

supervised, in which the goal is to find relationships among the images and the best way

to characterize the content within a given image archive.

3.1 History

Today there is a large variety of image clustering algorithms and more than one

method used for improving image search performances. By the level of the

autoimmunization of the search method we have two cases:

A) Supervised - where the user usually specifies some other parameters for the

search, other than the image itself.

B) Unsupervised - where the search is completely automatic, and no user input is

necessary, other than the image reference. By the algorithm itself, we can have:

• Heuristic-based. Like the Pattern Matrix, a prototype-based algorithm (k-

means, k-medoid) or the Proximity Matrix. There are two variations of the

Proximity Matrix: the Linkage methods (single-link, clustering, min-cut);

• Model-based. Two variations of this model are used: Spatial clustering and the

Mixture Model (Gaussian mixture. Latent class);

• Density-based. We have the variations: Kernel-based (DENCLUE) and Mode¬

seeking (mean-shift)

The most popular partitional clustering algorithm, k-means, has been proposed

several times in the literature by Steinhaus in 1955, Lloyd in 1957, eind MacQueen in

28

1967. The ISODATA algorithm by Ball and Hall in 1965 can be regarded as an adaptive

version of k-means that adjusts the number of clusters. The historical account of vector

quantization also presents the history of some of the partitional clustering algorithms. In

1971, Zahn proposed a graph-theoretic clustering method [6], which is closely related to

single-link clustering. The EM algorithm, which is the standard algorithm for estimating

a nite mixture model for mixture-based clustering, is attributed to Dempster et al. in 1977

[7]. Interest in mean-shift clustering was revived in 1995 by Cheng [8], and Comaniciu

and Meer further popularized it [9]. Ho man and Buhmann considered the use of

deterministic annealing for pairwise clustering [10], and Fischer and Buhmann modified

the connectedness idea in single-link clustering that led to path-based clustering [11]. The

normalized cut algorithm by Shi and Malik [12] in 1997 is often regarded as the first

spectral clustering algorithm, though similar ideas were considered by spectral graph

theorists earlier. A summary of the important results in spectral graph theory can be

found in the 1997 book by Chung [13]. The emergence of data mining leads to a new line

of clustering research that emphasizes efficieney when dealing with huge databases.

DBSCAN by Ester et al [14] for density-based clustering and CLIQUE by Agrawal et al

[15] for subspace clustering are two well-known algorithms in this community. The

current literature on cluster analysis is vast, and hundreds of clustering algorithms have

been proposed in the literature. It will require a tremendous effort to list and summarize

all the major clustering algorithms.

29

3.2 Clustering Algorithms

The k-means algorithm and the EM algorithm are clustering algorithms. Other

clustering algorithms that are used regularly in pattern recognition include the mean-shift

algorithm, pair wise clustering, path-based clustering, and spectral clustering.

3.2.0 k-means Algorithm

The ^-means algorithm is probably the best-known clustering algorithm. In this

algorithm, the j-th cluster is represented by the “cluster prototype” fij in Clustering is

done by finding Zj and pj that minimize the following cost function:

Here, I(zi=j) denotes the indicator function, which is one, if the condition z, =j is true,

and zero, otherwise. To optimize Jk-meam, we first assume that all pj| are specified. The

values of z, that minimize Jk-means are given by

z, = arg mirij \ \yi- //y| |^. (2)

On the other hand, if z, is fixed, the optimal pj can be found by differentiating Jk-means with

respect to pj and setting the derivatives to zero, leading to:

tij=(Z^j=iI(Zi=j) ^j)/(L^j=iI(zi=j))=(Y!‘i=iZi=fy(number of i with Zi=j) (V

30

Starting from an initial guess on nj , the k-means algorithm iterates between

Equations (2) and (3), which is guaranteed to decrease the k-means objective function

until a local minimum is reached. In this case, fXj and z, remain unchanged after the

iteration, and the A:-means algorithm is said to have converged. The resulting z, and ixj

constitute the clustering solution. In practice, one can stop if the change in successive

values ofJk-means IS Icss than a threshold.

The ^-means algorithm is easy to understand and is also easy to implement.

However, ^-means has problems in discovering clusters that are not spherical in shape. It

also encounters some difficulties when different clusters have a significantly different

number ofpoints, j^-means also requires a good initialization to avoid getting trapped in a

poor local minimum. In many cases, the user does not know the number of clusters in

advance, which is required by ^-means. The problem of determining the value of k

automatically, still does not have a very satisfactory solution. Because the A:-means

algorithm alternates between the two conditions of optimality, it is an example of

alternating optimization. The ^-means clustering result can be interpreted as a solution to

vector quantization, with a codebook of size k and a square error loss function. Each fij is

a codeword in this case.

The ^-means algorithm can also be viewed as a special case of fitting a Gaussian

mixture, with covariance matrices of all the mixture components fixed to be (Pi and a

tends to zero (for the “hard” cluster assignment). The ^-medoid algorithm is similar to k-

means, except that is restricted to be one of the given patterns _y,. There is also an

online version of A:-means.

31

When the i-th data point _y, is observed, the cluster center that is the nearest to yi is

found. Hj is then updated by

= + (4)

where a is the learning rate. This learning rule is an example of “winner-take-all” in

competitive learning, because only the cluster that “wins” the data point can leam from it.

3.2.1 Clustering by Fitting Finite Mixture Model

The ^-means algorithm is an example of “hard” clustering, where a data point is

assigned to only one cluster. In many cases, it is beneficial to consider “soft” clustering,

where a point is assigned to different clusters with different degrees of certainties. This

can be done either by fuzzy clustering or by mixture-based clustering. The latter is

preferred because it has a more rigorous foundation. In mixture-based clustering, a finite

mixture model is fitted to the data. Let Y and Z be the random variables for a data point

and a cluster label, respectively. Each cluster is represented by the component

distributionp(Yj\6j), where dj denotes the parameter for they-th cluster. Data points from

they-th cluster are assumed to follow this distribution, i.e., p(Y\Z =j) =p{Yj\dj). The

component distributionp{Yj\6j) is often assumed to be a Gaussian when Yis continuous,

and the corresponding mixture model is called “a mixture ofGaussians”. If Y is

categorical, multinomial distribution can be used forp{Yj\0j). Let a j = P(Z =j) be the

prior probability for they-th cluster. The key idea of a mixture model is

p(lie)=I*-;f(J1Z=/')/’(Z-yV=I*o.,p(YM)

32

(5)

where 0 = {^i;: : :; 0k; ai;: ::; ak} contains all the model parameters. The mixture

model can be understood as a two-stage data generation process. First, the hidden cluster

label Zis sampled from a multinomial distribution with parameters (ai;:::; ctk)- The

data point Y is then generated according to the mixture distribution determined by Z, i.e.,

Y is sampled from p{Yj\6j) ifZ =j. The degree ofmembership of yi to the j-th cluster is

determined by the posterior probability ofZ equals toj given i.e.,

p{Z=j\ Y=y)=p{Z=j, r=yd !p{Y=y;)=- {ajp{Yj\ej)) / Y!^j=iajp{Yj\ej) (6)

If a “hard” clustering is needed, yt can be assigned to the cluster with the highest

posterior probabilityp{Z=j\ Y==y,). The parameter 0 can be determined using the

maximum likelihood principle. We seek 0 that minimizes the negative log-likelihood:

Jmixture = ' I"/=/logI y=/q,/7(y,10y) (7)

For brevity of notation, we writepiyjlOj) to denotep(Y=yj\dj)

The EM algorithm can be used to optimize J mixture. EM is a powerful technique

for parameter estimation when some of the data is missing. In the context of a finite

mixture model, the missing data are the cluster labels. Starting with an initial guess of the

parameters, the EM algorithm alternates between the “E-step” and the “M-step”. Let ry =

33

P{Z=j\Y=yi,0 where 0°'‘‘ is the current parameter estimate. In the E-step, we

compute the expected complete data log-likelihood, also known as the i^-function:

ae lie ”“) =E[r,./ log r,{log a,+\0ip(yj\ej)) (S)

Note that the expectation is done with respect to the old parameter value via ry .

Computationally, E-step requires calculation of rij . In the M-step, O that maximizes

Q{0 \\e is found:

0""'^ = argmaxee(0||0°“*) (9)

The M-step is guaranteed to decrease Jmixture- By repeating the E-step and the M-

step, the negative log-likelihood continues to decrease until a local minimum is reached.

Convergence proofs on the EM algorithm. In this section, we shall state the well-

known proof in the literature that the M-step indeed decreases /mixture, thereby showing

that the EM algorithm does converge to a local minimum of /mixture- We consider the

correctness of the EM algorithm in a more general setting, where Y and Z are redefined to

mean “observed data” and “missing data” respectively. Note that the data points and the

missing labels are examples of observed data and missing data, respectively.

In this general setting, Q{0 \\0 can be written as

QiO\\e =Iz/7(Z| Y 0)logp{Y,Z\ 0) (10)

34

Our first proof is based on the concavity of the logarithm function. Because M-

step maximizes Q{0), Q{0 - Q{0 °'‘*) >= 0. Observe that:

0(0"'='^) - 0(0°“*) =Sz^(Z|r0°“‘)(log/7(7,Z|0"^’‘') - log;7(7.Z|0°“'))

=log;7(}10 log/7(}10°").

The inequality is due to the concavity of logarithm, and the fact that p{Z\70°'**)
can be viewed as “weights” because they are non-negative and 70°'^)= 1 • Since

QQ(0 ""'") - 0(0 °‘V= 0, the above implies logp(710) - logp(Yj0 0. So, the

update ofparameter from 0 to 0 indeed improves the log-likelihood of the

observed data. When 0°^ = 0 the inequality becomes an equality, and we reach a

local minimum of logp(7|0). Note that the above argument holds as long as 0(0 "®'^) -

0(0 °'^)>=0. Thus it suffices to increase, instead ofmaximize the expected complete log-

likelihood in the M-step. The resulting algorithm that only increases the expected

complete log-likelihood is known as the generalized EM algorithm. It is interesting to

note a variant of the EM algorithm used Bayesian parameter estimation. The goal is to

find 0 that maximizes logp{Y\0). The E-step computes !p{0\Z, Y) log plogp(Y\0°‘‘^,Y)

dZ, and the M-step solves 0 = arg maxe JpiZ\0 °^‘^,7) log p(0|Z, 7) dZ. The

correctness of this variant of the EM algorithm can be seen by the following:

Jp(Z\0 °'^7;iogpi0 """'IZ Y)dZ p(Z\0 °'*',7)logp{0 IZ Y)dZ

= Jp(Z\0 °'‘^,Y) (logp{0 "^"|7)+ logp(Z\0 "^",7) - logP(Z\Y) -\ogp{0 °'*'|7) - log

/7(Z|0°'^7) + logP(Z|7)dZ<= log ;?(0""”'|y)-logp(0°'*^|7)
Note thatp{0 \Z,Y)=p{0\Y)p(p(Z|0, Y)lp{Z\7).

35

3.2.2 GMM Gaussian mixture models

Utilizing the Information Bottleneck method, the image models are grouped into

coherent clusters that can be used for various archive operations. The system is based on

global image representations including global color, texture and edge histograms.

Histograms are the classical means of representing image content. A histogram is a

discrete representation of the continuous feature space. The feature space partition is

determined by the features chosen, for example, the color space representation, by the

quantization scheme chosen, such as uniform or vector quantization, as well as by

computational and storage considerations. Color histograms advantages and

disadvantages are well studied and many variations of this algorithm exist. A graphical

representation of the result of this algorithm is shown below:

36

This method incorporates region-based approaches for the image representation.

Since image regions are the basic building blocks in forming the visual content ofan

image, they have great potential in representing the image content as well as the category

content. Images in the database are divided into rectangular regions and represented by a

set ofnormalized histograms corresponding to these rectangular regions. The size of the

regions is an important parameter. Regions should be small enough to emphasize the

local color and large enough to offer statistically valid histograms. The similarity

measure between two images is expressed as the sum of similarities between histograms

of the corresponding rectangular regions.

The main steps of this algorithm are:

• Image Representation

The raw pixel representation of an input image is shifted to a mid-level

representation, in which the image is represented as a set of coherent regions in feature

space. This work focuses on the color feature. In particular each image is modeled as a

mixture ofGaussians in the color feature space. It should be noted that the representation

model is a general one, and can incorporate any desired feature space (such as texture,

shape, etc) or combination thereof.

• Feature Extraction

Color features are extracted by representing each pixel with a three-dimensional

color descriptor in a selected color space. The pixels are then grouped into homogeneous

regions based on their assumed features. Used in a database search engine, this algorithm

can be a very effective tool, because some of the most irrelevant results of the search can

37

be eliminated in the first phase of the image processing, and then a more refined search

will be performed.

3.2.3 Image Clustering with Metric, Local Linear Structure and Affine Symmetry

This is a totally different algorithm of the ones already described up to this point,

because it tries to group the images by the 3-D object that they represent more than the 2-

D image. Schematically, this algorithm is similar to the other clustering algorithms

described previously. It, as a plus has defined affinity measures between all pairs of

images. These affinity measures are represented in a symmetric n xn matrix A - {aij),

i.e., the affinity matrix and a straightforward application of any standard spectral

clustering method then yields our clustering result. Here is how it works: First, the

image-clustering problem is defined. The input of the problem is a collection of

unlabelled images {I\, • • •, In} and the number of clusters N. We assume that all images

have the same number of pixels s, and by rasterizing the images, we obtain a collection of

corresponding sample points {x\, ■ ■ ■, xn} in IRs. The algorithm outputs a cluster

assignment for these images p : {I\, ■ ■ •, In} ^ ■ ,N}. Two images li and Ij belong

to the same cluster if and only ifp{Ii) = p{Ij). A cluster, in our definition, consists of only

images of one object. Let us further assume that the images of a cluster are acquired at

different viewpoints but under the same ambient illumination condition.

The problem so formulated is extremely general and without any further

information, there is almost no visible structure on which to base the algorithm. One

obvious structure one can utilize is the ambient distance metric of the image space. The

38

usual L2 metric or its derivatives, affine-invariant L2 distance or weighted L2 distance are

such examples. By considering images as points in IRs, we are naturally led to the notion

of appearance manifolds. Accordingly, the input images imply the existence ofN sub

manifolds of IRs, {M\, ■ ■ • ,MN} such that two points xi, xj belong to the same cluster if

and only ifxi, xj □ Mk for some 1 <k<N, with eachMi denoting the appearance

manifold of an object.

Implicit in the concept of appearance manifolds is the idea of local linearity. That

is, ifxl, • • •, x/ are points belonging to the same cluster and if they are sufficiently close

according to the distance metric; then each point xi can be well approximated linearly by

its neighbors : xk ~ ajxj for some real numbers aj .

Metric and local linearity are two very general geometric notions and they do not

pertain only to image clustering problems. It is the action of the 2-D affine group G 4 that

characterizes our problem as an image clustering problem rather than a general data-

clustering problem. If {xl, ■ ■ ■, xn} were data of a different sort, e.g., data from a

metrological or high energy physics experiment, there will not be an explicit action ofG.

It is precisely because the 2-D nature of the images and the way we rasterize the image to

form points in IRs, we can explicitly calculate the action ofG given a sample point x. In

particular, each appearance manifoldMi is invariant under G, i.e., ifx □ Mi then 7(x) □

Mi for each y □ G. In this sense, the clustering problem acquires a symmetry played by

the 2-D affine groupS.

39

In summary, three important elements to the image-elustering problem have been

identified. First, there is the ambient L2, and its derivatives, metric of the image space.

Second, each cluster has local linear structure. The metric and local linearity are the only

two geometric structures we can utilize in designing the algorithm. The third element is

the affine symmetry of the problem. The challenge was to design a clustering algorithm

that takes into account these three elements. In a very general outline, what is needed is to

design metric and local linear structures that are both invariant under the affine group G

and to seek an interesting and effective coupling between the metric and linear structure,

which are two rather disparate geometric notions. Surprisingly, using only these three

very general structures, a clustering algorithm can be formulated in order to be effective

for a variety of image clustering problems.

CHAPTER 4

FACE DATABASE CLUSTERING

4.0 Introduction

The process of clustering is an important function in information processing and

machine learning. Clustering refers to grouping several data into one or more distinct

groups based on certain pre-defined, or automatically determined, data characteristics. In

particular, clustering has been extremely useful in automated classification of data, as in

automated face recognition. In this chapter, a method for automated classification and

recognition of face images from a random set of images is presented using k-means

clustering and compared with general clustering methods in face clustering. The method

is considerably speeded up using the Discrete Cosine Transform for dimensionality

reduction of image data. The method results in obtaining one ormore central images,

each representing a different person’s face found in the face database. Recognition can

then be implemented by the nearest neighbor technique or by any other suitable

technique. Before discussing the system, consider the following example. If the following

database is used, and the nearest match of an entered face within a certain database of

faces is sought, any face recognition algorithm would go through the whole set of faces

comparing it with the entered face before finding the nearest one. Obviously this task is

very time consuming and processor intense.

40

41

Mfririmi
Ij!.-jNjS -->u - *KI --«*--^1

Fig. 8. The Regular Matching Process

An algorithm that automatically clusters faces together within a given database

and automatically creates a center image for each cluster as a pre-recognition phase was

designed. As for the recognition phase the entered face is only being compared to the

center images, as shown in the following figure:

Center

Image

Center

image

Center

Image

Center

Image

Ml «»iV |'<i» M <•! 4>.S
, J

TJlSilSfc iiz ill

Fig. 9. The Matching with Only The Center Images

42

Example of the center images created by the system:

fentei Image c'liistei two (cliffeieiit persons)

Fig. 10. Center Images Created for Different Clusters

4.1 Description ofOur Algorithm

As mentioned earlier, clustering refers to grouping datasets into one or more

clusters in such a way that all members of the same cluster are similar under one or more

standard criteria. Each such cluster may also have a central datum that best represents the

characteristics of the overall cluster. Several clustering algorithms are commonly used.

Popular among these include the k-means algorithm, fuzzy c-means algorithm and self¬

organizing maps. In this project, use of the k-means algorithm is done for clustering of a

database of human face images and the expected output is a number of clusters with one

central image for each as shown in figure 10.

43

4.1.0 Image Clustering using the k-means Algorithm

In this method, initially, a database of face images is considered. This database

would generally consist of faces of several persons taken at different times. In this

algorithm, the number of distinct persons whose images are found within this database is

first determined. This is the only manual input to the classification system; the rest is an

all automated process. Suppose it is known that there areNdifferent types offaces in the

database. Then we use the k-means clustering algorithm to cluster the entire database into

different clusters. For this theN images are converted into N image vectors. From this,

we obtain the central image for each cluster. This central image seems to be the average

ofmany similar images; precisely, it is the weighted average of the member images that

would best represent the characteristics of all images simultaneously.

4.1.1 Speeding up using the Discrete Cosine Transform

The k-means algorithm is among the simplest and fastest of all clustering

algorithms. However, this algorithm would still consume an enormously large amount of

time because an image vector would be thousands of elements long and tens of vectors

are used for clustering. To reduce the time, we have made use of the DCT, which is a

popular algorithm for data compression. The following are the steps for clustering using

the DCT:

1. First, transform all image vectors into the DCT domain using the DCT algorithm.

These vectors will be real vectors and each would be of the same size and an image in

the database.

2. The entire DCT vectors for clustering were not used because that would again need

44

the same amount of time. Instead, only the first few points of the DCT were used.

This does not cause much loss of information because DCT is a compression

algorithm in which large data can be mapped into data with a smaller size.

3. Then, these DCT vectors were clustered using the k-means method as described

above, again getting N central vectors. These vectors are of a smaller size than the

image vectors.

4. To bring them back to the original size, zeros were simply padded to the existing

vectors to make them of the original length.

5. The DCT central vectors were now converted into image vectors using the inverse

DCT algorithm. This is similar to conversion between FFT and IFFT.

6. Upon doing this, the central images as results of clustering were obtained. Note that

although the final images are not downsized, the processed vectors were much

downsized. This gives a great increase in speed of execution.

45

4.1.2 Recovering Images from Shortened DCT Signals

The algorithm for using DCT as a compression technique for speeding up k-

means clustering was explained in the previous section. In order to prove that DCT does

indeed speed up the clustering process without affecting the image quality much,

consider an example from the AT&T face set. The following figure shows an original

image from this set:

Fig. 11. An original image

It should be understood that this image is actually a 2-dimensional matrix of

values. For clustering, it must be converted into a vector. This is simply obtained by

46

cascading all image rows in order to create a single long vector. The figure 15 on the

adjoining page shows the image vector thus obtained.

250

150

100

Original Image Vector

2000 4000 6000 8000 10000 12000

Fig. 12. Image Vector

OCT o(theOiij^ Imege Vector OCT Vector Values Zeroed

2000 4000 6000 10000 12000

Fig. 13: Original DCT and shortened DCT (with higher values neglected)
12000

47

Fig. 14 Image Recovered from Shortened DCT Vector

The plots in figure 15 show the DCT of the image vector in figure 15. The second

plot shows that the last eight thousand (8000) values of the DCT plot have been

deliberately made zero. Since these values are already near zero, they can be neglected

during clustering. Hence the length of the actual subject vector is reduced by 8000 points.

It is observed that this does not affect the overall shape of the DCT curve. This is an

important characteristic of the Discrete Cosine Transform. Under DCT, the important

information is stored in the first values and the higher values store lesser important

information of the original signal. Hence if the higher values are neglected, most of the

information is still preserved. To prove this, the inverse DCT of the second plot in figure

48

15 was taken and converted into an image. Upon comparison with the image in figure 13,

it is observed that the recovered image looks nearly the same as the original image.

However, as earlier noted, the DCT vector in use during clustering is of a very small size.

As a result, the process of clustering speeds up. The following figures show the results of

a sample round of clustering. For this run, 50 images from the AT&T face database were

loaded and were clustered into 5 distinct clusters. In a sample cluster shown next, the

central (representative) image is shown and it is followed by the images within the

database that were classified into the same database. This classification is done as a part

of the clustering process using the k-means algorithm.

Fig. 15. Cluster Centre and Members

49

4.2 Performance Analysis

1. General Speed Increase: If the size of the clustered vectors is L, then the total

execution time would roughly be proportional to L'^2 (square times). Hence when

the DCT vector size was decreased to 1/2, the speed is approximately increased

four times. In this project, the DCT vector size was decreased to just I/I0‘'’ of the

original size and hence a speed increase of nearly hundred times was obtained.

2. Speed Advantage over PCA: The computational complexity ofPCA algorithm for

dimensionality reduction of images is where N is the resolution of the vector.

This means that it takes a cubic volume of time to process an image vector. As

against this, the DCT is an algorithm, which can be effectively implemented using

the Fast Fourier Transform (FFT), which is a fast algorithm with a very economic

complexity. Because of this, the dimensionality reduction of data with DCT

occurs in just a few seconds, which could take several minutes or hours for PCA.

Hence the use ofDCT has proved useful in compressing the data without losing

significant information. Also, using PCA, recovery of images is difficult and not

very accurate. However, the use ofDCT enabled the obtainment of the final

images in a human readable form. Hence the central images can be directly seen

as normal images at the end.

3. Easy Recognition: Since the final central images obtained are normal images, it is

possible to directly apply any recognition algorithm on these images, so that new

images can be directly classified using these central images.

CHAPTER 5

THE USER MANUAL

5.0 Introduction

In this section a successful scenario from the execution to the results will be

illustrated. The AT&T database was used for testing.

Fig. 16. AT&T Database Snapshot

5.1 Software Requirement

The project does not require any hardware installation. However, Matlab? should

be installed on a personal computer with any of the following operating systems:

Windows 98, Windows 2000, Windows ME, Windows XP, Windows NT.

50

5.2 Getting Started
51

The user should first copy the files into the MatlabV work folder. The files

include the faceclustering.m , savefaces.m ,somtoolbox and the face databases. After

running the Matlab? command window, the user types the name of the function

“faceclustering” then the GUI will pop up.

5.3 The Main Screen

The Main Screen has been designed to show the user a step-by-step approach

from the beginning to the end displaying what is happening for educational purposes. It

contains three text areas in which the user enters the full face database path, the

extensions of the images of the targeted database, the total number of faces to be

clustered, and the total clusters required. When the project is executed the opening screen

will look like the following snapshot:

Fig. 17. The Interface After Execution

52
5.4 Progress Screen

This screen tells the user that the faces have been successfully loaded. It includes

one button that the user clicks to get the DCT of the images. Then a similar one to pops

up and indicates that they have been successfully obtained.

Fig. 18. Progress Screens

53
5.5 Showing The Clusters Screen

At this point the clusters and their central image have been created in this screen.

The user enters the number of the cluster he wishes to display its central image.

FACE CLUSTERING USING DCT

4 Show this Cluster Number

Proceed to next step

Fig. 19. The Cluster Selection

5.6 The Testing Screen
54

Now that the clusters have been created the user can enter the face number he

wishes to determine as belonging to a particular cluster.

Fig.20. The Testing Screen

5.7 The Saving Screen

This screen includes a text area where the user enters the location in which he

wishes the clusters to be saved.

Fig. 21. The Saving Screen

5.8 The Results
55

The clusters are saved in the desired location and each has a central image.

3Kd fllfSwi's

^Bad '■ .^ / Wtters Qr]*
Jdress u) CifXKLTients and Setting5VkinrArafeV>dtop\thesBVm'dusters

^ Rerwne this folder
^ Move the folder

Copy this Wder
lA Pubteh this folder to the

Web

^ Share the folder

J E-mai this fioWer's Ses
y Delete this folder

LilHiliMUSlM

My Documents

Shared Doojments

^ MyCornputer
My Netw-orlc Places

Eitl □IS .

ss m ^
1 2 3 4 S 6

E3y yy

^Bact - y ^ Sear* Foldetj
dhesi DC:tpDcunier>ts and Settings'^ 4r3^tpesktop'thesaVm’Cbsters\7

liliiiiiiiliiiiiiiiiiJa

'J Vieaasa^show
f) Oder pms onfrie
^ PrptpKires 44.brp 4SJ)mp 46.trc

^ M#« a ne» Wdr
il PiMiihefjIcIfftothe

Web

tJ Share the folder

^1^1

Ik IMWiBIIH
nevc dusters

Myfytim

^ WyComouter
^ My Netyrork Places

47.bnc

k

centre.bno

Fig. 22. The Result Cluster Folders

5.9 Conclusion
56

Face recognition has been introduced as an important method of biometric

authentication, then the mostly used algorithms have been discussed and compared and

the results have been shown. The Haar face detection algorithm was also tested over a

number ofwell-known face databases and the results were shown. This state of the art

clustering system was discussed along with a discussion on other existing clustering

methods that this system overpowered.

APPENDIX A

FACE DETECTION SOFTWARE VALIDATION

In order to judge a face detection software, experimentation with this software in

different face detection databases must take place. In this document, the following

databases are discussed: (The combined MIT/CMU data set, CMU dataset II, AT&T face

databases, Japanese female facial expression databases and Yale face database) and the

Haar face detection algorithm test results will be presented on them.

Introduction

Because of its non-rigidity and complex three-dimensional (3-D) structure, the

appearance of a face is affected by a large number of factors including identity, face pose,

illumination, facial expression, age, occlusion, and facial hair. The development of

algorithms robust to these variations requires databases of sufficient size that include

carefully controlled variations of these factors. Furthermore, it is necessary to use

common databases in order to comparatively evaluate algorithms. Collecting a high

quality database is a resource-intensive task, but the availability ofpublic face databases

is important for the advancement of the field [6]. Here, four publicly available databases

for face recognition, face detection, and facial expression analysis are reviewed, (these

are the combined MIT/CMU data set, CMU dataset II, AT&T face databases, Japanese

57

58

female facial expression databases and Yale face database) And then the results are

discussed and the comparison Graphs is shown.

The Databases

The combined MIT/CMU data set

Includes Total of 180 images.

Includes Total of 730 faces.

More info

• A number of images are included that do not contain any faces in order to test

tolerance to clutter.

• 210 Faces are at angles ofmore than 10° from upright.

Example

Fig. 23. Example of the MIT/CMU database

CMU Test Set II

Ineludes Total of 208 images.

Includes Total of 441 faces.

More info

• 347 faces are in profile view.

The images were all collected from the Internet.

60

Example

Fig. 24. Example of the CMU 11 database

AT&T database

Ineludes Total of 400 images.

Includes Total of 400 faces.

More info

• 150 face are profile (5 per person)

40 persons (10 images each)

61

Example

25.JPG 26.J>G 27. JPG 28.JPG 29.JPG 30.JPG 31.JPG 32.JPG

Fig. 25. Example of the AT&T database

Japanese Female Facial Expression (JAFFE) Database

Includes Total of 213 images.

Includes Total of 213 faces.

More info

Number of female models 10.

Number of expressions 7.

62

Example

happy sad surprise

Fig. 26. Example of the JAFFE database

Yale database

Includes Total of 166 images.

Includes Total of 166 faces.

More info

Number of persons 10.

Number of poses 9.

Number of illumination 64.

63

Example

l(65).gif 1 (66).gif l(6;),gif l{68).gif l(69).gcf l{70).gif l(71).gcf l{72).gif

t S ^
l(73).gif l(74).gif l[75).gif l(76).gif 1 (77).gif 1 (78),gif 1 (79).gcf l{8(l).gif

U81).gif 1 (82).9f 1 (83).gif l(84).gif l(85).gif 1 (86).gif l(87).gif l{88).8if

Fig. 27. Example of the YALE database

The Results

The results are calculated on both the non-detected faces and the miss detection,

so that every time the algorithm does not detect a face, one is incremented to the non-

detected total. Furthermore, every time the algorithm detects an area that is not a face,

one is incremented to the mistakes total.

The following section shows both the non-detected total and the mistakes total,

showing the error ratio based on each database’s original size, followed by a graph of the

results to allow for easier visualization.

64

MIT/CMU

300 non-detected.

19 mistakes (non face detection).

Total mistakes 319.

Error rate = (319 x 100) / 730 = 43.698%

Example of the errors

Fig. 28. Example of both non-detected error and mistakes error in the MIT/CMU

database

65

CMU II

324 non-detected.

8 mistakes (non face detection).

Total mistakes 332.

Error rate = (343 x 100) / 441 = 77.777%

Example of the errors

Fig. 29. Example of both non-detected error and mistakes error in the CMU II database

AT&T

98 non-detected.

1 mistake (non face detection).

Total mistakes 99.

Error rate = (99 x 100) / 400 = 24.75%

66

Example of the errors

353.JPG 355.JPG 356.JPG 357.JPG 3S9.JPG

363. JPG 364. JPG 36S.JPG 366.JPG 368.JPG

369.JPG

aEjB ^9Bi B 3
373.JPG 374.JPG 375.JPG 376,JPG

Fig. 30. Example of both non-detected error and mistakes error in the AT&T database

JAFFE

0 non-detected.

1 mistake (non face detection).

Total mistakes 1.

Ratio of the bad results = (lxl00)/213 = 0.469% faults

The only error

67

Fig. 31. The only “mistakes” error in the JAFFE database

YALE

0 non-detected.

0 mistakes (non face detection).

Total mistakes 0.

Ratio of the bad results = (0 x 100) / 166 = 0.0 % faults

68

Example of the results

1(45). JPG 1{46).PG 1(47). JPG 1(48). JPG 1(5). JPG 1 (6).JPG 1 (49).JPG 1 {50).PG

1 (51).JPG

1 (59).JPG 1(60). JPG 1(61),JPG 1(62).JPG 1(63),JPG 1(64).JPG 1(7). JPG 1(8).JPG

1(65). JPG 1 (66).JPG 1(67).JPG 1(68),JPG l(69),JPG 1(70).JPG

Fig. 32. Example of the YALE database results that had no errors.

69

Table 3. The Comparison on Different Face Databases

MIT/CMU CMUII AT&T JAFFE YALE

faces with faces with faces with

different different faces with faces with different

Description orientations orientations different facial different expressions

and (profiles hair/accessories expressions and

resolution mostly) lighting

Number of

faces
730 441 400 213 166

Total Error

rate

43.698% 77.777% 24.75% 0.469% 0%

Non-detected

errors

300 324 98 0 0

Mistakes 19 8 1 1 0

70

The Results Graph

The results

w
O
o

0>

E
c

0)

■ Number effaces

□ Non-detected errors

■ Mistakes

MIT/CMU CMU II AT&T JAFFE YALE

The Databases

Fig. 33. The results shown in the graph

71

The ratio

The error rate

■ Error rate

The Databases dicription

Fig. 34. The Error ratio with the description of the databases.

Conclusion

The detection showed very good results on the JAFFE and YALE databases, by

looking at these databases info we find that they have the hardest

illumination/expressions tricks among all the other databases we tested

(illumination/expressions didn’t really matter). On the other hand the worst results were

noticed in the CMU II, the one with most profile images among the other databases we

72

tested, the MIT/CMU, the one with smaller size images and different orientations (upside

down sometimes), and in the AT&T with a the facial hair and different poses.

APPENDIX B

(MATLAB CODES)

Face clustering

function varargout = faceclustering(varargin)
% FACECLUSTERING M-file for faceclustering.fig
% FACECLUSTERING, by itself, creates a new FACECLUSTERING or raises the
existing
% singleton*.
%
% H = FACECLUSTERING returns the handle to a new FACECLUSTERING or the
handle to
% the existing singleton*.
%
% FACECLUSTERING('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in FACECLUSTERING.M with the given input
arguments.
%
% FACECLUSTERINGCProperty’,’Value',...) creates a new FACECLUSTERING or
raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before faceclustering OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to faceclustering OpeningFcn via varargin.
%
% *See GUI Options on GUIDE'S Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help faceclustering

% Last Modified by GUIDE v2.5 21-0ct-2006 07:45:32

% Begin initialization code - DO NOT EDIT
guiSingleton = 1;
gui_State = struct(’gui_Name', mfilename,...

'gui Singleton', gui_Singleton,...

73

74

'gui OpeningFcn', @faceclustering_OpeningFcn,...
'gui OutputFcn', @faceclustering_OutputFcn,...
'gui LayoutFcn', [],...
'gui Callback', []);

if nargin & isstr(varargin{ 1})
guiState.guiCallback == str2func(varargin{ 1});

end

ifnargout
[varargout{l;nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin {:});
end
% End initialization code - DO NOT EDIT

% — Executes just before faceclustering is made visible,
function faceclustering_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version ofMATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to faceclustering (see VARARGIN)

% Choose default command line output for faceclustering
handles.output = hObject;
handles.ftag=l;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes faceclustering wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% — Outputs from this function are returned to the command line,
function varargout = faceclustering_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version ofMATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{ 1} = handles.output;

75

% — Executes on button press in cmdNext.
function cmdNext_Callback(hObject, eventdata, handles)
% hObject handle to cmdNext (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles structure with handles and user data (see GUIDATA)
if handles.ftag==l
disp(handles.ftag);
foldemame=get(handles.editfolder,'String');
extension=get(handles .editext,'String');
totalimages=str2num(get(handles.edittotal,'String'));
totalclusters=str2num(get(handles.editclusnum,'String'));
handles.totalclusters=totalclusters;
handles.totalimages=totalimages;
[imlist, Lx, Ly]=loadimvecsname(foldemame,extension, totalimages, handles);
set(handles.editfolder,'Visible','off);
set(handles.edittotal,'Visible','off);
set(handles.editclusnum,'Visible','off);
set(handles.editext,'Visible','off);
set(handles.lblfolder,'Visible’,'off);
set(handles.lbltotal,'Visible','off);
set(handles.lblclusnum,'Visible','off);
set(handles.lblclusnum,'Vlsible','oFf);
set(handles.lblext,'Visible','off);
handles.ftag=2;
handles.imlist=imlist;
handles.Lx=Lx;
handles.Ly=Ly;
guidata(hObject, handles); return;

end
if handles.ftag==2
disp(handles.ftag);
dctlist=dctstep(handles);
handles.flag=3;
handles.d=dctlist(:,l:end-8000);
set(handles.board,'String',’DCT vectors obtained. Also the DCT vectors are downsized

for faster processing.');
str=get(handles.board,'String');
set(handles.board,'String',strcat(str,'Press Proceed to perform clustering'));
guidata(hObject, handles); return;

end
if handles.ftag==3
str='The program would now begin clustering of the images.';
str=strcat(str,'In this step, similar images are grouped into a given number of clusters.');

76

str=strcat(str,'PLEASE WAIT FOR THE NEXT MESSAGE...’);
set(handles.board,'String',str);
% CHANGE NUMBER OF CLUSTERS HERE

[c, memb]=som_laneans('seq',handles.d,handles.totalclusters);
str=’The DCT clusters have been obtained.';
str=strcat(str,'We now take the inverse DCT of the vectors to get the images back.');
str=strcat(str,'PLEASE WAIT FOR THE NEXT MESSAGE...’);
z=size(handles.imlist,2);
c(:,end:z)=0;
for i=l rhandles.totalclusters

ctr(i,:)=idct(c(i,:));
end
str='The clustered vectors have been successfully obtained. Press Proceed to go

ahead.';
set(handles.board,'String',str);
handles.ctr=ctr;
handles.memb=memb;
handles.ftag=4;
guidata(hObject, handles); return;

end
ifhandles.ftag==4
disp(handles.ftag);
set(handles.board,'Visible','off);
set(handles.axesc,'Visible','on');
set(handles.editcnum,'Visible','on');
set(handles.cmdShowCluster,'Visible','on');
handles.ftag=5;
guidata(hObject, handles); return;

end
if handles.ftag==5
disp(handles.ftag);
set(handles.board,'Visible','on’);
set(handles.axesc,'Visible','off);
set(handles.editcnum,’Visible',’off);
set(handles.cmdShowCluster,’Visible','off);
str='The various clusters were just shown. We can now see the processed images';
str=strcat(str,' and their Nearest Clusters. For this, press Proceed.');
set(handles.board,'String',str);
handles.ftag=6;
guidata(hObject, handles); return;

end
if handles.ftag==6
disp(handles.ftag);

77

cla;
set(handles.board,'VisibieVoff);
set(faceclustering,'CurrentAxes',bandles.axes 1);
set(bandles.axesc,'Visible','off);
set(bandles.editcnum,'Visible','off);
set(bandles.cmdSbowCIuster,'Visible',’off);
set(bandles.axesl,'Visible','on');
set(bandIes.axes2,'Visible','on');
set(bandles.editinum,'Visible','on');
set(bandles.cmdClass,'Visible','on');
set(bandles.imlabel,'Visible','on');
set(bandles.cluslabel,'Visible','on');
bandles.ftag=7;
guidata(bObject, bandies); return;

end
ifbandles.ftag==7
set(bandles.axesl,'Visible','off);
set(bandles.axes2,'Visible','off);
set(bandles.editinum,'Visible','off);
set(bandles.cmdClass,'Visible','off);
set(bandles.inilabel,'Visible','off);
set(bandles.cluslabel,'Visible','off);
set(bandles.editfolder,'String',");
set(bandles.editfolder,'Visible','on');
set(bandles.cmdSave,'Visible','on');
set(bandles.board,'Visible','on');
set(bandles.lblfolder,'Visible','on');
str='It is now time to save the clusters in an existing folder.';
str=strcat(str,'Suppose we enter an already existing folder named c;\clusters\.');
str=strcat(str,'Then cluster 1 (central image and members) will be saved in ');
sti^strcat(str,'c:\clusters\l\. Cluster 2 will be saved in c:\clusters\2\ and so on.');
set(handles.board,'String',str);

end

function [imlist. Lx, Ly]=toadimvecs(impath, ext, totalnum, handles)
board=handles.board;
compressionfactor=l;
for i=l :totalnum
%CHANGE THE TOTAL NUMBER OF FACES (PRESENTLY 391) IF YOU ARE

USING SOME OTHER LIBRARY
%CHANGE THE PATH 'd:\matlab7\attfaces\' TO THE DIRECTORY WHERE THE
%NUMBERED FACES ARE STORED. THE IMAGES SHOULD BE NUMBERED

AS 1.PGM AND

78

%ONWARDS AS 4.PGM. 5.PGM AND SO ON. SO IF ANY OTHER FORMAT IS
USED, THE
%CORRESPONDING CHANGES MUST BE MADE IN THE LINE BELOW.

temp=strcat(impath,'\',num2str(i),ext);
im=imread(temp);
ztemp=size(im);
if(Iength(ztemp)~=2)
im=rgb2gray(im);

end
%RESIZE THE IMAGE TO HALF SIZE BY I.E. FACTOR 2 (CHANGE 2 TO A

HIGHER FACTOR IF THE IMAGE
%IS TOO BIG).IF THE IMAGES ARE SMALL ENOUGH, SIMPLY MAKE

im2=iml; IN
%THE LINES BELOW.

Lx=uint8(size(im, 1)/compressionfactor);
Ly=uint8(size(im,2)/compressionfactor);
im2=iniresize(im,doubIe(uint8(size(im)/compressionfactor)));
%CONVERT THE IMAGES INTO A SET OF LONG VECTORS

imlist(i,:)=im2(:);
%DISPLAY THE NUMBER OF IMAGES LOADED SO FAR...DELETE THIS "IF"

PART LINES IF NOT

%REQUIRED.
ifmod(i,20)~0
set(board,'String’,strcat('Total images Ioaded=',num2str(i)));

end
end

set(board,'String',strcat(Total images loaded=',num2str(i)));
str=get(board,'String');
set(board,'String',strcat(str,'...All images are converted into vectors'));
str=get(board,'String');
set(board,'String',strcat(str,'...We shall now take the DCT of all images'));
str=get(board,'String');
set(board,'String',strcat(str,'...Press Proceed to continue'));
%THE FUNCTION kmeans NEEDS THE VECTORS TRANSPOSED...

imlist=double(imlist);

function [imlist, Lx, Ly]=loadimvecsname(impath, ext, totalnum, handles)
board=handles.board;
compressionfactor=l;
g=GetFilesWithExtension(impath,ext);
for i=l Totalnum
%CHANGE THE TOTAL NUMBER OF FACES (PRESENTLY 391) IF YOU ARE

USING SOME OTHER LIBRARY

79

%CHANGE THE PATH 'd:\matlab7\attfacesV TO THE DIRECTORY WHERE THE
%NUMBERED FACES ARE STORED. THE IMAGES SHOULD BE NUMBERED

AS I.PGM AND
%ONWARDS AS 4.PGM, 5.PGM AND SO ON. SO IF ANY OTHER FORMAT IS

USED,THE
%CORRESPONDING CHANGES MUST BE MADE IN THE LINE BELOW.

% temp=strcat(impath,'V.num2str(i),ext);
im=iinread(g{i});
ztemp=size(im);
if(Iength(ztemp)~=2)
im=rgb2gray(im);

end
%RESIZE THE IMAGE TO HALF SIZE BY I.E. FACTOR 2 (CHANGE 2 TO A

HIGHER FACTOR IF THE IMAGE
%IS TOO BIG). IF THE IMAGES ARE SMALL ENOUGH, SIMPLY MAKE

im2=iml; IN
%THE LINES BELOW.

Lx=uint8(size(im, 1)/compressionfactor);
Ly=uint8(size(im,2)/compressionfactor);
im2=iniresize(im,doubIe(uint8(size(im)/compressionfactor)));
%CONVERT THE IMAGES INTO A SET OF LONG VECTORS

imlist(i,:)=im2(:);
%DISPLAY THE NUMBER OF IMAGES LOADED SO FAR...DELETE THIS "IF"

PART LINES IF NOT

%REQUIRED.
ifmod(i,20)=0
set(board,'String',strcat('Total images Ioaded=',num2str(i)));

end
end

set(board,'String',strcat('Total images Ioaded=',num2str(i)));
str=get(board,'S tr ing');
set(board,'String',strcat(str,'...AII images are converted into vectors'));
str=get(board,'String');
set(board,'String',strcat(str,'...We shall now take the DCT of all images'));
str=get(board,'String');
set(board,'String',strcat(str,'...Press Proceed to continue'));
%THE FUNCTION kmeans NEEDS THE VECTORS TRANSPOSED...

imIist=double(imIist);

function [imiist. Lx, Ly]=Ioadimvecs2(impath, ext, totalnum, handles)
board=handIes.board;
compressionfactor=I;
direc=dir(impath);

80

files=direc.name(3 :end);
for i=l :totalnum
%CHANGE THE TOTAL NUMBER OF FACES (PRESENTLY 391) IF YOU ARE

USING SOME OTHER LIBRARY
%CHANGE THE PATH ’d:\matlab7\attfacesV TO THE DIRECTORY WHERE THE
%NUMBERED FACES ARE STORED. THE IMAGES SHOULD BE NUMBERED

AS 1.PGM AND
%ONWARDS AS 4.PGM, 5.PGM AND SO ON. SO IF ANY OTHER FORMAT IS

USED, THE
%CORRESPONDING CHANGES MUST BE MADE IN THE LINE BELOW.

temp=strcat(inipath,'\',files(i));
im=imread(temp);
ztemp=size(im);
if(length(ztemp)~=2)
im=rgb2gray(im);

end
%RESIZE THE IMAGE TO HALF SIZE BY I.E. FACTOR 2 (CHANGE 2 TO A

HIGHER FACTOR IF THE IMAGE
%IS TOO BIG).IF THE IMAGES ARE SMALL ENOUGH, SIMPLY MAKE

im2=iml; IN
%THE LINES BELOW.

Lx=uint8(size(im, 1)/compressionfactor);
Ly=uint8(size(im,2)/compressionfactor);
im2=iniresize(ini,double(uint8(size(im)/compressionfactor)));
%CONVERT THE IMAGES INTO A SET OF LONG VECTORS

imlist(i,:)=im2(:);
%DISPLAY THE NUMBER OF IMAGES LOADED SO FAR...DELETE THIS "IF"

PART LINES IF NOT

%REQUIRED.
ifmod(i,20)=0
set(board,'String',strcat('Total images loaded=',num2str(i)));

end
end

set(board,'String',strcat('Total images loaded=',num2str(i)));
str=get(board,'String');
set(board,'String',strcat(str,'...All images are converted into vectors'));
str=get(board,'String');
set(board,'String',strcat(str,'...We shall now take the DCT of all images'));
str=get(board,'String’);
set(board,'String',strcat(str,'...Press Proceed to continue'));
%THE FUNCTION kmeans NEEDS THE VECTORS TRANSPOSED...

imIist=doubIe(imlist);

81

function dctlist=dctstep(handles)
imlist=handles.imlist;
for i=l :handles.totalimages
dctlist(i,:)=dct(imlist(i,:));

end

% — Executes during object creation, after setting all properties,
function editcnum_CreateFcn(hObject, eventdata, handles)
% hObject handle to editcnum (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER,
if ispc
set(hObject,'BackgroundColorVwhite');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBaekgroundColor'));
end

function editcnum_Callback(hObject, eventdata, handles)
% hObject handle to editcnum (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of editcnum as text
% str2double(get(hObject,'String')) returns contents of editcnum as a double

% — Executes on button press in cmdShowCluster.
function cmdShowCluster_Callback(hObject, eventdata, handles)
% hObject handle to cmdShowCluster (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles structure with handles and user data (see GUIDATA)
str=get(handles.editcnum,'String');
i=str2num(str);
x=uint8(reshape(handIes.ctr(i,:),handles.Lx,handles.Ly));
set(faceclustering,'CurrentAxes',handles.axesc);
imshow(x);
handles.ftag=5;

82

guidata(hObject, handles); return;

% — Executes during object creation, after setting all properties,
function editinum_CreateFcn(hObject, eventdata, handles)
% hObject handle to editinum (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER,
if ispc
set(hObject,'BackgroundColorVwhite’);

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function editinum_Callback(hObject, eventdata, handles)
% hObject handle to editinum (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of editinum as text
% str2double(get(hObject,'String')) returns contents of editinum as a double

% — Executes on button press in cmdClass.
function cmdClass_Callback(hObject, eventdata, handles)
% hObject handle to cmdClass (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles structure with handles and user data (see GUIDATA)
str=get(handles.editinum,'String');
i=str2num(str);
x=uint8(reshape(handles.imlist(i,:),handles.Lx,handles.Ly));
set(faceclustering,'CurrentAxes',handles.axes 1);
imshow(x);
[ctrim, ctmum]=NearestCluster(i,handles);
x=reshape(uint8(ctrim),handles.Lx,handles.Ly);
set(faceclustering,'CurrentAxes',handles.axes2);
imshow(x);
str=strcat('Nearest Cluster:',num2str(ctmum));

set(handles.cluslabel,'String',str);
guidata(hObject, handles); return;

83

function [ctrim, ctmum]=NearestCluster(i,handles)
imvector=double(handles.inilist(i,:));
ctrlist=double(handles.ctr);
for i=l ;size(ctrlist,l)
dvec(i,;)=abs(ctrIist(i,:)-imvector);
d(i)=suni(dvec(i,;));

end

f=find(d==min(d(:)));
ctrim=uint8(ctrlist(f,:));
ctmum=f;

function StoreClusters(parentdir, handles)
%THE SYNTAX OF THE FUNCTION IS:

%StoreCIusters(parentdir, ctrlist, imlist, lx,Iy, memb);
%HERE THE VARIABLES MEAN EXACTLY THE SAME AS THEY MEAN IN THE
PREVIOUS
%FUNCTIONS.
%FOR EXAMPLE. IF parentdir='c:\clusters' AND THERE ARE 5 CLUSTERS. THEN
THE PROGRAM CREATES
%DIRECTORIES: 'c:\clusters\l' to ’c:\clusters\5'.
%IN EACH DIRECTORY, THE CENTRAL IMAGE IS STORED AS 'centre.binp'.
ALSO, THE
%MEMBER IMAGES WITHIN imlist TOO ARE STORED IN THE
CORRESPONDING
%DIRECTORIES. HENCE EACH DIRECTORY NOW CONTAINS A CLUSTER
CENTRE AND ALL
%CLUSTER MEMBERS.

ctrlist=handles.ctr;
imlist=handles.imlist;
lx=handIes.Lx;
ly=handIes.Ly;
memb=handles.memb;
for i=I :size(ctrlist,l)
mkdir(parentdir,num2str(i));
ctrtemp=uint8(reshape(ctrlist(i,:),Ix,ly));
temp=strcat(parentdir,’\',num2str(i),'\centre.bmp’); disp(temp);
imwrite(ctrtemp,temp);
f=find(memb==i);
for j=I :length(f)
temp=strcat(parentdir,'\',num2str(i),'\',num2str(f(j)),'.bmp'); disp(temp);

84

imtemp=uint8(reshape(imlist(f(j),:),lx,ly));
imwrite(imtemp,temp);

end
end

pause(3);
disp(strcat('All clusters have been stored in numbered directories in:',parentdir));

% — Executes during object creation, after setting all properties,
function editfolder_CreateFcn(hObject, eventdata, handles)
% hObject handle to editfolder (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER,
if ispc
set(hObject,'BackgroundColorVwhite');

else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function editfolder_Callback(hObject, eventdata, handles)
% hObject handle to editfolder (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of editfolder as text
% str2double(get(hObject,'String')) returns contents of editfolder as a double

% — Executes during object creation, after setting all properties,
function edittotal_CreateFcn(hObject, eventdata, handles)
% hObject handle to edittotal (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPEER.

85

if ispc
set(hObject,'BackgroundColorVwhite');

else

set(hObject,'BackgrouiidColor',get(0,'defaultUicontrolBackgroundColor'));
end

function edittotal_Callback(hObject, eventdata, handles)
% hObject handle to edittotal (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edittotal as text
% str2double(get(hObject,'String')) returns contents of edittotal as a double

% — Executes during object creation, after setting all properties,
function editext_CreateFcn(hObject, eventdata, handles)
% hObject handle to editext (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER,
if ispc
set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function editext_Callback(hObject, eventdata, handles)
% hObject handle to editext (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of editext as text
% str2double(get(hObject,'String')) returns contents of editext as a double

% — Executes during object creation, after setting all properties,
function editclusnum_CreateFcn(hObject, eventdata, handles)

86

% hObject handle to editclusnum (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER,
if ispc
set(hObject,'BackgroundColorVwhite');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function editclusnum_Callback(hObject, eventdata, handles)
% hObject handle to editclusnum (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String') returns contents of editclusnum as text
% str2double(get(hObject,'String')) returns contents of editclusnum as a double

% — Executes during object creation, after setting all properties,
function editnew_CreateFcn(hObject, eventdata, handles)
% hObject handle to editnew (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER,
if ispc
set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

fimction editnew_Callback(hObject, eventdata, handles)
% hObject handle to editnew (see GCBO)
% eventdata reserved - to be defined in a future version ofMATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of editnew as text

87

% str2double(get(hObject,'String')) returns contents of editnew as a double

% — Executes on button press in cmdSave.
function cmdSave_Callback(hObject, eventdata, handles)
% hObject handle to cmdSave (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
StoreClusters(get(handles.editfolder,'String'),handles);

function flist=GetFilesWithExtension(path, ext)
direc=struct2cell(dir(path));
num=size(direc,2);
count=0;
for i=l:nuni

temp=direc(i);
if strcmp(class(temp{ 1 }),'char');
str=strcat(path,'\',direc(i));
disp(class(str{l}));
[j, e, p]=FileNanieAttributes(str{l});
if strcmp(e,ext)
count=count+l

flist{count}=str{ 1};
end

end
end

function [justname, extension, path]=FileNameAttributes(str)
fg=strfind(str, '\');
fb=0;

if length(fg)>0
fb-fg(end);

end

fg=strfind(str,'/');
if length(fg)>0
ff=fg(end);

end
iffb>ff
f=fb;

else
^ff;

88

end

fg=strfind(str,'.');
if length(fg)>0
fd=fg(end);
justname=str(f+1: fd-1);
extension=str(fd:end);

else

justname=str(f+l :end);
extension=";

end

path=str(l :f);

REFERENCES:

[1] Biometrics - A Look at Facial Recognition John D. Woodward, Jr., Christopher
Horn, Julius Gatune, and Aryn Thomas

[2] W. Zhao, R. Chellappa, A. Rosenfeld, P.J. Phillips, “Face Recognition: A
Literature Survey”, ACM Computing Surveys, 2003, pp. 399-458

[3] T.Kanade, “Computer Recognition ofHuman Face”, Basel and Stutgard:
Birkhauser 1973.

[4] M.D. Kelly, “Visual Identification ofPeople by Computer,” Technical Report AI-
130 Stanford AI Project, Stanford, CA, 1970

[5] Face Recognition by Humans Pawan Sinha*, Benjamin J. Balas, Yuri Ostrovsky,
Richard Russell Department ofBrain and Cognitive Sciences, Massachusetts Institute
ofTechnology,

[6] C.T. Zahn. Graph-theoretic methods for detecting and describing gestalt clusters.
IEEE Transactions on Computers 2001.

[7] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood estimation
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological) 1977.

[8] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence 1995.

89

90

[9] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space

analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002.

[10] T. Hofmann and J.M. Buhmeiim. Pairwise data clustering by deterministic

annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997.

[11] B. Fischer and J.M. Buhmann. Path-based clustering for grouping smooth curves
and texture segmentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence 2003.

[12] J. Shi and J. Malik. Normalized cuts and image segmentation. In Proc. IEEE

Computer Society Conference on Computer Vision and Pattern Recognition 1997.

[13] F. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[14] A density-based algorithm for discovering clusters in large spatial databases with
noise. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu.

[15] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace

clustering ofhigh dimensional data for data mining applications. In Proc. 1998 ACM
SIGMOD International Conference on Management ofData, pages 94(105, June
1998

[16] W.A. Barrett, A survey of face recognition algorithms and testing results, in:

Signal, Systems, and Computer Conference of IEEE, 1998, pp. 301-305.

[17]MOVING OBJECT DETECTION,TRACKING AND CLASSIFICATION FOR
SMART VIDEO SURVEILLANCE - August, 2004

91

[18] MOVING OBJECT DETECTION AND TRACKING IN WAVELET
COMPRESSED VIDEO - August, 2003

[19] Face Databases. Ralph Gross. The Robotics Institute, Carnegie Mellon

University

[20] Image compression using the Discrete Cosine Transform. The Mathematica
Journal, 4(1), 81-88.

[21] M. Turk and A. Pentland (1991). "Eigenfaces for recognition". Journal of

Cognitive Neuroscience 3(1): 71-86.

[22] Face recognition in furrier spectra -- Hagen Spies-Interdisciplinary Center for
Scientific Computing, Univ. ofHeidelberg

[23] Face Recognition and data analysis— Ian Schechter, USA & Michael Vorburger,
Switzerland

[24] View-based object recognition Holger Bekel, Ingo Bax Lecture in summer 2004

University ofBielefeld

[25] A tutorial in principle component analysis , Lindsay I.Smith.

[26] Luigi Rosa Matlab facerecognition code.

[27] Matt's Matlab Tutorial Source Code Page.[28]Face recognition in furrier spectra — Hagen Spies- Univ. of Heidelberg

92

[29] Face recognition cognitive and computational processes. Sam S.Rakover and
Baruch Cahlon.[30]Face Recognition Using the Discrete Cosine Transform ZIAD M. HAFED AND
MARTIN D. LEVINE Center for Intelligent Machines, McGill University,

[31] Face Recognition Jens Fagertun Kongens Lyngby 2005 Master Thesis IMM-
Thesis-2005-74

[32] Face Recognition Based on Polar Frequency Features YOSSI ZANADept And
ROBERTO

[33] Affinity Relation Discovery in Image Database Clustering and Content-based
Retrieval - Mei-Ling Shyu, Shu-Ching Chen, Min Chen and Chengcui Zhang.

[34] Image Compression Using the Discrete Cosine Transform Andrew B. Watson
NASA Ames Research Center[35]Image Analysis for Face Recognition, Xiaoguang Lu Dept, ofComputer Science
& Engineering, Michigan State University.

[36] A Comparison ofFace Detection Algorithms Ian R. Fasell and Javier R.
Movellan2

[37] FERET (Face Recognition Technology) Recognition Algorithm Development
and Test Results by P. Jonathon Phillips, Patrick J. Rauss, and Sandor Z. Der

[38] Eigenfaces for face recognition . Mattew turk and Alex Pentland. Visions and

modeling group, the media laboratory,MIT.

93

[39] Biologically-based Face Recognition using Gabor Filters and Log-Polar Images
Maria Jose Escobar*, Javier Ruiz-del-Solar

[40] Unsupervised Image-Set Clustering Using an Information Theoretic Framework
Jacob Goldberger, Shiri Gordon, and Hayit Greenspan

[41] A continuous probabilistic framework for image Matching, Hayit Greenspan and
Jacob Goldberger

[42] The CSU Face Identifieation Evaluation System User’s Guide: Version 5.0 Ross

Beveridge, David Bolme, Mareio Teixeira and Bruee Draper

[43] Automatic Face Recognition System Based on Local Fourier-Bessel Features
Yossi Zana, Roberto M. Cesar-Jr and Regis de A. Barbosa

[44] Eigenfaces vs. Fisherfaees: Recognition Using Class Speci_c Linear Projection
PeterN. Belhumeur Jo~ao P. Hespanha David J. Kriegman

[45] Face Detection and clustering for video indexing applications Csaba Cziijek,
Noel O’Connor, Sean Marlow and Noel Murphy

