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INTRODUCTION

Combinatorial mathematics, also known as combinatorial

analysis or combinatorics, had its beginnings in ancient

times. References can be found dating back to the Chinese

Emperor Yu (c. 2200 B.C.). Permutations, an Important

part of this discipline, had a beginning in China around

1100 A.D.

In spite of these early beginnings, much of the

material of combinatorial mathematics was merely recreational

mathematics until fairly recent times, when the explosion

of technical and scientific knowledge developed many

useful and practical applications of the subject.

An exact definition of combinatorial mathematics

seems to be Impossible, as the subject matter itself, as

well as applications of the same, is constantly increasing.

It has been described as the analysis of complicated

developments by means of ‘a priori* consideration and

collection of different combinations of terms which enter

the coefficients. Or from another source one might find

it described as a subject that is concerned with

arrangements, operations, and selections within a finite

or discrete system.

Combinatorial problems seem to automatically

separate themselves into three main types, althoxigh there
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Is some overlapping. For example, consider a basketball

tournament with a given number of teams and a given number

of courts. The question of whether it is possible to

arrange a schedule 66 that no team plays two consecutive

games is an existence problem. If it is determined that

this la possible, then the question of how to go about

determining the actual schedule is a construction or

evaluation problem. It might be desirable in some

Instances to determine all possible such schedules. This

la an enumeration problem.

The purpose of this paper la to examine some of the

fundamental principles of combinatorial analysis and

their applications to the resolution of existence problems,

althoiigh enumeration problems will appear.

The theory of this phase of combinatorial analysis

lenis Itself quite readily to development along several

different lines. However, from evaluation of available

literature, it appears to the writer that the most basic

development, that is, that requiring the least amount of

backgrotind material, is through the framework of modern

algebra. Consequently, this is the method followed by

the writer.

The only background material necessary for the

reader is a familiarity with matrices and matrix

manipulation, Integral congruences from the theory of

numbers, and the definitions of groups and fields.



CHAPTER I

FUMDAl'lEKTALS

1. n-eete, generalized rule of sum, generalized rule of

product.

It Is as Slimed that the reader has a thorough knowledge

of the following standardized concepts from set theory: set;

subset; proper subset; null set; power set (P(S)); Intersection;

union; disjoint sets; partition; finite set; product set or

cross product.

The following definitions are not so standardized. Let

Ti and (1 = 1,2,...,r), be two partitions of a set, M;

l.e., M = U Tx =111/ . The partitions are ordered If

equality of the partitions means T^ = Tx' (1 = 1,2,... ,r)
and unordered if equality of the partitions means each

Is equal to Some T|' .

An n-set Is a finite set with exactly n elements. By

convention we take n>0. An r-subset of an n-set is a subset

with exactly r elements. If S la an m-set; T an n-set, and

Sn T = 0, then SVJ T is an (M + n)-8et. More generally, if

Tx is an nx-set (i = 1,2,...,r) and the partition K, then
M Is an (n, + n^. + ... + n^)-set (generalized rule of sum).

Let M(S,T,n) denote a set of ordered pairs, (8,t),
where each se S Is paired with exactly n elements te T.

Distinct elements of S need not be paired with elements of

3
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the same n-subsets of T. Obviously, T must contain at

least n elements and M(S,T,n) = SXT if and only if T is

an n-set. If S is an m-set, then M(S,T,n) is an (mn)-set*

More generally, if T;j^ is an n^-set and M(T,

,1^ M^= M(M^_,,T^,n,.), then is an

(n,n^...n^)-set (generalized rule of product).
These definitions are basic to the definitions,

theorems, and corollaries appearing throughout the remaindlng

of the paper.

2. Samples and permutations.

For any set, S, consider

(2.1) (®l» • • • » )
an ordered r-tuple of elements of S, where the a^^,

1 = 1,2,...yr, need not be distinct. We take the usual

definition for eqxiallty of r-tuples, i.e., (a^,a^, ...,a^) =

(b(,b^ ,.. .,b^) if and only if a^^ = b. for 1 = 1,2,...,r.
We refer to (2.1) as an resample, and say it is of size r.

Theorem 2.1 Let S be an n-set. The number of

r-samples of S is n^.
Proof: This is nothing more than a special case of

the generalized rule of product, where T, = T^^ = ... = T^.= S
and n,=ng^=...=ny.= n. #

In the preceding discussion, if we take the aj^ of

the n-sample to be distinct, the n-sample is called an

n-permutatlon. If S is an m-set, then an n-permutation

must have n ^ m, and an m-permutatlon is called a permutation

of* E elements, or simply a permutation.
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Theorem 2.2 The niomher of r-permutatlons of n

elements Is

(2.2) P(n,r) =h(n-l) • . . (n-r+1)

Again we have a special case of the generalized rule of

product, where T, = T^^ = ... = T^ = S and n, = n, n^ = n-1,
. ••, n^= n-r+1 • #

By (2.2), p(n,n) Is the product of the first n

positive Integers, called n-factorial and written n!«

Hence P(n,n) = n! = n(n-l) ...I.

The standard definitions of mapping, single valued

mapping, image, one-to-one mapping and onto mapping are

assumed In the following.

Let S be an n-set and consider the set, G(S), of

all 1-1 mappings of S onto itself. Let f and g be In

G(S). f = g If f(a) = g(a) for all ae. S. If f and g are

any two elements of G(S), the mapping that maps ae S into

g(f(a)) Is a 1-1 mapping called the product of f and g.

Thus G(S) Is an algebraic system with a binary operation

called product, and it may be readily verified that G(S)
is a group.

Let S be an n-set, and represent the elements of S

by 1,2,...,n. Then the symmetric group of degree n is

G(S), and is denoted by If fe such that 1 is mapped

into f(l), i = 1,2,...n, then f is characterized by the

permutation (f(1),f(2),...f(n)).

It can also be seen that each permutation of the n

elements is in reality a 1-1 mapping of S onto S.

The number of elements in a group is called its order.
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therefore we may restate P(n,n) = n! = n(n-l)...1 as:

the order of Is nl.

Examples (i) The number of 2-permutatlons of 4

elements la P(4,2) =4*3 = 12. If the elements are

labeled a,b,c,d, the 2-permutatlons are:

(a»b)y(ayc)y(ayd)f(bya)y(bfC}y(byd)y
(c»&)y(Cfb}9(c9d)9(d.9&)9(d;^b)f(dfC)»

(2) Consider the ntunber of 4-letter words

that can be constructed out of the 26 letters of the

English alphabet.

(a) If repetition of letters Is

permitted, these are 4-sample8, hence by Theorem 2.1, the

nxnnber Is 26^.

(b) If repetition of letters Is not

permitted, these become 4-permutatlons, hence by Theorem

2.2, the number Is P(26,4) = 26*25-24*23 = 358,773. Of

course. In both cases many of these "words" will be

meaningless.

(3) of order 1001 = (9.3326...) -lo'^^
The number of electrons In the universe has been estimated

at merely (136)'2 .

(4) Let D be a matrix of p rows and q

colximns, and let the entries of D be the Integers 0 and 1.

D may be considered as an (pq)-8ample of a 2-8et, hence
Pi

there are 2 different matrices.

3. Unordered selections, combinations, binomial coefficients.

Let S be a set and

{a, . ..,a^}-(3.1)
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an unordered collection of r elements of S, not necessarily

distinct. The number of times a given element appears In

this collection Is called the multiplicity of the element.

Two such collections, {a, ,a^, ... and-Cb, ... ,b^^are
equal provided the elements and their respective multiplicities

are the same, regardless of order. This Is an unordered

selection of S of size r, and is referred to as an r-selectlon

of S. Note that if each element of an r-selectlon Is of

multiplicity 1, the r-selectlon is then an r-subset of S.

An r-subset of an n-set is called an r-comblnatlon of n

elements.

You will recall that P(n,n) = nU It is convenient

to define

(3.2) 01 = 1.

Therefore for every positive integer n,

(3*3) nJ = n(n-1)!.

In the following definitions, n and r are positive

integers*

e(n,r) =/n\= n(n-l)...(n-r4‘l)
\r/ ri

(3.4) C(n,o) =jnj= 1
C(o,r) =(oj = 0

C(o,o) 1

Hence we have defined C(n,r) for all non-negative Integers

n and r. Note that if r>n, then C(n,r) = 0. The numbers

defined by (3*4) are the well-known binomial coefficients,

and are of basic Importance in enumeration problems.
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Theorem 3.1 If S is an n-set, the number of r-sub-

sets Is^n^.
Proof: The number of r-permutatlons of n elements

is P(n,r). However, each r-permutatlon may be ordered in

rl ways. For combinations the order is disregarded, so the

number of distinguishable arrangements is

(3.5) P(ii.r) = n(n~l)...(n~r-»-l) = C(n,r) #
rl rl \iy

Let S be an n-set and P(S) the set of subsets of S.

Let T be the set of all n-samples obtained from the 2-set

of 0 and 1. Then there is a natural 1-1 mapping of P(S)
onto T.

Example Let S = {a,b,c}, a 3-set. Then P(S) is

■[^{a,b,c},(a,b>,£a,c>,(b,c'y,W.W»W» and T is
{(1,1,1), (1.1,0), (1,0,1), (0,1,1). (1,0,0), (0,1,0),
(0,0,1), (0,0,0)}.

Note that, while a subset is not ordered, we can use

some scheme to order the elements of S and maintain this

order in the subsets as {a,b,c~^ ={c,a,b^. Using Theorem 3*1
to count the elements in P(S) and Theorem 2.1 to count the

elements in T and equating the counts we get

(3.6) (n) ... s".
This is an elementary identity, but serves to

Illustrate an effective technique in combinatorial

investigations.

Theorem 3«2 The number of r-selectlons of an n-set

is
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(3.7) ^n+r-1^ = ^n+r-1^
Proof: Replace the n-set S by the n-set S' =

Then every r-selectlon of can be represented

In the form|a, ,aj^, ...a^ where a, 4 a^^,..<,a^. Let S* be
the (n+r-l)-set of Integers 1,2,...,n+r-1. Then

{a^ +0, aj^ +1,.. .a ^+r-l3’ Is an r-subset of S*, and
establishes a 1-1 correspondence between r-selectlons of

s' and r-subsets of S* thus:

{a,,a^,...a,}4^{a, + 0, a^+ 1,...a^ + r-1^ .

That is, we have simply developed a set of r-subsets

that are in a 1-1 correspondence with a set of r-selections,

hence, since by Theorem 3.1 the n\imber of r-subsets of S*

is ^n+r-1^ , the number of r-selections of S is ^n+r-1^*
By expansion and simple algebra it can be readily determined

that^n+r-l^ = ^n+r-1j. #
Let an n-set,S, be partitioned by T, ,Tj^,.. .,T^ into

r^-subsets Tj (1 = 1,2,...k). Then n = r, + rj^_+ ... + r^

and we call the partition S = T, U T^^U ...\>T^^ an (r^ ,r^,...jr^^)-
partltion of S.

Theorem 3*3 The number of ordered (r ,r ,...,r )-

partitions of an n-set is nj .

r, Ir^I...r^l
Proof: Kie number of r, -subsets of an n-set is ^n j

by Theorem 3«1* Once we choose an r, -subset, there are '
n-r, elements remaining, and the number of r^^-subsets of an

(n-r,)-set is Continuing this process, we have the
number of partitions is:
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-r^j = n!

r, iTj.
We can arrive at this directly by considering the

proof as a direct application of Theorem 3«1 and the

generalized rule of product. #

The numbers of the form nl are the

r,lr3^I...r^^l
multinomial coefficients. It follows directly from

Theorem 3*3 that the number of ordered (1,1,...,1)-

partltions of an n-set is nJ, and Theorem 3*3 is reduced

to the number of permutations of an n-set. The number of

ordered (r,n-r)-partitions of an n-set is nl , whence
rlCn-r)!

Theorem 3*3 reduced to Theorem 3»1»

Examples (l) A bridge hand consists of a selection

of 13 cards from a full deck of 52-cards. Since the order

of the cards is of no Importance, each hand Is a 13-comblnation,

and the number of possible different hands is /52\»
V13/

635,013,559,600.

(2) At bridge, there are four players at

a table, each receiving 13 cards. Hence a given situation

at a bridge table is an ordered (13,13,13,13)-partltion
of a 52-set, and the nximber of different situations is

52^^^^ = (5.3645...)1o’'^ by Theorem 3.3*
(3) A throw with a set of r dice may be

considered as an r-selection of a 6-Bet, hence the number

of distinct throws is Theorem 3.2.

4. Binomial coefficients.

From section 3, it would appear that the binomial
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coefficlenta are integers, which indeed they are. Given

any r successive positive integers, one of them must be a

multiple of r, another of r-1, and so on, hence the product

of any r successive positive integers is divisible by rl,

hence |'n| is an integer.
Theorem 4.1 If p is a prime, then|p|, |pj»...,^ p^

are divisible by p.

Proof: Let p be a prime and r an integer such that

15r$p-1. Then rl divides p(p-l) ...(p-r+l). But rl is

a prime to p, hence rl divides (p-1)(p-2)...(p-r+1),
hence rp\ = p (p-1)(p~2)...(p~r-»1) is divisible by p. #

\r/ rl

Consider the well-known Pascal's Triangle for

binomial coefficients:

1

1
"

3 ^
2

Si

1 4 6

N
3 ^

1

S»
4 1

If the arrows are considered as one-way paths, then

each number of the triangle tells the number of one-way

paths we can follow to get from the topmost 1 to that

position in the triangle. This feature is an Inherent

property from the relation

(4,2) (?) = (V) * f?:l) •
The symmetry and monotonlclty of the horizontal rows

are consequences of the following easily proved relationships:
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(A.3) (?) = (n?r) (0 $ r ^ n)

(4.4) ("3)f?)<—f?)
(4.5) (%’)<^"T’)<-<(^;! ) Tn)

If n is a positive Integer,

(4.6) (x + y)'^ = [n\ x'' + In \ x"-' y + ... n\ y •

n/

To prove this, let A be an n-set of symbols, A =

{(x + y), , (x + y)^,.(x + y)^}. Then for r>0 the
coefficient of x'^'’^y’^ in the expansion of (x +y)'' is equal

to the nximber of r-subsets of A, which by Theorem 3*1 is

(4.7) By setting x = y = 1 in (4.6), we have

(S) * (?) * - * (?) = "" •
By setting x = 1, y = -l In (4.6), we have(4.8)

n\ - /n\ + ... + (-1)'B ■«) a ■
hence it can be seen that (4.6) is the source of many

relationships among coefficients.

The following identities are typical of those that

occur throughout this paper. They may be derived by

elementary methods.

t \^T - ^)'
:)(4.10)

(4.11)
K.= l

n-\

,¥k-jL
^ k^'/nX =n(n+l)-2 ,

£ Liur-' - — —(4.12) /n\ = 1 ♦ 1 +U) ^
e • • + 1

n

irf-
#



CHAPTER II

INCLUSION AND EXCLUSION

1* A fundamental formula.

Consider the following problem. How many integers

between 1 and 6300 inclusive are divisible by neither 5

or 3? Since every fifth integer is divisible by 5 and

every third Integer by 3» the number divisible by 5 is

6300 *5 = 1260, and by 3 is 6300-^3 = 2100, hence 6300 -

2100 - 1260 appears to be the answer. But we have

subtracted ninnbers divisible by both 3 and 5 (15, 30, etc.)
twice. Hence we must add to our result the number divisible

by both 3 and 5» or by 15, which is 6300 4-15 = 420. Hence

we have 6300 - 2100 - 1260 + 420 = 3360.

This Illustrates the general idea of the principle

of inclusion and exclusion. Let A be an n~set and to each

acA assign a unique weight. w(a), with w(a) an element of

some field, F. While P and w(a) are arbitrary, a

particular combinatorial problem often suggests a natural

choice of F and w(a).

Let P denote an N-set of properties,

(l.l) P, ,Pj^,...,P^ connected with the elements of A,
and let

(1.2)

(1.3)
£Px^ ,P*^ ,...,Pj^ be an r-subset of P. Let
W(^^ ,Px ) be the sum of the weights

,...,
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of those elements of A that satisfy each of the properties

* If there are no such elements, the

expression Is assigned the value zero. Now let

(1.4) V(r) = X ,Pj^ ) be the sum of
the quantities (1.3) over all the r-subsets of P. Extend

(1.4) to the case r = 0 and let W(0) equal the sum of the

weights of the elements of A.

The necessary foundations are now laid for developing

the basic Inclusion and exclusion formula, which Is slmpjy

the formula for finding the stim of the weights of the

elements of S that satisfy exactly m of the properties (l.l).
Denote this sum by E(in) • This formula Is postulated, and

an Intuitive explanation of It Is given.

E(m) = W(m) - W(m+l) + ^m+2\ W(m+2) -
. . . + (~lf‘*'fN\ W(N).

\m/

Note that W(m) Is the summation over all m-subsets

of (l.l). Obviously It Is possible that some elements of

S might satisfy all of the properties In more than ome

m-subset of P. Hence the weights of these elements are

added more than once. To compensate for this W(m+l)
Is subtracted to eliminate duplication of weights of

elements satisfying both m and m+1 properties. However,

too much has now been subtracted for It might be possible

for an element to satisfy more than one (m+O-subset of

P, hence Its weight was subtracted more than once.

Consequently it becomes necessary to add another sum. This

process of addition and subtraction must be continued until
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one arrives at the stun of the weights of the elements

which satisfy all of the properties (l.l), when it

obviously ends. The following theorem shows that if an

element of S satisfies fewer than m properties or more

than m properties its weight is not Included in the

calculations.

Theorem 1.1 E(m) = W(m) -^m+1^ ¥{m+1) + ¥(m+2) -
• •• + (-lf”*|^N^ W(N) Is the sum of the weights of the elements
of S that satisfy exactly m properties (l.l).

Proofs Let a€ A and a of weight w(a) satisfy

exactly t of the properties (l.l). If t< m, then a

contributes 0 to the right side of the equation. If t = m,

then a contributes w(a) to the right side of the equation.

If t> m, then a contributes

fft^ - (m+n / t ...

[xm/ \ m / \ m+l) \ m / lin+2)
+ w(a)

to the right side of the equation. But if m<k<t,

ftWt-m\, therefore (1.5) reduces to
Vm/ It-k)
(1.6)

+ (-1) w(a).

But by (4.8) of Chapter I, the bracketed expression

of (1.6) is equal to zero. Hence if t>m, a contributes

zero to the right side of the equation. This implies that

the right side of the equation is the sum of the weights

of the elements of A that satisfy exactly m of the

properties (l.l). §
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Theorem ^,2 Let E(0) denote the sum of the weights

of elements of A that satisfy none of the properties (1.1).
Then

(1.7) E(0) = W(0) - W(1) + W(2) - ... (-1)^ W(N).

Proof: This Is Theorem 1.1 where m = 0. #

If for each acA we let w(a) = 1, a sum of weights

Is the nximber of entries In the sum. Theorem 1.2

specialized In this was has W(0) = n and E(0) as the number

of elements of A satisfying none of the properties (l.l).

Equation (l.7) specialized In this way Is called the sieve

formula.

2. Application to number theory.

If xl^O, let [xj denote the greatest Integer ^x.
Let (a,b) denote the g.c.d. of two Integers a and b not

both zero. Write a/b for "a divides b", and a / b for

"a does not divide b".

Theorem 2.1 Let n be a positive Integer and let

a, *aj^,... .a^^ be positive integers such that (a-,a*) = 1
for 1 J. Then the number of integers k such that

0<k<n, k (1 = 1,2,...tN) Is

(2.1) n - 5^ ’ fn 1 -
... + (-1) r

aj 2- i'
Proof: Let A be the n-set of positive Integers

1,2,...,n and let be the property that an element of A

Is divisible by ajj^ (1 = 1,2....,N). The a- are relatively

prime In pairs hence the expression W(P* ... ,P. ) In the

sieve formula Is the number of Integers k such that

0<k^n, a. a; ...a,. A. But this number Isf n 0
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The Euler ^ -function ^ (n) of the positive Integer

n Is the nvimber of Integers k such that 0<k<n, (k,n) = 1.

Theorem 2.2 Let n be a positive integer. Then

(2.2) 9 (n) = njl" - . The product extends
over all prime divisors p*of n.

Proofs In Theorem 2.1, replace a* by p. and suppose

are the prime divisors of n. Then (2.1)

implies

(2.3) 9 (n) = n - n + n -

. . . + (-1)*^ n .

p p .. .p

But this is equivalent to (2.2). #

The Mobius function /<(n) of the positive Integer n

is defined by

(1) = 1 ,

(2.4) ^ (n) = 0 if n is divisible by the square
of a prime,

K

(P, P^-*»P^) = (-1) If the primes
P.fP t»»*»Pw are distinct.I 9«. ^

This allows us to write (2.3) as

(2.5) 9 (n) - ^ (^) over all positive
a ^

divisors d of n.

Let n be a positive Integer. If the primes </n
are known, then the primes< n may be found. Write the

sequence of integers

(2.6) 2,3>.*.,u.

Strike out all n\imbers divisible by 2, then all

numbers divisible by 3, then all numbers divisible by 5»
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and so on up to all numbers divisible by q where q is the

largest prime ^ JTT. The remaining numbers are primes > J n

and $ n, for a remaining number cannot have a prime factor

^ n, nor can it be the product of two nximbers > Jla, This
method for the construction of primes is called the sieve

of Eratosthanes. To find the number of primes, p, such

that sfn < p $ n, we can again use Theorem 2.1, but shall

omit this application* (1)

3• Derangements•

Let

(3»l) (a, ,a^, •..,a,^) be a permutation of n

elements labeled 1,2,...,n. The permutation is a

deranp:ement if a-^ 1, (i = 1,2,... ,n). Thus a derangement
has no element in its natural position.

A problem by Hontmort, known as "le problems des

recontres" asks for the number of these derangements. Let

D^ denote this number. We may evaluate D^ by the sieve
formula. Let A be the set of n! permutations (3«1.) and P*

the property that a- = 1 (i = 1,2,...,n). Then

(3»2) W(P. ,P* ,...,E ) = (n - r)! as r elements
1 '•■a r

are fixed, hence n - r elements are being permuted. Also,

as the niomber of r-subsets of an n-set is

V(i’) = ^ W(P-,P; ,.. .,P.^) over all, r-subsets, we have
(3.3) W(r) = ^nj (n - r)l = lU .

D^ls obviously the number of permutations that
satisfy none of the properties, Px (1 = 1,2,..,,n). But

this is the E(0) of Theorem 1.2, hence D^ = E(0) = W(0) -
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W(1) + W{2) - ... ♦ W{N), orD =nl-^+ni-
01 II 21

A

... + (-1) n! , or
nl /

(3.4) D = nl (1 -
v\ \ 1

1 * -L.
I 21

-...+(

4. The permanent.

Let S be a set. A rectangular array based on S

Is a configuration of m rows and n columns of the form

(4.1) A =

a. \:k. ^00 NV\

•41V

The entry a., in row i and column j must be an element of
A

S, but S need not be restricted in any way. a*: is said
d

to occupy the (i,j) position of A, A is referred to as

an m by n array, or A is of size m by n. If m = n, A is

a square array. If m - r rows and n - s coliunns of A

are deleted, the result is an r ^ £ subarray of A.
Two m by n arrays are equal if corresponding entries are

equal. A can be considered as an (mn)-sample of set S.

A 1 by n array may be regarded as an n-sample.

We may replace (4.1) by

(4.2) A — ~ 1*2,••.,mj J = 1,2,...,n).
Let e = min (m,n). Then those entries a;; in

position (l,i), i = 1,2,...,e, form the main diagonal of A.

The transpose A^ of A is an n by m array obtained by

reflecting A about its main diagonal. Thus a^*; will be In
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the (i,J) position of A (l = 1,2,J = 1,2,,..,ni).
If A = , A la symmetric.

The array is a matrix if the set S is a field.

Addition and scalar multiplication of m by n matrices is

defined in the usual way, and the set of all m by n

matrices with elements in a field, P, is a vector space

of dimension mn over F. An m by n matrix may be multiplied

by an n by t matrix by the usual method, resulting in an

m by t matrix.

Let A = 8- matrix of size m by n with m ^ n,

and define the permanent of A bys

(4.3) per (A) =£ a,, a^- ...a^ .

This summation extends over all the m-permutatlons

( ij,1^,...,i^) of the integers 1,2,...,n. This scalar
function of A is very frequently used throughout the

literature of combinatorics in connection with certain

enumeration problems. A few of the properties of it are

stated herein, but no attempt is made to elaborate or

explain these. (2)

(4.4) The per (A) remains invariant under arbitrary

permutations of the rows and coltimns of A.

(4.5) Multiplication of a row of A by a scalar c<

in F replaces per (A) by ©c^per (A).

(4.6) If A is a square matrix of order n, per

(a) = per (A^), and per (A) is the same as the determinant

det (A) apart from a factor + 1 preceding each product on

the right side of (4.3).

(4.7) The multiplicative law for determinants.
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det (A) • det (b) = det (AB) Is false for permanents.

(4.8) To evaluate per (A), let A be a matrix

of size m by n with m $ n. Let A^ denote a matrix obtained

from A by replacing r columns of A by zeros. Let S(A^ )
denote the product of the row sums of A^ and let ^ S(A^ )
denote the sums of the S(A ^) over all of the choices for

A^. Then per (A) = 5; S(Av^.J - ^n - m + 1 ^ 21
+ ^n - m + 2) ^ S(A^.^J - . . . + - 1^21 S(A^., ).

If A Is a sqiiare matrix of order n, then per (A)
= S(A) - I. S(A,) + Z S(Aj - . . . + (-1)'^'' 51 S(A^., ).

This chapter Is concluded with a few Introductory

remarks about matrices whose entries are the Integers

zero and one. These are cAlled (O,1)-matrices, and as

each (0,l)-matrlx of size m by n can be considered as an

mn-sample of the 2-set of Integers zero and one, Theorem
^ A

2.1 of Chapter I states that there are 2 such m by n

matrices.

Let I denote the identity matrix of order n and

let J denote the matrix of order n with every entry equal

to 1. Then It Is clear that

(4.9) per (j) = nl

and for the purposes of this paper It Is postulated that

(4.10) per (J - I) = .



CHAPTER III

RECURRENCE RELATIONS

1• Elementary recurrences•

(l.l) ^nj =^n-1j4-^n-lj is a simple
instance of a recurrence. From this one can evaluate the

binomial coefficients for all non-negative Integers n and

r, as schematically illustrated by Pascal's triangle. Many

different types of relationships are called recurrences,

and no attempt is made here to formalize a definition for

this concept. Generally, recurrences are relationships

that are used to evaluate a quantity term by term from

given initial values and previously computed values.

This chapter treats only a few simple recurrences of

special relationship to the general theme of this paper.

For a much more sophisticated treatment, see the recent

text by Riordan. (3)

Consider the set of all n-samples obtained from the

2-Bet of the integers 0 and 1. Let f(n) denote the number

of these that do not contain two successive O's, and define

f(0) =1. It is apparent that f(l) = 2. If n^ 2 the

number of such samples with 1 as the first component is

obviously f(n-i) and the number with 0 as the first

component is f(n-2) since fixing 0 as the first component

also fixes 1 as the second component. Hence from this

22
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Interesting fact It is readily seen that

(1.2) f(n) = f(n - 1) + f(n - 2)

for all n ^ 2. Thus f(n) is determined for all non-

negative integers n. These numbers, f(n), are called

Fibonacci numbers and have many remarkable arithmetical

and combinatorial properties.

Turning to the topic of derangements as Introduced

in the preceding chapter, consider these as a type of

recurrence. Define D© = 1. It is apparent that D , = 0.
Consider a derangement

(l*3) (^|»»• • •»)
of n elements labeled 1,2, ...,n with n^ 2. The first

position may be occupied by any of the n Integers except

1, hence by n - 1 different integers. Let the first entry

of (1.3) be fixed with a^ = k (k 1). Then the derangements
are of two types depending on whether or not 1 is in the

kth position. If 1 is in the kth position, then the number

of permutations is ths.t of n - 2 elements with all elements

displaced, or D^_j^. On the other hand, if 1 is not in the
kth position, then the permutations permitted are those

that Involve the elements 1,2,...,k-l,k+2,...,n in the

positions 2 through n with 1 not in the kth position and

every element out of its own position. But this is the

same as the permutations of n - 1 elements labeled 2

through n with every element displaced. Hence the number

of these is D^_^ . All of this implies
(1.4) 0k= ( n - 1) (D^.,+
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and this may be used to give a proof by Induction of

(1.5) = nl /^1 - 1 + 1 - ... + (-1)’^ 1
\ “TT “TT nl/

(The proof is omitted here).

2. Menage numbers.

Let denote the number of permutations of n

elements labeled 1,2,...,n such that integer i is in

neither position i nor 1 + 1 for 1 = 1,2,...^n - 1, and

n is in neither position n nor 1. In other words, is

the nxunber of permutations that have no elements in the

same position as (1,2,...,n) and (n,1,2,.••,n-1); that is,

the ntanber of permutations that are discordant with these

two permutations. These nxjmbers, , are called menafa^e

numbers from the following “probl^me des menages" formulated

by Lucas.

In how many way? can n married couples be seated at

a circular table, alternating men and women, so that no

husband and wife are in adjacent seats?

If the wives are seated first, there are two different

n-sets of chairs they may be seated in, since they will

leave an empty seat between each two of them. For each

n-set of chairs, the number of ways in which the wives can

be seated is simply P(n,n) = n!. Hence the wives can be

seated in 2nl ways. Then each husband is excluded from the

two seats adjacent to his wife, but the number of ways of

seating the husbands is independent of the seating arrangement

of the wives. It should be clear that for any given

arrangement of the wives, the niimber of arrangements for
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the husbands is simply , hence if M denotes the total

number of arrangements.

(2.1) M = 2n!U^.
Thus to solve the "probleme des menages" it is only

necessary to find Uy^ •

Theorem 2.1 The menage numbers U^are given by

(2.2) U. = n! - 2n

(2n-2) (n

?n /2n - 1 \(n-l) 1 + 2n
2n^ V ^ f

- 2) ! - . . . + (-1)*^ 2n fn\ 0! (n > l).- f”)n \n/
Proof: This proof is a recurrence argument by

Kaplansky involving several lemmas.

Lemma 2.2 Let f(n,lc) denote the number of ways of

selecting k objects, no two consecutive, from n objects

arranged in a row. Then

(2.3) f(n, k) = ^n - k +
Proof: We have f(n,l) = n = ^nj, and for n > 1,

f(n,n) = 0 = k<n, we may split the selections

into those that contain the first object and those that do

not. The selections that include the first object cannot

include the second and can obviously be enumerated by

f(n--2,k-1). The selections that do not Include the first

object are enumerated by f(n-1,k). Hence we have

(2.4) f(n, k) = f(n - 1, k) + f(n - 2, k - 1).

It is now possible to prove (2.3) by induction. The

induction hypothesis asserts

(2.5) f(n - 1, k) = ^n - k^, f(n - 2, k - l) =/n
But (2,4) and (2.5) Ifflply that

tl
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(2*6) f(n, k) = - kj + - kj
and by simple algebra it is established that/n-k\ + /n-kvs:

V k / ik-iy
n-k+U, hence the lemma is proved,

k )
Lemma 2*3 Let g(n,k) denote the niimber of ways of

selecting k objects, no two consecutive, from n objects

arranged in a circle. Then

(2.7) g(n, k) = n /n - k \ (n>k).
n - k V k /

Proof: As before, split the selections into those

that include the first object and those that do not. The

selections that include the first object cannot include the

second object or the last object, and by lemma 2.2 can be

enumerated by f(n-3,k-l). The selections that do not

include the first object are enumerated by f(n-1,k), hence

(2.8) g(n, k) = f(n - 1, k) + f(n - 3f k - 1).

But then from lemma 2,2, g(n,k) =/n-kN + /n-k-n , and
\ k / V k-1 /

again by using simple algebra we have /n-k\ 4 /n-k-l\ =
\ Is. ) ^ k-1 y

n /n-k\, which proves lemma 2.3.
n-k V k /

Returning again to permutations on the elements

labeled 1,2,,,.,n, let be the property that a

permutation has 1 in position 1 (i = 1,2,...,n) and Po

the property that the permutation has 1 in position i + 1,

(i = 1,2,.,.,n-l) with P^^ the property that n is in
position 1. List the 2n properties in a row,

(2.9) P, ,P^ ,Pg^ ,P^ ,...,P^ ,P^ •

Select k of these properties. How many of the
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permutations satisfy each of the k properties? If the

properties are not compatible (for example, and P^^
are not compatible, for no permutation satisfies both of

them) the number is zero. If the properties are compatible,

then exactly k of the elements In all of the desired

permutations are fixed. Hence there are only n-k elements

that can be permuted and the desired number Is P(n-k,n-k)
= (n-k) I. Now let denote the number of ways of

selecting k compatible properties from the 2n properties

(2.9).

It Is now obvious that is the niMiber of permutations

that satisfy none of the properties (2.9). Referring

again to the sieve formula and Theorem 1.2 ot Chapter II,

we have = E(0) = V(0) - W( 1) + ¥(2) - ... + (-1)'^
W(N), where W(r) = v^ (n-r)I. Hence U„ = v„n! - v,(n-l)l
+ v^(n-2)I - ... + (-1)’' v„- 0!.

It now remains to evaluate • It Is apparent

that if the 2n properties (2.9) are arranged In a circle,

the only properties that are not compatible are the

consecutive ones, hence v = g(2n,k) = 2n f2n-k\ by
2n-k Vk /

lemma 2.3. In conclusion then, = v^n! - v,(n-l)l +

V. (n-2)l - ... + (-1)'^ v„0t = 2n f2n-0\ n! - 2n
*

2n-0 Vo/ 2n-l

(2n-lV (n-l)I + 2n /2n-2\ (n-2)! - ... + (-1)'^ 2n\ 1 / ^n-2 \ 2 J 2n-n

f2n-n\ 01 = nl - 2n f2n-l) (n-l)l + 2n f2n-2] (n^2)l -
\ n / 2n-1 V 1 / 2n-2 V 2 /
... + (-o'" ^ ^nj 01. #
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3» Latin rectangles.

Let S be a set of n elements. A Latin rectangle

based on S is an r by s rectangular array

(3»l) (i = 1»2,...,r; J =

with each row of (3«l) an s-permutation of elements of 8

and each column of (3.1) an r-permutation of elements of

8. This immediately restricts r and s so that r < n and

s ^ n. If the elements of 8 are labeled 1,2,...,n and

s = n* then each row of A contains a permutation of the

elements 1,2,.«.,n. Also, from the definition, no element

is repeated in a given column. If, in addition, the

elements of the first row are written in standard order

1,2,...,n (l.e., a,. = 1, i = 1,2,...,n} the Latin rectangle

is said to be normalized. Let L(r,n) denote the number

of r by n Latin rectangles and K(r,n) denote the number

of normalized r by n Latin rectangles. The number of Latin

rectangles resulting from fixing the first row as a

given permutation is the same, regardless of what

permutation is used as the first row. Hence it is trivial

that

(3*2) L(r, n) = nl K(r, n).

Consider now normalized 2 by n Latin rectangles. The

condition that aa.t 1 (i = 1,2,.,,,n) is necessary from

the definitions, hence each normalized 2 by n Latin

rectangle can be considered as a derangement and consequently

(3.3) K(2, n) = D,, .

The menage nximbers Uyx, are the number of 3 by n

Latin rectangles where the first two rows are fixed as
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(3.4) 1 2 3 ... n ,

n 1 2 ... n-1

since the definitions require that ^ 1, a^-^ 1 - 1,

and a3, ^ n.

Rlordan has developed the formula

(3.5) K(3. n) = Z{1] t'*)
Where m =rnl and U = l.

Enumeration of Latin rectangles of more than three

lines has scarcely been touched. One formula states that

if r < (log n)^ then L(r,n)^— (n!)^ e^*'and it has been

established that this remains valid for r < n'*'* .

If r = s = n, the Latin rectangle becomes a Latin

square of order n. It la mentioned in passing that a

multiplication table of a finite group depicts a Latin

square. Prom previous discussion we have

(3.6) L(n, n) = n! . (n - l)! 1^^
where 1^ is the number of Latin squares of order n with

the first row and the first column in standard order

(l.e., a^, = 1 and aj^ = j, 1 = J = 1,2,...,n). That
the evaluation of 1^ is not easy is obvious from the

following table which displays all of the known values

of 1

n 1 2 3 4 5 6 7
1^ 1 1 1 5 56 9408 16,942,080



CHAPTER IV

A THEOREM OF RAMSEY

1. A fundamental theorem.

This chapter Is devoted to the statement, description

and some applications of a very Important combinatorial

theorem. The theorem is called Ramsey's theorem after

the Enslish logician F. P. Ramsey.

The well-knovn pigeon-hole principle in mathematics

asserts that if a set of sufficiently many elements is

partitioned into not-too-many subsets, then at least one

of the subsets must contain many of the elements. Ramsey's
theorem may be considered as a profound generalization

of this principle.

Unfortunately, a thorough discussion of the meaning

of Ramsey's theorem, a complete proof of the theorem, and

and adequate discussion of its applications proves to be

too voluminous for the limited scope of this paperj in

fact, these topics in themselves might well provide the

basis for another such paper. However, the topic is of

sufficient Importance that some discussion of it seems

advisable.

Let S be an n-set and let P^ (S) be the set of all
r-subsets of S. Let

(1.1) P^ (S) = A, U A^U ...U A^
30
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be an arbitrary ordered partition of (S) into t

components . Let q,.,q^ be integers
such that

(1.2) 1 4 r ^ q. »q^ .....q^ •

If there exists a q*-subset of S with all of its r-subsets

in Aj^, then that subset is called a (q. ,k. ^)-subset of S«
Ramsey's theorem asserts the following*

Theorem 1*1 Let q^ ,qjj^,•• .,q^, and r be any given
Integers satisfying (1.2)* Then there exists a minimal

positive Integer, N(q. ,q.,...,q,,r ), such that for all

NCq^ ,qjj^,. ..,qj.,r), if S is an n-set and (1.l) an
arbitrary ordered partition of Py.(S) into t components,
then S contains a (q^^ ,A^)-subset for some 1 = 1,2,.*.,t*

The complexity of the theorem makes it very difficult

to state it in any simpler terms. However, several

readings of the theorem itself and the material preceding

the theorem should make the assertion of the theorem clear.

No attempt is made here to prove either Ramsey’s

theorem or any of the several following statements. These

proofs are contained in a recent text by Ryser. (5)

(1.3) if r = 1, N(q,,q^,...,q^,l) = q^^ q^+ ...
4- q^ - t + 1.
(1.-^) N(q,,r , r) = q,

(1.5) N( r, q^, r) = q,^
The Integers N(q -q.,r) have deep combinatorial

significance, but unfortunately no rectirrence is known

for these Integers, and serious difficulties are encountered

in their evaluation. The trivial values of (1.3), (1.4)
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and (1.5) are known but apart from these all known

N(q,,q^,2) are contained In the following symmetric
array for N(q,,q^,2).

3 4 5
3 6 9 14

4 9 18

5 14

Even less is known for t > 2. In this case the

main piece of information at present is

(1.7) N(3, 3, 3) = 17.

2. Applications.

a). Given six points in a plane, no three collinear,

there are C(6,2) = 15 line segments connecting the points.

Let reach segment be colored either red or blue. All may

be red, all blue or some red and some blue. By using

the pigeon-hole principle and simple logic it can be

readily determined that it is always possible to find a

chromatic triangle; that is, a triangle connecting three

of the points that has all three sides the same color.

Extending this idea, consider n points in general

position in three-dimensional space. Two distinct points

determine a line segment. Let each of these segments be

colored either red or blue. The 2-subsets of points may

be partitioned into the set A , of red segments and the
set Aof blue segments. Now if q^ and q^^ are Integers
such that 2 q ,q and if N(q ,q ,2), then Ramsey’s

theorem asserts that either there are q, points with all



33

segments red or points with all segments blue. More¬

over, N(q,,q^,2) is the minimal integer with this property.

b). A submatrix of order m of a matrix A of order

n is called principal provided the submatrix Is obtained

from A by deleting n-m of its rows and the same n-m

columns.

Theorem 2.1 Let m be an arbitrary positive Integer.

Then every (0,l)-matrlx A of a sufficiently large order n

contains a principal submatrix of order m of one of the

following types:

* o'
•

•

•

•

•

•

o
J

.0 u *_|
* 1

•

•

•

♦ 1
•

•

•

0 « U *J
The asterlks on the main diagonal denote O's and

1*s, but the entries above and below the main diagonal are

all O’s or all 1’s as Indicated In the upper-right and

lower-left corners in (2.1).

Proof! Let the n-set S of Ramsey’s theorem be the

set of the n row vectors of A Denote row 1 of A

by Let i< J, and associate with the row vectors ©<•

and of A the vector (a^* this vector is
(0,0),(1,0),(0,1), or (l,l). Hence the 2-subsets of S

are partitioned.

(2.2) PjL^S) = A,U A^U AjU A^ .

Now suppose that
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(2.3) n N(in, in, m, m, 2).
Then by Ramsey’s theorem there exists an m-subset

of S with all of Its 2~subsets in one of the four components

of Pg^_(S). But this implies the existence of a principal
submatrix of one of the four types of (2.1). #

c). Theorem 2.2 Let m be an Integer greater than

or equal to three. Then there exists a minimal positive

integer such that the following proposition is valid

for all Integers n ^ . If n points in the plane have

no three points collinear, then m of the points are the

vertices of a convex m-gon.

Lemma 2.3» If five points in the plane have no three

points collinear, then four of the points are the vertices

of a convex quadrilateral.

Proof! The five points determine ten line segments,

and the perimeter of this configuration is a convex

polygon. If this convex polygon is a pentagon or a

quadrilateral, the lemma is trivial. Suppose that the

convex polygon is a triangle. Then two of the five

points are in the interior of the triangle. The two

interior points determine a straight line, and two of the

three points of the triangle lie on one side of this line.

Then these two points of the triangle and the two interior

points form a convex quadrilateral.

Lemma 2.4. If m points in the plane have no three

points collinear and if all quadrilaterals formed from the

m points are convex, then the m points are the vertices of

a convex m-gon.
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Proof: The m points determine m(m-1) line segments,
2

and the perimeter of this configuration is a convex q-gon.

Let the consecutive vertices of the q-gon he labeled

. If one of the points is within the q-gon, it

must lie in one of the triangles V, V, , ••• ,

V, But this contradicts the assertion that all
quadrilaterals formed from the m points are convex.

Hence q = m and the m-gon is convex.

Theorem 2.2 is now an easy consequence of Ramsey’s
theorem. To prove this let m ^ 4 and let n > K(5,m,4).
Partition the 4-Bubsets of the n points into the concave

and the convex quadrilaterals. Then by Ramsey's theorem

there exists a 5-gon with all quadrilaterals concave or

an m-gon with all quadrilaterals convex. By Lemma 2.3

the first alternative cannot occur, and by Lemma 2.4 the

m-gon is convex. #

It has been shown that

(2.4) m, 4).

It is known that = 3= 2+1, = 5 = ^ + 1» and

it has been shown that N =9= 2^+1. This leads one

to conjecture that
. . m-a.
(2.3) = 2 * ’■

but the aesertion (2*3) la an unsettled question.



CHAPTER V

SYSTEMS OF DISTINCT REPRESENTATIVES

1. A fundamental theorem.

Let S he an arbitrary set and P(S) the set of all

subsets of S. Let

(1.1) D=(aj, a^ f * f

be an m-sample of S and let

(1.2) M(S) = (S,
be an m-sample of P{S). Now suppose that the m elements

of D are distinct and that a* e S. (l = 1,2,...»m). Then

the element a. represents the set Bx » and the subsets

S,,B^,••.»S^ have a system of distinct representatives
(SDR). D Is an SDR for M(S). This definition requires

that 1 7^ J Implies a^ a-. , but Sj and S: need not be
distinct subsets of S.

Examples Let S = -^1 »2,3,4,5»6^ . Let S, =

Sj = ^2,6}, ={l,2,3,4> , Sj =S^\.2,5}.
Then D = (2,5,6,3.l) is an SDR for (S,,S^,Sj,S^,S^).
If Is replaced by • ■t-li®n the subsets have

no SDft, for S, is a 2-set and three elements are

required to represent ,Sjj^,Sj^ •

Theorem 1.1 (by P. Hall). The subsets S,,S^, ...,S^
have an SDR If and only If the set & IJ Sj U...US.

contains at least k elements. This must hold for

36
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k = and for all k-comblnatlons -^1,,, 1 ^
of the Integers

From the definition and the preceding example the

validity of the necessity of this theorem is Immediately

apparent.

The following theorem gives a refinement on the

sufficiency of Theorem 1.1.

Theorem 1.2 Let the subsets S, ,Sj^,...,S^ satisfy
the necessary conditions for the existence of an SDR and

let each of these subsets contain at least t elements.

If t ^ m, then M(S) has at least tl SDR'a. If t> m,

then M(S) has at least t! SDR's.
Tt-m)'!

Proof (by induction on m): Let m = 1. If t ^ m,

t = 1 and M(S) has 1! = 1 SDR. If m = 1 and t > m, M(S)

obviously has t SDR's; but t = tt = tf •

(t-1)f (t-m)I

For the induction hypothesis, take the statement

of the theorem for all m^-samples of P(S) where m^< m,

and prove the theorem for the m-sample M(S) = (S.S.,...,S^).• A. |l(\

Case 1 Assume the set S? VJ S* VJ ...VJ S. contains
'i a- <

at least k + 1 elements. This holds for k = l,2,...,m-1

and for all k-comblnations^iv , ij^i..., lij]" of the integers
1,2,...,m. Let a* be a fixed element of S. Delete a*

whenever it appears in ^,S^,...,S^ and call the resulting
sets S^jS^**,... ,S^, respectively. The (m-l)-sample M^(S) =

{S^,S^% ...,S^) satisfies the necessary condition for the
existence of an SDR because the set Sr U S: U ...U S>

contains at least k + 1 elements. Now if t $ m then
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t - 1 ^ aj - 1 and by the Induction hypothesis M^(S) has

at least (t~l)I SDR's. Also, for t > m, then t - 1 > m - 1

and again by the Induction hypotheses M^(S) has at least

(t-l)l = (t-l)l SDR's. But taklnp^ anY SDR
-[("t-'iy - (¥-ig -T tSitr
for M^(S) together with a* gives an SDR for M(S) In which

a. represents S,. Hence for t ^ m and a fixed aj^ there
are (t-l)I SDR's for M(S). But S, Is a t-set and a sample
Is ordered hence there are t* (t-l)! = t! SDR's for M(S).

For t > m, using the same argument, there are

t » (t-1)! = t! SDR's for M(S).
(t-m;I (t-m)I

Case 2 There exists a k-subset of S of the form

Si,U , where k Is an Integer such that
1 ^ k^ m-1 and ^1,, 1,^,..., l^J^ Is a certain k-comblnatlon
of the Integers 1,2,...,m. Renumber the subsets S, ,Sj^,.. • ,S^
so that S- U S. VJ ... \J S, Is S, L) S. U ... U S^ .

If this k-subset exists, then of necessity t ^ k. Since

k^ m-1 the Induction hypothesis Implies the k-sample

(S, ,Sj^,... ,S^) has at least t! SDR's. Let D* = (a^ ,a^,...,a|^)
denote one such SDR. Whenever the elements of D* appear

In the sets S^,, ,.,.,S^ , delete them and call

the resulting sets S*^^ ,S* . ,S* , respectively. The
(m-k)-sample

(1.3) M*(S) = (S*^^^,S*^^,...,S* )
must satisfy the necessary conditions for the existence

of an SDR for If, sav, S* U S* , VJ ...O S* * contains

fewer than k* elements, then

(i.A) s,U s^U ...Us^U
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contains fewer than k + elements which contradicts

the hypothesis of the theorem. Hence by the induction

hypothesis M*(S) has at least one SDR. But as stated

earlier, (S ,S ,...,S ) has at least t! SDR's. Consequently

M(S) has at least tl SDR's, which proves Theorem 1,2 and

also Theorem 1.t• #

2. Partitions.

Let

(2.1) T = A^U Aj^U ... U A^
and

(2.2) T = B, U B^U ...UB^
denote two partitions of a set T such that A*^ 0
for i, J = 1,2,..,,m. Let E be an m-subset of T such

that Aj^n 'K 0, B| "K 0 0, 1, J = 1,2, ...,m. Then each
of these intersections must be a 1-set and E is called a

system of common representatives (SCR) for the partitions

(2.1) and (2.2). Note that an SCR exists for these

partitions if and only if there la a suitable renumbering

of the components of either (2.1) or (2.2) such that

(2.3) k-^(\'Q.^0 0 (1 = 1,2,...,m).
SDR theory is used to obtain the following necessary

and sufficient condition for the existence of an SCR.

Theorem 2.1 The partitions (2.1) and (2.2) have an

SCR if and only if the set A^ U A;^ U ... U A^;^ contains
at most k of the components R ,B.,...,B . This must hold

for k = 1,2,...,m and for all k-combinatlons ^1,,1^,.,.,1
m.of the integers 1,2,...,
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Proof: Again, the necessity of the theorem is apparent.

To prove the sufficiency, let S be the m-set of elements

A, , A ^ and let be the set of all A^ such that
A; n B' ^ Then M(S) = (S, ,S, ) is an m-sample

of subsets of S. Further, M(S) satisfies the necessary

condition for the existence of an SDR for if, say,

S, U U ...U contains only k elements

Ai^ i then A* U A: U ...O A* contains the k + 1

components B,, contrary to the hypothesis of

the theorem. Hence by Theorem 1.1 there exists an SDR

for M(S). Now renumber the components of (2.1) so that

this SDR is D = (A^jAj^, ...,A^. But then (2.3) is valid. #
Theorem 2.2 Let T=A^VJ Aj^'J ...VJ A,;^ and

T = B, U B^U ...VJ B^ denote two partitions of T, where
each A * and each B; is an r-subset of T. Then the

partitions have an SCR.

Proof; If each A; is an r-subset of T, then

Ai VJ A-* U ...VJ At, is an rk-subset of T. Each B: is‘■a i
an r-subset, therefore At VJ A*. U ...VJ A: contains at

most k of the components B, .B^^,... ,B,^, and this must be
true for k = 1,2,.,.,m and for all k-combinations

■^1, , i^,.. ., i^ of the integers 1,2,...,m. Then Theorem 2.1
implies the partitions have an SCR. #

Applications a) Let A be the following r by m

array of the integers 1,2,...,rm.
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1 2 m

m+1 m+2 • • » 2m

2m+l 2m+2 • » e 3m

• • • •

(2.4) A = • • • •

• • • •

(r-1 )m+1 (r-1)m+2 • • • rm

Now let B be an r by m array of the Integers 1,2, • • • f ]

but with the Integers In arbitrary positions within B.

Then Theorem 2.2 Implies there exists a permutation of the

columns of B such that corresponding columns of A and B

each contain atleast one element In common.

b) This application requires an

understanding of the elementary properties of eoeets In

the theory of groups.

Let 0- be a finite group and let H be a subgroup of

G. Let G = Hx, U Hx^ U ... VJ Hx^ be a right coset
decomposition for H and let G = y^ H U y^HU ...U y^ H be
a left coset decomposition for H.

Then Theorem 2.2 implies there exists elements

z, ,z^ ,..., in G such that G = Hz,U HZg^U .., U Hz^ =

z,H U z^H U ... Uz^H.

3. Latin i-ectangles.

Let there be given an r by s Latin rectangle based on

n elements labeled 1,2,,..,n. The Latin rectangle may

be extended to a Latin square of order n provided n-r

rows and n-s columns can be adjoined to the Latin rectangle

so that the resulting configuration is a Latin square of



42

order n. This new configuration will contain the original

Latin rectangle in the upper left corner.

Theorem 3.1 Let there be given an r by n Latin

rectangle based on n elements labeled 1,2,...,n. Then the

Latin rectangle may be extended to a Latin square of order

n.

Proof (using SDR theory): Let S be the n-set of

elements and be the set of all elements of

S that do not appear in column 1 of the Latin rectangle.

Then each S. is an (n-r)-subset of S and M(S) = (S. ,S. ,...,S^)
is an n-sample of subsets of S. Let i be an element of

S. Then i appears exactly r times in the Latin rectangle,

once in each row. Also, the appearances are in distinct

columns. Hence 1 is in exactly n-r of the sets S, ,8^^,...,S^.
Now if Sj U 8^ VJ ... ^ contains only k-1 elements, then
these k-1 elements appear in the sets 8, ,1^,...,8^ no
more than (n-r)(k-l) times. But this contradicts the

fact that each of these sets is an (n-r)-subset of 8,

Hence M(S) satisfies the necessary condition for an SDR,

and therefore has an SDR. Denote this SDR by D =

Since 1^ is in 8^ , J = 1,2,...,ii, i^ does not appear in
column J of the Latin rectangle. Hence J5 may be adjoined

to the r by n Latin rectangle to form an r + 1 by n Latin

rectangle. Now repeat the entire process, and keep

repeating it until it has been performed n-r times. The

result is the required Latin square of order n. #

Theorem 3»2 There are at least nl(n-l)! ... (n-r+l)!

r by n Latin rectangles and hence at least n!(n-1)! ... II
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n by n Latin squares.

Proof: There are n! Latin rectangles of size 1 by

n. Theorems 3*1 and 1.2 imply each of these may be

extended to a 2 by n Latin rectangle in (n-l)! ways.

Hence there are n!(n-1)! Latin rectangles of size 2 by n.

Repetition of the same arg;iment proves the theorem, §

Let 1^ denote the number of Latin squares of orderVI

n with the first row and first column in standard order.

Then Theorem 3.2 asserts

(3.1) (n - 2)I(n - 3)! ... II

The following table displays the values of 1^ and =
(n-2)l(n-3)! ... It for n = 3,4,5,6,7.

n 3 4 5 6 7

1 4‘ 56 9408 16,942,080

1 2 12 288 34,560

4. Matrices of zeros and ones.

The (0,1)-matrlces mentioned at the conclusion of

Chapter II play a leading role in the development of many

combinatdrlal topics. One of the chief reasons for this

follows.

Let S be an n-set of elements a.,a, ,...,a^ and let

M(S) = (S, ,,S^) be an m-sample of subsets of S. Let
a i: = 1 if a; is a member of S* and let at: =0 if a;

is not a member of S. . Then

(4.l) A s: (l “ 1,2,...,mj J — 1,2,.,,,n)

is a (0,l)-matrlx 6f size m by n. This matrix is called

the Incidence matrix for the subsets S, ,... ,S^ of the
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n-set S. The 1*8 in row 1 of A specify the elements that

helong to , and the I's In column J of A specify the

sets that contain a^ • Thus A contains a complete
description of the subsets S, ,S^,. of S. Also,
given a (0,1)-matrix, A, of size m by n, and an arbitrary

n-set, S, then there exists subsets S,,S.,...,S of S

such that A is the Incidence matrix for these subsets*

Thus the (0,1)-matrlx A characterizes the subsets

S,,S,,..*,S_ of S. A choice of +1 and -1, or even of two

distinct entries x and y would serve just as well as 0 and

1* However, the behavior of 0 and 1 under addition and

multiplication makes them especially convenient as

Illustrated in the follbwlng theorem.

Theorem 4.1 Let S, ,1^,...,S^ be subsets of an n-set
and let m ^ n. Let A be the Incidence matrix for these

subsets. Then the number of SDR's for M(S) = (S, ,Sj_,**.,S^)
is per (a).

Proof: By definition, per (A) • *»®-vwvS

where the summation extends over all m-permutatlons

(i i,iaL, •. .,lw) of* 1,2,...,n. Also, the definition of per

(A) requires m ^ n, as does the hypothesis of this theorem*

Note that for the Incidence matrix A, each product in the

summation must be 0 or 1. Note also that each product

represents a possible SDR, since it contains m factors,

no two from the same row or the same column. Hence if a

product has the value zero, one of the factors ajL^ in the
product is not in set S.; that is. Si is not represented

in that product hence the product does not represent an
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SDR for M(S) = (S,,S^,...,S^), If, on the other hand,
a given product has the value 1, then that product

represents an SDR for M(S) for It Indicates the existence

of a selection of m distinct objects, one from each of the

S^. Since the per (A) is a summation over all

m-permutations ^1, ,l^,*..,l^of 1,2,...,n, every possible
SDR for M(S) is considered and the summation represents

the total number of SDR’s. #

A permutation matrix P is a (0,l)-matrix of size m

by n such that PP"’’ = I, where p"^ denotes the transpose

of P and I denotes the Identity matrix of order m. This

definition implies m < n. In a permutation matrix of order

m all entries are 0 with the exception of exactly one

entry in each row and each colximn, which are 1. If the

elements and the subsets of S are now renumbered the

incidence matrix A is replaced by an incidence matrix

of the form

(4.2) a' = PAQ.

Here P is a permutation matrix of order m determined by the

renumbering of the subsets, and Q la a permutation matrix

of order n determined by the ren\imbering of the elements.

Many investigations involving the (0,l)-matrix A deal with

functions like per (A) that remain invariant under

arbitrary permutations of the rows and columns of A, and

such functions are of Interest in combinatorics because

they do not depend on the particular labeling of the

elements and subsets of S.

Example Let S “ '^a,b,c,d,e'^ , — ^a,c”^ ,
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Sj. = {a,b,d} , = ■C^»c,d,e^ , and = {a,c,e^ . Let
M(S) = (S^,S^,S^,S^) and note that S^c S, i = 1,2,3,4.
Following the method of section four, with = a, a^^ = h,

= c, a^ = d and a^ = e, the Incidence matrix for the

given subsets of the 5-set S Is

If the columns are labeled from left to right as

a,b,c,d,e and the rows are labeled from top to bottom

as S, ,St^ the composition of the given subsets Is
Immediately apparent from the appearance of the Incidence

matrix.

Now renumber the subsets and the elements so that

S, — •^b,c,d,e^, = ■{s.,c,^, —^,cj‘, — •^a,b,d^.
a, = b, = d, a^ = c, a^ = e, and a^ = a. The Incidence
matrix for this new numbering Is:

11110

1 1

0 1

1 1 0 0 1

Note that the reniunberlng of the subsets and elements

Is nothing more than a permutation of the subsets and a

permutation of the elements. Hence (S, ,Sj^,S^,^ ) became

(S^,S^,S, ,Sg^). This makes apparent the permutation
matrix
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0 0 10

0 0 0 1
P =

10 0 0

0 10 0

Also, (a,,a^,a^ ,a^ .a^) became (a^,a, ,aj,a3^,a^)
which gives the permutation matrix

Q =

Note now that A

0 0

0 0

0 1

1 0

0 0

PAQ.

0 1

0 0

0 0

0 0

1 0

5. Term rank.

A line of a matrix designates either a row or a

column of the matrix* The trace of a matrix is the sum

of the entries on the main diagonal of the matrix. Let

A be a (0,1)-matrix. The term rank of A is the maximal

number of 1's in A with no two 1*8 on a line. Thus the

term rank of A is the maximal trace of A under arbitrary

permutations of rows and columns of A. The term rank

provides a convenient generalization of the SDR concept

for the subsets S, ,S^,...,S^of an n-set S, for if A is
the incidence matrix for these subsets, then the subsets

have an SDR if and only if the term rank of A equals m.

Theorem 5.1 Let A be a (Oj)-matrix of size m by n.

The minimal number of lines in A that contain all of the

1's in A is equal to the term rank of A.
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Proof; Let^' be the mlninjal nvunber of lines in A
that contain all of the I's in A and letyo be the term
rank of A. Then the theorem states that =/o ,

No line can contain two of the 1 * s that account for

the yo i’s of the term rank. Hence
(5.1)

Let the minimal covering of i's by yo*" lines consist
of e rows and f columns, where e 4 f = . Both

and yo' are Invariant under permutations of rows and
columns of A. Hence these e rows and f columns may be

taken as the initial rows and columns of the matrix,

which can be written in the fonn

(5.2)

where A , is of size e by f. Ag^ls of term rank e, for it
may be regarded as an incidence matrix for subsets

S, ...,Sg of the (n-f)-Bet of the integers f + 1, f + 2,
..., n. These subsets must satisfy the necessary condition

for the existence of an SDR, for if not, certain of the e

rows can be replaced by fewer columns and retain the

covering of I's in A. Hence this covering will be

accomplished with fewer than e + f lines which contradicts

the minimality of . The transpose Aj of A 3 may be

regarded as an Incidence matrix for subsets, and it can

similarly be shown that A3 is of term rank f. Hence

(5.3) yo + f = /o' .

Hence from (5.1) and (5.3)» y® ”^
Theorem 5.1 can be immediately generalized. Let A
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be a matrix of size m by n with elements in a field F.

The minimal number of lines in A that contain all of the

nonzero entries in A is equal to the maximal number of

nonzero entries in A with no two nonzero entries on a line.

Theorem 5-2 Let A be a matrix of size m by n. Let

the entries of A be nonnegative reals and let m ^ n. Let

each row sum of A equal m' and let each column s\jm of A

equal n^ • Then

(5.4) A = c,P, + c^P^ + . . . + c^Pj. ,

where in (5.4) each P- is a permutation matrix and each c;

la a nonnegative real.

Proof: If A is not a square matrix, we replace A by

(5.5)

where J is a matrix of 1's of size n' - m' by n' The

matrix A^ is of order n, and the entries of a' are non-

negative reals. Each row and column s\im of A^ is equal to

m' • If a' 1b not the zero matrix, A^ has n positive entries

with no two on a line. For if a" did not have n such

entries, then by the remarks following Theorem 5.1 we

could cover the positive entries in a' with e rows and

f columns, where e + f < n. But then m^ n m (e + f) ■‘i m'n,
and this is a contradiction. Now let P be the permutation

matrix of order n with 1's in the same positions occupied

by the n positive entries of a' . Let c, be the smallest

of these n entries. Then A^ - c, P,^ is a matrix whose
entries are nonnegative reals. Also, A^ - c,P,^ has each
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row and colximn sxini eqxial to the nonnegative real •

But at least one more zero entry appears in - c, P, ^ than
In k! . Hence we may now work on - c,p/ , and we may

repeat the argument until k! - c, p/ + c^^P/ + ••• + P^^ •

But this gives us a decomposition of the form (5.2) for

the matrix A. #

Theorem 5*3 Let A be a (0,l)-matrlx of order n such

that each row and coliimn stun of A is equal to the positive

integer k. Then

(5.6) A = P, + P^ + ... + P^ ,

where the P;^ are permutations matrices.
Proof; This follows from the proof of Theorem 5.2.

Each c^ =1 and the process terminates In t = k steps. #
Theorem 5.3 gives an affirmative answer to the

following problem. A dance Is attended by n boys and n

girls. Each boy has been previously Introduced to exactly

k girls and each girl has been previously Introduced to

exactly k boys. No one desires to make further introductions.

Can the boys and girls be paired so that no further intro¬

ductions are necessary? Let A = (0, l)-matrix

defined by ax^ = 1 if the boy J has been previously
Introduced to girl 1 and 0 otherwise. Then A satisfies

the requirements of Theorem 5.3» and the permutation

matrix P, of (5.6) gives the desired pairing of boys and

girls.

A matrix A of order n Is called doubly stochastic

provided its entries are nonnegative reals and its row

and column sums are equal to 1. These matrices have been
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extensively studied In their own right because of their

Importance In the theory of transition probabilities.

Theorem 5.2 Implies the following.

Theorem 5.4 Let A be a doubly stochastic matrix of

order n. Then

(5.7) A = t!,P, + + ... + o^P^ ,

Where the B are permutation matrices and the c^ are
positive reals such that

(5.8) c , + Cj^ + ... + c^ =1.
Let A be doubly stochastic. The entries of A are

nonnegative reals so per (A) cannot exceed the product of

the row sums of A. But since each row sum of A Is 1, we

have

(5.9) per (A) ^ 1.

Equality holds In (5.9) If and only If the doubly

stochastic A Is a permutation matrix. By Theorem 5.4 It

Is clear that If A Is doubly stochastic, then per (A) > 0,

But If A Is doubly stochastic of order n, then the

determination of the minimal value of per (A) Is a

difficult unsolved problem. A conjecture of van der

Vaerden asserts
nj.

(5.10) per (A)^ •

Equality holds In (5.10) If A = n"' J, where J Is the

matrix of 1*s of order n. In fact this may be the only

case of equality.' The following conjecture Is a

generalization of (5*10). If A and B are doubly

stochastic, then

(5.11) per (AB)^ per (A), per (B).
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The special case B = n“* J of (5.11) Is equivalent to

(5.10).



EPILOaUE

The writer has attempted to present as much

introductory material pertaining to combinatorial

mathematics in general and existence problems in

particular as a paper of such limited scope permits.

Much more development along these same lines is

possible, some of which is contained in the work by

Ryser(6) which has served as the basis for this paper.

For a much more elementary treatment of many of

these topics, Niven's Mathematics of Choice (7) is

recommended. For a much more advanced treatment,

development upon different lines, and extensions to

construction and enumeration problems, the most popular

works seem to be those of Rlordan (8) and MacMahon (9),

both of which require more extensive background knowledge

than the aforementioned two books.
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