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INTRODUCTION

Combinatorial mathematics, also known as combinatorial
analysis or combinatorics, had its beginnings in ancient
times. References czn be found dating back to the Chinese
Emperor Yu (c. 2200 B.C.). Permutations, an important
part of this discipline, had & beginning in China around
1100 A.D.

In spite of these early beginnings, much of the
material of combinatorial mathematics was merely recreatlonal
mathematics until fairly recent times, when the explosion
of technical and scientific knowledge developed many
useful and practical applications of the subject.

An exact definition of combinétorial mathematics
seens to be 1mpossible, as the subject matter itself, as
well as applications of the same, 1s constantly increasing.
It has been described as the analysis of complicated
developments by means of 'a priori' consideration and
collection of different combinatlons of terms whieh enter
the coefficlients. Or from another source one might find
it described as a subject that is concerned with
arrangements, operations, and selections within a finite
or dlscrete system.

Combinatorial problems seem to automatically
separate themselves into three main types, although there
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2
is some overlapping. For example, consider a basketball
tournament with a given number of teams and a given number
of courts. The questlon of whether it 1s possible to
arrange a schedule Bd that no team plays two consecutive
games 18 an existence problem. If it 1s determined that
this is possible, then the question of how to go about

determining the actual schedule is a construction or

evaluation problem. It might be desirable in some

instances to determine all possible such schedules. This

is an enumeration problem.

The purpose of this paper 1s to examine some of the
fundamental principles of combinatorial analysis and
their applications to the resolution of existence problems,
although enumeration problems will appear.

The theory of this phase of combinatorial analysis
lerds 1tself quite readily to development along several
different linés. However, from evaluation of available
literature, 1t appears to the writer that the most basic
development, that 1s, that requiring the least amount of
background material, is through the framework of modern
algebra. Consequently, this 1is the method followed by
the writer.

The only background material necessary for the
reader 1s a famlliarity with matrices and matrix
manipulation, integral congruences from the theory of

numbers, and the definitions of groups and flelds.



CHAPTER 1

FUNDAMENTAILS
1. n-gets, generalized rule of sum, generalized rule of

product.

It is assumed that the reader has a thorough knowledge
of the following standardized concepts from set theory: set;
subset; proper subset; null set; pover set (P(S)); intersection;
union; disjoint sets; partition; finite set; product set or
eross product.

The following definitions are not so standardized. Let
™ and Y (4 =1,2,s..,r), be two partitions of a set, M;
1.0., M =lU % =UT . The partitions are ordered if
equality of the partitions means T, =T (i = 1,2,...,r)
and unordered if equality of the partitions means each T}
1s equal to some T’ .

An n-set 1s a finlte set with exactly n elements. By
convention we take n>0. An r-subset of an n-set 1s a subset
with exactly r elements. If § 1s an m-set, T an n-set, and
srir = @, then SBVUT 1s an (M + n)-set. More generally, if
T, is an n; -set (1 = 1,2,...,r) and the T; partition M, then
Mis an (n, + n, + ... + n_)-set (generalized rule of sum).

Let M(8S,T,n) denote a set of ordered pairs, (s,t),
where each se S 1s palred with exactly n elements te T.

Distinct elements of S need not be paired with elements of
3
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the same n-subsets of T. Obviously, T must contain at
least n elements and M(8,T,n) = 8XT if and only if T 1s
an n-set. If S is an m-set, then M(S,T,n) 1s an (mn)-set.
More generally, 1f T; 1s an n;-set and M,= M(T,,T,,n,),
M= M(M,, T, )y o o oy M= M(M_,T.,n.), then M 18 an
(nyn,...n_)-set (generalized rule of product).

These deflnitions are basic to the definitions,
theorems, and corollaries appearing throughout the remainding

of the paper.

2. Bamples and permutations.
For any set, S, consider
(2.1) (a|,a1,...,ar)
an ordered r-tuple of elements of 8, where the ajg,
1 =1,2,00e,r, need not be distinct. We take the usual
definition for equality of r-tuples, l.e., (a ,,8,,...,a.) =
(b,sb,ye-0,b¢) If and only if a3 = bs for 1 = 1,2,...,r,.
We refer to (2.1) as an r-sample, and say it is of size r.
Theorem 2.1 Let 8 be an n-set. The number of
r-samples of 8 1is n¥.
Proof: This 1s nothing more than a special case of
the generalized rule of product, where T, = T, = ¢es = T_= 8

-
eand n, =N = oo =n,.=n. #

In the preceding discussion, 1f we take the a; of
the n-sample to be distinct, the n-sample 1is called an

n-permutation. If 8 1s an m-set, then an n-permutation

must have n<m, and an m-permutation is called a permutation

of m elements, or simply a permutation.
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Theorem 2.2 The number of r-permutations of n
elements 1is
(2.2) P(n,r) = i(n=1) « « « (n-r+1)
Again we have a specldl case of the generaiized rule of

product, where T, =T, = «eo =T =S and n,=n, n

(2 o' = n"‘,

-3
seoy n'_= n-r+le. #
By (2.2), p(n,n) is the product of the first n

positlve integers, called n-factorial and written n!.

Hence P(n,n) = n! = n(n=1) «..1.

The standard definitions of mapping, single valued
mapping, image, one-to=-one mépping and onto mapping are
assumed in the following.

Let S be an n-set and consider the set, G(S), of
ali 1-1 mappings of S onto itself. Let f and g bé in
G(s8). £ =g Af f(a) = g(a) for all ae S. If f and g are
any two elements of G(S), the mapping that maps ae S into
g(f(a)) is a 1-1 mapping called the product of f and g.
Thus G(S) is an algebraic system with 2 binary operation
called product, and it may be readlly verified that Ga(s)
is a group.

Let 8 be an n-get, and represent the elemen;s of S

by 1,2,e¢e,n. Then the symmetric group of‘degree'g is

G(s), and 1s denoted by 8, If fe S, such that 1 1s mapped
into £(1), 1 = 1,2,...n, then £ 18 characterized by the
permutation (£(1),£(2),...£(n)).

It can also be seen that each permutation of the n
elementg is in reality a 1-1 mapping of 8 onto S.

The number of elements in a group is called its order,
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therefore we may restate P(n,n) = n! = n(n-1)...1 as:
the order of S5, 1s nl.

Examples (1) The number of 2-permutations of &4
elements 1s P(4,2) = 43 = 12. If the elements are
labeled a,b,c,d, the 2-permutations are:

zasb »(a,c),(a,a :(bnagnzbrc):(b’d):
c,a),(ce,b),(c,a),(a,a),(a,b),(d,c).

(2) Consider the number of 4~letter words
that can be constructed out of the 26 letters of the
English alphabet. '

(a) 1If repetition of letters is
permitted, these are 4-samples, hence by Theorem 2.1, the
number 1s 26°.

(b) If repetition of letters is not
permitted, these become 4-permutations, hence by Theorem
2.2, the number 1s P(26,4) = 26-25-24-23 = 358,773. Of
course, in both cases many of these “"words" will be
meaningless.

(3) B8,.,18 of order 100! = (9.3326...) 10",
The number of electrons in the universe has been estimated
at merely (136)‘2a§ﬁ

(4) Let D be a matrix of p rows and q
columns, and let the entries of D be the integers O and 1.

D may be considered as an (pgq)-sample of a 2-set, hence

there are QP‘ different matrices.

3. Unordered selections, combinations, binomial coefficients.
Let 8 be a set and
(3'1) {a‘,a&,...,ar}
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an unordered collection of r elements of S, not necessarlly
distinct. The number of times a given element appears in

this collectlon is called the multiplicity of the element.

Two such collections,{a, ,a,,++.,a;}and {b, ,b,,...,b Jare
equal provided the elements and thelr respective multiplicities
are the same, regardless of order. This 1s an unordered

selection of 8 of size r, and is referred to as an r-selection

of 8. Note that if each element of an r-selection is of
multipliéity 1, the r-selection is then an r-subset of S.

An r-gsubset of an n-set is called an r-combinﬁtion of n

elements.lh
| You will recall that P(n,n) = n!. It is convenient
to define’
(3.2) | o! = 1.
Therefore for every positive integer n,-
(3.3) nt = n(n-1)1t.
In the foilowing definitions, n and r are positive

}ntegers.
| ¢(n,r) =(n)= n{n=1)eoco(n=-r+)
r, - ri
(3.4) ¢(n,o0) =(n)= 1
o

c(o,r) =(g)’= 0

C(o,0) =(0)= 1
°

Hence we have defined C(n,r) for all non-negative integers
n and r. Note that if r>n, then C(n,r) = O. The numbers
defined by (3.4) are the well-known binomial coefficients,

and are of basic importance in enumeration problems.
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Theoren 3.1 If § is an n-set, the number of r-sub-

sets 1s(n).
r

Proof: The number of r-permutations of n elements
is P(n,r). However, each r-permutation may be ordered in
r! ways. For combinations the order is dlsregarded, so the
number of distinguishable arrangements 1is

(3.5) P(n,r) = n(n-1)...(n-r+t) = c(n,r) =(‘n) #
ri r)

ri

Let 8 be an n-set and P(S) the set of subsets of S.
Let T be the set of all n-samples obtained from the 2-set
of O and 1. Then there is a natural 1-1 mapping of P(8)
onto T,

Example Let 8 = {a,b,c}, a 3-set. Then P(S) 1is
{{a,b,c},{a,b}, {a,c}, {b,c},{a}, {1}, {c}, }5} and T 1is
{t1,1,1, (1,1,0), (1,0,1), (0,1,1), (1,0,0), (0,1,0),
(0,0,1), (0,0,0)3.

Note that, while a subset 1s not ordered, we can use
some scheme to order the elements of § and maintain this
order in the subsets as {a,b,c} ={c,a,by. Using Theorem 3.1
to count the elements in P(S) and Theorem 2.1 to count the

elements in T and equating the counts we get

(3.6) (n) +(n)+ o +(n)= 2",

o 1 n
This is an elementary identity, but serves to
11lustrate an effective technique in combinatorial
investigations. o
Theorem 3.2 The number of r-selections of an n-set

is
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(3.7) (n+r~1) = (n+r-1)

n-1 ¥

Proof: Replace the n-set S by the n-set 8’ =
{1,2,...n}. Then every r-selection of 5’ can be represented
in the form @‘ ,aa,...a,,}where a,¢< 8, <.e0%a_. Let 8% be
the (n+r-1)-set of integers 1,2,...,n+r-1. Then
{a, +0, ay +1,...a +r—1} is an r-subset of S%*, and
establishes a 1-1 correspondence betweeh r=-selections of
8’ and r-subsets of S#* thus:

{ai,80c0 30 {8, +0, a,+ 1,008+ r-1% .

That is, we have simply developed a set of r-subsets
that are in a 1-1 correspondence with a set of r-selections,
hence, ‘since by Theorem 3.1 the number of r-subsets of BS#%
is (n+§-1) » the number of r-selections of S8 is (n-ri-d).

By expansion and simple algebra 1t can be readily determined

that (n+£-1) = (n;i-;t). #

Let an n-set,S, be partitioned by T,,'I‘:,_,...,‘I‘K into
r; -subsets T; (1 =1,2,...k)s Thenn =1r +r, + ..o + 1,
and we call the partition 8 = T,U T,U ...V TK.an (r, ,rl,...,rK)-
partition of 8.

Theorem 3.3 The number of ordered (r, ,r,,+.e,n, )=

partlitions of an n-set is n} .
rir,te.er !

Proof: The number of r, -subsets of an n-set is (n)
o r
by Theorem 3.1. Once we choose an r, -subset, there are '

n-r, elements remaining, and the number of ry-subsets of an
(n-r, )-set 1s (n-z;). Continuing this process, we have the

b o
number of partitions is:
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(n)(n-r) ...(n-r,-mhr... -r,\= nl!
n/\r, B, ryirgleeer |

We can arrive at this directly by considering the
proof as a direct application of Theorem 3.1 and the
generalized rule of product. #

The numbers of the form n! are the
rdryte..r !

multinomial coefficients. It follows directly from

Theorem 3.3 that the number of ordered (1,1,cee,1)=

partitions of an n-set is n!, and Theorem 3.3 1is reduced

to the number of permutations of an n-set. The number of

ordered (r,n-r)-partitions of an n-set 1is n! s Whence
ri(n-r)7

Theorem 3.3 reduces to Theorem 3.1.

Examples (1) A bridge hand consists of a selection
of 13 cards from a full deck of 5Z-cards. Since the order
of the cards 1s of no importance, each hand 1s a 13-combination,
and the number of possible different hands is (52):
635,013,559, 600, "

(2) At bridge, there are four players at
a table, each receiving 13 cards. Hence a given situation
at a bridge table is an ordered (13,13,13,13)-partition
of a 52-set, and the number of different situations is
%%%T}“ = (5.3645...)10° by Theorem 3.3.

(3) A throw with a set of r dice may be

considered as an r-selection of a 6-set, hence the number

of distinct throws is (r+5) = (r+5) by Theorem 3.2.
5 r

4, Binomial coefficlents.

From section 3, it would appear that the binomial



11 '
coefficients are integers, which indeed they are. Given
any r successive positive integers, one of them must be a
multiple of r, another of r-1, and so on, hence the product
of any r successive positive integers 1s divisible by ri,

hence {n} is an integer.
r

Theorem 4.1 If p is a prime, then(p), (p),...,( o
. 1 2

are divisible by p.
Proof: Let p be a prime and r an integer such that
1€ r<p-t. Then r! divides p(p-1) «..(p-r+1). But r! is

a prime to p, hence r! divides (p=1)(p=2)...{p-r+1),

hence p) =p (p=1)(p=2)e..(p-r+1) 1s divisible by p. #
D r!

Consider the well-known Pascal's Triangle for

binomial coefficlents:

1 <Ny
« N N
1 L 2 1
1 ' i ~ 3 V4 \ 3 & ~N 1
¢ N v N g 0N £ N

If the arrows are considéred as one-way paths, then
each number of the triangle tells the number of one-way
paths we can follow to get from the topmost 1 to that
position in the triangle. This feature 1is an inherent
property from the relation
(4.2) (?) = (n;1) + (g:}) .

The symmetry and monotoniclty of the horizontal rows

are consequences of the fdllbwing easlly proved relationships:
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(4.3) (f.) = (nr—ir) (0<r¢n)
e of)
(4.5) (2n61)<(2n-1-1)<...<(2§::) =(2n;1)
If n 18 a positive integer,
(4.6) (x + y)" = (g) x* + (111) X'y 4+ 00 #+ (g) y%

To prove this, let A be an n-set of symbols, A =
{(x + y); , (x + y)&,...(x & y)“}. Then for r» 0 the
coefficient of x“¥y" in the expansion of (x +y)" is equal

to the number of r-subsets of A, which by Theorem 3.1 is (;).

(4.7) By setting x =y = 1 in (4.6), we have

(8) + (?) oo + (g) = 2%,

(4.8) By setting x = 1, y = =1 in (4.6), we have
I AL+ Rl

hence it can be seen that (4.6) is the source of many
relationships among coefficients.

The following &dentitlies are typical of those that
occur throughout this paper. They may be derived by

eélementary methods.

(4.9) 2“_-, (E)* = (ﬁn) ,

(4.10) s X = n.2"7",
PR ) B
(4.11) >3 k"“(;) = n(n+1)-2"7%,

(4.12) Z S";{!&-‘ (n - 1 + % + ce0e * l w‘



CHAPTER II

INCLUSION AKD EXCLUSION
1. A fundamental formula.

Consider the following problem. How many integers
between 1 and €300 inclusive are divisible by neither 5
or 3? Since every fifth integer 1s divisible by 5 and
every third integer by 3, the number divisible by 5 1is
630025 = 1260, and by 3 is 6300+ 3 = 2100, hence €300 -
2100 = 1260 appears to be the answer. But we have
subtracted numbers divisible by both 3 and 5 (15, 30, etc.)
twice. Hence we must add to our result the number divisible
by both 3 and 5, or by 15, which is 6300 =15 = 420, Hence
we have 6300 - 2100 - 1260 + 420 = 3360.

This 1llustrates the general 1dea of the principle
of inclusion and exclusion. Let A be an n-set and to each
a € A assign a unique weight, w(a), with w(a) an element of
some field, F. Wnile F and w(a) are arbitrary, a
particular combinatorial problem often suggests a natural
choice of F and w(a).

Let P denote an N-set of properties,

(1.1) P, ,P,,++.,P, connected with the elements of A,
and let

(1.2) {P;‘ WPy ,...,ng be an r-subset of P. Let
(1.3) 'vI(P,‘ ,P‘;t,...,P;‘_ ) be the sum of the weights

13
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of those'elements of A that satisfy each of the propertles
1’;‘ ,1’1; ....,P;‘_ e If there are no such elements, the
expression 1s assigned the value zero. -Now: let
(1.4) W(r) =T W(R, ,P; seee,B: ) be the sum of
the quantities (1.3) over all the r-subsets of P. Extend
(1.4) to the case r = 0 and let W(0O) equal the sum of the
welights of the elements of A.

The necessary foundations are now lald for developing
the basic Inclusion and exclusion formula, which 1s simply
the formula for finding the sum of the welghts of the
elements of 8 that satisfy exactly m of the properties (1.1).
Denote this sum by E(m). This formula is postulated, and
an intuitive explanatibn of it 1s given.

E(m) = W(m) - (m+1) W(m+1) + (m+2) W(n+2) -
e ) WO " .

m
Note that W(m) is the summation over 2ll m-subsets

of (1.1). Obviously it is possible that some elements of

S might satisfy all of the properties in more than ome

m-subset of P. Hence the welghts of these elements are

added more than once. To compensate for this (m+1) W(m+1)

is subtracted to eliminate duplication of weightg of

elements satisfying both m and m+1 properties. However,

too much has now been subtracted for 1t might be possible

for an element to satisfy more than one (m+1)-subset of

P, hence 1ts welght was subtracted more than once.

Consequently it becomes necessary to add another sum. This

process of addition and subtraction must be continued until
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one arrives at the sum of the welghts of the elements
vwhich satisfy all of the properties (1.1), when 1t
obviously ends. The following theorem shows that if an
element of S satisfies fewer than m properties or more
than m properties 1ts weight is not included in the
calculationse.

Theorem 1.1 E(m) = W(m) -(m-n) V(n+t) + (m+2) W(n+2) -
cee + (-1Y_ ) W(N) 1s the sum of the welghts of the elements
of 8 that satisfy exactly m properties (1.1).

Proof: Let a€ A and a of welght w(a) satisfy
exactly t of the properties (1.1). If t< m, then a
contributes O to the right side of the equation. If t = m,
then a contributes w(a) to the right side of the equation,

If t> m, then a contributes

N (O R TR R TN
4 (=1) (E)(E)] w(a)

to the right side of the equation. But if m<k<t, (k)(t)=
m/\k
(t m therefore (1.5) reduces to
t-k

L1.6) (;)[(E:E) —(E:?mﬂ))* (2:?m+2) Tt

T-=m™m

+ (=1) [t-m\| w(a).
t-t

But by (4.8) of Chapter I, the bracketed expression
of (1.6) is equal to zero. Hence if t>m, a contributes
zero to the right side of the equation. This implies that
the right side of the equation is the sum of the weights
of the elements of A that satisfy exactly m of the

properties (1.1). #
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Theorem 1.2 Let E(O) denote the sum of the weights
of elements of A that satisfy none of the properties (1.1).
Then
(1.7) E(0) = W(0) = W(1) + W(2) = ... + (-1)" w(n).

Proof: This is Theorem 1.1 where m = 0. #

If for each a€A we let w(a) = 1, a sum of weights
is the number of entries in the sum. Theorem 1.2
specialized in this was has W(0) = n and E(0O) as the number
of elements of A satiafying none of the properties (1.1).
Equation (1.7) specialized in this way 1s called the sieve

formulsa.

2. Application to number theory.

If x>0, let [x] denote the greatest integer ¢x.
Let (a,b) denote the g.c.d. of two integers a and b not
both zero. Write a/b for "a divides b", and a £ b for
"a does not divide b, ‘

Theorem 2.1 Let n be a positive integer and let
8,58, 5+00,3, be positive integers such that (a;,ai) —
for 1 # j. Then the number of integers k such that
O<kgn, a;#k (1 =1,2,...,N) 18

(2.1) n -.5;2;.[33 3 [;%:] - e+ (1) [aafa,]

.
1gicgent

Proof: Ilet A be the n-set of positive integers

1,2,+..,n and let P; be the property that an element of A
1s divisible by a; (1 =1,2,...,N). The a; are relatively
prime in pairs hence the expression W(P:,g;,...,QT) in the

sieve formula is the number of integers k such that

X

O<kgn, a; 8 ...a; /k. But this number is n L #
Vo ry v : ai, a ”’a’f‘-
Q
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The Euler ? -function ¥ (n) of the positive integer

n is the number of integers k such that 0< k¢n, (k,n) = 1.
Theorem 2.2 Let n be a positive integer. Then
(2.2) @ (n) =n || (ﬁ - l) . The product extends
P Y
over all prime divisors p of n.
Proof: 1In Theorem 2.1, replace a. by p: and suppose

P,sD, so++,D, are the prime divisors of n. Then (2.1)

implies

(2.3)  ¢(n) =n - n + i n_ -
N nséu P .Z.l' P. P,

e s o *+ ("1) n . = |$L<$£~ 3

P D ++-DP
But this is equivalent to (2.2). #
The Moblus function a(n) of the positive integer n

is defined by
M) =1,
(2.4) M (n) = 0 if n 1s divisible by the square
of a prinme,
M(pp -.en ) = (-1)° 1f the primes
D,sD, see+sP, are distinet.
This allows us to write (2.3) as
(2.5) g(n) =n > /_“__é_(_i_)_ over all positive
divisors d of n. 4
Let n be a positive integer. If the primes(,fﬁ
are known, then the primes< n may be found. Write the
sequence of integers
(2.6) 2,3, ceepne
Btrike out all numbers divisible by 2, then all
numbers divisible by 3, then all numbers divisible by 5,
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and so on up to all numbers divisible by q where q is the
largest prime ¢ J"E. The remaining numbers are primes > J'_E
and ¢ n, for a remaining number cannot have a prime factor
< n, nor can it be the product of two numbers > Jn. This
method for the construction of primes 1s called the gleve

of Eratosthanes. To find the number of primes, p, such

that yn < p g n, we can again use Theorem 2.1, but shall
omit this application. (1)

3+« Derangements.

Let
(3.1) (a,,8,,¢4.,8,) be a permutation of n
elements labeled 1,2,...,n. The permutation 1is a

derangement if a; #1, (1 =1,2,...,n). Thus a derangement

has no element in its natural position.

A problem by Nontmort, known as "le probléme des
recontres" asks for the number of these derangements. Let
D, denote this number. We may evaluate D, by the sleve
formula. Let A be the set of n! permutations (3.1) and P;
the property that a; =1 (1 = 1,2,...,n). Then
(3.2) W(gh,g;,...,gr) = (n - r)! as r elements
are fixed, hence n - r elements are being permuted. Also,
as the number of r-subsets of an n-set is (g), and

wir) = 3 w(p, 2750 «e+sB ) over all r-subsets, we have

(3.3) W(r) = (;1’) (n - r)t = _Ir% .

D, 1s obviously the number of permutations that
satisfy none of the properties, P: (1 = 1,2,...,n). But
this 1s the E(O) of Theorem 1.2, hence D, = E(0) = W(0) =~
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W(1) + W(2) -~ ..o + (-1)" W(N), or D_=nt - n! +nt -
1 11 1
ees + ("'1)“ P__! 'y or
nl! w
(3.4) D=n:(1-__1__+_3__-...+(-1) 1).
n 11 21 “nf

4, The permanent.
Let 8 be a set. A rectangular array based on B

is a configuration of m rows and n columns of the form

-

a“ a‘:_ o * *® &\“
a;, 8.4& e o o a, .
(4.1) A= . . e e o . *
L * L ] L ] L] L ]
. . * ¢ o .
8.M‘ aM‘_ o o o au‘\c

The entry aii in row i1 and column } must be an element of

S5, but 8 need not be restricted in any way. ali

to occupy the (1,)) position of A, A is referred to as

is said

anm by n array, or A is of sizem by ne Ifm =n, A is

8 square arraye If m - r rows and n - 8 columns of A

are deleted, the result is an r by 8 subarray of A.
Two m by n arrays are equal if corresponding entries are
equal. A can be considered as an (mn)-sample of éet S.
A 1 by n array may be regarded as an n-sample.
" We may replace (4.1) by
(4.2) A= [}Li],‘ (L = 1,2,00.,m; j‘= 1,2,0045n)0
| Let e = min (m,n). Then those entries a;; in

position (1,1), 1 =1,2,...,8, form the main dlaconal of A.

The transposge A" of Ais ann by m array obtained by

reflecting A about its main diagonal. Thus a ;. will be in

44
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the (1,)) position of A (1 = 1,2,40e,0; J = 1,2,00e,Mm)0
If A=A" » A 18 symmetric.

The array 18 a matrix 1f the set S 1s a field.
Addition and scalar multiplication of m by n matrices 1s
defined in the usual way, and the set of all m by n
matrices with elements in a field, F, is a vector space
of dimension mn over F. An m by n matrix may be multiplied
by an n by t matrix by the usual method, resulting in an
m by t matrix.

Let A = E’iﬂ be a matrix of size m by n with m¢ n,
and defline the permanent of A by:

(4.3) per (A) =3 a; 85 008y, o

This summation extends over all the m-permutations
(1,,3,,¢00,1,) of the integers 1,2,...,n. This scalar
function of A 1s very frequently used throughout the
literature of combinatorics in connection with certain
enumeration problems. A few of the properties of it are
stated herein, but no attempt is made to elaborate or
explain these. (2) N
(4.4) | The per (A) remains 1nvar1;nt‘under arbitrary
permutations of the rows and columns of A.

(4.5) Multiplication of a row of A by a scalar
in F replaces per (A) by oper (A).

(4.6) If A 1s & square matrix of order n, per

(A) = per (A7), and per (A) 1is the same as the determinant
det (A) apart from a factor + 1 preceding each product on
the right side of (4.3).

(4.7) The multiplicative law for determinants,
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det (A) - det (B) = det (AB) 1s false for permanents.

(4.8) To evaluate per (A), let A be a matrix

of size m by n with m< n. Let A, denote a matrix obtained
from A by replacing r columns of A by zeros. Let S(A_)
denote the product of the row sums of A.and let 3 S(A_)

‘denote the sums of the S(A _) over all of the choices for

A_. Then per (4) = = S(A,.) - (n - l:l + 1) s 8(a,_..)

+ (n - g + 2) -1V SN B (-13\-'(: - : 5 8(A,, ).

If A 1s a square matrix of order n, then per (A)
=8(4) - S 8(A,) + = 8(a) -. ..+ (=105 Ba,).

This chapter 18 concluded with a few introductory
remarks about matrices whose entries are the integers
zero and one. These are cdlled (0,1)-matrices, and as
each (0,1)-matrix of size m by n can be consldered as an
mn-sample of the 2-set of integers zero and one, Theorem
2.1 of Chapter I states that there are 2MJ\such m by n
matrices.

Let I denote the ldentity matrix of order n and
let J denote the matrix of order n with every entry equal
to 1. Then 1t is clear that
(4.9) per (J) = n!
and for the purposes of thils paper 1t 1s postulated that
(4.10) per (JF - I) =D, .



CHAPTER III

RECURRENCE RELATIONS
1. Elementary recurrences.

(1.1) (g) = (n ; 1) + (? - :) is a simple

instance of a recurrence. From this one can evaluate the
binomial coefficients for all non-negative integers n and
r; as schematically 1llustrated by Pascal's triangle. Many
different types of relationships are called recurrences,
and no attempt is made here to formalize a definition for
this concept. Generally, recurrences gre relatlonships
that are used to evaluate a quantity term by term from
given initial values and previously computed values.

This chapter treats only a few simple recurrences of
special relationship to the general theme of tHs paper.
For a much more sophlsticated treatment, see the recent
text by Riordan. (3)

Consider the set of all n-samples obtalned from the
2-set of the integers 0 and 1. Let f(n) denote the number
of these that do not contain two successive 0's, and define
£(0) = 1. It i1s apparent that f£(1) = 2. If n3 2 the
number of such samples with 1 as the first component 1s
obviously f(n=1) and the number with O as the first
component is f(n-2) since fixing O as the first component
also fixes 1 as the second component. Hence from this

22
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interesting fact it 1s readily seen that
(1.2) f(n) = f(n - 1) + £(n - 2)
for all n > 2. Thue f(n) is determined for all non-
negative integers n. These numbers, f(n), are called

Fibonaccl numbers and have many remarkable arithmetical

and combinatorial properties.

Turning to the topic of derangements as introduced
in the preceding chapter, consider these as a type of
recurrence. Define D, = 1. It 1ls apparent that D,6 = O.
Conglder a derangement
(1.3) (al,aa,...,a“)
of n elements labeled 1,2,¢.s,n With n> 2. The first
position may be occuplied by any of the n integers except
1, hence by n - 1 different integers. Let the first entry
of (1.3) be fixed with a, =k (k # 1). Then the derangements
are of two types depending on whether or not 1 is in the
kth position. If 1 is in the kth position, then the number
of permutations 1s that of n - 2 elements wlth all elements
displaced, or D\-;' On the other hand, if 1 1s not 1ln the
kth position, then the permutations permitted are those
that involve the elements 1,2,¢¢s,k=1,k+2,...,n in the
positions 2 through n with 1 not in the kth position and
every element out of its own position. But this 1s the
same as tHélpermutations of n - 1 elements labeled 2
through n with every element displaced. Hence the number
of these 1is Dy + All of this implies
(1.4) D,=(n=-1) (D, +D,,)
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and this may be used to give a proof by induction of

(1.5) Dn=n1(1-__1__-e_3__-...+(-1)“ __1_)
11 21 n}

(The proof is omitted here).

2. Ménage numbers.

Let U, denote the number of permutatlions of n
elements labeled 1,2,...,n such that integer i is in
"nelther position 1 nor 1 + 1 for 1 = 1,2,,4.,n = 1, and
n is in neither position n hor 1. In‘other words, U, 1is
the number of permutations that have no elements in the
same position as (1,2,...,n) and (n,1,2,.40,n-1); that 1is,
the number of permutations that are discordant with these
two permutations. These numbers, U, , are called ménage
numbers from the following "probldme des ménages" formulated
by Lucas.

In how many waye can n married couples be seated at
a circular table, alternating men and women, so that no
husband and wife are in adjacent seats?

If the wives are seated first, there are two different
n-sets of chairs they may be seated in, since they will
leave an empty seat between each two of them. For each
n-set of chairs, the number of ways in which the wives can
be seated is simply P(n,n) = n!. Hence the wives can be
seated in 2n! ways. Then each husband is excluded from the
two seats adjacent to his wife, but the number of ways of
seating the husbands is independent of the seatlng arrangement
of the wives. It should be clear that for any given

arrangement of the wives, the number of arrangements for
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the husbands 1is simply U“ , hence if M denotes the total
number of arrangements,
(2.1) M= 2n!Un.
Thus to solve the "probléme des ménazes® it is only
necessary to find Ug »

Theorem 2.1 The ménage numbers U, are gliven by

(2.2) ' U, =n! - §§g7 (2n ; 1 )(n-1) !+ 53
(2n—2)-(n -=2) 1 -0+ (-1N"2n (n) 0! (n > 1).
2 n \n

Proof: This proof is a recurrence argument by
Kaplansky involving several lemmas.

Lemma 2.2 Let f(n,k) denote the number of ways of
selecting k objects, no two consecutive, from n objects
arranged in a row. Then

(2.3) f(n, k) = (n ~ § + 1)

Proof: We have f{(n,1) =n = (n}, and for n > 1,
f(n,n) =0 = {1\. If 1< k<n, we ma; split the selections
into those thag contain the first object and those that do
not. The selections that include the first object cannot
include the second and can obviously be enumerated by
f(n-2,k-1). The selections that do not include the first
object are enumerated by f(n-1,k). Hence we have
(2.4) f(n, k) = f(n - 1, x) + f(n - 2, ¥ - 1),

It 1s now possible to prove (2.3) by induction. The
induction hypothesis asserts

(2.5) f(n - 1, k)=(n1;k), f(n-;2,k-1)=(§:]1£).

But (2.4) and (2.5) imply that
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(2.6) f(n, k) = (n ; k) + (; - ?

and by simple algebra it is established that(n-k) + (n-k =
k k-1

(n-k+1), hence the lemma is proved.
k

Lemma 2.3 Let g(n,k) denote the number of ways of
selecting k objects, no two consecutive, from n objects
arranged in a circle. Then

(2.7) g(n, X) = __n n - k) (n>x).
n-x k

Proof: As before, split the selections into those
that include the first objlect and those that do not. The
selections that include the first object cannot include the
second object or the last object, and by lemma 2.2 can be
enumerated by f(n-3,k-1). The selections that do not
include the first object are enumerated by f(n-1,k), hence
(2.8) g(n, x) = f(n - 1, k) + £f(n - 3, k - 1).
But'then from lemma 2.2, g(n,k) =(n£k) + (n;5;1) , and

again by using simple algebra we have (n-k) + (n-k-1) =
. k k-1

n n—k), which proves lemma 2.3.
n-k \ k

Returning again to permutations on the elements
labeled 1,2,...,n, let B

[
permutation has 1 in position 1 (1 = 1,2,...,n) and Py

be the property that a

the property that the permutation has 1 in position 1 + 1,
(L = 1,2,.0.,n-1) with Bx the property that n is in
position 1. List the 2n properties 1in a row,
(2.9) P, ,P, ,B, ,Ps ,eeesB, sP) .

Select k of these properties. How many of the
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permutations satisfy each of the k properties? If the
properties are not compatible (for example, P, and P/
are not compatible, for no permutation satisfies both of
them) the number is zero. If the properties are compatible,
then exactly k of the elements in all of the desired
permutations are fixed. Hence there are only n-k elements
that can be permuted and the desired number is P(n-k,n-k)
= (n-k) 1. Now let v, denote the number of ways of
selecting k compatible properties from the 2n ﬁroperties
(2.9).

It is now obvious that U, is the number of permutations
that satisfy none of the properties (2.9). Referring
again to the sieve formula and Theorem 1.2 of Chapter II,
we have U, = E(0) = W(0) = W(1) + W(2) = vo0 + (=1)V
W(N), where W(r) = v, (n-r)!. Hence U, = v, n! - v,(n-1)1
+ ji(n-2)! - e # (=1)" v,- Ot.

It now remains to evaluate Ve It is épparent
that if the 2n properties (2.9) are arranged in a circle,
the only properties that are not compatible are the

consecutive ones, hence v, = g(2n,k) = __ 2n (?n-k) by
2n-k \ k

lemma 2.3. In conclusion then, U, = v,n! = v (n=1)1 +

v (n-2)1 - «.. + (-1)" v,01 = 2n (2n-0) n! - _2n
2n-0 o 2n-1

(2n;1) (n-1)! + _2n (2n-2) (0=2)1 = vuo 4 (=1)" _en_

n=2 2 2n=-n
2n—n) Ol =n! - 2n <2n-1) (n-1)1 + 2n (2n-2) (p=2)1 -
n 2n-1 1 n=2 2

ces + (=1)" g% (ﬁ) o1. #
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3s Latin rectangles.
ILet 8 be a set of n elements. A latin rectangle

based on S 1s an r by & rectangular array

(3.1) A= [a;ﬂ s (1 =2 1,2,000,0; J = 1,2,.00,8)
with each row of (3.1) an s-permutation of elements of 8
and each column of (3.1) an r-permutation of elements of
S. This immedlately restricts r and s so that r ¢ n and

8 < n. If the elements of 8 are labeled 1,2,...,n and

8 = n; then each row of A contains a permutation of the
elements 1,2,+4.,n. Also, from the definition, no element
i1s repeated in a given column. If, in addition, the
elements of the first row are written in standard order
1,2,000,n (d.6., a,; =1, 1 =1,2,...,n) the Latin rectangle

is said to be normalized. Let L(r,n) denote the number

of r by n Latin rectangles and K(r,n) denote the number

of normalized r by n latin rectangles. The number of Latin
rectangles resulting from fixing the first row as a

given permutation is the same, regardless of what
permutation is used as the first row. Hence 1t 1s trivial
that

(3.2) L(r, n) = n! k(r, n).

Consider now normalized 2 by n Latin rectangles. The
econdition that ag; #1 (1 =1,2,...,n) 18 necessary from
the definitions, hence each normalized 2 by n latin
rectangle can be considered as a derangement and consequently
(3.3) (2, n) = D, .

The ménage numbers U, are the number of 3 by n

Latin rectangles where the first two rows are fixed as



(3'4) 1 2 3 * & o n ’
n 1 2 e e o n""

since the definitlons require that ay;, # 1, aj; #1 -1,
and a,, # n.
Riordan has developed the formula

(3.5) K(3, n) = 2{(&) p_D_ U (4)

Wk K -3k

where m =[%] and U, = 1.

Enumeration of latin rectangles of more than three
lines has scarcely been touched. One formula states that
" if r < (log n)%‘then L{r,n)~ (n!)" é{S)and it has been
established that this remains valid for r < n* .

If r =8 =n, the latin rectangle becomes a latin
square of order n. It 1s mentioned in passing that a
multiplication table of a finite group depicts a Latin
square. From previous discussion we have
(3.6) L(n, n) =nt-(n - 1)t 1,
vhere 1, is the number of Latin squares of order n with
the first row and the first column in standard order
(L.e., a;, =1 anda;; =93, 1 =3=1,2,...,n). That
the evaluation of 1, is not easy 1s obvious from the
following table which displays all of the known values
of 1 .

1 2 3 4 5 6

e

7
n 1 1 1 5 56 9408 16,942,080



CHAPTER IV

A THEOREM OF RAMSEY
1. A fundamental theorem.

This chaptér is devoted to the statement, description
and some applications of a very important combinatorial
theorem. The theorem is called Ramsey's theorem after
the English_logician F. P. Ramsey. |

The well-known pigeon-hole principle in mathematics
asserts that 1f a set of sufficiently many elements is
partitioned into not-too-many subsets, then at least one
of the subsets must contain many of the elements. Ramsey's
theorem may be considered as alprofound generalization
of this principle.

Unfortunately, a thorough discussion of the meaning
.of Ramsey's theorem, a complete proof of the theoren, aﬁd
and adequate discussion of its applicatlons proves to be
too voluminouy for the limited scope of this paper; in
fact, these topics in themselves might well provide the
basis for another such paper. However, the topic is of
sufficient importance tﬁat some dliscussion of 1t seems
advisable.

Let S be an n-set and let P, (S) be the set of all
r-subsets of 5. Let
(1.1) P.(S) =AU 4, U ...U 4,

30
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be an arbitrary ordered partition of Py (S) into t
components A,,A;,...,At,. Let qQysQ, 00e05a, be integers
such that
(1.2) 1S P <q ,Q seeesq_ e
If there exists a q; -subset of 8 with all of its r-subsets
in A;, then that subset 1s called a ggg,A.,Q-subset of S.
Ramsey's theorem asserts the following.

Theorem 1.1 Let qQ sQg9e0es,s and r be any given
integers satisfying (1.2). Then there exists a minimal
positive integer, N(q,,qa,...,qt,r ), such that for all
n N(q.,qa,...,qt,r), if 8 is an n-set and (1.1) an
arbibrary ordered partition of PP(S) into t components,
then S contalins a (qi,Aj)-subset for some 1 = 1,2,.0.,%.

The complexity of the theorem makes it very difficult
to state 1t in any simpler terms. However, several
readings of the theorem itself and the materlal preceding
the theorem should make the assertion of the theorem clear.

No attempt 1s made here to prove eilther Ramsey's
theorem or any of the several following statements. These

proofs are contained in a recent text by Ryser. (5)

(1.3) if r =1, N(a,,0,5000,q,,1) = Q+ qQ+ c0s
+q. -t <+ 1.

(1.4) N(q,,r , r) = q,

(1.5) N(r, q, 1) =a,

The integers N(q‘,qa,r) have deep combinatorial
significance, but unfortunately no recurrence is known
for these integers, and serious difficulties are encountered

in their evaluation. The trivial values of (1.3), (1.4)
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and (1.5) are known but apart from these all known
N(q,,ql,2) are contained in the following symmetric
array for N(q,,q,,2). |

9
) 4 5
5 6 9 14
(1.6) a, 4 9 18
5 14

Even less 1s known for t > 2. 1In this case the

main plece of information at present 1is

(1.7) N(3, 3, 3) =17,

2. Applications.

a). Given six points in a plane, no three collinear,
there are C(6,2) = 15 line segments connecting the points.
Let reach segment be colored either red or blue. All may
be red, all blue or some red and some blue. By using
the plgeon-hole principle and simple logic it can be
readily determined that it 1s always possible to find a
chromatic triangle; that 1s, a triangle connecting three
of the points that has all three sides the same color.

Extending this 1dea; consider n points in genefal
position in three-dimensional space. Two distinct points
determine a line segment. Let each of these segments be
colored elther red or blue. The 2-subsets of points may
be partitioned into the set A A of red segments and the
set Aa‘of blue segments. Now if q, and q, are integers
such thé.t. 2g 4,,9, and ifn> N(q.,q&,e), then Ramsey's
theorem asserts that elther there are q, points with all
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segments red or qa_points with all segments blue. More-
over, N(q',qa,2) 1s the minimal integer with this property.

b). A submatrix of order m of a matrix A of order
n is called principal provided the submatrix is obtained
from A by deleting n-m of its rows and the same n-m
columns.

Theorem 2.1 Let m be an arbitrary positive integer.
Then every (0,1)-matrix A of a sufficiently large order n
contains a prineipal submatrix of order m of one of the

following types:

" 0] % 0
0 .u; 1 ™~
(2.1) i ~ T
[+ 1] * 9
|0 % 1 *_

The asteriks on the main diagonal denote O's and
1's, but the entries above and below the main diagonal are
2ll O's or all 135 as indicated in the upper-right and
lower-left corners in (2.1).

Proof: Let the n-set S of Ramsey's theorem be the
set of the n row vectors of A ={%15" Denote row 1 of A
by «;. Let 1< J, and asscciate with the row vectors o(;

and o(; of A the vector (ag; »&:37 ). Now this vector 1is

3
(0,0),(1,0),(0,1), or (1,1). Hence the 2-subsets of S
are partitioned.

(2.2) P, (8) =AU A,U A,V A4 .

Now suppose that
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(2.3) n> N(m, m, m, m, 2).

Then by Ramsey's theorem there exists an m-subset
of 8 with all of 1ts 2-subsets in one of the four components
of Pa_(s). But this implies the existence of a principal
submatrix of one of the four types of (2.1). #

¢). Theorem 2,2 Let m be an integer greater than
or equal to three. Then there exists a minimal positive
integer NM such that the following proposition 1s valid
for all integers n3 N, « If n points in the plane have
no three points collinear, then m of the points are the
vertices of a convex m=-gon.

Lemma 2.3. If five poihts in the plane have no three
points collinear, then four of the polnts are the vertices
of a convex quadrilateral.

Proof: The five polnts determine ten line segments,
and the perimeter of thls configuration 1s a convex
polygon. If this convex polygon is a pentagon or a
quadrilateral, the lemma is trivial. Suppose that the
convex polygon is a triangle. Then two of the five
points are in the interior of the triangle. The two
1nterior points determine a straight line, énd two of the
three pointe of the triangle lie on one side of this line.
Then these two points of the triangle and the two interior
points form a convex quadrilateral.

Lemma 2.4. If m points in the plane have no three
pointes collinear and i1f 2ll quadrilaterals formed from the
m points are convex, then the m points are the vertices of

a convex m-gon.
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Proof: The m points determine m(m-1) 1line segments,
2

and the perimeter of this configuration 1s a convex gq-gon.
Let the consecutive vertices of the q-gon be labeled V,,
Yi,...,v% « If one of the points is within the q-gon, it
must lie 1in one of the triangles V VJ_VS, v, VJV“ y cee
V,V,,, V.o But this contradicts the assertion that all
quadrilaterals formed from the m points are convex.

Hence q = m and the m=-gon 1s convex.

Theorem 2.2 is now an easy consequence of Ramsey's
theorem. To prove this let m > 4 and let n > K(5,m,4).
Partition the 4-subsets of the n points into the concave
and the convex quadrilaterals. Then by Ramsey's theorem
there exists a 5-gon with all quadrilaterals concave or
an m-gon with all quadrilaterals convex. By Lemma 2.3
the first alternative cannot occur, and by Lemma 2.4 the
m-gon is convex. #

It has been shown that
(2.4) N < KN(5, m, &4).

W ™~

It is known that N =3=2+1,N,,=5=2‘+1, and

1t has been shown that N_ = 9 = 2° 4+ 1. This leads one

to conjecture that

-

(2.5) N =2""%4 g,

m

but the assertion (2.5) 18 an unsettled question.



CHAPTER V

SYSTEMS OF DISTINCT REPRESENTATIVES
1. A fundamental theorem.
Let S be an arbitrary set and P(S) the set of all
subsets of 8. Let

(1.1) D = (a,,a

a,ooo,a“)

be an m-gample of S5 and let
(1.2) M(8) = (3.’5;:°--:5M)
be an m-sample of P(S). Now suppose that the m elements

of D are distinct and that a; e B8, (1 =1,2,e0.,m). Then

the element a, represents the set 85 , and the subsets

S,,Sa,...,s“.haﬁe a system of distinct representatives

(SDR). D 1s an SDR for M(S). This definition requires
thap 1 # J implies a; # aé , but 8 and'si need not be
distinct subsets of S.

Examples Let 8 = {1,2,3,4,5,6} . Let B, = (?,é},
s, ={&,5}, 8, = 2,6}, 5,=0,2,3,4} , 8. = {1,2,5}.
Then D = (2,5,6,3,1) is an SDR for (s,,sa,ss,sq,qr).
If S; is replaced by q; = {é,S} , then the subsets have
no SDR, for §,UB8,UB, 1s a 2-set and three elements are
required to represent 5‘,81,8; .

Theorem 1.1 (by P. Hall). The subsets 5,,8,,...,5,
have an SDR if and only if the set Si‘U S;au Y Sik

contains at least k elements. This must hold for

36
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k = 1,2,¢s0,m and for all k-combinations {}.,1L,...,1;}
of the integers 1,2,...,m,

From the definition and the preceding example the
validity of the necessity of this theorem 1s immediately
apparent.

The following theorem gives a refinement on the
sufficiency of Theorem 1.1.

Theorem 1.2 Let the subsets 8(18,5++.,8 , satisfy
the necessary conditions for the existence of an SDR and
let each of these subsets contalin at least t elements.
If t< m, then M(S) has at least t! SDR's. If t> m,

then M(S) has at least t! SDR's.
(t-mi!

Proof (by induction on m): Let m = 1. If t < m,
t =1 and M(8) has 1! = 1 SDR. If m = 1 and t> m, M(8)

obviously has t SDR's; but t = _ t! t!
(t-1)1 (t-m)!

For the induction hypothesis, take the statement

of the theorem for all m’ -samples of P(S) where m’<¢ m,

and prove the theorem for the m-sample M(S) = (S',Sa,...,qm).
Case 1 Assume the set S,-\‘ v S;a—u essU Sgk contains

at least k¥ + 1 elements. This holds for k = 1,2,...,m-1

and for all k-combinations{i,,1,,...,1y] of the integers

1,25¢¢0,m. Let a; be a fixed element of S. Delete a;

whenever 1t appears in §;,5,,...,5, and call the resulting

sets S;,S;,...,S;, respectively. The (m-1)-sample M’ (8) =

(B;,S;,...,S:)Isatisfies the necessary céondition for the

existence of an SDR because the set SL,L) 8;,U «..U B: .

contains at least k¥ + 1 elements. Now if t £ m then
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t -1 < m-1and by the induction Hypothesis M/(8) has
at least (t-1)! SDR's. Also, for t >m, then t - 1> m - 1
and again by the induction hypotheses M/(S) has at least

t-1)! = (t-1)! SDR's. But taking any SDR
t=-1} - (n-1 ! t-m)!

for M'(8) together with a; gives an SDR for M(S) in which
a; represents 5,. Hence for t< m and a fixed a; there
are (t-1)! SDR's for M(S). But S, is a t-set and a sample
is ordered hence there are te (t-1)! = t! SDR's for M(8).

For t > m, using the same argurent, there are

te(t=1)] = t ! SDR's for M(S).
t-m)! (t-m}!

Case 2 There exists a k-subset of S of the form
SL‘L) S;a\J ees ) SLK’ where k 1s an integer such that
1< k< m=-1 and {;‘,11,...,1Q} is a certain k-combination
of the integers 1,2,...,m. Renumber the subsets 5,,5,,¢.4,8
80 that 8; U 8§ U ...U B 1s 8,V 8, U ...Us,_ .
If this k-subset exists, then of necessity t < k. Since

"M

k£ m-1 the inductlon hypothesis implies the k-sample
(8,,S,5+++,5,) has at least t! SDR's. Let D* = (a.,a'a,...,ak)
denote one such SDR. Whenever the elements of D% appezr

in the sets SKH 1S vy 20005, delete them and call

the resulting sets S5*

Ku’s*

Ks;?""s:. , respectively. The

(m=k)=-szmple
(1.3) M*(8) = (B% 8% ., ...,B% )
must satisfy the necessary conditions for the existence

of an SDR for if, say, S% U 8% U s\ 5% ¥ contains

fewer than k¥ elements, then

(1.4) s,U s,U ... UsKU sM\\Js“g cee VB e
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contalins fewer than k + k%* elements which contradicts
the hypothesis 6f the theorem. Hence by the induction
hypothesis M*(S) has at least one SDR. But as stated
earlier, (S',ﬁl,...,sk) has at least t! SDR's. Consequently
M(S) has at least t! SDR's, which proves Theorem 1.2 and

also Theorem 1.1. #

2. Partitions.

Let
(2.1) T=A‘U A,_U...U AM
and
(2.2) '1‘=B‘U BJU...UBM

denote two partitions of a set T such that As £ 8 # Bi
for i, J =1,2,s.s,me Let E be an m-subset of T such
that A; N\ E £ &, B;N E Z8, 1, y =1,2,.0.,ms Then each
of these intersections must be a 1-set and E 18 called a

system of common representatives (SCR) for the partitions

(2.1) and (2.2). Note that an SCR exists for these
partitions 1f and only if there 1s a sultable renumbering
of the components of either (2.1) or (2.2) such that
(2.3) A;N B £ 8 (4 = 1,2,4..,m).
SDR theory is used to obtain the following necessary
and sufficient condition for the exlistence of an SCR.
Theorem 2.1 The partitions (2.1) and (2.2) have an
SCR if and only if the set Ag U A; U ... U A; contains
at most k of the components B,,Bl,...,B": This must hold
for x = 1,2,+00,m and for all k-combinations ~{1‘,1&,...,1g}

of the integers 1,2,...,me
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Proof: Again, the necessity of the theorem is apparent.
To prove the sufficlency, let S be the m-set of elements
AsA,yeee A and let B; be the set of all Aj such that
Ajﬂ B; # #. Then M(S) = (8,,8,,...,5,) 18 an m-gample
of subsets of S. Further, M(S) satisfies the necessary
condition for the exlstence of an SDR for if, say,
s,U 8, U ...U 8,,, contains only k elements As 3Bz seee,
Az, v then A, U 4; U ...U A; contains the k + 1
components B, ,B;,¢..,B, » contrary to the hypothesis of
the theorem. Hence by Theorem 1.1 there exists an SDR
for M(8). Novw renumber the components of (2.1) so that
this SDR 18 D = (A,,A,,+..,A ). But then (2.3) 1s valid. #
Theorem 2.2 Let T = A U A, U ...UA,and
T=BU B,U ...U B, denote two partitions of T, where
each A and each 35 1s an r-subset of T. Then the
partitions have an SCR.
Proof: 1If each A; is an r-subset of T, then
AV AU eeeU 4; 18 an rk-subset of T. Each B; 18
an r-subset, therefore A{‘LJ A U ..U 4; contains at
most k¥ of the components B, 4B yee+,B,, and this must be
true for k = 1,2,...,m and for all k~-combinations
{1,,1a,...,1;) of the integers 1,2,...,m. Then Theorem 2.1
implies the partitions have an SCR. #
Applications a) Let A be the following r by m

array of the integers 1,2,...,rme
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- -
1 2 L BN N 3 m
m+1 m+2 R am
2m+1 2m+2 eo e 3m
(2‘4) A = . .
| (r=1)m+1 (r-1)m+2 “oo rm

Now let B be an r by m array of the 1ntegeré 1,2,000,rm,
but with the integers in arbitrary positions within B.
Then.Theorem 2.2 implies there existé a permutation of the
columns of B such that corresponding columns of A and B
each contain atieaab one element in cbmmon.'

b) This application requires an
understanding of the elementary properties of cosets in
the theory of groups.

Let G be a finite group and let H be a subgroup of
G. Let @ =Hx UHx VU... UHx,  be a right coset
decomposition for H and let @ =y HUy, HU ...U y, H be
a left coset decomposition for H.

Then Theorem 2.2 implies there exists elements
Z,,2,50+052, in G such that ¢ = Hz VHz, V... U Hz =
z,HU z,HU ... UgH.

3. latin rectangles.
Let there be given an r by s latin rectangle based on
n elements labeled 1,2,...,n. The lLatin rectangle may
be extended to a latin square of order n oprovided n-r
rows and n-s8 columns can be adjoined to the latin rectangle

so that the resulting configuration is a Latin square of
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order n. This new configuration will contain the original
latin rectangle in the upper left corner.

Theorem 3.1 Let there be glven an r by n latin
rectangle based on n elements labeled 1,2,...,n. Then the
ILatin rectangle may be extended to a latin square of order
n.

Proof (using SDR theory): Let S be the n-set of
elements 1,2,...,n and 51 be the set of all elements of
S that do not appear in column i1 of the latin rectangle.

Then each S, 1s an (n-r)-subset of S and M(8) = (S',Sa,...,sn)
is an n-sample of subsets of S. Let i1 be an element of

S. Then 1 appears exactly r times in the latin rectangle,
once in each row. Also, the appearances are in distinct
columns. Hence 1 1sg in exactly n-r of the sets S‘,S&,...,SK.
Now 1f 8 U 8, U ... U 8, contalns only k-1 elements, then
these k-1 elements appear in the sets Su'Q;""'sn no

more than (n-r)(k-1) times. But this contradicts the

fact that each of these sets is an (n-r)-subset of S.

Hence M(S) satisfies the necessary condition for an SDR,

and therefore has an SDR. Denote this SDR by D = (1,,1,,...,1 ).
Since 1& is in Sl s J = 1,2,404,n0, 13 does not appear 1in
column j of the lLatin rectangle. Hence D may be adjoined

to the r by n latin rectangle to form an r + 1 by n Latin
rectangle. Now repeat the entire process, and keep

repeating it until it has been performed n~r times. The
result is the required latin square of order n. #

Theorem 3.2 There are at least n!(n-1)! ... (n-r+i1)t

r by n latin rectangles and hence at least n!(n-1)! ... 1!
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n by n latin squares.

Proof: There are n! latin rectangles of slze 1 by
n. Theorems 3.1 and 1.2 imply each of these may be
extended to 2 2 by n latin rectangle in (n-1)! ways.
Hence there are n!{(n-1)! latin rectangles of size 2 by n.
Repetition of the same argument proves the theorem. #

Let 1“ denote the number of lLatin squares of order
n with the first row and first column in standard order.
Then Theorem 3.2 asserts
(3.1) 1,2 (n - 2)1(n - 3)! ... 1!
The following table displays the values of 1“ and bn =
(n-2)t(n-3)! ... 11 for n = 3,4,5,6,7.

n 3 4 5 6 7
1, 1 4 56 9408 16,942,080
b, 1 2 12 288 34,560

4. Matrices of zeros and ones.

The (0,1)-matrices mentioned at the conclusion of
Chapter 1I play a leading role in the development of many
combinatorial topics. One of the chief reasons for this
follows.

Let § be an n-set of elements a,,a ,...,a, and let

M(8) = (S.,sa,...,smg be an m-sample of subsets of S. Let
a3y < 1 if a; is 2 member of 8; and let a5y = 01f ay

is not a member of S¢ . Then

(4.1) A= [a:s] (1 = 1,2,...,!!3; J = 1,2,...,1’1)

is a (0,1)-matrix of size m by n. This matrix is called

the incidence matrix for the subsets 8, ,8 ,...,8 , 0f the
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n-set S. The 1's in row i1 of A specify the elements that
belong to 8. , and the 1's in column J of A specify the
sets that contain ai « Thus A contains a complete
description of the subsets 8,,§a,...,sh\of S. Also,
given a (0,1)-matrix, A, of size m by n, and an arbitrary
n-set, 5, then there exists subsets S',Qa,...,smiof s
such that A is the incidence matrix for these subsets.

Thus the (0,1)-matrix A characterizes the subsets
8‘,51,...,8M,of 8. A choice of +1 and -1, or even of two
distinct entries x and y would serve just as well as O and
1. However, the behavior of O and 1 under addition and
multiplication makes them especially convenient as
1llustrated in the folldwing theorem.

Theorem 4.1 Let 8,+8 5+..,5, be subsets of an n-set
and let m< n. Let A be the incidence matrix for these
subsets. Then the number of SDR's for M(8) = (8, ,8,,...,8,)
is per (4). |

Proof: By definition, per (A) =3 8.1, 1831, 20 e sl
where the summation extends over all m-permutations
(1,,3,,00003) of 1,2,...,n. Also, the definition of per
(A) requires m < n, as does the hypothesis of this theorem.
Note that for the incidence matrix A, each product in the
summation must be O orA1. Note also that each product
represents a possible SDR, since 1t contains m factors,
no two from the same row or the same column. Hence if a
product has the value zero, one of the factors a;s’in the
product is not in set Si; that is, S; 18 not represented

in that product hence the product does not represent an
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SDR for M(8) = (s,,qa,...,gm). If, on the other hand,
a given product has the value 1, then that product
represents an SDR for M(S) for it indicates the existence
of a selection of m distinct objects, one from each of the
S;. Since the per (A) 1s a summation over all
m-permutations(1,,1a,...,iw)of 1,2,+0440n, €very possible
SDR for M(8) 1s considered and the summation represents
the total number of SDR's. #

A permutation matrix P 1s a (0,1)-matrix of size m

by n such that PP’ = I, where P' denotes the transpose

of P and I denotes the identity matrix of order m. This
definition implies m< n. 1In a permutation matrix of order
m 811 entries are O with the exception of exactly one

entry in each row and each column, which afe 1. If the
elements and the subsets of S are now renumbered the
incidence matrix A 1s replaced by an incldence matrix A

of the form

(4.2) A" = PaqQ.

Here P 1s a permutation matrix of order m determined by the
renumbering of the subsets, and Q 18 a permutation matrix
of order n determined by the renumbering of the elements.
Many investigations involving the (0,1)-matrix A deal with
functions like per (A) that remain 1hvariant under
arbitrary permutations of the rows and“columns of A, and
guch functions are of interest in é&ﬁbinatorics because
they do not depend on the particularﬁiabeling of the

elements and subsets of S.

Example Let S = {&,b,c,d,e} ’ S| = {B,C} s
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8, = {?,b,d} s 83 = {b,c,d,e]', and 8, = {;,c,é} « Let
M(8) = (s‘,sa,sz,sq) and note that 8;c S, 1 = 1,2,3,4.
Following the method of section four, with a, =a, a, = b,
a, =¢, 8, =4 and a, = e, the lncildence matrix for the

3
given subsets of the 5-set S 1s

- —

1 0 1 o 0
1 1 0 1 0

b g
i
.

0 1 1 1 1

1 0 1 ) 1
If the columns are labeled from left to right as
a,b,c,d,e and the rows are labeled from top to bottom
as‘S‘,S&,S,,Sq the composition of the given subsets 1is
immedlately apparent from the appearance of the 1incidence
matrix.
Now renumber the subsets and the elements so that
{b,c,q,e}, 8, = {a,c,€), 8, ={a,c}, 8, = {a,b,da},

a, =b, a,=4d, a

5,

=c¢, a, =€, and a_ = a. The Incldence

3 9

matrix for this new numbering is:

-

1 1 1 1 0
0 1 1 1

A= . .
0 0 1 0 1

| 1 1t o o 1
Note that the renumbering of the subsets and elements
is nothing more than a permutation of the subsets and a
permutation of the elements. Hence (8,,S,,S,,8,) became
(sz,sﬁ,s,,s&). This makes apparent the permutation

matrix
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0 o 1 o
o o o0 1
P = .
1 o0 o0 o0
o 1 0 0
L. i -

Also, (a,,a, ,a ,a,,a. ) became (ag,a',az,a&,aq)

which gives the permutation matrix

0 0o o o 1]

t 0o ©o0 o0 o©
Q={0 o 1 o o .
6o 1 o0 o0 ©
o o o 1 o]

Note now that A’ = PAQ.

5. Term rank.

A line of a matrlx designates eilther a row or a
column of the matrix. The trace of a matrix 1s the sum
of the entries on the main diagonal of the matrix. Let
A be a (0,1)-matrix. The term rank of A 1s the maximal
number of 1's in A with no two 1's on a line. Thus the
term rank of A is the maximal trace of A under arbitrary
permutations of rows and columns of A, The term rank
provides é convenient generalization of the SDR concept
for the subsets S',sa,...,swxof an n-set S, for if A 1s
the incidence matrix for these subsets, then the subsets
have an SDR if and only 1f the term rank of A equals m.

Theorem 5.1 let A be a (0OJ))-matrix of size m by n.
The minimal number of lines in A that contain all of the

1's in A is equal to the term rank of A.
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Proof: Letp’ be the minimal number of lines in A
that contain all of the 1's in A and let p be the term
rank of A. Then the theorem states that 0’ = 0.

No line can contain two of the 1's that account for
the 2 1's of the term rank. Hence
(5.1) rzpr .

Let the minimal covering of 1's by /O'lines consist
of e rows and f columns, where e + f = /0' « Both/
and /AD'are invariant under permutations of rows‘and
columns of A. Hence these e rows and f columns may be
taken as the initial rows and columns of the matrix,
which can be written in the form
(5.2) A, A,

A, A,

where A, is of size e by f. A, is of term rank e, for it
may be regarded as an incidence matrix for subsets
8,18,5¢04,8, of the (n-f)-set of the integers f + 1, £ + 2,
essy, N« These subsets must satisfy the necessary condition
for the existence of an SDR, for if not, certain of the e
rows can be replaced by fewer columns and retain the
covering of 1's in A. Hence this covering will be
accomplished with fewer than e + f lines which contradicts
the minimality of o’ . The transpose Ay of Ay may be
regarded as an incidence matrix for subsets, and 1t can

similarly be shown that A; is of term rank f. Hence

’

(5.3) Pze+f=p .
Hence from (5.1) and (5.3), A =/°’ . #
Theorem 5.1 can be immediately generalized. Let A
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be a matrix of size m by n with elements in a field F.
The minimal number of lines in A that contaln all of the
nonzero entries in A is equal to the maximal number of
nonzero entries in A with no two nonzero entries on a line.

Theorem 5.2 Let A be a matrix of size m by n. Let
the entries of A be nonnegative reals and let m € n. Let
each row sum of A equal m’ and let each column sum of A
equal n’ . Then
(5.4) A=cP +cP +...4+cP,

where in (5.4) each P; is a permutation matrix and each cg
is a2 nonnegative real.
Proof: If A 1s not a square matrix, we replace A by

(5.5) , A

where J is a matrix of 1's of size n’ - m’ by n’ » The
matrix A’ is of order n, and the entrles of A’ are non-
negative reals. Each row and column sum of A’ is equal to

m’ . If A’ 1s not the zero matrix, A’ has n positive entries
with no two on a line. For if A’ 4id not have n such
entries, then by the remarks following Theorem 5.1 we

could cover the positive entries in A' with e rows and

£ colhmns, where e + £ < n. But thenm’/n < m (e + £)< m'n,
and this 1s a contradiction. Now let P be the permutation
matrix of order n with 1's in the same positions occupied

by the n positive entries of A’ . Let ¢, be the smallest

of these n entries. Then A’ - c.P( is a matrix whose

entries are nonnecative reals. Also, A' - c,P{ has each
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row and column sum equal to the nonnegative real m’ - C, o
But at least one more zero entry appears in A’ - ¢ P’ than
in A’ . Hence we may now work on A’ - ¢ B’ , and we may
repeat the argument until A’ = c,P: + ca3: + ee0 + c;I;'.
But this gives us a decomposition of the form (5.2) for
the matrix A. #

Theorem 5.3 Let A be a (0,1)-matrix of order n such
that each row and column sum of A 18 equal to the positive
integer k. Then
(5.6) A=P +P,+ ... +P ,
vhere the P; are permutations matrices.

Proof: This follows from the proof of Theorem 5.2.
Each ¢; = 1 and the process terminates in t = k steps. #

Theorem 5.3 gives an affirmative answer to the
following problem. A dance is attended by n boys and n
girls. Each boy has been previously introduced to exactly
k girls and each girl has been previously introduced to
exactly k boys. No one desires to make further introductions.
Can the boys and girls be paired so that no further intro-
ductions are necessary? let A = [éig} be the (0,1)-matrix
defined by azy = 1 if the boy ] has been previously
introduced to girl i1 and O otherwise. Then A satisfles
the requirements of Theorem 5.3, and the permutation
matrix P, of (5.6) gives the desired pairing of boys and
girls.

A matrix A of order n 1is called doubly stochastie

provided its entries are nonnegative reals and its row

and column sums are equal to 1. These matrices have been
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extensively studied in their own right because of theilr
importance in the theory of transition probabilities.
Theorem 5.2 implies the following.

Theorem 5.4 Let A be a doubly stochastic matrix of
order n. Then |
(5.7) A=cpP +cP + ... +cP |,
where the P, are permutation matrices and the c; are
positive reals such that
(5.8) e, +¢, +...+c, =1,

Let A be doubly stochastic. The entries of A are
nonnegative reals so per (A) cannot exceed the product of
the row sums of A. But since each row sum of A is 1, we
have
(5.9) per (A) € 1.

Equality holds in (5.9) if and only if the doubly
stochastic A 1s a permutation matrix. By Theorem 5.4 1t
is clear that if A is doubly stochastic, then per (A) > O.
But 1f A is doubly stochastic of order n, phen the
determination of the minimal value of per (A) is a
difficult unsolved problem. A conjecture of van der
Waerden asserts
(5.10) per (4)2
Equality holds in (5.10) if A = n~' J, where J 1s the

el

matrix of 1's of order n. In fact this may be the only
case of equality. The following conjecture is a
generalization of (5.10). If A and B are doubly
stochastic, then

(5.11) per (AB)< per (A), per (B).
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The special case B =n_ J of (5.11) 1is equivalent to
(5.10).



EPILOGUE

The writer has attempted to present as much
introductory material pertaining to combinatorial
mathematics in general and existence problems in
particular as a paper of such limited scope permits.

Much more develooment along these same lines is
possible, some of wvhich 1s contained in the work by
Ryser(6) which has served as the basis for this paper.

For a much more elementary treatment of many of

these topics, Niven's Mathematics of Choice (7) is

recommended. For a much more advanced treatment,
development upon different lines, and extensions to
construction and enumeration problems, the most popular
works seem to be those of Riordan (8) and MacMahon (9),
both of which require more extensive background knowledge

than the aforementioned two books.
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