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CHAPTER I 

AN INTRODUCTION TO ADA 

History and Features 

Ada is a high level language developed under the 

requirements of the United States Department of Defense. The 

intent of Ada is to have a language that is compatible over a 

wide range of computing systems. The development of Ada began 

in 1974. The many contributors to the definition and design of 

Ada include the military services, industrial organizations, 

universities, and foreign military departments.-^- The founda¬ 

tion for the language was then compiled into the Steelman 

2 
Report. 

Ada is similar in structure to the Pascal programming 

language. The language supports the structured programming 

approach, including control structures, user definable data 

types and subprograms. Ada's subprograms can, additionally, be 

packaged, and there is a facility for the separate compilation 

of these programming units. Other enhancements to the language 

include real-time programming, parallel task modeling, and 

exception handling (run-time error handling). 

The two types of subprograms in Ada, procedures and 

functions, are very much like those in Pascal. However, Ada 

allows any value computed in the function subprogram to be 

1 
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returned to the calling program by means of the RETURN 

statement. 

The package facility is similar to the file facility in 

Pascal in that it describes a group of logically related 

entities. A package may include a common pool of data types, 

a collection of related subprograms, or a set of type declara- 

3 
tions and associated operations. Portions of the package can 

be hidden from the user, thus allowing access only to those 

logical properties pertinent to the user's application. 

4 
A task is the basic programming unit used to describe a 

sequence of actions that can be executed in parallel with other 

units. Parallel tasks may be implemented on multicomputers, 

multiprocessors, or with interleaved execution on a single pro¬ 

cessor. Task definitions can also be nested. 

The data types of Ada are the scalar types, composite 

types, access types, and private types. Scalar types can 

either be enumeration or numeric. Computations can be either 

exact or approximate. Approximate computations use either 

fixed-point or floating-point types with absolute or relative 

5 
bound on the error, respectively. The fixed-point type in Ada 

is written with a fixed number of digits in the mantissa, no 

exponent, and at least one digit preceding the decimal point. 

Composite types allow definition of the structured data 

types, arrays and records. Access types allow the creation of 

linked data structures. Private types are used in connection 

with packages. 



Ada also makes it possible for user organization to create 

their own utility libraries, which is the motivation for the 

subject of this paper. 

Ada/Ed 

Ada/Ed was an attempt to implement the design efforts of 

Ada as soon as possible. Therefore, Ada/Ed was implemented 

before Ada was completely designed or understood.^ In other 

words, Ada/Ed was designed to test the details of Ada as it 

currently stood. 

The Ada/Ed translator and interpreter were developed at 

New York University for the United States Army. Along with the 

implementation of Ada/Ed, problems that arose with language 

definitions had to be solved. Hence Ada/Ed, also the first 

implementation of Ada, is very close to a complete definition 

of Ada, with some current limitations. In fact, a primary goal 

of the implementors was to develop Ada/Ed at such a level that 

whatever decisions were made could be easily understood and 

changed if- necessary. 

The entire Ada/Ed system was programmed using a very high 

level language developed at NYU, with the help of the National 

7 
Science Foundation, called SETL (for Set Language). SETL is 

a design or specification language which can also be compiled 

and executed. SETL avoids much of the detail of data structur¬ 

ing which makes the logical design more apparent than if con¬ 

ventional languages such as Pascal, BLISS, or SIMULA were used 
g 

to program Ada/Ed. Ada/Ed is currently implemented in the 

DEC VAX 11/780 version of SETL. 



4 

Even with the advantages of using SETL to run Ada/Ed, the 

process is very slow. However, inefficiency was sacrified in 

order to concentrate on the clarity of the implementation. 

Thus, at this point Ada/Ed is only useful for checking purposes 

and for becoming familiar with Ada. 



CHAPTER II 

FUNCTION EVALUATION 

Introduction 

Approximating functions was first necessary because of 

9 
insufficient knowledge about certain functions. Today computers 

are used in approximating functions as a means of saving time and 

money. With computers, various techniques have been used to com¬ 

pute values of elementary functions to a certain accuracy over a 

specified interval. The selection of the best technique depends 

on the function to be evaluated. Approximated values may be the 

result of the finiteness of any computer and the computer's arith¬ 

metic . 

There are only two ways to represent a function in a 

computer:^ by a table of values or by a subprogram that can com¬ 

pute values of the function at specific points. Because storing 

a table of values can be wasteful of memory, rational functions 

(and polynomials) are most often chosen to represent functions to 

be evaluated on a computer. The coefficients of a polynomial may 

require little storage space depending on the desired accuracy of 

the computation. Furthermore, rational functions and polynomial 

approximations only require the basic arithmetic operations of 

the computer in order to be evaluated. 

5 
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Design Requirements 

Before the design of a function subroutine can begin there 

are certain key factors that must be considered. Some of these 

requirements are as follows:^ 

(1) Accuracy. - In general full-word accuracy is desirable 

i.e., the approximation to F (x), say F*(x), should be 

rounded to the precision of the computation. 

(2) Speed; Length. - Both speed and brevity of a function 

evaluation routine are usually desired. Unfortunately 

these two objectives conflict to a great extent. 

Execution time can be reduced if more storage is used. 

Conversely, a routine can be shortened in exchange for 

increased execution time. 

(3) Special Arguments. - Often a certain argument is 

required to have the same value for the approximation 

as the true value of the function to be evaluated. 

This way errors in the approximation can be easily 

detected. For example, the design may require that 

F* (0) = 1 when F (x) = cos(x) .. 

(4) Invalid Arguments. - A consistent policy is needed 

concerning error messages and job termination. This 

is important if an argument is used for which the func 

tion is not defined or if overflow or underflow condi¬ 

tions occur during execution. 

Bounds on F*(x). - Suppose, for example, that F(x) = 

sin(x) is to be evaluated for all x. Then the design 

may require that -l<F*(x)$l. 

(5) 
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In special cases F* (x) will need to satisfy the same 

relations as F(x). Also, more efficient programs have been 

written in assembly language in order to make better use of the 

12 
particular machine's features (e.g., special register). How¬ 

ever, high-level languages are sufficient if their compilers 

produce efficient object code. Finally, two routines for a 

function may be required to be compatible in some sense - two 

routines for one computer but different languages, or for dif¬ 

ferent but compatible computers. One constraint might be that 

two routines produce the exact, identical result for every argu¬ 

ment . 

In order to write efficient, accurate routines some 

mathematical knowledge is necessary in addition to knowing the 

capabilities of the computer to be used. When choosing a func¬ 

tion, one might consider that an associated function may be 

easier to calculate. Some routines are written with multiple 

entry points; one routine for different but related functions. 

Measuring Error 

The error in the approximation of a number can be measured 

in terms of absolute error and relative error. If x* is an 

approximation to x then the absolute error in x* is (x*-x|, and 

the relative error in x* is | (x*-x)/x\ (if x is not zero)^ Fixed- 

point computation errors are usually measured in terms of abso- 

lute error. If|x*-x | = 10 , where d>0, then the number of 

14 correct decimal places in x is approximately equal to d. Since 

fixed-point numbers must have a fixed number of digits to the 
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right of the decimal (or binary) point, we can think in terms of 

correct decimal (binary) places and measure error in terms of 

absolute error. 

Floating-point computations are usually analyzed in terms 

of relative error. The position of the radix point is variable 

in the floating point representation of a number, and the number 

range very large. Therefore we can think in terms of the number 

of significant digits and measure error in terms of relative 

error. A formula for measuring significant digits is as fol¬ 

lows if y is any approximation to a true value x, then the 

kth decimal place of y is said to be significant if !x-y| < {%) 

x 10 

Sources of Error 

The difference between the true function value and the 

generated numerical value is a consequence of truncation error 

and the round-off errors caused by individual mathematical opera- 

16 tions. Another source of error is the approximate numbers 

used in the function evaluation routines. 

Truncation error depends on the evaluation procedure chosen 

to approximate a function. Truncation error has nothing to do 

with numerical errors resulting from machine calculations; it is 

related only to mathematical methods. For example let P(x) be 

the polynomial used to represent the truncated series for sin(x). 

Truncation error is the error in P(x), the approximating func¬ 

tion. Therefore the absolute truncation error and the relative 

truncation error would be measured by evaluating 'P(X) - sin(x)| 

and|(P(x) - sin (x) ) / sin (x) | , respectively. \(P(x) - sin(x))/ 
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sin(x) j can be made as small as possible by retaining enough 

17 
terms in the power series for sin(x). 

Round-off error is a result of the computations themselves. 

In the above example, computing P(x) numerically produces an 

approximation of sin(x), say P*(x). The absolute round-off error 

is j P*(x) - P(x) j, and the relative round-off error is j(P*(x) - 

P(x)) y'P(x) j . Combining the absolute truncation error and the 

absolute round-off error, i.e., ] (P*(x) - P(x))jand i(P(x) - 

sin(x)j , yields the overall absolute error, \ P*(x) - sin(x)i. 

In floating-point computations, the magnitude of the relative 

round-off error should be as small as possible. However, the 

level of round-off error depends upon the computer used and any 

special programming techniques that are used, such as extra pre¬ 

cision in certain key computations. 

Approximate numbers used in function evaluation routines 

are a third source of error. Coefficients or constants can be 

stored which are approximate values calculated outside of the 

function evaluation routine. Also, since the computer is a finite 

machine, numbers which have an infinite representation must be 

rounded or the results of multiplication and division operations 

on finite operands may have to be rounded or truncated. The 

error introduced in the actual argument will have to be taken 

into consideration by the overall program of which the function 

evaluation routine is a part. The argument may already be con¬ 

taminated with error, so nothing can be done in the function 

evaluation routine to compensate for this error. 
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Range Reduction 

Polynomial and rational function approximations are the 

main tools used in supplying accurate approximations in function 

evaluation routines. In general, the larger the interval for 

the argument range, the more terms a polynomial or rational 

approximation must contain in order to approximate a function 

with a specified accuracy. Therefore, the primary reason for 

reducing the argument range is to use an approximation that has 

a small number of terms and can be evaluated more efficiently. 

For the many functions with infinite argument ranges, 

restrictions on the range will be imposed by the inherent limita¬ 

tions of the number representation in the computer used. In most 

cases of this type, trying to approximate the function accurately 

over the entire argument range (with a single polynomial or a 

rational function) would produce too many terms to be practically 

manageable. 

Special properties of some functions, such as periodicity 

and symmetry, provide rather simple range reduction techniques. 

Range reduction is also possible in a piecewise fashion when the 

function has no convenient properties as those above. This can 

be accomplished by splitting the whole range and using several 

polynomial or rational approximations, thus obtaining one 

approximation for each argument. 

Transforming an argument in the range reduction routine can 

cause a considerable increase in the relative round-off error 

when numerically evaluating a function. Especially, if a func¬ 

tion is unstable for certain values of the argument in the range, 
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then a small change in the argument causes a relatively large 

change in the value of the function. Hence, the range reduction 

calculations may produce inaccurate results. In order to reduce 

the probability of round-off error here, extra precision may be 

used. 



CHAPTER III 

ROUTINES FOR THE SINE AND COSINE 

Polynomial and rational approximations were used here to 

numerically evaluate sin (<x Tf x) and cos (3 TT x) for 0 * x ^ 1, 

where<-x. = £ = %. The periodicity of sine and cosine as well as 

trigonometric identities were used to reduce the range of the 

approximation to [ 0,‘7T/4j. The coefficients for the polynomial 

and the rational functions used were taken from a table in Hart 

et. al. (1968). See Appendix A. Hart presents tables of coef¬ 

ficients for approximating different functions depending on the 

accuracy desired. 

The discussion in the remainder of this chapter will 

concentrate primarily on the approximations used here for the 

sine function. The details for the cosine function are similar 

The polynomial approximation for sin (Viï x )» for x i-n L 0,1.1 

2 
uses a third degree polynomial of the form xP(x ) with maximum 

-8 49 relative error of 10 ’ . This means obtaining approximately 

eight-digit accuracy. It can be shown that by examining the 

coefficients of the polynomial, that Hart used the coefficients 

of the representative Chebyshev polynomial. Horner's rule (or 

nested multiplication) was employed to evaluate the polynomials 

Two approaches were used to try to achieve the desired 

accuracy. When the argument fell in LTT/4, TT/2 ], the first 

12 
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approach used the double angle formula for the sine to further 

reduce the range to LO, >1/4.]. The second approach takes advan¬ 

tage of rewriting sin(x) in terms of cos ((TT/2) - x) to achieve 

better accuracy when the argument reduces only to C,11/4/T/2j 

See Appendix C. The reason for the second approach was because 

the cosine routine had better accuracy between 10, l /4j than 

the sine in 1^/4, IT /2 J . Negative arguments were treated the 

same as positive arguments by taking the absolute value of the 

argument before any other computation was done. However, neither 

approach produced sufficiently accurate results for arguments 

greater than 7^/2. See Appendix C. 

For arguments greater than 2'TT (or less than -21T ), steps 

were taken to evaluate y MOD 2'TT, for sin(y) . To accomplish 

this, a series of subtractions were performed. Multiples of 

21 were subtracted from the argument until the argument was in 

the range L 0, 2NTj . Another method of performing the MOD opera¬ 

tion, separating the integer and fraction part of y/2'TT , proved 

to be inefficient for large y. 

The reason for losing accuracy for values of the arguments 

greater than 2If was a result of the subtractions performed. The 

restriction that Ada/Ed does not support floating-point preci¬ 

sion with digits greater than seven, forced all computations to 

be performed with single precision. On the VAX 11/780, 

described in the next chapter, single precision provides approxi¬ 

mately seven decimal digit precision. Hence, the result of the 

subtractions were rounded in order to fit the precision of the 

computation. At different times in the testing of these routines 

constants were used in place of having the computer perform 
i 
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certain operations. However, the subtractions and the fact 

that Ada/Ed does not support multiple-precision calculations, 

outweighed these attempts to improve the accuracy. 

The routine for the rational approximation of the sine 

*Tf x 
function in this paper produced similar results. Sin (-i^—) was 

2 2 
represented by a rational function of the form xP(x ) / Q(x ). 

The degree of the numerator was three and the degree of the 

denominator was one. The maximum relative error desired was 

o g 3 
10 ' . The cosine function was approximated with a third 

2 
degree polynomial of the form P(x ) with a maximum relative 

-7 49 22 
error of 10 * , and with a rational function, P(x ) / Q(x ), 

-7 54 
with a maximum relative error of 10 

To compare the different routines for efficiency the number 

of operations performed had to be counted and then compared 

based on the time it took the computer to perform those opera¬ 

tions. Instruction times for the VAX 11/780 were found in the 

Datapro Research Corporation publication, April 1981. Floating¬ 

point instruction times, in microseconds, for 32-bit operands 

are 0.8 for addition and subtraction, 1.2 for multiplication, 

and 4.2 for division. 

Table 1 shows the number of operations that differ between 

the routines for the sine function. Table 1 assumes that the 

original argument was greater than 2 •ft'and reduces to the inter¬ 

val r 0, 1T/2 j , after first being reduced to [o, 2ir] and then 

L 0, TTj. That way, the maximum number of operations are per¬ 

formed . 
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TABLE 1 

NUMBER OF OPERATIONS THAT DIFFER FOR EACH ROUTINE* 

Routine Addition/Subtraction Multiplication Division 

SINE 1 9 6 

SINEX 1 4 4 

SINCHG 1 11 1 

SIN PAT 1 9 8 

*Operations that were the same for each routine were not 
counted. 

The accuracy of the routines in Table 1 can be compared by 

studying the table of sample output in Appendix C. 



CHAPTER IV 

FACTS ABOUT THE DEC VAX 11/780 

The VAX 11/780 is a 32-bit multi-user, multiprogramming 

system that features 4.3 billion bytes of virtual address 

spaces, a maximum program size of 2 billion bytes, 244 instruc¬ 

tions (9 address modes, 6 data types), and 4 hierarchical 

protection modes. The VAX 11/780 is manufactured by Digital 

Equipment Corporation (DEC), Maynard, Massachusetts, which is 

the world's largest manufacturer of minicomputer systems. 

The processor of the VAX 11/780 provides 32-bit addressing, 

sixteen 32-bit general registers, and 32 interrupt priority 

levels. The effective memory access time is 280 nanoseconds; 

cycle time, 600 nanoseconds. The instruction set operates on 

integer and floating-point operands, character and packed 

decimal strings, and bit fields, and supports nine fundamental 

addressing modes. 

The basic data unit is a 32-bit word. Integers can be 8- 

bit bytes, 16-bit words, 32-bit long words, and 64-bit quadwords. 

Two floating-point formats are available: single precision that 

uses a 4-byte format, and double precision that uses an 8-byte 

format. The 4-byte format provides approximately 7 decimal 

digits of precision, while the 8-byte format provides approxi¬ 

mately 16 decimal digits of precision. 

16 
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The instruction set provides 32-bit addressing, 32-bit I/O 

instructions, and 32-bit arithmetic. The 244 basic instruction 

set can be grouped into related classes based on their functions 

and use. The internal code is ASCII for test-oriented data; 

binary for calculations. 

This information on the VAX 11/780 was taken from Datapro 

Corporation's publication on minicomputers. More information 

on the VAX 11/780 as well as many other minicomputers can be 

found in this guide. 



CHAPTER 9 

CONCLUSION 

Presented in this paper were routines to numerically 

evaluate the sine and cosine functions. The routines for the 

sine were only discussed because the routines and analysis for 

the cosine were similar. In fact, any routine which computes 

sin(x) can do so for cos(x) by using the identity cos(x) = sin 

( (^-) - x). Depending on the specifications of the package 

which is to combine these routines with other function routines, 

only one routine may be used for the sine and cosine together. 

Also expected from the package which will contain these routines 

is portability, which is one of the design objectives of the Ada 

programming language. 

The main problem of accuracy in the routines was the result 

of Ada/Ed's single precision limitation. Computations performed 

with multi-precision minimize the round-off error apparent in 

single-precision computations. 

18 
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APPENDIX A 

Below are the polynomial and rational approximations used 

to numerically evaluate sin (*x -TT x) and cos (J3 TT x) for 

0 $ x $ 1, where tx = p = %. 

Polynomial Approximations 

sin (%TTx) ^ 0.7853981x -0.0807454 x3 + 0.0024900 x5 - 

0.0000359 x^; maximum relative error = 10-^*4^. 

cos (h 1Tx) tr 0.9999999 - 0.3084241 x2 + 0.0158496 x4 - 

6 -7 49 
0.0003187 x ; maximum relative error =10 

Rational Approximations 

sin ( % TT x ) ~ 52.818601 x - 4.6448004 x3 + 0.0867545 x5 

67.250731 x + 1.0 x3 

—R 6 R 
maximum relative error = 10 

cos (%Tx) ~ 47.687292 - 13.708000 x2 + 0.4478223 x4 

47.687290 + 1.0 x‘ 

-7.54 maximum relative error = 10 
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APPENDIX B 

Routine SINE 

—THIS PROGRAM IS A POLYNOMIAL APPROXIMATION FOR THE SIN<X>. FOR ALL X» 
—USING AN APPROXIMATION RANGE OF CO.PI/A] 
WITH TEXT-IO! USE TEXT-IO! 
PACKAGE MY.IO IS NEW FLOAT-I0<FLOAT>! 
WITH MY.IO! USE MY_IOÎ 
PROCEDURE SINE IS 

PI.X.Z.B.B1.U.ANS.XI.X2.X3ÎFLOAT! 
FLAG : BOOLEAN! 
FUNCTION COMPUTECZ1ÎFLOAT>RETURN FLOAT IS SEFARATE! 

BEGIN 
PI 1=3.1415924 ! 
FOR J IN 1..15 LOOP 

PUT_LINE(•INPUT VALUE OF X FOR SIN<X>'>! 
PUT-LINE('?')! 
FLAG:=TRUE; —SINE IS FOS 

GET(X >; 
z:=ABS(X)i 
—FOLLOWING WHILE STATEMENTS WILL COMPUTE Z MOD 2*PI 
WHILE Z>100.0*PI LOOP 

Z:»Z-IOO.O*PI» 

PUT('Z = '> fPUT(Z).NEW-LINE! 
END LOOP! 
WHILE Z>20.0*PI LOOP 

Z:=Z-20.0*PI! 
PUT(* Z= ').PUT <Z)! NEW-LINE ! 

END LOOP! 
WHILE Z>2.0*PI LOOP 

Z:=Z-2.O*PI. 
PUT(‘Z= ‘)! PUT < Z)» NEW-LINE ! 

END LOOP! 
xi:=Zi 
PUT<'ARGUMENT NOW IN CO . 2*PI]’)! NEW-LINE! 
—CHECK FOR INTERVAL OF X1=Z=ABS<X> 
IF X1>PI THEN 

X2!=X1-P I ! 
PUT( " X2 = " ) !PUT(X2).NEW-LINE! 
FLAG:=FALSEî 

ELSE 
X2:=xii 

END IF! 
IF X2>PI/2.0 THEN 

X3:=PI-X2! —BETWEEN 0 AND PI/2 
PUT ( ' X3= ' ) iF'UT (X3> ! NEW-L I NE i 

ELSE 
X3!=X2i 

END IF! 
IF X3>PI/4.0 THEN —USE DOUBLE ANGLE FORMULA FOR SIN(X) 

—TO REDUCE ARGUMENT TO CO.PI/4] 
B!=X3/2.0! — FIRST. HALVE ARGUMENT 
B1!=PI/2.O-B ! 
PUT<'Bl=PI/2-B. B IN C0.2*PI3 IS ' ) i PUT(B1)!NEW-LI NE 

. B:=B*(4.0/PI>î , 
BI:=BI#(4.O/PI>; 
V:=2.0*C0MPUTE(B)! —2SIN(B) 
ANS:=V*C0MPUTE<B1> i —2SIHCB>SIN(PI/2-B) = 

— 2SIN(B)C0S(B)=SIN(2B) 
ELSE 

X3 Î = X3* (4.0/PI)! 
ANRi?rnMPUTF fX3J i —SJN(X31 
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Routine SINE - Continued 

END IF; 
IF FLAG=FALSE THEN 

ANS:=-ANS; 
END IF; 
IF X<0.0 THEN 

ANS:=-ANS; 
END IF; 

PUT ('THE SINE OF •); PUT(X). PUTC IS •)» PUT(ANS)» 
NEU_LIHE;NEU_LINE; 

END LOOP; 

FUT_LINE(•DONE*); 
END SINE; 

SEPARATE(SINE) 
FUNCTION CDMPUTECZl! FLOAT > RETURN FLOAT IS 

—A FUNCTION THAT COMPUTES SIN(Zl) 
P:ARRAY«O. .3)OF FLOAT; 
NIINTEGER; 
SrUALUEîFLOAT» 
BEGIN 
N : =3 Î —DEGREE OF POLY 

—COEFFICIENTS OF Z1*P(Z1**2> FOR SIN(1/4*PI*X>, 0<=X<=1 
P(O)!=0.7S53?8i; 
P(l) î=-0.0307454; ■ 
P(2>:=0.0024900; 
P(3)!=-0.0000359» 
s:=P(N); 
FOR I IN REVERSE 0..N-1 LOOP 

S: = <S*<ZI*ZI))+P(D; 
END LOOP; 
VALUE:=ZI*S; PUT<

,
VALUE= •>; PUT'VALUEJ; NEU.LINE 

RETURN VALUE; 
END COMPUTE; 
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Routine SINCHG 

—THIS PROGRAM COMPUTES SIN(X>, FOR ALL X, USING A POLYNOMIAL 
— APPROXIMATION, AND AN APPORXIMA TION RANGE OF COfPI/43 
WITH TEXT.10! USE TEXT.IO! 
PACKAGE M Y_ 10 IS NEU FLOAT_10(FLOAT)! 
WITH MY.10! USE MY-IO! 
PROCEDURE SINE IS 

S,I » PI,P11> PIH, PIL > X » Z > B » B1,V,ANS,XI,X2,X3: FLOAT ! 
FLAG : BOOLEANi - • 
FUNCTION COMPUTEtZl: FLOAT)RETURN FLOAT IS SEPARATE! 

DEGIN 
PI I =3.1415926! 
PI I ! =0.3133098! --1/PI 
PIHÎ=0.7S539S1! —PI/4.0 
PIL!=1.5707963! --PI/2.0 
FOR J IN 1..15 LOOP 

PUT_LINE(•INPUT VALUE OF X FOR SIN(X)*)! 
PUT-LINE('?')! 
FLAG:=TRUEi —SINE IS POS 
GET(X >; 
Z:=ADS(X>i 
—THE FOLLOWING WHILE STATEMENTS WILL COMPUTE Z MOD 2YPI 
WHILE Z>314.15926 LOOP —ZMOOY.pl? 

ZÎ=Z-314.15926! 
PUT('Z= ')! PUT(Z)! NEW-LINE! 

END LOOP! 
WHILE Z>62.831853 LOOP —Z>20*PI? 

Z:=Z-62.831853! 
PUT <'Z= ")! PUT(Z) ! NEW-LINE! 

END LOOP! 
WHILE Z>6.2831853 LOOP —Z>2*PI? 

Z!=Z-6.2831853! 
PUT <‘Z= *)! PUT(Z>! NEW-LINE! 

END LOOP! 
XI :=Z! —Z<=2*PI 
PUT('ARGUMENT NOW IN C0,2*PID’>! NEW-LINE! 
—CHECK FOR INTERVAL OF X1=Z=ABS(X) 
IF X1>PI THEN 

X2Î=X1-PIÎ 
PUT(‘X2= *> îPUT(X2)! NEW-LINE! 
FLAG:=FALSE; 

ELSE 
X2:=X1! 

END IF! 
IF X2>PIL THEN 

X3!=PI-X2! —BETWEEN 0 AND PI/2 
PUT(* X3= 1)(PUT < X 3 >ÎNEW-LINE! 

ELSE 
X3!=X2! 

END IF! 
IF X3>PIH THEN —USE DOUBLE ANGLE FORMULA FOR SINI2X) TO 

—REDUCE ARGUMENT TO CO,PI/43 
Bl=X3/2.0! --FIRST, HALVE ARGUMENT 
B1!=PIL-B! —PI/2-B 
PUT('B1 = PI/2-B, B IN C 0,PI/4 I = * >iPUT(B1)! NEW-LINE ! 
B:=B*<4.O*PII> ! 
B1 :=B1*< 4 . OYPII> ! 
V:=2.0YC0MPUTE<B)! —2*SIN(B) 
AHS:=V*C0MPUTE(B1)! ~2*SIN<B>*SIH<PI/2-B>« 

-- 2*SIN<B)*C0S(B)=SIN(2B) 
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Routine SINCHG - Continued 

ELSE. 
X3t=X3*C4 . 0 * F' 11 ) i 
ANS!=C0HPUTE(X3) » --SINCX3) 

END IF.* 
IF FLAG=FALSE THEN 

ANS !=-ANS r 
END IF; 
IF X<0.0 THEN 

ANS;=-ANS; 
END IF; 

PUT ('THE SINE OF ■>; PUTCX); PUTC IS •>; PUT(ANS); 
NEU_LINE;NEU_LINE; 

END LOOP; 

PUT_LINE('DONE'); 
END SINE; 

SEPARATE(SINE) 
FUNCTION COMPUTE(ZII FLOAT) RETURN FLOAT IS 

—A FUNCTION THAT COMPUTES SINCZ1) 

P:ARRAY(0.,3)0F FLOAT; 
N .‘INTEGER ; 
SJVALUEîFLOAT; 

DEGIN 
N!=3; —DEGREE OF POLY 

—COEFFICIENTS OF Z1*P<Z1**2> FOR SIN<1/4*PI*X)r 0<=X<=1 
P(0)!=0.78539Si; 
P<1K=-0.0S07454; 
PC2) :=0.0024900; 
P(3>:=-0.0000359; 
S:=P<N>; 
FOR I IN REVERSE 0..N-1 LOOP 

s:=<s*(zi*zi>)+p<i ) ; 
END LOOP; 
VALUE:=ZI*S; PUT<‘VALUE= PUT<VALUE)î NEU.LINE 
RETURN VALUE; 
END COMPUTE; 
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Routine SINEX 

— THIS PROGRAM IS A POLYNOMIAL APPROXIMATION FOR SIN(X) III AN APPROXIMATION 
— RANGE OF CO.PI/43 
WITH TEXT.IOi USE TEXT.IO! 
PACKAGE MY_I0 IS NEU FLOAT_I0(FLOAT>! 
WITH MY_IO! USE MY_IO! 
PROCEDURE SINEX IS 

PI.ANS• XI>X2 > X3 » X > Z! FLOAT ! 
FLAG:BOOLEAN; 

FUNCTION C0MPUTECZ1ÎFLOAT)RETURN FLOAT IS SEPARATE» 
FUNCTION CHANGE(Z2.*FL0AT)RETURN FLOAT IS SEPARATE » 

BEGIN 
Pi:=3.1415924? 
FOR J IN 1..15 LOOP 

PUT.LINEC* INPUT VALUE OF X FOR SIN<X)*>! 
PUT_LINE("?•)» * 
GET(X)i 
FLAG:=TRUE; --cos POS 
Z:=ABS(X)? 
— THE FOLLOUING WHILE STATEMENTS COMPUTE Z MOD 2*PI 
WHILE ZMOO.OIPI LOOP 

Z:=Z-IOO.O*PI; 

END LOOP! 
WHILE Z>20.0#PI LOOP 

Z:=Z-20.0*PI ! 
END LOOP? 
WHILE Z>2•0*PI LOOP 

Z:=Z-2.0*PI»‘ 
END LOOP? 
— ONCE Z IS IN C O » 2*P13 > BEGIN TO REDUCE TO CO.PI/43 USING 
— TRIG IDENTITIES 
xi:=z? 
IF X1>PI THEN 

X2:=XI-PI» 
FLAG:=FALSE; 

ELSE 
X2:=xi? 

END IF! 
IF X2>PI/2.0 THEN 

X3!=PI-X2» —BETWEEN 0 AND PI/2 
ELSE 

X3:=X2! 
END IF! 
IF X3>PI/4.0 THEN —IF ARGUMENT NOU GREATER THAN PI/4 

—BUT LESS THAN PI/2» USE IDENTITY 
—SIN<X)=C0SCPI/2-X>. WHICH REDUCES 
— ARGUMENT TO CO.PI/43 

X3 ! =PI/2•0-X3! 
X3:=X3*(4.0/PI)i 
ANS:=CHANGE(X3)? —COS(PI/2-X3) 

ELSE 
X3:=X3»(4.0/PI) i 
ANS ?=COHFUTE ( X3)? 

END IF! 
IF FLAG=FALSE THEN 

ANS J =-ANS! 
END IF! 
IF X<0.0 THEN 

ANS î =-ANS! 
END IF! 



«I 

25 

Routine SINEX - Continued 

PUT f * THE. SINE O'F • ) î p U T ( X 5 > PUT ( * IS ')î FTJT CANS') î 
NEU_LINE!NEU_LINE! 

END LOOP) 
PUT-LINE(’DONE'> ! 

END SINEX! 
SEPARATE(SINEX) 

FUNCTION CHANGE(Z2!FL0AT> RETURN FLOAT IS 
—A FUNCTION THAT CONFUTES COS<Z2)=COS<PI/2-X3>=SINCX3) 
P5ARRAY<0.,3)0F FLOAT! 
N! INTEGERi 
s.VALUE:FLOAT! 
BEGIN 
N".=3! —DEGREE OF POLY 
P<0>!=0.9999999! 
PC1ÎÎ=-0.3004241 ! 
P(2)î=0.0158496! 
P(3)!=-0.0003187) 
S:=PCN)! 
FOR I IN REVERSE 0..N-1 LOOP 

SJ=<S*(Z2*Z2))+P<I>! 
END LOOP! 
VALUE!=S! PUTCVALUE = 1 5 !PUT (VALUE > !NEU_LINE! 
RETURN VALUE! 
END CHANGE! 

SEPARATE(SINEX) 
FUNCTION C0MPUTE(Z1ÎFLOAT)RETURN FLOAT IS 
— THE VALUE OF SIN(Zl) 

P.'ARRAYCO. .3>0F FLOAT! 
N!INTEGER! 
S»VALUE:FLOAT) 
BEGIN 
N!=3! —DEG OF POLY 
P(0>!=0.7853931 ! 
P(l>:=-0.0807454! 
P(2)5=0.0024900! 
P(3)!=-0.0000359! 
S:=F(N) ! 
FOR I IN REVERSE 0..N-1 LOOP 

S:=(S*(Z1*Z1>)+P(I>! 
END LOOP! 
VALUE:=Z1YS! PUTC'VALUE= •> !PUT( VALUE) ÎNEU-LINE! 
RETURN VALUE! 
END CONFUTE! 
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Routine SINRAT 

--üsÎNGPSSG5^RSxiSAT?5N0lSrERvSÎ°0FMc5ïpi/OR SI”<X>' F°R ALL X’ WITH TEXT.IO! USE TEXT_I0! 
PACKAGE MY.IO IS NEW FLOAT.10(FLOAT>f 
WITH HY.IO! USE MY.IO! 
PROCEDURE SINRAT IS 
PI1X1Z1B1BI. V,ANS»XI » X2iX3: FLOAT » 
FLAG:BOOLEAN! 
FUNCTION COMPUTECZlI FLOAT)RETURN FLOAT IS SEPARATE! 
BEGIN 

PI ! = 3.1A13926"! 
FOR J IN I..15 LOOP 

PUT_LINE(•INPUT VALUE OF X FOR SIN(X>')! 
PUT.LINE <'?•) ! 
FLAG:=TRUEi —SINE POS 
GET(X ) ! 
Z:=ABS(X)! 
— THE FOLLOWING WHILE STATEMENTS WILL COMPUTE Z MOD 2*PI' 
WHILE Z>100.0*PI LOOP 

z:=z-ioo.O#PI; 
END LOOP! 
WHILE Z>20.0*PI LOOP 

Z!=Z-20.O*PI! 
END LOOP! 
WHILE Z>2.0*PI LOOP 

z:= Z-2.0*PI i 
END LOOP! 
xi:=zi 
—CHECK FOR INTERVAL OF X1=Z=ABS(X> 
IF X1>PI THEN 

X2t =X1-PI! 
FLAG:=FALSEî 

ELSE 
X2!=X1! 

END IF! 
IF X2>P1/2,0 THEN 

X3:=PI-X2! --NOW BETWEEN 0 AND PI/2 
ELSE 

X3:=X2! 
END IF! 
IF X3>P1/4.0 THEN —USE DOUBLE ANGLE FORMULA FOR SINI2X) 

B.*=X3/2.0! —FIRST t HALVE ARGUMENT 
Bi:=PI/2.0-B! 
B:=B*(4.0/PI)i 
B1:=B1*(4.O/PI)! 
V:=2.0*C0MPUTECB)! —2SIN(B) 
ANS :=V*COMPUTE(BI)! —2SIN < B)SIN <PI/2-B) = 

ELSE — 2SIN(B)COS(B)=SIN(2B) 

X3Î=X3*<4.0/PI>! 
ANS:=C0MPUTECX3>! —SINIX3) 

END IF! 
IF FLAG=FALSE THEN 

ANS î =-ANS ! 
END IF! 
IF X<0.0 THEN 

ANS !=-ANS î 

• 1 

END IF; 
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Routine SINRAT - Continued 

FUT < ‘ THE SINE OF •>) PUTCX)) FUT(* IS ’)) P U T(A H S) 
NEU_LINE) NEU.LINE) 

END LOOPî 
PUT _LINE(’DONE')) 

END SINRATF 
SEPARATE(SINRAT) 

FUNCTION COMPUTEtZlÎFLOATIRETURN FLOAT IS 
—A RATIONAL FUNCTION THAT COMPUTES SIN(Zl) 
P Î ARRAY(0..2)OF FLOAT} 
0 : ARRAY < 0..1)OF FLOAT) 
NFM!INTEGER! 
SFTFUALUE:FLOAT) 
BEGIN 

N t =2 i —DEGREE OF P 
M: = 1) —DEGREE OF G 
P(O):=52.8136011 
P<1) .* = -4.644S004) 
P(2):=0.0867545) 
G<0) :=67.250731 ) 
Q(i):=i.0) 
S:=P<N); 

FOR I IN REVERSE 0..N-1 LOOP 
s: = <s*czi*zi))+p<i) ) 

END LOOP) 
T:=Q(M)) 

FOR I IN REVERSE 0..M-1 LOOP 
T:=<T*<ZI*ZI>)+QCI> ) 

END LOOP) 
VALUE!=S/T) —P(X**2)/G<X**2> 
VALUE!=Z1*VALUE) —X*P<X**2)/G(X**2> 
RETURN VALUE) 

END COMPUTE) 
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Routine CSINE 

ylVrl aSSf î,l A POLYNOMIAL AF-FROXIHATION FOR COS(X), UITH A RANGE OF APPROXIMATION OF C0,PI/4] 

UITH TEXT_I0> USE TEXT.ID! 
PACKAGE MY_I0 IS NEW FL0AT_10(FLOAT>f 
UITH MY.IOi USE MY_I0! 
PROCEDURE CSINE IS 

FOR ALL X» 

PI> A N S , X1iX 2 » X 31B > B1, V, X >Z ! F L 0 A T ! 
FLAG .-BOOLEAN; 

FUNCTION COMF'UTE < ZI ! FLOAT)RETURN FLOAT IS SEPARATE! 

PI :=3.14 15926! 
FOR J IN 1..15 LOOP 

PUT_LINE<•INPUT VALUE OF X FOR COS(X)’)! 
PUT_LINE(■?•)! 
GET < X ) i 
FLAGI=TRUEi —COS POS 
Z:=ASS(X) i 
— THE FOLLOWING UH ILE STATEMENTS COMPUTE Z MOD 2*PI 
WHILE Z>100.0*PI LOOP 

Z:=Z-IOO.O*PI; 
END LOOP! 
WHILE Z>20.0*PI LOOP 

Z:=Z-20.0*PIr 
END LOOP! 
WHILE Z>2.0*PI LOOP 

Z!=Z-2.0*PIt 
END LOOP! 
— ONCE Z IS IN I0.2»Pn TAKE STEPS TO REDUCE ARGUMENT 
--TO RANGE CO,PI/43 
XI:=Z! 
IF X1>PI THEN 

X2!=X1-PI! 
FLAG!=FALSE! 

ELSE 
X2!=X1! 

END IF! 
IF X2>PI/2.0 THEN 

X3!=pI-X2! 
IF FLAG=FALSE THEN 

FLAG:=TRUEî 
ELSE 

FLAG:=FALSE! 
END IF! 

ELSE 
X3!=X2! 

END IF! 
IF X3>PI/4.0 THEN --FOR FINAL REDUCTION, IF ARGUMENT GREATER 

—THAN PI/4 USE IDENTITY FOR C0S(2X> 
B:=X3/2.0! —FIRST, HALVE ARGUMENT 
Bî=B*<4.0/PI)! 
B1 :=COMPUTE(B)«COMPUTE(B) i —COS(B)*COS(B) 
V:=2.0*B1! —2*COSCB)*COS(B) 
ANS:=V-1.0! —(2*C0S(B)*C0S(B))-l = C0SI2B) 

ELSE 
X3:=X3*(4.O/PI)! 
ANS ! “COMPUTE < X3)! 

END IF! 
IF FLAG=FALSE THEN 

AN$l=-AV£i. 
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Routine CSINE - Continued 

END IF; 

FUT('THE COSINE OF *)» PUT(X>; PUTC IS *)F PUT(ANS); 

NEU_LINE;NEU_LINE; 
END LOOP; 
PUT_LINE("DONE*); 

END CSINE; 
SEPARATE(CSINE) 

FUNCTION COMPUTECZIJFLOAT) RETURN FLOAT IS 
—THE VALUE OF COS(Zl) 
P:ARRAY(O..3)OF FLOAT; 

N:INTEGER; 
S » VALUE ! FLOAT ! 
BEGIN 
N!=3; --DEGRtE OF POLY 
— COEFFICIENTS OF POLY p{ 
P(O):=0.9999999; 
PCI) .*=-0.3034241 ; 
P(2 ) !=0.0158496 ; 

, P<3):=-0.0003137) 
S!=P(N>; —NESTED MULTICFLICATIO TO EVALUATE P 
FOR I IN REVERSE 0..N-1 LOOP 

s: = <s*(zi*zi))+p( i ) ; 
END LOOP; 

VALUE;=S; PUTCVALUE= • ) ;PUT<VALUE> îNEU.LINE; 
RETURN VALUE; 
END COMPUTE; 



30 

Routine CSINX 

IûirrFn?G?rtMcw , F0LTNOMIAL APPROXIMATION FOR COS(X) IN AN APPROXIMATION  h ANGE OF L 0 f FI /»î 3 
WITH TEXT.IO; USE TEXT.IO; 
PACKAGE MY.IO IS NEW FLOAT_IO(FLOAT); 
WITH MY.IO! USE MY.IO! 
PROCEDURE CSINX IS 

PI » ANSiXl> X21X3 > X > Z ! FLOAT î 
FLAG .‘BOOLEAN! 
FUNCTION COHPUTEIZl! FLOAT)RETURN FLOAT IS SEPARATE! 
FUNCTION CHANGE(Z2:FL0AT)RETURN FLOAT IS SEPARATE! 

BEGIN 
PI !=3.1415926! 
FOR J IN 1..15 LOOP 

PUT.LINEt•INPUT VALUE OF X FOR COS(X>*)i 
P U T _ LIN E(•?•) ! 
GET(X ) ! 
FLAG1=TRUE! —COS POS 
Z:=ABS(X)! 
— THE FOLLOWING UHILE STATEMENTS COMPUTE Z MOB 2*PI 
WHILE Z>100.0*PI LOOP 

ZÎ=Z-100.0*PI» 
END LOOP! 
UHILE Z>20.0*PI LOOP 

Z:=Z-20.0*PI! 
END LOOP! 
WHILE Z>2.0*PI- LOOP 

Z: = Z-2.0*F'I! 
END LOOP! 
—ONCE Z IS IN COf2»PIOf BEGIN TO REDUCE TO COrFI/4] USING 
— TRIG IDENTITIES 
xi:=z; 
IF X1>PI THEN 

X21=X1-PI! 
FLAG:=FALSE! 

ELSE 
X2Î =X1! 

END IF! 
IF X2>PI/2.0 THEN 

X3!=PI-X2! 
IF FLAG=FALSE THEN 

FLAG!=TRUE! 
ELSE 

FLAG:=FALSE! 
END IF! 

ELSE 
X3!=X2! 

END IF! 
IF X3>P1/4.0 THEN —IF ARGUMENT NOU GREATER THAN PI/4 

—BUT LESS THAN PI/2r USE IDENTITY 
—C0S(X)=SIN(PI/2-X), WHICH REDUCES 
— ARGUMENT TO CO,PI/4] 

X3 ! = F'I/2.0-X3 ! 
X3!=X3*(4.0/PI)! 
ANSI “CHANGE < X3)i —SIN < PI/2-X3 > 

ELSE 
X3 ! =X3*( 4 . O/F'I ) ! 
ANS I =COMF'UTE ( X3 ) ! 

END IF! 
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Routine CSINX Continued 

IF FLAG=FALSE THEN 

ANS:=-ANS; 
END IF ! 
PUT('THE COSINE OF 
NEU_LINE;NEU_LINE; 

END LOOP! 

•)! PUT( X ) ! PUT ( 1 IS 

PUT_LINE('DONE’)! 
END CSINX! 

SEF'ARATE(CSINy) 
FUNCTION COMPUTE(Zl ! FLOAT) RETURN FLOAT 

. —THE VALUE OF COS(Zl ) 
P: ARRAY( 0. . 3 ) OF FLOAT! 
NIIMTEGER! 
S»VALUE:FLOAT; 
DEGIN 
N!=3! —DEGREE OF POLY 
P(O):*o.???????! 
P(l)5=-0.3034241! 
P(2)!=0.0153496 ! 
P(3):=-0.0003137! 
s:=p<N)i 
FOR I IN REVERSE 0..N-1 LOOP 

s: = <s*<zi*zi> >+P( i) : 
END LOOP! 

• ) i 

IS 

PUT(ANS)! 

VALUERS! PUTCVALUE= ’ ) !PUT(VALUE! ;NEU_LINE; 
RETURN VALUE! 
END COMPUTE! 

SEPARATE(CSINX) 
FUNCTION CHANGE(Z2!FL0AT)RETURN FLOAT IS 
— THE VALUE OF SIN(Z2)=SIN(PI/2-X3)=COS<X3) 

F' Î A R R A Y ( 0 . . 3 ) OF FLOAT! 
N: INTEGER; 

S»VALUE:FLOAT! 
BEGIN 
N! = 3 ! —DEG OF POLY 
P(0) 5=0.7353931 ! 
F'< 1 >: =-0.0307454 ! 
P(2)! =0.0024900! 
P(3) :=-0.0000359! 
s:=P(N); 
FOR I IN REVERSE 0..N-1 LOOP 

s: = <s*<z2*Z2))+P<i) ; 
END LOOP! 
VALUE !=Z2#S! PUT(’VALUE= ')!PUT<VALUE)!NEU.LINE 
RETURN VALUE! 
END CHANGE! 
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Routine COSRAT 

—THIS PROGRAM COMPUTES COS(X) FOR ALL Xr USING AN APPROXIMATION RANGE OF 
—CO-PI/43. A RATIONAL FUNCTION IS USED TO EVALUATE THE FUNCTION. 
UITH TEXT.IO! USE TEXT-IO. 
PACKAGE MY_I 0 IS NEU FLOAT_10(FLOAT)! 
L'ITH MY.IO! USE MY.IO! 
PROCEDURE COSRAT IS 
FI » ANS-XI.X2.X3.B.B1,V.X»2ÎFLOAT 5 
FLAG:BOOLEAN! 
FUNCTION COMPUTEtZlI FLOAT)RETURN FLOAT IS SEPARATE! 
BEGIN 

PI •. =3.1415926! 
FOR J IN 1..15 LOOP 
PUT.LINEI* INPUT UALUE OF X FOR COSIX)')! 
PUT_LINE(•?•) ! 
GE T(X >i 
FLAG:=TRUE: --COS POS 
Z!=ABS(X) i 
— THE FOLLOUING WHILE STATEMENTS ARE TO COMPUTE Z MOD 2*PI 
WHILE Z>100.0*PI LOOP 

Z:=Z-100.0*PI! 
END LOOP! 
WHILE Z>20.0*PI LOOP 

Z;=Z-20.0*PI! 
END LOOP! 
WHILE Z> 2.0 * PI LOOP 

Z:=Z-2.0*PI! 
END LOOP! 
—TEST RANGE OF ARGUMENT AFTER REDUCED IN C0»2*PI3 
IF X1>PI THEN 

X21=Xl-PIi 
FLAG:=FALSE! 

ELSE 
X2:=xii 

END IF! —ARGUMENT NOW IN CO.PI3 
IF X2>PI/2.0 THEN 

X31=PI-X2! 
IF FLAG=FAL3E THEN 

FLAG !=TRUE ! 
ELSE 

FLAG:=FALSEî 

END IF! 
ELSE 

X3I=X2i 
END IF! --ARGUMENT NOU IN CO.PI/23 WITH PROPER SIGN 
IF X3>PI/4.0 THEN —USE DOUBLE ANGLE FORMULA FOR COS TO REDUCE TO 

—RANGE CO.PI/43 
B!=X3/2.0! 
B1=B*(4.O/PI>! 
B1 :=COMPUTE<B>*COMPUTE(P> ! —COS<B>*COS<B> 
V:=2.0*Bli —2*COS(B>*COS(B> 
ANS:=V-1.0i —<2*C0S<B>*C0S(B>>-l = C0S(2B> 

ELSE 
X3î=X3*<4.0/PI>! 
ANS:=COMPUTE(X3)i 

END IF! 
IF FLAG=FALSE THEN 

ANS:=-ANS: 
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Routine COSRAT - Continued 

CND IFi 
PUT( ‘ THE COSINE OF ')? PUT(X>? PUTC IS •)? PUTCANS)? 
NEU_LINE;NEU_LINE? 
ENH LOOP; 
PUT.LINE! * DONE *>? 

END COSRAT? 
SEPARATE!COSRAT> 

FUNCTION COMPUTECZlÎFLOAT) RETURN FLOAT IS 
— RATIONAL APPROXIMATION TO COS(Zl) 

P ! ARRAY ( 0 . . 2 ) OF FLOAT? 
Q ! ARRAY(0.,1)0F FLOAT» 
N,KiINTEGER » 
S»T»VALUE:FLOAT; 
BEGIN 

N:=2 J — DEG OF P 
M: = D —DEG OF Q 
— FOLLOUING CONSTANTS ARE COEFFICIENTS FOR POLYS USED 
— IN RATIONAL FUNCTION 
P<0):=47.637292? 
P(l) .*=-13.703000? 
P(2)!=0.4478223 f 
0(0) :=47.637290» 
o ( i):=1. o » 
S:=P<ND —BEGIN NESTED MULTIPLICATION TO EVALUATE 

—POLY P 
FOR I IN REVERSE 0..N-1 LOOP 

sî = (s*<zi*zn >+p< i) ; 
END LOOP» 
T:=Q<M>? 
FOR I IN REVERSE 0..M-1 LOOP 

T: = <T*CZI*ZI>)+Q( I ) » 
END LOOP? 
VALUE!=S/T? —P(X**2)/Q<X**2) 
RETURN VALUE? 
END COMPUTE? 
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SAMPLE OUTPUT OF THE SINE APPROXIMATION 

Argument 

Routine Name 

SINE SINEX SINCHG SINRAT TRUE VALUE* 

0.25 2.474039 X 10-1 2.474039 X 10-1 2.474038 X io'1 2.474040 X io-1 2.474039 X 10_1 

0.50 4.794255 X 10-1 4.794255 X 10-1 4.794254 X 10_1 4.794256 X io-1 4.794255 X IO-1 

. 0.75 6.816387 X 10-1 6.816387 X lo'1 6.816385 X 10_1 6.816389 X 10_1 6.816387 X IO-1 

0.7853981 7.071067 X ID'1 7.071067 X IQ'1 7.071065 X io'1 7.071068 X io-1 7.071067 X io'1 

1.0 8.414702 X IQ'1 8.414710 X IP-
1 8.414697 X io"1 8.414721 X 

10-1 8.414709 X io’1 

1.57 9.999997 X 10-1 9.999997 X lo'1 9.999992 X io’1 1.000000 X io"1 9.999997 X io"1 

3.14 1.592635 X 10~3 1.592635 X 10"' 1.592635 X io'3 1.592635 X io-3 1.592547 X io-3 

6.28 -3.185266 X 10-3 -3.185266 X io'3 -3.185266 X io"3 -3.185267 X IO-3 -3.185092 X io-3 

10.0 -5.440215 X 10-1 -5.440215 X 10-1 -5.440213 X io"1 -5.440216 X io-1 -5.440211 X 10_1 

25.0 -1.323496 X 10-1 -1.323496 X io-1 -1.323495 X 10_1 -1.323496 X io-1 -1.323517 X io-1 

50.0 -2.623679 X 10-1 -2.623679 X 10-1 -2.623678 X io"1 -2.623679 X io-1 -2.623748 X io-1 

75.0 -3.877800 X 10-1 -3.877800 X io-1 -3.877799 X io~l -3.877801 X io*1 -3.877816 X io-1 

100.0 -5.063607 X 10-1 -5.063607 X io-1 -5.063605 X io-1 -5.063607 X io-1 -5.063656 X IO-1 

500.0 -4.678073 X 10-1 -4.678073 X IO"1 -4.678072 X io-1 -4.678075 X io-1 -4.677717 X IO-1 

1000.0 B.269249 X lo"' 8.269259 X io-1 8.269244 X io-1 8.269269 X 10-' 8.268795 X io-1 

*7-di«jit accuracy values taken from M. Abramowitz and I Stetjun, eds., 
Functions (New York, 1964). 
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TABLE 3 

SAMPLE OUTPUT OF THE SINE APPROXIMATION 
FOR ARGUMENTS IN 7T/4 , '77'/2 

Routine Name 

Argument 
SINE SINEX SINRAT TRUE VALUE* 

-1 -1 -1 , -I 
0.79 7.103509 x 10 7.103532 x 10 7.103555 x 10 1 7.103532 x 10 1 

0.80 7.173538 x 10-1 7.173561 x 10-1 7.173583 x 10_1 7.173560 x 10"1 

0.85 7.512768 x 10-1 7.512804 x 10_1 7.512822 x 10-1 7.512804 x 10-1 

0.90 7.833255 x 10-1 7.833269 x 10_1 7.833282 x 10-1 7.833269 x 10_1 

0.95 8.134144 x 10-1 8.134155 x 10_1 8.134166 x 10"1 8.134155 x 10'1 

*See note in Table 2 
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FOOTNOTES 

^United States Department of Defense, Reference Manual 
for the Ada Programming Language (July 1980, foreward). 

2 Ibid. 

3Ibid.,pp. 1-2. 

4Ibid ., pp. 1-2 . 

3Ibid., pp. 1-3. 

^Clinton F. Goss, et. al., NYU Ada Project (Courant 
Institute, New York University, 1981) , overview. 

^Ibid. 

8 Ibid. 

9 
Lyle R. Langdon, "Approximating Functions for Digital 

Computers," Indust. Math., 6 (1965), 79. 

^James S. Vandergraft, Introduction to Numerical Compu¬ 
tations (New York, 1978), p. 2. 

'*'C. T. F ike, Computer Evaluation of Mathematical Func¬ 
tions (Englewood Cliff, 1968), pp. 2-4. 

12Ibid., p. 5. 

13Ibid., pp. 5-6. 

14 T, Ibid., p. 6 

13Anthony Ralston, A First Course in Numerical Analysis 
(New York, 1965), pp. 4-5. 

16 
John F. Hart, et. al., Computer Approximations (New 

York, 1968), pp. 7-8. 
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