
ABSTRACT

COMPUTER SCIENCE

HALL, KEVIN D B S CLARK ATLANTA UNIVERSITY, 1996

HYBRID NEURAL NETWORK IMAGE PROCESSING TESTBED

Advisor: Dr Kenneth Perry

Thesis Dated July, 1996

The focus of this research was to establish a testbed for pattern recognition. In

this testbed, the wavelet transform is used as a preprocessor for various neural networks.

The wavelet transform is used to perform image compression, and several wavelet filters

and compression techniques are implemented The compressed data is later formatted and

used as input to a neural network where pattern recognition is performed.

The wavelet filters used in the wavelet transformation were the Daubechies 4

(DAUD4) and the Haar wavelet filters After compression was performed, the root mean

square error (RMS) was computed and compared with a “common” compression

technique called JPEG compression. After testing each compression technique, zone

compression using the wavelet transform yielded the best results. At this point, the

compressed data was used by various neural networks for pattern recognition.

There were three neural nets in the testbed They were the neocognitron, a genetic

algorithm driven neural network, and the Hopfield neural net Each neural net was used to

perform pattern recognition using the compressed data The results from each neural net

were good, but the neocognitron gave the best results.

HYBRID NEURAL NETWORK IMAGE PROCESSING TESTBED

A THESIS

SUBMITTED TO THE FACULTY OF CLARK ATLANTA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE

BY

KEVIN D. HALL

DEPARTMENT OF COMPUTER SCIENCE

ATLANTA, GEORGIA

JULY 1996

Rex T

ACKNOWLEDGMENTS

I would like to thank Dr Kenneth Perry for introducing me to the area of image

compression and guiding me through this research Also, I am very grateful for the

assistance of Dr Hsin-Chu Chen.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ii

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS ix

Chapter

1. INTRODUCTION 1

Neocognitron 2

Image Compression 3

Wavelets 4

2. RESEARCH METHODOLOGY 9

Design Issues 9

Approach For Resolving Design Issues 10

3. SYSTEM DESIGN 12

Description Of Image Format 12

Description Of Wavelet Filter 13

Compression Techniques 13

iii

Wavelet Transform 14

Thresholding 14

Zone Compression 15

JPEG 15

Description of Neural Networks 17

Neocognitron 17

Hopfield Neural Network 18

Genetic Algorithm Trained Feed-Forward Neural Network 19

4. IMPLEMENTATION 21

Wavelet Transform 21

Input File 21

Wavelet Transform Procedure 23

Scaling Function 24

Zone Compression 25

Thresholding 26

Inverse Wavelet Transformation 27

JPEG Compression 28

Error Function 29

Neural Networks 30

Hopfield Neural Network 31

Neocognitron 32

Feed-forward Neural Network 33

5. SUMMARY/CONCLUSION 36

IV

Appendix

1. RESULTS FROM JPEG
COMPRESSION 43

2. RESULTS FROM THRESHOLDING 59

3. RESULTS FROM ZONE COMPRESSION 69

BIBLIOGRAPHY 77

V

LIST OF TABLES

Table

1. DAUD4 Coefficients and Their Solutions 5

2. Displays the Number of Planes per Stage 18

3. The Parameters for the Neocognitron 33

4. Results for Thresholding and JPEG Compression Techniques 37

5. Results for Zone Compression and JPEG Compression Techniques 38

6. Results for Thresholding and JPEG Compression Techniques 39

7. Results for Zone Compression and JPEG Compression Techniques 39

8. Results from Hopfield Neural Network 40

9. Parameters for the Simple Genetic Algorithm 41

vi

LIST OF FIGURES

Figure

1. The General Format of the Transformation Matrix 5

2. The Transpose of the Transformation Matrix 6

3. Displays Pyramidal Procedure 7

4. Displays the Structure of a PGM Image file 12

5. Illustrates Thresholding as a form of Compression 14

6. Illustrates Zone Compression after performing
the Wavelet Transformation 15

7. Implementation for inputting the Image File 22

8. Implementation of DAUD4 Wavelet Filter 23

9. Implementation of Scaling Function 24

10. Implementation of Zone Compression 25

11. Implementation of Thresholding 26

12. Implementation of Inverse Wavelet Transformation 27

13. Displays Interface for Wavelet Compression Program 28

14. Implementation for opening two files 29

15. Implementation Fragment for Error Function 30

16. Input Parameters for Hopfield Neural Network 31

17. Usage of Neocognitron 33

Vll

18. Structure of Parameter File 34

19. Image used in Testing Compression Techniques 36

viii

LIST OF ABBREVIATIONS

DAUD4 Daubechies Wavelet 4

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

GAs Genetic Algorithms

JPEG Joint Photographic Experts Group

PC Personal Computer

RMS Root Mean Square Error

IX

CHAPTER 1

INTRODUCTION

This thesis presents research in the areas of pattern recognition and image

compression. Pattern Recognition is computer recognition of stimulus patterns6.

Although this seems to be a simple task for humans, recognizing similar features in

patterns is a difficult task for a computer. This is due to the fact that most methods for

pattern recognition are oversensitive to shifts in position and the distortions in shape of

the stimulus patterns.

In this research, a “testbed” was developed to perform pattern recognition. This

“testbed” consisted of a preprocessor and various networks. The preprocessor uses the

wavelet transform to perform image compression This compression algorithm takes a

pgm image and compresses it. The image is next converted into a bitmap format, and this

data is feed into a neural network. The neural networks are used to perform pattern

recognition.

Pattern recognition has been an area of research for many years A common problem

with performing pattern recognition was not being able to recognize an image after a shift

in position or distortion in shape. A solution to this problem was later established.

Kunihiko Fukushima proposed a new algorithm for pattern recognition which is tolerant of

1

deformations and shifts in position6. The algorithm is known as the neocognitron

Neocognitron

The neocognitron is an improved version of the conventional cognitron Its self-

organization is performed by unsupervised learning, a “learning-without-a-teacher”

process5. However, the cognitron did not have the ability to recognize stimulus patterns

when there were distortions or shifts in position.

The self-organization of the neocognitron is also performed by unsupervised learning.

The repeated presentation of a set of stimulus patterns is necessary for the self-

organization of the neocognitron6. No information about the categories to which these

patterns should be classified is needed Unlike the cognitron, the neocognitron acquires

the ability to classify and correctly recognize these patterns by itself. Recognition is done

with respect to differences in shapes Most of all, the neocognitron recognizes stimulus

patterns correctly without being effected by shifts in position or even by considerable

distortions in shape of the stimulus patterns.

The structure of the neocognitron is hierarchical The information of the stimulus

pattern given to the input layer of the neocognitron is processed step by step This takes

place in each stage of the network, and a cell in a deeper stage responds selectively to the

complex feature of the stimulus pattern. At the same time, the cells in a deeper stage has

a larger area in which information is transmitted from the stimulus pattern to the cell.

Thus, each cell in the deepest stage responds only to a specific stimulus pattern without

being affected by the position or the size of the stimulus pattern. This classification

2

process can become even more difficult if the stimulus pattern consists of compressed

image data

Image Compression

Image Compression is a technique used to reduce the number of bits required to

represent an image. It allows an image to retain most of its features, but the image is

composed of fewer pixels. Image compression is very valuable because it facilitates the

storage and transmission of an image When storage space is limited, compression is often

essential for space conservation

Another use of image compression is in transmitting images. An image can contain a

large amount of data, and sending a large image to a secondary location can be very time

consuming. A compressed image allows easier transmission of the image data from place

to place because less data is being transmitted The fast transmission of image data can be

very crucial, for example, medical and military applications

Image compression techniques can be divided into two major families; lossy and

lossless11. In this research, lossy image compression was implemented Lossy image

compression concedes a certain loss of accuracy in exchange for greatly increased

compression10 Most techniques for lossy image compression can be adjusted to different

quality levels, and higher accuracy is gained in exchange for less effective compression.

As a result, a trade-off between accuracy and compression is one of the major factors that

must be considered in the development of this compression algorithm.

Various techniques are used to perform lossy image compression In this research the

wavelet transform was used as a method of image compression

3

Wavelets

Wavelets are a recent development in the area of applied mathematics. They

originated over ten years ago from the works of various scientists and engineers. Among

these scientists and engineers were Morlet, Arens, Fourgeau and Giard(1982),

Morlet(1983), and Grossmann and Morlet(1984). Ingrid Daubechies was another scientist

that has done much work using wavelets In the past few years, researchers of various

backgrounds have developed a strong interest in wavelets. Wavelets have already lead to

exciting applications in signal analysis (sounds, images) and numerical analysis

(integral transform). The one thing that contributes to the strong interest in wavelets is

their “wide applicability."

Wavelets are mathematical functions, and there are many types of wavelets. These

mathematical functions are represented by f(x) = ZbjkW(2Jx-k) in which bjk carries

information about f near £ = 2s and x = 2"|k. Wavelets are based on two indices in which k

is translation (W(x) -> W(x + 1)) and j is dilation or compression. Dilation plays a very

important role in the construction of wavelets. The basic dilation equation is a two-scale

difference equation represented by <D(x) = IckO(2x-k). W is defined as the wavelet that

is derived from the scaling function by taking the differences: W(x) = I(-l)kci-k®(2x-

k). The term Ck is defined as the wavelet coefficients.

There are infinitely many possible sets of wavelets. Wavelets are often categorized by

the numeral values called wavelet filter coefficients. Each set of wavelets offers different

trade-offs. The most distinguished trade-offs are between how compactly they are

localized in space and how smooth they are

4

In this thesis, we restricted ourselves to the Daubechies and Haar wavelet filters.

Daubechies has a class of wavelet filters, and we chose the filter called DAUD4. DAUD4

is known as the simplest and most localized member of the class except Haar. This

particular wavelet filter has only four coefficients, and they are displayed in table 1. The

equations for the unknown coefficients were first recognized and solved by Daubechies13.

Table 1 DAUD4 coefficients and their solutions

Coefficients Co CI c2 c3

Equations (0 + A/3) / 4 A/2) (Ï3 + A/3)/4A/2) ((3 - A/3) / 4A/2) ((1 - A/3)/4A/2)

The purpose of these coefficients is to construct the transformation matrix. The

transformation matrix is a square matrix, and it acts on a column vector of data. Though

the size of the matrix differs, most transformation matrices are constructed like the one in

Figure 1

Co c, c2 c3

c3 -c2 c, -Co

Co c, c2 c3

c3 -c2 c, -Co

Co c, c2 c3

c3 -c2 c, -Co

c2 c3 Co c,
c, -Co c3 -c2

Fig. 1 The general format of the transformation matrix.

5

In Figure 1, the blank spaces signify zeroes. The number of zeroes needed is

determined by the length of the column vector. The first row in the matrix generates one

component of the data “convolved with the filter coefficients Co,... , C3."

Like the first row, every odd number row performs the same task. The even number row

performs a different convolution with the coefficients C3 -C2, Ci, -Co. The wavelet filter

with coefficients C0,. . . , C3 is defined as the smoothing filter, and it outputs the “smooth”

information. The filter with coefficients C3, -C2, Ci, -Co, does the opposite. This filter

produces the data’s “detail” or high frequency information.

To make the technique of transforming data useful, there must be a way to reconstruct

the original data from the transformed data This requires the transformation matrix in

Figure 1 to be orthogonal If the transformation matrix is orthogonal, its inverse is the

transposed matrix The transpose of the transformation matrix is displayed in Figure 2.

The Discrete Wavelet Transform (DWT) is a linear and fast operation that is performed

on a data vector whose length is of integer power two. DWT transforms this data vector

6

into a different vector of the same length. Like the fast Fourier Transform, DWT can be

seen in a function space, from the input space domain to the wavelet domain13. In the

input space domain, the basis functions are the unit vectors ej, to the wavelet domain. In

the wavelet domain, the basis functions are more complex and they are called “mother

functions” and “wavelets.”

Unlike the sines and cosines in the fast Fourier Transform, individual wavelet

functions are quite localized in space and frequency. The characteristic of dual

localization given by the wavelet functions yields large classes of functions and operators

sparse to some high accuracy, when transformed into the wavelet domain

The DWT consists of applying a wavelet coefficient matrix like Figure 1. This

operation is done hierarchically. First, the wavelet coefficient matrix is applied to the full

data vector of length N, then to the “smooth” vector of length NI2. Next, it is applied to

the “smooth-smooth” vector of length N/A, and so on until only a trivial number of

“smooth-, -smooth” components (usually 2) remainQ. This process is known as the

pyramidal algorithm The DWT yields output that consists of the remaining components

and all the “detail” components. This is illustrated in Figure 3.

yi
Y2 *

wavelet
Coefficien

Sl
d, Permute

“'q
s2

Y3
Y4

Matrix s2

d2 —>
d i
d2

Fig. 3. Displays pyramidal procedure

The wavelet transform of any data vector depends on two important factors The

length of the data vector is one of those factors. If the length of the data vector (y}, ..., y„)

7

were a higher power of two, there would be more stages of applying the wavelet

coefficient matrix (Figure 1) and permuting. The number of wavelet coefficients is the

other important factor If the wavelet coefficient matrix contains many coefficients,

naturally, there are going to be more stages in this procedure. This procedure continues

until the endpoint consists of a vector with two Ss and a hierarchy of £>’s, D’s, d’s, etc.

The Ss are the smooth data, and the D’s are the detail or high frequency data. Once d’s

are generated, they simply propagate through to all subsequent stages. To invert the

DWT, the procedure is reversed. Using the transformation matrix in Figure 2, the inverse

procedure starts with the smallest level of the hierarchy to the highest.

8

CHAPTER 2

RESEARCH METHODOLOGY

In this research, the approach taken was to first construct an image compression

“testbed” using the wavelet transformation. This image compression system is to be able

to: (1) input an image, (2) compress the image, (3) reconstruct the image, and (4) convert

image formats. The second phase was to perform pattern recognition using various neural

networks. In performing these tasks, several design issues were solved.

Design Issues

An initial design issue was the image format. The image format was an issue because the

content of the image needed to be displayed Also the image data needed to be abstracted

and manipulated Most of all, the image needed to be of a format that could be

reconstructed after compression. The image format was also an issue in performing

pattern recognition. The image needed to be in a format in which it could be converted to

ones and zeros. This particular format was necessary to input data for the neural network

Another design issue was the wavelet filter

The wavelet filter was an issue because of the variety of filters. When choosing a

wavelet filter, the trade-offs mentioned in Chapter 1 had to be considered These trade¬

offs were between how compactly they are localized in space and how smooth they are

9

The most important factor about choosing a wavelet filter was whether it would produce

good compression results. The final design issue dealt with selecting the types of neural

network to include in the “testbed” The type of neural network to use to perform the

pattern recognition was another design issue The neural network must have the ability to

properly classified the sample patterns consisting of compressed data. An important

factor that also had to be considered was whether the image data could be converted to

run with the neural network

Approach For Resolving Design Issues

Resolutions to the above design issues were the results of much research in the various

areas The design issue of the image format was resolved by testing various image

formats. These tests were based on the following factors: (1) can the image contents be

edited, (2) can the image data be manipulated, (3) can the image data be abstracted from

the image, and (4) can the image be reconstructed. The appropriate image format for the

image compression algorithm and the pattern recognition process was chosen based on the

above factors. The design resolution for the wavelet filter took a similar process.

The process of choosing a wavelet filter that would produce good results was difficult.

The characteristics needed in a wavelet filter were. (1) must be localized in time, and (2)

produce good results. The method used to find a suitable filter was “trial-and-error.”

Several wavelet filters were tested, and the filters that yielded the best results was chosen

The final design resolution was determining the type of neural networks to perform

pattern recognition.

10

As stated in Chapter 1, pattern recognition is a technique that enables patterns of

similar features to be categorized in the same group or class. This classification is to be

performed by a neural network. Finding a network to perform such a task was very

difficult. To resolve this design issue, the decision was made to construct a “testbed” of

various neural networks. By creating this “testbed," the results could be compared

11

CHAPTER 3

SYSTEM DESIGN

The first task in this research was to design an image compression algorithm using

wavelets. The initial stage in creating this algorithm is to determine the types of image

format to use In the next section, a description of the image format is given.

Description of Image Format

The type of image format used in this research design was pgm. The image was

composed of 256 possible gray scales The structure of this image format is displayed

below in Figure 4

P2
CREATOR: XV Version 3.00 Rev: 3/30/93
8 8
255

255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

0 0 255 255 255 255 0 0
0 0 255 255 255 255 0 0
0 0 255 255 255 255 0 0
0 0 255 255 255 255 0 0

255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

Fig. 4. Displays the structure of a pgm image file

12

This image format was chosen because of the following features: (1) it was easy to

understand, (2) the image data can be easily abstracted, and (3) the image can be

reconstructed.

When using wavelets to perform any type of transformation, a wavelet filter must be

used. In the next section a description of the wavelet filter is given.

Description Of Wavelet Filter

As stated previously, a particular set of wavelets is categorized by the wavelet filter. In

this research, the particular wavelet filter used was developed by Daubechies2. The

wavelet filter is called DAUD4 DAUD4 is a wavelet filter that has four coefficients.

These coefficients are displayed in Table 1. These coefficients are used to construct the

matrix that is applied to the data vector

When the wavelet coefficient matrix is applied to the data vector, a transformation

takes place. The process converts the image data into a numerically difference image of

the same size. Compression takes place after the wavelet transformation is done In this

research, there are three compression techniques used In the following section, these

compression techniques are discussed.

Compression Techniques

As stated in Chapter 1, compression is reducing the number of bits required to

represent an image There are two types of compression: (1) lossy and (2) lossless. In

this research, lossy compression was implemented The compression techniques

13

performed in this research were thresholding, zone compression, and Joint Photographic

Experts Group (JPEG) These compression techniques are discussed in the following

sections.

Wavelet Transform

As mentioned in the introduction, the wavelet transform is a linear mathematical

operation that is performed on a data vector whose length is an integer power two The

wavelet transform does not perform any form of compression, but compression techniques

can be done after the transformation. In this thesis, two compression techniques were

used to compress the transformed data In the next sections, these techniques discussed in

more detail.

Thresholding

Two compression techniques were performed on the transformed image data created

by the wavelet transformation. The first technique was thresholding. Thresholding is a

compression technique in which a value or threshold is set, and the items of the image data

are kept or replaced based on the threshold value. In other words, the integer values in

the image data are kept if they are equal to or greater than the threshold value If the

integer values are less than the threshold value, the integer values are replaced by zero

This is illustrated in Figure 5.

225 204 115 234 44 Threshold Value 200 225 204 0 234 0

Fig. 5. Illustrates thresholding as a form of compression

14

Zone Compression

Another compression technique used after the wavelet transformation is done is zone

compression. Zone compression is a compression technique in which compression is done

by selecting a region of the transformed data. This is illustrated below in Figure 6.

256x256

Fig. 6. Illustrates zone compression after performing the wavelet transformation

This compression technique was a valuable technique used to extract the low frequency

data from the transformed image data The low frequency data was extracted because it

contains the most information, and in the following chapters, this compression technique is

shown to be most effective.

The final compression technique used was JPEG. This compression algorithm was

used for the purpose of comparison, and it is discussed in the next section.

JPEG

JPEG is a compression technique that was developed several years ago, and it is often

considered the “standard” compression technique11. JPEG is an acronym that stands for

Joint Photographic Experts Group. Like the above compression techniques, JPEG is also

15

a lossy compression algorithm. This compression algorithm operates in three successive

stages.

The discrete cosine transform (DCT) is the first stage The DCT is in a class of

mathematical operations that includes the well-known Fast Fourier Transform (FFT), as

well as many others13 The basic operation performed by these transforms is to take the

image data and transform it from one type of representation to another. The DCT is

closely related to the Fourier Transform, and often yields similar results

The second stage is quantization The DCT output matrix takes more space to store

than the original matrix of pixels”. In this stage, the process of quantization reduces the

number of bits needed to store the pixel values. This is done via a quantization matrix.

For every element position in the DCT matrix, a corresponding value is generated in the

quantization matrix The quantum value generated indicates what the step size is going to

be for that element in the compressed rendition of the picture, with values ranging from

one to 255.

The final step in the JPEG process is coding the quantized images. The JPEG coding

phase combines three different steps to compress the image. The first changes the DC

coefficient at 0,0 from an absolute value to a relative value. Next, the coefficients of the

image are arranged in the “zig-zag sequence.” This “zig-zag sequence” is used to

compress the consecutive zero value produced in the quantization stage

After compression, the compressed data is formatted, and the formatted data is used as

input patterns for the following networks. The process of pattern recognition is performed

using various neural networks. In the next section, these neural networks are described

16

Description Of Neural Networks

Artificial neural networks are information-processing systems that have certain

performance characteristics in common with biological neural networks4 These neural

networks were developed as generalizations of mathematical models of human cognition

or neural biology. Artificial neural networks are characterized by (1) its pattern of

connections between the neurons, (2) its method of determining the weights on the

connections, and (3) its activation function. In the following section, the neural networks

used in this research is discussed

Neocognitron

The neocognitron is an algorithm developed by Kunihiko Fukushima The purpose of

the neocognitron was to recognize patterns correctly without being affected by shifts in

position or distortions in shape of the sample patterns. In this research, a C-

implementation of Fukushima’s neocognitron was used This program was developed by

Frank Schnorrenberg. Frank Schnorrenberg was a student in the Computer Science

Department at Texas A&M University This algorithm was developed by Schnorrenberg

in 1992, and it was made available for public use on the Web.

The neocognitron developed by Schnorrenberg has many characteristics similar to the

neocognitron developed by Fukushima, but there were a few changes. Among the things

that was similar was that the network is unsupervised When a neural network is

17

unsupervised, training of the network takes place with repeated presentation of the

patterns.

There were also variations from the original neocognitron algorithm developed by

Fukushima. One difference was the lack of Vc cells. Vc cells are inhibitory cells, whose

output terminals are connected only to inhibitory input terminals of other cells Another

different was the number of planes in the various stages The differences are displayed in

Table 2

Table 2. Displays the number of planes per stage

Uo U, u2 u3 u4

Schnorrenberg 1 20 20 20 20

Fukushima 1 24 24 24 24

From the above table, the number of planes per stage differ. Although there were

differences in Schnorrenberg’s implementation, the patterns tested with the program were

properly classified.

Hopfield Neural Network

The Hopfield Neural Net is a fully interconnected neural network, in the sense that

each unit is connected to every other unit4 The net weights are symmetric with no self¬

connections. This means w;j = wjj, and Wü = 0. In the Hopfield Neural Net only one unit

updates its activation at a time Each unit continues to receive an external signal, and a

signal from the other units is also received. The updating of the units allows a function

18

known as the energy fonction to be found for the network. This fonction provides proof

that the network can converge to a stable set of, activation instead of oscillating. Besides

guaranteed convergence, the most importance features of this neural network are the

asynchronous update of the weights and the zero weights on the diagonal.

Another form of neural network used was a feed-forward neural network that was

trained using a genetic algorithm

Genetic Algorithm Trained Feed-Forward Neural Network

A feed-forward neural net is a type of network in such the input units travel directly to

the output units. In this research, a multilayer feed-forward neural net with six hidden

layers was used To train the neural net, a genetic algorithm was used.

Genetic algorithms (GAs) are a class of randomized search procedures capable of

adaptive and robust search over a wide range of search space topologiesf] GAs

implement a very powerful form of hill climbing technique that guards against local

minimal. Using a genetic algorithm to train a feed-forward neural network was the thesis

research of Samuel Collins. This research actually stemmed from the Pascal

implementation of a Simple Genetic Algorithm program created by Goldberg (1989). In

this research, the genetic algorithm used crossover and mutation to perform the training of

the image data. Crossover is an operation that takes two candidate solutions and divides

them, swapping components to produce two new candidates. Mutation is another

operation in which a single candidate is taken, and some aspects are randomly changed in

19

the candidate. Using these two operations, the feed-forward neural net was trained by the

genetic algorithm, and the image data was entered for classification.

20

CHAPTER 4

IMPLEMENTATION

The first stage in this implementation process was to develop an algorithm to perform

image compression. The method used to perform the compression was (1) perform the

wavelet transform of the image and (2) apply compression techniques to the transformed

data In the following section, the implementation of image compression using the

wavelet transform is discussed.

Wavelet Transform

As mentioned in chapter 1, the wavelet transform is linear operation that is applied to a

data vector of the power two. The data vector is then transformed into a numerically

different vector of the same length The data used in this research was actual images

Input File

\

The type of image file format used in this research was pgm The images used were of

type gray scale, and the size of these images was 256 x 256. As mentioned in the

previous chapter, this type of image format was used because (1) image content can be

viewed, (2) data can be manipulated, and (3) image can be reconstructed. Reading the

image into the program was the first step

21

When reading the image into the program, several things take place. The user was first

prompted for the image filename, and the file was opened Once the file is opened, the file

contents are read, and the data is decomposed into three parts. These three parts were (1)

file header, (2) dimensions of image, and (3) image data. In Figure 5, this is implemented.

printf("Enter Image filename \n"),
scanf("%s", filename),

if((fpfile = fopen(filename,"r")) == NULL) {
printf("\nERROR: Could not open \n");
exit(-l), }

if((fpmat = fopen("data/matrixdata","w")) = NULL){
printf("\nERROR: Could not open %s\n", "data/matrixdata"),
exit(-l);}

if((fphead = fopen("data/header","w")) = NULL){
printf("\nERROR: Could not open %s\n", "data/header");
exit(-l);}

if((fphead = fopen("data/header","w")) == NULL){
printf("\nERROR: Could not open %s\n", "data/header"),
exit(-l);}

count = 1,
while(! feof(fpfile)) {
fgets(headoffile, 126, fpfile);
if (count <= 4)

fprintf(fphead, "%s", headoffile),
if (count = 3) fprintf(fpdim, “%s”, headoffile);
if (count > 4)

fprintf(fpmat, "%s", headoffile);
count++,

}

Fig. 7 Implementation for inputting the image file

At this point, the image is decomposed into the necessary components, and the wavelet

22

transform can be performed on the image data stored in the file “matrixdata.”

Wavelet Transform Procedure

The wavelet transformation involved applying the a wavelet filter to the image data

The wavelet filter used in this research was the DAUD4. This procedure is illustrated in

Figure 8. The image data was first read from the file “matrixdata” into a two-dimensional

array of type double The wavelet transform was initially applied to the wavelet filter row-

by-row. At this point each row of the image was read into a one-dimensional array, and

this array was pass into the wavelet filter (DAUD4). The process was also performed for

each column of the image data Each time the transform was performed the results were

stored back into the two-dimensional array.

DAUD4(double a[], unsigned long n) {
double *w; unsigned long i, j, k, half, vhalf, m, p,

w = vector(l, n),
half = n/2,
vhalf = half + 1;
for(i = 1J = 1; j <= n-3; i++){

w[i] - C0*a[j] + Cl*a[j+1] + C2*a[j+2] + C3*a[j+3],
w[i + half] = C3*a[j] - C2*a[j+1] + Cl *aD+2] -C0*a[j+3],

j =j + 2;}
w[i] = C0*a[n-1] + Cl*a[n] + C2*a[l] + C3*a[2];
w[i + half] = C3*a[n-1] - C2*a[n] + Cl*a[l] - C0*a[2];}}

for(k = 1; k <= n, k++) a[k] = w[k], } /* End Function */

Fig. 8 Implementation for DAUD4 wavelet filter

23

When the wavelet transformation was done on both the rows and columns, the results

were stored into a file called “storage ” The results stored in this file consisted both of

positive and negative integers. To display this image data, the data must be all positive

integers, and these integers must be in the range from 0 to 255. This means the data must

be scaled to meet this requirement, and in the following section, the scaling function is

discussed.

Scaling Function

The scaling function was used to create a scale positive integers ranging from 0 to 255.

Scaling the data produced by the wavelet transform was necessary to view the results To

perform this operation, the smallest and largest integers in the transformed data were

determined These values were determined with the use of a quick sort algorithm, and

they were returned by the procedure “qs.” Afterwards, the scaling function was applied

to every element in transformed data This is illustrated in Figure 9

value = qs(item, 1, numberofsamples, reval);
smallest = value[0]; largest =value[l],
difference = f - e,
tcb = (double *) malloc (number of samples * sizeof(double));
for (cd = 1, cd <= number of samples; cd++){

tcb[cd] = (((input[cd] - smallest)/difference)* 255),
fprintfiflp, "%3.0f ", tcb[cd]);
if (rt = ndimx){ fprintf(flp, "\n"); rt — 1,}

else rt++,}

Fig. 9 Implementation for scaling function

24

The scaling data was then written to a file known as “inverse.pgm.” This file consisted of

the reconstructed image after the wavelet transform was performed.

As mentioned in the previous chapters, two compression techniques were used after

the wavelet transformation was performed The first form of compression used was zone

compression.

Zone Compression

Zone compression was a technique in which compression took place by selecting a

region of the transformed image data This technique was performed using the following

implementation fragment

fpdata = fopen("data/matrixdata", "r"),
m = 1;

n= 1;
td= 1;
for(i = 1; i<= elements; i++){

fscanf(fpdata, "%d", &num[i]),
if((m <= cdimx) && (n <= cdimy))

fprintf(fpfinal, "%4d ", num[i]),
if (m == dimx) m = 1,
else

m++;

if(td = dimy){td = 1; fprintf(fpfinal, "\n"), n++;}
else

td++,

Fig. 10. Implementation of zone compression

25

With the above fragment, the transformed data was read into an array, and if the data was

in the proper region, it was used to construct the compressed image. Another

compression technique used with the wavelet transform was thresholding.

Thresholding

Thresholding was another compression in which elements of the transformed data were

kept or assigned a zero value depending on a threshold value. This technique is illustrated

in Figure 5. To implement this compression technique, the following fragment was used.

fpdata = fopen("data/matrixdata", "r"),

printf("ENTER A THRESHOLD VALUE (0 - 255) \n");
scanf("%d", &threshold),

n= 1,
td= 1,
m = 1;

for(i = 1; i<= elements; i++){
fscanf(fpdata, "%d", &num[i]),

if (num[i] >= threshold)
fprintf(fpfinal2, "%3d ", num[i]),

if (num[i] < threshold)
fprintf(fpfinal2, " 0 ");

}

Fig. 11. Implementation of thresholding

26

Compression is often used for storage and transmission of data. Even though

compression can be very valuable, it is sometimes desirable to reconstruct the original

data.

Inverse Wavelet Transformation

The inverse wavelet transformation was used to restore the transformed data into its

original data. In this research, the inverse wavelet transform was performed after

compression was done. The type of compression performed was lossy compression, and

the inverse process would not yield a perfect reconstruction. The inverse data would be

similar to the original data. The inverse transform is computed by the following

implementation fragment

DAUD4(double a[], unsigned long n){
double *w;
unsigned long ij, k, half, vhalf, m, p,

w = vector(l, n);
half = n/2;
vhalf = half + 1;
w[1]=C2*a[half]+C 1 *a[n]+C0*a[1]+C3*a[vhalf];
w[2]=C3*a[half]-C0*a[n]+Cl*a[l]-C2*a[vhalf|,

for(m=l,p=3, m < half; m++){
w[p++]=C2 * a[m]+C 1 * a[m+half]+C 0 * a[m+1]+C3 * a[m+vhalf] ;
w[p++]=C3 * a[m]-C0 * a[m+half]+C 1 * a[m+1]-C2 * a[m+vhalf] ;} :

for(k = 1, k <= n; k++)
a[k] = w[k];} /* End Function */

Fig. 12. Implementation of inverse wavelet transformation

27

The inverse transformation is a reverse operation of the wavelet transformation. The

differences in this procedure are the wavelet filter matrix and the reversed process. In the

inverse transformation the wavelet filter matrix is the transpose of the original

transformation matrix. The end results of the inverse transform are data elements similar

to the original image data

The wavelet transformation and the two compression techniques could easily be

performed using the following interface. This interface is displayed by typing “test” in the

respected directory

PROMPT»> test

Enter the desired operation
(1) Wavelet Transformation
(2) Compression (Zone and Thresholding)
(3) Error (RMS)
(4) Quit

Fig. 13. Displays interface for wavelet compression program

This interface was designed to assist the user in operating this program, and getting

results. The final compression technique used was the JPEG compression.

JPEG Compression

JPEG is a “standard” compression technique often used. In this research, JPEG was

used for comparison, and it helped determine how effective the compression techniques

28

performed with the wavelet transformation were This implementation was taken from

“The Data Compression Book”, which was written by Mark Nelson and Jean-Loup Gailly.

The algorithm is a C implementation that is compiled and executed on a personal

computer (PC).

This program actually consists of two parts: (1) compression and (2) expansion The

compression was performed entering the following: main-c inputfilename outputfilename

qualityvariable. The result is a compressed image, but the image can not be viewed To

view the image, the image must be expanded. The image is expanded by the following

statement: main-e inputfile outputfile The inputfile is the outputfile from the

compression operation, and the outputfile is the file name for the reconstructed image At

this point, the image can be viewed using the following command: gs outputfile. To

determine the mathematical difference between the reconstructed image and the original

image, an error function was developed.

Error Function

The error function was developed to determine the error after the various compression

techniques were administrated In Figure 14, the original and the compressed files are

opened.

if((fpmatl = fopen("data/matrixfilel ","r")) = NULL){
printf("\nERROR: Could not open %s\n", "data/matrixfilel"),
exit(-l),}
if((fpmat2 = fopen("data/matrixfile2","r")) — NULL){

printf("\nERROR: Could not open %s\n", "data/matrixfile2"),
exit(-l), }

Fig. 14 Implementation for opening the two files

29

for(a =1; a <= dimx, a++){
for(b = 1; b <= dimy, b++){

fscanf(fpmatl, "%d", &form[a][b]);
total = total + form[a][b], }}

fclose(fpmatl);
for(c =1; c <= dimx, c++){
for(d = 1; d <= dimy, d++){

fscanf(fpmat2, "%d", &form2[c][d]);}}
fclose(fpmat2);
error = 0.0;

for (m = 1 ; m <= dimx; m++) {
for (n = 1 , n <= dimy; n++) {

diff = form[m][n] - form2[m][n],
error = error + (diff*diff), }}

error = error / total,
printf("RMS error between is %f\n", sqrt(error)), }

Fig. 15 Implementation fragment for error function

In Figure 15, the data of the original image (fpmatl) and the compressed image

(fpmat2) were read into two-dimensional arrays. The data elements in the original image

were added, and the difference between the two images was determined The error was

then computed and displayed After the error was computed, the next major step was to

perform pattern recognition. Pattern recognition was computer recognition of stimulus

patterns. In this research, networks were used to perform pattern recognition using the

compressed image and the original image.

Neural Networks

The neural networks used to do pattern recognition were hopfield, neocognitron, and a

genetic algorithm driven network. Several neural networks were used to test the ability

30

of different neural network to classified patterns containing compressed data.

Hopfield Neural Network

The Hopfield Neural Net is a fully connected single layer network that associates a

pattern with stored patterns. This algorithm was implemented by Khalil Khalif and later

modified by Samuel Collins. This neural net was designed to take an “exemplarfile” and a

noisy pattern. Figure 13 illustrates a sample “exemplarfile” and noisy pattern.

Exemplarfile Noisv Pattern
2 - > Number of patterns 1-1 1-1
4 - —> X-dimension of patterns 1-11 1
4 - —> Y-dimension of patterns 1 -1 -1 -1

-1 1-1 1
-1 1 -1 -1

-1 1-1 1
-1 1-1 1
-1 1-1 1

-1 -1 1 -1
1-1 1-1
1-1 1-1
1 -1 -1 -1

Fig. 16. Input parameters for the hopfield neural network

The “exemplarfile” is a file that consists of the following data: (1) number of patterns,

(2) number of rows in each pattern, (3) number of columns in each pattern, and (4) the

actual patterns. In this research, these patterns consisted of images of the size 32 x32.

These images were of type xbm, and they were converted to ones and negative ones. The

31

noisy pattern was also of type xbm and size 32 x32, but this file consisted of the

compressed image data

The Hopfield Neural Net is activated by the following expression: hopfield

exemplarfile noisyfile. The program becomes executing, and it executes until the program

converges. Convergence means a pattern in the “exemplarfile” is categorized as having

the most features similar to the “noisyfile”. The end results were the “exemplarfile”

pattern with similar features and the energy. The neocognitron was another neural net

used to perform pattern recognition

Neocognitron

As mentioned in Chapter 1, the neocognitron was designed to properly categorize

similar patterns even if there were shifts in position or distortion The neocognitron used

in this research was designed and implemented by Frank Schnorrenberg. This algorithm

was a C implementation of Fukushima’s neocognitron. Schnorrenberg designed this

neocognitron simulator be very flexible by allowing command line options

The usage of this neocognitron simulator program is easily defined by just typing “neo”

at the prompt, and the various options are displayed. Although there are many options,

there are some mandatory parameters The simulator must be provided with three files for

input. The first file is the file containing the patterns. The second file is the file containing

all the weights. The final file contains the parameters a, ri, qi, and the specifications for

the three planes that are monitored during the runs. The simulator is activated by typing

“neo” and its parameters.

32

Usage: neo -fin=<fn> -samp=# -fwgt=<fn> -use=# -fspec=<fn> -fout=<fn>
-maxiter=# -reps=#

Example: Let the network read and classify 10 sample pattern

neo -fin=myinput.pat -samp=10 -fwgt=wgts.dat -fspec=specs.dat -maxiter= 100
-reps=5

Fig. 17. Usage of neocognitron

In the Figure 17, the usage of the neocognitron simulator was defined, and many

parameters were given. In Table 3, these parameters are vividly defined.

Table 3. The parameters for the neocognitron is defined

Parameters Description

-fin= name of train file containing the input pattern
-samp= number of train input patterns in train file
-fwgt= name of the file with weights)
-use= use the weight file or not (1, 0)
-fspec= name of the file with initial parameters
-fout= name of the file to write output to
-maxiter= maximal number of iterations
-reps= number of repetitions for each pattern before proceeding

The command to activate the neocognitron is very long, but it gives the user the

advantage of being able to change the variables of the simulator without having to edit the

program. The final network used in this research was a feed-forward neural network.

Feed-forward Neural Network

This feed-forward neural net was designed and implemented by Samuel Collins as his

33

thesis research The unique feature about this neural net was that a genetic algorithm was

used to train the feed-forward neural network. The implementation of this neural net was

also made very flexible. This is due to the fact that the parameters of the programs can be

change easily and without editing the program.

The input variable for this neural network is the parameter file. The parameter file was

consisted of the data needed to train the neural network via the genetic algorithm A

sample parameter file is illustrated in Figure 14.

1 Data file

 > 999945432425 1
Number of samples (4) 889767867878 2

Output filename (Output) 998887776669 3

Min # of current generation
n

(100) 989897689678 ;

Max # of generations (30000)
Crossover Probability (0.010000)
Mutation Probability (0.600000)
Number of input elements (13)
Number of hidden layers (6)
Number of possible classes (ID
Number of outputs (4)
16
Population size
A

(50)

0.222000

Fig 18 Structure of parameter file

Figure 18 displays the many things that must be defined. The data file was one

component of the parameter file that required more attention. The data file contained the

image data, and the image data had to be formatted. Also, the image data required an

additional variable to define its class. This additional variable was very important because

it was the item used to determine the classified of the different images. After these neural

34

networks were tested the results were gathered.

35

CHAPTER 5

SUMMARY/CONCLUSION

A “testbed” was created, and a novel configuration of wavelet transformation and the

neocognitron was explored. In the “testbed”, image compression techniques were

designed and implemented using the wavelet transform. The wavelet transformation was

performed, and two compression techniques were done on the transformed data. The

compression techniques used were thresholding and zone compression. To determine the

efficiency of these compression techniques, two images were used to test the program.

These compression techniques were also compared to JPEG compression.

"Cheetah.pgm" was the first image used to test these compression techniques. This

image was of type gray scales, and it had the size of 256x256. This image is displayed in

Figure 19.

Fig. 19. Image used in testing compression techniques

36

The wavelet transform was performed, and thresholding was the first compression

technique done on the transformed data. The same image was next compressed used the

JPEG compression algorithm. To compare the results of both tests, the root mean square

error (RMS) was computed for each compression ratio. In Table 4, the results from the

two compression techniques are displayed.

Table 4 Results from thresholding and JPEG compression techniques

Cheetah

Percentage JPEG Wavelet

9 0.289
(Thresholding)

4.54
57 4.289 3.45
83 9.884 2.19
90 14.460 2.70
94 22.025 6.41

The results showed that the JPEG compression technique had the smaller error in the

initial stages, but as the percentage of data withheld increased, the RMS for the JPEG

compression technique also increased greatly. There was an increase in errror from the

thresholding technique, but the degree of increase was not as large as the JPEG

compression technique.

Although the RMS was a valuable way of comparing the two compression techniques,

visual comparisons were also important. After comparing the actual images, the images

compressed using JPEG were very good in the when the percentage was below 60

37

percent. As the percentage passed 60 percent, the images became very “blocky” in

appearance. The images from the thresholding technique were also good in the initial

stages, and as the percentage increased, the images began to darken. These images are

displayed in appendix.

The second compression technique performed on the data transformed by the wavelet

transformation was zone compression As mentioned in the above chapters, zone

compression was a technique in which a region of the transformed data was selected The

low frequency data (smooth data) was chosen in the zone compression technique The

image used in this technique was also “Cheetah.pgm” (Figure 19). The results are

displayed in Table 5.

Table 5. Results from zone compression and JPEG compression techniques

Cheetah

Wavelet (
Percentage JPEG Compression)

75 6.88 1.86
94 22.025 2.68
98 56.04 3.90
99 59.88 4.79

The JPEG technique did not perform well at very high percentages, but the zone

compression technique produced good results. These compression techniques were also

used to compress another sample image

To further test these compression algorithms, another image was include in this testing

phase. The image used in the second testing phase was known as “lisa.pgm." This image

38

was also of type gray scales, and its size was 256x256. The wavelet transformation was

first performed, and thresholding and JPEG compression were done on the image

The results from these compression techniques were also similar to the first sample

input image. The error for the JPEG compression technique again increased greatly as the

percentage of data withheld increased This is shown in Table 6.

Table 6. Results from thresholding and JPEG compression techniques

Lisa

Wavelet
Percentage JPEG (Thresholding)

83 2.32 4.07
90 3.19 3.53
92 3.76 3.47
94 7.22 3.49

 25 S^Z 12Ü

Zone compression was also performed, and the results were also compared with the

results of the JPEG compression. Like the first image, the compression techniques using

the wavelet transform produce the best results in all tests. Table 7 displays the results of

the zone compression techniques.

Table 7. Results from zone compression and JPEG compression techniques

Lisa

Percentage JPEG Wavelet (Zone)
75 1.83 2.76
94 7.22 3.80
98 46.18 4.84
99 54.29 5.19

39

In the testing of both images, the compression techniques used after the wavelet

transformation was performed on the data yielded the best results. The zone compression

technique seemed to produce the best overall results. The next phase was to do pattern

recognition used the compressed data

Pattern recognition is a simply being able to recognize and classify all samples with

similar features. Pattern recognition was a done by various neural networks: (1) hopfield,

(2) neocognitron, and (3) feed-forward neural network.

The first neural network used for pattern recognition was the hopfield neural net. The

hopfield input files were the “exemplarfile” and the “noisyfile” (Figure 16). The noisyfile

consists of one image pattern with compressed data, and the “exemplarfile” contains

various image patterns with the original data. Given the compressed data, the Hopfield

neural net was able to match it with the original data in the “exemplarfile.” The results are

illustrated in table 8

Table 8. Results from Hopfield neural network

Hopfield Neural Network
Exemplarfile Noisyfile Results

No. of Patterns Size Percentage Compression Was Pattern
Recognized

No. of
Iterations

2 32x32 75% of data withheld yes 1
2 32x32 94% of data withheld yes 2
3 32x32 94% of data withheld yes 2
5 32x32 94% of data withheld yes 4

40

The Hopfield Neural Network produced good results, but the number of iterations needed

for convergence increased as the number of patterns increased in size The next neural net

used for pattern recognition was a feed-forward neural network.

As mentioned in the previous chapter, this neural net was trained by a genetic

algorithm. The parameters used to train the genetic algorithm are displayed in Table 9.

Table 9. Parameters for the simple genetic algorithm (SGA)

Total Population size 50
Chromosome length (lchrom) 12600
Maximum # of generations (maxgen) 30000
Crossover probability (pcross) 0.010000
Mutation probability (pmutation) 0.600000
Number of neural net inputs (NNI) 100
Number of neural net hidden layers (NNHL) 6
Number of neural net outputs (NNO) 4
Number of weights (NNHL * ((NNI+l)+NNO)) 630

The neural net was trained by the genetic algorithm, and the best results given were a

classification of 33.33 percent and a fitness of 0.414214. The parameters were changed,

but the fitness still remained at 0.414214, and the percentage of correct classification

always remained at 33.33 percent. This was probably due to the fact that the image data

was too large The final neural net used to perform pattern recognition was the

neocognitron.

The neocognitron was a neural net developed by Fukushima to perform pattern

recognition. In this research, an implementation of Fukushima’s neocognitron was used,

and this implementation was developed by Frank Schonorrenberg. The results from the

41

neocognitron were very good. The neocognitron was able to recognize and categorize the

original image data and the compressed data.

The neocognitron was tested with ten (10) sample patterns. To train the neocognitron

these sample patterns were presented to neocognitron twenty times. In the initial testing

stage, the compressed data was not classified by the neocognitron This was due to

inadequate training. Therefore the number of repetitions was increased, and this caused

the patterns to be presented to the neocognitron several more times. These changes

ultimately lead to better training and good results.

In this research, we were able to investigate the use of the wavelet transformation as a

preprocessor to neural networks. The wavelet transformation was used for compression

and feature extractions Most of all, we were able to receive very good results from the

neocognitron. The neocognitron was able to recognize the compressed patterns

As a result of this research, several areas of further research were established These

areas of future work include: (1) adding other neural networks, (2) adding other wavelet

filters, and (3) running the compression and neural neural network algorithms in real-time.

These areas are future research for Lanier Watkins and Tracey Abrams.

42

APPENDIX 1

RESULTS FROM JPEG COMPRESSION

9% Compression (256x256)

RMS = 0.289

43

57% Compression (256x256)

RMS = 4.289

44

75% Compression (256x256)

RMS = 6.88

45

83% Compression (256x256)

RMS = 9.884

46

90% Compression (256x256)

RMS = 14.46

47

94% Compression (256x256)

RMS = 22.025

48

98% Compression (256x256)

RMS = 56.04

49

99% Compression (256x256)

RMS = 59.88

50

75% Compression (256x256)

RMS = 1.83

51

83% Compression (256x256)

RMS = 2.32

90% Compression (256x256)

RMS = 3.19

53

92% Compression (256x256)

RMS = 3.76

54

94% Compression (256x256)

RMS = 7.22

:o

95% Compression (256x256)

RMS = 8.57

56

98% Compression (256x256)

RMS = 46.18

57

99% Compression (256x256)

RMS = 54.29

58

APPENDIX 2

RESULTS FROM THRESHOLDING COMPRESSION

9% Compression (256x256)

RMS = 4.54

59

57% Compression (256x256)

RMS = 3.45

60

83% Compression (256x256)

RMS = 2.19

61

90% Compression (256x256)

RMS = 2.70

62

94% Compression (256x256)

RMS = 6.41

63

83% Compression (256x256)

RMS = 4.07

64

90% Compression (256x256)

RMS = 3.53

65

92% Compression (256x256)

RMS = 3.47

66

94% Compression (256x256)

RMS = 3.49

67

95% Compression (256x256)

RMS = 3.90

68

APPENDIX 3

RESI LTS FROM ZONE COMPRESSION

75% Compression (256x256)

RMS = 2.76

69

94% Compression (256x256)

RMS = 3.80

70

98% Compression (256x256)

RMS = 4.84

71

99% Compression (256x256)

RMS = 5.19

72

75% Compression (256x256)

RMS = 1.86

73

94% Compression (256x256)

RMS = 2.68

74

98% Compression (256x256)

RMS = 3.90

75

99% Compression (256x256)

RMS = 4.79

76

BIBLIOGRAPHY

1 Cohen, A. and J Froment, Image Compression and Multiscale Approximation, in
Meyer, Y , (ed) Wavelets and Applications, pp 183-204.

2. Daubechies, I., Ten Lectures on Wavelets, Capital City Press, 1992.

3. Daubechies, I., Wavelet Transform: A Method For Time-Frequency Localization, in
Haykin, S , (ed.) Advances in Spectrum Analysis and Array Processing, pp. 366-
416.

4. Fausett, L., Fundamentals of Neural Networks, Prentice-Hall, Inc, 1994.

5. Fukushima, K., Cognitron: A Self-organizing Multilayered Neural Network, Biol.
Cybernetics, vol. 20, pp 121-136, 1975.

6. Fukushima, K and S Miyake, Neocognitron: A New Algorithm For Pattern
Recognition Tolerant Of Deformations And Shifts In Position, Pattern
Recognition, vol. 15, pp. 455-469, 1982.

7. Mallat, S. and S. Zhong, Wavelet Maxima Representation, in Meyer, Y , (ed)
Wavelets and Applications, pp 209-216.

8 Mallat, S ., Multifrequency Channel Decompositions of Images and Wavelet Models,
IEEE Transactions On Acoustic, Speech, And Signal Processing, vol. 37, pp.
2091-2111, December 1989

9. Morris, J. M., V Akunuri, and H. Xie, More Results on Orthogonal Wavelets with
Optimum Time-Frequency Resolution, SPIE, vol. 2491, pp 52-62.

10. Nacken, P., Image Compressiion Using Wavelets, Wavelets: An Elementary
Treatment of Theory and Applications, pp 81-91, 1993.

11. Nelson, M. and J. Gailly, The Data Compression Book, M&T, New York, 1996

12. Phillips, D , Image Processing In C, R&D Publication, Inc, Lawrence, Kansas, 1994

13. Press, W. H., S. A. Teukolsky, W. T Vetterling, and B P. Flannery, Numerical
Recipes In C, Cambridge University Press, New York, 1992

77

14. Schnorrenberg, F., Fukushima’sNeocognitron: An Implementation, May 1992.

15. Srikanth, R., R George, N. Warsi, D Pubhu, F. E Petry, B. P. Buckles, A Variable
Length Genetic Algorithm for Clustering and Classification, Pattern Recognition
Letters, pp. 789-800.

16. Strang, G, Wavelets and Dilation Equations, SIAM Review, vol. 34, pp. 614-627,
December 1989.

78

