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The focus of this research was to establish a testbed for pattern recognition. In 

this testbed, the wavelet transform is used as a preprocessor for various neural networks. 

The wavelet transform is used to perform image compression, and several wavelet filters 

and compression techniques are implemented The compressed data is later formatted and 

used as input to a neural network where pattern recognition is performed. 

The wavelet filters used in the wavelet transformation were the Daubechies 4 

(DAUD4) and the Haar wavelet filters After compression was performed, the root mean 

square error (RMS) was computed and compared with a “common” compression 

technique called JPEG compression. After testing each compression technique, zone 

compression using the wavelet transform yielded the best results. At this point, the 

compressed data was used by various neural networks for pattern recognition. 

There were three neural nets in the testbed They were the neocognitron, a genetic 

algorithm driven neural network, and the Hopfield neural net Each neural net was used to 

perform pattern recognition using the compressed data The results from each neural net 

were good, but the neocognitron gave the best results. 
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CHAPTER 1 

INTRODUCTION 

This thesis presents research in the areas of pattern recognition and image 

compression. Pattern Recognition is computer recognition of stimulus patterns6. 

Although this seems to be a simple task for humans, recognizing similar features in 

patterns is a difficult task for a computer. This is due to the fact that most methods for 

pattern recognition are oversensitive to shifts in position and the distortions in shape of 

the stimulus patterns. 

In this research, a “testbed” was developed to perform pattern recognition. This 

“testbed” consisted of a preprocessor and various networks. The preprocessor uses the 

wavelet transform to perform image compression This compression algorithm takes a 

pgm image and compresses it. The image is next converted into a bitmap format, and this 

data is feed into a neural network. The neural networks are used to perform pattern 

recognition. 

Pattern recognition has been an area of research for many years A common problem 

with performing pattern recognition was not being able to recognize an image after a shift 

in position or distortion in shape. A solution to this problem was later established. 

Kunihiko Fukushima proposed a new algorithm for pattern recognition which is tolerant of 
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deformations and shifts in position6. The algorithm is known as the neocognitron 

Neocognitron 

The neocognitron is an improved version of the conventional cognitron Its self- 

organization is performed by unsupervised learning, a “learning-without-a-teacher” 

process5. However, the cognitron did not have the ability to recognize stimulus patterns 

when there were distortions or shifts in position. 

The self-organization of the neocognitron is also performed by unsupervised learning. 

The repeated presentation of a set of stimulus patterns is necessary for the self- 

organization of the neocognitron6. No information about the categories to which these 

patterns should be classified is needed Unlike the cognitron, the neocognitron acquires 

the ability to classify and correctly recognize these patterns by itself. Recognition is done 

with respect to differences in shapes Most of all, the neocognitron recognizes stimulus 

patterns correctly without being effected by shifts in position or even by considerable 

distortions in shape of the stimulus patterns. 

The structure of the neocognitron is hierarchical The information of the stimulus 

pattern given to the input layer of the neocognitron is processed step by step This takes 

place in each stage of the network, and a cell in a deeper stage responds selectively to the 

complex feature of the stimulus pattern. At the same time, the cells in a deeper stage has 

a larger area in which information is transmitted from the stimulus pattern to the cell. 

Thus, each cell in the deepest stage responds only to a specific stimulus pattern without 

being affected by the position or the size of the stimulus pattern. This classification 
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process can become even more difficult if the stimulus pattern consists of compressed 

image data 

Image Compression 

Image Compression is a technique used to reduce the number of bits required to 

represent an image. It allows an image to retain most of its features, but the image is 

composed of fewer pixels. Image compression is very valuable because it facilitates the 

storage and transmission of an image When storage space is limited, compression is often 

essential for space conservation 

Another use of image compression is in transmitting images. An image can contain a 

large amount of data, and sending a large image to a secondary location can be very time 

consuming. A compressed image allows easier transmission of the image data from place 

to place because less data is being transmitted The fast transmission of image data can be 

very crucial, for example, medical and military applications 

Image compression techniques can be divided into two major families; lossy and 

lossless11. In this research, lossy image compression was implemented Lossy image 

compression concedes a certain loss of accuracy in exchange for greatly increased 

compression10 Most techniques for lossy image compression can be adjusted to different 

quality levels, and higher accuracy is gained in exchange for less effective compression. 

As a result, a trade-off between accuracy and compression is one of the major factors that 

must be considered in the development of this compression algorithm. 

Various techniques are used to perform lossy image compression In this research the 

wavelet transform was used as a method of image compression 
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Wavelets 

Wavelets are a recent development in the area of applied mathematics. They 

originated over ten years ago from the works of various scientists and engineers. Among 

these scientists and engineers were Morlet, Arens, Fourgeau and Giard(1982), 

Morlet(1983), and Grossmann and Morlet(1984). Ingrid Daubechies was another scientist 

that has done much work using wavelets In the past few years, researchers of various 

backgrounds have developed a strong interest in wavelets. Wavelets have already lead to 

exciting applications in signal analysis (sounds, images) and numerical analysis 

(integral transform). The one thing that contributes to the strong interest in wavelets is 

their “wide applicability." 

Wavelets are mathematical functions, and there are many types of wavelets. These 

mathematical functions are represented by f(x) = ZbjkW(2Jx-k) in which bjk carries 

information about f near £ = 2s and x = 2"|k. Wavelets are based on two indices in which k 

is translation (W(x) -> W(x + 1)) and j is dilation or compression. Dilation plays a very 

important role in the construction of wavelets. The basic dilation equation is a two-scale 

difference equation represented by <D(x) = IckO(2x-k). W is defined as the wavelet that 

is derived from the scaling function by taking the differences: W(x) = I(-l)kci-k®(2x- 

k). The term Ck is defined as the wavelet coefficients. 

There are infinitely many possible sets of wavelets. Wavelets are often categorized by 

the numeral values called wavelet filter coefficients. Each set of wavelets offers different 

trade-offs. The most distinguished trade-offs are between how compactly they are 

localized in space and how smooth they are 
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In this thesis, we restricted ourselves to the Daubechies and Haar wavelet filters. 

Daubechies has a class of wavelet filters, and we chose the filter called DAUD4. DAUD4 

is known as the simplest and most localized member of the class except Haar. This 

particular wavelet filter has only four coefficients, and they are displayed in table 1. The 

equations for the unknown coefficients were first recognized and solved by Daubechies13. 

Table 1 DAUD4 coefficients and their solutions 

Coefficients Co CI c2 c3 

Equations (0 + A/3) / 4 A/2) (Ï3 + A/3)/4A/2) ((3 - A/3) / 4A/2) ((1 - A/3)/4A/2) 

The purpose of these coefficients is to construct the transformation matrix. The 

transformation matrix is a square matrix, and it acts on a column vector of data. Though 

the size of the matrix differs, most transformation matrices are constructed like the one in 

Figure 1 

Co c, c2 c3 

c3 -c2 c, -Co 

Co c, c2 c3 

c3 -c2 c, -Co 

Co c, c2 c3 

c3 -c2 c, -Co 

c2 c3 Co c, 
c, -Co c3 -c2 

Fig. 1 The general format of the transformation matrix. 
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In Figure 1, the blank spaces signify zeroes. The number of zeroes needed is 

determined by the length of the column vector. The first row in the matrix generates one 

component of the data “convolved with the filter coefficients Co,... , C3." 

Like the first row, every odd number row performs the same task. The even number row 

performs a different convolution with the coefficients C3 -C2, Ci, -Co. The wavelet filter 

with coefficients C0,. . . , C3 is defined as the smoothing filter, and it outputs the “smooth” 

information. The filter with coefficients C3, -C2, Ci, -Co, does the opposite. This filter 

produces the data’s “detail” or high frequency information. 

To make the technique of transforming data useful, there must be a way to reconstruct 

the original data from the transformed data This requires the transformation matrix in 

Figure 1 to be orthogonal If the transformation matrix is orthogonal, its inverse is the 

transposed matrix The transpose of the transformation matrix is displayed in Figure 2. 

The Discrete Wavelet Transform (DWT) is a linear and fast operation that is performed 

on a data vector whose length is of integer power two. DWT transforms this data vector 
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into a different vector of the same length. Like the fast Fourier Transform, DWT can be 

seen in a function space, from the input space domain to the wavelet domain13. In the 

input space domain, the basis functions are the unit vectors ej, to the wavelet domain. In 

the wavelet domain, the basis functions are more complex and they are called “mother 

functions” and “wavelets.” 

Unlike the sines and cosines in the fast Fourier Transform, individual wavelet 

functions are quite localized in space and frequency. The characteristic of dual 

localization given by the wavelet functions yields large classes of functions and operators 

sparse to some high accuracy, when transformed into the wavelet domain 

The DWT consists of applying a wavelet coefficient matrix like Figure 1. This 

operation is done hierarchically. First, the wavelet coefficient matrix is applied to the full 

data vector of length N, then to the “smooth” vector of length NI2. Next, it is applied to 

the “smooth-smooth” vector of length N/A, and so on until only a trivial number of 

“smooth-, -smooth” components (usually 2) remainQ. This process is known as the 

pyramidal algorithm The DWT yields output that consists of the remaining components 

and all the “detail” components. This is illustrated in Figure 3. 

yi 
Y2 * 

wavelet 
Coefficien 

Sl 
d, Permute 

“'q 
s2 

Y3 
Y4 

Matrix s2 

d2 —> 
d i 
d2 

Fig. 3. Displays pyramidal procedure 

The wavelet transform of any data vector depends on two important factors The 

length of the data vector is one of those factors. If the length of the data vector (y}, ..., y„) 

7 



were a higher power of two, there would be more stages of applying the wavelet 

coefficient matrix (Figure 1) and permuting. The number of wavelet coefficients is the 

other important factor If the wavelet coefficient matrix contains many coefficients, 

naturally, there are going to be more stages in this procedure. This procedure continues 

until the endpoint consists of a vector with two Ss and a hierarchy of £>’s, D’s, d’s, etc. 

The Ss are the smooth data, and the D’s are the detail or high frequency data. Once d’s 

are generated, they simply propagate through to all subsequent stages. To invert the 

DWT, the procedure is reversed. Using the transformation matrix in Figure 2, the inverse 

procedure starts with the smallest level of the hierarchy to the highest. 
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CHAPTER 2 

RESEARCH METHODOLOGY 

In this research, the approach taken was to first construct an image compression 

“testbed” using the wavelet transformation. This image compression system is to be able 

to: (1) input an image, (2) compress the image, (3) reconstruct the image, and (4) convert 

image formats. The second phase was to perform pattern recognition using various neural 

networks. In performing these tasks, several design issues were solved. 

Design Issues 

An initial design issue was the image format. The image format was an issue because the 

content of the image needed to be displayed Also the image data needed to be abstracted 

and manipulated Most of all, the image needed to be of a format that could be 

reconstructed after compression. The image format was also an issue in performing 

pattern recognition. The image needed to be in a format in which it could be converted to 

ones and zeros. This particular format was necessary to input data for the neural network 

Another design issue was the wavelet filter 

The wavelet filter was an issue because of the variety of filters. When choosing a 

wavelet filter, the trade-offs mentioned in Chapter 1 had to be considered These trade¬ 

offs were between how compactly they are localized in space and how smooth they are 
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The most important factor about choosing a wavelet filter was whether it would produce 

good compression results. The final design issue dealt with selecting the types of neural 

network to include in the “testbed” The type of neural network to use to perform the 

pattern recognition was another design issue The neural network must have the ability to 

properly classified the sample patterns consisting of compressed data. An important 

factor that also had to be considered was whether the image data could be converted to 

run with the neural network 

Approach For Resolving Design Issues 

Resolutions to the above design issues were the results of much research in the various 

areas The design issue of the image format was resolved by testing various image 

formats. These tests were based on the following factors: ( 1 ) can the image contents be 

edited, (2) can the image data be manipulated, (3) can the image data be abstracted from 

the image, and (4) can the image be reconstructed. The appropriate image format for the 

image compression algorithm and the pattern recognition process was chosen based on the 

above factors. The design resolution for the wavelet filter took a similar process. 

The process of choosing a wavelet filter that would produce good results was difficult. 

The characteristics needed in a wavelet filter were. (1) must be localized in time, and (2) 

produce good results. The method used to find a suitable filter was “trial-and-error.” 

Several wavelet filters were tested, and the filters that yielded the best results was chosen 

The final design resolution was determining the type of neural networks to perform 

pattern recognition. 
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As stated in Chapter 1, pattern recognition is a technique that enables patterns of 

similar features to be categorized in the same group or class. This classification is to be 

performed by a neural network. Finding a network to perform such a task was very 

difficult. To resolve this design issue, the decision was made to construct a “testbed” of 

various neural networks. By creating this “testbed," the results could be compared 
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CHAPTER 3 

SYSTEM DESIGN 

The first task in this research was to design an image compression algorithm using 

wavelets. The initial stage in creating this algorithm is to determine the types of image 

format to use In the next section, a description of the image format is given. 

Description of Image Format 

The type of image format used in this research design was pgm. The image was 

composed of 256 possible gray scales The structure of this image format is displayed 

below in Figure 4 

P2 
# CREATOR: XV Version 3.00 Rev: 3/30/93 
8 8 
255 

255 255 255 255 255 255 255 255 
255 255 255 255 255 255 255 255 

0 0 255 255 255 255 0 0 
0 0 255 255 255 255 0 0 
0 0 255 255 255 255 0 0 
0 0 255 255 255 255 0 0 

255 255 255 255 255 255 255 255 
255 255 255 255 255 255 255 255 

Fig. 4. Displays the structure of a pgm image file 
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This image format was chosen because of the following features: (1) it was easy to 

understand, (2) the image data can be easily abstracted, and (3) the image can be 

reconstructed. 

When using wavelets to perform any type of transformation, a wavelet filter must be 

used. In the next section a description of the wavelet filter is given. 

Description Of Wavelet Filter 

As stated previously, a particular set of wavelets is categorized by the wavelet filter. In 

this research, the particular wavelet filter used was developed by Daubechies2. The 

wavelet filter is called DAUD4 DAUD4 is a wavelet filter that has four coefficients. 

These coefficients are displayed in Table 1. These coefficients are used to construct the 

matrix that is applied to the data vector 

When the wavelet coefficient matrix is applied to the data vector, a transformation 

takes place. The process converts the image data into a numerically difference image of 

the same size. Compression takes place after the wavelet transformation is done In this 

research, there are three compression techniques used In the following section, these 

compression techniques are discussed. 

Compression Techniques 

As stated in Chapter 1, compression is reducing the number of bits required to 

represent an image There are two types of compression: (1) lossy and (2) lossless. In 

this research, lossy compression was implemented The compression techniques 
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performed in this research were thresholding, zone compression, and Joint Photographic 

Experts Group (JPEG) These compression techniques are discussed in the following 

sections. 

Wavelet Transform 

As mentioned in the introduction, the wavelet transform is a linear mathematical 

operation that is performed on a data vector whose length is an integer power two The 

wavelet transform does not perform any form of compression, but compression techniques 

can be done after the transformation. In this thesis, two compression techniques were 

used to compress the transformed data In the next sections, these techniques discussed in 

more detail. 

Thresholding 

Two compression techniques were performed on the transformed image data created 

by the wavelet transformation. The first technique was thresholding. Thresholding is a 

compression technique in which a value or threshold is set, and the items of the image data 

are kept or replaced based on the threshold value. In other words, the integer values in 

the image data are kept if they are equal to or greater than the threshold value If the 

integer values are less than the threshold value, the integer values are replaced by zero 

This is illustrated in Figure 5. 

225 204 115 234 44 Threshold Value 200 225 204 0 234 0 

Fig. 5. Illustrates thresholding as a form of compression 
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Zone Compression 

Another compression technique used after the wavelet transformation is done is zone 

compression. Zone compression is a compression technique in which compression is done 

by selecting a region of the transformed data. This is illustrated below in Figure 6. 

256x256 

Fig. 6. Illustrates zone compression after performing the wavelet transformation 

This compression technique was a valuable technique used to extract the low frequency 

data from the transformed image data The low frequency data was extracted because it 

contains the most information, and in the following chapters, this compression technique is 

shown to be most effective. 

The final compression technique used was JPEG. This compression algorithm was 

used for the purpose of comparison, and it is discussed in the next section. 

JPEG 

JPEG is a compression technique that was developed several years ago, and it is often 

considered the “standard” compression technique11. JPEG is an acronym that stands for 

Joint Photographic Experts Group. Like the above compression techniques, JPEG is also 
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a lossy compression algorithm. This compression algorithm operates in three successive 

stages. 

The discrete cosine transform (DCT) is the first stage The DCT is in a class of 

mathematical operations that includes the well-known Fast Fourier Transform (FFT), as 

well as many others13 The basic operation performed by these transforms is to take the 

image data and transform it from one type of representation to another. The DCT is 

closely related to the Fourier Transform, and often yields similar results 

The second stage is quantization The DCT output matrix takes more space to store 

than the original matrix of pixels”. In this stage, the process of quantization reduces the 

number of bits needed to store the pixel values. This is done via a quantization matrix. 

For every element position in the DCT matrix, a corresponding value is generated in the 

quantization matrix The quantum value generated indicates what the step size is going to 

be for that element in the compressed rendition of the picture, with values ranging from 

one to 255. 

The final step in the JPEG process is coding the quantized images. The JPEG coding 

phase combines three different steps to compress the image. The first changes the DC 

coefficient at 0,0 from an absolute value to a relative value. Next, the coefficients of the 

image are arranged in the “zig-zag sequence.” This “zig-zag sequence” is used to 

compress the consecutive zero value produced in the quantization stage 

After compression, the compressed data is formatted, and the formatted data is used as 

input patterns for the following networks. The process of pattern recognition is performed 

using various neural networks. In the next section, these neural networks are described 
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Description Of Neural Networks 

Artificial neural networks are information-processing systems that have certain 

performance characteristics in common with biological neural networks4 These neural 

networks were developed as generalizations of mathematical models of human cognition 

or neural biology. Artificial neural networks are characterized by (1) its pattern of 

connections between the neurons, (2) its method of determining the weights on the 

connections, and (3) its activation function. In the following section, the neural networks 

used in this research is discussed 

Neocognitron 

The neocognitron is an algorithm developed by Kunihiko Fukushima The purpose of 

the neocognitron was to recognize patterns correctly without being affected by shifts in 

position or distortions in shape of the sample patterns. In this research, a C- 

implementation of Fukushima’s neocognitron was used This program was developed by 

Frank Schnorrenberg. Frank Schnorrenberg was a student in the Computer Science 

Department at Texas A&M University This algorithm was developed by Schnorrenberg 

in 1992, and it was made available for public use on the Web. 

The neocognitron developed by Schnorrenberg has many characteristics similar to the 

neocognitron developed by Fukushima, but there were a few changes. Among the things 

that was similar was that the network is unsupervised When a neural network is 
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unsupervised, training of the network takes place with repeated presentation of the 

patterns. 

There were also variations from the original neocognitron algorithm developed by 

Fukushima. One difference was the lack of Vc cells. Vc cells are inhibitory cells, whose 

output terminals are connected only to inhibitory input terminals of other cells Another 

different was the number of planes in the various stages The differences are displayed in 

Table 2 

Table 2. Displays the number of planes per stage 

Uo U, u2 u3 u4 

Schnorrenberg 1 20 20 20 20 

Fukushima 1 24 24 24 24 

From the above table, the number of planes per stage differ. Although there were 

differences in Schnorrenberg’s implementation, the patterns tested with the program were 

properly classified. 

Hopfield Neural Network 

The Hopfield Neural Net is a fully interconnected neural network, in the sense that 

each unit is connected to every other unit4 The net weights are symmetric with no self¬ 

connections. This means w;j = wjj, and Wü = 0. In the Hopfield Neural Net only one unit 

updates its activation at a time Each unit continues to receive an external signal, and a 

signal from the other units is also received. The updating of the units allows a function 

18 



known as the energy fonction to be found for the network. This fonction provides proof 

that the network can converge to a stable set of, activation instead of oscillating. Besides 

guaranteed convergence, the most importance features of this neural network are the 

asynchronous update of the weights and the zero weights on the diagonal. 

Another form of neural network used was a feed-forward neural network that was 

trained using a genetic algorithm 

Genetic Algorithm Trained Feed-Forward Neural Network 

A feed-forward neural net is a type of network in such the input units travel directly to 

the output units. In this research, a multilayer feed-forward neural net with six hidden 

layers was used To train the neural net, a genetic algorithm was used. 

Genetic algorithms (GAs) are a class of randomized search procedures capable of 

adaptive and robust search over a wide range of search space topologiesf] GAs 

implement a very powerful form of hill climbing technique that guards against local 

minimal. Using a genetic algorithm to train a feed-forward neural network was the thesis 

research of Samuel Collins. This research actually stemmed from the Pascal 

implementation of a Simple Genetic Algorithm program created by Goldberg (1989). In 

this research, the genetic algorithm used crossover and mutation to perform the training of 

the image data. Crossover is an operation that takes two candidate solutions and divides 

them, swapping components to produce two new candidates. Mutation is another 

operation in which a single candidate is taken, and some aspects are randomly changed in 
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the candidate. Using these two operations, the feed-forward neural net was trained by the 

genetic algorithm, and the image data was entered for classification. 
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CHAPTER 4 

IMPLEMENTATION 

The first stage in this implementation process was to develop an algorithm to perform 

image compression. The method used to perform the compression was (1 ) perform the 

wavelet transform of the image and (2) apply compression techniques to the transformed 

data In the following section, the implementation of image compression using the 

wavelet transform is discussed. 

Wavelet Transform 

As mentioned in chapter 1, the wavelet transform is linear operation that is applied to a 

data vector of the power two. The data vector is then transformed into a numerically 

different vector of the same length The data used in this research was actual images 

Input File 

\ 

The type of image file format used in this research was pgm The images used were of 

type gray scale, and the size of these images was 256 x 256. As mentioned in the 

previous chapter, this type of image format was used because (1) image content can be 

viewed, (2) data can be manipulated, and (3) image can be reconstructed. Reading the 

image into the program was the first step 
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When reading the image into the program, several things take place. The user was first 

prompted for the image filename, and the file was opened Once the file is opened, the file 

contents are read, and the data is decomposed into three parts. These three parts were (1) 

file header, (2) dimensions of image, and (3) image data. In Figure 5, this is implemented. 

printf("Enter Image filename \n"), 
scanf("%s", filename), 

if((fpfile = fopen(filename,"r")) == NULL) { 
printf("\nERROR: Could not open \n"); 
exit(-l), } 

if((fpmat = fopen("data/matrixdata","w")) = NULL){ 
printf("\nERROR: Could not open %s\n", "data/matrixdata"), 
exit(-l);} 

if((fphead = fopen("data/header","w")) = NULL){ 
printf("\nERROR: Could not open %s\n", "data/header"); 
exit(-l);} 

if((fphead = fopen("data/header","w")) == NULL){ 
printf("\nERROR: Could not open %s\n", "data/header"), 
exit(-l);} 

count = 1, 
while( ! feof(fpfile)) { 
fgets(headoffile, 126, fpfile); 
if (count <= 4) 

fprintf(fphead, "%s", headoffile), 
if (count = 3) fprintf(fpdim, “%s”, headoffile); 
if (count > 4) 

fprintf(fpmat, "%s", headoffile); 
count++, 

} 

Fig. 7 Implementation for inputting the image file 

At this point, the image is decomposed into the necessary components, and the wavelet 
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transform can be performed on the image data stored in the file “matrixdata.” 

Wavelet Transform Procedure 

The wavelet transformation involved applying the a wavelet filter to the image data 

The wavelet filter used in this research was the DAUD4. This procedure is illustrated in 

Figure 8. The image data was first read from the file “matrixdata” into a two-dimensional 

array of type double The wavelet transform was initially applied to the wavelet filter row- 

by-row. At this point each row of the image was read into a one-dimensional array, and 

this array was pass into the wavelet filter (DAUD4). The process was also performed for 

each column of the image data Each time the transform was performed the results were 

stored back into the two-dimensional array. 

DAUD4(double a[], unsigned long n) { 
double *w; unsigned long i, j, k, half, vhalf, m, p, 

w = vector(l, n), 
half = n/2, 
vhalf = half + 1; 
for(i = 1J = 1; j <= n-3; i++){ 

w[i] - C0*a[j] + Cl*a[j+1] + C2*a[j+2] + C3*a[j+3], 
w[i + half] = C3*a[j] - C2*a[j+1] + Cl *aD+2] -C0*a[j+3], 

j =j + 2;} 
w[i] = C0*a[n-1] + Cl*a[n] + C2*a[l] + C3*a[2]; 
w[i + half] = C3*a[n-1] - C2*a[n] + Cl*a[l] - C0*a[2];}} 

for(k = 1; k <= n, k++) a[k] = w[k], } /* End Function */ 

Fig. 8 Implementation for DAUD4 wavelet filter 
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When the wavelet transformation was done on both the rows and columns, the results 

were stored into a file called “storage ” The results stored in this file consisted both of 

positive and negative integers. To display this image data, the data must be all positive 

integers, and these integers must be in the range from 0 to 255. This means the data must 

be scaled to meet this requirement, and in the following section, the scaling function is 

discussed. 

Scaling Function 

The scaling function was used to create a scale positive integers ranging from 0 to 255. 

Scaling the data produced by the wavelet transform was necessary to view the results To 

perform this operation, the smallest and largest integers in the transformed data were 

determined These values were determined with the use of a quick sort algorithm, and 

they were returned by the procedure “qs.” Afterwards, the scaling function was applied 

to every element in transformed data This is illustrated in Figure 9 

value = qs(item, 1, numberofsamples, reval); 
smallest = value[0]; largest =value[l], 
difference = f - e, 
tcb = (double *) malloc (number of samples * sizeof(double)); 
for (cd = 1, cd <= number of samples; cd++){ 

tcb[cd] = (((input[cd] - smallest)/difference)* 255), 
fprintfiflp, "%3.0f ", tcb[cd] ); 
if ( rt = ndimx){ fprintf(flp, "\n"); rt — 1,} 

else rt++,} 

Fig. 9 Implementation for scaling function 
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The scaling data was then written to a file known as “inverse.pgm.” This file consisted of 

the reconstructed image after the wavelet transform was performed. 

As mentioned in the previous chapters, two compression techniques were used after 

the wavelet transformation was performed The first form of compression used was zone 

compression. 

Zone Compression 

Zone compression was a technique in which compression took place by selecting a 

region of the transformed image data This technique was performed using the following 

implementation fragment 

fpdata = fopen("data/matrixdata", "r"), 
m = 1; 

n= 1; 
td= 1; 
for(i = 1; i<= elements; i++){ 

fscanf(fpdata, "%d", &num[i]), 
if((m <= cdimx) && (n <= cdimy)) 

fprintf(fpfinal, "%4d ", num[i]), 
if (m == dimx) m = 1, 
else 

m++; 

if(td = dimy){td = 1; fprintf(fpfinal, "\n"), n++;} 
else 

td++, 

Fig. 10. Implementation of zone compression 
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With the above fragment, the transformed data was read into an array, and if the data was 

in the proper region, it was used to construct the compressed image. Another 

compression technique used with the wavelet transform was thresholding. 

Thresholding 

Thresholding was another compression in which elements of the transformed data were 

kept or assigned a zero value depending on a threshold value. This technique is illustrated 

in Figure 5. To implement this compression technique, the following fragment was used. 

fpdata = fopen("data/matrixdata", "r"), 

printf("ENTER A THRESHOLD VALUE (0 - 255) \n"); 
scanf("%d", &threshold), 

n= 1, 
td= 1, 
m = 1; 

for(i = 1; i<= elements; i++){ 
fscanf(fpdata, "%d", &num[i]), 

if (num[i] >= threshold) 
fprintf(fpfinal2, "%3d ", num[i]), 

if (num[i] < threshold) 
fprintf(fpfinal2, " 0 "); 

} 

Fig. 11. Implementation of thresholding 
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Compression is often used for storage and transmission of data. Even though 

compression can be very valuable, it is sometimes desirable to reconstruct the original 

data. 

Inverse Wavelet Transformation 

The inverse wavelet transformation was used to restore the transformed data into its 

original data. In this research, the inverse wavelet transform was performed after 

compression was done. The type of compression performed was lossy compression, and 

the inverse process would not yield a perfect reconstruction. The inverse data would be 

similar to the original data. The inverse transform is computed by the following 

implementation fragment 

DAUD4(double a[], unsigned long n){ 
double *w; 
unsigned long ij, k, half, vhalf, m, p, 

w = vector(l, n); 
half = n/2; 
vhalf = half + 1; 
w[ 1 ]=C2*a[half]+C 1 *a[n]+C0*a[ 1 ]+C3*a[vhalf]; 
w[2]=C3*a[half]-C0*a[n]+Cl*a[l]-C2*a[vhalf|, 

for(m=l,p=3, m < half; m++){ 
w[p++]=C2 * a[m]+C 1 * a[m+half]+C 0 * a[m+1 ]+C3 * a[m+vhalf] ; 
w[p++]=C3 * a[m]-C0 * a[m+half]+C 1 * a[m+1 ]-C2 * a[m+vhalf] ;} : 

for(k = 1, k <= n; k++) 
a[k] = w[k];} /* End Function */ 

Fig. 12. Implementation of inverse wavelet transformation 
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The inverse transformation is a reverse operation of the wavelet transformation. The 

differences in this procedure are the wavelet filter matrix and the reversed process. In the 

inverse transformation the wavelet filter matrix is the transpose of the original 

transformation matrix. The end results of the inverse transform are data elements similar 

to the original image data 

The wavelet transformation and the two compression techniques could easily be 

performed using the following interface. This interface is displayed by typing “test” in the 

respected directory 

PROMPT»> test 

Enter the desired operation 
( 1 ) Wavelet Transformation 
(2) Compression (Zone and Thresholding) 
(3) Error (RMS) 
(4) Quit 

Fig. 13. Displays interface for wavelet compression program 

This interface was designed to assist the user in operating this program, and getting 

results. The final compression technique used was the JPEG compression. 

JPEG Compression 

JPEG is a “standard” compression technique often used. In this research, JPEG was 

used for comparison, and it helped determine how effective the compression techniques 
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performed with the wavelet transformation were This implementation was taken from 

“The Data Compression Book”, which was written by Mark Nelson and Jean-Loup Gailly. 

The algorithm is a C implementation that is compiled and executed on a personal 

computer (PC). 

This program actually consists of two parts: (1) compression and (2) expansion The 

compression was performed entering the following: main-c inputfilename outputfilename 

qualityvariable. The result is a compressed image, but the image can not be viewed To 

view the image, the image must be expanded. The image is expanded by the following 

statement: main-e inputfile outputfile The inputfile is the outputfile from the 

compression operation, and the outputfile is the file name for the reconstructed image At 

this point, the image can be viewed using the following command: gs outputfile. To 

determine the mathematical difference between the reconstructed image and the original 

image, an error function was developed. 

Error Function 

The error function was developed to determine the error after the various compression 

techniques were administrated In Figure 14, the original and the compressed files are 

opened. 

if((fpmatl = fopen("data/matrixfilel ","r")) = NULL){ 
printf("\nERROR: Could not open %s\n", "data/matrixfilel"), 
exit(-l),} 
if((fpmat2 = fopen("data/matrixfile2","r")) — NULL){ 

printf("\nERROR: Could not open %s\n", "data/matrixfile2"), 
exit(-l), } 

Fig. 14 Implementation for opening the two files 
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for(a =1; a <= dimx, a++){ 
for(b = 1; b <= dimy, b++){ 

fscanf(fpmatl, "%d", &form[a][b]); 
total = total + form[a][b], }} 

fclose(fpmatl); 
for(c =1; c <= dimx, c++){ 
for(d = 1; d <= dimy, d++){ 

fscanf(fpmat2, "%d", &form2[c][d]);}} 
fclose(fpmat2); 
error = 0.0; 

for ( m = 1 ; m <= dimx; m++ ) { 
for ( n = 1 , n <= dimy; n++ ) { 

diff = form[m][n] - form2[m][n], 
error = error + (diff*diff), }} 

error = error / total, 
printf( "RMS error between is %f\n", sqrt(error ) ), } 

Fig. 15 Implementation fragment for error function 

In Figure 15, the data of the original image (fpmatl) and the compressed image 

(fpmat2) were read into two-dimensional arrays. The data elements in the original image 

were added, and the difference between the two images was determined The error was 

then computed and displayed After the error was computed, the next major step was to 

perform pattern recognition. Pattern recognition was computer recognition of stimulus 

patterns. In this research, networks were used to perform pattern recognition using the 

compressed image and the original image. 

Neural Networks 

The neural networks used to do pattern recognition were hopfield, neocognitron, and a 

genetic algorithm driven network. Several neural networks were used to test the ability 
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of different neural network to classified patterns containing compressed data. 

Hopfield Neural Network 

The Hopfield Neural Net is a fully connected single layer network that associates a 

pattern with stored patterns. This algorithm was implemented by Khalil Khalif and later 

modified by Samuel Collins. This neural net was designed to take an “exemplarfile” and a 

noisy pattern. Figure 13 illustrates a sample “exemplarfile” and noisy pattern. 

Exemplarfile Noisv Pattern 
2 -  > Number of patterns 1-1 1-1 
4 - —> X-dimension of patterns 1-11 1 
4 - —> Y-dimension of patterns 1 -1 -1 -1 

-1 1-1 1 
-1 1 -1 -1 

-1 1-1 1 
-1 1-1 1 
-1 1-1 1 

-1 -1 1 -1 
1-1 1-1 
1-1 1-1 
1 -1 -1 -1 

Fig. 16. Input parameters for the hopfield neural network 

The “exemplarfile” is a file that consists of the following data: (1) number of patterns, 

(2) number of rows in each pattern, (3) number of columns in each pattern, and (4) the 

actual patterns. In this research, these patterns consisted of images of the size 32 x32. 

These images were of type xbm, and they were converted to ones and negative ones. The 
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noisy pattern was also of type xbm and size 32 x32, but this file consisted of the 

compressed image data 

The Hopfield Neural Net is activated by the following expression: hopfield 

exemplarfile noisyfile. The program becomes executing, and it executes until the program 

converges. Convergence means a pattern in the “exemplarfile” is categorized as having 

the most features similar to the “noisyfile”. The end results were the “exemplarfile” 

pattern with similar features and the energy. The neocognitron was another neural net 

used to perform pattern recognition 

Neocognitron 

As mentioned in Chapter 1, the neocognitron was designed to properly categorize 

similar patterns even if there were shifts in position or distortion The neocognitron used 

in this research was designed and implemented by Frank Schnorrenberg. This algorithm 

was a C implementation of Fukushima’s neocognitron. Schnorrenberg designed this 

neocognitron simulator be very flexible by allowing command line options 

The usage of this neocognitron simulator program is easily defined by just typing “neo” 

at the prompt, and the various options are displayed. Although there are many options, 

there are some mandatory parameters The simulator must be provided with three files for 

input. The first file is the file containing the patterns. The second file is the file containing 

all the weights. The final file contains the parameters a, ri, qi, and the specifications for 

the three planes that are monitored during the runs. The simulator is activated by typing 

“neo” and its parameters. 
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Usage: neo -fin=<fn> -samp=# -fwgt=<fn> -use=# -fspec=<fn> -fout=<fn> 
-maxiter=# -reps=# 

Example: Let the network read and classify 10 sample pattern 

neo -fin=myinput.pat -samp=10 -fwgt=wgts.dat -fspec=specs.dat -maxiter= 100 
-reps=5 

Fig. 17. Usage of neocognitron 

In the Figure 17, the usage of the neocognitron simulator was defined, and many 

parameters were given. In Table 3, these parameters are vividly defined. 

Table 3. The parameters for the neocognitron is defined 

Parameters Description 

-fin= name of train file containing the input pattern 
-samp= number of train input patterns in train file 
-fwgt= name of the file with weights) 
-use= use the weight file or not (1, 0) 
-fspec= name of the file with initial parameters 
-fout= name of the file to write output to 
-maxiter= maximal number of iterations 
-reps= number of repetitions for each pattern before proceeding 

The command to activate the neocognitron is very long, but it gives the user the 

advantage of being able to change the variables of the simulator without having to edit the 

program. The final network used in this research was a feed-forward neural network. 

Feed-forward Neural Network 

This feed-forward neural net was designed and implemented by Samuel Collins as his 
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thesis research The unique feature about this neural net was that a genetic algorithm was 

used to train the feed-forward neural network. The implementation of this neural net was 

also made very flexible. This is due to the fact that the parameters of the programs can be 

change easily and without editing the program. 

The input variable for this neural network is the parameter file. The parameter file was 

consisted of the data needed to train the neural network via the genetic algorithm A 

sample parameter file is illustrated in Figure 14. 

1 Data file 

 > 999945432425 1 
Number of samples (4) 889767867878 2 

Output filename (Output) 998887776669 3 

Min # of current generation 
n 

(100) 989897689678 ; 

Max # of generations (30000) 
Crossover Probability (0.010000) 
Mutation Probability (0.600000) 
Number of input elements (13) 
Number of hidden layers (6) 
Number of possible classes (ID 
Number of outputs (4) 
16 
Population size 
A 

(50) 

0.222000 

Fig 18 Structure of parameter file 

Figure 18 displays the many things that must be defined. The data file was one 

component of the parameter file that required more attention. The data file contained the 

image data, and the image data had to be formatted. Also, the image data required an 

additional variable to define its class. This additional variable was very important because 

it was the item used to determine the classified of the different images. After these neural 
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networks were tested the results were gathered. 
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CHAPTER 5 

SUMMARY/CONCLUSION 

A “testbed” was created, and a novel configuration of wavelet transformation and the 

neocognitron was explored. In the “testbed”, image compression techniques were 

designed and implemented using the wavelet transform. The wavelet transformation was 

performed, and two compression techniques were done on the transformed data. The 

compression techniques used were thresholding and zone compression. To determine the 

efficiency of these compression techniques, two images were used to test the program. 

These compression techniques were also compared to JPEG compression. 

"Cheetah.pgm" was the first image used to test these compression techniques. This 

image was of type gray scales, and it had the size of 256x256. This image is displayed in 

Figure 19. 

Fig. 19. Image used in testing compression techniques 
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The wavelet transform was performed, and thresholding was the first compression 

technique done on the transformed data. The same image was next compressed used the 

JPEG compression algorithm. To compare the results of both tests, the root mean square 

error (RMS) was computed for each compression ratio. In Table 4, the results from the 

two compression techniques are displayed. 

Table 4 Results from thresholding and JPEG compression techniques 

Cheetah 

Percentage JPEG Wavelet 

9 0.289 
(Thresholding) 

4.54 
57 4.289 3.45 
83 9.884 2.19 
90 14.460 2.70 
94 22.025 6.41 

The results showed that the JPEG compression technique had the smaller error in the 

initial stages, but as the percentage of data withheld increased, the RMS for the JPEG 

compression technique also increased greatly. There was an increase in errror from the 

thresholding technique, but the degree of increase was not as large as the JPEG 

compression technique. 

Although the RMS was a valuable way of comparing the two compression techniques, 

visual comparisons were also important. After comparing the actual images, the images 

compressed using JPEG were very good in the when the percentage was below 60 
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percent. As the percentage passed 60 percent, the images became very “blocky” in 

appearance. The images from the thresholding technique were also good in the initial 

stages, and as the percentage increased, the images began to darken. These images are 

displayed in appendix. 

The second compression technique performed on the data transformed by the wavelet 

transformation was zone compression As mentioned in the above chapters, zone 

compression was a technique in which a region of the transformed data was selected The 

low frequency data (smooth data) was chosen in the zone compression technique The 

image used in this technique was also “Cheetah.pgm” (Figure 19). The results are 

displayed in Table 5. 

Table 5. Results from zone compression and JPEG compression techniques 

Cheetah 

Wavelet ( 
Percentage JPEG Compression) 

75 6.88 1.86 
94 22.025 2.68 
98 56.04 3.90 
99 59.88 4.79 

The JPEG technique did not perform well at very high percentages, but the zone 

compression technique produced good results. These compression techniques were also 

used to compress another sample image 

To further test these compression algorithms, another image was include in this testing 

phase. The image used in the second testing phase was known as “lisa.pgm." This image 
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was also of type gray scales, and its size was 256x256. The wavelet transformation was 

first performed, and thresholding and JPEG compression were done on the image 

The results from these compression techniques were also similar to the first sample 

input image. The error for the JPEG compression technique again increased greatly as the 

percentage of data withheld increased This is shown in Table 6. 

Table 6. Results from thresholding and JPEG compression techniques 

Lisa 

Wavelet 
Percentage JPEG (Thresholding) 

83 2.32 4.07 
90 3.19 3.53 
92 3.76 3.47 
94 7.22 3.49 

 25   S^Z   12Ü  

Zone compression was also performed, and the results were also compared with the 

results of the JPEG compression. Like the first image, the compression techniques using 

the wavelet transform produce the best results in all tests. Table 7 displays the results of 

the zone compression techniques. 

Table 7. Results from zone compression and JPEG compression techniques 

Lisa 

Percentage JPEG Wavelet (Zone) 
75 1.83 2.76 
94 7.22 3.80 
98 46.18 4.84 
99 54.29 5.19 
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In the testing of both images, the compression techniques used after the wavelet 

transformation was performed on the data yielded the best results. The zone compression 

technique seemed to produce the best overall results. The next phase was to do pattern 

recognition used the compressed data 

Pattern recognition is a simply being able to recognize and classify all samples with 

similar features. Pattern recognition was a done by various neural networks: (1) hopfield, 

(2) neocognitron, and (3) feed-forward neural network. 

The first neural network used for pattern recognition was the hopfield neural net. The 

hopfield input files were the “exemplarfile” and the “noisyfile” (Figure 16). The noisyfile 

consists of one image pattern with compressed data, and the “exemplarfile” contains 

various image patterns with the original data. Given the compressed data, the Hopfield 

neural net was able to match it with the original data in the “exemplarfile.” The results are 

illustrated in table 8 

Table 8. Results from Hopfield neural network 

Hopfield Neural Network 
Exemplarfile Noisyfile Results 

No. of Patterns Size Percentage Compression Was Pattern 
Recognized 

No. of 
Iterations 

2 32x32 75% of data withheld yes 1 
2 32x32 94% of data withheld yes 2 
3 32x32 94% of data withheld yes 2 
5 32x32 94% of data withheld yes 4 
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The Hopfield Neural Network produced good results, but the number of iterations needed 

for convergence increased as the number of patterns increased in size The next neural net 

used for pattern recognition was a feed-forward neural network. 

As mentioned in the previous chapter, this neural net was trained by a genetic 

algorithm. The parameters used to train the genetic algorithm are displayed in Table 9. 

Table 9. Parameters for the simple genetic algorithm ( SGA) 

Total Population size 50 
Chromosome length (lchrom) 12600 
Maximum # of generations (maxgen) 30000 
Crossover probability (pcross) 0.010000 
Mutation probability (pmutation) 0.600000 
Number of neural net inputs (NNI) 100 
Number of neural net hidden layers (NNHL) 6 
Number of neural net outputs (NNO) 4 
Number of weights (NNHL * ((NNI+l)+NNO)) 630 

The neural net was trained by the genetic algorithm, and the best results given were a 

classification of 33.33 percent and a fitness of 0.414214. The parameters were changed, 

but the fitness still remained at 0.414214, and the percentage of correct classification 

always remained at 33.33 percent. This was probably due to the fact that the image data 

was too large The final neural net used to perform pattern recognition was the 

neocognitron. 

The neocognitron was a neural net developed by Fukushima to perform pattern 

recognition. In this research, an implementation of Fukushima’s neocognitron was used, 

and this implementation was developed by Frank Schonorrenberg. The results from the 
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neocognitron were very good. The neocognitron was able to recognize and categorize the 

original image data and the compressed data. 

The neocognitron was tested with ten (10) sample patterns. To train the neocognitron 

these sample patterns were presented to neocognitron twenty times. In the initial testing 

stage, the compressed data was not classified by the neocognitron This was due to 

inadequate training. Therefore the number of repetitions was increased, and this caused 

the patterns to be presented to the neocognitron several more times. These changes 

ultimately lead to better training and good results. 

In this research, we were able to investigate the use of the wavelet transformation as a 

preprocessor to neural networks. The wavelet transformation was used for compression 

and feature extractions Most of all, we were able to receive very good results from the 

neocognitron. The neocognitron was able to recognize the compressed patterns 

As a result of this research, several areas of further research were established These 

areas of future work include: (1) adding other neural networks, (2) adding other wavelet 

filters, and (3) running the compression and neural neural network algorithms in real-time. 

These areas are future research for Lanier Watkins and Tracey Abrams. 
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APPENDIX 1 

RESULTS FROM JPEG COMPRESSION 

9% Compression (256x256) 

RMS = 0.289 
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57% Compression (256x256) 

RMS = 4.289 
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75% Compression (256x256) 

RMS = 6.88 
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83% Compression (256x256) 

RMS = 9.884 
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90% Compression (256x256) 

RMS = 14.46 
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94% Compression (256x256) 

RMS = 22.025 
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98% Compression (256x256) 

RMS = 56.04 
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99% Compression (256x256) 

RMS = 59.88 
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75% Compression (256x256) 

RMS = 1.83 
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83% Compression (256x256) 

RMS = 2.32 



90% Compression (256x256) 

RMS = 3.19 
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92% Compression (256x256) 

RMS = 3.76 
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94% Compression (256x256) 

RMS = 7.22 
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95% Compression (256x256) 

RMS = 8.57 
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98% Compression (256x256) 

RMS = 46.18 
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99% Compression (256x256) 

RMS = 54.29 
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APPENDIX 2 

RESULTS FROM THRESHOLDING COMPRESSION 

9% Compression (256x256) 

RMS = 4.54 
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57% Compression (256x256) 

RMS = 3.45 
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83% Compression (256x256) 

RMS = 2.19 
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90% Compression (256x256) 

RMS = 2.70 

62 



94% Compression (256x256) 

RMS = 6.41 
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83% Compression (256x256) 

RMS = 4.07 
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90% Compression (256x256) 

RMS = 3.53 
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92% Compression (256x256) 

RMS = 3.47 
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94% Compression (256x256) 

RMS = 3.49 
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95% Compression (256x256) 

RMS = 3.90 

68 



APPENDIX 3 

RESI LTS FROM ZONE COMPRESSION 

75% Compression (256x256) 

RMS = 2.76 
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94% Compression (256x256) 

RMS = 3.80 
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98% Compression (256x256) 

RMS = 4.84 
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99% Compression (256x256) 

RMS = 5.19 
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75% Compression (256x256) 

RMS = 1.86 
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94% Compression (256x256) 

RMS = 2.68 
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98% Compression (256x256) 

RMS = 3.90 
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99% Compression (256x256) 

RMS = 4.79 
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