DESIGN AND IMPLEMENTATION OF A LABORATORY COMPUTER NETWORK FOR DATA ACQUISITION AND ANALYSIS

A DISSERTATION

SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BY

TERRY JEROME GREEN

DEPARTMENT OF CHEMISTRY

$$
\begin{gathered}
\text { ATLANTA, GEORGIA } \\
\text { July } 1984 \\
R=i \times \quad \bar{T}=125
\end{gathered}
$$

ABSTRACT

CHEMISTRY

Green, terry J. B.S., SOUTH CAROLINA State COLLEGE, 1976 M.S., ATLANTA UNIVERSITY, 1980

DESIGN AND IMPLEMENTATION OF A LABORATORY COMPUTER
NETWORK FOR DATA ACQUISITION AND ANALYSIS

Advisor: Professor G. Scott Owen
Dissertation date July 1984

A Laboratory Data System (LDS) was implememented in the Chemistry Research Laboratory. The design of the system was a distributed local area network (LAN) of microcomputers. This LAN is based on a combination of the Corvus Constellation and OMNINET hardware and software. The LAN has a Bus topology with all attached computers having access to a 20 Mbyte Vinchester Disk Drive. There are a total of seven computers currently in the LAN - three APPLE II systems, two LSI-ll systems, one LSI-11/23 system, and one IBM PC system. Four spectrophotometers were interfaced to the LSI-11/23 computer via a 12-bit Analog Input/output System (16 channels analog-to-digital converter and 2 channels digital-to-analog converter, DAC) and a real time clock (RTC). The instruments were a Varian Model 3700 Gas

Chromatograph, a Cary 17 UV-VIS-NIR Spectrophotometer, a Beckman 4240 Infrared (IR) Spectrophotometer, and a DurrumJasco J-20 Circular Dichroism (CD) Spectrophotometer. The two DAC channels were interfaced to an oscilloscope for real time graphics output and to a $x-y$ plotter for hard copy graphics output. Subroutines which control the function of the two interface boards are written in MACRO-11 assembly language. Data aquisition programs were written in Fortran. Programs have been written for signal averaging and spectral smoothing. A sophisticated graphics program (AGRAPH) plots the data on a graphics terminal and a digital plotter.

Furthermore, the LAN has a powerful intercomputer communication protocol allowing data collected from the instruments to be stored as a part of a created database.

ACKNOWLEDGEMENTS

First of all, \quad would like to express my sincere appreciation to the faculty and staff of the chemistry department for my professional training. Sincere thanks also goes to Dr. G. Scott Owen for his professional guidance and advice during the creation of this project.

I am grateful to Mr. Armen S. Karapetian, an electrical engineer with Lockheed-Georgia Company, for his technical assistance and for designing special interfaces.

I would also like to thank Dr. James O. Currie of Pacific University for his help in setting up the OMNINET.

Finally, a special consideration to my parents and family for their encouragement, moral support and understanding through the years.

TAELE OF CONTENTS

Page
ABSTRACT ii
ACKNOWLEDGEMENTS iv
LIST OF TABLES vii
LIST OF FIGURES viii
I. INTRODUCTION 1
II. BACKGROUND. 5
A. Computer Networks 5
B. Data Handiing. 14
C. Laboratory Data Management System. 26
III. DESIGN AND IMPLEMENTATION OF A LABORATORY DATA SYSTEM 30
A. Introduction 30
B. LAN Hardware 31
C. System Software. 33
D. Discussion 36
IV. INTERFACING SEVERAL SPECTROPHOTOMETERS TO AN LSI-11/23 COMPUTER 40
A. Introduction 40
B. Materials. 43
C. Discussion 48
V. DISCUSSION. 60
VI. CONCULSION. 76
REFERENCES 77
APPENDICES 78
A. AMLAB 79
B. XYPLOT. 82
C. DISP. 86
D. UVCON 88
E. AGRAPH. 90
F. TRANSPORTER COMMANDS FOR THE LSI-11 112
G. TRANSPORTER COMMANDS FOR THE APPLE II 120

LIST OF TABLES

I. The Weighting Functions for Cubic and Quadratic Functions for 5 to 25 Points. .23
II. Cary 17 Photometric Interface Connector J53B 50

LIST OF FIGURES

Figure

1. Star network 8
2. Ring network • 9
3. Bus network. 10
4. A bus network coupled to a star network. . 12
5. Boxcar averaging 17
6. Ensemble averaging 20
7. Implementation of a five point weighted filter on a set of data.21
8. Noisy Gaussian spectrum. 25
9. Frequency spectrum of noisy Gaussian peak. 25
10. Inverse FFT performed on the noisy Gaussian peak with the appropriate cutoff frequency to obtain the filtered spectrum25
11. The basic conversion scheme for a typical ADC 42
12. The negative (high to low) transition of the MVST signal doesnot correspond to the sample output 52
13.14. The output pulse of the monostablemultivibrator adjusted so that thenegative end of the pulse corresponds tothe sample pulse54
13. Block diagram of the LSI-11/23 interface system 58
14. Diagram of the $3^{\text {rd }}$ floor of Charles Merrill Hall 61
15. Block diagram of the LAN 62
16. Partition of the 20 mbyte disk 63
19 a. Computer simulated spectrum using a double sine angle function 66
19 b .
Noise added to the spectrum by arandom function.66
19c. The result after a 16 scans ensembleaverage and a 25 points Savitzky-Golayfilter were performed.66
17. A graphical representation of a sinewave function. 67
21 . The sine wave with noise added to it 68
18. The results of the inverse transformationof the noisy spectrum after the optimalzero filling range69
19. Computer simulated spectrum output to
25 . A plot of absorption versus fraction-
26.the $X-Y$ plotter by the routine XYPLOT. . .71
20. A circular dichroism spectrum output on a 4662 digital plotter by the program AGRAPH 72 AGRAPHnumber using the program AGRAPH.73
A plot of several curves using the program AGRAPH 74

I. INTRODUCTION

The introduction of the digital computer as a new laboratory tool has brought about a significant improvement in analytical techniques. In recent years, laboratory automation has revolutionized the methods of laboratory analysis. Experiments are not only being automated but the use of computers makes possible experiments and methods that previously could not be done. An example of this would be an experiment in which the signal to noise ratio (S/N) must be enhanced in order to ohtain reasonable results.

Because of available computer processing capabilities (either built-in or on-line), new types of instruments are being developed. In addition, the power of existing instruments is greatly enhanced by the utilization of both on-line and off-line computer processing. The enormous saving in data analysis time and the accompanying reduction in errors is dramatically changing much of experimental methodology.

In 1962 , the first general purpose computer designed specifically for the laboratory was developed by Digital Equipment Corporation (DEC). This was the Laboratory Instrument Computer (LINC) which was the prototype for most laboratory computers. The LINC was designed to be flexible enough for connection to a variety of digital and analog signals originating from laboratory instruments. Still,
because of the high cost of computers it was not always economical to computerize a laboratory. But as technology improved, bringing the cost of computers downward, it became more feasible to automate the research laboratory. Moreover, instruments are now being designed for use on-1ine to experimentation and processes. Thus, with the recent advances both in instrumentation and in computer hardware and software, computers willenhance the incorporation of analytical instrumentation into the experiment or process. Chemical research will take increasing advantage of these developments. Some of the benefits to be derived are as follows: improved analytical accuracy, experimentation that otherwise would be difficult to perform, unattended operation, on-line graphics, and enough data to numerically model the processes being studied. Another benefit is the development of more innovative applications of laboratory data analysis techniques. Some of these applications include optimization of experiments based on data collected during an experimental run, simultaneous measurement and collection of different experimental variables and their combined use to obtain new types of data, and the control of large, complex experiments based on data collected and analyzed in an interconnected set of analytical procedures. To be able to perform such experimentation one needs to properly specify and design the apparatus to take full advantage of
the computer(s) and instrumentation.
Automated systems can generate the vast quantity of data required to characterize complex systems. Interpretation of these large volumes of data by conventional techniques is very time consuming and perhaps impossible. However, the use of computer graphics can greatly aid in data reduction, interpretation and development of numerical models. Furthermore, incorporating computers and graphics on-1ine to chemical experiments and processes opens new opportunities for the study and control of complex systems. Systems having many variables can be characterized even when the variable interactions are nonlinear and the system cannot be represented by numerical methods and models. That is, large sets of data can be rapidly acquired, then modeling and graphic techniques can be used to obtain a partial interpretation plus the design of further experiments.

To obtain the maximum throughput from laboratory automation, each system in the laboratory should be doing an independent task. Also, all the computer systems should be connected with each other into an interactive network in which intercommuncation is fully developed. Networks allow each system to communicate with each other thus permitting resource and data sharing.

The purpose of this research project was to implement a

Laboratory Data System which would be interfaced to the chemistry research instrumentation via a local area network for data acquisition and analysis. The following chapters will discuss the background of a Laboratory Data System including types of computer networks, data handing techniques, 1 aboratory data mangement systems, the local area network design that was implemented, and the chemical instruments which were interfaced to the network.

II. BACKGROUND

A. Computer Networks

Although computers have increased the throughput of the research laboratory, they are also creating such volumes of data that in many places the chemist has become a high priced key operator, transcribing information from one computer to another. This problem can be alleviated by tying all of the computers in the laboratory into an interactive network in which intercommuncation is fully developed.

A network can be defined as a collection of wires and electronics that links a group of computers and peripherals. Each network is composed of three parts: the computers or peripherals in the network, interface units, and the communications cables or wires that connect the pieces together. Networking permits the users to communicate, exchange information and share larger, more reliable peripherals such as hard-disk storage units, high-speed printers, digital plotters, and sophisticated display terminals. The cost and performance of a network are determined by two key factors: the network's topology (physical configuration) and its transmission medium (the cables or wires that link the various devices).

There are three basic network configurations: star, ring and bus. The majority of the early networks had the star topology. Many of the current networks have either ring or bus configurations. Both the ring and bus configurations are distributed and decentralized access topologies while the star is a centralized topology.

Star. In the star configuration (Figure 1) the nodes radiate from a common controller. This central controller contains an interface card for each node and a processor that manages systems communcations. A typical star network can usually handle between 8 and 25 computers, but often several complete networks are linked to increase the total number of stations on the system. One advantage of the star networks is that each node on the network does not require its own interface, since the software protocol for network access is centralized in the controller processor. However, a failure at the central controller brings the entire network down.

Ring. In the ring configuration, the nodes are attached to each other, forming a ring (Figure 2). Messages are passed unidirectionally from node to node through some form of repeater until they reach their destination. The most common flow control and access strategy used for inserting and removing messages from the ring network is the control token concept ${ }^{2}$. In this method, a token packet (a unique 8-
bit pattern such such as lllllll) is passed around the ring. In order for a node to transmit, it must remove the token from the ring. Because no other nodes can then seize the token, they must remain idle while the node with the token transmits. After it stops transmitting, it returns the token to the ring, which passes it along to the next node. Clearly, a failure at a single node can bring the entire network down.

Bus. Nodes in the bus network have their receiver attached to a $\operatorname{single} c a b l e$ that travels from node to node (Figure 3). The cable is either a single coaxial cable or a twisted-pair wire. Only the sending node has its transmitter attached to the bus and all nodes receive all messages essentially simultaneously. A common software protocol which allows access to the network while preventing (or at least minimizing) the chances of data collision is the carriersense multiple access with colifion detection protocol (CSMA/CD) ${ }^{2}$. This requires each node to monitor the network and it begins to transmit only if no other node has begun transmitting at the same time. A problem using the CSMA/CD method is that an individual node might never gain access to the network in a situation characterized by heavy use.

Figure 1. Star network.

Figure 2. Ring network.

Node

Figure 3. Bus network.

1. Local Area Networks

Networks that are generally characterized by inexpensive transmission media within a limited area, ranging from as much as six miles down to less than sixtenthsof amile, and with data rates between 0.1 to 10 M bits/s can be defined as local area networks (LAN). With a LAN, it's possible to link personal computers and peripherals within an area the size of most company or department research laboratories, such as the LAN in the Quality Assurance Laboratory at Mary Kay Cosmetics ${ }^{3}$, Figure 4 .

2. Back-end Storage Networks

A subnetwork of a local computer network that allows several computers to share a common data storage medium is defined as a back-end storage network (BSN). This type of network is ideal for the microcomputer since it gives a relatively low cost microcomputer direct access to a large shared data medium. For example, BSNs provide an efficient means of interconnecting specialized data base computers to offload data management tasks from a host computer. In addition, the back-end storage network was developed to handle the rapidly changing technologies of devices and systems, the increasing performance requirements, the increased complication and sophistication of interconnections

Figure 4. A bus network coupled to a star network.
and control, and the constant demand for improved reliability and availability in computer systems ${ }^{4}$.

Two of the earlier BSNs that laid the ground work for the BSN architecture design were the octopus and Skylab networks. The Octopus system was developed at Lawrence Livermore Laboratory. The other system, Skylab, was built by NASA for the Mission Control Center in Houston, Texas, to support satelifes and their associated ground processing.

Octopus. The Octopus, a local area computer network at Lawrence Livermore Laboratory, was originally conceived as a star topology with a central switching node and a set of links to interconnect resources. The central node not only performed a packet switching function, it also handled terminal control and shared device control. This wide range of demands placed a major operating burden on the central node. Consequently, the Octopus was redesigned into various subnetworks of computers doing a particular task such as file transport and mass storage (the back-end networks). The file transport subnetwork was controlled by a PDP-10 computer, and the mass storage subsystem was controlled by a CDC-38500 computer system ${ }^{5}$.

Skylab. Data transmitted from the orbiting satelife were received at remote tracking sites and then relayed to mission control center. At Houston center, a Univac 494 front-end processor received and routed the data to one or
more of five $I B M$ SYSTEM 1360 Model 75 computers. The data to be stored were then transmitted to the CDC Cyber 73 operating as a back-end processor ${ }^{5}$.

B. Data Handiing

Before the digitized representation of an anag signal can be stored in memory, some consideration must be given to the shape of the waveform and its frequency components. These factors will determine the minimum rate at which the analog signal can be digitized without loss of information. Also, the bulk of the data recorded in the laboratory is in the form of amplitude versus time. If the original signal is characterized in the form of amplitude versus frequency, which can be done by the application of a Fast fourier Transform (FFT) to the digitized data, then this frequency spectrum provides insight into the noise content of the signal and the necessary sampling rate.

1. Data Acquisition

Data acquisition is the extraction of information from the instrument and the conversion of that information into computer compatible data (digitized data). The rate at which this data is acquired is a major consideration. In order to record the proper signal shape, the sampling frequency must
be several times the signal frequency. An incorrect choice of sampling frequency can cause the actual signal to appear to be of lower frequency than the actual signal. This is known as aliasing. Aliasing occurs whenever the sampling rate is less than twice the maximum signal frequency. The frequency at which aliasing begins to occur is called the Nyquist frequency and as stated above, it is equal to onehalf the sampling rate ${ }^{6}$. Although sampling at twice the maximum signal frequency should allow proper digitization, sampling should be done at least ten times the maximum signal frequency in order to obtain a good representation of the input signal.

Noise is another parameter that must be considered in the determination of the best data acquisition approach. Noise is any component of a signal which impedes observation, detection, or utilization of the information contained in the signal. Usually, noise contained in the signal is at a different frequency from the information contained in the signal. It is this property that allows noise to be partially removed or filtered from the analog signal.

Noise which is inherent in the system under study is endogenous noise. Thermal noise (Johnson noise) is caused by the random motion of electrons in detectors due to thermal agitation. Shot noise is the result of statistical fluctuations of charge carriers across a junction. Thermal noise
and shot noise are random in origin and their measurement over a long period of time will trend to zero. Exogenous noise is created by interactions of the signal with elements external to the system. Examples include electromagnetic interference and radio frequency interference which are caused by induced currents in conductors from nearby radiating sources.

Various filtering techniques, whether analog or digital, can be applied to minimize the noise contained in the analog signal and to maximize the signal to noise (S / N) ratio in order to facilitate accurate and sensitive measurements. Analog filters are designed using resistors and capacitors (RC) to pass on 1 y $\operatorname{signals}$ with a frequency less than the specified RC cut-off frequency. Digital filters are software algorithms used to eliminate noise and enhance the S/N ratio on digitized data. There are several software algorithms used to accomplish this including boxcar averaging, ensemble averaging, the Savitzky-Golay weighted filter, and the FFT digital filter.

Boxcar Averaging. This technique can be applied where the rate of change of the analog ignal is slow with respect to the sampling rate of the analog to digital converter (ADC). The signal is sampled several times at each particular point and averaged to replace that point. Figure 5 illustrates this technique.

Figure 5. Boxcar averaging.

Since boxcar averaging is amenable to slowly changing signals it is often performed in real-time. This means that the data for each boxcar are sampled and averaged before the next boxcar. The boxcar algorithm must operate within the real-time environment. For example, suppose a time period of $0.1 s$ is needed to measure an occurence in a particular sample. To accurately sample this occurence would require a sampling rate of 1.0 KHz for a wide safety margin. This would be equivalent to a boxcar average every millisecond. A typical ADC takes about 20-25 microseconds to perform a conversion. If the necessary software to perform a boxcar (to make the conversions, calculate a sum, average, and store the data in memory) takes about 0.1 msec for each point, then an eight point boxcar will require about 0.8 msec leaving only 0.2 msec of computer time before the next boxcar is started. It is obvious that the disadvantage of this technique is the sampling rate. Thus, there is a trade-off between size of the boxcar and the number of data points per occurrence.

Boxcar averaging will only remove the high frequency noise components of a signal. The S / N enhancement is proportional to the square root of the number of points in the boxcar.

Ensemble Averaging. Ensemble averaging involves collecting successive sets of data from a repeated experiment
and then normalizing the data by dividing the sum for each datum by the number of scans made as shown in figure 6. The assumption is that the amplitude and phase of the noise relative to the data should be random so that the noise will average to zero. This technique filters out both lowfrequency and high frequency noise components. The S / N enhancement is proportional to the square root of the number of scans. The disadvantage of ensemble averaging is the extended amount of time required for many repetive scans.

Savitzky-Golay Weighted Filter. Savitzky and Golay ${ }^{7}$ introduced a technique that emulates a least squares polynomial mathematical procedure for the manipulation of the raw or preprocessed data. In order to implement this technique certain conditions must be met:

1) data points occur at fixed uniform intervals on a chosen abscissa;
2) data points must be a continuous function.

In the calculations the ordinates of a fixed number of data points are multiplied by a convolution constant. The resulting products are summed and normalized to obtain the average convoluted ordinate at the central abscissa. The point at one end is then dropped, the next point at the other end is added, and the process is repeated. Figure 7 illustrares this process for a five point moving window. The set of numbers at the right are ordinate values, those

Figure 6. Ensemble averaging.

abscissa			ordinate
1800.0			705
1799.8			712
1799.6			717
1799.4			718
1799.2			721
1799.0	${ }^{x}-2$	c^{-2}	722
1798.0	x_{-1}	${ }^{\text {c }}$-1	725
1798.6	x	c	735
1798.4	${ }^{\text {+ }}$ +	${ }^{\mathrm{c}}+1$	736
1798.2	x_{+2}	${ }^{c}+2$	741
1798.0			746
1797.8			750

$\frac{\text { Figure 7. Implementation of a five point weighted filter on }}{\text { a } \operatorname{set} \text { of } d a t a .}$
at the left are the abscissa values. The box in the center contains a number of convoluting integers C_{-n}, C_{-n+1}, \ldots $C_{n-1}, \quad C_{n}$) opposite to data reference points $\left(X_{-n}, X_{-n+1}, \ldots\right.$ $\left.X_{n-1}, X_{n}\right)$.

To convolute a particular datum each ordinate value is multiplied by its appropriate convolution integer, the resulting products are added, and finally divided by the sum of the convoluting integers. To obtain the next point in the moving average, the center block is moved down one location and the process is repeated. Table I shows the convoluting integers for cubic and quadratic functions for 5 to 25 points. These convoluting integers were chosen by Savitsky and Golay such that the above simple process is mathematically equivalent to a complete polynomial least squares analysis.

The S / N ratio increases with the square root of the number of points used in the convolution set. However, there are disadvantages in using too many points since peak distortion can be introduced. Best results are obtained by digitizing at high densities (short sampling times) and also by ensuring that no more than one inflection point is included in the convolution operation.

Fast Fourier Transform Digital Filter. The initial step in the $F F T$ filtering process involves the computation of the FFT of the noisy time domain spectrum (Figure 8) to obtain

Table I. ${ }^{\mathrm{a}}$ The Weighting Functions for Cubic and Quadratic Functions for 5 to 25 Points

Convolutes		Smoothing		Quadratic		Cubic	A20	A30			
POINTS	25	23	21	19	17	15	13	11	9	7	5
-12	-253										
-11	-138	-42									
-10	-33	-21	-171								
-09	62	-2	-76	-136							
-08	147	15	9	-51	-21						
-07	222	30	84	24	-6	-78					
-06	287	43	149	89	7	-13	-11				
-05	322	54	204	144	18	42	0	-36			
-04	387	63	249	189	27	87	9	9	-21		
-03	422	70	284	224	34	122	16	44	14	-2	
-02	447	75	309	249	39	147	21	69	39	3	-3
-01	462	78	324	264	42	162	24	84	54	6	12
00	467	79	329	269	43	167	25	89	59	7	17
01	462	78	324	264	42	162	24	84	54	6	12
02	447	75	309	249	39	147	21	69	39	3	-3
03	422	70	284	224	34	122	16	44	14	-2	
04	387	63	249	189	27	87	9	9	-21		
05	322	54	204	144	18	42	0	-36			
06	287	43	149	89	7	-13	-11				
07	222	30	84	24	-6	-78					
08	147	15	9	-51	-21						
09	62	-2	-76	-136							
10	-33	-21	-171								
11	-138	-42									
12	-253										
NORM	5175	8059	3059	2261	323	1105	143	429	231	21	35

[^0]
Abstract

the frequency domain spectrum (Figure 9). If it is assumed that the noise occurs at different frequencies than the information contained in the signal then the unwanted frequencies (noise) can be removed from the signal. The noise is removed by inputting the appropriate cut-off frequency while in the frequency domain. The inverse FFT is then performed to obtain the filtered spectrum (Figure 10).

2. Data Analysis

Various software algorithms have been developed to aid in the interpretation of the data generated by automated systems. Computer graphics are very useful in characterizing complex systems. Plotting routines not only provide analytical information but also provide visual aids crucial to the understanding of the system under investigation. In addition, plotting algorithms can aid in the development and the optimization of analytical methods.

Computational algorithms such as least-squares analysis, correlation functions, and deconvolution techniques can be used to numerically characterize the system. Furthermore, the FFT method has been applied in the analysis of a number of analytical techniques in the chemical laboratory in recent years. A few of these techniques include multiplex gas chromatography ${ }^{8}$, 1 inear parameter estimation of fused

TIME

FREQUENCY

peak systems, and the interpolation of sampled data obtained by chromatographic, spectroscopic, and electrochemical techniques ${ }^{9}, 10$.

C. Laboratory Data Management System

When storing data generated by laboratory automation as a part of a created database for comparison with previous experiments or for further analysis, some sort of Laboratory Data Management System (LDMS) is required. The LDMS is used to keep track of the experiments and results. It can do this by keeping separate records for each analysis type, with each record consisting of several fields of information. For instance, there could be fields for the investigator's name, the date, and the instrument type for a particular sample. The L dMS would control the access to the database. Passwords or locks on data structures can easily define no access, read only, or read/write access for individual users. In addition, an LDMS is used in preparing reports based on the experiments.

Many techniques have been developed for the LDMS to store and retrieve information from the storage medium:

Sequential Access. This consists of the key words (investigator name, project number, etc.) ordered alphabetically as in a dictionary. There are two commonly used sequen-
tial access methods that help to expedite entry into the proper record: partitioned sequential access methods (PSAM) and indexed sequential access methods (ISAM). They allow the usage of either sample number or date to locate the pertinent data rapidly.

Ordered Index Access. This involves structuring the data base in more complex way at the outset. The investigator names are kept in an alphabetized index. Next to each name is an ordered 1 ist of all the investigator's experiments and the location of that data on the disk. This is analogous to a three-ring notebook to which pages of information are added as required. Additions are made to an ordered index, and the main file need not be ordered.

Inverted 1 ist. This uses multiple indexes. Separate files are used for the investigator names and project numbers. These are associated with lists of sample numbers and disk locations where analytical results may be found. A good example of this technique is a thesarus. This method retrieves information very rapidly, but updates slowly.

Tree. This is a hierarchical approach of storing the data in the database. With this method, it is easy to add things but the search times become long as the number of levels in the tree grow.

Plex. This is a complex tree method. This is analogous to a genealogical tree in which both the mother and father
are considered, and in which intermarriage/divorce and remarriage occurs. Plex structures require storing the data in quite a different form, often invoking a complex set of internal points to thread the data.

Threaded-List Data Storage. This is when entry on a subject points to other volumes and subjects that have related data. To find all of the data associated with a given subject requires beginning at one end and following the thread. Threads update quickly but retrieve slowly.

Hashing. This consists of converting key words such as investigator names, project numbers, etc. to numbers. Then, all alphanumeric expressions that hash to the same number are stored in a separate area along with the location on the disk containing the relevant information. Hashing is used to speed up access to information.

A well-designed LDMS will use a combination of various data storage methods such as inverted files in conjunction with multiple threaded lists, a tree structed ISAM approach, and a hashed access to multikeyed tree structure. Also, the LDMS would backup (record an entire copy) the database so that the system can be restored if failures occur. In addition, the LDMS should have word processing (text preparation) and list processing (sort, merge, and select) capabilities to aid in preparing reports. Thus, the combination LAN/LDMS will permit efficient resource sharing
in the research laboratory and will remove the chemist from the role of transcribing information from one place to another.
III. DESIGN AND IMPLEMENTATION OF A LABORATORY DATA SYSTEM

A. Introduction

The following requirements were considered in implementing the Laboratory Data System (LDS):
-The system should be as inexpensive as possible. -The system should take advantage of current equipment. -The system should require a minimum of custom designed hardware.
-The system should be capable of a considerable amount of "number crunching" power for data analysis.
-No single computational task should dominate the system.
-The system should have some graphics capability.
-The system should be flexible and capable of expansion to accomodate new instruments and uses.
-The system should be modular and thus capable of being enhanced at a relatively low cost.
-The system should have some data management system capabi1ities.
-The system should be capable of supporting a large amount of software development without adversely affecting other functions.

The LDS design that was chosen which met the above requirements was a distributed local area network of microcomputers. This local area networkis based on the Corvus Constellation and OMNINET hardware and software designed by Corvus Systems, Inc.

B. LAN Hardware

Corvus Constellation. The Corvus Constellation is a disk based back-end star network ${ }^{11}$. The center of the network is a Corvus Winchester Disk Drive with a 20 Mbytes storage capacity and an average disk access time of 50 msec . The disk has an integral $Z-80$ microprocessor and thus has a certain amount of intelligence. The Constellation is a multiplexer which connects to the disk drive. Up to eight computers can be connected to the multiplexer, via a ribbon cable of up to fifty feet in length, and all share the same disk drive.

The disk Z-80 microprocessor continuously polls the attached computers to determine if they require service. The Constellation allows either a mix of different microcomputers (excluding LSI-ll's) or only LSI-ll computers. Our implementation has two LSI-11 systems and one LSI-11/23 system attached to the Constellation.

Corvus OMNINET. The Corvus OMNINET local network is a distributed control network ${ }^{12}$. Its topology is a semi-bus configuration. It is actually not a true bus configuration because if it were, the failure of any node would not affect the rest of the network. While any of the computers can fail and not affect the network, if the central disk fails, it brings the entire network down. The computers can continue
to function using their local mass storage capabilities, but they cannot communcate with the central disk.

Each device attached to the OMNINET has an interface card called a transporter. The transporter utilizes a Motorola 6801 microprocessor which allows it to perform many of the high level network tasks such as the following: message transmission and acknowledgement, error detection and retransmission, and detection of duplicate messages. A collision avoidance scheme is implemented in the transporter to allow any device to tramsmit when the network is available. Collision avoidance is performed using a combination of two methods: the CSMA mechanism is utilized to determine when the network is available and the transporter computes a randomized transmit start time to minimize the probability of two devices trying to access the network at the same time. Since a collision detection mechanism is not required, the OMNINET is implemented on a RS-422 twisted pair wire thus eliminating the cost associated with collision detection hardware.

The OMNINET uses the same 20 Mbyte disk drive as the Constellation. It is connected to the disk drive by an OMNINET disk server which connects to one of the Constellation slots. This disk server is connected to the RS-422 twisted pair cable. The datatransfer rate for the Omininet is 128 Kbytes/second and the total allowed length
of the cable is 4000 ft. Up to 64 microcomputers can be connected to the network.

Computers in the LAN. There are four APPLE II microcomputers interfaced to the LAN via the OMNINET transporter cards. Each of the APPLE II's has its own local mass storage (at least one mini-floppy disk drive). A Tektronix 4662 Digital Plotter is interfaced to one of the APPLE II's in the LAN. Another APPLE II has a graphics tablet connected to it. A third APPLE II is interfaced to an Hitachi UV-VIS spectrophotometer via an Interactive Strutures l2-bit ADC and a Mountain-Hardware RTC. The fourth APPLE II, with two minifloppy disk drives, is set up for word processing (Wordstarfrom Micropro, Inc.), record management, and budget calculations. Also, two LSI-11 microcomputers are attached to the LAN. One of the LSI-ll is connected to the LAN via a Constellation Q-bus interface board and the other by the OMNINET transporter card. The LSI-11/23 Interface System is also connected to the LAN with a Constellation Q-bus interface board.

C. System Software

Operating System. Each computer in the system has the capability of using its own operating system. The APPLE II microcomputers use the UCSD P-system for Pascal and Fortran
and Dos 3.3 for Basic. The LSI-11 microcomputers are running under the RT-11 operating system.

Graphics. The Plot 10 software package from Tektronix, Inc. is implemented on the LSI-11s. The APPLE II computers use a standardized graphics package called Core_Graph (which was written and implemented on the APPLE II microcomputers by G. Scott Owen using the UCSD P-system Turtlegraphics commands). Intercomputer-communication. Each computer in the network has the capability of communicating with any other computer or peripheral in the network by a method called pipes. A Pipe is a buffer on the central diskthat collects datafrom a sender and makes it available to a receiver. Senders and receivers may be different programs on different computers running at different times. The only restriction is that the sending computer must send all data before the data is available to the receiving computer.

In addition to the Pipes, computers attached to the LAN with the OMNINET transporter can send messages to any device in the OMNINET network or broadcast messages to all devices attached to a transporter in the network. The transporter accepts two major catagories of commands from the host microcomputer to control the flow of messages: the send message command which transmits a message up to 2047 bytes in length to any designated host socket; and the setup receive command which prepares the host sockets to receive
incoming messages.
Data Acquisition Programs. The data acquisition programs are routines that acquire information from the different chemical instruments and perform different digital filtering techniques. Some filtering programs are boxcar averaging, ensemble averaging, Savitzky-Golay weighted filter, and Fast Fourier Transform filter.

Data Analysis Programs. Some of the data analysis programs are: curve deconvolution program using the Taylor series method and the FFT method, multicomponent analysis program, a program to determine the secondary structure of a protein from the CD spectrum, and a program to calculate and plot the molar el1ipticities for CD spectra.

D. Discussion

The design that was chosen for the implementation of the LDS was a distributed local area network of microcomputers with the chemical research instruments interfaced to the microcomputers. The network has a powerful intercomputer communication protocol which allows data collected from one microcomputer to be sent to another more powerful microcomputer system for analysis. If necessary, the data can be sent to a minicomputer or even a super minicomputer. The local area network design is based on the corvus Constellation and OMNINET schemes.

The Corvus Constellation was available about a year before Corvus Systems Inc. announced the OMNINET network. Thus, the Constellation system was purchased and implemented with two LSI-11 systems and one LSI-11/23 system. The LSI systems are connected to the Constellation multiplexer via Corvus Systems Q-bus interface boards. The Q-bus interface board plugs into the Q-bus backplane slot of the LSI-11 computers. A 34 pin flat cable connects the interface board to the multiplexer. The multiplexer is connected to the 20 Mbyte Disk Drive by another 34 pin flat cable.

The 20 Mbyte disk was configured to appear to be four logical RLOl disk drives (5 Mbytes each) to the LSI-11 systems. The first logical disk drive (0) was the system
disk for the LSI-11/23. The second logical disk drive (1) was the system disk for the two LSI-1ls. This was necessary because, even though the LSI-11 and $11 / 23$ have the same basic instruction set they have different floating point instruction sets. The LSI-ll has the EIS/FIS instruction sets and the LSI-11/23 has the FPU instruction set. Thus, the LSI-11 and $11 / 23$ can use the same system programs and utilities but they require different compilers and the associated libraries (for Basic, Fortran, and Pascal). The compilers and libraries for the EIS/FIS instruction set were placed on logical drive 1 and those for LSI-11/23 were placed on logical drive 0 .

Four spectrophotometers were interfaced to the LSI11/23 (details of this are given in the next chapter). The two LSI-11's are used for program development and data analysis. Although the Constellation scheme met the requirement for a successful LDS, it has two drawbacks. First, the attached computers must be within 50 feet of the multiplexer. This is a major problem since all of the instruments are not within 50 feet of each other. Second, as previously stated, the Constellation can be attached to a variety of microcomputers (APPLE II, PET, TRS-80, S-100 BUS, etc.) or to LSI-11 systems. That is, one can not mix LSI-11 systems and other computers with the Constellation. Later, Corvus Systems Inc. announced the OMNINET
system. This seemed to be the next approach to take. The Corvus was purchased with the understanding that it could be connected to the existing Constellation network. But this wasn't apparent when the OMNINET was first received since the existing software for the Constellation was incompatible with the OMNINET. With much effort on our part plus repeated calls to the company, Corvus Systems finally sent the software that allowed the OMNINET to be used with the Constellation. It was a considerable task to set up the network because no one else had ever mixed a Constellation system with an OMNINET system.

The OMNINET is connected to the 20 Mbyte Disk Drive by a Disk Server which connects to one of the Constellation multiplexer slots via a 34 pin flat cable. This Disk Server is connected to the OMNINET bus which is a twisted pair cable that sends/receives data in the RS-422 protocol. The OMNINET uses the CSMA scheme to control access to the network. The data transfer rate for the OMNINET is 128 Kbytes/second and the total allowed lengtb of the cable is 4000 feet. Up to 64 computers can be connected to the network via special interface cards called transporters. At this time, transporter cards are available for APPLE II, IBM PC, and LSI-11 microcomputers. Furthermore, Corvus has no available software for the LSI-ll transporter. Software which allows the LSI - ll transporter to send messages via
the OMNINET bus was written in our laboratory (in MACRO 11).

IV. Interfacing several spectrophotometers TO AN LSI-11 COMPUTER

A. Introduction

An attempt was made to interface four spectrophotometers to an LSI-ll microcomputer. The instruments were a Varian Model 3700 Gas Chromatograph, a Cary 17 UV-VIS-NIR Spectrophotometer,a Beckman 4240 Infrared (IR) Spectrophotometer, and a Durrum-Jasco J-20 Circular Dichroism (CD) Spectrophotometer. All of these instruments output an analog signal. In order to interface these intruments to the computer, the analog signal has to be digitized before it can be stored into computer memory. This process of digitizing the analog signal is performed by an analog to digital converter (ADC).

The $A D C$ is an electronic circuit that converts an analog input into a n-bit binary number. The basic conversion scheme for a typical succesive approximation $A D C$, such as we used, is shown in Figure 11. An unknown input voltage V_{X} is connected to one input of an analog signal comparator, and a time dependent reference voltage V_{R} is connected to the other input of the comparator ${ }^{13}$. V_{R} is varied until V_{X} is determined and the comparator determines whether the output voltage corresponds to a logic lor a logic 0.

The number of bits of the ADC determines its
resolution. For instance, a 12 -bit $A D C$ has a resolution of 1 part in 4096 times the fullscale voltage e.g. a 12 -bit $A D C$ with a lov fullscale range has a resolution of 2.44 mv . ADCs are available with resolutions varying from 6 to 20 bits.

Figure 11. The basic conversion scheme for a typical ADC.

R. Materials

Analog Input/Output System. The analog I/O system was purchased from Data Translation Inc. (Model DT2781). This is a DEC Q-bus dual height card that contains a 16 channel multiplexer (8 differential channels), an instrumentation amplifier to provide a high input impedance and noise rejection, a sample-and-hold that acquires and maintains a fixed output corresponding to the input level, two channel DAC (digital to analog converter), and an ADC.

The ADC has two input ranges: $0 v$ to 10 v (unipolar) fullscale with 12 bits resolution and -10 v to +10 v (bipolar) fullscale with 11 bits resolution. The conversion time is 25 microseconds. Also, the DT2781 has two external trigger sources for the synchronization of the A / D conversion: RTC INL (pin 21) and EXT TRIG (pin 19). Each of the two sources can be enabled or disabled individually by software by setting or clearing certains bits of the control and status register.

Real Time Clock. The Real Time Clock is also from Data Translation Inc. (Model DT2769). The DT2769 has a base frequency of 10 MHz which is dividedintofive rates (1 MHz , $100 \mathrm{KHz}, 10 \mathrm{KHz}, 1 \mathrm{KHz}$, and 100 Hz). It is used to generate an A / D (analog to digital) conversion at a desired frequency.

Gas Chromatograph. A modular, dual - column Varian Model 3700 Chromatograph is used for gas chromatography measurements. On the instrument input/output panel (located on the rear panel), there are two 0 v to $10 v$ computer outputs. A connection was made from one of the output connectors (upper det mode) to one of the input channels on the analog $I / 0$ card in the $L S I-11$ computer.

Infrared Absorbtion Spectroscopy. A Beckman 4240 Infrared (IR) Spectrophotometer is used for infrared absorbtion measurement. This instrument has a wavenumber range of $4000 \mathrm{~cm}^{-1}$ to $250 \mathrm{~cm}^{-1}$ witheight scanning speeds (1000, 600, $300,150,50,20,5$, and $2 \mathrm{~cm}^{-1} / \mathrm{min}$).

Located on the side of the instrument is a terminal block (TB201) used for connection of certain accessories and for analog and digital output. The computer connections were made to the pins marked $\%$ (per cent transmittance), ABS (infrared absorption), and $S I G G N D(s i g n a l$ ground) of the terminal block.

Circular Dichroism Absorbtion Spectroscopy. A Durrum-Jasco J-20 Circular Dichroism (CD) Spectrophotometer is used for the $C D$ measurement. The $C D$ spectrophotometer is a null system utilizing gain modulation to continuously balance and record the $C D$ signals. High level illumination is provided throughout the spectral range (800 nm to 185 nm) by a 450 watt high pressure Xenon arc lamp.

A previously designed special interface which was used to connect the CD instrument to a Nicolet Signal Averager was used to interface the spectrophotometer to the computer. This special circuit, housed in a black box, has two BNC outputs. The BNC labeled "S" on the black box is for the CD signal while the other connector is for a trigger signal. The trigger signal goes from 0 v to 15 v when the instrument is placed in the scan mode. This signal is used by the CD program to trigger the start of the A / D conversion.

UV-Visible Absorbtion Spectroscopy. A Cary 17 UV-VIS-NIR Spectrophotometer is used for the UV-Visible absorbtion measurements. The Cary 17 has a wavelengthrange of 186 nm to 2650 nm . It is equipped with a Universal Absorbance- $\%$ T Slidewire which gives eight absorbance ranges and a to 100% T range.

A special circuit designed by Mr. Armen S. Karapetain, electrical engineer with Lockheed-Georgia, was used to help interface the Cary 17 to the computer. This circuit was connected between the Cary 17 photometric interface connector J53B and two channels on the ADC. One channel was used for the sample signal while the other was for the reference signal. Another circuit was designed and connected between the J53B MVST pin and the DT2781 EXT TRIG pin to provide timing for the $A D C$ at sample time.

Computer System. The computer system was purchased from

Netcom Products, Inc. This includes a Netcom's HV-1123 enclosure assembly, a KDF11-AAmicroprocessor, andmemory modules. The $H V-1123$ includes a $Q(L S I-11)$ bus backplane, power supplies for the processor, memories and peripheral devices. The KDF11-AA (LSI 11/23) is a 16-bit high-performance microprocessor contained on one dual-height multilayer module. The KDFll-AA has an FPll hardware floating point unit to speed up arithmetic calculations, an FTllmemory management unit for 256 Kbytes of protected multi-user program space, and an extended instruction set (EIS). The memory is contained on a dual-height multilayer card and the card has $32 \mathrm{~K}, 18$ bits of RAM(random access memory). There are four memory cards in the system for a total of 256 kbytes (128 K words) of RAM.

The system configured is a LSI-11/23 with 128 K words of RAM. An ADM 3A (with a Retrographics Tektronix compatible graphics board with a 512×256 pixel resolution) is used as the console terminal. Also, the LSI-11/23 computer has a Heathkit dual floppy disk system (RXOl compatible 256 Kbytes/drive) and a Heathkit Data Systems printer. This system is connected to the LAN and uses the CORVUS Winchester Disk Drive (as two RLOl: drives).

Other Perpherals. A Tektronix 5110 Oscilloscope is used for real time graphics output. For a hard copy of the graphics, a Houston Instrument Omigraphic $X-Y$ Plotter is connected to
the system. Both of these instruments were interfaced to the two DAC channels.

DTLIB Real-Time Peripheral Support. DTLIB is a software package obtained from Data Translation, Inc. It consists of a single library of subroutines that operates under the RT11 operating system. DTLIB initiates and controls the function of the DT2781 and DT2769 boards.

C. Discussion

With the assistance of Mr. Armen S. Karapetain, electrical engineer with Lockheed-Georgia Company, it wasn't difficult to connect the Varian Model 3700 Gas Chromatograph and the Beckman 4240 IR Spectrophometer to the LSI-11/23 computer system since both of these instruments have a continous analog signal at their computer interface connectors. However, the Cary 17 and the Durrum-Jasco J-20 spectrophotometers have a pulsating analog signal at their computer interface connectors. This presented a problem when trying to synchronize the scan rate of the instrument with the timing of the RTC to signal the DT278l to performan A/D conversion.

For the CD spectrophotometer, a previously designed interface circuit which was used to connect the instrument to a Nicolet Signal Averager ${ }^{14}$ was used to connect the computer to the instrument. This circuit was connected to the CD recorder amplifier output. Since the CD scale potentiometer controls the recorder amplifier output, the $C D$ program has to compensate for the different voltage output by dividing the digitized voltage by the scaling factor in order to obtain the correct $C D$ measurements. Also, this circuit has an output voltage of 0 v to 15 v while the DT2781 analog board has a maximm input voltage of 10 v . This
presents a problem only when the CD scale is set to a factor of 10 or greater. To compensate, a scale factor less than 10 should be used or another circuit could be designed to match the $C D$ interface circuit output voltage to the DT2781 input voltage.

The output signals for the Cary 17 photometric interface connector J53B are shown in Table II. This is a 6 pin receptacle and the signals available are: pin A is the sample out; pin B is ground for both the sample and reference signals; pin C is the reference out; pin D is a 30 Hz multivibrator (MVST) timing signal which is more positive at sample time; pinE is a 30 Hz multivibrator (MVRT) timing signal which is more postive at reference time; and pin F (MVGND) is ground for MVST and MVRT signals. The maximum height of the sample pulse is 6 v and the reference pulse is $5 v$ when there is no absorbing species in the sample or reference compartment. The period of the sample and reference pulses is 32 ms while the pulse width is 8 ms and there are 16 ms between the sample and reference pulses. Furthermore, when an absorbing compound is placed in the sample cell compartment, the height of the sample pulse will decrease and the amount of decrease is used to indicate the amount of absorption by the sample.

Pins MVST and MVRT are used to provide timing for the sample and reference pulses, respectively. The MVST pin is

Table II. Cary 17 Photometric Interface Connector J53B

$\underline{\text { Pin }}$	Signal	Discription	Waveform ${ }^{\text {a }}$
A	SAMPLE	Sample amplifier ac feedback point.	\square
B	SIG. GND	Ground return and shield for SAMPLE and REF signals.	
C	REF	Reference amplifier output.	5
D	MVST	30 Hz multivibrator more positive at sample time.	
E	MVRT	30 Hz multivibrator more positive at reference time.	
F	MVGND	Ground return and shield for MVST and MVRT signals.	

connected to the EXT TRIG of the DT2781. The sample pulse occurs when the MVST signal goes from a low voltage to a high voltage (or positive transition). This is the time to signal the DT2781 to do an A/D conversion. However, the two trigger inputs of the DT278l are only edge sensitive and initiate a conversion on the negative (high to low) transition of the input signal. When the negative edge of the MVST signal occurs, the sample pulse has already passed as depicted in Figure 12. If an A / D conversion is performed at this time an improper reading will be obtained. In order to correct this problem, a special circuit was designed. The schematic of this circuit is shown in Figure l3. The circuit is called a one-shot monostable multivibrator because it produces one output pulse for each input pulse. One application of the monostable multivibrator is to produce a pulse of some specific duration. Since this circuit produces one output pulse for each negative going input pulse, the output frequency is the same as the input frequency. The pulse widthof the outputis determined by the $\mathrm{R}_{\mathrm{A}} \mathrm{C}_{1}$ time (R_{A}-resistor A and $\left.C_{1}-c a p a c i t o r ~ 1\right)$ constant. The pulse width is approximately:

$$
P W=1.1 \times R_{A} C_{1} .
$$

The MVST signal is connected to the input of the monostable multivibrator circuit. The negative going pulse of

Figure 12. The negative (high to low) transition of the MVST signal doesnot correspond to the sample output.

Figure 13. A one-shot monostable multivibrator circuit.

Figure 14. The output pulse of the monostable multivibrator adjusted so that the negative end of the pulse corresponds to the sample pulse.
the MVST signal triggers the circuit to produce a positive output pulse. The output pulse width can now be adjusted using a variable resistor at R_{A} to change the $\mathrm{R}_{\mathrm{A}} \mathrm{C}_{1}$ time constant so that the negative end of the pulse corresponds to sample time. The output of the monostable circuit is then connected to the EXT TRIG of the DT2781 board. The negative end of this pulse would trigger the A/D board (if enabled by software by setting bit 4) to take a conversion at sample time. This is shown in Figure l4. Instead of designing another monostable multivibrator circuit for the MVRT timing of the reference signal, the timing of the reference pulse was performed with the RTC. Since the reference pulse occurs 16 ms after the sample pulse, the RTC was programmed to signal the A / D board to do a conversion 16 ms after the DT2781 was triggered by the monostable multivibrator circuit.

The subroutine UVCON which acquires the data points from the Cary 17 and controls the functions of the DT2781 and DT2769 boards is written in MACRO assembly language (developed under the RT-11 operating system -see APPENDIX for complete listings). First, the RTC is programmed to run in a single interval mode (Mode 0). This is done by loading the Buffer-Preset Register (RTCBPR) with the 2's complement of the required number of clock pulses to be counted that will generate the amount of time delay (l6ms) required at a
selected clock frequency. Loading the RTCBPR with -16 at a clock frequency of 1 KHz would generate a 16 ms time delay.

MOV \#-16, RTCBPR \quad| ;Load the Buffer/Preset Register |
| :--- |
| ;with the desired number of clock |
| ;pulses. |

Next, the DT2781 Control - Status Register (ADCSR) is programmed to start a conversion on channel 6 from the monostable multivibrator external pulse circuit.

mov	\#ADINT, ADVEC	;Move A/D Done interrupt handle ;into DT2781 vector address
MOV	\#6, STCH	; Channe1 6
SWAB	STCH	; Put channel no. into high byte.
EIC	\#377, STCH	; Clear low byte.
ADD	\#120, ${ }^{\text {STCH }}$;Add gain bits $=0$, EXT TRIG ENB ; bit $=1$ (set), and DONE INT ENB ;bit $=1$ (set) to low byte.
;		
MOV	STCH,ADCSR	```;Move parameters into Control- ;Status Register --- Wait for ;Ext Trig to start a conversion on ;channel 6.```
;		
CALL	DISP	; Display data on the scope.
CMP	dCOUNT, 非	; Is the number of point = zero?
BGT	REPEAT	; No - do another conversion.
;		
RTS	PC	; Yes - return to main program.
/D DONE INTERRUPT HANDLER		
mov	ADDBR, (R3)+	; Move data from Data Buffer ;Register to data buffer.
INC	RTCCSR	; Start RTC to count.
XOR	\# 400, ADCSR	; If channel 6 set to 7
		;else if channel 7 set to 6!!!!!!

```
;Channel 6 - sample signal.
;Channel 7 - reference signal.
DEC DCOUNT ;Decrement the number of points
RTI ; Leave A/D interrupt handler.
;
; RTC OVERFLOW INTERRUPT HANDLER
OVFINT: INCB ADCSR ; Start A/D conversion on REF SIG!!
    RTI ;Leave RTC OVF interrupt handler.
;
```

Figure 15 shows a block diagram of the interface system involving the spectrophometers and the LSI-11 computer. The functions of the DT2781 and DT2769 boards can also be controlled by the DTLIB software as described below:.

SETR. The SETR subroutine is used to set the clock to pulse at a particular frequency. This pulse is then sent to the DT2781 board via pins RR and SS to trigger the A / D conversion.

RTS. The RTS subroutine is used to initiate and control real time sampling of the analog input channel. Collected data are stored in an input buffer (a single dimensional array).

The subroutines that output the data to the $X-Y$ plotter and the oscilloscope via the two DAC channels are written in MACRO-11 assembly language.

XYPLOT. The XYPLOT routine plots an array of data on the $X-Y$ plotter.

DISP. The DISP routine displays the data on the oscilloscope while the data is being collected from the instrument.

The program that acquires the data from the individual instruments in the system is called AMLAB. The main program

Figure 15. Block diagram of the LSI-11/23 interface system.
of $A M L A B$ is written in FortRAN with some subroutines in FORTRAN and some in MACRO-11. When the program is excuted, a menu is displayed allowing the user to choose which instrument the computer should acquire the information from. After collecting the data, another menu appears allowing the user to either print the data on the line printer or terminal, store the data on the diskin a file, plot the data on the $X-Y$ plotter, or quit the program. A complete listings of $A M L A B$ is given in the APPENDIX.

v. DISCUSSION

The chemistry research laboratories are primarily housed on the third floor of Charles Merrill hall. The LAN RS432 cable runs from one end of the Hall to the other end as shown in Figure 16 (the dotted line in the figure represents the RS-422 cable). This figure shows the floor plan of the third floor and the location of each laboratory. The head-end of the cable is located in room 302. This room contains several research instruments including the spectrophotometers that are interfaced to the LSI-11/23 system. Also, the 20 Mbyte Winchester Disk Drive connected to the Corvus Constellation is in this room. The terminal-end of the cable is in Dr. Owen's office which is located in room 316.

A block diagram of the LAN with the computers and peripherals connected to it is shown in Figure 17. There are three different types of computer systems in the LAN (APPLE II, IBM PC, and LSI-11 systems) each of which use a different operating system. Therefore, the 20 Mbyte disk was partitioned to accommodate each type of computer and its respective operating system (or systems): $41 / 2$ Mbytes for APPLE II U.C.S.D. Pascal, $1 / 2$ Mbytes for APPLE II CP/M, 1 Mbyte for APPLE II DOS 3.3, 3 Mbytes for IBM PC-DOS, and 10 Mbytes for the LSI-ll systems (emulating two DEC RLOl disk

Figure 16. Diagram of the $3^{\text {rd }}$ Eloor of Charles Merrill Hall.

Figure 17. Block diagram of the LAN.

Figure 18. Partition of the 20 mbyte disk.
drives). This is shown in Figure 18. The remaining disk space (1 Mbyte) is used for the PIPE area.

LDS Applications

Entering The System. Each computer system has it own log-on procedure to let the user enter the system. For the APPLE II System, the user must have al to 4 character password (and a 2 character ID) in order to have access to the system. Data Acquisition. Experimental data are acquired from the LSI-11/23 Interfaced System by the program AMLAB. Because of the continuous failure of either the instruments interfaced to the system or the LSI-11/23 computer, this program could not be tested to determine whether or not it produces adequate results. The programs ADUV 8 (for 8 -bit data acquisition) and ADUV12 (for 12 - bit data acquisition) written by Dr. G. S. Owen and modified by Dr. James Currie acquire data from the APPLE II interfaced Hitachi UV-VIS spectrophotometer. Each of these programs has the capability of performing real-time digital filtering to enhance the S / N ratio.

The data acquisition programs can store the experimental data in a database on the 20 Mbyte disk. The information is stored on the disk in the following format:

Title of Experiment (30 characters max.) ;
Date (20 characters max.) ;
Instrument Type (20 characters max.) ;
Attributes (nul, raw data, boxcar average, ensemble average, SGsmoothed, FTsmoothed);

X-interval (a real value);
Y-scale (a real value);

Data (an array of integer values).

After the experimental data are stored on the disk, the post-run filter programs can be used to further improve the S/N ratio. The next series of figures illustrate how digital filtering programs can remove noise from the signal. Figure 19 a shows a computer simulated spectrum using a double sine angle function. Noise was added to the spectrum by a random function (Figure 19b). The spectrum in Figure 19 c is the result after a 16 scans ensemble average and a 25 points Savitzky-Golay filter were performed, thus enhancing the S / N ratio by a factor of 20. Figures 20 to 22 illustrate the digital filtering capability of the FFT filter program. Figure 20 shows a graphical representation of a sine wave function. Figure 21 depicts the sine wave with noise added to it. A forward transformation was performed on the noisy data. While in the frequency domain, a optimal zero filing range is inputted into the real and imaginary array. Figure 22 illustrates the results of the inverse transformation of

Wavelenght (nm)

Figure 20. A graphical representation of a sine wave function.

Figure 21. The sine wave with noise added to it.

TIME

Figure 22. The results of the inverse transformation of the noisy spectrm after the optimal zero filling range.
the noisy spectrum after the optimal zero filling range. Graphics. Graphics display would allow on-1ine monitoring of data acquisition plus it would greatly facilitate data interpretation. Each computer system in the LDS has a graphics display device. The resolution on the APPLE II system device is 192 by 280 pixels, for the IBMPC systemit is 640 by 200 pixels (or 320 by 200 for color), and the LSI11 system has a resolution of 512 by 250 pixels for the ADM terminal and 640 by 480 for the Tektronix 4025 terminal. In addition, the APPLE II and IBM PC systems have color graphics capability. Graphics hardcopy devices for the LDS includes an APPLE II silentype printer, Tektronix 4662 digital plotter, IDS 440 Paper Tiger printer, and $\quad X-Y$ plotter.

The routine XYPLOT outputs the data to the X-Y plotter as illustrated in Figure 23. Figures 24,25 and 26 illustrate output on the 4662 digital plotter. Data were outputted to the digital plotter by the program AGRAPH (see APPENDIX).

Communication. Each computer in the LDS network has the capability of communicating with any other computer and its peripherals. This allows the computers to share the larger, more expensive and reliable peripherals, thus eliminating the duplication of such peripherals.

Pipes are one method that enables different computers

Figure 23. Computer simulated spectrum output to the $X-Y$ plotter by the routine XYPLOT.

0.2-1M LINEAR SUCROSE GRADIENT (E. COLI R-RNA)
$\frac{\text { Figure 25. A plot of absorption versus fraction-number using the program }}{\text { AGRAPH. }}$

SLBSTRATE SATURATION UITH INORGANIC PYROPHOSPHATE IN ASSAY MIX
AMOUNT OF CTP HYDROLYSED PER MINUTE PER MILIGRAM AT PH 8.4

[SUBSTRATE] MM

[^1]to commuicate with each other or share common peripherals. The program SPOOL from Corvus Inc. uses Pipes. This program sends a file with a designated Pipe name to the Pipe area of the disk. Once in the Pipe area, any computer system in the LDS network can retrieve that pipe by using the "D(espooler)" option in the SPOOL program. In addition to the Pipes, computers connected to the LDS via the omninet transporter can communicate with each other using the transporter commands. The following routines were written to utilize the transporter commands:

SENDM () Send message command directs the transporter to send a message to the indicated destination host and destination socket.

SETUP () Setup receive command prepares a socket for the receiving of a single message.

ENDREC () End receive command tells the transporter to release the specified socket.

INTRAN () - Initialize transporter command initializes the transporter as in a hardware reset or a power-up.

WHOAMI () Who am I command returns the transporter's device address.

ECHO () -Echo command is used to verify the presence of another network device.

Each of these routines was written in the respective computer systems assembly language. Listings of these routines for the 6502 (APPLE II) assembly language and MACRO-11 are given in the APPENDIX.

VI. CONCULSION

The LDS design of a distributed local area network of microcomputers with the chemical research instruments interfaced to the microcomputers achieved the purpose of this research project of implementing a LDS for data acquisition and analysis. The Corvus Constellation and OMNINET schemes fit the requirements for an inexpensive, relatively high performance local area computer network. This LAN is quite flexible and new systems can be easily added as they are developed. With a powerful intercomputer communication protocol, the system allows information to be stored as a part of a created database. The flow of information to and from the database is controlled by the LDMS. Graphics and display programs help facilitate the interpretation of the data. Digital filtering programs enhanced the S / N ratio of noisy data. Furthermore, extensive software development can be done on the system without adversely affecting other functions. Thus, this relatively inexpensive system permits efficient resource and data sharing that is needed in the research laboratory.

REFERENCES

1. Frazer, J. W.; Rigdon, L. P.; Brand, H. R.; Pomernacki, C. L. Anal. Chem., 1979, 51, 1739 .
2. Kryskow, J. M.; Miller, C. K. Computer Design, 1981, 20, 22.
3. Dessy, R. E. Anal. Chem., 1982, 54, 1167A.
4. Freeman, H. A. Computer, 1980, 13, 7.
5. Thornton, J. E. Computer, 1980, 13, 10 .
6. Binkley, D. P.; Dessy, R. E. J. Chem. Ed., 1979, 56, 148 .
7. Savitzky, A.; Golay, M. J. E. Anal. Chem., 1964, 36, 1627 .
8. Phillips, J. B. Anal. Chem., 1980, 52, 468.
9. Griffiths, P. R. App1. Spectrosc., 1975, 29, 11.
10. Binkley, D. P.; Dessy, R. E. Anal. Chem., 1980, 52, 1335 .
11. "LSI-11 Plug-Compatible Disk Systems Reference Manua1," Corvus Systems, Inc., San Jose, Cal., 1981.
12. "OMNINET Programmer's Guide," Corvus Systems, Inc., San Jose, Ca1., 1982.
13. Jaeger, R. C. IEEE Mirco, 1982, 2, 20.
14. Strickland, C. M.S. Thesis, Atlanta University, Atlanta, Ga., 1981.
```
C
C
C
C
C
C
C
5
    IASIZE = 3000
    CONTIMUE
    TYFE 10
    ACCEFT 20: IANS
    IF (IANE ,EQ, 'Q') GOTO 30
    IF (IANS ,EQ. 'C') CALL CDACQU(IARRAY,IASIZE)
    IF (IANS ,EQ. 'U') CALL UVACQU(IARFAY,IASIZE)
    IF (IANS ,EQ. 'G') CALL GCACQU(IARRAY,IAEIZE)
    IF (IANS .EQ, 'I') CALL IRACQU(IARRAY,IASIZE)
    GOTO 5
    CONTINUE
30
C
C*************************** FORMAT STATMENTS ***************************
10 FORMAT (///1X,'DATA ACQUISITION FOR---',/1X,' C)IRCULAR DICHROISM',
    * 'U)U-UISIBLE, G)AS CHROMATOGRAFH, I)NFRA FED, OR QIUIT',2X,$)
20 FORMAT (A2)
C*************************************************************************
C
    ENI
```

c this subroutine output an afray of iata to a terminal, line frinter, or
c to a data file.
c
c
C
SUEROUTINE DUTIAT (IARRAY, NFOIMT, XSTART, XINCR)
IIMENSION IARRAY(NFOINT)
CONTINUE
XVALUE=XSTART
TYFE 10
ACCEPT 20, IANS
IF (IANS .EQ. 'T' ,OR. IANS .EQ. ' P ') GOTO 40
IF (IANS ,EQ. 'F' .OR. IANS .EQ, 'Q') GOTO 40
TYFE 30
GOTO 5
40 CONTINUE
IF (IANS .EQ, '0') goto 70
IF (IANS ,EQ. 'F') GOTO 50
IF (IANS .EQ. 'P') GOTO 50
$J=0$
DO $45 \mathrm{I}=1$, NPQINT/ 10
TYPE 68, XUALUE, (IARRAY(J),J=J+1,I*10)
XUALUE $=$ XVALUE- (XINCF*10)
$J=I * 10$
continue
goto 5
continue
$J=0$
D0 $55 \mathrm{I}=1$, NFOINT/10
PRINT 68, XUALUE, (IARRAY(J), J=J+1,I*10)
XUALUE=XUALUE-(XINCR*10)
$J=I * 10$
continue
GOTD 5
60 CONTINUE
TYFE 65
CALL ASSIGN (1,'XXXXXX, IAT',-1,'NEW',NC,1)
TYPE 80
WRITE (1,*) XVALUE, XINCR, (IARRAY(I),I=1,NPOINT)
TYPE 90
CALL CLOSE (1)
GOTO 5
continue
70
C
C****************************** FORMAT STATEMENTS ************************
10 FORMAT (///1X,'OUTPUT DATA TO--- T)ERMINAL, F)RINTER, F)ILE, OR
* Q) UIT ', $2 \mathrm{X}=\%$

0
C

$$
\square
$$

C THIS SUBFOUTINE DUTPUTS AN AFFAY OF FOINTS TO THE OMNIGRAFHIC X-Y
C FECOFDEF:
C
C
C
SUEROUTINE XYFLOT(IARFAY,NFOINT,MAXNUM)
IIMENSION IARRAY (AFOINT)
IFANGE = NFOINT
IEIART $=1$
IMC $=1$
TYFE 10
PAUSE 'HIT THE EETURN KEY TO CONTINUE'
CONTINUE
TYEE 20
AECEFT 22; IANSI
IF (IANS1.EQ + 'E' .OR. IANSI .EQ. 'W') GOTO 30
IF (IANSI ,EQ. 'S' .OF. IANEI .EQ. 'Q') GOTO 30
TYFE 25
GUTO 15
continue
TYFE *
TYOE K
IF (IANSI .EQ, 'Q') B0T0 70
IF (IANSI , EQ. 'S') GOTO 50
IF (IANSI +EQ. 'W') GOTO 50
IFANGE $=$ NFUINT
ISTAFT $=1$
IAC $=1$
goto 5in
CONTINUE
TYFE *, 'ENTER THE STARTING FOINT NUMEER'
ACCEFT *, ISTART
TYFE *; 'ENTER THE NUMBER OF FOINT TO BE FLDTTEI'
ACCEFT *; IRANGE
TYPE *; 'ENTEF THE INCREMENT'
ACCEPT *, INC
EONTIA!E
INCR $=$ INC* (MAXNUM/IRANGE)
1 ETART = ISTART-1
CALL IPLOT (IARRAY,INCR,1)
EOTO 15
70 GGMTINUE
C

10 FQFMGT (///IX,'TURN DN THE OMNIGRAFHIC RECORLIER ANII SET THE',
$+\quad$ CONTROL',////)
30 FOFMAT (//1X:'PLOT E)NTIRE SFECTRUM, W)INDOW, S)AME WINIDW,:

```
    + ' OR Q)UIT',2X,变
22 FORMAT (A2)
25 FOFMMAT (/////1X,'********** ILLEGAL OFTION ***********'/////)
```



```
C
        RETURN
        Eng
```

```
    *TITLE IPLOT:MAC
;
: THIS GUEROUTINE QUTFUT AN ARRAY OF NUMEEF TO THE I/A BUFFEF (CHANNEL A)
; ON THE [IT2791 A/II BOARD (CHANNEL A=170404, E=170406).
% -m--------WRITTEN BY T , J. GKEEA
;
    GLOEL IFLOT
;
    MCALL ,FFINT;:TTYIN
;
IFLQT: TST (FS)+
    MOV (FS)+,F4
    MOU E(F5)+,IFAC
    MOV E(RS)+,IEUF
    ELE FETUFN
    CLF F3
    CLF F:2
    CLE E#170404
    CLF @$170406
    *FRINT #MSG1
    .PFINT #MSG2
INLF'; ,TYYIN
    CMFE FO,#15
    BEQ DUT
    BR INLF
OUT: .PFINT #MSGZ
    MOV #1800.,AFAC
    SUE NUM,AFAC
    MOV $0.,R3
NEXT: MOU R3,Q#170406
    MOV (R4)+,0+170404
WAIT1: MOU $350.,COUNT
HAIT; NOF
    DEC COUNT
    ENE WAIT
    INC K2
    CMF F2,IFAC
    ILT WAITI
    CLF F2
    ALD IFAC,FB
    CMF R3,#1800.
    ELT NEXT
    CLF FO
    *FRINT #MSGG
    *FRINT $MSG6
    .FFINT $MSG4
    .FFINT #MSGS
    ,FKINT *MSG5
    *FRIMT #MSG2
INLF1: ,TTYIN
```

```
    CMFE RO,#15
    BEQ OUT1
    BR INLF1
OUT1: CLF E#170404
    CLR @#170406
;
RETURN: RTS FC
AFAC: ,RLKW 1
IFAC: FELWW 1
IEUF: .ELKW 1
COUNT: ,FLKW 1
NUM: PRLKW 1
MSG1: .ASCIZ *FLIF THE RESET/SWEEP SWITCH ON THE PLOTTER TO SWEEF*
MSG2: ASCIZ /HIT THE RETURN KEY TO CONTINUE;
MSG3: .ASCIZ /FLOTTING IN FROGRESS........................
MSG4: .ASCIZ /FLOTTING IIONE,
MSG5: , ASCIZ *FLIF THE RESET/SWEEF SWITCH TO RESET*
MSG6: .ASCIZ / /
    * END
```

```
    .TITLE [IISF
THIS ROUTINE IISFLAYS THE [IATA ON AN OSCILLOSCOPE.
;
SG=44
;
lOISF: TST (R5)+
    MOV (FS)+,IEUF
    MOV g(R5)+IFAC
    HOV G(FS)t,N|M
    :TO (E5)+,50
    MOU B(FS)+,IDELAY
    ELE FETUFN
    HOU RO,F5
REFEAT: ISK FC,SCOFE
    MMF (FS5),#1
    BHE REPEAT
    *FRINT AMEEGI
    SGR PC:QUIT
RETUEN: RTS FR
%
: SUBFGUTINE SCOFE
SCOFE: HOU #-2048.,FZ
    HEV NUM,COUNT
    MDV IEUF,FA
MEXT: HOU {R4:TYYUAL
    ADL $-204S.%YUAL
    MOV YVAL,E*170404
    MOU RZ,E$170406
    ADI IFAC,RZ
    MDY DELAY:H2
STIME: SDE F2,gTIME
        IIEC COUNT
        ENE NEXT
        FTS FC
&
* SUBFOUTMIE QUIT
OHIT: NOV (SF)+,RI
    BIS #100,0#JSW
NOCH2R: TTINR
    ECC OUT
    ISR FC,SCOFE
    ER NOCHAR
IUT: BIC $100,JSU
    MOV FEI,-(SF)
    STS FC
%
IBUF* ,FLKW\ I
```

1FAC: ELKK 1
EMF: \quad ELKW 1
COUNT: BLK 4
DELAY: + ELKW 1
MIA: BEKW 1
YHAL: \quad PLKK 1
MESGI: ASCII /IATA ACQUISITION COMFLETE-HIT FETUFN TO CONTINUE / - END

```
    -TITLE BuCON
;
% THIS FOUTINE ACQUIRES THE IIATA FOINTS FROH THE CARY 17.
;
    GLOEL IUNCON
    .HCALL .FFINT:,TTINK, TTYTN,.MTFS
%
SW=44
ALCER=170400
AIIEF=170402
IASUFA=170404
EARUFB=170402
F:TCCSF=170420
ETEBFR=170422
\thereforeOMES=409
F:ME=-401
#, <1CC=110
BuCON: TST (FS)+
    MOU (FS)+:IEUF
    MOU Q(F5)+,IFAC
    MOU (G(R5)+,NUM
    MOU E(FIS),IIELAY
    ELE RETURN
    MOU $400,R1.
    MOV IEUF,RE
    Nav NLM,IICOUNT
    M0: $-16.,RTCBFR
    #Dy #140,RTCCSR
    #Oy #OUFINT,CLKUEC
    HOY FALINT,AINEC
    M0y #E.STEH
    SHAE ETCH
    BIC $377,STCH
    GIID F120,STCH
    ,MPPE $0
    TET ADDER
    ,FEINT *MESGO
    gTE $10100,巴#JSW
IHLODF: -TTYIN
    CMFB RO,#12
    GNE INLOOF
    MOV STCH,ADICSR
    .FRINT #MESG2
FEPEGT: CHIL IISP
    EME TICOUNT,*0
    BGT REPEAT
    CLE ADCSR
    -MTFE $340
    *FFINT #MESG1
NOCHAK: TTTINE
```

```
    B:C OUT
    GALI [ISF
    #R NOCHAF
I:TT: EIC $10100,O#JSW
    MOV $-204B.,IIABUFA
    MOU *-2048.,DABUFB
FETURN: FTS PE
%
* A/II IONE INTEFFUPT HANILLEF
ARINT: MOU ALIBR:(RZ)+
    IAC FTCCSR
    XOR FII,#AIICSR
    IEC DCOURT
    RTI
;
% FTC OMEFFLOW INTERRUPT HANILER
OVFI#T: I:NCE ADCSR
    ETI
;
OGPFRUTINE IIEF
LTEP: mOU *-2048.gXVAL
    HOV NUM,COUNT
    MOU IEUF,R4
NEYT: MOV (R4)+,YVAL
    AIII #-204B.,YVAL
    MOU YUAL:DAEUFA
    MO! XVAL,DABUFE
    ADT IFAC,XUAL
    MOU IIELAY,R2
STIME: SOE R2,STIME
    IEE COUNT
    ENE NEXT
    EETURiN
%
#
19UF: , WKKU 1
IFAC; .EIEGW 1
ELKC% ,ELKW 1
FQUPT: ,HLKW 1
[COymT: , BLKW 1
IIELAY: , ELKW 1
BGM: -ELKW 1
STEH: , BLKW 1
```



```
YVAL: ,BLKW 1
#ESGO: ,ACCIZ /HIT THE RETURN KEY TO START ----------------
HESG2: .ASCIZ /HATA ACQUISITION IN PROGRESS ....................
MESG1: *ASCII /IIATA ACQUISITION COMFLETE --- HIT RETURN TO CONTIMUE /
    - ENII
```

TEFRY J. GREEN CHEMOMETRICS LABORATORY
atlanta university
atLanta, georgia
IIIMENSION FNTS(1500), NUM(10), XST(10), XINC(10), YSCAL(10)
LOGICAL*1 FNAME(12)
$I S Z=1500$
HAXEUF $=152$
MAXFIL=10
NFILE $=0$
NFTS=1
IF (ITTOUR(26) .NE * 0) GOTO 5
TYFE 10
TYFE 11
CONTINUE
MFILE=NFILE+1
CALL LINEF
TYPE 12
CALL IFOKE('44,'10000.0R. IFEEK('44))
ICH = ITTINR()
IF (ICH .EQ. 70) GOTO 45
IF (ICH ,EQ. 84) GOTO 35
goto 32
CONTINUE
CALL IPOKE ('44;"10000 +X0R. IPEEK("44))
CALL KEYIN(PNTS,ISZ,MAXBUF,NPTS,NUM(NFILE),XST(NFILE),XINC(NFILE))
GOT0 55
CONTINUE
CALL IPOKE ('44,'10000 +XOF, IFEEK('44))
IF (ITTOUR(26) +NE, 0) GOTO 47
TYPE *,'ENTER THE IIATA FILE NAME
ACCEPT 200,FNAME
CALL ASSIGN (:,FNAME,O,'F[10',NC,1)
TYPE 48 FFNAME
EEAKI (1:*) NUM (NFILE)
CALL CLUSE (1)
HUM1 = N! IM (NFILE)
IF (NUM1 , GT. MAXBUF) GOTO 60
ITOF = NPTS+NUM1-1
CALL ASSIGN (1,FNAME,0,'RDO',NC,1)
FEAD (1,*) IIUMMY, XST(NFILE),XINC(NFILE),YSCAL(NFILE),
1 (PNTS(I),I=NFTS,ITOF)
CALL CLOSE (1)
IID 50 I=NFTS,ITOF
PNTS(I)=PNTS(I)*YSCAL(NFILE)
CONTINUE
NF'TS=NFTS +NUM1
CONTINIJE
आAXEUF = MAXEUF-(NPTS-1)
IF (MAXEUF +LT. 2) GOTO 65
IF (NFILE , GE , MAXFIL) GOTO 65

```
    CALL LINEF
    TYOE 57
    CALL IFOKE("44,"10000 ,OR, IFEEK('44))
    IAIKE = ITTINR(`
    IF (IANS .EQ. 78) GOTO 65
    IF (IANS ,EQ. 89) GOTO 30
    G0TO 5S
    continuE
    IYFE *, 'SOFRY---THEFE IS NOT ENOUGH BUFFER SPACE'
    IF (NFILE ,EQ, 1) STOF
    CONTINUE
    TYFE *, 'DO YOU WANT TO CONTINUE (Y/N)'
    CALL IFOKE ("44,"10000 .OR. IPEEK("44))
    IAN = ITTINR()
    IF (IAN ,EQ. 78) STOF
    IF (IAN ,EO, E9) GOTO 65
    GOTO 64
    CONTINUE
    XMAX1=((NUM(1)*XINC(1))-XINC(1))+XST(1)
    IF (NFILE .GT. 1) GOTO 70
    XMIN1=XST{1)
    GOTO 80
    CDNTINUE
    CALL MINMAX(XET,NFILE,XMIN1,TMAX1)
    LO 75 I=2,NFILE
    IMAX=((NUM(NFILE)*XINC(NFILE))-XINC(NFILE))+XST(NFIILE)
    IF ([IMAX ,GT, XMAX1) XMAXI=IMMAX
    CONTINUE
    CONTINUE
    NFTS=NFTS-1
    CHLL CURUE(FNTS,NPTS,NUM,NFILE,XST,XINC,XMIN1,XMAX1)
C
C.************************ FORMAT STATEMENTS *************************
10 FOFMAT (20X,'*** WELCOME TO AGRAPH ***'/40X;
    1 '----------WRITTEN EY T. J. GREEN',//,
    2 ' THIS FROGRAM PLOTS GETS OF X-Y DATA FROM A IIATA FILE OR',
    3 ' THE IIATA CAN BE',',' ENTERED UIA THE TERMINAL KEYBOARI,',
    4 ' DATA IN A FILE MUST EE IN THE FOL-',/' LOWING FORMAT:')
11.
    FOFMAT(/,'
                            1) NUMBER OF Y-(IATA) POINTS',/,
        , 2) INITIAL X-VALUE',/;
                        3) X-INCFEMENT',/%
                                4) Y-SCALE FACTOR',/
                            5) Y-(DATA) POINTS')
            FORMAT (' DATA FROM A F)ILE OR T)ERMINAL',*;IX)
    FORMAT (1X,'LO YOU WANT TO ENTER MORE IAATA (Y/N)?',#,1X)
    FOSMAT(' REAIING IATA FROM FILE.* +*''12A1,$,)
S00 FORMAT(12A1)
```



```
5
$000 [F (ITTOUR(25) ,NE, 0) GOT0 1000
1005 IF (ITTOUR(24) ,NE. 0) GOTO 1005
    STOF
```

```
    SURFOUTINE KEYIN(YPTS,ISIZE,MAXNUM,IST,NUM,XST,XINC)
    IIMENSION YFTS(ISIZE)
    NTL = 10
    I J=1
    IF (ITTOUR(26) ,NE, 0) GOTO 5
    TYFE *,'DATA FROM THE KEYBOARI
    TYFE 10
    ACCEFT *, XST
    TYFE 15
    ACCEFT *, XINC
    TYFE 20
    ACCEPT *, NUM
    IF (NUM .GT. MAXNUM) GOTO 1000
    IF (ITTOUR(26) ,NE, O) GOTO 18
    TYF'E 25, NUM
    ACCEPT *, (YFTS(I),I=IST,NUM+IST-1)
    TYFE 28
    CALL IFOKE('44,'10000 ,OR, IFEEK('44))
    ICHAF=ITTINR ()
    IF (ICHAR .EQ. 89) GOT0 45
    IF (ICHAR ,EQ. 79) GOTO 300
    GOTO 40
    CONTINUE
    IF (ITTOUR(26) .NE, 0) GOTO 47
    TYPE 46
    CALL IPOKE('44,'10000 ,OR, IPEEK('44))
    ICHAR = -1
    TYPE 30
    ICHAR = ITTINR()
    IF (ICHAR .EQ. 76) GOT0 49
    IF (ICHAR ,EQ. 67) GOTO 65
    IF (ICHAF ,EQ, 65) GOTO 80
    IF (ICHAR ,EQ. 73) G0T0 90
    IF (ICHAR ,EQ, 82) GOTO 120
    IF IICHAR .EQ, 81) GOTO 300
    GOT0 48
    4% CONTINUE
    55 IF (ITTOUR(26) .NE. 0) GOTO 55
    TYPE 46
    TYFE 32
    IF (NUM ,LT, NTL) NLINE = NUM
    TYPE *,'POINT NUMBER Y-VALUES'
    10 60 I=1,NLINE
    IF {IJ,GT, NUM *AND. I &NE, 1) TYPE 200
    IF (IJ,GT, NUM) IJ = 1
    TYFE *, IJ,' ',YPTS(IJHIST-1)
    IJ=IJ +1
    CONTINUE
    TYFE *
    G0T0 48
    SDNTINUE
    CALL IFOKE('44,'10000 *XOR, IPEEK('44))
```

```
6% TYPE 68
    ACCEFT *, IC
    IF (IC .LT, 1 .OR. IC .GT. NUM) GOTO }7
    TYPE 72
    ACCEPT *, YFTS(IC+IST-1)
    IJ = IC
    GOTO 9000
    CONTINUE
    TYFE 74, NUH
    GOTO 63
    CONTINUE
    CALL IPOKE('44,'10000 *XOR + IFEEK('44))
    IF (NUM ,GE MAXNUM) GOTO 2000
    IALI = MAXNIJM - NUM
    TYFE 81
    ACCEPT *, IADI
    IF ((IAIIINUM) , GT, MAXNUM) GOTO 3000
    IJ = NUM+1
    IOF=NUM+IST
    NUNH=NUM+IAIII
    TYFE B6, IADI
    ACCEFT *, (YFTS(I),I=IOF,NUM+IST-1)
    GOTD 9000
    CONTINUE
    CALL IPOKE('44,'10000 +XOR. IPEEK('44))
    TYFE 94
    ACCEPT *, INS
    IOFI = (IST+INS)-1
    IF (INS .LT, 1) GOTO 4000
    IF (INS ,GT. NUM) GOTO 5000
    TYPE 96
    ACCEFT *, TEMF
    IT = 1
    NUM = NUM + 1
    1TOF = NUM+IST-1
    00 105 I=IOFI,ITOF
    YFTS(ITOP-IT+1) = YFTS(ITOP-IT)
    IT=IT+1
    CONTINUE
    YFTS(IDFI)=TEMP
    IJ = INS
    SOTO 9000
    CONTINUE
    CALL IPOKE(*44,'10000 ,XOF, IFEEK(*44))
    TYFE 125
    ACCEPT *,IRM
    IOFR = (IST+IRM)-1
    IF {IFM .LT, 1) GOTO 4000
    IF (IRM ,GT, NUM) GOTO 5000
    NUM = NUM - 1
    ITOF=NUH+IST-1
    IO 130 I=IOFR,ITOF
```

```
    YPTS(I) = YFTS(I+1)
1 3 0
1000 comtinue
    TYPE 16, MAXNUM
    GUTO 17
2000 CONTINUE
    TYFE *,'NO MORE UALUES CAN EE ADDED'
    GOTO 9000
3000 CONTINUE
    TYFE 89, IAD
    GOTO 9000
4 0 0 0 ~ C O N T I N U E ~
    TYFE *,'FOINT NUMEER TOO SMALL!!!!!!!!'
    GOTO 9000
5000 CONTINUE
    TYPE *,'FOINT NUMBER TOO LARGE!!!!!!!!'/
    GOTO 9000
C
1 0
15
16
20
25
20
30
32
4 6
68
72
7 4
84
85
89
94
96
125
200
305
C
300 CONTINUE
    CALL LINEF
    TYPE }30
    IANS = ITTINR()
    JF (IANS .EQ. 78) GOTO 320
    IF (IANS ,EQ. 89) GOTO 315
    GOTO 310
315 CONTINUE
    CALL IPOKE("44,'10000 :XOR, IFEEK(*44))
    CALL SFILE(YPTS,NUM,XST,XINC)
    GOTO 325
```

```
320 CONTIHUE
    CHLL IFOKE('44,'10000 ,XOR. IFEEE('44))
    IST = IST+NUM
        FETUFN
        END
        SUBFOUTINE SFILE (YPTS,NUM,XST,XINC)
        DIMENSION YPTS(NUM)
        YSCALE=1.0
        CALL LINEF
        T'YPE 10
        FORMAT:' ENTER THE FILENAME (6 CHARACTEFS MAX)',$;1X)
        CALL ASSIGN (1;'XXXXXX,DAT',-1,'NEW',NC,1)
        WFITE (1;*) NUM,XST,XINC,YSCALE,(YPTS(I),I=1,NUM)
        CALL CLOSE (1)
        RETUFM
        END
        SUBROUTINE LINEF
    IF (ITTOUR (13) ,NE, 0) GOTO 10
    IF (ITTOUR (10) .NE. 0) GOTO 20
    FETURN
    EN[I
```

 SUBROUTINE ASCODE (YNUM,ITRANS,J)
 double frecision ynumi, tenth, ane, ten, ZERO
 DOUBLE PRECISION AII, TMULTY, TRANGE, BRANGE, XN, YN, ZN
 पIMENSION ICHAR(12), ITRANS (15)
 DATA ICHAR/49,50,51,52,53,54,55,56,57,48,46,45/
 ZERO=0.0
 TENTH \(=0.10000\)
 ONE \(=1.00000\)
 \(T E N=10.00000\)
 \(\mathrm{AED}=0.00090\)
 C THE MAXIMUM NUMBER IS $999,999,999$ AND THE MINIMUM NO, IS 0.001
TMULTY=1.0D-10
TRANGE $=1.0 \mathrm{~A}+10$
BRANGE $=1$, OD-04
$\mathrm{N}=0$
$1: 2=10$
$\mathrm{HDEC}=2$
C DETERMTNE WHETHER THE NUMEER IS OUT OF RANGE
IF (DABS (YNUM) ,GE. TRANGE) GOTO 5
IF (IABS (YNUM) ,LE, BRANGE ANI, YNUM .NE, ZERO) GOTO 5
GOTO 15
5 TYPE 10
STOP
C IETERMINE HHETHER THE ABSOLUTE VALUE OF A NUMEER IS
C LESS THAN ONE
15 IF (IABS(YNUM) .LT. ONE .OR, YNUM .EQ. ZERO) GOTO 40
C IEETERMINE THE ASCII COIE DF A NUMBER GREATER OR EQUAL TO ONE
L=2
$J=14$
$20 \quad$ YNUM1 $=($ DAESSSNUM $)) * T H U L T Y$
$X N=(\operatorname{DMOD}($ YNUM1, ONE $)) * T E N$
$\mathrm{N}=\mathrm{IDINT}(\mathrm{XN})$
IF (N.EQ. N1) GOTO 25
GOTO 30
$25 \quad$ TMULTY=TMULTY*TEN
$J=J-1$
GCTO 20
30 ITRANS(L)=ICHAR(N)
$L=L+1$
ICOUNT=J-1 ${ }^{-}$
$I J=J$ - HILEC
DO $35 \mathrm{I}=1$, ICOUNT
IF ($\mathrm{L}, \mathrm{EQ}, \mathrm{IJ}$) $L=I J+1$
$Y N=(\operatorname{IMOD}(X N, O N E)) * T E N$
$Y N=Y N+A D I$

```
    ZN=(MMOL(YN,ONE))*TEN
    NZ=IDINT(ZN)
    XN=YN-AIID
    IF (H3 ,EQ, N1) YN=YN+(YN*TENTH)
    N=IDINT(YN)
    IF (N,EQ,N1 ,OR,N ,GE,N2) N=N2
    ITRANS(L)=ICHAR(N)
    L=L+1
35 CONTINUE
    \TRANS(IJ)=ICHAR(11)
    GOTO 50
C DETERMINE THE ASCII CODE OF A NUMEER LESS THAN ONE
40 L=2
    J=5
    ITRANS(L)=ICHAR(10)
    L=L+1
    ITRANS(L)=ICHAR(11)
    L=L+1
    ICOUNT=J-2
    XN=YNUM
    IO 45 I=1, ICOUNT
    YN=(DMOLIXN,ONE))*TEN
    YH=YN+AID
    ZN:=(IMMOD(XN,ONE))*TEN
    NS=IDINT(ZN)
    XN=YN-ADD
    IF (N3 ,EQ, N1) YN=YN+(YN*TENTH)
    N=IDINT(YN)
    IF (N3 ,EQ, N1 .OR,N .GE, N2) N=N2
    ITRANS(L)=ICHAR(N)
    L=L+1
    45 CONTINUE
    5 0 ~ C O N T I N U E ~
        IF (YNUM .GE, ZERO) GOTO 55
        ITRANS(1)=ICHAR(12)
        J= J+1
        goT0 65
        CONTINUE
        00 60 I=1,J
        ITRANS(I)=ITRANS(I+1)
        60
    c
    C************************** FORMAT STATEMENT ***************************
    10 FORMAT (1X,'DUT OF RANGE---------OUT OF RANGE')
    C************************************************************************
    C
        RETURN
        END
```

```
SUBROUTINE HEADGR
CALL MONABS (25,600)
CALL DRUAES (25,500)
CALL DFWALS (125,500)
CAL: [IFWABS (125,500)
CALL DRUAES (25,600)
CALL MOVAES (25,575)
CALL IRUREL (10,0)
CALL MONAES (25,550)
CALL IRUREL (10,0)
CCLL MOVABS (25,525)
CALL IRWREL (10,0)
EALL HOVABS (50,500)
CALL URWFEL (0,10)
CALL MOVABS (75,500)
CALL IEWREL (0,10)
CALL MOVAES (100,500)
CALL DRUREL (0,10)
CALL mOVABS (200,600)
CALL IRWARS (200,500)
CALL IRWABS (300,500)
CALL IRWABS (300,600)
CALL MOVAES (190,600)
CALL DRWEEL (10,0)
CALL MONABS (190,575)
CALL IRUREL (10,0)
CALL MOVAES (190,550)
CALL IRUREL (10,0)
CALL MOVAES (190,525)
CALL DRGREL (10,0)
CALL MOVABS (225,490)
CALL DRWREL (0,10)
CALL MOUAES (250,490)
CALL DFWKEL (0,10)
CALL MOVAES (275,490)
CALL HRUREL (0,10)
Call mOvass (310,600)
CALL DRWREL (-10,0)
CALL MOUAFS (310,575)
CALL GRWREL (-10,0)
Call mOvaEs (310,550)
EALL DRUREL (-10,0)
CALL MOVAES (310,525)
CALL IIRUREL (-10,0)
CALL MOVABS (375,600)
```

CALL IRWABS (375,500)
CALL IRWABS (475,500)
CALL MOUABS $(365,600)$
CALL IRUREL $(10,0)$
CALL MOUAES (365.575)
CALL IRUREL $(10,0)$
CALL MOVABS $(365,550)$
CALL DRUREL $(10,0)$
CALL MOUABS $(365,525)$
CALL IRWREL $(10,0)$
CALL MOVABS (400,490)
CALL IRWREL $(0,10)$
CALL MOVABS $(425,490)$
CALL IRWREL $(0,10)$
CALL MONABS (450,490)
CALL IRGREL $(0,10)$
CALL MOVABS (475,490)
CALL IRWREL $(0,10)$
CALL MOUABS $(600,600)$
CALL IRWABS (600,500)
CALL MOUABS (590,600)
CALL IRWREL $(20,0)$
CALL MOVAES (590,575)
CALL DRUREL $(20,0)$
CALL MOUABS $(590,525)$
CALL IRUREL $(20,0)$
CALL MOUABS $(590,500)$
CALL DRWREL $(20,0)$
CALL MOUABS (550,540)
CALL IRWREL $(0,20)$
CALL MOVABS $(575,540)$
CALL DRWREL $(0,20)$
CALL MOVABS (625,540)
CALL DRWREL $(0,20)$
CALL MOVABS $(650,540)$
CALL DRWREL $(0,20)$
CALL MOUAES (550,550)
CALL DRWABS (650,550)
CALL MOVABS $(725,600)$
CALL IRWABS (725,500)
CALL MOUABS $(725,550)$
CALL IRWAES $(825,550)$
CALL MOVABS $(715,600)$
CALL IRUREL $(20,0)$
CALL MOUABS (715,575)
CALL IRWREL $(20,0)$
CALL MOVAES (715,550)
CALL ERWREL (10,0)
CALL MOUAES (715,525)
CALL IRWREL $(20,0)$
CALL MOUAES (715,500)
CALL URWREL $(20,0)$

CALL MOUAES (750,540)
CALL [EUFEL $(0,20)$
CALL HOVAES (775,540)
CALL IREWREL $(0,20)$
CALL MOVAES $(800,540)$
CALL IRWEEL $(0,20)$
CALL MOVAES $(825,540)$
CALL IRWWEL $(0,20)$
CALL MOUABS (900,550)
CALL DRWABS (1000,550)
CALL MOUABS (900,540)
CALL IRWREL $(0,20)$
CALL MOVAES (925,540)
CALL IRWFEL $(0,20)$
CALL MOUABS (950,540)
CALL IRWREL $(0,20)$
CALL MOVAES $(975,540)$
CALL MRWREL $(0,20)$
CALL MOUABS (1000,540)
CALL IRUREL $(0,20)$
CALL MOVABS $(75,450)$
CALL ANCHO (65)
CALL MOVABS $(250,450)$
CALL ANCHO (66)
CALL MOUABS $(425,450)$
CALL AACHO (67)
CALL MOVABS (600,450)
CALL AMCHO (68)
CALL MOVABS (775,450)
CALL ANCHO (69)
CALL MOVABS (950,450)
CALL ANCHO (70)
RETURN
ENI

FORMAT (I2)

LTYFE $=0$
LIME $=0$
ICHAR $=42$
TYPE 10
LTYFE = ITTINR()

EOTO 20
continue
CALL LINEF
TYPE 35
ACCEPT 40, LINE
G0T0 65
continue
CALL LINEF
TYPE 55
ICHAR = ITTINR() GOTO 57
continue
CONTINUE
feTURN
ENI

SUEROUTINE FSYMBL
SURROUTINE FSYMEL (LTYPE,LINE, ICHAR)

CALL IFOKE('44,'10000.OF. IPEEK('44))
IF (LTYFE ,EQ. 84) GOTO 60
IF (LTYFE .EQ. 83) GOTO 60
IF (LTYPE ,EQ, 68) $60 T 060$
IF (LTYFE EEQ. 80) GOTO 60
IF (LTYPE .EQ . 76) GOTO 30
IF (LTYFE .EQ. 75) GOTO 50

CALL IFOKE("44,'10000 .XOR. IFEEK('44))

IF (LINE .LT, 0 .ANI, LINE ,GT, 4) LINE=0

IF (ICHAF .GT. 32 , ANI. ICHAR ,LT, 127) GOTO 60

FORMAT (' FLOTTING SYMEOL T)RIANGLE S)QUARE (I)IAMONI L)INE',
(F)OINT K)EYEOARD CHAR', $\$, 1 \mathrm{X}$)
FORMAT (//,' ENTER', 4 X, ' 0 - FOR A SOLILI LINE',/
10x,'1 - FOR A DOTTED LINE',', 10x,'2 - FOR A DASH-IIOT LINE',/, 10x,'3 - FOR A SHORT-DASHED LINE', /, 10X,'4 - FOR A LONG-DASHED LINE',

Format (' enter any keyboard character', $\$, 1 \times$)

CALL IPOKE('44,'10000, XOR. IFEEK('44))
surfoutine triang
SURROUTINE TRIANG (X, Y)
CALL MOVEA (X, Y)
CALL MOUREL $(-6,-6)$
CALL DRWREL $(12,0)$
CALL IRRWEL $(-6,12)$
CALL DRUREL $(-6,-12)$

FETURN
ENO

SUBROUTINE SQUARE

gubroutine square (X, Y)
CALL MOVEA (X, Y)
CALL MOUFEEL (-6,-6)
CALL ORUREL $(0,12)$
CALL DRWREL $(12,0)$
CALL IIFWFEL ($0,-12$)
CALL IRWREL $(-12 ; 0)$
RETUFN
ENE
SURROUTINE IIAMON
SURROUTINE DIAMON (X, Y)
call movea (X, Y)
CALL MOVREL $(-6,-6)$
CALL DEWFEL $(-12,-12)$
CALL URWFEL (12,-12)
CALL DRWEEL $(12,12)$
CALL IRWFEL (-12,12)
FETURN
ENE
C
SURROUTINE KCHAR
SUBROUTIME KCHAR(X,Y,ICH)
CALL MOVEA (X, Y)
CALL ANCHO (ICH)
RETURN
END

SUEROUTINE MINMAX (PTS, NUMEER,TMIN,TMAX)
IIIMENSION FTS(NUMEER)
c flace the first value in the arfay in tmin anil tmax TMIN=FTS(1)
TMAX=PTS(1)
II $20 \mathrm{~N}=1$, NUMBER
c find the lowest value in the array ani flace it in tmin IF (PTS(N) .LT. TMIN: TMIN=PTS(N)
c find the largest value in the array and flace it in tmax IF (FTS(N) ,GT, TMAX) TMAX=FTS(N)
20 CONTINUE return
ENG

subroutine curve.for

C
C
c. this subroutine flots the curve

SURFOUTINE CURVE(FTS,NFTS,NUM,NFILE,XST,XINC,XMIN1,XMAX1) LOGICAL*1 ITICR, ITICL, ITICU, ITICI, IXTICV, ICON COMMON XTIC(13),YTIC(13)
DTMENSION FTS(NFTS), NUM(NFILE), ITFANS(15), IGRLAB(75)
IIMENEJON LTYFE(10), LINTY(10), ICHAR(10), ITITLE(70)
IIMENSION XINC(NFILE), XST(NFILE), IXLAB(70), IYLAB(70)
IXMIN $=300$
IXMAX $=725$
IMMIN $=300$
IYHAX $=700$
FACT $=100000.00$
EALL MINMAX (FTS,NPTS,YMIN1, YMAX1)
DO 50 ISYM=1, NFILE
E3 IF (ITtOUR(26) .NE, 0) GOTO 53
TYPE S5,ISYM
CALI FSYMRL(LTYFE(ISYM),LINTY(ISYM),ICHAR(ISYM))
50 CONTINUE \quad IF (ITTOUR(26) .NE 0) GOTO 57
TYPE 20
CALL CHAFIN (IXLAB,70,NXLAB)
TYPE 25
CALL CHAFIN (IYLAB, 70 ,NYLAB)
TYFE 34
CALL CHARIN (IGRLAB,70,NGRLAE)
TYPE 35
CALL CHAFIN (ITITLE,70,NTITLE)
C CHOUSE THE AXIS TYFE
70 CONTINUE
ITICR $=$.FALSE.
ITICL $=$.FALSE.
ITICU $=$. FALSE .
ITICI $=$.FALSE.
IXTICU $=$.FALSE.
XHIN = XMIN1
X YAAX $=$ XMAXI
YíIN $=$ YMIN1
YMAX $=Y$ MABXI
XMAX $=($ AINT ($(X M A X+(X M A X * 0.01)) * F A C T)) / F A C T$
YMAX $=(\operatorname{AINT}((Y M A X+(Y M A X * 0.01)) * F A C T)) / F A C T$
TXMIN $=$ XMIN
TYMIN $=$ YMIN
CALL INITT (120)
CALL HEADER (IAXIS)
100 CONTINUE
IF (IAXIS .EQ. 65) GOTO 80

```
    IF (IAYIS ,EQ. 66: GOTO 120
    IF (IAXIS ,EQ, 67) GOTO 160
    IF (IAXIS .EQ, 68) GOT0 240
    IF (IAXIS .EQ* 69) GOT0 200
    IF (IAXIS ,EQ. 70) GOT0 280
    CALL INITT(120)
    CALL THINDO (250,800,250,720)
    SALL IWINDO (XMIN1,XMAX1,YMIN1,YMAX1)
    GOTO 9000
    CONTINUE
    CALL JNITT(120)
    GALL TWIHDO (IXMIN,IXMAX,I YMIN,I YMAX)
    CALL IWINDO (XMIN,XMAX,YMIN,YMAX)
    CALL MOUEA (XMIM,YMIN)
    CALL IIRAWA (XMIN,YMAX)
    CALL DRAWA (XMAX,YMAX)
    CALL DRAWA (XMAX,YMIN)
    CALL DRAWA (XMIN,YMIN)
    ITICR = .TRUE.
    ITICU = .TRUE.
    GOT0 1000
    CONTINIJE
    IALL INITT (120)
    CALL TWINDO (IXMIN,IXMAX,IYMIN,IYMAX)
    CALL IHINDO (XMIN,XMAX,YMIN,YMAX)
    CALL MOWEA (XMIN,YMAX)
    CALL DRAWA (XMIN,YMIN)
    CALL DRAWA (XMAX,YMIN)
    CALL IIRAWA (XMAX,YMAX)
    ITICI = .TRUE.
    ITICL = TRUE.
    G0T0 1000
160 CONTINUE
    CALL INITT (120)
    CALL THINDO (IXMIN,IXMAX,IYMIN,IYMAX)
    CALL DWINDO (XMIN,XMAX,YMIN,YMAX)
    CALL MOUEA (XMIN,YMAX)
    CALL [RAWA (XMIN,YMIN)
    CALL DFAWA (XMAX,YMIN)
    ITICI = .TRUE.
    ITICL = ,TRUE.
    GOTO 1000
20% CONTINUE
    YTMIN = YMIN1
    YTMAX = YMAXI
    IF (YTMAX ,GT, 0.0) YTMIN=(-1)*0.5*YTMAX
    IF (YTMAX .LE, 0.0) YTMAX=(-1)*0.5*YTMIN
    YMIN=(-3)*(YTMAX-YTMIN)/10
    YMAX=7*(YTMAX-YTMIN)/10
    CALL INITT (I2O)
    CALL TWINDO (IXMIN,IXMAX,IYMIN,IYMAX)
    CALL DLINDO (XMIN,XMAX,YMIN,YMAX)
```

```
    CALL MOVEA (XMIN,YMIN)
    CALL DEAWA (XMIN,YMAX)
    CALL MOUEA (XMIN,O,O)
    CALL IIFAWA (XMAX:0:0)
    ITICU = ,TFUE.
    ITICLI = TRINE.
    ITICR = .TSUE.
    ITICL = .TRUE.
    TYMIN = 0.0
    gOTG 1000
240 continue
    IF (XMAX .LE, O.0) XMAX=(-1)*XMIN
    IF !YMAX .LE, O.0) YMAX=(-1)*YMIN
    Y.MIN = (-1)*XMAX
    YMIN = (-1)*YMIN
    CALL INITT (120)
    CALL THINDO (IXMIN,IXMAX,IYMIN,IYMAX)
    CALL HUINDO (XMIN,XMAX,YMIN,YMAX)
    CALL MOUEA (0.0,YMIN)
    CALL IRAANA (0.0,YMAX)
    CALL MONEA (XMIN,O.0)
    CALL IRAWA (XMAX,0,0)
    ITICL = .TRUE.
    ITICL = .TRUE.
    ITICK = .TRIE.
    ITICL = .TRUE.
    TXMIN = 0.0
    TYKIN =0.0
    g0TO 1000
zBO CONTINUE
    IF (YMAX .GT, 0.0) YMIN=(-1)*0.5*YMAXX
    IF (YMAX .LE, 0.0) YMAX=(-1)*0.5*YMIN
    CALL INITT (120)
    CALL THINDO(IXMIN,IXMAX,IYMIN,IYMAX)
    CALL IWINDO (XMIN,XMAX,YMIN,YMAX)
    CALL MOVEA (XMIN,0.0)
    CALL IIRAHA (XHAX,0,0)
    ITICU = .TRUE.
    ITICI = .TRUE.
    TYMIN = 0.0
    GOTO 1000
    100% cuntinue
    c netemaine the tic mark values
    XPANGE = XMAX - XMIN
    YFANGE = YMAX - YMIN
    CALL TICMAR (XRANGE,YRANGE,XTIC,YTIC)
    [0] 1005 I=1,13
    XTIC(I) = XTIC(I) + XMIN
    YTIC(I) = YTIC(I) + YMIN
1005 CONTINUE
C IRAH THE X-AXIS TIC MARKS
    IXTICU = .TRUE.
```

```
    10 1010 IT=1,13
    IE (XTIC(IT) .GT. XMAX) GOTO 1015
    IF (ITICU) CALL XTICU(XTIC(IT),TYMIN)
    IF (ITICII) CALL XTICI(XTIC(IT),TYMIN)
1010 CONTINUE
1015 CONTINUE
C IRAW THE Y-AXIS TIC MaRKS
    IO 1100 IT T=1,13
    IF (YTIC(IT) .GT..YMAX) GOTO 110S
    IF (ITICR) CALL YTICR(YTIC(IT),TXMIN)
    IF (ITICL) CALL YTICL(YTIC(IT),TXMIN)
1100 COHTINUE
1105 COHTINUE
C IFAL The curue
9000 CONTINUE
        J = 1
    IN 500 IJ=1, NFILE
    NUM1=NUM(IJ)
    XPT = XST(IJ)
    CALL MOUEA (XPT,PTS(J))
    IO 400 I=1, NUM1
    IF (LTYFE(IJ) ,EQ, 68) CALL GIAMON (XPT,PTS(J))
    IF (LTYPE(IJ) .EQ. 84) CALL TRIANG(XPT,PTS(J))
    IF (LTYPE(IJ) ,EQ, 83) CALL SQUAFE(XFT,PTS(J))
    IF (LTYPE(IJ) .EQ, 80) CALL POINTA(XFT,FTS(J))
    IF (LTYFE(IJ) ,EQ. 75) CALL KCHAR(XFT,FTS(J),ICHAR(IJ))
    IF (LTYFE(IJ) ,EQ, 76) CALL DASHA(XPT,FTS(J),LINTY(IJ))
    XFT = XFT + XINC(IJ)
    J=J+1
400 CONTINLE
    LIASH = LIASH + 1
500 CONTINUE
    IF (IAXIS .EQ. 10 .OR. IAXIS ,EQ, 13) GOTO 660
c fut in the ticmar values
    ICONTX = 0
    IAD = 0
    IF (XMAX .GE, 100.0) ICONTX=1
    IO 600 IV=1,13
    IF (XTIC(IV+IAD) .GT, XMAX) GOTO 610
    CALL XTICU(XTIC(IV+IAD),TYMIN,ITRANS)
    IAD = IAD + ICONTX
600 CONTINUE
610 CONTINUE
    IF {IAXIS ,EQ, 70) GOTO 650
    IAD = 0
    10 550 IV=1,13
    IF (YTIC(IV+IAD) ,GT, YMAX) GOTO 660
    CALL YTICU(YTIC(IUTIAD),TXMIN,ITRANS)
    IAD = IAD + 1
650 CONTINUE
650 CONTINUE
    CALL SEETW (MINX,MAXX,MINY,MAXY)
```

```
    CALL CSIZE (IHORZ,IUERT)
    IXFEL=((MAXX-MINX)-(IHORZ*NXLAB))/2
    IYREL=(MAXY-MINY)/2
    IXMINF:=0-MINY+5
    IRELY = -30
    IF (IXTICV) IRELY=IRELY+(-35)
    CALL MOVEA (XMIN,YMIN)
    CAlLL MOVREL (IXREL,IRELY)
    CALL ANSTR (NXLAE,IXLAB)
    CALL MOVEA (XMIN,YMIN)
    CALL MOUREL (IXMINR,(IRELY+(-50)))
    CALL ANSTR (NTITLE;ITITLE)
    CALL MOVABS (5,525)
    CALL ANSTE (NYLAB,IYLAB)
    CALL MOVABS (5,750)
    CALL ANSTR (NGRLAE,IGRLAB)
    CALL MOVABS (5,50)
    [ALL ANMODE
    TYPE 690
    CALL IFOKE('44,'10000.0R. IPEEK('44))
705 ICON = ITTINR()
    IF (ICON ,EQ. 67) GOTO 70
    IF (ICON .EQ. 72) GOTO 710
    IF (ICON .EQ. 81) GOTO 710
    IF (ICON .EQ. 82) GOTO 100
    g0T0 705
710 CONTINUE
    C:ALL IFOKE('44,'10000 ,XOR, IPEEK('44))
C************************* FORMAT STATEMENTS ************************
20 FORMAT (' ENTER THE X-AXIS LABEL')
25 FORMAT (1X,'ENTER THE Y-AXIS LABEL')
34 FORMAT (1X,'INPUT THE GRAPH LABEL \75',
    1 ' CHARACTERS MAXIMUM)')
            FORMAT (1X,'INFUT THE TITLE AND/OR COMMENTS (70',
    1 '(CHARACTERS MAXImUM)')
            FORMAT (1X,'INPUT THE REMARKS (20 CHARACTERS MAXIMUM)',
        1 'FOR FILE #',II)
    55: FORMAT (//,' CURUE #',I2)
    C**********************************************************************
    C
        RETURN
        END
            gUBROUTINE XTICU(TM,YMIN)
            CALL MOVEA (TM,YMIN)
            CALL UTIC
            RETURN
            END
            SUPROUTINE XTICE(TM,YMIN)
            CALL MOVEA (TM,YMIN)
```

```
    CFILL IITIC
    FETUFN
    EN!
    GUEROUTINE YTICL(TH,XMIN)
    CALL MOUEA (XMIN,TM)
    CAL: LTIC
    FETURN
    EMD
    SUBFOUTINE YTICR(TM,XMIN)
    CALL MOVEA (XMIN,TM)
    CALL RTIC
    SETUSN
    END
    SUEFOUTINE XTICU(TV,YMIN,ITFANS)
    IIMENSION ITFANS(15)
    CALL ASCODE (DBLE(TU),ITRANS,J)
    J=J-4
    CALL MOVEA (TV,YMIN)
    CALL MOUREL ((-3)*J,-35)
    COLL ANSTR (J.ITRANS(1))
    RETURN
    ENI
    SUEROUTIME YTICU(TV,XMIN,ITRANS)
    IIMENSION ITRANS(15)
    CALL ASCODE (DBLE(TV),ITRANS,J)
    J=J-4
    CALL MOVEA (XMIN,TV)
    CALL MOUREL ((-15)*J-15,0)
    CALL ANSTR (J,ITRANS(1))
    FETURN
    END
    SURROUTINE CHARIN (IARRAY,IDIM,NCHOUT)
    IIMENSION IARRAY(IDIM)
    CALL LINEF
    NCHOUT = 0
    ICHAR = -1
    IU 30 I=1,IDIM
10 ICHAR = ITTINR()
    IF (ICHAR ,GT, 31 , AND. ICHAR .LT. 127) G0TO 20
    IF (ICHAR .EQ. 10) GOTO 40
    GOTO 10
    CONTINUE
    IARRAY(I) = ICHAR
    NCHOUT = NCHOUT + 1
30
FETUFN
```

110
C
SUBROUTINE HEADIER,FOR
C
C
C THIS SUBROUTINE DETERMINES THE TYFE OF GRAPH AXIS TO BE USEI
C
C
C
SUBFOUTINE HEADER(IAXIS)
CALL MOUABS (0,675)
CALL ANMODE
TYFE 10
CALL HEADGR
CaLL mOVABS (0,350)
CALL ANMODE
TYPE 20
CALE IFOKE('44,"10000 ,OR, IFEEK('44))
$5 \quad$ IAXIS = ITTINR()
IF (IAXIS .GE, 6S .ANI. IAXIS +LE . 70) GOTO 40
IF (IAXIS .EQ. 10 . OR. IAXIS .EQ, 13) GOTO 40
GOTO 5
40. CONTINUE

C
C $\mathrm{C}^{2} * ~ F O R M A T ~ S T A T E M E N T S ~ * ~$
10 FGRMAT (1X,'GRAPH TYPES')
20 FORMAT ($1 \times,{ }^{\prime}$ ENTER THE TYFE OF GRAPH AXIS (A,B,C,D,E,F)',\$,1X) C*** C

CALL IFOKE ('44,'10000 ,XOR, IFEEK('44))
RETURN
ENII

```
C SUEROUTINE TICMAR,FOR
C
C
C THIS SUEROUTINE IIETERMINES THE X- AND Y-AXIS TICK MARK UALUES
C
                                    -----------HRITTEN BY T. J. GREEN
C
C
    SUEROUTINE TICMAR(XRANGE,YRANGE,XTIC,YTIC)
    IIMENSION XTIC(13), YTIC(13)
    IATA TENTH,TEN,HUND,THOUS/0.1,10.0,100.0,1000.0/
    LCOUNT=13
    THFEE=3.0
C FINO THE X-AXIS TIC MARKS
    IIV=10.00
    IF (XRANGE ,GT. THREE * ANI, XRANGE &T. TEN) DIV=XRANGE
    IF (XFANGE +LT, 5.0 .OR, XRANGE ,GT, 10000.0) IIV=5.0
    XINC=(XRANGE/IIIV)
    XTIC(1)=0.0
    IIO 9 I=2, LCOUNT
    XTIC(I)=XTIC(I-1)+XINC
9 CONTINUE
C FING THE Y-AXIS TIC MARKS
    IIU=10.0
    YINC=(YFANGE/[IIV)
    YTIC(1)=0.0
    IO 11 I=2, LCOUNT
    YTIC(I)=YTIC(I-1)+YINC
1. CONTINUE
[
    FETUFN
    ENI
```

```
(*)E+*)
    TYFE ELOCK=AFFAY[0..1024]OF CHAR;
        RECOIE=ARRAY[O.,1]OF INTEGER;
        CONTFOL=ARFAY[0.,127]OF CHAR;
FFOCEIURE SENIM(UAR SOCNUM, IATLEN,CONLEN,IESTH,STATUS:INTEGER;
                            [ATBUF:ELOCK; CONDAT:CONTROL; RESULT:FECODE);
    VAR CCE:ARRAY[0..5] OF INTEGER;
        COUNT,I#INTEGER;
    EEGTN
        IF (SOCNUM=128) OR (SOCNUM=144) THEN CONLEN:=0;
        count:=1;
        CCB[0]:=54; CCE[1]:=0; CCE[2]:=SOCNUM;
        CCE[3]:=0; CCB[4]:=0; CCB[5]:=CONLEN;
        RESUL1!0]:=255; FESULT[1]:=0;
        GEFEGT
    (*)C
;
ces=`016600n
1:A!-"01.56002
4EF. -0460
:
    nof
    C% %2
    CLR %3
    CLF %4
    MOH $20.,%1
    MOU %6,%2
    AID #RESULT,%2
    M0V %6%%
    ADI #CCB,%4
    SWAE %2
    MOUE %2,2(%4)
    GUAE %2
    MOVE %2,3(%4)
    MOV %6,%2
    AUI #DATBUF,%2
    SWAE %2
    MOUE %2,6(%4)
    SNAE %2
    MOUB %2,7(%4)
    MOU GIATLEN(%6),%2
    SWAE %2
    MOUB %2,8(%4)
    SWAB %2
    MOUS %2,9(%4)
    MOV EDESTH(%6),11(%4)
    Mov %4,%2
    MOU FINT,UEC
AGAIN: EIS #^0200,CSR
```

```
MTPG
LOOF: TST CSR
    BHL LOOF
        MOUB #0,CAR
LOOF1: TST CSR
    HFL LOOF1
        SWAE %2
        MDUS %2,CAR
LOOF2; TET CSR
        EPL LOOF2
        SWAE %2
        MOVE %2,CAR
        NOF
WAIT1: ER WAITI
INT: IIEC %1
        ENE TRY
        BR STO
TEY: CMF #255.,FESULT(%6)
        BEQ AGAIN
STO: MOV #~0340,%3
        AILI }\ddagger4,%
        MTPS %%
g
        COUNT:=COUNT + 1;
        UNTIL (RESULT[0] < 255) OR (COUNT = 10000);
        STATUS:=FESULT[O];
        ENT;
```

```
(**5&+*)
FFOCEIURE INTRAN:
        VAE CCE:AFFAY[O.,1] OF IMTEGER;
        REEULT,COUNT,I;INTEGER;
        BEGIN
        OWNT:=1;
        CCE[0]:=32;
        RESULT:=255;
        FEFEAT
(*$C
;
CSF=~0166000
CG%="0165002
VEC=~0A60
;
        CLF %3
        MOV $20.,%1
        MOV %6,%2
        ADD #FESULT,%2
        MOV %2,%0
        MOV %6,%4
        AIIT ECCR,%4
        SWAB %2
        mOUB %2,2(%4)
        SWAB %?
        MONE %2,3(%4)
        MOV %4,%2
        MOU #IHT,VEC
        MTFS %3
AgAIN: NOF
LJOF: TST CSR
            BFL LOOF
            mOUB #O.CAR
LOOF1: TST CSR
            BPL LOOF1
            SWAB %2
            MOVB %2,CAR
LOOF2: TST CSF
            BFL LOOP2
            SWAE %2
            MOUB %2,CAR
WAIT1: ER WAIT1
INT: AIIL #A.%%
            IEC %1
            BNE TRY
            BR STO
TFY: CMFB $255.,(%0)
            EEQ AGAIN
STO: NUF
;
```

```
*)
            COUNT:=COUNT + 1;
            UNTIL (RESULT < 255) OF (COUNT = 10000);
            IF COUHT }>=10000\mathrm{ THEN
                BEGIM
                FOR I:=1 TO 5 IOO
                WFITELN(CHR(7));
                FOR I:=1 TO 9 IO
                WFITE(CHE(7),'FAIL TO INITAILIZE THE TRANSFOFTEF AFTEF',
                    COUNT&5,' TRIES ')&
                WRITELN; WFITELN; URITELN;
<目$C
%
            .MEALL .EXIT
            EXIT
;
*)
                                ENIT;
ENO:
```

```
(*) (#+*)
    TYFE RECODE=AFFAY[0..1]OF INTEGER;
        CONTFOL=ARRAY[O.,127]OF CHAR:
FFOCEIURE SETUF(VAR SOCNUM,IATLEN,CONLEN,STATUS,IATAIR:INTEGER;
                    CONDAT:CONTROL; FESULT;RECODE);
    UAF CCE:AFSAY[A..S] OF INTEGER;
        COUNT:I:INTEGEF;
    EEGIN
        IF (EQSYUH=128) OR (SOCNUM=144) THEN CONLEN:=0;
        CU!NT:=1;
    CRE[0]:=2A0; CCE[1];=0; CCE[2]:=SOCNUM;
    CSE[3]:=0; CCE[4]:=0; CCE[5]:=CONLEN;
    FESULT[O]:=255: FESULT[1]:=0;
    FEFEAT
%5C
#
0.3R=-0166000
CAK=^0166002
UF:-90460
;
CIF %%
    CLF %&
    MCY 120.,%%
    #0y %b,%2
    AUM *RESULT,%2
    MOV 75,%A
    AID *CCE,%4
    CHAE %%
    M丁ME %2,2(%4)
    SWAE %2
    MDUB %2,3(%4)
        MOV @DATADR(%L):%2
        #UAB %2
        MOUE %2,6(%4)
        SWAB %2
        MOVE %2,?(%4)
        MIV QJATLEN(%6),%2
        SWAB %2
        MOUF %2,8(%4)
        GWAB %2
        HONE %2,9(%4)
        MOU %4,%2
        MDV HINT,VEC
AGAIN: EIS ##g200,CSR
        #TFGS %3
LODP: TST ESF
    MF'L LOOF
    MOUS #O,CAF
LODP1: TST CSR
```

```
    EFL LOOF1
    34AB %2
    HOUE %2,CAK
LOUF2: TST CSF
    BFL LOOF2
    CHAB %2
        HOUB %2,CAR
WFIT1: DF: WAIT1
INT; [IEC %1
        HALT
        ENE TRY
        EF STO
TRY: EMF $255.,FESULT(%6)
            EEQ AGAIM
STO: MOV #N0340:%3
            ADII $4:%
            MTPG %3
;
*)
            COUNT:=COUNT + 1;
        UNTIL (RESULT[O] < 255) 0R (COUNT = 10000):
        ETATUS*=FESULT[OI*
    EMD:
```

```
(米寺缸*)
EROCEDURE ENIREV(UAR SOCNUM:STATUS:INTEGER);
    VaR cce:afRiay[0.,2] OF INTEGER;
            RESULT,COUNT,I;INTEGER;
    BEGIN
        Ca|NT:=1:
        CCE[0]:=16; CCE[1]:=0; CCE[2]:=SOCNUM;
        RESULT:=255;
        SEFEAT
{**
;
CSK= 01t6000
CAF="0156002
リEC:M0460
CLF \(\% 2\)
        CLE %%
        CLR %4
        MOV *20.,%1
        HOU %6,%2
        AIII #FESULT,%2
        MOV %%,%4
        AIII #CCE,%4
        CWAB %2
        MOUB %2,2(%4)
        SWAB %2
        MOUE %2,3(%4)
        MOU %4,%2
        MOU TINT,VEC
AGAIN: EIS F-0200,CSR
        MTPG %3
LDOF; TST CSR
        GFL LOOP
        MOUB #O,CAR
LODFI: TST CSR
        EFL LOOF1
        SWAB %2
        MOVB %2,CAR
LOOF2: TST CSR
        EFL LOOP2
        SWAE %%
        MOYG %2,CAR
        NDF
MAIT1: ER WAITI
INT: IEC %!
        ENE TEY
        ER STO
TEY: CMF #255.,FESULT(%%)
    EEQ AGAIN
```

```
ST0: n0v *"0340%%%
            AlII #&,%
            MTPG %3
*)
            COUNT:=COUNT + 1;
        UNTIL (RESULT \ 255) OR (COUNT = 10000);
        STATUS:=FESULT;
        END:
```

```
frgGRAM DMNET;
(* A PROGRAM TO SET UF THE OMNINET TRANSPORTER COMMANDS *)
TYFE BLOCK1 = ARRAY[0..1] OF INTEGER;
        BLOCK2 = ARRAY[0..2] OF INTEGER;
        BLQCK5 = ARRAY[0..5] OF INTEGER;
        gUFFO1 = PACKEI ARRAY[0..80] OF CHAR;
        BUFFO2 = NFIRAY[0..127] OF CHAR;
VAR HOST,CODE,NUM,CLEN,ILEN,SOCNUM:INTEGER;
        BUFDAT:EUFFO1;
        FEFLY:EROLEAN: CH:CHAR;
FFOCEDURE OMNB1(VAR CCB2:ELOCK2; VAR RECODE:INTEGER);
EXTERNAL;
FRDCEIURE OMNE2(VAR CCB5:ELOCKS; DATARUF:BUFFO1;
                                    CONRUF!RUFF02; UAR RESULT1:FLOCK1;
    LENGTH,DESTH:INTEGER );
EXTERNAL;
PROCEDURE WHOAMI(VAR RESULT:INTEGER);
    VAF CME:BLOCK2;
    EEGIN
        FESULT:=255;
        CME[0]:=01;
        DMAE1(CME,RESULT);
    END;
FROCEIURE INTRAN(VAR RESULT!INTEGER);
    VAR CMB:BLOCK2;
    EEGIN
        FESULT:=255;
        CME[0]:=32;
        OMNB1(CMB,FESULT);
    END:
PROCEIURE ECHO(VAR DESTH,RESULT:INTEGER);
    VAR CMB:BLOCK2;
    EEGIN
        CMB[O]:=02;
        CME[2]:=DESTH;
        FECULT:=255;
        OMNE1(CME,RESULT);
```

END:

```
FROCEIURE ENIREC(UAF SOCKET,FECOIE:INTEGER):
    VAR CMB:PLOCK2;
    RESULT:INTEGER;
    SEGIN
    RESULT:=255;
    CME[0];=1%; CME[2];=S0CKET;
    OMNB1(CMR;FESULT);
    FECOIE:=FESULT;
END;
FROCEIURE SENIIMESSG;BUFFOI; SOCKET,DHOST,IIATLEN,CLENG:INTEGEF;
                    UAR RECOIE:INTEGER );
    VAR CMES:BLOCKS:
        FESULT1:ELOCK1;
        BUFCON;EUFFO2;
        BEGIN
        FESULT1[0]:=255;
        CMES[0]:=64; CMB5[2]:=SOCKET;
        CMES[5]:=CLENG;
        OMNG2(CMES,MESSG,EUFCON,RESULT1,IAATLEN,IHOST);
        RECONE:-FESULT1[0];
    END:
FFOCEIUUES SETUF(MESEUF:RUFFO1;SOCKET,DATLEN,CLENG:INTEGEF;
            IAR RECOLIE:INTEGER I;
VAF IIEST:INTEGER; CME5:ELOCKS:
        RESULT1:ELOCK1; BUFCON:EUFF02;
BESIA
    RESULT1[0]:=255;
    CMBS[0]:=240; CME5[2]:=S0CKET;
    CMB5[5]:=CLENG; IEST:=0;
    OMNB2(CMES,MESBUF,BUFCON,RESULTI,HATLEN,DEST);
    RECODE:=RESULTI[0];
END:
BEGIN
ENI.
```

```
;-----------------------------------------------------------------
; MACRO POPS A 1G BIT ARGUMENT
;
    -mACSO POP
    PLA
    STA %1
    FLA
    STA
        %1+1
    -ENIMM
;---------------------------------------------------------------
; MACRO FUSH A 16 BIT ARGUMENT
;
    MACRO FUSH
    LIA %1+1
    FHA
    LIAA %1
    PHA
    * ENIM
```



```
    *FROC OMNB1,2 ;TWO FARAMETERS
; ROUTIME TO SENII 4 BYTES OR LESS
; TO THE OMNINET TRANSFORTER
;
; FROCEDURE OMNE1(UAR CCB2;BLOCK2; vaR RECOIE:INTEGER);
RETURN .EQU 0
TEMCCE EQU 2
RESALIR ,EQU 4
CCFALR EQQU 6
SCAR +EQU OCOEO
    FOF RETURN
    FOP RESAIR
    FOF TEMCCE
    LIIA TEMCCB
    STA CCBALR
    LDA TEMCCB+1
    STA CCBAIIR+1
    LIYY $2
    LIIA RESAIR+1
    STA ECCBAIIF,Y
    LDY #3.
    LMA EESAIR
    STA ECCBAIR,Y
LOOF BIT SCAR
    EFL LOOF
    LDA $0.
    STA SCAR
```

L00F1	BIT	SCAR
	EFL	LOOP1
	LIIA	CCEALIRt1
	Sta	SCAR
LOOF2	BIt	SCAR
	PPL	LOOP2
	LIIA	cchalir
	gta	SCAR
L00F3	EIT	scar
	EPL	L00p3
	FUSH	RETURN
	FTS	
	- ENI	

; MACEO FOF it BIT AFGUMENT
;
- macro pop
FLA
STA $\% 1$
FLA
STA $\% 1+1$
- ENDM

; MACFO PUSH 16 BIT ARGUMENT
;
- MACERO PUSH
LDA $\% 1+1$
FHA
LDA \%1
FHA
-ENDM

; MACRO TRANSFER A is EIT ARGUMENT
;
- MACRO TRAN
LDA \%
STA $\% 2$
LDA $\quad \% 1+1$
STA $\% 2+1$
+ENDM

-PROC OMAB2,5 iFIVE FARAMETERS
;--
: ROUTINE TO SEND 5 RYTES OR MORE TO
; THE OMNINET TFANSPORTER
;
; FROCEDURE OMNR? ! NAR CCRS: PLOCK5; DATARUF:EUFFO1;
CONBUF:BUFFO2; VAR RESULT1:ELOCK1;
LENGTH,IESTH:INTEGER ;

FETURN ERUS 0
TEMCCE ERU 2
TEMBF1 EOU 4
TEMEF2 EQU 6
TEMRES EQU 8
LEMADR ERU OA
DESADF ERU OC
cCBADE ERU OE
EFIADR EQU 10
RESADR EQU 14
ECAR - EQU OCOEO

	FOP	RETURN
	FOP	IESAIR
	FOF	LENAIR
	FQF	TEMRES
	FOF	TEMEF 1
	FOF	TEMCCE
	TFiAN	TEMCCB, CCBAIR
	TRAN	TEMEFI, BFIAIR
	TEAN	TEMRES, RESALIR
	LITY	$\ddagger 2$
	LIA	FESADR 1
	STA	ECCBADR, Y
	LDY	43.
	LIIA	RESALR
	STA	ECCBADR, Y
	LIV	* 6
	LIA	EF 1 AIR +1
	ETA	ECCBADR, Y
	LIY	\$7
	LIIA	EF 1 ALR
	ETA	QCCEADR, Y
	LIY	18
	LIIA	LENAMSt1
	STA	ECCEAIR , Y
	LIIY	\$9
	LIIA	LENAIR
	STA	ECCEADR, Y
	LIV	\#11.
	LIIA	IESADR
	STA	ECCEALIR, Y
LOOF	BIT	SCAF:
	EFL	L00F'
	LIIA	± 0.
	STA	SCAR
LOOP1	BIT	SCAR
	BFL	LOOF 1
	LIIA	CCBADR +1
	STA	SCAR
L00P2	SIT	ECAR
	BFL	LOOP2
	LIIA	CCBAIR
	STA	SCAR
200F3	BIT	SCAR
	BFL	LOOP3
	FUSH	RETURN
	FITS . ENI	

[^0]: ${ }^{a_{\text {Binkley }}}$, D. P.; Dessy, R. E. J. Amer. Chem. Soc., 1979 , 56, 152.

[^1]:

