DIGITAL FILTERING USING THE FAST FOURIER

 TRANSFORM SUBROUTINE
A THESIS
 SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

BY
RAMONA MARIE CALVE

DEPARTMENT OF CHEMISTRY

ATLANTA, GEORGIA
JULY 1981
$R=v_{i i} T P=58$

ABSTRACT

CHEMISTRY

CALVEY, RAMONA M.
 B.S. XAVIER UNIVERSITY, 1978
 DIGITAL FILTERING USING THE FAST FOURIER TRANSFORM SUBROUTINE

Advisor: Professor G. Scott Owen

Thesis date July 1981

When dealing with data generated in the chemical laboratory it is important that the frequency spectrum of the data be known, for it is the frequency spectrum that provides insight into the signal's noise content. Capitalizing on the frequency differences between noise and the original signal, digital filtering techniques make possible the partial removal of noise and maximize the possibility of accurate and sensitive measurements.

A FORTRAN program which performs digital filtering employing the fast Fourier transform (FFT) method was developed for a PDP 11/34 minicomputer. This program provides the user with the option of attaining a graphical representation of the data as each step- 1) reading in a previously stored file of data, 2) performing a forward transformation, and 3) zero filling the arrays to remove unwanted frequency components (noise) and performing an inverse transform-is performed. Also, the option of writing the results of either the forward or inverse transform out to a file is given.

In addition, other investigators have reported the application of the FFT method to a number of chemical techniques in the analytical laboratory. These include multiplex gas chromatography, linear least squares parameter estimation of fused peak systems, and the interpolation of chromatographic, spectroscopic, and electrochemical data.

ACKNOWLEDGEMENTS

First of all, I would like to express boundless gratitude to my parents, whose tireless efforts, encouragement, and understanding provided inspiration and support that laid a foundation for all my endeavors.

In expressing appreciation to associates and staff who contributed to the success of this project, I extend my deepest gratitude to Terry J. Green, who through patience and insight, facilitated the technical resolution of a number of problems associated with the program. I would like to thank Dr. G. Scott Owen for the definition of the project and for his support during the oral defense of my thesis. I would also like to express my appreciation to Dr. Thomas W. Cole and the staff of the Resource Center for Science and Engineering for the support that they provided. Finally, I would like to thank Ms. Carol E. Johnson for her encouragement and indulgence in the typing and revising of my thesis.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENT iv
LIST OF TABLES vi
LIST OF FIGURES vii
INTRODUCTION 1
EXPERIMENTAL 14
RESULTS AND DISCUSSION 20
CONCLUSION 43
REFERENCES 44
APPENDIX 45

LIST OF TABLES

Table Page
1 Comparison of Required Multiplication Operations Using the FFT and the Direct DFT. 5

LIST OF FIGURES

Figure Page1 Flow diagram indicating the computations involved ina 8 point FFT implementation of the DFT function . . .6
2
Digital filtering using the FFT 113a) The complex wave form; b) complex wave formanalyzed into the seven simple sinusoidal components12
A filtered version of the wave shown in Fig. 3a 13
Sine wave obtained by $\operatorname{SIN}\left(\operatorname{DELX} \cdot 1000.0^{\circ} \mathrm{L}\right.$) 29
Noisy sine wave obtained by $\operatorname{SIN}(X)+R A N(L, M) \cdot \operatorname{SIN}(X)$. 31
Results of the forward transform on the data generated by $\operatorname{SIN}\left(\operatorname{DELX}{ }^{\circ} 1000.0^{\circ} \mathrm{L}\right)$, the data depicted in Fig. 5. 32
Results of the forward transform on the data obtained by $\operatorname{SIN}(X)+\operatorname{RAN}(L, M) \cdot \operatorname{SIN}(X)$, the data depicted from Fig. 6 33
9 Results of the inverse transform on the data obtainedby $\operatorname{SIN}(X)+R A N(L, M) \cdot \operatorname{SIN}(X)$ employing the zerofilling range 5-2934
Results of the inverse transform on the data obtainedby $\operatorname{SIN}(X)+R A N(L, M) \cdot \operatorname{SIN}(X)$ employing the zerofilling range 1-2735
The results of the inverse transform on the dataobtained by $\operatorname{SIN}(X)+$ RAN $(L, M) \cdot \operatorname{SIN}(X)$ employingthe zero filling range 21-29.36
12 The results of the inverse transform of the dataobtained by $\operatorname{SIN}(X)+\operatorname{RAN}(L, M)^{\cdot} \operatorname{SIN}(X)$ afterscaling employing the optimal zero filling range 5-29 . . 37
Figure Page
13 The results of the inverse transform of the data obtained by SIN(DELX•1000.0́L) 38
14 Curve obtained by $\operatorname{AINT}\left(\operatorname{ABS}\left(\mathrm{X}^{\circ} \operatorname{SIN}\left(2^{\circ} \mathrm{X}\right)\right)+\right.$NOISE $\left.{ }^{\circ} \operatorname{RAN}(L, M){ }^{\bullet} \operatorname{ABS}\left(X^{\bullet} \operatorname{SIN}\left(2^{\circ} X\right)\right)^{\bullet} 1000\right)$ with azero NOISE factor 40
15 Curve obtained by $\operatorname{AINT}\left(\operatorname{ABS}\left(\mathrm{X}^{\circ} \operatorname{SIN}\left(2^{\circ} \mathrm{X}\right)\right)+\right.$NOISE $\left.{ }^{\text {RAN }}(L, M)^{\bullet} \operatorname{ABS}\left(X^{\bullet} \operatorname{SIN}\left(2^{\circ} X\right)\right)^{\bullet} 1000\right)$ whereNOISE equals 0.5 , a 50% NOISE factor 41
16 The results of the inverse transform on the dataobtained by $\operatorname{AINT}\left(\operatorname{ABS}\left(X^{\bullet} \operatorname{SIN}\left(2^{\bullet} \mathrm{X}\right)\right)+\mathrm{NOISE}^{`}\right.$ RAN(L,M)'ABS $\left.\left(X^{\circ} \operatorname{SIN}\left(2^{\circ} X\right)\right)^{\cdot} 1000\right)$ employing a zerofilling range of $8-25$42

INTRODUCTION

During the decade of the sixties, an important new approach to waveform manipulation, or signal processing, came into prominence. The practicality of representing information-bearing waveforms digitally so that signal processing could be done on the digital representation of the waveform was realized. In addition, the sixties and seventies were marked by phenomenal progress in computer technology, thus enabling computers to be more affordable and therefore more accessible to an ever increasing user community generating new demands for even more sophisticated technology. Several efficient algorithms for filtering and spectral analysis were developed, making the computer a useful tool in the analytical laboratory.

When dealing with data generated in the laboratory it is important that the frequency spectrum of the data be known. This is significant for it is the frequency spectrum of the original signal that provides insight into the signal's noise content, where noise may be defined as any component of a signal which impedes observation, detection, or utilization of the information the signal is carrying. ${ }^{1}$ Filtering techniques capitalizing on the frequency differences between noise and the original signal make possible the partial removal of noise and maximize the possibility of accurate and sensitive measurement. Although the bulk of the data recorded in the laboratory is in the form of amplitude versus time, these signals may also be characterized in the form of amplitude versus frequency by the application of a fast Fourier transformation (FFT) to the digitized data.

The purpose of this research project was to develop a FORTRAN program which would perform digital filtering employing the FFT method. This program was
developed for a PDP 11/34 minicomputer. The program reads in a previously stored file of data, graphs the data, and gives the option of writing the results of the Fourier transformation out to a file.

Theory

In order that the theory of the FFT may be understood it is appropriate to briefly survey the general concepts of both the classical continuous Fourier transform (CFT) and the discrete Fourier transform(DFT).

The CFT takes a function defined for all values of time and seperates it into a set of sinusoids that are represented by a complex-valued frequency function. Each value of the frequency function that is non-zero indicates that a sinusoid at that frequency is a component of the original time function and is equal to the amplitude of the associated sinusoid. The real components of the complex-valued frequency function specify sinusoids that are even functions, functions having the property

$$
f(t)=f(-t)
$$

while the imaginary components specify sinusoids that are odd functions, or functions having the property

$$
f(t)=-f(-t)
$$

The process of Fourier transformation is represented analytically by the function ${ }^{2,3}$

$$
\begin{equation*}
H(f)=\int_{-\infty}^{\infty} h(t) \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t} d t \tag{1}
\end{equation*}
$$

where: j is $\sqrt{-1,}$
$h(t)$ is the time function to be transformed,
$H(f)$ is the Fourier transform of $h(t)$,
t is time,
f is frequency.
If the Fourier transform of a spectrum is known, the time function may be determined from the inverse transformation which is given by ${ }^{2,3}$

$$
\begin{equation*}
h(t)=\int_{-\infty}^{\infty} H(f) e^{j \cdot 2 \cdot \pi t \cdot f} d f \tag{2}
\end{equation*}
$$

The general form of the inverse function is essentially the same as the direct or forward transform with the exception of the sign of the exponential argument.

Since a digital computer can only deal with discrete data points, the integration indicated by the expression of the CFT can not be accomplished. A method known as the DFT was developed to approximate the CFT at discrete frequencies. The DFT is represented mathematically as ${ }^{2-4}$

$$
\begin{equation*}
H\left(\frac{n}{N \cdot d t}\right)=\sum_{k=0}^{N-1} h(k \cdot d t) \cdot e^{-j \cdot 2 \cdot \pi \cdot k \cdot n / N} \quad \text { for } n=0,1, \ldots, N-1 \tag{3}
\end{equation*}
$$

The mathematical expression of the inverse DFT is ${ }^{2-4}$

$$
\begin{equation*}
h(k \cdot d t)=\frac{1}{N} \sum_{n=0}^{N-1} H\left(\frac{n}{N \cdot d t}\right) \cdot e^{j \cdot 2 \cdot \pi \cdot n \cdot k / N} \text { for } k=0,1, \ldots N-1 \tag{4}
\end{equation*}
$$

where in addition to those terms explained for equation (1): N is the number of sample input values from $h(t)$ or $H(f), n$ is a function of frequency, and k is a function of time.

Observation of the definition of the DFT reveals that there are approximately N complex multiplications and about the same number of complex additions required to compute the spectrum at a particular value. The functions are periodic with period N , however, only $\mathrm{N} / 2$ of the spectral components are unique. The total number of computations required to generate a complete spectrum is of the order of N^{2}.

An algorithm for efficiently computing the DFT of a time series was reported by J. W. Cooley and J. W. Tukey ${ }^{5}$ in April of 1965. This method demonstrated that there was an algebraic structure in the computation of discrete Fourier transforms that could be exploited to speed up the computation of such transforms by orders of magnitude. The finite Fourier transform of a series of \mathbf{N} (complex) data points could be computed in approximately $\mathrm{N} \log _{2} \mathrm{~N}$ operations as opposed to the N^{2} operation method (Table 1). Because of the computational time reduction this method became known as the FFT.

The FFT algorithm requires that the number of elements to be transformed is an integer power of 2, i.e.: $N=2^{k}$, where k is an integer in the range 2-10 inclusive. A derivation of the FFT algorithm for evaluating the Fourier coefficients for the case of $\mathbf{N}=8$ is illustrated in Fig. 1. Although $\mathbf{N}=8$ is quite limited in application, the signal flow graph may be employed to exemplify the form of the general computational algorithm.

In the signal flow graph, merging paths in a given column represent a combination of two quantities in the preceding column. For example, the first quantity in the second column, $X_{1}(0)$, is obtained by the combination $X(0)+W^{0} \cdot X(4)$ where the first term is indicated by the dashed line, the second term is indicated by the solid line, and the integer in the circle gives the power of $\mathrm{W} .{ }^{3}$

Table 1. Comparison ${ }_{4}$ of Required Multiplication Operations Using the FFT and the Direct DFT. ${ }^{4}$

N	N^{2} (direct DFT)	$N \log _{2} N(F F T)$
64	4,096	768
128	16,384	1,792
512	65,536	4,096
1,024	262,144	9,216
	$1,048,576$	20,480

Fig. 1. Flow diagram indicating the computations involved in a 8 point FFT implementation of the DFT function. Merging paths represent a combination of two quantities in a preceding column. For example, $X_{1}(0)=X(0)+W^{0} * X(4) .^{3}$

If $k \cdot d t$ is replaced by k and $n / N d t$ by n, for convenience of notation, equation 3 may be rewritten as ${ }^{6}$

$$
\begin{equation*}
X(n)=\sum_{k=0}^{N-1} x_{0}(k) w^{n \cdot k} \tag{5}
\end{equation*}
$$

where $W=e^{-j \cdot 2 \cdot \pi / N}$
The process continues until finally the spectral coefficients are obtained, the last column of X^{\prime} 's, in scrambled order, $X(0), X(4), X(2), X(6), X(1), X(5), X(3), X(7)$. The generality of this order may not be readily apparent but can best be described by looking at the subscripts as binary numbers:
0
000
4
100
2
010
6
110
1
001
5
101
3
011
7
111

If these subscripts are bit-reversed in binary, or read from right to left, the numbers from 0 to 7 are obtained in their natural order: ${ }^{7}$

000	0	001	1	010	2	011	3
100	4	101	5	110	6	111	7

The results of the FFT algorithm are identical to the results obtained by the DFT algorithm differing only by a known scale factor. The results of the FFT and DFT only resemble the expected results of the CFT, largely because of different inputs. Only under certain special conditions do the FFT and the DFT produce the
same results as the CFT for corresponding frequencies. In order to get agreement between the results of the FFT and the results of the CFT three conditions must be satisfied.

1. The function to be transformed must be periodic and band-limited, the function's highest frequency component must be finite.
2. The function to be transformed must be truncated at exactly one nonzero integer multiple of the functions period.
3. The function to be transformed must be sampled at a rate greater than twice the functions largest frequency component.

If the third condition is not met, if the sampling rate is toolow, the period of the function will be too short and aliasing (the overlapping of representations of the expected transform resulting in false frequency contributions) results. If either T , the sampling time, or N , the number of points, is not chosen such that the original function is truncated at an integer multiple of the period, the second requirement is not met, the resulting spectrum will be distorted as a result of the leakage effect (a spreading of the spectral components away from the current frequency). If the first requirement is not met either the second or the third condition can not be met. ${ }^{8,9}$

Chemical Applications of the FFT

The FFT method has been applied in the analysis of a number of analytical techniques in the chemical laboratory. A few of these techniques include multiplex gas chromatography, linear parameter estimation of fused peak systems, and the interpolation of sampled data obtained by chromatographic, spectroscopic, and electrochemical techniques.

Multiplex gas chromatography.--In multiplex gas chromatography instead of injecting a single impulse of the sampled mixture into the carrier gas stream, as in regular chromatographic techniques, multiple sample injections are made. The chromatogram obtained contains peaks which are severely overlapped resulting in an output not directly interpretable by the chemist. The information may be recovered and presented in the form of a chromatogram by applying fairly simple computational techniques; a Fourier transformation followed by cross-correlation. Although this technique does not help reduce the minimum time for an experiment or allow a time/resolution trade off, for applications where repetitive chromatograms are needed either to enhance the signal to noise ratio or to continuously monitor a sample stream the advantage attainable with this technique becomes important. ${ }^{10}$ Linear parameter estimation of fused peak systems.--Because Fourier transforms are sensitive to changes in the normally used peak parameters- peak height, peak position, and general peak shape- a change in any of these parameters will be reflected in a change in the real and imaginary spatial frequencies. By performing the linear least squares parameter estimation calculation in the Fourier domain a significant improvement in the resolution of fused peaks in a fused peak system was observed with a substantial savings in computation time relative to the traditional approach. ${ }^{11}$ This technique is not discipline specific and therefore can easily be applied to other areas of analytical chemistry which suffer from fused peak systems.

Interpolation of sampled data.--Precise identification of the magnitude and position of peak-type responses, as well as the recognition of peak-shoulder combinations, in chromatography, spectroscopy, and electrochemistry may be hindered by inadequate resolution of sampled data. An interpolation technique for drawing a smooth curve through the sampled data is needed to overcome these difficulties. One such
approach, which has been successfully implemented by Griffiths ${ }^{12}$ in processing spectroscopic data, involves the use of Fourier domain (FD) interpolation. With this technique the FD spectrum of the data array to be interpolated is computed, extended by a factor of 2^{n}, where n is a positive integer, by zero filling, ${ }^{12}$ and inverse Fourier transformed. The resulting array contains 2^{n} times the number of points in the original array. The validity of this procedure rests upon the fact that although the original data array may not provide sufficient resolution to satisfactorily serve its intended purpose, it is adequate to define the FD spectrum. ${ }^{13}$ A sufficient reduction in the total measurement time and computer memory requirements are attained by acquiring fewer than normal points along the time, frequency, or dc potential axis.

FFT as a Digital Filter

One of the numerous applications of the FFT is digital filtering (Fig. 2) which in the broadest sense refers to the assessment of the frequency domain effects of any digital system or processing algorithm. ${ }^{14,15}$ The initial step in the filtering process involves the computation of the DFT of the input signal. Since the output of the Fourier transformation gives an estimate of how much each frequency component contributes to the original signal it can be employed to analyze a complex waveform into a set of simple additive sinusoidal components, Fig. 3. Next, the DFT is modified by the desired frequency response directly in the frequency domain, allowing for the removal or filtering of unwanted frequency components. The inverse DFT is then computed; the resultant being the filtered signal, Fig. 4. ${ }^{16}$ This concept represents a rather interesting approach to digital filtering in the sense that frequency response functions completely unattainable with rational transfer functions may be applied directly to the spectrum.

Fig. 2. Digital filtering using the FFT.

b)

Fig. 3. a) The complex wave form; b) complex wave form analyzed into the seven simple sinusoidal components. ${ }^{15}$

Fig. 4. A filtered version of the wave shown in Fig. 3a. This wave is reconstructed from only the first five of the seven components of Fig. 3b. ${ }^{15}$

EXPERIMENTAL

Materials and Methods

A FORTRAN-IV computer program, which reads in a data file and performs a foward and an inverse Fourier transform, was written and implemented on a Digital Equipment Corporation (DEC) PDP 11/34 minicomputer. The hardware and software which were used in the implementation are described below.

Hardware

PDP 11/34 System.--The DEC PDP 11/34 is a 16-bit minicomputer with an RT-11 (Real Time-11) operating system which supports either a single job (SJ), a foreground/background (FB) or an extended monitor (XM). The minicomputer has approximately 50 Kbytes of user (or program) memory space. For mass storage it utilizes three RK05 cartridge disks, each disk being able to hold over 2.4 Mbytes of information. The languages available on this system are FORTRAN IV, BASIC, PASCAL, and the PDP-11 assembly lanaguage, MACRO.

4025 computer display terminal.--The 4025 computer display terminal, a product of Tektronix, lnc., belongs to a class of machines popularly known as "smart-terminals" because it has its own microprocessor and responds to its own set of commands, independent of the host computer. The 4025 has basic graphic capabilities and is equipped to draw several styles of vectors (line segments) and to intermix graphics with text and forms. ${ }^{17}$ There are several commands designed for creating graphic displays on the 4025

1．WORKSPACE－This command initializes the screen so that an applica－ tions program may be run．The syntax of this statement is： ：WORKspace［（number〉］［Host ］［Keyboard］$] C R\rangle$ where 〈num－ ber）is an integer between 0 and 33 ，inclusive．If number is ： included，this command erases the entire display list，defines a workspace，and allots the top number lines of the screen for the workspace window．The remaining 34 －＜number〉 lines are used for the monitor window．If \mathbf{H}（Host）is specified，text from the host computer is directed into the workspace．If K（Keyboard）is specified，text from the keyboard is directed into the workspace．

2．MONITOR－This command allows the user to specify which device（Host or keyboard）will send information to the monitor and to create text windows．The syntax of this statement is： ：MONitor［ 〈number〉］［Host ］［Keyboard］〈CR〉 where number is an integer between 1 and 34 ，inclusive．If 〈number〉 is included this command erases the entire display list．The terminal then defines a workspace and reserves the top 34 －〈number〉 lines of the screeen for the workspace window，using the remaining＜number＞lines for the monitor window．If \mathbf{H}（Host）or K （Keyboard）is specified，then text from the computer or keyboard is directed into the monitor．

3．GRAPHIC－This command def ines a graphic region in the 4025 workspace and erases all information currently stored in this region．The syntax of the statement is：
：GRAphic 〈beginning（beg）row〉〈end row 〉［ beg column （col）\rangle［＜end col $\rangle]]\langle C R\rangle$ where all parameters are positive in－ tegers designating rows and columns in absolute workspace coordinates． The default values of 〈beg col 〉 and 〈end col 〉 are 1 and 80 ， respectively．

4．SHRINK－This command is used to＂shrink＂the coordinates of graphic information by a factor of approximately $5 / 8$ ．This is done because the 4025 accepts 4010 －style graphic commands from a host computer and， therefore，it is necessary to scale the incoming 4010 commands for display in the 4025 graphic region．The syntax of this command is： ！SHRink［ Yes／Hardcopy／Both／No］〈CR〉．The default parameter is Yes．

5．ERASE G－This command erases the contents of the graphic region without destroying it such that new graphic information and text can be displayed there．The syntax of the statement is：
：ERAse G $\langle C R\rangle$

4662 interactive digital plotter．－－The 4662 interactive digital plotter，developed by Tektronix，Inc．，provides permanent graphic recording capabilities for devices such as the Tektronix 4010 －series terminal based system．Paper sizes of up to 11 inches （ 27.9 cm ）in Y by 17 inches（ 43.2 cm ）in X can be employed．The page scaling feature of the 4662 allows the plot size，which has a maximum value of 10 inches （ 25.4 cm ）by 15 inches（ 38.1 cm ），to be easily adjusted from the front panel to suit the paper size．The paper is held in position by electrostatic attraction generated by the platen．

There are three basic types of operations which may be performed with the 4662. The Hardware Alphanumerics feature of the plotter allows alphanumeric text to be printed on plots without requiring character generation software support by the host system. The plotter can also produce graphics by moving the pen across the plotting surface, lifting and lowering it to produce written vectors only when desired. In addition, the GIN (Graphic Input) operation allows the plotter to act as a digitizer, transmitting the coordinate position of the pen along with the pen status (up or down) upon command. ${ }^{18}$

Software

Plot 10 -terminal control system.--The Terminal Control System software package, which was developed by Tektronix, consists of a comprehensive set of subroutines which allows terminal-independent graphic programming. It offers many graphing conveniences to the user; bright and dark vectors (line segments) as well as points may be displayed on the terminal screen. In addition, the software package also includes a choice of linear, logarithmic, or polar coordinate systems; automatic scaling of graphic data; and buffered input and output for faster, more efficient character handling.

The fast Fourier transform subroutine.--The laboratory subroutines package, developed by DEC, is a set of eight data-processing subroutines designed to be used in a laboratory environment. The FFT subroutine is one of these routines and provides an efficient means of numerically approximating analytical or continuous Fourier transforms. The subroutine is supplied in two forms: an object file (F4FFT.OBJ)
which is ready to be linked with the application FORTRAN code and a source file (F4FFT.MAC) which may be used to produce an object file having features different from those of the distributed object file by defining certain conditional assembly parameters. The conditional assembly parameters that may be defined are the Extended Instruction Set (EIS), the Extended Arithmetic Set (EAS), and the maximum input/output (I/O) array size (F.MAXN).

The EIS and EAS are hardware packages which if available on your installation and so defined will increase the execution speed and decrease the memory requirements for the subroutine by 86 and 80 words, respectively. F.MAXN specifies the maximum number of complex elements that the FFT subroutine can process at one time. It is limited to those multiples of 1 K (1024) that are powers of 2 in the range 1 K to 8 K (8192). F.MAXN is not defined on the distributed object file and if it is not defined by the user a default value of 1024 is assumed. Redefining F.MAXN increases the memory requirements for the FFT subroutine by increasing its size by 256 words, going from 1024 to 2048, by 768 words, going from 1024 to 4096, and by 1792 words, going from 1024 to 8192 . 9

The general format of the FORTRAN call to the FFT subroutine is

CALL FFT(IERROR,N,IREAL,IMAG,INVRS, ISCALE).

IERROR is an integer variable used to signal error conditions. The values IERROR can assume are:

$$
0=\text { no error has occurred }
$$

$1=N$ is less than eight
$2=\mathbf{N}$ is greater than 4096 or F.MAXN

$$
\begin{aligned}
3 & =N \text { is not a power of two } \\
-n & =\text { The } N^{\text {th }} \text { argument is missing. }
\end{aligned}
$$

If IERROR is omitted, the program generates a fatal error when the FFT subroutine is called. N specifies the number of elements to be transformed and must be an integer variable that is a power of 2 between 8 and the maximum array size F.MAXN. IREAL is an integer array N elements long which contains the real portion of the input data to be transformed. The FFT returns the real respults to this array replacing the input data. IMAG is an integer array N elements long which contains the imaginary portion of the input data to be transformed. The FFT returns the imaginary results to this array replacing the output data. INVRS is an integer variable that indicates whether a forward or inverse transform is to be performed. The two values that can be used for INVRS are:

> 0 - a forward transform is to be performed
> 1 - an inverse transform is to be performed.

ISCALE is an argument that the FFT subroutine sets. It is an integer variable that indicates the number of times the results of the FFT subroutine have been divided by two. The FFT subroutine sets the scaling factor as necessary to overflow. In order to obtain the unscaled results of the FFT subroutine each output element of arrays IREAL and IMAG should be multiplied by

$$
\text { (real) ISCALE }{ }^{2} \text {. }
$$

RESULTS AND DISCUSSION

The main program, RCFFT, as developed in this thesis (see Appendix), exemplifies how the FFT subroutine may be used as a digital filter to eliminate unwanted noise in spectroscopic data. In addition, it provides the user with the option of attaining a graphical representation of the data as each step: 1) reading the data in, 2) performing a forward transformation, 3) performing an inverse transform, and 4) scaling of data; is performed and of writing the results of either the forward or inverse transform out to a file. Listings of the main program and the subroutine subprograms appear in the appendix.

Main Program

In the RCFFT main routine the user is asked to input the number of files to be read, the maximum value of which is four, the file name for each file, and the number of points per file. The maximum number of points per file is then found.

The file or files are then read in, a XPNTS (magnitude) and a YPNTS (time) value. The elements of the imaginary array (IM) are set to zero and the elements of the real array (IR) are set to the integer conversion of the time array, in order to be called by the FFT subroutine.

The user is then given the option of a graphical representation of the data, to which either a Y (yes) or N (no) reply should be given. If yes is specified, subroutines RCGRSP, which creates a graphic workspace on the 4025, and RCGRAF, the graphics routine, are called.

RCFFT then calls the FFT subroutine to perform a forward transformation on arrays IR and IM. If an error is generated, IE, which is the same as IERROR in the argument list of subroutine F4FFT, does not equal zero, the error code is printed and execution is terminated. Similarly, if the scaling factor (ISCALE), ISF in the calling list, does not equal to zero, the scaling factor is printed and execution terminates. The user is then given the option of calling subroutine WRITFL, which will write the results of the forward transform, arrays IR and IM, out to a file. Arrays IR and IM are converted from integer to real and subroutines RCGRSP and RCGRAF are called to graph the forward transform of data.

The main routine then gives the option of an inverse transform. If no is specified, execution ceases. If a yes response is given, the user is given the option of performing the filtering process. The X value corresponding to the initial frequency value (IFMIN) and the final frequency value (IFMAX) are inputed and the elements of the array IR and IM within this range are set equal to zero. The FFT routine is called and an inverse transform is done. If an error occurs during the execution of the FFT routine or the value of the scaling factor does not equal zero, a message is generated. The option of writing the results of the inverse transform out to a file is given (WRITFL). Then, subroutines RCGRSP and RCGRAF are called and the results of the inverse transform are graphed.

The program gives the option of starting over so that a new frequency range may be input. If yes is specified, control is transferred to the read statement (statement 9999) at the beginning of the program. The initial file is read in and execution proceeds as outlined above. Otherwise, execution continues and the option of receiving a graphical representation of the data after scaling is given. A no response terminates program execution.

The scaling factor is calculated as

$$
\begin{equation*}
S C A L=2.0 * *(I S F+I S I) \tag{6}
\end{equation*}
$$

Arrays IR and IM are multiplied by the scaling factor, so that the data is of the same magnitude as when it was input, subroutines RCGRSP and RCGRAF are called and the results of arrays IR and IM after scaling are graphed.

Subroutines

Graphics Routine.--The general format of the FORTRAN call to the graphics routine, RCGRAF is

CALL RCGRAF(NFILES,NDATUM,MDATUM,IDUMMY,ITORF,JI).
NFILES is an integer variable specifying the number of data files to be read in. NDATUM is an integer array containing the number of points per file for each file read in.

MDATUM is an integer variable which contains the maximum value of array NDATUM, or the maximum number of points per file.

IDUMMY is an integer constant which indicates whether array YPNTS, which is equivalenced to array YIRM in the main routine, is composed of one or more subarray. The maximum number of sub-arrays comprising array YPNTS is eight (when NFILES is equal to four). The only two values IDUMMY can assume are:

1- YPNTS is composed of one sub-array (you are graphing the input data).
2- YPNTS is composed of more than one sub-array (you are graphing the forward transform, the inverse transform, or the data after scaling.)

ITORF is an integer array which indicates the domain of the data being graphed. This array contains the ASCII code for either the word time or frequency depending upon the data being graphed.

JI is an integer constant which is the dimension of the ITORF array. The values JI can assume are:

4- ITORF is the ASCII code for time.
9- ITORF is the ASCII code for frequency.

Before the data can be graphed it is necessary to obtain the minimum and maximum values of the data so that the range may be determined for both the X and Y values. This may be accomplished with subroutine MINMAX

CALL MINMAX (XPNTS,MDA TUM,NDATUM,NFILES,XMIN,XMAX), which was written by Terry J. Green.

Subroutine RCGRAF checks the value of the IDUMMY argument to determine the number of sub-arrays comprising array XPNTS. If the value of IDUMMY equals one, subroutine MINMAX is called and the minimum (YMIN) and maximum (YMAX) values are determined for the YPNTS array. Control is transferred to line 2000 and execution continues, with the value of YRANGE being calculated.

If the value of IDUMMY equals two, control is transferred to line 1000, the minimum value (YMIN) and the maximum value (YMAX) are found and the range (YRANGE) is calculated.

The Terminal and Terminal Status Area are initialized so that the Terminal Control System routines may be employed. This is accomplished by calling the initializing routine, INITT which:

1. Erases the screen and causes the cursor to be moved to the HOME position.
2. Sets the Terminal to alphanumeric mode.
3. Sets the margin values to the left and right screen extremes.
4. Defines the window so that the portion of virtual space will be displayed which is equivalent in coordinates with the screen.

The rate of character transmission from the computer to the Terminal, the baud rate, is required as an input parameter with the general format of the statement being

Call INITT (IBAUD)
with $\operatorname{IBAUD}=120$ in this case.
The screen window (display area) is defined by calling subroutine TWINDO

CALL TWINDO (300, 900, 200, 600).

The general format of this command is

CALL TWINDO (MINX,MAXX,MINY,MAXY).
where MINX is the minimum horizontal screen coordinate, MAXX is the maximum horizontal screen coordinate, MINY is the minimum vertical screen coordinate, and MAXY is the maximum vertical screen coordinate.

Subroutine MOVABS is called and a move to $(300,600)$ is generated so that drawing can proceed from there. The X and Y axes are drawn by issuing calls to subroutine DRWREL, which is used to generate a bright vector by indicating the
number of horizontal and vertical screen units to move relative to the last beam position.

A virtual window is defined by calling subroutine DWINDO in order to fit the data to the screen window. Any graphic lines (vectors) or portions of vectors which lie outside of the area specified are clipped.

A move to (X, YMIN) is generated in virtual units (MOVEA), where X is equal to XRANGE initially and is incremented by X each time this sequence of steps reoccurs. Subroutine DTIC (down tic), which is contained in the PLOT 10 library, is called and a tic mark is generated at the point on the X axis specified by the MOVEA command. ASCODE, a routine written by Terry J. Green to determine the ASCII code of a number, is called. ASCODE requires as input the double precision conversion of the number, returning the ASCII code array (ITRANS) and the dimension of (or number of characters in) the array. A move relative to the current cursor position is generated and subroutine ANSTR, which is part of the PLOT 10 library, is called to print out the X value. Once the X axis tic marks and values have been printed, subroutines MOVABS and ANSTR are called and the X axis is labeled, either TIME or FREQUENCY, depending upon the domain of the data being graphed.

An analogous procedure is followed to generate the Y axis tic marks (subroutine LTIC) and to print out the y values on the axis. Subroutines MOVABS and ANSTR are called and the Y axis label (MAGNITUDE) is printed.

A FORTRAN call to subroutine MOVEA is generated and the cursur is moved to the origin, (XMIN, 0.0). Subroutine LTIC is called and a tic mark is generated at this position. MOVREL and ANSTR are called and a zero is printed at the origin.

The input parameter IDUMMY is checked to determine the number of subarrays comprising array YPNTS. If IDUMMY equals one, control is transferred to line 3000 . Then the MOVEA routine is used to position the cursur at the initial X, Y value,
(XPNTS(1,1), YPNTS(1,L))
and subroutine DASHA is called to plot out the data

CALL DASHA (X,Y,L)

where L is the dash type specification and can assume the values:

1- a dotted line.
2- a dash-dot line.
3- a short-dashed line.
4- a long-dashed line.

The sequence is repeated until the file or files are graphed.
If IDUMMY equals two, the total number of files, NTFILE, is equal to twice the number of files input

$$
\text { NTFILE }=2 \cdot \text { NFILES. }
$$

Therefore another method of graphing the data must be employed. Two counters \mathbf{N} and IN which are used to manipulate the loop indexing are initialized to one. Subroutine MOVEA is called to move to the initial X, Y value (IREAL(1,1)). Subroutine DASHA is called and the array IREAL is plotted for the first file. The value of IN is incremented. A move is generated to the initial X, Y value of the imaginary array. Subroutine DASHA is utilized to plot out the imaginary array for
the first file. IN is incremented by one so that its value is now three. The value of N is incremented and IN is set to one, indicating that a new file is being graphed, and execution continues as outlined above with first the real and then the imaginary arrays of each file being graphed. When the total number of files have been graphed a return to subroutine statement is executed.

Write File Routine.--Subroutine WRITFL may be utilized to write the results of either the forward or inverse transformation out to a file. The general format of the calling statement for the write file routine is

CALL WRITFL(IR,IM,NFILES,NDATUM,MTRANS,M)

where IR is an integer array \mathbf{N} elements long that contains the real portion of the data after transformation, $I M$ is an integer array N elements long that contains the imaginary portion of the data after transformation, NFILES is an integer variable that indicates the number of files read in, NDATUM is an integer array that contains the number of points per file for each file read in, and MTRANS is a variable which indicates whether a forward or inverse transform has been performed. It assumes the values FORWARD or INVERSE. M is an integer variable which specifies the logical unit which should be opened for output to a file.

Subroutine WRITFL initially checks the value of MTRANS to determine whether a forward or an inverse transform has been performed. If MTRANS equals INVERSE control is transferred to line 300 and the user is asked to input the file name for the inverse transform. Otherwise, a forward transform has been performed, the user specifies the file name for the results of the forward transform and control is transferred to line 500.

A FORTRAN call to subroutine ASSIGN, which is one of the routines contained in the PDP 11/34's library, is executed. This routine associates a device and a file name with a logical unit number (M) and must be executed before a logical unit is opened for input/output (I / O) operations.

If an inverse transform was performed, control is transferred to line 1000 and the results of the inverse transform of data are written out to the file; the real part, array $I R$, and the imaginary part, array $I M$. Otherwise, a forward transform occurred and the results (the real part, IR, and the imaginary part, IM) are written out to the file.

A call to subroutine CLOSE is executed thus freeing the logical unit so that it may be associated with another file.

Program Application

In order to illustrate the digital filtering capability of the RCFFT program a number of sets, or files, of data (each set containing thirty-two points) were generated via computer programs employing different sine wave functions.

A graphical representation of the sine wave function

$$
\begin{equation*}
\operatorname{SIN}(D E L X \cdot 1000.0 \cdot L) \tag{7}
\end{equation*}
$$

is illustrated in Fig. 5 with DELX being equal to two times pi and L, with an initial value of zero, being incremented by

$$
L+1.953125 E-4
$$

as each value of the sine is calculated.

TIME

Fig. 5. Sine wave obtained by $\operatorname{SIN}\left(D E L X \cdot 1000.0^{\circ} \mathrm{L}\right.$).

Fig. 6 depicts a sine wave with noise added to it

$$
\begin{equation*}
\operatorname{SIN}(X)+\operatorname{RAN}(L, M) \cdot \operatorname{SIN}(X) \tag{8}
\end{equation*}
$$

The FORTRAN library function $\operatorname{RAN}(L, M)$ which returns a random number of uniform distribution over the range 0 to 1 is used to generate the noise.

Figs. 7 and 8 depict the results of a forward transform on the data generated with equations 7 and 8 respectively. Comparing the frequency range 3-29 of the figures one notes that the results of both the real array (the solid line) and the imaginary array (the dashed line) of Fig. 7 are straight lines whereas with Fig. 8, the noisy spectrum, the lines are not. Based upon the results obtained in this step the zero filling range is chosen to eliminate the noise to attain a curve analogous to Fig. 5.

Figs. 9 through 11 illustrate the results of the inverse transform of the noisy spectrum, equation 8, with different zero filling ranges being employed. Fig. 9 depicts the result of the real array after the inverse transform with a zero filling range of $5-29$, where the zero filling range is determined from Fig. 8. For illustrative purposes the result of the real arrays after the inverse transform are shown for the zero filling ranges 1-27, Fig. 10, and 21-29, Fig. 11, where both zero filling ranges are taken from Fig. 8. Because the spectrum obtained in Fig. 9 more closely resembles the spectrum in Fig. 5 the zero filling range 5-29 is the optimum.

Fig. 12 illustrates the results of the inverse transform of the noisy spectrum (same as Fig. 6) after scaling using the optimal zero filling range while Fig. 13 depicts the inverse transform of the spectrum without noise after scaling (same as Fig. 5).

TIME

Fig. 6. Noisy sine wave obtained by $\operatorname{SIN}(X)+R A N(L, M) \cdot \operatorname{SIN}(X)$.

FREOUENCY

Fig. 7. Results of the forward transform on the data generated by SIN(DELX' $1000.0^{\circ} \mathrm{L}$), the data depicted in Fig. 5. The solid line indicates the real array and the dashed line indicates the imaginary array.

FREQUENCY

Fig. 8. Results of the forwarded transform on the data obtained by $\operatorname{SIN}(X)+R A N(L, M) \cdot \operatorname{SIN}(X)$, the data depicted in Fig. 6.

Fig. 9. Results of the inverse transform on the data obtained by $\operatorname{SIN}(X)+R A N(L, M) \cdot \operatorname{SIN}(X)$ employing the zero filling range 5-29.

TIME

Fig. 10. Results of the inverse transform on the data obtained by $\operatorname{SIN}(X)+R A N(L, M) \cdot \operatorname{SIN}(X)$ employing the zero filling range 1-27.

TIME

Fig. 11. The results of the inverse transform on the data obtained by $\operatorname{SIN}(X)+R A N(L, M) \cdot \operatorname{SIX}(X)$ employing the zero filling range 21-29.

TIME

Fig. 12. The results of the inverse transform of the data obtained by $\operatorname{SIN}(X)+\operatorname{RAN}(L, M) \cdot \operatorname{SIN}(X)$ after scaling employing the optimal zero filling range 5-29.

TIME

Fig. 13. The results of the inverse transform of the data obtained by $\operatorname{SIN}\left(D E L X \cdot 1000.0^{\circ} \mathrm{L}\right.$).

To further illustrate the use of the RCFFT program several spectra were generated using the formula

$$
\begin{equation*}
\operatorname{AINT}(\operatorname{ABS}(X \cdot \operatorname{SIN}(2 \cdot X)+\operatorname{NOISE} \cdot \operatorname{RAN}(L, M) \cdot \operatorname{ABS}(X \cdot \operatorname{SIN}(2 \cdot X)) \cdot 1000) \tag{9}
\end{equation*}
$$

by altering the NOISE parameter. Spectra were generated with a zero NOISE factor (Fig. 14) and a 50% (or 0.5) NOISE factor (Fig. 15). A forward transformation was performed on both sets of data and various zero filling ranges were chosen so as to eliminate the noise. Fig. 16 depicts the result of the inverse transform of data (50% NOISE) with a zero filling range of $8-25$. This was found to be the optimal range because this spectrum more closely resembled the spectrum in Fig. 14 with the exception of the fact that the spectrum was shifted above the zero mark.

Fig. 14. Curve obtained by $\operatorname{AINT}\left(\operatorname{ABS}\left(X^{\bullet} \operatorname{SIN}\left(2^{\circ} X\right)\right)+\operatorname{NOISE}^{\bullet} R A N(L, M) \cdot \operatorname{ABS}\left(X^{\bullet} \operatorname{SIN}\left(2^{\circ} X\right)\right)^{\cdot} 1000\right)$ with a zero NOISE factor.

TIME
 NOISE equals 0.5 , a 50% NOISE factor.

Fig. 16. The results of the inverse transform on the data obtained by $\overline{\operatorname{AINT}}\left(\overline{\mathrm{ABS}}\left(\mathrm{X}^{\bullet} \operatorname{SIN}\left(2^{*} \mathrm{X}\right)\right)+\mathrm{NOISE}{ }^{\bullet} \mathrm{RAN}(\mathrm{L}, \mathrm{M})^{\bullet} \mathrm{ABS}\left(\mathrm{X}^{\bullet} \operatorname{SIN}\left(2^{*} \mathrm{X}\right)\right)^{\bullet} 1000\right)$ employing a zero filling range of 8-25.

CONCLUSION

A FORTRAN program was developed that performs digital filtering via the FFT method. In order to illustrate the effectiveness of the digital filtering technique a noisy spectrum was simulated and the random frequency components (noise) were removed. This method may be practically applied to the generation of more coherent spectra through signal enhancement of data obtained by analytical techniques in the chemical laboratory.

REFERENCES

1. D. P. Binkley and R. E. Dessy, J. Chem. Ed., 56, 148 (1979).
2. E. O. Brigham, "The Fast Fourier Transform," Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974.
3. W. D. Stanley and S. J. Peterson, BYTE, 3, 14(1978).
4. H. J. Blinchikoff and A. I. Zverev, "Filtering in the Time and Frequency Domains," John Wiley and Sons, Inc., New York, NY, 1976.
5. J. W. Cooley and J. W. Tukey, Math. Comput., 19, 297(1965).
6. IEEE Group on Audio and Electroacoustics Subcommittee on Measurement Concepts, IEEE Trans. Audio Electroacoust., AU 15, 45(1967).
7. J. W. Cooper in "Transform Techniques in Chemistry," P. R. Griffiths, Ed., Plenum Press, New York, NY, 1978, Chapter 4.
8. G. D. Bergland, IEEE Spectrum, 6, 41 (1969).
9. "Laboratory Subroutines Manual," Digital Equipment Co., Maynard, MA, 1978, Chapter 6.
10. J. B. Phillips, Anal. Chem., 52, 468(1980).
11. D. P. Binkley and R. E. Dessy, ibid., 52, 1335(1980).
12. P. R. Griffiths, Appl. Spectrosc., 29, 11 (1975).
13. R. J. Halloran and D. E. Smith, Anal. Chem., 50, 1391 (1978).
14. S. D. Stearns, "Digital Signal Analysis," Hayden Book Co., Inc., Rochelle Park, NJ, 1975, p. 102.
15. P. L. Emerson, Creative Computing, 6, 58(1980).
16. W. D. Stanley, "Digital Signal Processing," Reston Publishing Co., Inc., Reston, VA, 1975, p. 285.
17. "4024/4025 Computer Display Terminal Programmer's Reference Manual," Tektronix, Inc., Beaverton, OR, 1978,p. 91.
18. "4662 Interactive Digital Plotter Users Instruction Manual," Tektronic, Inc., Beaverton, OR, 1978, p. 1-1.

APPENDIX

THE PROGRAM RCFFT

```
FORTRAN IV V02.1-1
    C
    C THIS PROGRAM WILL READ IN A SEQUENCE OF FILES (MAX=4), PERFORM
    C A FORWARU ANDIOR INUERSE FOURIER TRANSFORM UIA THE FFT
    C SUBRDUTINE, AND GIVE A GRAFHICAL REPRESENTAIION OF THE DAIA.
    C
    C THIS PROGRAM WAS WRITTEN BY RAMONA M. CALUEY
    FOR THE CHEMOMETRICS LABORATORY
    c AT ATLAMTA UNIVERSITY
    C
        DIMENSION NDATUH(4),YFNTS(100,4),IM(100,4),1F(100,4),
        1 RYPNT(100,4),ITIME(4),IFREQ(9)
            COMMON XPNTS(100,4),YIRM(100,4)
0003 EQUIVALENCE (YPNTS,YIRK)
0004
0005
0006
0007
0008
0009
0010
0 0 1 1
0 0 1 2
0 0 1 3
0014
0 0 1 5
0 0 1 6
0 0 1 7
0 0 1 8
0 0 1 9
0 0 2 0
0 0 2 1
    C
    C INfUT THE NUMRER OF POINTS PER FILE.
    TYPE &,' INFUT THE NUMBER OF DATA FUINTS IN FILE ',N
        ACCEPT #,NDATUM(N)
        IF(NDATUM(N) .GT. MDATUM) MDATUM=NDATUK(N)
    C
    C READ IN THE FILES.
    C
        9999 READ(N,*)(XPNTS(I,N),YPNTS(I,N),I=1,NIMTUN(N))
        10 CONTINUE
        C
        C
        DO 20 J=1,NFILES
        DO 30 I=1,NDATUM(J)
        IM(I,J)=0
```

```
FORTRAN IV VO2.1-1
0028 IR(I,J)=IFIX(YPNTS(I,J))
0029 30 CONTINUE
0030 20 CONTINUE
0031 TYPE 200
0032 ACCEPT 300,IYORN
0033 IF(IYORN .EQ. IN) GOTO 5000
0035 CALL RCBRSP
0036 TYPE 37
OO37 PAUSE 'ERASE THE GRAPHICS AREA-HIT THE RETURN KEY TO CONTINUE'
    C CRAPH THE DATA READ IN.
0038 CALL RCGRAF(NFILES,NDATUM,MNATUK,I,ITIME,A)
0039 5000 CONTINUE
0040 PAUSE 'HIT THE RETURN KEY TO CONTINUE E\ECUTION'
0 0 4 1
0042
0 0 4 3
0044
0 0 4 5
0046
0 0 4 7
0049
0 0 5 0
0051
0 0 5 3
0054
0055
0 0 5 6
0057
0 0 5 8
0 0 5 9
0 0 6 0
0 0 6 1
0 0 6 2
0063
0 0 6 4
0 0 6 5
0066
0 0 6 7
006B ACCEPT 300,IYORN
```

```
v02.1-1
PAGE 003
    C INPUT THE CUT DFF FREQUENCY AND FILL IHE FREQUENCY VALUES
    C ABOVE FMAX UITH ZEROES.
    C
0 0 7 1
0072
0073
0075
0076
0077
0078
0079
0 0 8 0
0081
0082
0 0 8 3
0084
0085
0086
0 0 8 7
0088
0 0 8 9
0 0 9 1
0 0 9 2
0093
0095
0096
0097
0 0 9 8
0 0 9 9
0 1 0 0
0 1 0 1
0102
0103
0 1 0 4
0 1 0 5
0 1 0 6
0107
0108
0 1 0 9
```

0069 C

```
                            IF(IYORN .EQ. IN) GOTO 1111
TYPE 265
            ACCEPT 300,IYORN
            IF(IYORN.EQ. IN) GOTO 6100
            DO 110 J=1,NFILES
            TYPE &,' INPUT THE CUT OFF FREQUENCY RANGE FOR FILE',J
            TYPE 267
            ACCEPT #,IFMIN,IFMAX
            DO 110 I=IFMIN,IFMAX
            IR(I,J)=0.0
            IM(I,J)=0.0
110 CONTINUE
6100 CONTINUE
C
C CALL THE FFT SURROUTINE TO PERFORK AN INUERSE TRANSFORM ON
C VALUES STOREI IN IR AND IM.
C
            DO 40 K=1,NFILES
            MF=NDATUM(K)
            CALL FFT(IE,NF,IR,IH,I,ISI)
            40 CONTINUE
c
C IF IE(RROR) IS NOT EQUAL TO ZERO, PRINT AN ERKOR MESSAGE;
C IF ISCAL IS NOT EQUAL TO ZERO, PRIMT THE SCALIMG FACTOR.
    3 IF\ISI .NE. O) TYPE 999,ISI
    C
            TYFE 250
            ACCEPT 300,IYORN
            IF(IYORN .EQ. IN) GOTO 6500
                    CALL WRITFL(IR,IM,NFILES,NDATUM,INUR,3)
    C
    6500 CONTINUE
        DO SO L=1,NFILES
            DO 60 M=1,NLIATUM(L)
            YIRM(K,L)=FLOAT(IR(M,L))
            YIRM(M,L+1)=FLOAT(IM(M,L))
    60 CONTINUE
    5 0 ~ C O N T I N U E ~
            CALL RCGRSP
            TYPE 37
            PAUSE 'ERASE THE GRAPHICS AREA-HIT THE RETURN KEY TO CONTINUE'
    C
    C GRAPH THE INUERSE TRANSFORM.
            CALL RCGRAF (NFILES,NDATUK, MIATUM,2,ITIME,4)
            PAUSE 'HIT THE RETURN KEY TO CONTINUE EXECUTION'
            TYPE 400
            TYPE 269
```



```
FORTRAN IV V02.1-1
```

0142 265 FORMAT`' WOUI.D YOU LIKE TO ZERO ANY OF THE ELEMENTS IN THE',

```
0142 265 FORMAT`' WOUI.D YOU LIKE TO ZERO ANY OF THE ELEMENTS IN THE',
    1 (ARRAY(S)(Y OR N)?')
    1 (ARRAY(S)(Y OR N)?')
0143 267 FORMAT(' TO DO SO INPUT THE X VALUES CORRESPONDING TO THE',
0143 267 FORMAT(' TO DO SO INPUT THE X VALUES CORRESPONDING TO THE',
        1 'INITIAL FREQUENCY UALUE',/'' AND THE FINAL FREQUENCY UALUE',
        1 'INITIAL FREQUENCY UALUE',/'' AND THE FINAL FREQUENCY UALUE',
        1 ( (XHIN-OF-RANGE XHAX-OF-RANGE),')
        1 ( (XHIN-OF-RANGE XHAX-OF-RANGE),')
0144 269 FORMAT(' NOULD YOU LIKE TO START OUER SO THAT A NEW CUT OFF',
0144 269 FORMAT(' NOULD YOU LIKE TO START OUER SO THAT A NEW CUT OFF',
    1 ' FREQUENCY RANGE MAY BE',/,' SPECIFIED (Y OR N)?')
    1 ' FREQUENCY RANGE MAY BE',/,' SPECIFIED (Y OR N)?')
0145 270 FORMATS' WOULD YOU LIKE A GRAFH OF THE MMIA AFTER SCALING',
0145 270 FORMATS' WOULD YOU LIKE A GRAFH OF THE MMIA AFTER SCALING',
    1 ( (Y OR N)?')
    1 ( (Y OR N)?')
0146 300 FORMAT(A4)
0146 300 FORMAT(A4)
0147 400 FORMAT(IX,'!MOR O')
0147 400 FORMAT(IX,'!MOR O')
0148 500 FORMAT(/)
0148 500 FORMAT(/)
0149 998 FORMAT(//!! THE ERRDR CODE RETURNED = ',I4)
0149 998 FORMAT(//!! THE ERRDR CODE RETURNED = ',I4)
0150 999 FORMAT(//%; THE SCALING FACTOR RETURNED = ',14)
```

0150 999 FORMAT(//%; THE SCALING FACTOR RETURNED = ',14)

```


```

0151 1111 CALL FINITT(0,760)

```
0151 1111 CALL FINITT(0,760)
0152 END
```

0152 END

```
```

FORTRAN IY VO2.1-1 PAGE OOI
0 0 0 1
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

```
```

 C THIS SUBROUTINE CREATES A GRAFHIC NORKSPACE ON THE 4025.
    ```
    C THIS SUBROUTINE CREATES A GRAFHIC NORKSPACE ON THE 4025.
    c
    c
    C WRITTEN BY RAMONA M. CALVEY
    C WRITTEN BY RAMONA M. CALVEY
```

SUBROUTINE RCGRSP

```
SUBROUTINE RCGRSP
TYPE 20
TYPE 20
TYPE 25
TYPE 25
TYPE 30
TYPE 30
TYPE 40
TYPE 40
FORMAT (IX,'INOR 31 H')
FORMAT (IX,'INOR 31 H')
25 FORMAT ( }1X,\mathrm{ 'IMON K')
25 FORMAT ( }1X,\mathrm{ 'IMON K')
30 FORMAT (1X,'!BRA 1,33')
30 FORMAT (1X,'!BRA 1,33')
40 FORMAT (1X,'!SHR')
40 FORMAT (1X,'!SHR')
RETURN
RETURN
END
```

END

```
```

```
FORTRAN IU VO2.1-1 PAGE OO1
```

```
FORTRAN IU VO2.1-1 PAGE OO1
    C
    C
    C THIS SUBROUTINE PERFORMS THE GRAPHICS FOR THE RCFFT MOIN ROUTINE.
    C THIS SUBROUTINE PERFORMS THE GRAPHICS FOR THE RCFFT MOIN ROUTINE.
    C
    C
    C WRITTEN BY RAMONA M. CALUEY
    C WRITTEN BY RAMONA M. CALUEY
0001
0001
0002
0002
0003
0003
0004
0004
0005
0005
0 0 0 6
0 0 0 6
0007
0007
0008
0008
0 0 0 9
0 0 0 9
0010
0010
0011
0011
0 0 1 2
0 0 1 2
0013
0013
0014
0014
0015
0015
0 0 1 6
0 0 1 6
0017
0017
0018
0018
0020
0020
0 0 2 1
0 0 2 1
0022
0022
0023
0023
0024
0024
0025
0025
0026
0026
0027
0027
0029
0029
0 0 3 1
0 0 3 1
0032
0032
0033
0033
0034
0034
0036
0036
0 0 3 8
0 0 3 8
0040
0040
0041
0041
0042
0042
0043
0043
0044
0044
0045
0045
0046
0046
0 0 4 7
0 0 4 7
0 0 4 8
0 0 4 8
0049
0049
0 0 5 0
```

```
0 0 5 0
```

```


```

 SUBROUTINE RCGRAF(NFILES,NDATUM,MDATUM,IDUMMY,ITORF,JI)
    ```
        SUBROUTINE RCGRAF(NFILES,NDATUM,MDATUM,IDUMMY,ITORF,JI)
        DOUBLE PRECISION XNUM,YNUM
        DOUBLE PRECISION XNUM,YNUM
        DIMENSION ITRANS(15),NDATUM(NFILES),IZERO(2),IDATUM(10),
        DIMENSION ITRANS(15),NDATUM(NFILES),IZERO(2),IDATUM(10),
            IMAGNI(9)
            IMAGNI(9)
            COMMON XPNTS(100,4),YPNTS(100,4)
            COMMON XPNTS(100,4),YPNTS(100,4)
            DATA IZERO/48,46/
            DATA IZERO/48,46/
        DATA IMAGNI/77,65,71,78,73,84,85,68,69/
        DATA IMAGNI/77,65,71,78,73,84,85,68,69/
    c
    c
        J=1
        J=1
        NTFILE=2*NFILES
        NTFILE=2*NFILES
        DO 5 I=1,NTFILE
        DO 5 I=1,NTFILE
        DO 5 IX=1,2
        DO 5 IX=1,2
        IDATUK(J)=NDATUM(I)
        IDATUK(J)=NDATUM(I)
        J=J+1
        J=J+1
    5 CONTINUE
    5 CONTINUE
    c
    c
        CALL MINMAX(XPNTS,MDATUK,NDATUM,NFILES, XMIN,XHAX)
        CALL MINMAX(XPNTS,MDATUK,NDATUM,NFILES, XMIN,XHAX)
        XHAX=XMAXY, 1#XMAX
        XHAX=XMAXY, 1#XMAX
        XRANGE=(AES(XMAX-XMIN))/10.0
        XRANGE=(AES(XMAX-XMIN))/10.0
        XRANGE=AINT (XRANGE)
        XRANGE=AINT (XRANGE)
        IF(IDUMMY .EQ. 2) GOTO 1000
        IF(IDUMMY .EQ. 2) GOTO 1000
        CALL MINMAX(YPNTS,MUATUM,NDATUM,NFILES,YMIN,YMAX)
        CALL MINMAX(YPNTS,MUATUM,NDATUM,NFILES,YMIN,YMAX)
        GOTO 2000
        GOTO 2000
    1000 CONTINUE
    1000 CONTINUE
            YMIN=YPNTS(1,1)
            YMIN=YPNTS(1,1)
            YHAX=YPNTS(1,1)
            YHAX=YPNTS(1,1)
            DO 50 N=1,NTFILE
            DO 50 N=1,NTFILE
            DO 60 I=1,IDATUM(N)
            DO 60 I=1,IDATUM(N)
            IF(YPNTS(I,N) ILT. YMIN)YMIN=YFNTS(I,N)
            IF(YPNTS(I,N) ILT. YMIN)YMIN=YFNTS(I,N)
            IF(YPNTS(I,N) .OT. YMAX)YMAX=YFNTS(I,N)
            IF(YPNTS(I,N) .OT. YMAX)YMAX=YFNTS(I,N)
    6 0 ~ C O N T I N U E ~
    6 0 ~ C O N T I N U E ~
    50 CONTIMUE
    50 CONTIMUE
    2000 CONTIMUE
    2000 CONTIMUE
            IF(YMIN.GT.0.0)YMIN=YMIN-.1$YMIN
            IF(YMIN.GT.0.0)YMIN=YMIN-.1$YMIN
            IF(YMIN,LT,0,0)YMIN=YMIN+.1*YMIN
            IF(YMIN,LT,0,0)YMIN=YMIN+.1*YMIN
            IF(YMIN.EQ.0.0)YMIN=-1.0
            IF(YMIN.EQ.0.0)YMIN=-1.0
            YMAX=YMAX + . 1#YMAX
            YMAX=YMAX + . 1#YMAX
            YRANGE = (ABS (YMAX-YKIN))/10.0
            YRANGE = (ABS (YMAX-YKIN))/10.0
            YRANGE=AINT(YRANGE)
            YRANGE=AINT(YRANGE)
    C
    C
            CALL IMITT(120)
            CALL IMITT(120)
            CALL TWINIO(300,900,200,600)
            CALL TWINIO(300,900,200,600)
            CALL MOVARS(300,600)
            CALL MOVARS(300,600)
            CALL MOVARS (300,600)
            CALL MOVARS (300,600)
            CALL DRWREL(600,0)
            CALL DRWREL(600,0)
            CALL DWINIOO(XMIN,XMAX,YMIN,YMAX)
            CALL DWINIOO(XMIN,XMAX,YMIN,YMAX)
    c
    c
            x=0.0
            x=0.0
            DO 10 K=1,10
```

 DO 10 K=1,10
    ```

```

FORTRAN IV V02.1-1 PAGE 003
0 1 0 5
0107
0 1 0 8
0109
0 1 1 0
0112
0114
0115
0116
0117
0 1 1 8
0119
0 1 2 0
0 1 2 1
0 1 2 2
0123
0124
0 1 2 5
0 1 2 6
0 1 2 7
0 1 2 8
0 1 2 9
0 1 3 0
0131
0132
0 1 3 3

```
```

C

```
C
```

IF(IDUMAY ,EQ, 1)GOTO 3000

```
IF(IDUMAY ,EQ, 1)GOTO 3000
N=1
N=1
IN=1
IN=1
DO 30 L=1,NTFILE
DO 30 L=1,NTFILE
1F(IN .EQ, 3) M=N+1
1F(IN .EQ, 3) M=N+1
IF(IN .EQ, 3) IN=1
IF(IN .EQ, 3) IN=1
CALL MOVEA(XPNTS(1,N),YFNTS(1,L))
CALL MOVEA(XPNTS(1,N),YFNTS(1,L))
DO 40 M=1,IDATUM(L)
DO 40 M=1,IDATUM(L)
CALL DASHA(XPNTS(M,N),YFNTS(M,L),L-1)
CALL DASHA(XPNTS(M,N),YFNTS(M,L),L-1)
40 CONTINUE
40 CONTINUE
IN=IN+1
IN=IN+1
30 CONTINUE
30 CONTINUE
CALL MOVARS (0,50)
CALL MOVARS (0,50)
CALL ANMOHE
CALL ANMOHE
RETURN
RETURN
C
C
    3000 CONTINUE
    3000 CONTINUE
    0O 70 L=1;NFILES
    0O 70 L=1;NFILES
    CALL MOUEA(XPNTS(1,1),YPNTS(1,L))
    CALL MOUEA(XPNTS(1,1),YPNTS(1,L))
    DO 80 M=1,NDATUM(L)
    DO 80 M=1,NDATUM(L)
    CALL DASHA(XPNTS(M,1),YFNTS(H,L),L-1)
    CALL DASHA(XPNTS(M,1),YFNTS(H,L),L-1)
    80 CONTINUE
    80 CONTINUE
    70 CONTINUE
    70 CONTINUE
        CALL MOVABS(0,50)
        CALL MOVABS(0,50)
        CALL ANMODE
        CALL ANMODE
        RETURN
        RETURN
    c
    c
    ENI
```

 ENI
    ```
```

FORTRAN IU VO2.1-1 PAGE OO1
C SUBROUTINE MIMMAX
C THIS SUBROUTINE DETERMINES THE MINIMUM ANI MAXIMUM VALUES----
C -----WRITTEN BY T. J. GREEN.
C
0001 SUBROUTINE MINMAX (PTS,NUMBER,NUN,NFILE,THIN,TMAX)
0002 DIMENSION PTS(NUMBER,NFILE), NUM(NFILE)
C PLACE THE FIRST VALUE IN THE ARRAY IN TMIN AND tMAX
TMIN=PTS(1,NFILE)
TMAX=PTS(1,NFILE)
DO 20 N=1, NFILE
NUM1 = NUM(N)
DO 20 H=1, NUM1
C FIND THE LONEST VALUE IN THE AKRAY AND flace IT IN TMIN
IF (PTS(M,N) .LT. TMIN) TMIN=PTS(M,N)
C FIND the largest value in the arRay anil flace it in tmax
IF (PTS (N,N) \>. THAX) TMAX=PTS (M,N)
20 CONTINUE
RETURN
ENI

```

```

FORTRAN IV VO2.1-1 PAGE 002
0 0 4 8
0049
0 0 5 1
0052
0 0 5 4
0055
0 0 5 6
0057
0058
0 0 5 9
0 0 6 0
0 0 6 1
0 0 6 2
0063
0064
0 0 6 5
0 0 6 6
0067
0068
0069
0 0 7 0
0071
0 0 7 2
0 0 7 3
0 0 7 5
0076
0 0 7 8
0079
0080
0 0 8 1
0082
0084
0085
0 0 8 6
0087
0 0 8 8
0089
0090
0 0 9 1 ~ 6
C

```

```

0092

```

```

 C
 0093 RETURN
0094 END

```
```

```
FORTRAN IU VO2.1-1 PAGE OO1
```

```
FORTRAN IU VO2.1-1 PAGE OO1
    C THIS SUBROUTINE WILL WRITE OUT A FILE CONTAINING EITHER
    C THIS SUBROUTINE WILL WRITE OUT A FILE CONTAINING EITHER
    C THE RESULTS OF AN INUERSE OR FORWARD TRANSFORM OF DATA.
    C THE RESULTS OF AN INUERSE OR FORWARD TRANSFORM OF DATA.
    C
    C
    C WRITTEN BY RAMONA M. CALUEY
    C WRITTEN BY RAMONA M. CALUEY
0 0 0 1
0 0 0 1
0002
0002
0 0 0 3
0 0 0 3
0005
0005
0006
0006
0007
0007
0008
0008
0009
0009
0 0 1 0
0 0 1 0
0 0 1 2
0 0 1 2
0 0 1 3
0 0 1 3
0 0 1 4
0 0 1 4
0 0 1 5
0 0 1 5
0 0 1 6
0 0 1 6
0 0 1 7
0 0 1 7
0018
0018
0 0 1 9
0 0 1 9
0020
0020
0 0 2 1
0 0 2 1
0 0 2 2
0 0 2 2
0 0 2 3
0 0 2 3
0 0 2 4
0 0 2 4
0025
0025
0026
0026
0027
0027
0 0 2 8
0 0 2 8
0029
0029
0 0 3 0
0 0 3 0
0031
```

0031

```
```

 c
    ```
    c
    C
    C
    C
    C
    SUBROUTINE URITFL(IR,IH,NFILES,NDATUM,MTRANS,M)
    SUBROUTINE URITFL(IR,IH,NFILES,NDATUM,MTRANS,M)
        DIMENSION IR(100,4),IM(100,4),NDATUM(4)
        DIMENSION IR(100,4),IM(100,4),NDATUM(4)
        IF(MTRANS .EQ. 'INVERSE') GOTO 300
        IF(MTRANS .EQ. 'INVERSE') GOTO 300
        TYPE 100
        TYPE 100
        BO TO 500
        BO TO 500
    300 TYPE 200
    300 TYPE 200
    500 TYPE 50
    500 TYPE 50
        CALL ASSIGN(M,'XXXXXXX,DAT',-1,'NEW','NC',1)
        CALL ASSIGN(M,'XXXXXXX,DAT',-1,'NEW','NC',1)
        IF(MTRANS .EQ. 'INUERSE') BOTO 1000
        IF(MTRANS .EQ. 'INUERSE') BOTO 1000
        URITE(M,*)' RESULTS FROM THE FGRWARD TRANSFORM OF HATA'
        URITE(M,*)' RESULTS FROM THE FGRWARD TRANSFORM OF HATA'
        GOTO 2000
        GOTO 2000
    1000 WRITE(M,*)' RESULTS FROM THE INUERSE TRANSFOKM OF INTA'
    1000 WRITE(M,*)' RESULTS FROM THE INUERSE TRANSFOKM OF INTA'
    2000 WRITE(M,*)' -REAL PART-'
    2000 WRITE(M,*)' -REAL PART-'
        DO 10 I=1,NFILES
        DO 10 I=1,NFILES
        DO 20 J=1,NDATUM(I)
        DO 20 J=1,NDATUM(I)
        URITE(H,*)IR(J,I)
        URITE(H,*)IR(J,I)
    20 CONTINUE
    20 CONTINUE
    10 CONTINUE
    10 CONTINUE
        WRITE(K,#)' -I KAGINAFY PART-'
        WRITE(K,#)' -I KAGINAFY PART-'
        DO 30 K=1,NFILES
        DO 30 K=1,NFILES
        DO 40 L=1,NIATUM(K)
        DO 40 L=1,NIATUM(K)
        URITE(H,#)IM(L,K)
        URITE(H,#)IM(L,K)
    40 CONTINUE
    40 CONTINUE
    30 CONTINUE
    30 CONTINUE
    SO FORMAT(/)
    SO FORMAT(/)
    100 FORMAT(' INFUT THE FILE NAME FOR THE FORWARD TRANSFORM')
    100 FORMAT(' INFUT THE FILE NAME FOR THE FORWARD TRANSFORM')
    200 FORMAT(' INPUT THE FILE NAME FOR THE INUERSE TRANSFORM')
    200 FORMAT(' INPUT THE FILE NAME FOR THE INUERSE TRANSFORM')
    C
    C
        CALL CLOSE(M)
        CALL CLOSE(M)
        END
```

 END
    ```
```

