
ABSTRACT

COMPUTER SCIENCE

FOWLER, CHANTICE B.S., SPELMAN COLLEGE, 1992
M.S., CLARK ATLANTA UNIVERSITY, 1994

THE COMPUTER SCIENCE GRADUATE RECORD EXAM
TUTORIAL COURSEWARE

Advisor: Dr. Kenneth Perry

Thesis dated May, 1994

The design and development of Computer Science Graduate

Record Examination Tutorial Software will be discussed. The

courseware reviews Computer Design, File Structures, Data

Structures, and Discrete Math to thoroughly prepare students

for the exam. A demonstration of the software is included on

diskette.



THE COMPUTER SCIENCE GRADUATE RECORD EXAM

TUTORIAL COURSEWARE

A THESIS

SUBMITTED TO THE FACULTY OF CLARK ATLANTA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

BY

CHANTICE M. FOWLER

DEPARTMENT OF COMPUTER & INFORMATION SCIENCE

ATLANTA, GA

MAY 1994

p.- N/lU T - XO?)



4

ACKNOWLEDGEMENTS

This entire tutorial courseware project and thesis would

not be possible had it not been for the encouragement,

support, dedication, patience, insight, and expertise of my

advisor. Dr. Kenneth Perry. To him I say, "Thank You!!" The

Atlanta University Center's Computer Science & Engineering

Programs would definitely reign as the best in the country if

all the professors were as nearly dedicated and hardworking as

he. Clark Atlanta University did not make any mistakes when

they gave him tenure.

Let me acknowledge Clayton Collie who contributed the

report on File Structures. In addition, Byron Roberson,

Janice Barlow, Katina McKinney, and Courtney Smith programmed

the cache demonstration used within the CS-GRE Tutorial

Courseware.

Special thanks are given to the National Science

Foundation for funding my entire graduate studies education.

This project would not have been possible had it not been for

their financial support.

Finally, let me thank Clark Atlanta University for being

one exceptional university.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

LIST OF ILLUSTRATIONS vi

LIST OF TABLES viii

CHAPTER 1

INTRODUCTION 1

CHAPTER 2

STUDENT COMPUTER SCIENCE

GRADUATE RECORD EXAM TEST RESULTS 4

CHAPTER 3

PROGRAM DESIGN 17

Main Menu 19

A. Computer Design 25

A.l. Introduction 25

A.2. IAS Computer 26

A.3. Modern Computers 26

A.4. CPU 29

A.5. Memory Systems 33

A.6. Microinstruction Sequencing 55A.7. Boolean Algebra (Switching Algebra) . . 56

B. File Structures 58B.l. Sequential File Organization 58

iii



B.2. Random File Organization 58

B.3. Indexed Sequential File Organization . 59

B.4. Multikey File Organization 59

B.5. Blocking 60

B.6. Buffering 61

B.7. File Storage Devices 61

B.8. Timing of Access Methods 62

B.9. Record Keys 64

B.IO. Hashing 64B.ll. Trees 68

C. Data Structures 71C.l. Array 71

C.2. Linked List 71

C.3. Stacks 72

C.4. Queues 73

C.5. Trees 74

C.6. Measuring a Program's Performance ... 75

C.7. Algorithm Characteristics 76

C.8. Allocation of Storage Space 77

C.9. Program Performance Improvements ... 77C.lO.An Explanation of the Questions &

Answers 78

D. Discrete Mathematics (Set Theory) 80D.l. Logic, Induction, & Recursion 80

D.2. Propositional Logic 86

D.3. Predicate Logic 88

iv



E. Suminary 88

CHAPTER 4

CONCLUSIONS & FUTURE WORK 90

APPENDIX A

THE CS-GRE TUTORIAL COURSEWARE 102

SELECTED BIBLIOGRAPHY 103

V



LIST OF ILLUSTRATIONS

Figure Page

2-1. Computer Science GRE Evaluation Results for All
Students 9

2-2. Computer Science GRE Evaluation Results for CAU
Undergraduate Students 10

2-3. Computer Science GRE Evaluation Results for CAU
Graduate Students 11

2-4. Computer Science GRE Evaluation Results for CAU
Graduate Students from CAU 12

2-5. Computer Science GRE Evaluation Results for CAU
Graduate Students from Other Schools .... 132-6. Structure Diagram 153-1. CS-GRE Tutorial Courseware Main Menu Screen . . 19

3-2. CS-GRE Tutorial Courseware Computer Design
Screen 20

3-3. CS-GRE Tutorial Courseware File Structures
Screen 21

3-4. CS-GRE Tutorial Courseware Data Structures
Screen 22

3-5. CS-GRE Tutorial Courseware Discrete Math Screen 23

3-6. CS-GRE Tutorial Courseware Details Screen ... 24

3-7. The Original von Neumann Machine 27

3-8. Basic Computer Organization 28

3-9. Memory Hierarchy 34

3-10. Memory Represented By Array M of Size N .... 38

vi



3-11. The Moving of Pages Between Auxiliary & Primary
Memory 40

3-12. The CS-GRE Tutorial Courseware Diagram 1. . . .43

3-13. The CS-GRE Tutorial Courseware Diagram 2. . . .44

3-14. The CS-GRE Tutorial Courseware Diagram 3. . . .47

3-15. The CS-GRE Tutorial Courseware Diagram 4. . . .49

3-16. The CS-GRE Tutorial Courseware Diagram 5. . . .51

4-1. CS-GRE Tutorial Courseware Menu Selections. . . 92

4-2. CS-GRE Tutorial Courseware Computer Design
Selections 93

4-3. CS-GRE Tutorial Courseware Introduction
Selections 94

4-4. CS-GRE Tutorial Courseware Introduction
Selections 95

4-5. CS-GRE Tutorial Courseware Introduction
Selections 98

vii



Table

2-1.

2-1.

LIST OF TABLES

Page

Computer Science GRE Evaluation Results .... 6

Computer Science GRE Evaluation Results, cont'd. 7

viii



CHAPTER 1

INTRODUCTION

This thesis presents the design and implementation of

interactive courseware for the Computer Science Graduate

Record Examination (CS-GRE). The motivation for the

courseware arose after Dr. Kenneth Perry administered the

Computer Science GRE to Clark Atlanta University (CAU)

students. They did not perform as well as expected. The test

results are in Chapter 2. The software provides tutorial

information on four subject areas: Computer Design, File

Structures, Data Structures, and Discrete Mathematics.

Initial feedback indicates the CS-GRE tutorial using

interactive multi-media modalities to present many basic

computer science concepts does help in preparing students for

the GRE Computer Science Exam.

The tutorial courseware began as a group project. We

tested 17 CAU students on a previously given Computer Science

GRE for questions numbered 1 through 39; and, the students did

not perform very well. A group of students who needed to

prepare for the actual GRE Computer Science Exam realized

there was no commercially-available tutorial software for this

particular exam. Amazing, since there are other software

1



packages on the market for other GRE subject exams. After

all, computer science is the discipline upon which software

originates.

Consequently, this thesis was initiated after one student

realized the need for the tutorial courseware based on the CAU

students test scores and decided to make one. After analyzing

previous CS-GRE exams and several meetings with my advisor.

Dr. Kenneth Perry, we decided on the computer science subjects

to be included in the package: Data Structures & Algorithm

Analysis, Computer Organization, File Structures, Operating

Systems & Computer Architecture, Discrete Mathematics, and

Pascal. A large percentage of the Computer Science GRE

questions cover material taught within these particular

subjects. I prepared in-depth summaries of many important

concepts reviewed within each course. Clayton Collie, another

Clark Atlanta University (CAU) graduate student, contributed

the report on File Structures.

I designed the courseware structure and programmed the

computer interface using an event-driven software package,

Microsoft Visual Basic, which is an application programmers

interface language for Microsoft Windows environments. (An

executable copy of the software is included in Appendix A.)

The software is currently available to students in the CIS

Computer Lab. One objective of the tutorial courseware is to

target the largest install base which is the personal computer

market and provide the software at an affordable price for

2



students.

Chapter 2 presents and analyzes the Computer Science GRE

score results when 17 CAU students took the saimple exam.

Chapter 3 introduces the design philosophy used to develop

this tutorial courseware, gives a detailed description of the

software design, and discusses its features. Chapter 4

provides a list of potential future enhancements for the next

version and concludes the tutorial courseware thesis.

3



CHAPTER 2

STUDENT COMPUTER SCIENCE

GRADUATE RECORD EXAM TEST RESULTS

This chapter provides an extensive discussion of the CAU

student CS-GRE test results. Based on the results, the CS-GRE

tutorial courseware was created to increase our students' test

scores. The courseware reviews information most often asked

within the Computer Science Graduate Record Examination.

An actual Computer Science Graduate Record Examination

(GRE) was administered to 17 Clark Atlanta University (CAU)

students in the spring of 1993. Dr. Kenneth Perry, a CAU

Computer Science professor, officiated the exam. There is a

total number of 80 questions within the Computer Science GRE,

and the exam is given over a 4 hour time period. However, the

CAU students were only recjuired to answer questions 1-39 due

to the time factor of 2 hours. The CAU students comprised

both graduates and undergraduates.

The graduate students represented a diverse group in

terms of their different ages, interests, occupations, work

experience, undergraduate majors, and undergraduate colleges.

Most of the graduate students came from other schools. The

undergraduate colleges they attended were among Tennessee

4



state University/ Spelman College, Rensselaer, and Clark

Atlanta University. Their undergraduate majors varied from

Computer Science and Management Information Systems to

Physics. Their current graduate grade point averages had to

be above 3.0 since they remained in excellent standing with

CAU’s Computer & Information Systems Department. The range of

ages is from 22 years to 37 years.

There were two graduate students who attended CAU as

undergraduates. Their undergraduate majors were Physics and

Computer Science. Their undergraduate college grade point

averages were 3.0 and 3.9, respectively. Both students

earned high school grade point averages above 3.5.

The undergraduates also represented a diverse group.

Several students were Computer Information Systems majors,

while others were Computer Science majors. Their

classifications were either junior or senior. Their current

college grade point averages ranged from 2.77 to 3.75. In

reference to their high school statistics, their grade point

averages ranged from 2.7 to 3.8. Their SAT scores ranged from

790 to 1080.

Given the diverse group of students taking the exam, the

results were very revealing. The evaluation results may be

viewed in Table 2-1. The rows list the number of the specific

exam questions from 1 to 39. The columns give the assigned

student identification niombers from 1 to 17. The average of

all the students' scores was approximately 38% correct, 34%

5



Table 2-1.

Computer Science GRE
Evaluation Results

o^

tm

B
s
Z
B
O
*'{3

B
O'

Assigned Student ID Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 R R R R R w R R R R R R R R R R. R

2 w W W R N N N R W R R R R R R R R

3 w N w N W w R W W R W W R R W W R

4 R W R N W W W R w R N R R R R W R

5 w R W R W w R R R W W R R R R R R

6 w w W W W R W R w w R W R W R W R

7 R R W W W W R R w R R W W R R R R

8 H K W R R W N R N W W W W W W N R

9 W w w N W w N R w R R w R R R W w

10 N K w N R N N R R R w w N N W w R

11 K W w N R R W W R K R w R R R R R

12 N N w N N N W W W N N N N N N N N

13 W W w R N W W R W R W W R W W W N

14 N N w N W W N R N N N w' R N R R R

15 W W w W N N W R W N N R R R W R R

16 W R w R N W R R W R R R R R R. R R

17 R R R W R W R R R R R R R R R R R

18 R R N R R N N W R N W R R R R R N.

19 N W W N W W W R W N N W W N W N R .

20 W N W N N w W R W N N W R R W R R

R = Correct W sIncorrect N s Never Seen



Table 2-1.

Computer Science GRE
Evaluation Results, cont’d

u
a>
X)

S

a
o

Assigned Student ID Number
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

21 N N w N w w W w w N N N w N w w R

22 N R w N N N N R W W N w w W w w K

23 N N w N R W W R w R N W R N R R R

24 N R R N w N W W R N N R R W W W R

25 W W R w K W R R R N N W N W R R R

26 N w W N W N w R w R w w N N w w R

27 N N W N N N N W W N N N W N N W R

28 R R W R R R W R R R W R R N R R R

29 R N W R N N N R R N N W R N N W R

30 N N W R W N N K W R N N W N W W R

31 R K R R N R N R W R W W R W W W R

32 N N R N N N N R N N W W R W W W N

33 R N N W W W W R W W W W R N W W N

34 R N N W W w W R w W w R R N R N R

35 N N w R w N N R w R N N R R W w R

36 N W W N N N N R w R R W R W W w R

37 W W w R N N N R w R N R N N N w N

38 N N N N R N W R R N N N N N N N N

39 R N N N N N W R R N N W W W N N R

R = Correct

Total R s 248

W = Incorrect

Total W = 226
N = Never Seen

Total N s 188



incorrect, and 28% of the material had never been seen before.

To be exact, 248 answers were correct, 226 were

incorrect, and 188 were unknown meaning the material was

unfamiliar. Please view Figure 2-1 for a table representation

of the approximate percentages. These figures are rather

surprising and disappointing.

The CAU undergraduates answered 156 correct, 164

incorrect, and 148 unknown. The respective percentages of

33%, 35%, and 32% may be seen in Figure 2-2. The graduates

did perform better than the undergraduates. Figure 2-3 lists

the graduate students' performance as a whole. The five

graduates together scored 100 correct, 71 incorrect, and 33

unknown. The respective percentages are 49%, 35%, 16%. The

two graduate students who attended CAU as undergraduates

scored 48 correct, 20 incorrect, and 15 unknown. The

percentages for these scores are 58%, 24%, and 18%,

respectively, and are shown in Figure 2-4. The three

graduates who attended colleges other than CAU scored 52

correct, 51 incorrect, and 18 unknown. Figure 2-5 gives the

percentages for these scores of 43% correct, 42% incorrect,

and 15% unknown.

These scores prove our students as a whole do not perform

very well on the Computer Science GRE. As a result of this

discovery, something has to be done to improve the scores of

our students, and I am the person who wanted to make a

difference to raise our test scores and performance.

8



Figure 2-1.
Computer Science GRE
Evaluation Results
for All Students

38%

S # Correct # Incorrect ^ # Never Seen



Figure 2-2.
Computer Science GRE
Evaluation Results

for CAU Undergraduate Students

S # Correct ^ # Incorrect ^ # Never Seen



Figure 2-3.
Computer Science GRE
Evaluation Results

for CAU Graduate Students

49%

^ # Correct El # Incorrect El # Never Seen



Figure 2-4.
Computer Science GRE
Evaluation Results

for CAU Graduate Students from CAU

58%

^ # Correct ^ # Incorrect H # Never Seen



Figure 2-5.
Computer Science GRE
Evaluation Results

for CAU Graduate Students from Other Schools

43%

^ # Correct ^ # Incorrect # Never Seen



The poor performance may be attributed to the exam

covering material which is not being reviewed thoroughly

within a classroom environment. The incorrect answers and the

unfamiliar material are evidence the exam analyzes material

which is either difficult or foreign to the students. In

order for the students to perform well^ this unfamiliar and

difficult material must be thoroughly reviewed during

preparation for the Computer Science GRE. The CS-GRE tutorial

courseware is developed to cover the unfamiliar subject matter

and to improve students' scores.

After reviewing the GRE, we identified six courses from

which most of the information originates. These six courses

include Data Structures & Algorithm Analysis, Computer

Organization, File Structures, Operating Systems &

Architecture, Pascal, and Discrete Mathematics. Five courses

are reviewed in the package within four modules. Pascal is

the sixth course not yet included; but, it is being developed

as a fifth module. The four modules implemented include

Computer Design, File Structures, Data Structures, and

Discrete Mathematics.

The structure diagram for the modules may be seen in

Figure 2-6. Each topic provides narrative information within

a window. One asterisk (*) indicates a diagram accompanies

the narrative. Two asterisks (**) indicate animation or a

demonstration is shown. Three asterisks (***) show where a

future diagram may be included in the next version. Four

14



Figure 2-6.
CS-GRE Tutorial Courseware Structure Diagram

M
U1



asterisks (****) indicate where future animation or video may

be demonstrated. Five asterisks (*****) show where future

sound may be added.

The next chapter on Program Design reviews the material

included in the tutorial courseware. All four modules.

Computer Design, File Structures, Data Structures, and

Discrete Math, are reviewed.

16



CHAPTER 3

PROGRAM DESIGN

This chapter discusses the design philosophy used in

creating the tutorial courseware and gives a detailed

description of the software design features. The material

presented familiarizes the reader with Computer Organization,

Operating Systems & Architecture, File Structures, Data

Structures & Algorithm Analysis, and Discrete Mathematics

courses taught within a university's computer science degree

program.

The CS-GRE tutorial is divided into five main headings;

Computer Design, File Structures, Data Structures, Discrete

Math, and References. The software is designed using a

hierarchical menu structure which includes submenus that can

be nested up to six levels deep. This organizational

structure within the tutorial software is used to present an

overview of computer science in a clear, concise manner with

related topics grouped together.

The software provides the user a general overview of

computer science. The package lays a basic foundation to

prepare a student for the Computer Science GRE Subject Exam

17



and Increase our students' test scores.

In addition, the tutorial is intuitively designed to be

simple and easy to use. The user may use either the mouse or

the keyboard to review the tutorial. The menu items' windows

may appear by either selecting the desired item with the

mouse, or typing in a specific underlined letter from the menu

items' title as a hotkey.

Visual Basic was chosen as the application programming

tool because 1) our objective is to develop low-cost software

for the largest installed base which is the PC market; 2) we

want the software to run under Microsoft Windows since it is

such a common computing environment; 3) Visual Basic is the

fastest and easiest way to develop Windows applications; and

4) Visual Basic is the Applications Programmer Interface

Language for all future Windows releases including Windows NT

and greater.

The structure of the screens displayed in the tutorial is

described.

18



Main Menu

The Main Menu is displayed in Figure 3-1. The menu

headings with the CS-GRE background screen are shown.

19



Computer Design

The Computer Design section includes the following menu

items as shown in Figure 3-2. Several items are thoroughly

discussed within this document.

file Structures Qata Structures Disaete Math Details

Boolean Algebra
Memory
Computer Arithmetic >\
Bates
Instruction Sat
Microinstruction Timing
Microprogramming
Begister File
yon Neuman Architecture



File Structures

The File Structures section is shown in Figure 3-3 and

discussed below in section B.

Computer Design
Computer Science Graduate Record Exam

File Structures Data Structures Discrete Math Details
m

21



Data Structures

The Data Structures menu in Figure 3-4 illustrates the

following topics within the menu that pertain to this subject.

22



Discrete Math

In Figure 3-5, this Discrete Math menu shows the two

subjects into which the topic is divided. Logic, induction,

and recursion are discussed in the first topic. Propositional

logic and predicate logic represent the second topic.

23



Details

The Details menu in Figure 3-6 presents the author and

references sections. The tutorial author is given in About

CS-GRE. The references section lists all actual references

used to gather the information in this tutorial.

24



A. Computer Design

This section presents an overview of the von Nevimann

machine, modern computers, the central processing unit, memory

systems, microinstruction sequencing, and Boolean algebra.

The modern computers and memory systems discussion includes

diagrams which enable the reader to understand the

organization of a computer, several memory types, and

different cache schemes. Several questions and answers are

given to demonstrate a variety of caching strategies. The

discussion gives the reader a general understanding of

computer organization and operating system architecture.

A.l. Introduction

The four basic functions of a computer are: data

processing, data storage, data movement, and control. A

computer includes a set of instructions that when used

together as a group allows the user to perform any conceivable

data-processing task. This allows the use of computers in

many fields whether the user plans to develop applications,

perform research, design models, or manipulate records.

Therefore, computers include an ample number of instructions

to move data to and from memory; perform arithmetic and logic

instructions; provide instructions for checking status

information which enables the computer to render decision¬

making capabilities; and, perform input and output operations.

General-purpose computers contain high-speed primary memory.

25



auxiliary memory, a central processing unit (CPU), and an

input/output (I/O) system.

A.2. IAS Computer

John von Neumann built the Princeton's Institute of

Advanced Studies (IAS) computer modeled after the Electronic

Discrete Variable Automatic Computer (EDVAC) in the early

1950's. The IAS computer is referred to as a von Neumann

machine and is still the basis for digital computers today.

An important feature is that the program and data are

represented in digital form in the computer's memory instead

of the antiquated system of using large numbers of switches

and cables to program a computer.

The IAS computer in Figure 3-7 contains five parts as

follows: the memory, the ALU, the program control unit, and

the input and output equipment. Properties of a von Neumann

architecture include the storage of data and instructions in

a single read-write memory;and, the contents of this memory

are addressable by location, without regard to the type of

data contained therein. Execution occurs in a sequential

fashion from one instruction to the next, unless explicitly

modified.

A. 3. Modern Computers

There are four main structural components to a computer: the

central processing unit (CPU), main memory, input/output

(I/O), and the system interconnections. Figure 3-8 presents

a basic computer's organization. The CPU controls the

26



FIGURE 3-7.
THE ORIGINAL VON NEUMAN MACHINE



CPU

ro
00

RO

General

Purpose
Registers

RIS

Control
Unit

(CU)

FIGURE 3-8.

BASIC COMPUTER’S ORGANIZATION

Cache Primary
Memory Memory



operation of the computer and performs its data processing

functions. Main memory stores data. Input/output moves data

between the computer and its external environment. The system

interconnection provides some mechanism which supplies

communication among the CPU, main memory, and I/O.

A.4. CPU

The CPU or central processing unit shown in Figure 3-8 is

the section of a computer which handles the interpretation and

execution of the programming instructions. The CPU consists

of four major structural units: the ALU, the control unit,

registers, and the CPU interconnections. The arithmetic and

logic unit (ALU) performs the computer's data processing

functions. The control unit controls the operation of the

CPU. Registers provide storage internal to the CPU. CPU

interconnections provide communication between the control

unit, ALU, and registers. The CPU contains the arithmetic and

logical unit (ALU), control unit (CU), instruction register

(IR), memory address register (MAR), memory buffer register

(MBR), program counter (PC), general purpose registers, buses,

and program status register (PSR).

A.4.a. ALU

The ALU contains electronic circuits which receive and

operate on the data. The ALU exercises the basic arithmetic

operations of addition, subtraction, shift operation, and

logical operations, i.e. AND, OR, and COMPLEMENT. The ALU

typically consists of a binary adder and binary shifter. The

29



adder inputs two binary numbers and produces a binary sum for

output. The shifter changes the position of the bits either

to the left or to the right. The shifter and the adder can be

used together to execute multiplication. Complimentary

addition is used to perform subtraction. Division is achieved

by repeated subtraction and shifting.

A.4.b. Control Unit

The control unit (CU) manages the flow of data between

all other devices. It also translates the operations

represented by the program instructions. Furthermore, the CU

sends signals to the devices which perform these operations.

The CU directs both the flow of instructions and data to and

from memory. The flow of both the instructions and data to

memory is termed the store cycle; and, the flow of both from

memory to various devices is defined as the fetch cycle or

read cycle.

Before program execution begins, the PC must receive the

memory address of the first instruction to be executed. The

CU then continues program execution, or rather evaluates

instruction execution cycles. An instruction execution cycle

begins with the read cycle of an instruction. The cycle ends

when a result is obtained. As the instruction is moved or

copied from primary memory, the CU interprets the instruction.

During this interpretation, the CU transmits the appropriate

signals to the various devices necessary for processing the

instruction. Also, the CU sends the necessary data to be used

30



in the instruction to the ALU. Upon completion of the

operation, the CU directs the result from the ALU into the

appropriate memory cell or processor register.

A.4.b.l. Processor Registers

Instructions for moving data to and from memory are

essential. Most information in a computer is stored in memory

while the computations are done in the CPU and stored in the

processor registers. The system must have the capability of

moving data between memory and the processor registers if the

system is to be fully effective and useful.

A CPU instruction cycle performs several different

operations. The cycle first fetches the next instruction from

memory and places it in the instruction register. The program

counter changes to hold the address of the next instruction to

be executed. The instruction is decoded. Data is fetched

from memory if necessary. The instruction is executed, and

the results are stored. Then, the CU returns to the first

step and repeats the process until all instructions have been

executed.

A.4.b.2. IR, MAR, & MBR

The instruction register (IR) is the register within the

CPU which holds the current instruction. The memory address

register (MAR) holds an address of an instruction or data to

be read or written; while, the memory buffer register (MBR)

stores the instruction or data.

A.4.C. Program Counter

31



The program counter (PC) is designated as a special

register which contains the address of the next instruction to

be executed. As the instruction is retrieved from memory and

placed in a special register within the CPU, the PC is

updated. The PC is incremented by a niimber equivalent to the

length of the instruction in bytes. The number of bytes

required to store the instruction in memory is the length of

the instruction.

Since memory is a linear array, the PC normally stores

the address of the next sequential instruction to be executed.

An exception arises when the current instruction is a branch

or transfer of control instruction. In this situation, the

CPU discerns the instruction to be executed is not the next

sequential instruction. Therefore, the PC is updated to store

the branch address for the next instruction to be executed.

A.4.d. General Purpose Registers

General purpose registers supply local, high-speed

storage for the processor. Registers function as discrete

storage cells of some fixed length. Registers receive, hold,

and transfer data as well as store addresses, but their

primary use is to hold data temporarily. The advantage to

using registers is that data can be processed more quickly

than by accessing main memory.

.e.Program Status Registers

Program status registers (PSRs) contain status

information which report the current state of the program in

32



execution. There are one or more PSRs within the CPU. PSRs

provide information about the results obtained from

instruction execution by using condition codes.

Almost every instruction execution records some

information in the condition code. The condition code is just

one type of status information. On the basis of this

information, the programmer decides which actions to take

next. Condition codes supply the following information: the

result is zero, the result is negative, the result is

positive, the result is out-of-range (overflow), and whether

the arithmetic operations use "carry-out" or "borrow-into."

A.5. Memory Systems

This section presents an overview of memory systems

including memory hierarchy, locality of reference, address

space, primary memory, auxiliary memory, virtual memory, and

cache memory. Cache memory includes a discussion on

associative cache, direct-mapped cache, and set-associative

cache. Five questions are given which represent several

caching strategies.

A.5.a. Memory Hierarchy

Whereas a virtual memory system shifts data between

auxiliary memory and primary memory, cache organization moves

data between primary memory and the CPU. Thus, each memory

type involves a different level in the memory hierarchy

system. Figure 3-9 displays the memory hierarchy. Within the

computer memory hierarchy, programs and data are first stored

33



Figure 3-9.
Memory Hierarchy

CPU

H
Cache

Word Transfer

Small, fast, expensive memory

Block Transfer

Large, slow, cheap memory

Auxiliary Memory

T A
Main Memory

IT

34



in auxiliary memory. The cache holds those most heavily used

parts of the program and data, while the auxiliary memory

stores those parts the CPU is not presently handling. As a

result, the CPU commands direct access to both cache and

primary memory but not to auxiliary memory.

A.5.b. Locality of Reference

Locality of reference means references to memory at any

given time interval tend to be confined within a few localized

memory cells. Locality of reference occurs since a typical

computer program flows sequentially from top to bottom,

encountering frequent program loops and procedure calls. Upon

a program loop's execution, the CPU repeatedly refers to the

set of instructions which form the loop. Every time a

procedure is called, its own set of instructions must be moved

from memory. The main idea is that when a word is referenced,

it is brought from the large, slow memory into the cache.

Therefore, the next time it is needed, it will be retrieved

quickly. Loops and procedures then localize references to

memory. References to data stored in primary memory also tend

to be localized.

A.5.C. Address Space

During the execution of the program, each address the CPU

references undergoes address mapping. This mapping transforms

a virtual address into a physical address. The virtual

address only demonstrates meaning in reference to the page's

domain, whereas the physical address functions as the memory

35



cell's actual address. A programmer evaluates a virtual

address. The set of all virtual addresses completes the

address space. An address in primary memory designates a

location or physical address. The entire set of such

locations specifies memory space. Therefore, the address

space is the set of addresses programs generate as they

reference instructions and data. The memory space is

characterized by the actual primary memory locations directly

addressable for processing.

A.5.d. Primary Memory

Primary memory or main memory consists of two state

components which can represent two measurable, distinct

states. The binary numbering system of 0 and 1 is used to

represent its two states. The binary digit symbol 0

represents one state, while 1 represents the other. Portions

of a program or data are only brought into primary memory as

they are needed for program execution. Primary memory

performs at high speed and forms two organizational features:

1) each memory cell is the same size and, 2) each cell is

uniquely referenced by its very own numeric address. A memory

cell contains an address to indicate the cell's relative

position in reference to some known position. The contents of

the cell represent a numeric value or an alphanumeric

character stored in a particular memory cell. These contents

may be changed or used in an operation.

A.5.e. Auxiliary Memory

36



Auxiliary memory devices are used for backup storage.

The most common auxiliary memory devices are magnetic disks^

magnetic drums, and magnetic tapes. This particular kind of

memory does not communicate directly with the CPU. Instead,

information is moved to primary memory from which the CPU

obtains the necessary instructions and data. Please review a

basic computer's organization in Figure 3-8. Only programs

and data the processor currently uses reside in primary

memory. All other information is stored in auxiliary memory

and is then transferred to primary memory on demand.

Figure 3-10 illustrates a memory model where the memory

is represented by an array M of size N. The illustration

shows the employment of addresses to reference memory cells.

Each element within the array pertains to one memory cell.

The cell size, N, varies according to the specifications the

computer manufacturer chooses. The specifications must meet

the needs of the program application for which the computer is

to be used. Each index addresses a particular memory cell in

array M. Any memory cell may be referenced when the index is

switched to a specific value. With this method, the memory

cell allows the placement of new data or the copying of old

data.

A.>5.,.f. Virtual Memory

The idea of executing a program while only a portion of

the program remains in the primary memory is referred to as

virtual memory. Virtual memory streamlines memory space since

37



HGURE 3-10.
MEMORY REPRESENTED BY ARRAY M OF SIZE N

Address
each cell equals
the index of
the cell

0

1

2

1

N-1

To obtain
contents

M(0)

M(l)

M(2)

M(i)

M (N-1)

38



the user constructs a program with memory space equal to the

combined sizes of the auxiliary and primary memory. The

virtual memory system contains both hardware and software

necessary to implement and manage virtual memory.

When a program is submitted for execution, the virtual

memory system divides the program into equal parts or pages.

Please review Figure 3-11 for the moving of pages between

auxiliary and primary memory diagram. The pages are

transferred between the primary and auxiliary memories. When

program execution begins, the program's first page is moved

into the first available primary memory block. A block of

memory is a group of contiguous memory cells equivalent to the

size of a page. During the program's execution, the virtual

system transfers the next page to the same block of the

primary memory from the auxiliary memory whenever the

program's next page is required. The same method is followed

for the program's necessary data. Primary memory contains

separate blocks of information for both the program and its

data.

A.5.g. Cache Memory

Cache memory is a fast memory where the active portions

of the program and data are placed to reduce the average

memory access time. As a result, the program's total

execution time is reduced. Cache memory is situated between

the CPU and the primary memory. Figure 3-8 shows the location

of cache memory. This kind of memory possesses an access time

39



nGURE3-ll.
THEMOVING OF PAGES BETWEEN AUXILIARY AND PRIMARY MEMORY

Auxiliary Memory Primary Memory

1st Block

2nd Block

3rd Block

4th Block

5th Block

6th Block

64th Block

40



less than the primary memory access time by an average factor

of five to ten. Leading as the fastest memory device in the

memory hierarchy and approaching the speed of CPU devices, the
use of cache memory has many advantages.

The fundamental idea of cache organization is to keep the

most frequently accessed instructions and data in the fastest

memory. Although the cache remains just a small fraction of

primary memory's size, many memory requests are transmitted to

the fast cache memory due to locality of reference.

The cache is examined whenever the CPU needs to access

memory. If the CPU discovers the necessary instructions or

data in the cache, the instructions or data are passed to the

necessary device which made the request. However, if the

instructions are not found, primary memory will then be

accessed. A block of instructions or data containing the

requested information is now transferred to the cache memory.

This process ensures most future references to memory will

find the required information within the fast cache memory.

The hit ratio is determined by the percentage of hits of the

memory references finding the requested information within the

cache.

A.S.g.l. Different Cache Organizations

There are three different types of cache organizations:

associative cache, direct-mapped cache, and set-associative

cache. Associative cache and direct-mapped cache specify two

different kinds of organization, while set-associative cache

41



is a combination of the other two. For all three types, the

memory is assiimed to be 2“ bytes. Please see Figure 3-12.

The memory is divided into sequential blocks of b bytes

equaling a total of 2”/b blocks. Each block contains an

address representing some multiple of b. The block size, b,

is usually a power of two.

The associative and direct-mapped caches have their own

advantages and disadvantages. The direct-mapped cache is less

complex, cheaper to build, and has a faster access time

because the appropriate slot being found by indexing into the

cache uses a portion of the address as the index. The

associative cache supplies a higher hit ratio for any given

number of slots.

A.S.g.la. Associative Cache.

The associative cache consists of a number of slots or

lines. Each slot or line contains one block and its block

number along with a bit telling whether or not that slot is

currently in use. In an associative cache, the order of the

entries is random. When the system is reset, all the valid

bits are set to zero which indicates there are not any valid

cache entries. Figure 3-12 shows primary memory with 2^* bytes

partitioned into 2“ 4-byte blocks. The primary memory diagram

contains the actual value of words which are used in an

executing program. The values 137, 52, 1410, and 635 are

random numbers chosen to represent the word values.

Figure 3-13 provides a diagram of an associative cache.

42



Addbiess

0

8

12

16

2D

24

Dia^anl

137

52

1410

635

Bkrk
Miitier

0

HGURE 3-12. MEMORY WITH 4-BYTE BLOCKS.

43



Diagram 2
FIGURE 3-13. Associative Cache with 1024 Lines

Valid Block Number Value

1 0 137

1 600 2131

1 2 1410

0

1 160218 290380

0

I-.— Ibit 22 bits 32 bits



If the first program instruction references the 32-bit word at

address 0, the microprogram will check all entries of the

associative cache in search of an occupied entry containing

block number 0. When the cache controller fails to find the

entry, it will send a bus request to fetch word 0 from the

primary memory. The word 0 is fetched from primary memory at

address 0, and the controller then generates a valid entry for

block niimber 0 which will contain the contents of word 0

within the cache. The associative cache diagram contains all

words which have been referenced for execution of the

program's instructions. The block niimbers 0, 600, 2, and

160218 are random block niimbers chosen to reference the

program's instructions. The values 137, 2131, 1410, and

290380 are randomly chosen values for the words used to

execute the program. If a word is needed again, it is then

taken from the cache which eliminates the need for a bus

operation.

When more cache entries are marked as occupied or valid,

the entire program and its data will eventually appear in the

cache. Since the program will be running at high speed at

this particular point, there will not be any need to make any

memory references over the bus. At some specific point, the

cache becomes full; and, an old entry will have to be removed

to create space for a new one.

The associative cache is distinguished from other types

since each slot contains a block number and its entry. When

45



a memory address is presented, the microprogram computes the

associative block number and finds the block niamber in the

cache. To prevent a linear search from being done, the

associative cache uses special hardware which compares every

entry to a given block number simultaneously as opposed to

exercising a microprogram loop. This hardware causes the

associative cache to be quite expensive.

A.5.g.lb. Direct-Mapped Cache

Conversely, the direct-mapped cache was created to reduce

the cost accompanying associative cache memory. Direct-mapped

cache prevents a search from being done by moving each block

in a slot whose slot number can be easily calculated from the

block number. The slot number is the block number modulo the

number of slots. Figure 3-14 shows a pictorial representation

of this example. With 4-byte word blocks and 1024 slots, the

slot number for the word at address A is (A/4) modulo 1024.

So the words at 0, 4096, 8192, etc. would map onto slot 0,

while the words at 4, 4100, 8196, etc. would map onto slot 1.

This eliminates the problem of searching every slot

nxamber, but direct-mapped caches must reveal which of the many

words mapped into a given slot are currently occupying that

particular slot location. One may be able to tell by placing

part of the address in the cache within the tag field. The

tag field is the part of the address which cannot be computed

from the slot number.

Let us consider another example, suppose you have an

46



Diagram 3
Slot Valid Tag Value

Addresses that use
this slot

0,4096,8192,12288,...

4.4100.8196.12292....

8.4104.8200.12296....

12.4108.8204.12300....

16.4112.8208.12304....

20.4116.8212.12308....

4092,8188,12284,16380

FIGURE 3-14. A Direct-Mapped Cache with 1024 Slots of 4 bytes each



instruction at address 8192 which moves the word at 4100 to

12296. Within Figure 3-14, 1024 blocks have been created

using the total block numbers modulo the cache size. The

block number corresponding to 8192 is computed by dividing

8192 by 4 which equals 2048. The 12 bit binary representation

for 2048 in binary form is 100000000000. The slot number is

computed by taking 2048 modulo 1024 which equals 0. This is

the same as using the low-order 10 bits of 2048. The upper 12

bits contain a 2, which becomes the tag. The block number for

4100 is computed by dividing 4100 by 4 which equals 1025. The

12 bit binary representation for 1025 is 010000000001. The

slot number is 1 since 1025 modulo 1024 equals 1; and, the

low-order 10 bits contain 1. The upper 12 bits of 1025

contain a 1; the tag then equals 1. The block number for

12296 is calculated by dividing 12296 by 4 which equals 3074.

The 12 bit binary representation for 3074 is 110000000010.

The slot number equals 2 since 3074 modulo 1024 is 2; and, the

low-order 10 bits holds a 2. The upper 12 bits equal 3 which

becomes the tag value. Figure 3-14 displays the cache after

the evaluation of all three addresses.

Please view Figure 3-15 to fully understand how the

address is divided. The low-order two bits are always set to

0 since the cache works with whole blocks; and, these bits are

multiples of the block size. In this example, the block size

is 4 bytes; the slot number is 10 bits; and, the tag is 12

bits. For maximum efficiency, hardware should be built which

48



Diagram 4

12 10 2

Tag I Slot | 00

FIGURE 3-15.

Calculation of the slot and tag from a 24>bit address.



extracts the slot number and tag from any memory address.

Additional problems will occur since multiple blocks map

into the same cache slot. If two words both have addresses

which map into the same slot, the word which was processed

last would occupy the cache while the word processed first

would be discarded. The direct-mapped cache performance is

degraded if many words are being mapped to the same slot.

A.S.g.lc. Set Associative Cache

Set associative cache provides a solution to problems

which arise from associative and direct-mapped cache. It

offers a direct-mapped cache with multiple entries per slot.

The set associative cache combines associative and direct-

mapped caches. Please view Figure 3-16 for a pictorial

representation. If the number of slots is reduced to 1, all

the cache entries will be in the same slot. Therefore, they

would have to be distinguished entirely by their tags since

they all map into the same address. This distinction is

similar to an associative cache. If n=l, then that resembles

a direct-mapped cache with one entry per slot.

A.5.g.2. An Explanation of the Cache Questions & Answers

The questions selected provide an illustration of

different caching strategies. There are five questions within

the tutorial which are actual questions taken from a

previously given Computer Science GRE.

The first question asks for the major disadvantage of

unpaged caches. An unpaged cache or read-ahead cache links

50



Diagram 5
Entry 0 Entry 1 Entry n-1

Slot Valid Tag Value Valid Tag Value

FIGURE 3-16. A Set Associative Cache with n Entries per Siot.



disk domains/ or fields/ with the start address of the read

request and proceeds for a particular length. The major

disadvantage of an unpaged cache is cache domains/ or fields/

are permitted to hold repetitious data. A cache domain is

always loaded beginning with the first address of the read

request.

Yet/ the recently entered data may be required for the

following read requests; and, subsequent read requests may

begin with data that is partially located in the cache domain.

A problem arises when the request cannot be completed since

only part of the data for the request is in the cache.

Therefore, another cache domain must be filled from the disk

which may very well lead to the storage of redundant data in

the cache.

Unpaged or read-ahead caching demands a more complex

algorithm for handling input and output, especially when a

write request is submitted. The correct cache domain has to

be found to update the file; and, then the cache domain

containing unnecessary repetitious data must be removed to

resolve the problem.

The second question pertains to cached and interleaved

memory models. Cached and interleaved memories are methods of

increasing the speed of memory access time between CPUs and

slower RAM. The question asks which memory models improve

performance the most, or are best suited, for which particular

programs. The choices include: 1) cached memory is best

52



suited for small loops; 2) interleaved memory is best suited

for small loops; 3) interleaved memory is best suited for

large sequential code; and, 4) cached memory is best suited

for large sequential code.

The answer involves choices 1 and 3. Caches are small in

relation to the size of memory and a small loop would fit

within a cache to decrease the accesses to slower RAM.

Interleaved memory accesses RAM in parallel sequential memory

blocks. Branching occurs seldom with large secpiential code;

therefore, each sequential piece read from slow RAM is fully

utilized.

On the contrary, choices 2 and 4 are false. A small loop

would cause frequent branching; and, interleaved memory would

reaccess RAM without using all the previously read information

from the prior read request. Large sequential code permits

the access of new addresses which results in more RAM read

requests and the decrease of cache performance.

Third, a memory system with the following parameters is

evaluated: the cache access time, T^, is 100 nanoseconds,and

the main memory access time, T., is 1200 nanoseconds. If you

desire effective or average memory access time less than 20%

higher than cache access time, the hit ratio for the cache

needs to be at least 98%.

The following formula provides an effective system access

time, T,: T, * HTc + (l--H)T,. H is the hit ratio expressed

from .80 to .95 up to 100. Therefore, lOOH + 1200 (1-H) needs

53



to be less than or equal to + (.20 x Te) which equals 120

nanoseconds/ or 20% more than the cache access time.

Furthermore/ lOOH + 1200 - 1200H i 120 and H 2 (1100 -r 1080)

which equals .98.

The fourth question concerns cache and main memory.

Ass\ime the cache and main memory access times are 100 and 1200

nanoseconds. Some market survey denotes the average cost per

bit of cache memory/ C^, is .0002 cents per bit/ and the

average cost per bit of main memory/ C,/ equals .00001 cents

per bit. The cost of a 1 megabyte memory system rounded to

the nearest 10 dollars using a cache hit ratio of at least 98%

would be $230.

The hit ratio is assumed to be 98%. The optimal cache

memory size is not possible to obtain. The size of the cache

other than the hit ratio is affected by several other factors

including the application's environment/ the work load/ and

the design considerations involving the chip and board area.

Generally/ cache sizes vary from IK to 128K for a 1

megabyte/ MB/ system depending upon the desired hit ratios.

Suppose the following experimental results involving the hit

ratio versus the cache memory size for a 1 MB memory system

occur for the application and work load being considered:

Cache size per 1MB memory Application hit ratio
IK
32K
64K
96K
128K
196K
256K

.75

.80

.85

.90

.95

.96

.98

54



512K .99

According to the table, the desired 98% hit ratio requires

256K of cache memory. Therefore, the cost of a 1MB system

follows:

C » cost of main memory + cost of cache memory
- (2*° X 8 bits X .00001 cents/bit) +

(2^* X 8 bits) X (.0002 cents/bit)
- $(.00001 X 2^1) + $(.0002 X 2^°)
= $20.97 + $209.72
- $230.69

Coincidentally, cache equals the Scune amount as main memory.

The fifth question asks for the hit ratio of a cache if

a system performs memory access at 30 nanoseconds with the

cache and 150 nanoseconds without it. Suppose the cache uses

a 20 nanosecond memory. The following formula calculates the

memory access, M, using the hit ratio, H, the cache speed, C,

and the ram speed, R: M = H x C + (1-H) x R.

30 = H X 20 + (1-H) X 150.
30 = 20H + 150 - 150H = -130H + 150
H = 130 4- 120 = 26 -J- 24 = 13 -r 12 =

92% approximately.

More questions will be added as future work.

A.6. Microinstruction Sequencing

A basic ALU cycle sets up the A and B ALU input latches,

gives the ALU and shifter time to do their work, and stores

the results. These steps must occur in that sequence. To

achieve the correct event timing, we use a four-phase clock.

A four-phase clock is a clock with four subcycles.

The key events during each of the four sxibcycles are as

follows:

55



1. Load the next microinstruction to be executed
into the MIR.

2. Gate the registers onto the A and B buses and
capture them in the A and B latches.

3. Mow that the inputs are stable, give the ALU and
shifter time to produce a stable output and
load the MAR if required.

4. Now that the shifter output is stable, store the
C bus in the scratchpad and load the MBR, if
either is required.

A. 7. Boolean Algebra (Switching Algebra)

In 1854, George Boole introduced a symbolic notation to

handle symbolic statements that employ a binary value of

either true or false. This symbolic notation was adopted by

Claude Shannon to analyze logic functions and has since been

known as Boolean algebra or switching algebra.

A Boolean algebra is a closed algebraic system containing

a set K of two or more elements and two binary operators '+'

(OR) and •&' (AND); for, every X and Y in set K, XiY belongs

to K and X+Y belongs to K. In addition, the following

postulates must be satisfied:

PI: Existence of 1 and 0
a) X + 0 - X
b) X & 1 - X

P2: Commutativity
a) X + Y- Y + X

P3: Associativity
a) X + (Y + Z) - (X + Y) + Z
b) X & (Y&Z) - (X&Y)&Z

P4: Distributivity
a) X + (Y&Z) - (X + Y) & (X + Z)
b) X & (Y+Z) - X&Y + X&Z

P5: Complement
a) X + X' - 1
b) X & X' - 0

56



Siunmary
X+O-X X+1-1
X&O-O X&l-X
O' - 1, 1' - 0, X" - X

Where & denotes AND, + denotes OR and ' denotes a
complement.

Two expressions are said to be equivalent if one can be

replaced by the other. The "dual" of an expression is

obtained by replacing each "+" in the expression by each

"&" by "+", each 1 by 0, and each 0 by 1. The principle of

duality states that if an equation is valid in Boolean

algebra, its dual is also valid.

The following theorems are useful in manipulating Boolean

functions. They are traditionally used for converting Boolean

functions from one form to another, deriving canonical forms,

and minimizing, or reducing the complexity of. Boolean

functions.

Tl; Idempotency
a) X + X = X
b) X & X = X

T2: Properties of 1 and 0
a) X + 1 - 1
b) X & 0 - 0

T3: Absorption
a) X + XY = X
b) X 4 (X + Y) - X

T4: Absorption
a) X + X'Y - X + Y
b) X 4 (X' + Y) - X 4 Y

DeMorgan's Laws
a) (X + Y) ' - X' 4 Y'
b) (X 4 Y)' - X' + Y'

57



Consensus
a) XY + X'Z + YZ - XY + X'Z
b) (X + Y) & (X' + Z) 4 (Y + Z) - (X + Y) &

(X' + Z)

B. File Structures

File structures specify the forms in which files may be

structured. These structures are processed and even organized

in different ways. File processing refers to the manner in

which records are processed or stored in an external file. In

addition, file organization pertains to the data structures

associated with organizing the data. Four common file

organizations include sequential, random, indexed sequential,

and multikey.

B.l. Sequential File Organization

Sequential file organization characterizes the simplest

type. Sequential grouping employs the least complex process

for organizing files. Files are written consecutively in

sequence from beginning to end and must be accessed in the

same manner. The retrieval of files adopts a LIFO (last-in-

first-out ) method.

B.2. Random File Organization

Random file organization implies a predictable

relationship between the key used to identify an individual

record and that record's location in an external file. A

relative file illustrates a common implementation of random

file organization while being available in most high-level

programming languages. Once a key-position relationship is

58



established, the position of the record in the file is

specified as a record number relative to the position of the

record from the beginning of the file. Each address is

computed by using the following formula: the record's address
- (the relative record number x the fixed record length) + the

beginning of the file.

B.3. Indexed Sequential File Organization

Indexed sequential file organization combines sequential

access and ordering with the capabilities of random access.

An indexed sequential file contains two parts. The first part

stores a collection of records in contiguous locations within

blocks in a relative file. The record's order is according to

a key field. The second part holds an index to the file of

ordered records. The index contains a hierarchical structure

of record keys and relative block numbers. The blocks of

records in the file are not necessarily stored in sequential

order. The index indicates the order in which the blocks

should be obtained to achieve sequential order by record keys.

Indexed sequential file organization provides sequential

access to records by the primary key order field. Random

access is supplied, as well, to an individual record by the

Scune key. Indexed sequential file organization comprises two

types: the cylinder and surface indexing method, and the index

and data blocks method.

B.4. Multikey File Organization

Multikey file organization permits access to a data file

59



by several different key fields. Hence, multiple key fields

are recognized to retrieve a particular file. The advantage

simply lies in the file's access not being restricted to only

one key field.

Multiple key-file organization includes two different

types. The first being inverted file organization which

accesses data from a file by secondary keys. The access is

achieved by using a directory of all possible attributes for

each secondary key field; and, the primary key or address of

all records containing those attributes. The second type is

multilist file organization which uses a file to link data

records with identical secondary key values to organize a

multilist file. A multilist file is divided into two areas:

a directory and a data record area.

The directory contains an inverted list for each

secondary key field to be used in accessing the data records

in the data record area. The directory also stores all

possible attributes for each secondary key field and a pointer

to a linked list of all records storing the attribute. The

data records are organized to provide random access to the

records.

B.5. Blocking

The smallest amount of data which can be read from or

written to a secondary storage device at a time occupies a

block. By blocking several components into one block, several

components can be accessed at one time. This increases

60



efficiency by decreasing the amount of physical accesses to

the file and lessening the execution time of the program

accessing the file.

The amount of data transferred to or from the file during

access forms the size of one block. The size cannot exceed the

amount of available main memory.

B.6. Buffering

A buffer functions as a location in memory to serve as an

intermediary between I/O devices and main memory. Double

buffering is possible when both the I/O operations performed

by the I/O channel and the processing operations generated by

the CPU overlap in time.

Implementations are I/O bound when access time to input

one buffer from the file is longer than process time. The

total time to process the file cannot be reduced without

reducing the file's access time. Processor-bound demonstrates

processing time is longer than access time.

B.7. File Storage Devices

Magnetic tape represents a sequential storage device in

which blocks of data are stored serially along the length of

the tape and can only be accessed consecutively. Data are

recorded in 9 tracks aligned parallel to the edges of the

tape. Magnetic tapes are used for sequentially organized

files only.

The recording density of the tape is the nvimber of bytes

of data to be stored per inch. A block of data is sometimes

61



called a physical record, and may contain one or more logical

records. These physical records or blocks are separated by

interblock gaps (IBGs) in which the tape can start and stop

between I/O requests.

The following formulas involve accessing specific

information from magnetic tape:

Space Calculations:

Block Length (bytes) - Logical Record Length x
Blocking Factor

Block Length (inches) * Block Length (bytes) /
Density

Number of Blocks - Niomber of Records / Blocking
Factor

Block Length * Block Length (bytes) / Density

Tape Length * (Number of Blocks x Block Length) +
(Number of IBGs x IBG Length)

Accessing Time and Tape Calculations:

Time to Read 1 Block * Start Time + Stop Time +
Block Length (inches) / Transfer Speed

Time to Read 1 Tape = (Time to Read 1 Block) x
(N\imber of Blocks)

Single Buffering: Total Time for File *= (Time to
Read 1 Block + Processing Time for 1 Block) x
Number of Blocks

Doxible Buffering: Total Time for File « (Input Time
X Number of Blocks) + Processing Time for 1
Block

B.8. Timing of Access Methods

Brief definitions of additional terms will ensue. These

terms are associated with several formulas given later. The

62



transfer rate is the uniform rate at which all tracks on the

same disk pass under the read/write head. Rotational delay or

latency pertains to the time required for the beginning of the

accessed block to rotate around to the read/write head.

Transfer time regards the time required for the entire block

to pass under the read/write head. Minimum seek time concerns

the time needed to move the access arm to an adjacent track.

Maximum seek time refers to the time it takes to move from the

outermost or innermost track to the farthest track.

Average seek time relates to the average of both the

maximum and minimiim seek times. Seek time establishes the

most significant factor of the access time, while the transfer

rate is the least significant factor.

Rotational time pinpoints the time it takes for a disk

pack to make one revolution. Rotational delay or latency

operates between zero delay and the rotational time. The

following formulas involve accessing specific information from

a fixed disk:

Access times:

Average Access Time per Block * Seek + Latency +
Transfer

For Fixed Disks with One Head per Track, the Average
Access Time * Latency + Transfer

Hard Disk Capacity:

(If Using Cylinders)

Readable Radius ■* (Outer Diameter - Inner Diameter)
/ 2

63



Tracks/Surface - (Readable Radius / Spacing Between
Tracks ) + 1

Bits/Track - Density x Circumference of Smallest
Track - Density x Inner Diameter x Pi

Bits/Pack * Bits/Track x Tracks/Surface x
Surfaces/Pack

(If Using Sectors)

Bits/Sector - (Bits/Track) / (Sectors/Track)

Bytes/Sector ■ (Bits/Sector) / (Bits/Byte)

Bits/Track (Sectoring) - Bits/Byte x Bytes/Sector x
Sectors/Track

Bits/Pack * Bits/Track x Tracks/Surface x
Surfaces/Pack

Transfer Rate * Bytes/Revolution x
[(Revolutions/Minute) / (60 Seconds/Minute)]

B.9. Record Keys

On the other hand, with direct file organization there

exists a predictable relationship between the key used to

identify an individual record and the record's absolute

address in the external file. A relative file with space for

N records contains positions with relative record numbers 0,

1, . .N-1 where the i*'*' number has the relative record number

I - 1. The key-position relationship must be a predictable

relationship to ensure direct access to the record is possible

once the record is stored in the relative file.

B.IO. Hashing

Hashing is the application of a function to the key of a

particular record resulting in mapping a range of possible key

values into a smaller range of relative addresses. The

64



function randomly selects a relative address for a specific

key value without regard to the physical sequence of records

in the file. A collision occurs when the hashing function for

two different keys results in the same relative address.

Load factor concerns the relationship between file space

and the number of keys. Load factor also may be referred to

as packing density or packing factor. Load factor is

equivalent to the number of key values per the number of file

positions. The smaller the load factor, the less chance there

is of collision.

The methods of hashing involve prime-number division

remainder, digit extraction, folding, radix conversion, mid¬

square, quotient reduction, and remainder reduction. These

methods directly reference records in a table by performing

arithmetic transformations on keys into table addresses. A

perfect hashing function provides an one-to-one mapping from

a key value into a specific position.

The prime-number division remainder refers to the

division of the key value by a number N. The remainder of the

division yields a number in the range 0 to N - 1.

Digit extraction involves the analysis of key values to

determine which digit positions of the key are more evenly

distributed. The more evenly distributed digit positions are

assigned from right to left. The digit values in the chosen

digit positions are extracted; and, the resulting integer is

used as the relative address.

65



Folding entails splitting the key value into two or more

parts. The results are sximmed or subjected to arithmetic

and/or logical operations as if each part were an integer. If

the resulting address contains more digits than the highest

address in the file, the excess high-order digits are

truncated.

Radix conversion simply interprets the key value as

having a different base or radix. The value is then converted

into a decimal number.

The mid-square hashing method extracts the middle n

digits from the key value. The value is squared to form a

relative address.

The hashing of a key is equivalent to the key length and

the associated value of the key's first character and the

associated value of the key's last character. The associated

value is based on the frequency of use of each letter in

either the first or last position of the word.

B.lQ.a. Collision-Handling Techniques

Two classes of collision-handling techniques exist: open

addressing and separate chaining. Open-addressing hashing

methods entail the storage of N records in a table of size M>N

and rely on empty places in the table to help with collision

resolution. Separate chaining hashing methods handle the

situation when two keys hash to the same address. The least

complex method involves building for each table address a

linked list of the records whose keys hash to that address.

66



within a linked list, the keys are kept which hash to the same

table position. Therefore, it would be advantageous to keep

the keys in order.

B.lO.a.l. Linear Probing

Linear probing is the simplest open-addressing method.

Collisions occur either when hashing to an occupied place in

the table or when the record's key is not the same as the

search key. If a collision arises, probe the next position in

the table which means comparing the key in the record there

against the search key. Three possible consequences will

happen. The search will successfully terminate if the keys

match. The search unsuccessfully terminates if there is not

any available record. Otherwise, continue probing the next

position until discovery of either the search key or an empty

table position is reached.

Linear probing definitely works since when searching for

a particular key, every key hashing to the same table address

is examined. However, problems arise when the table slowly

becomes full and insertion of a key with one hash value

tremendously increases the search times for keys with other

hash values. As a result, clustering occurs and makes linear

probing operate extremely slow for nearly full tables.

B.10.a.2. Double Hashing

Double hashing provides the solution. Double hashing

concerns the process of hashing synonyms to an overflow area

using a second hashing function. If the hashed overflow area

67



is not available, then linear probing is used. The same

strategy of linear probing is employed. The main difference

exists where a second hash function obtains a fixed increment

to use for the 'probe' sequence instead of evaluating each

subsequent entry coming after a collided position.

B.lO.b. Hashing vs. Binary Search Trees

In general, hashing is preferred to binary search tree

structures because of its simplicity and provision for very

fast searching times when enough space is available for a

large table. However, binary tree structures provide an

advantage over hashing since they are dynamic, capable of

giving guaranteed worst-case performance, and support a wider

range of operations. The dynamic feature plays an important

role since no advance information on the number of insertions

is needed. The worst-case performance quality is essential

because with hashing, all entries could hash to the same place

even while using the best hashing method.

B.ll. Trees

Binary trees may be considered as both file organization

structures and data structures, too. Before a discussion of

binary trees is begun, let me thoroughly explain the

definition of trees. Trees may be clarified as abstract

objects or a nonempty collection of vertices and edges

satisfying specific requirements. A vertex or node acts as a

simple object possessing a name and carrying other associated

information. An edge provides the connection which lies

68



between two vertices or nodes. A tree's path concerns a list

of distinct vertices where subsequent vertices hold a

connection by edges in the tree. One node in the tree is

assigned as the root which implies the defining property of a

tree; there is always precisely one path between the root and

each of the other nodes in the tree. Assume all edges point

either away from or toward the root, while the root itself is

located at the very top.

In addition, every node, excluding the root, has only one

node above it which is referred to as its parent; and, the

nodes located immediately below that particular node are

called its children. Nodes without any children are referred

to as leaves or terminal nodes. Nodes generating at least one

child are defined as nonterminal nodes. Nonterminal nodes are

internal nodes, and terminal nodes are external nodes. A

subtree consists of any given node in a tree together with all

its children. A set of trees refers to a forest. The level

contains the number of nodes on the path from the node to the

root without including the node. A tree's path length

includes a sum of all levels of the nodes in the tree or the

sum of all lengths of the paths from each node to the root.

Multiway trees concern each node having a particular

number of children which appear in a particular order. Binary

trees are the simplest type of multiway trees. The

distinguishing property of a binary tree involves the

possession of two types of nodes: external nodes without any

69



children and internal nodes with only two children. The child

on the left is the left child; and, the child on the right is

the right child.

The height of a tree consists of the number of levels of

nodes contained in the tree. The number of nodes, N, in the

tree is derived from the height as follows: N * 2h - 1. The

minimum height of a binary tree may be defined in the

following formula: h s + 1)1.
A height balanced binary search tree is a balanced tree

in which the height is minimum for the number of nodes. An

AVL tree is a non-empty tree T being height balanced when it

holds the following properties:

1. TL is the root of the left subtree (left child)
of T

2. TR is the right subtree of T
3. TL and TR are height balanced
4. hL is the height of TL
5. hR is the height of TR
6. l^hL - hR^I i 1

Multiway or m-way search trees also include B-trees, B*

trees, and B+ trees. A B-tree holds the property of being an

m-way search tree which is either empty or the height hi; the

root node has at least two children implying it contains at

least one value; and, all nonterminal nodes other than the

root node store at least children directing at least

fm/2l - 1 values. B* trees involve a modification to the B-

tree structure such that every node in the tree is at least

two-thirds full as opposed to half full. B+ trees resemble

the B-tree except all data or record addresses appear only in

70



the leaf nodes. All the B+ tree interior nodes contain only

subtree pointers to other nodes.

0^ Data Structures

Data structures are a collection of data elements whose

organization is characterized by accessing operations to store

and retrieve the individual data elements. Important to note,

data structures display three features. The first feature

being the structure can be split into its respective component

elements. Second, the grouping of the elements affects how

each element will be accessed. Third, the grouping of the

elements and the manner in which they are retrieved can be

enclosed.

C.1. Array

The most elementary data structure implemented is the

array. An array contains a fixed number of data items which

are stored continuously and are accessible by an index. The

user must declare the size of an array at the beginning of the

program. This static declaration must be made whether or not

all the declared space is utilized.

C.2. Linked List

The next elementary data structure generated is the

linked list. A linked list holds a set of items which are

organized sequentially. Each item represents a part of a node

containing a link to the next node. Every node must have a

link. To initialize the list, the head points to the first

item. To link the list, move the nil pointer to the next

71



node. Nodes must be deleted to free up space to prevent

space from running out. The head always points to the first

node.

Linked lists display several useful advantages over

arrays. The linked list may grow and shrink in size. Its

space is dynamically allocated. The linked list is more

flexible because of its explicit way of ordering.

Different types of the list include circular linked list

and doubly linked list. A circular linked list allows each

element to point to the next element, and the last element

points to the first element. A doubly linked list permits the

simultaneous pointing of the links to the next and previous

node.

C.3. Stacks

The stack data structure imposes restrictive access. This

ordered list only permits all insertions and deletions to be

performed at one end, which is called the top. This structure

exhibits LIFO or last-in-first-out behavior.

Stacks satisfy several specifications. The stack

elements depict a variety of types. The stack structure

establishes the mechanism used to store the elements and

determines their order of arrival into the stack.

Stack operations implement various procedures to perform

processes directly on the stack structure. The operations

include create, push, pop, empty, and full. Each procedure

may have either a pre-condition, a post-condition, or both.

72



Create initiates the formation of the stack. Its post¬

condition is the stack exists and is empty afterwards.

Push(x) forces the element x on the stack. The pre-condition

of push is the stack is not full, and the post condition is

(x) is placed on the stack. Pop(x) pulls an element x off the

stack. The pre-condition is the stack is not empty, and the

post-condition is (x) is removed from the stack. The

emptycboolean function returns the value, true or false, after

determining whether or not the stack is empty. The post¬

condition for this function is if the stack does not contain

any elements, then empty is true else empty is false. The

full:boolean function answers the question as to whether or

not the stack is full. This function's post-condition is if

the stack has reached its maximum allowable size then the

structure is full; finding the function, full, to be true else

full is false. Clear removes all elements from the stack.

Its post-condition simply maintains the stack is empty.

C.4. Queues

Queues achieve an ordered list in which all insertions

take place at one end which is the rear and all deletions take

place at the front. This particular data structure exhibits

FIFO or first-in-first-out behavior. These operations include

create queue, clear queue, enq, and deq. The create queue

function initiates a queue and its structure. Clear queue

deletes all elements from the queue. The pre-condition

demands the queue contains an element, and the post condition

73



stresses the queue is empty. The function enq(queue, z) adds

an element to the queue. Deq(queue, z) removes the element

stored in the front from the queue. Stacks and queues are

both forms of linked lists.

C.5. Trees

Trees are also data structures which represent

hierarchical structures having an one-to-many relationship

among its components. The vertex or node remains a simple

object possibly bearing a name and carrying other associated

information. An edge acts as an arc which connects a pair of

related vertices. A path represents a sequence of nodes such

that there is an edge between each pair of nodes.

The first property of a tree defines the structure as an

acyclic, connected graph such that there is exactly one path

between the root and each of the other nodes in the tree.

There are not any cycles present.

The second property lies in the root being the unique

first node bearing no predecessors, but possibly producing

many successors. There are not any nodes located before the

root; yet, many nodes succeed the root. The relationship

existing between a node and its successor is that of a parent

and a child.

An ordered tree has a specified ordering of parent and

siblings. A multiway tree is an ordered tree with a specific

number of 'kids' or children at each node. A binary tree has

two children at the most for each node; it is an ordered tree

74



since there is a left and right child. A binary tree is a

directed acyclical graph with a degree of two; however, binary

trees could be empty.

Additional tree properties concur there is one path

connecting two nodes in a tree. A tree with N nodes contains

N-1 edges. A binary tree with N internal nodes includes N+1

external nodes. Internal nodes store two children; however,

external nodes do not have any children. The external path

length with N internal nodes is 2N greater than the internal

path length.

A relationship exists between forest trees and binary

trees. Even though, a forest tree is a group of trees and a

binary tree has two kids for each node, a binary tree can be

a subset for a forest.

Tree traversal recognizes three different methods for

traversing trees or accessing the nodes. Preorder traversal

visits in order the root, left side, and right side. Inorder

traversal reaches the left side first, the root second, and

the right side last. Postorder traversal meets the left side,

right side, and then the root. Level-order traversal visits

nodes as they appear on the page, down from top to bottom and

from left to right. With level-order traversal, all nodes on

each level appear together in order.

C.6. Measuring a Program's Performance

Above all, a program's perfomance is measured by the

execution time and the amount of storage used. With the

75



execution time, does speed vary according to the type of input

used? With storage, how much storage is required? To

determine the performance of a program, measure the

performance of the working version and analyze the expected

performance of algorithms and data representations on which

the program is based.

An evident rule about performance and efficiency is major

performance gains almost always come from a better choice of

data representation and algorithms, not from adjustments of an

existing design. The 90-10 rule states more than 90% of

execution time is spent executing less than 10% of your code.

The critical 10% of the program is often difficult to

determine. The critical 10% may be in the language system and

not in the code you have actually written. The worst case

answers the question, what is the longest time the algorithm

may run if we choose data values forcing the algorithm to take

the longest possible execution time? The average case

determines for the expected range of possible data values,

what is the average execution time we can expect?

C.7. Algorithm Characteristics

Characteristics of an algorithm include finiteness;

definiteness where each step must be precisely defined; input

where the algorithm has 0 or more inputs; output where an

algorithm has 0 or more outputs; and, effectiveness involving

an effective procedure and any algorithm which can be executed

in a finite number of steps that can be performed by person or

76



machine. The main criteria for goodness is situated between

execution speed and the amount of storage required.

Abstract data types describe data structures and its

accompanying algorithms. This description is in terms of its

operations as opposed to its actual implementation.

Procedural abstraction pertains to the grouping of a complex

sequence of actions into a single unit. The grouping of

actions is considered a procedure. Data abstraction is the

grouping of a complex sequence of data items into a single

unit.

C.8. Allocation of Storage Space

Dynamic allocation demands the allocation of storage upon

execution time or when the program is running. Space is not

set aside beforehand, it is created as you need it or

originated "dynamically." Static allocation requires storage

to be set aside at compilation time before the actual program

is run.

C.9. Program Performance Improvements

The problem size is N. The three classes of improvements

are: 'order of,' 'constant factor,' and 'additive constant'

improvements. 'Order of improvements involve major changes

where the change and efficiency is noticeable. The

improvement gets better as the problem size increases from one

data representation to another. The 'constant factor'

improvement involves taking something from the loop which is

dependent on problem size so the improved version is a

77



constant factor better than the original one. The amount of

improvement does not depend on problem size. The 'additive

constant' improvement is where the newer version of the

improved program may always take exactly two fewer operations

or use five fewer simple variables than the old.

C.lO.An Explanation of the Questions & Answers

The questions selected demonstrate different data

structure strategies. The tutorial user slightly comprehends

the wide range of issues included within the data structures

subject. There are six questions within the tutorial which

are actual questions taken from a previous Computer Science

GRE.

The first question relates the average time necessary to

perform a successful sequential search for an element in an

array. A, which is l:n is calculated by using several steps.

You find the average number of comparisons required for all

successful searches and divide by n. The equation

(1+2+3+4+.. .+n) /n demonstrates the previously defined process.

The series 1+2+3+4+...+n equals n(n+l) / 2. Substituting into

the first equation, n(n+l) / 2n equals (n+l)/2.

The second question asks for the correct relationship

among several of the more common computing times for

algorithms to be chosen from the following;

A. O(log n) < O(n*log n) < 0(n) ( OCn*) ( 0(2")
B. 0(n) ( O(log n) ( O(n*log n) < 0(2") ( 0(n2)
C. 0(n) < 0(log n) ( 0(n*log n) ( 0(n*) ( 0(2")
D. 0(log n) ( 0(n) < 0(n*log n) < O(n^) { 0(2")

E. 0(log n) < 0(n*log n) < 0(n) < 0(n*) < 0(2")

78



The accurate choice is D where n ) Uo- The tutorial user may

plot graphs for values of n to prove the rate of growth of

these specific time functions.

The third question concerns finding the best algorithm

for calculating an arbitrary boolean function of N variables

to produce a 1 value. The best algorithm requires exponential

time. More constructively, you can write an algorithm which

computes a truth table but requires 2" rows.

The fourth question pertains to printing a sorted array

of numbers after building a sorted binary insertion tree. A

certain type of traversal must be done to print the sorted

array of numbers. An in-order traversal works best since the

binary insertion tree contains a ntimber in the root, smaller

numbers on the left, and larger numbers on the right. In-

order means visit the left, the root, and then the right. The

in-order tour will visit the smaller numbers, the number, and

then the higher niombers to give a sorted order.

The fifth question discusses ordered groups of

homogeneous elements insofar as a stack is similar to an

array. The stack contents are homogeneous data items with the

same type and the same requirements for memory. If a stack

holds items with different types, it would be extremely

difficult to exercise the same stack functions to access and

manipulate the items. The array type contains elements of the

same data type, i.e. an integer, character, etc. Queues also

may be implemented using either a stack or an array since this

79



similarity does exists.

The last question concerns heap sort and merge sort

algorithms yielding approximately the same worst-case and

average-case running time behavior in 0(n log n) . When you

evaluate the nximber of moves in an n-element array,

constructing the heap requires at most (n/2)log n, while (n-

l)log n moves are needed to sort the array.

Therefore, both the average and worst cases for the heap

sort are (3/2)n log n which is an order of n log n. The merge

sort for the same data requires n log n moves corresponding to

as many passes involving a pointer manipulation over the list

of n elements. There will be anywhere from log n to n log n

comparisons with little effect on overall running time.

H. Discrete Mathematics (Set-Iheox^

This section reviews the concepts upon which set theory,

theoretical tools, or discrete mathematics is based. The

terminology upon which the foundation lies is thoroughly

reviewed. Logic, induction, recursion, the AND statement, the

OR statement, the compound statement, quantifiers, predicates,

expression interpretation, free variables, validity, axioms,

theorems, propositional logic, deductions, and predicate logic

are principles discussed within the section which form the

basic Discrete Mathematics foundation.

D.l. Logic, Induction, & Recursion

In reference to set theory, certain terms must be

understood before the discussion of theoretical applications

80



begins. Logic may be explained as an organized, precise method

of thinking used in program verification to prove the output

of a given computer program will always comply with certain

predetermined conditions. Induction is a proof technique with

wide application in computer science. Recursion may be

interpreted as repetition with a termination condition

closely related to mathematical induction and is important in

algorithms and their analysis.

D-i.a. The MD. Statement

A statement or proposition refers to a sentence that is

either true or false. A common connective belongs to the word

'and.' The symbol for this particular connective is

represented by A. The statement A A B is referable to the

conjunction of 'A and B.' The effects of conjunction may be

summarized by a truth table. In each row of the truth table,

truth values are assigned to the statement letters. The

resulting truth value for the compound statement is then

shown.

P.,l.b. The OR Statement

Similarly, another connective lies in the form of the

word 'or.' The statement 'A or B' pertains to the disjunction

of 'A and B'. The symbol for 'or' belongs to V.

D.l.C, The Compound Statement

Statements 'A A B' may be combined in the form 'if A,

then B', symbolized by A -* B, or 'A implies B'. The

connective here is implication, and it conveys the meaning the

81



truth of A causes the truth of B. In the compound statement

A -» B, A is called the antecedent and B the consequent.

The equivalence connective, A *• B symbolizes the

statement (A B) A (B -» A), or if A then B and if B then A.

Binary connectives join two statements together to produce a

second statement. The negation connective. A', represents a

unary connective and is read 'not A', 'it is false that A', or

'it is not true that A.' This does not mean A* always has a

truth value of false, but its truth value is opposite to the

truth value of A.

A statement whose truth values are always true is a

tautology. A statement whose truth values are always false is

a contradiction. When a compound statement of the form P ** Q

is a tautology, the truth values of P and Q agree for every

row of the truth table. In this case, P and Q are equivalent

statements.

D-l.d. Quantifiers

Expressions containing variables can be made into

statements by adding quantifiers. Quantifiers are phrases

such as 'for every' or 'for each' or 'for some* relating in

some sense how many objects have a certain property.

The universal quantifier is symbolized by V and is read

'for all', 'for each', 'for every', or 'for any.' Thus, V(x),

x>-0 relates to the expression 'for every x, x is greater than

zero.' In order to determine the truth value, you must know

the domain of objects in which you are interpreting the

82



expression, that is, the collection of objects from which x

may be chosen. If the domain of interpretation consists of

the positive integers, the expression has the truth value true

because every possible value for x has the required property

of being greater than zero. It the domain of interpretation

consists of all the integers, the expression has the truth

value false.

The existential quantifier is symbolized by 3, and is

read 'there exists one', 'for at least one', or 'for some

one.' Hence, 3(x), x>>0 refers to the expression 'there exists

an X such that x is greater than zero.' The truth value of

this expression depends upon the interpretation. If the

domain of interpretation contains a positive number, the

expression has the value true; otherwise, it holds the value

false.

P.l.e. Predicates

Symbols such as P in the expressions (Vx)P(x) and

(3x)P(x) are named predicates. Specifically, they are termed

unary predicates since they involve one variable and are

interpreted as properties of single objects. Predicates are

distinguished by being either binary or n-ary with two

variables or n variables, respectively. These varicibles are

interpreted as properties of either two objects at a time or

n objects at a time. Additional quantifiers may be added to

expressions with n-ary predicates.

D.l.f..—Interpretation of an Expression

83



An Interpretation for an expression involving quantifiers

includes: 1) a collection of objects, designated as the domain

of the interpretation, which must include at least one object;

2) an assignment of a property of the objects in the domain to

each predicate in the expression; and, 3) an assignment of a

particular object in the domain to each constant symbol in the

expression. Expressions are structured together by employing

connectives.

Parentheses and brackets identify the scope of a

quantifier. The scope correlates to the section of the

expression to which the quantifier applies. Scope resembles

the order of precedence of connectives since the truth value

of the expression in any particular interpretation would be

affected if the scope of a quantifier is misunderstood. This

misunderstanding arises whether or not the expression has a

truth value.

Free Variables

If there is an occurrence of a variable which does not

fall within the scope of a quantifier involving that

variable, then it is a free variable. An expression with free

variables will not, in general, inherit a truth value in a

given interpretation. Rather, the expression will be true for

some choices of values of the free variable and false for

others. An expression involving quantifiers generates a

statement only if it does not contain any free variables.

D.l.h. Validity

84



For unquantified statements, a tautology remains true for

all rows of the truth table. The analogy to tautology for

quantified statements is validity. A statement is valid if it

is true in all possible interpretations. The validity of a

valid statement must be derived from the form of the statement

itself, since validity is independent of any particular

interpretation.

D.l.i. Axioms & Theorems

Axioms are statements not needing to be proved. An axiom

should therefore pinpoint a statement whose 'truth' is self-

evident . An axiom proposes a tautology if it involves

quantifiers or a valid statement.

In addition to axioms, formal systems may contain rules

of inference. A rule of inference demonstrates a convention

allowing a new statement of a certain form to be inferred, or

deduced, from one to two other statements of a certain form.

A sequence of statements in which each statement is either an

axiom, or the result of applying one of the rules of inference

to earlier statements in the sequence, is directed as a proof

sequence. A theorem composes the last entry in such a

sequence; and, the sequence of statements is the proof of the

theorem.

The following example shows a typical proof of a theorem:

si an axiom
s2 an axiom
s3 inferred from si and s2 by a rule of inference
s4 an axiom
s5 inferred from s4 by a rule of inference
s6 inferred from s3 and s5 by a rule of inference

85



statement s6 serves as the theorem which is the last

statement in the sequence. The entire sequence forms its

proof. The other statements could function as theorems;

however, the proof sequence would discontinue at that

particular point. Axioms should deduce tautologies or valid

statements, and there should be as few axioms and rules of

inference as possible.

D.2. Propositional Logic

Propositional logic concerns two separate formal systems

involving one for statements without quantifiers and one for

statements with quantifiers. The fomer case with

unquantified statements is designated as propositional logic,

statement logic, or propositional calculus. In this system,

a 'true' statement implies a tautology. Hence, the chosen

axioms and rules of inference need to prove all tautologies,

and only tautologies, as theorems.

In the following example, the statements perform as

axioms, where P, Q, and R are compound statements:

1. P - (Q - P)
2. (P - (Q - R)) ■* ((P - Q) - (P -* R))
3. (Q' - P') -* (P -* Q)

Each statement can be implemented as a tautology. There is

only one rule of inference which can be deduced from

statements P and P -* Q. Statement Q can be inferred. This

rule of inference shows modus ponens meaning 'method of

assertion.' Since P, Q, and R can be compound statements,

each axiom given above derives a statement form, or schema.

86



for an infinite number of statements. Thus (A -* B) -* ((CAD)

(A B)) sets up an axiom since it fits axiom schema 1,

where P is the statement A - B and Q is the statement CAD.

The system of axioms and one rule of inference where it

achieves the desired solution proves every tautology is a

theorem (i.e., has a proof) and vice versa. This property is

described by saying our formal system is complete and correct.

Completeness is fulfilled when everything that should be a

theorem is. Correctness is attained when there is not

anything that is a theorem which should not be.

Shortcuts in proof sequences are allowed by using already

proved theorems. Once theorem T has been proven as a theorem,

then T can serve as a statement in another proof sequence.

Since T has its own proof sequence, T is utilized as a

substitution into the proof sequence we are constructing.

Deductions

Deductions arise when you desire to prove statements of

the form P -* Q as theorems where P and Q are compound

statements. P is denoted the hypothesis of the theorem, while

Q is the conclusion. If P -* Q is a theorem, it must propose

a tautology. Whenever P is true, Q must be true, too.

Intuitively, we think of being able to deduce Q from P.

Formally, we define a deduction of Q from P as a sequence of

statements ending with Q where each statement is either an

axiom, the statement P, or is derivable from earlier

statements by the rules of inference.

87



Actually, this is a proof of a theorem, where we allow P

as an axiom. It can be shown P -* Q is indeed a theorem if and

only if (iff) Q is deducible from P. Our technique for

proving theorems of the form P -» Q is therefore to include the

hypothesis as one of the statements in the sequence and to

conclude the sequence with Q.

Valid arguments entail an argument is presented by a

series of statements PI, P2, .. .Pn followed by a conclusion Q.

The argument represents a valid argument if the conclusion is

a logical deduction of the conjunction PI A P2 A ... .A Pn, or

better yet, if PI A P2 A .... A Pn -* Q is a theorem.

D.3. Predicate Logic

Predicate logic defines the formal logic system which

allows quantified as well as unquantified statements. The

logic system is also referred to as predicate calculus.

Within this system, 'true' means valid or true in all possible

interpretations. The goal is the axioms and rules of

inference allow the proof of all valid statements, and only

valid statements, as theorems.

La Summary

This chapter explained the design philosophy behind the

tutorial courseware and reviewed subjects from which most

Computer Science GRE questions originate. The computer design

section discussed the von Neumann machine, modern computers,

central processing unit, memory systems, microinstruction

sequencing, and Boolean algebra. The file structures section

88



covered different file organizations, blocking, buffering,

file storage devices, file access methods, record keys,

hashing, collision-handling techniques, linear probing, double

hashing, and trees. The section on data structures provided

information on the array, linked list, stacks, queues, trees,

program performance measurements, algorithm characteristics,

storage space allocation, and program performance

improvements. Within the discrete mathematics section,

logic, induction, recursion, propositional logic, and

predicate logic are reviewed subjects. The overall discussion

gave the reader a general understanding of computer

organization, operating system architecture, file structures,

data structures, and discrete mathematics.

89



CHAPTER 4

CONCLUSIONS & FUTURE WORK

The CS-GRE Tutorial Courseware version 1.1 laid the

groundwork for a tutorial software package. The courseware

seemingly prepares students for the Computer Science Graduate

Record Examination. However, the sample size of 17 tested

students is too small to make effective conclusions ed>out the

performance of graduates versus undergraduates. Yet, in

general, the students scored less than 50% of the questions

correct. Therefore, the tutorial courseware justifies all the

work done.

Graduates performed better than the undergraduates; yet,

they have seen more material than undergraduates. This shows

undergraduates are expected to know the information on the

exam. Therefore, we need software to supplement the

undergraduate education at CAU for students. The material

seen on the Computer Science GRE is taught to graduates and

should be taught to undergraduates, as well.

Unfortunately, new students did not have the opportunity

to review the software since the CAU Computer Science

Department moved into a new building. The move disrupted the

90



student laboratory. The personal computers were not working

for some time.

The next version will include a more attractive human

interface design and more animation. Several changes are

recommended below to allow easier human interaction. The

changes involve using pop-up windows; standard Windows'

windows; backtrack, forward, and history buttons; and, scroll

bars. A self-testing capability can be included to permit the

user to practice taking the exam and to obtain immediate test

results.

Pop-up windows can be used to display the information in

a simpler, yet efficient manner. These windows are different

from the original version in that the windows can mostly cover

the entire screen area. Figure 4-1 gives an example of the

CS-GRE Tutorial Courseware window which can be implemented in

the future. The tutorial courseware modules are listed.

Figure 4-2 shows how the window appears after the Computer

Design button is selected. The Computer Design menu of topics

is displayed. Figure 4-3 shows the window after the selection

for the Introduction button is made from the list of Computer

Design topics. The topics under the Introduction selection

are listed. Figure 4-4 gives the menu of topics falling under

Boolean Algebra after the Boolean Algebra button is selected

from the Computer Design menu as shown in Figure 4-2.

The window can occupy a particular area of the screen

depending on that topic's nested level. They are standard

91



Figure 4-1.
CS-GRE Tutorial Courseware

Contents Search Forward Back Glossary History

Contents for CS-GRE Tutorial Courseware

Computer Design

iO
ro

Data Structures

File Structures

Discrete Math

A

References



Figure 4-2,
CS-GRE Tutorial Courseware

Contents Search Forward Back Glossary History

□.CQmpute.r.Dggign
Introduction

Boolean Algebra

Memory

Computer Arithmetic

Gates

Microinstruction Timing

Microprogramming

von Neumann Architecture



Figure 4-3.
CS-GRE Tutorial Courseware

Contents Search Forward Back Glossary History

Introduction

4^9

Overview Functions

Economics Structure

Price/Performance Computer Family

Definitions Hierarchy

Architecture Central Processing Unit (CPU)

Organization Control Unit
A



Figure 4-4.
CS-GRE Tutorial Courseware

Contents Search Forward Back Glossary History

Boolean Algebra

Definitions

VO
CJl

History

Postulates

Theorems

A



Microsoft Windows' windows. The window may be used like any

other window in that the size can be either minimized or

maximized, the window may be closed or opened, or several

windows may be open on the screen at once. The text within

the window can possibly be displayed in a different color

according to the nested level on which the selected topic

exists. The user can be given the option of selecting topics

in one color from a list, while the nested pertaining choices

are in a different list in another color.

Scroll bars along the right side of the window can be

added. Backtrack and forward buttons can be exercised to

promote ease of use for thoroughly reviewing the material.

The backtrack button will review information that has

previously been covered in order from the last selection to

the first. After the user finishes backtracking, the forward

button will permit the user to review the window information

selections from the current window to the last window

selection made before backtracking. A history feature can be

employed in case the user wants a list of the topics that have

been selected for review within that particular session. A

last-in-first-out stack mechanism is implemented to keep a

record of the selections made by the user. This mechanism

permits the operation of the backtrack, forward, and history

buttons.

The presented information requires more animation through

pictorials and demonstrations to break the monotony of reading

96



to prevent the user from becoming bored. Animations of

different data structures performing various actual operations

may be implemented. Array operations on vectors and their

elements may be exhibited. Different tree order traversals

may be displayed on different tree types. The creation,

deletion, and building of linked lists may be shown. The

linking of queue nodes may be seen after the user views their

creation, removal, and other queue operations i.e. adding and

deleting data elements. Stack operations of push and pop may

be displayed so the user comprehends the stack functions. See

Figure 4-5 for an excunple of a demonstration on stack

operations. After the stack is created, the equation

(3+2)+(5*6) is evaluated. The demonstration displays the

stack functions: create, push, and pop.

Different colors may be applied to these data elements

within the various data structure animations so the user fully

understands the distinction between which elements are

created, added, removed, deleted, and operated upon. The user

can select which data structure demo they wish to view; the

operations that should be performed; whether the moved data

should be stored on the screen, hidden, discarded, or filed;

the maximum number of elements within some limit to be used;

the kind of elements to be applied in an operation whether

numeric, alphanumeric, or alphabet characters; and, the colors

from a given list representing a particular operation on a

data element and the element itself.

97



Figure 4-5.
Evaluation of Equation (3+2)-i-(5*6) Using a Stack

2

+

3

(

)
2

+

3

(

Creation of Slack (S-fl equation eiemenls
pushed on stack

(3-f2) popped off stack
since ’)’ encountered

equation eiements
pushed on stack, too

(5*6) popped off stack
since ’)’ encountered

(5*6) is evaiuated;
30 is pushed on slack

30-«-5 popped off stack;
30+5 U evaluated

5

(3+2) is evaluated;
5 Is pushed on stack

35
35 b pushed on stack



Array vector elements may be represented by different

shades. The user should be prompted to select the number of

vectors and the number of elements to be used in each vector.

Also, the type of elements within each vector should be

specified.

Likewise, a program may be implemented to give a

pictorial representation of the difference between static and

dynamic allocations. With static allocation, one color may be

used to show how space is set aside at the beginning of the

program's compilation time. In reference to dynamic

allocation, a different color may be used to show how storage

space is created during the program's execution.

Further demonstrations may be given which show actual

file manipulations for various file organizations. Examples

may be given to obtain certain file information by performing

detailed calculations. The retrieval and storage of file

elements and files may be employed within the tutorial as

pictorials. We intend to provide animation sequences of

magnetic tape, floppy disks, hard drives, etc. rotating and

spinning as information is stored, retrieved, or accessed.

Moreover, the relationships between the tutorial

courseware and an actual Computer Science GRE may be

explained. The tutorial presents information that is actually

reviewed in the GRE. It thoroughly discusses many keyword

definitions. A glossary can be included within the tutorial

to further define highlighted terms and text. To correctly

99



answer many of the GRE questions, the test taker must have a

thorough understanding of the terminology behind the computer

science jargon evaluated in the exam.

The user may achieve an even better understanding if many

more examples are included. Detailed explanations should be

given along with the examples. More information should be

added to the courseware for each subject that is already

discussed in version 1.1. Additional courses may be analyzed

to comprise an even more extensive tutorial. Pascal will be

the fifth module. It is presently being constructed to

provide insight on the programming language used as a teaching

tool.

A self-testing capability may be in the next version.

This would serve as an on-line GRE enabling a user to test

oneself. The scores for the exam would be available

immediately after the test was given. The on-line Computer

Science GRE would be old exams which were given several years

ago. The user will choose from five on-line exams. The same

n\imber of questions from a standard Computer Science GRE will

be asked. There are 80 questions on the Computer Science GRE.

Four hundred questions can be added to the data bank from

which the user may study so we may obtain a larger sample

size. There shall not be any time limit the first time the

user practices taking the exam; however, the standard time

limit will be followed the second time the user takes the same

test within that particular session.

100



The following appendix is provided for the reader's

information. Appendix A contains an executable copy of the

CS-GRE Tutorial Courseware.

101



APPENDIX A

THE CS-GRE TUTORIAL COURSEWARE

102



SELECTED BIBLIOGRAPHY

Epp, Susan. Discrete Mathematics with Applications. New
York: Prentice-Hall, Inc., 1986.

Gersting, Judith L. Math Structures for Computer Science.
New York; Prentice-Hall, Inc., 1988.

GRE Computer Science. New Jersey; Educational Testing
Service, 1989.

Lehmkuhl, Nonna Kliss. An Introduction to VAX Assembly
Language Programming. St. Paul: West Publishing
Company, 1987.

Sedgewick, Robert. Algorithms. New York: Addison-Wesley
Publishing Company, Inc., 1988.

Tanenbaum, Andrew S. Operating Systems Design &
Implementation. New Jersey: Prentice-Hall, Inc., 1987.

. Structured Computer Organization. New Jersey:
Prentice-Hall, Inc., 1990.

103


