
THESIS/DISSERTATION TRANSMITTAL FORM

Name of Student Ying Liu

Title of Thesis A JAVA FRAMEWORK FOR OBJECT DETECTION AND TRACKING

We the undersigned members of the Committee advising this thesis/dissertation, have
ascertained that in every respect it acceptably fulfills the final requirement for the degree
of Master of Science i

Specify degree
I the Computer Information Science.

Department or School

Dr. Roy George

Major Advisor Signdti

Dr. Khalil A. Shuiaee
Name

Dr. Hsin-Chu Chen
Name

Computer Information Science 08 - 0 9 ~
Department or School Date

-o-j

Signature

Date

Date j

As Chair of the Department of Computer Information Science. 1 have verified that this
manuscript meets the School’s/Departnie^’s standards of form and content governing theses or
dissertations for the degree sought.

Dr. Roy George
Chair Date

As Dean of the School ofArts and Sciences. I have verified that this manuscript meets
the School’s regulations governing the content and form of theses or dissertations.

Dr. Shirley Williams-Kirksev
Dean Signature

£7

Date

As Dean ofGraduate Studies, I have verified that this manuscript meets the University’s
regulations governing the content and form of theses and dissertations.

Dr. William Boone
Dean of Graduate Studies Signature Date



ABSTRACT

A JAVA FRAMEWORK FOR OBJECT DETECTION AND TRACKING

Ying Liu M. ED. Northeast Normal University, China, 2001

Advisor: Professor Roy George

Thesis dated December 2007

Object detection and tracking is an important problem in the automated analysis

of video. There have been numerous approaches and technological advances for object

detection and tracking in the video analysis. As one of the most challenging and active

research areas, more algorithms will be proposed in the future. As a consequence, there

will be the demand for the capability to provide a system that can effectively collect,

organize, group, document and implement these approaches.

The purpose of this thesis is to develop one uniform object detection and tracking

framework, capable of detecting and tracking the multi-objects in the presence of

occlusion. The object detection and tracking algorithms are classified into different

categories and incorporated into the framework implemented in Java. The framework can

adapt to different types, and different application domains, and be easy and convenient

for developers to reuse. It also provides comprehensive descriptions of representative

methods in each category and some examples to aspire to give developers or users, who

require a tracker for a certain application, the ability to select the most suitable tracking

algorithm for their particular needs.
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CHAPTER 1

INTRODUCTION

Videos are sequences of images, each of which is called a frame. The contents of

two consecutive frames are usually closely related. Visual content can be modeled

through a hierarchy of abstractions; raw pixels, features, objects, and human concepts. At

the lowest abstraction level, objects are simply aggregations of raw pixels from an image.

The next higher abstraction for representing image is at the feature level. A feature is a

distinguishing primitive characteristics or attribute of an image. These features are

interpreted as objects and their attributes. One or more objects and relationships among

them are supplied through the human level concepts. Although automatic detection and

recognition, and tracking methods are available for certain objects and their attributes,

their effectiveness is highly dependent on image complexity.

Object detection in videos involves verifying the presence of an object in image

sequences and possibly locating it precisely for recognition. Object detection is a

straightforward solution to the content-based video indexing and analysis. Object

tracking monitors an object’s spatial and temporal changes during a video

sequence. Object tracking is one of the most challenging and active research areas in

digital video processing and computer vision. Tracking over a time is difficult due to the

complexity of both the scene and the objects to be tracked. The level of difficulty

depends on how the object to be detected and tracked is defined. These two processes are
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closely related because tracking usually starts with detecting objects, while detecting an

object repeatedly in subsequent image sequence is often necessary to help and verify

tracking.

The use of object detection and tracking is pertinent in the tasks ofmotion-based

recognition, automated surveillance, video indexing, human-computer interaction, traffic

monitoring, vehicle navigation, etc.

1.1 Problems

There are three key steps in video analysis: detection of interesting moving

objects, tracking of such objects from frame to frame, and analysis of object tracks to

recognize their properties and behaviors.

The motion of the object is relative to the background. It is difficult to detect

moving object owing to the motion of the background. A common approach for object

detection uses information in one single frame but temporal information from a sequence

of frames can improve the precision of detecting.

Tracking objects can be complex due to loss of information caused by projection

of the 3D world on a 2D image, noise in images, complex object motion, non-rigid or

articulated nature of objects, partial and full object occlusions, complex object shapes,

scene illumination changes, and real-time processing requirements. Tracking can be

simplified by imposing constraints on the motion and/or appearance of objects. For

example, almost all tracking algorithms assume that the object motion is smooth with no

abrupt changes. One can further constrain the object motion to be of constant velocity or

constant acceleration based on a priori information. Prior knowledge about the number
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and the size of objects, or the object appearance and shape, can also be used to simplify

the problem.

Several approaches for object detection and tracking have been proposed. These

primarily differ from each other based on the way they approach the following questions:

Which object representation is suitable for detection and tracking? Which image features

should be used? How should the motion, appearance, and shape of the object be

modeled?

The answers to these questions depend on the context/environment in which the

detection and tracking are performed and the end use to which the detection and tracking

information is being sought. Several detection and tracking methods have been proposed

which attempt to answer these questions for different scenarios. Is there a simple way to

understand, implement, and use them easily and fast? The answer is a framework.

A framework is a skeletal group of modules that may be tailored for building

domain-specific applications, resulting in increased productivity. The implementation of

a framework is an important part to be reused. Frameworks offer flexibility to developers

and provide well-documented and easy to use solutions for common practices in the

industry.

The goal of this thesis is to develop a uniform Java framework that groups

tracking methods into broad categories and provides comprehensive descriptions of

representative methods in each category. It provides developers and users the ability to

select the most suitable tracking algorithm for their particular needs.
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1.2 ViReS

The framework for Object Detection and Tracking is one of sub-frameworks for

ViRes[l]. The ViReS (Video Index and Retrieval System) is a video analysis framework

in Java. The system provides automatic indexing and querying based on visual contents.

An important task in analyzing video content is to detect segment boundaries. A common

approach for quick browsing is to detect changes that can be abrupt (Cut) or they can be

gradual (Fade, Dissolve, Wipe). A video is divided into different shots by using one or

more of the selected techniques. Object-based querying involves detection and tracking

ofmoving objects and queries based on an example of the object provided or selected by

the user.

1.3 Contributions

The work described here involves the design and implementation of a suite of

Java interfaces, classes, and testing results for the object detection and tracking

framework.

The major contributions are:

• proposing a Java object detection and tracking framework.

• designing and implementing the object detection and tracking framework.

• implementing histogram-based Cut detection. Fade Detection, Face Detection,

Particle filter object tracking algorithms in Java as examples.

• performing experiments and tests.
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1.4 Layout of the thesis

Some background on video and object tracking issues is presented in Chapter 2.

The Framework design is presented in Chapter 3. The Chapter 4 describes the

implementation of the framework and classes in Java in detail. The experiments and

testing results are provided in Chapter 5. Chapter 6 concludes the thesis.



CHAPTER 2

LITERATURE REVIEW

Detection and tracking are two major research components in the analysis of

computer vision. Detection locates potential boundaries and objects while tracking

identifies and follows these objects as they move through images. In this section, we

review the research issues in video, change detection, object representation, object

detection and object tracking.

2.1 Video and Change Detection issues

Video is the most popular source of multimedia information. It combines all other

media information, such as text, image, graphic, audio and etc., into a single data stream.

Scene change detection is an effective method for segmenting a video sequence into

significant shots and has been recognized as an important technology for video analysis,

editing, indexing, and motion compensation.

2.1.1 Video Structure

Video in Figure 2.1 consists of a sequence of scenes [2]. A scene is defined as a

collection of one or more adjoining shots that focus on one object or objects of interests.

A shot is a sequence of frames captured by a single camera in a single continuous action

in time and space. A frame is a still image which composes a complete video.

6
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Video

Scenes

Shots

Frames

Figure 2.1 Video Structure

There are different types of transitions or boundaries between shots. A cut is an

abrupt transition between two shots that occurs between two adjacent frames. A fade is a

gradual change in brightness, either starting or ending with a black frame. A dissolve is

similar to a fade except that it occurs between two shots. The images of the first shot get

dimmer and those of the second shot get brighter until the second replaces the first. Other

types of shot transitions include wipes and computer generated effects such as morphing.

2.1.2 Change detection

Change detection is to find shot boundary having transitions, and delimit the start

and the end of the video shots.

1. Why Change detection?

(1) Change detection is elementary core technology for constructing efficient

content based video indexing and searching.

(2) Change detection processes the video content in a more efficient way.

2. Change Detection Methods

The basic idea is to compute the differences between consecutive frames or

groups of frames. Change detection methods vary in the way these differences are

computed [3]:
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(1) Pixel based: difference in subsequent frames of pixels at corresponding

positions. It includes pixel-based analysis and histogram-based analysis.

• Pixel-based analysis:

Pixel Comparison counts the number of pixels changed from a frame to the

next. It is less sensitivity to object motion and noisy.

• Histogram-based analysis:

Global histogram comparison produces relatively accurate results compared to

others but local histogram comparisons produce the most accurate results

compared to others.

(2) Block based: compare statistics of corresponding blocks. Block-based

approaches use local characteristics to increase the robustness to camera and

object movement.

(3) Frame based: summarize the whole frame into one measure and compare this

with the same measure for the next frame.

(4) Object based: detection based on measures indicating how the objects change

from frame to frame.

2.2 Object Representation issues

An object is an artifact that is of interest for further analysis. For instance, boats

on the sea, fish inside an aquarium, vehicles on a road, planes in the air, people walking

on a road, or bubbles in the water are a set of objects that may be important to track in a

specific domain. An important task in object detection and tracking is object

representation, i.e., how to model an object. The way of representing an object affects the

successive algorithms of object detection and tracking.
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A representation of the object that captures its characteristics is needed. Object

representation may be classified into two categories: object-centered or shape-based and

view-centered or appearance-based. A typical feature of shape-based approaches is the

decomposition of objects in a set of primitive shapes such as points, boxes, silhouettes

and blobs. The appearance-based (view-based) object representation that may include

photometric as well as purely geometric information renounces the use of explicit object

models. Instead, they base on a set of characteristic 2D views of the object. In both cases,

the visual feature scope, color, texture, shape, or motion, cues and their combination can

provide appropriate representations.

2.2.1 Objects can be represented by their shapes.

Objects can be represented by many kinds of shapes such as points, primitive

geometric shapes, object silhouette and contour, articulated shape models, and skeletal

models.

1. Points.

The object is represented by a point like centroid (Figure 2.2(a)) [4] or by a set of

points (Figure 2.2(b)) [5]. In general, the point representation is suitable for tracking

objects that occupy small regions in an image.

2. Primitive geometric shapes.

The object shape is represented by a rectangle, ellipse (Figure 2.2(c), (d)) [6], etc.

Object motion for such representations is usually modeled by translation, affine, or

projective (homography) transformation. Though primitive geometric shapes are more

suitable for representing simple rigid objects, they are also used for traeking nonrigid

objects.
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3. Articulated shape models.

Articulated objects are composed of body parts that are held together with joints.

The relationship between the parts is governed by kinematic motion models, for example,

joint angle, etc. In order to represent an articulated object, one can model the constituent

parts using cylinders or ellipses as shown in Figure 2.2(e).

4. Skeletal models.

Object skeleton can be extracted by applying medial axis transform to the object

silhouette [7]. This model is commonly used as a shape representation for recognizing

objects [8]. Skeleton representation can be used to model both articulated and rigid

objects (see Figure 2.2(f)).

5. Object silhouette and contour.

Contour representation defines the boundary of an object (Figure 2.2(g), (h)). The

region inside the contour is called the silhouette of the object (see Figure 2.2(i)).

Silhouette and contour representations are suitable for tracking complex nonrigid shapes

[9].
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Figure 2.2 Object representations

(a) centroid, (b) multiple points, (c) rectangular patch, (d) elliptical patch, (e) part-based

multiple patches, (f) object skeleton, (g) complete object contour, (h) control points on object

contour, (i) object silhouette.

2.2.2 Objects can be represented by the appearance features.

An object can be represented by appearance features such as probability densities

of the object appearance, shapes, templates, active appearance models, and multi-view

appearance models.

1. Probability densities of object appearance.

The probability density estimates of the object appearance can either be

parametric, such as Gaussian [10] and a mixture of Gaussians [11], or nonparametric,

such as Parzen windows [12] and histograms [6]. The probability densities of object

appearance features (color, texture) can be computed from the image regions specified by

the shape models (interior region of an ellipse or a contour).

2. Templates.

Templates are formed using simple geometric shapes or silhouettes [13]. An

advantage of a template is that it carries both spatial and appearance information.
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Templates, however, only encode the object appearance generated from a single view.

Thus, they are only suitable for tracking objects whose poses do not vary considerably

during the course of tracking.

3. Active appearance models.

Active appearance models are generated by simultaneously modeling the object

shape and appearance [14]. In general, the object shape is defined by a set of landmarks.

Similar to the contour-based representation, the landmarks can reside on the object

boundary or, alternatively, they can reside inside the object region. For each landmark, an

appearance vector is stored, which is in the form of color, texture, or gradient magnitude.

Active appearance models require a training phase where both the shape and its

associated appearance is learned from a set of samples using, for instance, the principal

component analysis.

4. Multi-view appearance models.

These models encode different views of an object. One approach to represent the

different object views is to generate a subspace from the given views. Subspace

approaches, for example. Principal Component Analysis (PCA) and Independent

Component Analysis (ICA), have been used for both shape and appearance representation

[15], [16]. An alternative approach to learn the different views of an object is by training

a set of classifiers, for example, support vector machines [17] or Bayesian networks [18].

A limitation of multiview appearance models is that the appearances in all views are

required ahead of time.
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2.3 Object detection issues

Object detection determines whether or not the object is present in an image, and,

if present, determine the locations and sizes of each object. Reliable object detection

systems are required as a front-end in numerous applications. For example, face detection

is the first stage of many human computer interaction systems. Object detection deals

with determining if an instance of a given class of objects (for examples cars, faces, etc.)

is present or not in an image.

2.3.1 Detection categories

Successful object detection systems are based on the learning of object

appearance using large collections of examples. The object detection systems that have

been developed fall into one of 4 major categories: point detector, background

substruction, segmentation, and supervised learning.

1. Point Detector

Point detectors are used to find interest points in images which have an expressive

texture. Interest points have been long used in the context of motion, stereo, and tracking

problems. A desirable quality of an interest point is its invariance to changes in

illumination and camera viewpoint.

2. Background Subtraction

Object detection can be achieved by building a representation of the scene called

the background model and then finding deviations from the model for each incoming

frame. Any significant change in an image region from the background model signifies a

moving object. The pixels constituting the regions undergoing change are marked for
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further processing. Usually, a connected component algorithm is applied to obtain

connected regions corresponding to the objects. This process is referred to as the

background subtractioa

3. Segmentation

The aim of image segmentation algorithms is to partition the image into

perceptually similar regions. Every segmentation algorithm addresses two problems, the

criteria for a good partition and the method for achieving efficient partitioning [19].

4. Supervised Learning

Object detection is performed by learning different object views automatically

from a set of examples by means of a supervised learning mechanism. Learning of

different object views waives the requirement of storing a complete set of templates.

Given a set of learning examples, supervised learning methods generate a fimction that

maps inputs to desired outputs. A standard formulation of supervised learning is the

classification problem where the learner approximates the behavior of a function by

generating an output in the form of either a continuous value, which is called regression,

or a class label, which is called classification. In context of object detection, the learning

examples are composed of pairs of object features and an associated object class where

both of these quantities are manually defined.

2.3.2 Object detection algorithms

A common approach to object detection is to use information in a single frame.

However, some object detection algorithms make use of the temporal information

computed from a sequence of frames to reduce the number of false detections. This

temporal information is usually in the form of frame differencing, which highlights
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changing regions in consecutive frames. Given the object regions in the image, it is then

the tracker’s task to perform object correspondence from one frame to the next to

generate the tracks. Table 2.1 shows 4 categories of object detection methods and

representative works of each type.

Table 2.1: Object Detection Categories

Categories Representative Work
Point detector Moravec’s detector [20],

Harris detector [21],
Scale Invariant Feature Transform [22].
Affine Invariant Point Detector [23].

Background Mixture ofGaussians[24],
Subtraction Eigenbackground[25],

Wall flower [26],
Dynamic texture background [27].

Segmentation Mean-shift [28],
Graph-cut [19],
Active contours [29].

Supervised Learning Support Vector Machines [30],
Neural Networks [31],
Adaptive Boosting [32].

1. Point Detector

In the literature, commonly used interest point detectors include Moravec’s

interest operator [20], Harris interest point detector [21], KLT detector [33], and SIFT

detector [22]. To find interest points, Moravec’s operator computes the variation of the

image intensities in a patch in the horizontal, vertical, diagonal, and anti-diagonal

directions and selects the minimum of the four variations as representative values for the

window. Quantitatively both Harris and KLT emphasize the intensity variations using

very similar measures. The only difference is the additional KLT criterion that enforces a

predefined spatial distance between detected interest points. In order to introduce robust



16

detection of interest points under different transformations, Lowe [22] introduced the

SIFT (Scale Invariant Feature Transform) method.

2. Background Substraction

Background subtraction became popular following the work of Wren et al. [34],

In order to learn gradual changes in time, Wren et al. [34] propose modeling the color of

each pixel of a stationary background with a single Gaussian. However, a single Gaussian

is not a good model for outdoor scenes [35] since multiple colors can be observed at a

certain location due to repetitive object motion, shadows, or reflectance. Stauffer and

Grimson [24] use a mixture ofGaussians to model the pixel color.

An alternate approach for background subtraction is to represent the intensity

variations of a pixel in an image sequence as discrete states corresponding to the events

in the environment. Rittscher et al. [36] use Hidden Markov Models (HMM) to classify

small blocks of an image as belonging to one of these three states. In the context of

detecting light on and off events in a room, Stenger et al. [37] use HMMs for the

background subtraction. The advantage of using HMMs is that certain events, which are

hard to model correctly using unsupervised background modeling approaches, can be

learned using training samples. Instead of modeling the variation of individual pixels,

Oliver et al. [25] propose a holistic approach using the eigenspace decomposition. One

limitation of the aforementioned approaches is that they require a static background. This

limitation is addressed by Monnet et al. [27], and Zhong and Sclaroff [38]. Both of these

methods are able to deal with time-varying background (e.g., the waves on the water,

moving clouds, and escalators).
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3. Segmenation

For the segmentation problem, Comaniciu and Meer [39] propose the mean-shift

approach to find clusters in the joint spatial and color space. Shi and Malik [19] propose

the normalized cut to overcome the over-segmentation problem. In their approach, the cut

not only depends on the sum of edge weights in the cut, but also on the ratio of the total

connection weights of nodes in each partition to all nodes of the graph. Object

segmentation is achieved by evolving a closed contour to the object’s boundary, such that

the contour tightly encloses the object region. A contour is typically placed outside the

object region and shrunk until the object boundary is encountered [40], [29].

4. Supervised Learning

Supervised learning methods usually require a large collection of samples from

each object class. Additionally, this collection must be manually labeled. It is important

to use a set of features that discriminate one class from the other. Once the features are

selected, different appearances of an object can be learned by choosing a supervised

learning approach. These learning approaehes inelude, but are not limited to, neural

networks [31], adaptive boosting [32], decision trees [41], and support vector machines

[30].

Boosting is an iterative method of finding a very aceurate classifier by combining

many base classifiers, each of which may only be moderately accurate. Viola et al. [32]

used the Adaboost framework to detect pedestrians. In their approach, perceptrons were

ehosen as the weak classifiers which are trained on image features extracted by a

combination of spatial and temporal operators. As a classifier. Support Veetor Machines

(SVM) are used to cluster data into two classes by finding the maximum marginal
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hyperplane that separates one class from the other. In the context of object detection,

Papageorgiou et al. [30] use SVM for detecting pedestrians and faces in images.

2.4 Object tracking issues

Object detection and object tracking processes are closely related because

tracking usually starts with detecting objects, while detecting an object repeatedly in

subsequent image sequence is often necessary to help and verify tracking.

Object tracking is useful for computer vision, robotic navigation, surveillance,

image understanding, image indexing and retrieval etc. The aim of object tracking is to

analyze those images in sequence and locate area of interest in image. Reliability and

precision are important for tracking system.

2.4.1 Feature selection for object tracking

Selecting the right features plays a critical role in object tracking. In general, the

most desirable property of a visual feature is its uniqueness so that the objects can be

easily distinguished in the feature space. Feature selection is closely related to the object

representation. For example, color is used as a feature for histogram-based appearance

representations, while for contour-based representation, object edges are usually used as

features. In general, many tracking algorithms use a combination of these features.

The details of common visual features such as color, edges, optical flow and texture are

as follows.

1. Color.

The apparent color of an object is influenced primarily by two physical factors;

the spectral power distribution of the illuminant and the surface reflectance properties of

the object. In image processing, the RGB (red, green, blue) color space is usually used to
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represent color. However, the RGB space is not a perceptually uniform color space, that

is, the differences between the colors in the RGB space do not correspond to the color

differences perceived by humans [42]. Additionally, the RGB dimensions are highly

correlated. In contrast, HSV (Hue, Saturation, Value) is an approximately uniform color

space. However, these color spaces are sensitive to noise [43]. In summary, there is no

last word on which color space is more efficient, therefore a variety of color spaces have

been used in tracking.

2. Edges.

Object boundaries usually generate strong changes in image intensities. Edge

detection is used to identify these changes. An important property of edges is that they

are less sensitive to illumination changes compared to color features. Algorithms that

track the boundary of the objects usually use edges as the representative feature. Because

of its simplicity and accuracy, the most popular edge detection approach is the Canny

Edge detector [44]. An evaluation of the edge detection algorithms is provided by

Bowyer et al. [45].

3. Optical Flow.

Optical flow is a dense field of displacement vectors which defines the translation

of each pixel in a region. It is computed using the brightness constraint, which assumes

brightness constancy of corresponding pixels in consecutive frames [46]. Optical flow is

commonly used as a feature in motion-based segmentation and tracking applications.

Popular techniques for computing dense optical flow include methods by Horn and

Schunck [46], Lucas and Kanade [47], Black and Anandan [48], and Szeliski and

Couglan [49].
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4. Texture.

Texture is a measure of the intensity variation of a surface which quantifies

properties such as smoothness and regularity. Compared to color, texture requires a

processing step to generate the descriptors. There are various texture descriptors: Gray-

Level Cooccurrence Matrices (GLCM’s) [50], Law’s texture measures [51], wavelets [52]

(orthogonal bank of filters), and steerable pyramids [53]. Like edge features, the texture

features are less sensitive to illumination changes compared to color.

Mostly features are chosen manually by the user depending on the application

domain. Among all features, color is one of the most widely used features for tracking.

Comaniciu et al. [6] use a color histogram to represent the object appearance. Despite its

popularity, most color bands are sensitive to illumination variation. Hence in scenarios

where this effect is inevitable, other features are incorporated to model object appearance.

Cremers et al. [54] use optical flow as a feature for contour tracking. Jepson et al. [55]

use steerable filter responses for tracking. Alternatively, a combination of these features

is also utilized to improve the tracking performance.

2.4.2 Object tracking categories

The aim of an object tracker is to generate the trajectory of an object over time by

locating its position in every frame of the video. The object tracker may also provide the

complete region in the image that is occupied by the object at every time instant. The

object tracking systems can be divided into point, kernel and silhouette tracking

categories.
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1. Point Tracking.

Objects detected in consecutive frames are represented by points, and the

association of the points is based on the previous object state which can include object

position and motion. This approach requires an external mechanism to detect the objects

in every frame. An example of object correspondence is shown in Figure 2.3(a).

2. Kernel Tracking.

Kernel refers to the object shape and appearance. For example, the kernel can be

a rectangular template or an elliptical shape with an associated histogram. Objects are

tracked by computing the motion of the kernel in consecutive frames (Figure 2.3(b)).

This motion is usually in the form of a parametric transformation such as translation,

rotation, and affine.

3. Silhouette Tracking.

Tracking is performed by estimating the object region in each frame. Silhouette

tracking methods use the information encoded inside the object region. This information

can be in the form of appearance density and shape models which are usually in the form

of edge maps. Given the object models, silhouettes are tracked by either shape matching

or contour evolution (see Figure 2.3(c), (d)). Both of these methods can essentially be

considered as object segmentation applied in the temporal domain using the priors

generated from the previous frames.
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Figure 2.3 Different tracking catogories

(a) Different tracking approaches. Multipoint correspondence, (b) parametric
transformation of a rectangular patch, (c, d) Two examples of contour evolution.

2.4.3 Object tracking algorithms

We now briefly introduce the main tracking categories in Table 2.2, followed by a
detailed section on each category.

Table 2.2 Tracking Categories

Categories RepresentativeWork

Point Tracking
Deterministic methods MGE tracker [56]

GOA tracker [4]
Statistical methods Kalman filter [57]

JPDAF [58]
PMHT [59]

Kernel Tracking

Template and density based Mean-shift [6]
appearance models KLT [33]
Layering [60]

Multi-view appearance
models

Eigentracking [ 16]
SVM tracker [17]

Silhouette Tracking
Contour evolution State space models [61 ]

Variational methods [62]
Heuristic methods [63]

Matching shapes Hausdorff [64]
Hough transform [65]
Histogram [66]
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1. Point Tracking

Tracking can be formulated as the correspondence of detected objects represented

by points across frames. Overall, point correspondence methods can be divided into two

broad categories, namely, deterministic and statistical methods. The deterministic

methods use qualitative motion heuristics [4] to constrain the correspondence problem.

On the other hand, probabilistic methods explicitly take the object measurement and take

uncertainties into account to establish correspondence.

(1) Deterministic Methods for Correspondence.

Deterministic methods for point correspondence define a cost of associating each

object in frame t - 1 to a single object in frame t using a set ofmotion constraints. Salari

and Sethi [56] handle occlusions, entries, or exits, in a modified greedy approach by first

establishing correspondence for the detected points and then extending the tracking of the

missing objects by adding a number of hypothetical points. Veenman et al. [4] extend the

work of Sethi and Jain [67], and Rangarajan and Shah [68] by introducing the common

motion constraint for correspondence. The common motion constraint provides a strong

constraint for coherent tracking of points that lie on the same object; however, it is not

suitable for points lying on isolated objects moving in different directions.

(2) Statistical Methods for Correspondence.

Measurements obtained from video sensors invariably contain noise. Moreover,

the object motions can undergo random perturbations, for instance, in maneuvering

vehicles. Statistical correspondence methods solve these tracking problems by taking the

measurement and modeling uncertainties during object state estimation. The statistical

correspondence methods use the state space approach to model the object properties such
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as position, velocity, and acceleration. Measurements usually consist of the object

position in the image obtained by a detection mechanism.

For a single object case, a Kalman filter is used to estimate the state of a linear

system where the state is assumed to be distributed by a Gaussian. One limitation of the

Kalman filter is the assumption that the state variables are normally distributed

(Gaussian). Thus, the Kalman filter will give poor estimations of state variables that do

not follow Gaussian distribution. This limitation can be overcome by using particle

filtering [69]. The weights define the importance of a sample, that is, its observation

frequency [61].

When tracking multiple objects using Kalman or particle filters, one needs to

deterministically associate the most likely measurement for a particular object to that

object’s state, that is, the correspondence problem needs to be solved before these filters

can be applied. However, if the objects are close to each other, then there is always a

chance that the correspondence is incorrect. An incorrectly associated measurement can

cause the filter to fail to converge. There exist several statistical data association

techniques to tackle this problem. Joint Probability Data Association Filtering (JPDAF)

and Multiple Hypothesis Tracking (MHT) are two widely used techniques for data

association. JPDAF is used by Chang and Aggarwal [70] to perform 3D structure

reconstruction from a video sequence. Rasmussen and Hager [71] use a constrained

JPDAF filter to track regions. The major limitation of the JPDAF algorithm is its inability

to handle new objects entering the field of view (FOV) or already tracked objects exiting

the FOV. Since the JPDAF algorithm performs data association of a fixed number of
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objects tracked over two frames, serious errors can arise if there is a change in the

number of objects.

MHT is an iterative algorithm where each iteration begins with a set of current

track hypotheses. Note that MHT makes associations in a deterministic sense and

exhaustively enumerates all possible associations. To reduce the computational load,

Streit and Luginbuhl [59] propose a probabilistic MHT (PMHT) in which the associations

are considered to be statistically independent random variables and thus there is no

requirement for exhaustive enumeration of associations.

2. Kernel Tracking

Kernel tracking is performed by computing the motion of the object, which is

represented by a primitive object region, from one frame to the next. We divide these

tracking methods into two subcategories based on the appearance representation used,

i.e,„ templates and density-based appearance models, and multi-view appearance models.

(1) Tracking Using Template and Density-Based Appearance Models.

Templates and density-based appearance models have been widely used because

of their relative simplicity and low computational cost. We divide the trackers in this

category into two subcategories based on whether the objects are tracked individually or

jointly.

For tracking single objects, the most common approach in this category is

template matching. A limitation of template matching is its high computation cost due to

the brute force search. To reduce the computational cost, researchers usually limit the

object search to the vicinity of its previous position. Comaniciu et al. [6] use a weighted

histogram computed from a circular region to represent the object. Instead of performing
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a brute force search for locating the object, they use the mean-shift procedure. An

obvious advantage of the mean-shift tracker over the standard template matching is the

elimination of a brute force search, and the computation of the translation of the object

patch in a small number of iterations. However, mean-shift tracking requires that a

portion of the object is inside the circular region upon initialization. Shi and Tomasi [33]

proposed the KLT tracker which iteratively computes the translation of a region centered

on an interest point.

For tracking multiple objects, modeling objects individually does not take into

account the interaction between multiple objects and between objects and background

during the course of tracking. Tao et al. [60] propose an object tracking method based on

modeling the whole image, as a set of layers.

(2) Tracking Using Multi-view Appearance Models.

The objects may appear different from different views, and if the object view

changes dramatically during tracking, the appearance model may no longer be valid, and

the object track might be lost. To overcome this problem, different views of the object

can be learned offline and used for tracking.

Black and Jepson [16] proposed a subspace-based approach, that is, eigenspace, to

compute the affine transformation from the current image of the object to the image

reconstructed using eigenvectors. In a similar vein, Avidan [17] used a Support Vector

Machine (SVM) classifier for tracking. SVM is a general classification scheme that,

given a set of positive and negative training examples, finds the best separating

hyperplane between the two classes. One advantage of this approach is that knowledge
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about background objects (negative examples that are not to be tracked) is explicitly

incorporated in the tracker.

3. Silhouette Tracking

Objects may have complex shapes, for example, hands, head, and shoulders that

cannot be well described by simple geometric shapes. Silhouette-based methods provide

an accurate shape description for these objects. The goal of a silhouette-based object

tracker is to find the object region in each frame by means of an object model generated

using the previous frames. This model can be in the form of a color histogram, object

edges or the object contour. We divide silhouette trackers into two categories, namely,

shape matching and contour tracking. Shape matching approaches search for the object

silhouette in the current frame. Contour tracking approaches, on the other hand, evolve an

initial contour to its new position in the current frame by either using the state space

models or direct minimization of some energy functional.

(1) Shape Matching.

Shape matching can be performed similar to tracking based on template matching,

where an object silhouette and its associated model is searched in the current frame. In

this approach, the silhouette is assumed to only translate from the current frame to the

next, therefore nonrigid object motion is not explicitly handled.

The object model, which is usually in the form of an edge map, is reinitialized to

handle appearance changes in every frame after the object is located. This update is

required to overcome tracking problems related to viewpoint and lighting condition

changes as well as nonrigid object motion. Huttenlocher et al. [64] performed shape

matching using an edge-based representation. The authors used the Hausdorff distance to
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construct a correlation surface from which the minimum is selected as the new object

position. Kang et al. [66] used histograms of color and edges as the object models. In

contrast to traditional histograms, they proposed generating histograms from concentric

circles with various radii centered on a set of control points on a reference circle. The

reference circle is chosen as the smallest circle encapsulating the object silhouette.

In contrast to looking for possible silhouette matches in consecutive frames,

tracking silhouettes can be performed by computing the flow vectors for each pixel inside

the silhouette such that the flow that is dominant over the entire silhouette is used to

generate the silhouette trajectory. Following this observation, Sato and Aggarwal [65]

proposed to generate object tracks by applying Hough transform in the velocity space to

the object silhouettes in consecutive frames. In contrast to appearance-based matching of

silhouettes, a motion-based matching of the object silhouettes is less sensitive to

appearance variations, due to different object views

(2) Contour Tracking.

Contour tracking methods, in contrast to shape matching methods, iteratively

evolve an initial contour in the previous frame to its new position in the current frame.

This contour evolution requires that some part of the object in the current frame overlap

with the object region in the previous frame. Tracking by evolving a contour can be

performed using two different approaches. The first approach uses state space models to

model the contour shape and motion. The second approach directly evolves the contour

by minimizing the contour energy using direct minimization techniques such as gradient

descent.
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For tracking using state space models, the objeet’s state is defined in terms of the

shape and the motion parameters of the contour. The state is updated at each time instant

such that the contour’s a posteriori probability is maximized. The posterior probability

depends on the prior state and the current likelihood which is usually defined in terms of

the distance of the contour from observed edges. Isard and Blake [61] define the object

state in terms of spline shape parameters and affine motion parameters. The

measurements consist of image edges computed in the normal direction to the contour.

This method represents the eontours using explicit representation, for example,

parametric spline. Explicit representations do not allow topology ehanges such as region

split or merge [72] based on direct minimization of energy functional. These methods can

use implicit representations and allow topology changes.

For tracking by direct minimization of contour energy functional, there is an

analogy between the segmentation and the eontour tracking methods in this category.

Both the segmentation and tracking methods minimize the energy functional either

through greedy methods or by gradient descent. The contour energy is defined in terms of

temporal information in the form of either the temporal gradient (optical flow) [62], [73],

[74], or appearance statistics generated from the object and the background regions [9],

[63].

Bertalmio et al. [62] use the optical flow constraint to evolve the contour in

consecutive frames. Similarly, Mansouri [73] also uses the optical flow constraint for

contour tracking. In contrast to Bertalmio et al. [62] which computes the flow only on the

object boundary, Cremers and Schnorr [74] also used the optical flow for contour

evolution, and constraint such that an object can only have homogeneous flow vectors
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inside the region. An alternative to using the optical flow is to exploit the consistency of

the statistics computed inside and outside the object region from one frame to the next.

This approach requires initialization of the contour in the current frame with its previous

position. In this context, Ronfrad [63] defines the energy functional governing the

contour evolution based on the piecewise stationary image models formulated as Ward

distances.

2.5 Software Frameworks

In software development, a framework is a defined support structure in which

another software project can be organized and developed. A framework may include

support programs, code libraries, a scripting language, or other software to help develop

and glue together the different components of a software project. A framework represents

an architecture that models general relationships between domain's entities. It provides a

structure and a methodology that extends or uses the domain's applications.

2.5.1 Why use framework?

A framework is a set of classes that embodies an abstract design for solutions to a

family of related problems [75]. Framework designers focus on applicability to a certain

set of problems, and on flexible best-practices embodied in software. A framework must

be able to accommodate functionality in a number of essential areas, providing common

behavior while allowing users and developers to customize behavior through

configuration parameters and/or framework sub-classing.

Frameworks are designed with the intent of facilitating software development, by

allowing designers and programmers to spend more time on meeting software
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requirements rather than dealing with the more tedious low level details of providing a

working system. There are the following advantages of a framework:

(1) makes it easier to work with complex technologies.

(2) ties together a bunch of discrete objects/components into something more

useful.

(3) forces the team to implement code in a way that promotes consistent coding,

fewer bugs, and more flexible applications.

(4) easily test and debug the code, even code that they didn't develop.

2.5.2 How is a framework designing?

The following factors are related to the general framework design:

(1) Framework reusability: The main reason for building a framework rather than

a single text categorization application is to increase reusability of design and

implementation. Framework research literature provides guidelines on

building application frameworks.

(2) Modularity: The components’ internal implementations should be able to

change without affecting the other components.

(3) Integration: The framework should be able to interface easily with existing

categorization solutions, uniting many solutions under a common interface.

(4) Rapid Application: Development Prototyping new applications should be very

quick, with a minimum of custom code in each case. Custom code should

generally implement new behaviors rather than new structures within the

framework.
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(5) Rapid Research Cycle: Researchers should be able to quickly investigate new

questions, using the framework as a starting point.

(6) Model Flexibility: The framework structure should be flexible enough to

accommodate the needs ofmany different categorization algorithms that may

operate on different representations of the underlying data.

(7) Computational Efficiency: The data sets involved can be quite large, so it is

importEuit to have a design and implementation that is efficient in memory,

CPU time, and other practical measures such as the time it takes to load a

categorizer from disk and generate a hypothesis.

(8) Separability: Pieces of the framework should be usable in isolation for users

that only need a feature selection package, a vector categorizer, etc. The most

separable pieces of the framework should in many cases be completely

separated and available under separate distribution, and used as a software

dependency in our framework.

However, there are common complaints that using frameworks adds to "code

bloat,” and that a preponderance of competing and complementary frameworks means

that one trades time spent on rote programming and designs for time spent on learning

frameworks. Outside of computer applications, a framework can be considered as the

processes and technologies used to solve a complex issue. It is the skeleton upon which

various objects are integrated for a given solution.

2.5.3 How to classify frameworks?

Frameworks may be classified into 3 categories: wrappers, architectures, and

methodologies.
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(1) Wrappers: A wrapper simplifies an interface to a technology, reduces or

eliminates repetitive tasks, increases application flexibility through abstraction,

and is often re-usable regardless of high level design considerations.

(2) Architectures: An architecture manages a collection of discrete objects and

implements a set of specific design elements.

(3) Methodologies: A methodology enforces the adherence to a consistent design

approach, decouples object dependencies, and is often re-usable regardless

application requirements.

2.5.4 How to use a framework?

A software framework is a reusable design for a software system (or subsystem).

This is expressed as a set of abstract classes and the way their instances collaborate for a

specific type of software [76], [77]. All software frameworks are object-oriented designs.

Although designs don't have to be implemented in an object-oriented language, they

usually are. On the one hand, frozen spots define the overall architecture of a software

system, that is to say its basic components and the relationships between them. These

remain unchanged (frozen) in any instantiation of the application framework. On the

other hand, hot spots represent those parts where the programmers using the framework

add their own code to add the functionality specific to their own project.

A good framework in place allows the developers to spend more time

concentrating on the business-specific problem at hand rather than on the plumbing code

behind it. Also a Framework will limit the choices during development, so it increases

productivity, specifically in big and complex systems.
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A framework is a reusable design expressed as a set of abstract classes and the

way their instanees collaborate. It is a reusable design for all or part of a software system;

a user interface framework only provides a design for the user interfaee of a system,

while frameworks provide a design for the entire application. Large-scale reuse of object-

oriented libraries requires frameworks. The framework provides a context for the

components in the library to be reused.
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FRAMEWORK DESIGN

Videos are sequences of frames, displayed fast enough so that human eyes can

percieve the continuity of its content. It is obvious that all image processing techniques

can be applied to individual frames.

3.1 High level design

The framework (Figure 3.1) is based on the analysis of object detection and

tracking domain. It consists of five components (sub-frameworks): Change Detection,

Object Detection, Object Representation, Object Tracking and Viewer.

Figure 3.1 Overview of the framework

35
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In this framework, a video is first segmented into semantic shots through change

detection and representative frames may be saved into image files. Object detection

locates objects of interest in a key frame using suitable object detection algorithms. The

detected objects are represented by an object model, object tracking monitors the objects’

spatial and temporal changes during a video sequence with an appropriate object tracking

algorithm. Object detection and tracking are closely related because tracking starts with

object detection, and detecting an object repeatedly in subsequent image sequence is

often necessary to help and verify tracking.

The tasks of detecting the object and establishing correspondence between the

object instances across frames can either be performed separately or jointly. In the first

case, possible object regions in every frame are obtained by means of an object detection

algorithm, and the tracker corresponds objects across frames. In the latter case, the object

region and correspondence is jointly estimated by iteratively updating object location and

region information obtained from previous frames.

In either tracking approach, the objects are represented using the shape and/or

appearance models. The model selected to represent object shape limits the type of

motion or deformation it can undergo. For example, if an object is represented as a point,

then only a translational model can be used. In the case where a geometric shape

representation like an ellipse is used for the object, parametric motion models like affine

or projective transformations are appropriate. These representations ean approximate the

motion of rigid objects in the scene. For a non-rigid object, silhouette or contour is the

most descriptive representation and both parametric and nonparametric models can be

used to specify their motion.
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The viewers are ehosen to display the processes of object representation, detection

and tracking.

3.2 Change detection design

The principal methodology of change detection is to extract one or more features

from every frame of a video sequence, to compute the difference of features for

consecutive frames, and to compare these differences to a given threshold. Each time the

threshold is exceeded, a shot boundary is detected. It has a broadband spectrum of

applications including video segmentation, where it forms a central unit of temporal

segmentation that explores motion information.

ChgDetector (Figure 3.2) is designed as the root of the change detection

hierarchy. It contains all the common attributes such as change lists and methods such as

detectQ for all types of change detections. All the change detection methods may be

classified into 5 categories under ChgDetector: PixelChgDetector (pixel-based

detection), BlockChgDetector (block-based detection), FrameChgDetector (frame-

based detection), ObjectChgDetector (object-based detection), and OtherChgDetector

(Hygrid-based detection). Each category is treated as one non-leaf node implemented as

an interface/abstract class in the hierarchy tree. Each specific detection method could fall

into one category and is implemented as one specific class. PixelChgDetector has two

subcategories: PixelBasedPixelChgDetector (Pixel analysis detection) and

HistoBasedPixelChgDetector (histogram analysis detection).
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Figure 3.2 class diagram of Change detection

3.3 Object Detection design

Object detection methods (Figure 3.3) may be classified into the following

categories: PointerDetector (point detection), SegDetector (segmentation detection),

BGDetector (background subtraction detection), SupDetector (supervised learning

Detection), and OtherDetector (other detection). Each detection algorithm should fall

into one of these classes. ObjectDetector is designed as the root of the object detection

hierarchy. It contains all the common attributes and methods such as initializeO, and

detectQ for all types of object detections.
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Figure 3.3 Diagram of ObjectDetector Design

3.3.1 Point Detector

PointDetector is a group of detection methods that uses interest points to detect

objects. It may include MoraVecPointDetector (Mora Vec), HarrisPointDetector

(Harris point), SIFTPointDetector (Scale Invariant Feature Transform), and

AIPointDetector (Affine Invariant Point).

Figure 3.4 Diagram of PointDetector Design
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3.3.2 Segmentation Detector

SegDetector (Figure 3.5) is a group of segmentation detection methods. It

includes MeanShiftSegDetector (Mean-shift), GraphCutSegDetector (Graph-cut), and

ActiveContoursSegDetector (Active contours) as sub classes.

Figure 3.5 Diagram of SegDetector Design

3.3.3 Background Subtraction Detector

BGDetector, a category using backgroup substraction detection (Figure 3.6)

includes MixGaussiansBGDetector (Mixture of Gaussians), EigenBGDetector (Eigen

Background), AllFlowerBGDetector (All Flower Background), and

DynTextureBGDetector (Dynamic Texture Backgroimd).
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Figure 3.6 Diagram of BGDetector Design

3.3.4 Supervised Learning Detector

SupDetector representing supervised learning detector (Figure 3.7) includes

SVMSupDetector (Support Vector Machine), NeuralNetworksSupDetector (Neural

Networks), and AdaBoostingSupDetector (Adaptive Boosting) as subclasses.

Figure 3.7 Diagram of SupDetector Design



42

3.4 Object representation design

VideoObject representation shown in Figure 3.8 can be classified into two

categories: shape-based ShapeObject and appearance-based AppearanceObject, which

are inherited from VideoObject class. VideoObject is implemented as a Java abstract

class at the top level of object representation. VideoObject provides common attributes

describing fundamental characteristics of Video and Object and common get/set accessor

methods for each attribute.

Figure 3.8 Diagram ofVideoObject representation design

3.4.1 Shape Object

The ShapeObject interface (Figure 3.9) provides definitions for objects that

represent some form of shape. PointShapeObject, SilhouetteShapeObject,

ArticulatedShapeObject and SkeletalShapeObject classes are extended from

ShapeObject. It is very common that primitive geometric shapes are used to represent

objects. PrimitiveShapeObject (Primitive Geometries), which is also inherited from

ShapeObject interface, may be divided into more detailed shape classes such as

RectanglePrimitiveShapeObject, EclipsePrimitiveShapeObject, and so on.
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Figure 3.9 Diagram of ShapeObject representation design

3.4.2 Appearance Object

One of the limitations of primitive geometric shapes for object representation is

that parts of the objects may be left outside of the defined shape while parts of the

background may reside inside it. The phenomena can be observed for both the rigid

objects (when the object poses changes) and nonrigid objects (when local motion results

in changes in object appearance). In such cases, the object motion estimated by

maximizing model similarity may not be correct. To overcome this limitation, one

approach is to model the object appearance by probability density functions of

color/texture and assign weights to the pixels residing inside the primitive shape based on

the conditional probability of observed color/texture.
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The AppearanceObject interface (Figure 3.10) provides definitions for objects

that represent some form of appearance features. PDFAppearanceObject (Probability

Densities based on object model), TemplateAppearanceObject (template appearance

base object model), ActiveAppearanceObject (active appearance based object model),

and MultiviewAppearanceObject (multi-view appearance based object model) classes

inherited from AppearanceObject.

Figure 3.10 diagram of appearance object representation design

3.5 Object tracking design

All tracking methods require object detection at some point. For instance, point

trackers require detection in every frame, whereas geometric region or contours-based

trackers require detection only when the object first appears in the scene.

Object tracking methods can be classified into 4 categories; point tracking, kernel

tracking, silhouette tracking, and other tracking. Each category may be implemented as

an interface. Each category may have some subtypes that will also be treated as

interfaces. Each specific object tracking method will be implemented as a class and

classified into one type or category.
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3.5.1 Object Tracker

ObjectTracker (Figure 3.11) is a top level interface that will be extended to 4

kinds of sub level trackers: PointTracker, KernelTracker, SilhouetteTracker, and

OtherTracker.

Figure 3.11 Diagram ofObjectTrackter Design

3.5.2 Point tracker

Point trackers are suitable for tracking very small objects which can be

represented by a single point (single point representation). Multiple points are needed to

track larger objects. In the context of tracking objects using multiple points, automatic

clustering of points that belong to the same object is an important problem. This is due to

the need to distinguish between multiple objects and, between objects and background.

Motion-based clustering or segmentation approaches usually assume that the points being

tracked lie on rigid bodies in order to simplify the segmentation problem.

Overall, PointTracker (point tracker) (Figure 3.12) can be divided into two broad

categories: DetPointTracker (deterministic point tracker) and StaPointTracker



46

(Statistical point tracker). MCE, GOA and other deterministic methods may be

implemented as classes under DetPointTracket, whereas ParticIeFilter, KalmanFilter,

JPDAF, PMHT and other statistical methods (as classes) are representatives of

StaPointTracket.

Figure 3.12 Diagram of PointTracker Design

3.5.3 Kernel tracker

The goal of kernel tracking is to estimate the object motion. With the region-

based object representation, computed motion implicitly defines the object region as well

as the object orientation in the next frame since, for each point of the object in the current

frame, its location in the next frame can be determined using the estimated motion model.

As a group of kernel tracking methods, KernelTracker (Figure 3.13) that extends

ObjectTracker has two sub categories of trackers: MultiViewKernelTracker and

TemplateKernelTracker. SVM, EigenTracking and other multiview based kernel
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classes (methods) are examples for MultiViewKernelTracker. MeanShift, KLT,

layering and other template based kernel classes (methods) are implemented as sub

classes under TemplateKernelTracker.

Figure 3.13 Diagram of KernelTracker Design

3.5.4 Silhouette tracker

Silhouette tracking is employed when tracking of the complete region of an object

is required. The advantage of tracking silhouettes is their flexibility to handle a large

variety of object shapes. Silhouettes may be represented in different ways. The most

common silhouette representation is in the form of a binary indicator function, which

marks the object region by ones and the nonobject regions by zeros. For contour-based

methods, the silhouette is represented either explicitly or implicitly. Explicit

representation defines the boundary of the silhouette by a set of control points. Implicit
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representation defines the silhouette by means of a function defined on a grid. The most

common implicit contour representation is the level sets representation.

SilhouetteTracker as a collection of silhouette tracking methods (Figure 3.14)

that extends ObjectTracker is divided into two sub categories:

ContourSilhouetteTracker and AppearanceMatchSilhouetteTracker. StateSpace

model and Heuristic tracking algorithms using active contour are organized under

ContourSilhouetteTracker, while HausdorffHough Transform and Histogram tracking

methods are implemented as sub classes under AppearanceMatchSilhouetteTracker

since they use appearance matching for tracking.

Figure 3.14 Diagram of SilhouetteTracker Design
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3.6 Viewer Design

The viewer is designed to display or show videos, objects, change detecting,

object detection or object tracking processes and results. The viewer (Figure 3.15)

includes 4 sub types of ObjectViewer, ObJDetectionViewer, ChgDetectionViewer and

ObJTrackingViewer. ObjectViewer is for object representations. ChgDetectionViewer

(Change detection viewer) is designed to view change or fade detection results.

ObJDetectionViewer and ObJTrackingViewer as Object detection and tracking viewers

are to display the detection and tracking results.

Figure 3.15 Diagram of Viewer Design



CHAPTER 4

IMPLEMENTATION

The framework provides implementation of several different object detection and

tracking algorithms as case studies to demonstrate how the system works based on video

data with object models. These algorithms are implemented as classes in Java and

classified into one category as interface to supply common behavior for specific detection

and tracking algorithm classes. A user interface called viewer displays and to visualize

how the detection and tracking algorithms work for a given video, and for a given starting

and ending path point.

4.1 Why use Java?

A natural choice for programming framework is Java, a true object-oriented

language since it has portability across all platforms, and has ability to interact with

Internet technologies, permit its fast dissemination and evolution, and simplify memory

management.

4.1.1 Interface versus abstract class

An interface is a collection of abstract methods. It is used when certain classes

may have one or a few behaviors in common, but are fundamentally different.

50
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An abstract class is one that cannot be instantiated. It is used when several

different classes have a lot of behavior in common, and in fact only differ slightly from

each other.

Since abstract classes provide default behavior, they are excellent candidates for

application frameworks. Abstract classes are an excellent way to create planned

inheritance hierarchies. They're also a good choice for non-leaf classes in class

hierarchies.

4.1.2 Java Media Framework (JMF)

The Java Media Framework (JMF) [78] is a Java Library that enables audio, video

and other time-based media to be added to Java applications and applets. This package,

which can capture, playback, stream, and transcode multiple media formats, extends the

Java Platform, Standard Edition (Java SE) and allows development of cross-platform

multimedia applications. JMF handles time-based media, i.e., media which changes with

respect to time. The JMF architecture is organized into three stages: input stage,

processing stage and output stage.

During the input stage, data is read from a source and passed in buffers to the

processing stage. The input stage may consist of reading data from a local capture device

(such as a webcam or TV capture card), a file on disk or video stream from the network.

The processing stage consists of a number of codecs and effects designed to

modify the data stream to one suitable for output. These codecs may perform functions

such as compressing or decompressing the audio to a different format, adding a

watermark of some kind, cleaning up noise or applying an effect to the stream (such as

echo to the audio).
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Once the processing stage has applied its transformations to the stream, it passes

the information to the output stage. The output stage may take the stream and pass it to a

file on disk, output it to the local video display or transmit it over the network.

4.2 Implementation

The framework API is designed as a set of Java abstract classes. Developers can

choose to implement their own "vision" of plug-ins and Framework runtime behavior.

"Standard" or default implementations are provided by the framework so developers can

start using the framework quickly and easily.

In this thesis, some typical methods such as histogram-based change detection,

adaptive boost face detection, and color-based particle filter tracking are implemented as

components of framework.

4.2.1 Change detection implementation

Histogram based change detection is an efficient ways to detect changes in

videos, and it will be implemented as an example of the change detection component in

the framework implementation.

1. Histogram based change detection

The histogram based change detection algorithm counts the number of the pixels

changed, and the change is declared if the percentage of the total number of pixels

changed exceeds a certain threshold. The change between the two frames can be detected

by comparing the differences in intensity values of corresponding pixels in the two
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frames. Histogram difference is used as the first metric since it is less sensitive to object

motion than other metrics and it can combine many existing metrics.

In this framework, a fade detection algorithm in [79] is implemented in Java.

Among the types of shot transitions (cut, fade, dissolve) considered, the cut is an abrupt

change from one shot to another and can be seen as the shortest distance between two

shots. A better cut detection method is proposed and implemented in Java based on the

combination of the methods in [80], [3] and [81].

(1) Cut detection algorithm

As Figure 4.1 shows, this cut detection algorithm starts extracting the frame i and

computing the difference Di between the considered frame and the previous i-d frame,

which is compared against current threshold Th. IfDi is greater than threshold Th, a ratio

for detecting flash effects is calculated. When this ratio is greater than threshold TJlash, a

flash is detected. Otherwise, a change is found. Finally, the current window variance is

calculated in order to test whether the data is suitable for updating the value of threshold

Th, and in that case a recalculation is needed. Ratio R = Di/Ds where Ds is the difference

between the W frames preceding the current frame and the W ones after it.

In cut detection, sequential search is too expensive for practical use. A strategy to

compare every other frame can speeds up a conventional method based on color

histograms significantly. This technique can skip urmecessary comparison. If the current

comparison indicates that the two frames are in two different shots, we scan backward to

look for the all the boundaries in the reverse direction ofd frames. Once the boundary has

been determined, we can scan forward again using the same procedure. Even the regular

skip distance = 2 scheme can reduce the cost almost in half.
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Figure 4.1 Historgram based change detection algorithm
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To compute the histogram difference between two frames, there are 3 models

(Figure 4.2) for users’ options.

DL2{u + \) = j^.,J\Hn]y^H77F(j)\
y=i

D Cos (/ , I + 1 ) — 1
£ //, . .(y)
y-1

H i(j ) is the histogram value for the gray level j( color binj) in the frame /;
n is total number of gray level(bins);
D(i,i+1) is a distance measure between Frame i and i+1, where many metrics can be
used such as; LI distance (sum of absolute differences),

L2 distance (Euclid distance) and
Cos (Cosine distance)

Figure 4.2 Measures for comparing histogram

(2) Threshold selection

Threshold selection is the first important problem when comparing changes

between two frames. Most of the existing methods use global pre-defined thresholds, or

simple local window based adaptive threshold.

a). Global threshold is definitely not efficient since the video property could

change dramatically when content changes, and it is often impossible to find a universal

optimal threshold across any video segments.

One expression of global threshold: Th = //+ot<5 where p is the mean of the

frame-to-tfame differences, d is the standard deviation, a should be between 5 and 6

when the histogram comparison metrics is used. Di is the histogram difference between

frame i and i-1.

i = 1

{Di - M

N

Z D
i = 1

N
<7 U

(1)
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b). The local window based adaptive threshold selection method also has its

limitation because in some situation the local statistic are ‘polluted’ by strong noises such

as big motions and flashlight. An expression of dynamic threshold Th:

Th = weight
S".P(o
2w + l

(2)

where W is the number of difference values taken into account of the left and right local

neighbor windows, i is the frame under consideration and weight is a gain factor.

Therefore, the threshold is updated for each processed frame.

(3) HistoPixelChgDetector class

HistoPixelChgDetector (Figure 4.3) extends from PixelChgDetector inherited

from ChgDetector, so it implements detectQ as the most important function described

above. This class is implemented based on HistogramEqualizer that is a class to

calculate histogram for one image.

public class HistoPixelChgDetector extends PixelChgDetector
{
private HistogramEqualizer histoEqual;
public HistoPixelChgDetectorO
{

histoEqual = new HistogramEqualizer();
changesList = new LinkedListf);

}
public DetectorO {

......

LI
Figure 4.3 Sample codes for HistoPixelChgDetector
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4.2.2 Object representation implementation

VideoObject in Figure 4.4 is implemented as a Java abstract class at the top level

of object representation. VideoObject provides common attributes describing

fundamental characteristics of Video and Object and common get/set accessor methods

for each attribute.
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package videoobject;
import Java.awt.*;
import java.awt.image.*;
public class VideoObject extends Object
{

protected String objectType = "VideoObject";
protected Bufferedimage backgroundimage;
protected Rectangle regionOflnterest;
protected String videoFileName;
protected int frameNo;
public VideoObject(){}
public void setObjectType(String objType){

objectType = objType;
}
public String getObjectType(){

return objectType;
}
public void setBackgroundlmage(BufFeredImage bglmg){

backgroundimage = bglmg;
}
public Bufferedimage getBackgroundImage(){

return backgroundimage;
}
public void setRegionOflnterest(Rectangle regOflnterest){

regionOflnterest = regOfInterest;
}
public Rectangle getRegionOfInterest(){

return regionOflnterest;
}
public void setVideoFileName(String vFileName){

videoFileName = vFileName;
}
public String getVideoFlleName(){

return videoFileName;
}
public void setFrameNo(int fNo){

frameNo = fNo;
}
public int getFrameNo(){

return frameNo;
}
public String toString(){

return objectType;
};

} //end of class

Figure 4.4 Sample Codes for VideoObject
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1. ShapeObject

ShapeObject (Figure 4.5) is a subclass of VideoObject and provides common

attributes and methods for the shaped objects but AppearanceObject, the other subclass

ofVideoObject, contains more appearance features for non-shaped objects.

import Java.awt.*;
public abstract class ShapeObject extends VideoObject
{ protected Rectangle bounds;

public void setBounds(Rectangle bounds) {
this.bounds = bounds;

}
public Rectangle getBounds(){

return bounds;
}
public String toString(){

objectType = "ShapeObject";
return objectType;

};

i

Figure 4.5 Sample codes for ShapeObject

2. PrimitiveShapeObject and RectanglePrimitiveShapeObject

PrimitiveShapeObject is shown in Figure 4.6, SilhouetteShapeObject,

ArticulatedShapeObject, and SkeletalShapeObject are sub classes extended from

ShapeObject. PrimitiveShapeObject contains common attributes and methods for all

types of Primitive Geometries such as Rectangle (RectanglePrimitiveShapeObject) and

Eclipse.
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import java.awt.*;

public abstract class PrimitiveShapeObject extends ShapeObject
{

protected int model;
public void setModel(int model) {

this.model = model;
}
public int getModel(){

return model;
}
public String toString(){

return "PrimitiveShapeObject";
};

i

Figure 4.6 Sample codes for PrimitiveShapeObject

We take RectanglePrimitiveShapeObject ( Figure 4.7) as one example of object

representation implementation.

public class RectanglePrimitiveShapeObject extends PrimitiveShapeObject
{

protected Rectangle x;
public RectanglePrimitiveShapeObject(int model){

objectType ="RectanglePrimitiveShapeObject";
}
publ ic RectanglePrimitiveShapeObject() {

objectType ="RectanglePrimitiveShapeObject";
}
public void setRect(Rectangle x){

this.x = x;

}
public Rectangle getRect(){

retumx;
}
public String toStrmg(){

return "RectanglePrimitiveShapeObject";
};

}

Figure 4.7 Sample codes for RectanglePrimitiveShapeObject
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4.2.3 Object Detector implementation

ObjectDetector (Figure 4.8) is implemented as a Java abstract class at the top

level of object detection. ObjectDetector provides common attributes such as

detectedObjects describing fundamental characteristics of Object detection and common

methods such as initializeQ, detectQ, analyzeQ and cleanupQ and get/set accessor

methods for each attribute.

public abstract class ObjectDetector
{

protected String detectedType = "ObjectDetector";
protected LinkedList detectedObjects;
public void setDetectedObjectfLinkedList detectedObjs){

detectedObjects= detectedObJs;
}
public LinkedList getDetectedObjects(){

return detectedObjects;
}
public boolean intialize(){

return true;
}
public boolean detect(){

return true;
}
public boolean analyze(){

return true;
}
public boolean cleanup(){

return true;
}
public String getDetectedType(){

return detectedType;
}

}

Figure 4.8 Sample codes for ObjectDetector

Point detection, Segmentation detection, Background Subtraction detection.

Supervised Learning Detection are implemented as PointDetector, SegDetector,

BGDetector, and SupDetector abstract classes extended from ObjectDetector. They all

contain common attributes and methods for all types of sub types of object detection.
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We take AdaBoostingSupDetector inherited from SupDetector as one example

of our framework implementation

1. AdaBoostingSupDetector (Face detection)

Object detection, and in particular, face detection is an important element of

various computer vision areas, such as image retrieval, shot detection, video surveillance,

etc. The goal is to find an object of a pre-defined class in a static image or video frame.

Sometimes this task can be accomplished by extracting certain image features, such as

edges, color regions, textures, contours, etc. and then using some heuristics to find

configurations and/or combinations of those features specific to the object of interest.

We would like to take face detection (AdaBoostingSupDetector) as one

examples of our framework implementation.

(1) Rapid object detection system

Viola and Jones [82] introduce a rapid object detection system. This system

introduces integral image which allows fast computation of features, uses AdaBoost [83]

to train efficient classifiers, and introduces a cascaded structure which can reject non-face

images quickly. The system can achieve high detection rate with small number of false

positives.

(2) Adaptive Boost algorithm for face detection

AdaBoost is an algorithm for constructing strong classifier as a linear

combination of “weak” classifiers. To extend Viola’s research, Lienhart et al. [84]

introduce a novel feature set which is designed for detecting in-plane rotation faces,

present analyses among the different boosting algorithms (Discrete, Real and Gentle
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AdaBoost), and compare the performance between stumps and Regression Tree (CART)

and also analyze the effect of sizes of training data.

The faee detection component is a cascaded structure. The structure is cascaded

by strong classifiers. Each strong classifier consists of several weak classifiers. And a

weak classifier consists of a weight and a feature with thresholds.

The structure (Figure 4.9) is cascaded by strong classifiers (circles “1, 2, 3 ...”). In the

cascaded structure, each strong classifier rejects numbers of non-face images. This is

efficient for detecting large numbers of sub-images. In the early stages, most of the non¬

face images are rejected; only few numbers of non-faces (hard samples) are needed to he

processed in the late stages.

The AdaBoost algorithm shown in Figure 4.10 takes as input a training set (xl,

j^l),. . ., {xm, ym) where each xi belongs to some instance space X, and each label yi is in

some label set F= /-I, 1^. Boosting calls given weak classifiers in a series of rounds t =

1, . . . , T. The weight distribution on training example i on round t is denoted by Wt{i).

Initially, all weights are set equally, but on each round, the weights Wt are updated

according to the classification results of ht. The weights of examples misclassified by ht

are increased while those of the correctly classified examples are decreased. The strong
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classifier is a weighted majority vote of the T weak classifiers where at is the weight

assigned to ht.

Figure 4.10 Block diagram of Adaboost algorithm

The following (Figure 4.11) is the pseudocode for the AdaBoost algorithm .

1. Given example images (x,, yi(x„, y„) where yj = {-1, 1} for negative and positive examples
respectively.
2. Initialize weights ^ _I_, where m and n are the number ofpositive samples and the

2 w ’ 2«
number of negative samples respectively.
3. For t = 1,... ,T (maximum number ofweak classifier):a.Normalize the weights, _ ^ >./ , so that w, can represent the probability^ / i

distribution.
b. For each feature,), train a classifier hj which is restricted to use a single feature. The error

is evaluated with respect to Wt, g, = ^ yv, (x,) Ti) •

c. Choose the classifier h,, which has a lowest error S^.

d. Update the weights of samples: ; = w, ^ ') ,

where
_ I*’ >'- and R = .

"'■'-jo, h^{x^*y, \-e,4.The final strong classifier is:

Wx) = j^’ where a =—log—.^
[0, otherwise P,

Figure 4.11 Procedure of Discrete AdaBoost
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(3) AdaBoostSupDetector class

This method in Figure uses simple Haar-like features (so called because they are

computed similar to the coefficients in Haar wavelet transforms) and a cascade of

boosted tree classifiers as a statistical model.

The Open Source Computer Vision Library (OpenCV) [85] is a free, open source

collection of computer vision routines geared mainly towards human-computer

interaction, robotics, security, and other vision applications where the lighting and

context of use cannot be controlled. OpenCV is not geared towards factory machine

vision where the environmental conditions can be controlled and one generally knows

what one is looking for, although there is a large overlap.

OpenCV provides low-level and high-level APIs for face/object detection. A low-

level API allows users to check an individual location within the image by using the

classifier cascade to find whether it contains a face or not. Helper functions calculate

integral images and scale the cascade to a different face size (by scaling the coordinates

of all rectangles of Haar-like features).

Jni2opencv, a Java wrapper of the face detector ofOpenCV, is used to implement

Ada Boost methods in AdaBoostSupDetector class (Figure 4.12).



import java.awt.*;
import java.awt. image. *;
import java.awt.geom.*;
import javax.swing.Imagelcon;
import javax.swing.JFrame;
import javax.swing.JLabel;

import flanagan.analysis.Regression;

public class AdaBoostSupDetector extends SupDetector {
String imageFile = "temp.jpg"; //"lena.jpg"
String [Jdetectedimage;
Picture pic;
Bufferedimage image; // the rasterized image
int frameNo;
String videoFileName;
String cascade;
private JNIOpenCV myJNIOpenCV;

private JFrame f; // on-screen view
Graphics2D g2d;

public AdaBoostSupDetectorO {
myJNIOpenCV = new JNIOpenCV();
cascade = "haarcascadefrontalfacealt.xml";

}
public AdaBoostSupDetector(String vFileName,int fNo)
{

videoFileName = vFileName;
frameNo = fNo;
myJNIOpenCV = new JNIOpenCVQ;
cascade = "haarcascadefrontalfacealt.xml";

}
public void setVideoFileName(String vFileName)
{

videoFileName = vFileName;
}
public String getVideoFileName(){

return videoFileName;
}
public void setFrameNo(lnt fNo){

frameNo = fNo;
}
public int getFrameNo(){

return frameNo;
}
public VideoObject[] getDetectedObjects(){

return detectedObjects;
}
private void setDetectedObjects(String imageFile,int[] detectedFaces){

}
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// view on-screen, creating new frame if necessary
public void show() {

}

boolean detect() {

System.out.println("start to run detect()...");

int[] detectedFaces = myJNIOpenCV.detectFace(40, 40, cascade, imageFile);
System.out.println("The size of detectedFaces is "+detectedFaces. length);
if{detectedFaces.length==0) return false;
int numFaces = detectedFaces.length / 4;
String [jdetected = new String[numFaces];
setDetectedObjects(imageFile, detectedFaces);

return true;
}

class JNIOpenCV {
static {
System.loadLibrary("JNI20penCV");

}
public native int[] detectFace(int minFaceWidth, int minFaceHeight, String cascade. String

filename);
}

Figure 4.12 Sample Codes for AdaBoostSupDector

4.2.4 Object Tracker implementation

ObjectTracker in Figure 4.13 is implemented as a Java abstract class at the top

level of object tracking. ObjectTracker provides common attributes describing

fundamental characteristics of object tracking and common get/set accessor methods such

as initializeO, trackingQ,analyzeO and deanupQ.
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public abstract class ObjectTracker
{

protected String trackingType = "ObjectTracker";
public boolean initialize(){

return true;
}
public boolean tracking(){

return true;
}
public boolean analyze(){

return true;
}
public boolean cleanup(){

return true;
}

public String getTrackingType(){
return trackingType;

}

}

Figure 4.13 Sample codes for ObjectTracker

Point tracking, kernel tracking, silhouette tracking are implemented as

PointTracker, KernelTracker, and SilhouetteTracker abstract classes extended from

ObjectTracker. They all contain common attributes and methods for all types of sub

types of object tracking.

We take ParticleFilterSatPointTracker inherited from SatPointTracker

extending PointTracker as one example of our framework implementation.

1. ParticleFilterSatPointTracker (Particle filter)

Conceptually, a particle filtering algorithm maintains a probability distribution

over the state of the system it is monitoring the state of the object being tracked. In most

cases, non-linearity and non-Gaussianity in the object's motion and likelihood models

yields an intractable filtering distribution.
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(1) Particle filter

Particle filtering overcomes this intractability by representing the distribution as a

set of weighted samples, or particles. Each particle represents a possible instantiation of

the state of the system. In other words, each particle describes one possible location of

the object being tracked. The set of particles contains more weight at locations where the

object being tracked is more likely to be. We can thus determine the most probable state

of the object by finding the location in the particle filtering distribution with the highest

weight.

Observations (from image data)

Hidden State (object location, scale, etc.)

Figure 4.14: A Dynamic Filtering System

Filtering (Figure 4.14) is the problem of sequentially estimating the states

(parameters or hidden variables) of a system as a set of observations.
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(2)Particle filter algorithm

/■-N

Figure 4.15 Block diagram for particle filter algorithm

Block diagram (Figure 4.15) shows the major computational steps in a sampling

importance resampling (SIR) particle filter algorithm. The particles are initialized

randomly. At each time step, the algorithm uses transition model to predict the next new

state for each particle and use observation model to assign a weight to each particle, and

then creates a new set of equally weighted particles by sampling the distribution of the

weighted particles produced in the previous step.

The following is the pseudocode for the particle filter algorithm (Figure 4.16):

1. Initialization: For i = 1 to N, initialize the particles. Let t = 0.
2. For i = 1 to N, evaluate the importance weights according to the likelihood in Transition Model

and normalize weigths
3. PF measurement update: Resample N particles with replacement according to Resampling
4. PF time update according to Observation model
5. Set t = t + 1 and continue from step 2.

Figure 4.16 Particle filter algorithm
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Particle filter algorithm performs forward inference using the Bayesian filtering
distribution

Pix t̂\y\:t) = aP(yt|xt) jx/-iP(x/|x,-i) P{xdx,-i (3)

Current Object State Observation Model Transition Model Previous Object State

Transition Model P(xt \ x t-i): Specifies how objects move between frames. We

use a second-order, auto-regressive dynamical model:

X, - E(X) = A2(X,-2-E(X)) + A,(X,-, ~E(X) )+BoW, (4)

This predicts the next state based on the previous two plus some noise (WE(X)
is mean ofX.

Observation Model P(yi \xi): Specifies the likelihood of an object being in a

specific state (i.e. at a specific location). Likelihood is based on a distance metric D

between histograms hO and h{x^)\

Resampling: To prevent degeneracy of weights, before time step t+1, particle set

is re-sampled according to particle weights (Produces a new set of unweighted particles).

(3) ParticleFilterSatPointTracker class

In ParticleFilterSatPointTracker (Figure 4.17) class, we need to implement

initializeQ, and trackingQ inherited from its parents’ classes. For Particle Filter, there are

many particular methods such as Observation for this particle filter that need to be

implemented as well.
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public class ParticleFilterSatPointTracker extends SatPointTracker implements Runnable
{

protected int particleNumber;
protected int objectNumber;
protected Particle[] particles;
protected VideoObject[] videoObjects;
protected String videoFileName;
public static final int lNVALID_rNDEX = -1;
protected static final int PARTICLE MAX = 500;
protected static final int PARTICLE_M1N = 50;
protected static final int OBJECT_NUM = 1;
private static final int FORMAT SIZE = 512;
private int IMAGE_WIDTH = 512;//, 512;
private int IMAGE HEIGHT = 512;//358;
static final int NH = 10;
static final int NS = 10;
static final int NV =10;
protected boolean isGaussian = true;
protected int displayMode = 0;
protected int beginFrame=0;
protected int endFrame;
protected int totalFrames;
private int current =0;

private boolean isDone;
private static final int FRAME_SIZE = 20;
Observation observation;
protected LinkedList trackedimages;
Particle[] resample(Particle[] particles)
{

}
boolean initialize(BufferedImage bkimg)
{

}
private Particle transitlon( Particle p,int w,int h)
{

}
public boolean trackingO
{

}

Figure 4.17 Sample codes for ParticleFilterSatPointTracker
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4.2.5 Viewer implementation

Viewer in Figure 4.18 is a top Java class in the viewer hierarchy. It extends from

JFrame class and contains all the common attributes and methods for all types of viewers.

Each type of viewer is implemented as a Java class to view or test detection or tracking

results.

class Viewer extends javax.swing.JFrame implements Runnable, ActionListener,
TreeSelectionListener {

private File videoFile; // The video selected in the selectFileDialog
private MediaPlayer mediaPlayer = new javax.media.bean.playerbean.MediaPlayer();

// used for waiting until the player has started
private Object waitSync = new Object();
private boolean stateTransitionOK = true;

private FramePositioningControl ipc;
private int totalFrames = FramePositioningControl.FRAME UNKNOWN;

DefaultMutableTreeNode root;
private JTree cutTree;
private Javax.swing.JButton loadFileButton;

private javax.swing.JFrame selectFileDialog;
private javax.swing.JFileChooser selector;

Container contentPane = getContentPane();
private java.awt.Container resultContalner = new Container();
private java.awt.Container leftContainer = new Container();
private java.awt.Container rightContainer = new Container();

public static void main(String[] args) {
javax.swing.SwingUtilities.invokeLater(new Runnabte() {
public void run() {
new Viewer().creatAndShowGUI();}

});
}

public void run() {
creatAndShowGUlO;

}
public void creatAndShowGUl() {
!** Init the components in the frame */

}

Figure 4.18 Sample code for Viewer



CHAPTER 5

EXPERIMENTS AND RESULTS

Testing is a major consideration in the development and maintenance of a

framework. We tested our framework on Pentium-4 1.6GHz and 512MB memory PC. In

order to evaluate the performance and scalability of our approach, the test clips in our

experiment are extracted from different videos recorded from digital camera and live

broadcast television. The videos are compressed in AVI and MPEG-2 standard with the

frame rate of 25-30fps.

5.1 Change (Cut) detection experimental results

Figure 5.1 (a) shows some experimental results of the changes detection

procedure without skipping any frame for alOstrafe.avi. This video contains 498 frames

captured by camera. The key frame is in the fourth detected segments. In the right part of

screen, result tree shows detected segments with the range of frame numbers. Figure 5.1

(b) shows comparison between the frame after changing and the frame before changing

for one of changes after change detection procedure for alOstrafe.avi. The two images

show the previous frame and current frame when one cut happened.
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(a)

Figure 5.1 shows change detection results for one video of flights

The change detection with a skipping distance of 30 is tested on another video

clip from TV that contains a large number of over 2300 frames. Figure 5.2 (a) shows the

segment result tree and the key frame for the selected segment. Figure 5.2 (b) shows a

change between Frame 1577 and 1578 in key Segment 11.

3 AA
Q 0.«
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Q r>vr>«

(a) (b)

Figure 5.2 Change detection results for one news video

The change detection with a skipping distance of 3 is tested on a video taken by a

camera in the street. This video has over 300 frames. Figure 5.3 (a) shows segment result

tree of 4 segments detected, and the key frame of Segment 3. Figure 5.3 (b) shows a cut

between Frame 73 and Frame 74 in Segment 3.
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Figure 5.3 shows change detection results for one video taken by one camera

Figure 5.4(a) shows a fade in results detected of Frame 65 -75 . Figure 5.4 (b),

(c) show a fade out results of Frame 271-311.

Figure 5.4 show fade detection results for one video of flights

5.2 Object (Face) detection experimental results

Figure 5.5 shows the face detection results. Figure 5.5(a) are face detection results

on Frame 111 of MVl_0006.avi created by one family camera. In the image, detected

faces are marked with red rectangle. There are two good results: Sub 1 and Sub2

detected out of 4 detected faces. Another testing case is shown in Figure 5.5(b). There

are two good results detected on Frame 120 ofMVl_0078.avi; Sub 0 and Subl detected

out of 2 detected objects.
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(a) (b)

Figure 5.5 shows Face detection results

Naw daiacifrtg Obfarts...

5.3 Object (Particle Filter) tracking experimental results

The video contained the object to be tracked on an uncluttered background. All

the tracked objects (faces) are detected by object detection procedures. Tracked faces are

represented with blue rectangle. The most likely are marked with a red rectangle. The

particles are marked with red points. A sampling of output images for tracking the face of

one girl (labeled Subl ) detected by the face detector on Frame 111 ofMVI_0078.avi in

Figure 5.6 These picture generated by the object tracker viewer is provided to

demonstrate its performance. The images presented were generated with N = 100

particles. The tracking procedure lasts more than 25 frames and then this face is out of

track.

Figure 5.6 Start tracking Subl on Frame 111, 113,127
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Another sampling of output images for tracking the face of the other woman

labeled Sub2 in Video MVI_0006.avi shown in Figure 5.7 generated by the tracker is

provided to demonstrate its performance. The face is out of track after 4 frames from the

beginning of tracking.

Figure 5.7 tracking Sub2 Start on Frame 111 and End on framell4

One bad tracking example shown in the Figure 5.8 starts tracking the face labeled

SubO from Frame 120 of Video MVI_0078.avi. Because of noise, the tracker can not be

kept track of the object very well in some frames, although it can stop when that person

walks out of the view.

Figure 5.8 Tracking SubO on Frame 126,143,170 in MVI_0078.avi

Another good example is shown as below: we loaded one video of hockey players

that contains over 500 frames and marked one player labeled SubO on Frame 198 with

red rectangle for tracking. Figure 5.9 show tracking SubO procedures using display mode
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1 that only display the most likely particle. This player can be tracked very well during

over 100 frames.

Figure 5.9 Tracking SubO on Frame 198-284

5.4 Analysis for experimental results

From our testing experiment results, we can see our framework works very well.

Change Detection can help us to improve the performance of object detection and

tracking. The faces can be detected by the detection procedures. The detected objects

(faces) can be tracking by our particle filter tracking.



CHAPTER 6

CONCLUSION

In this thesis we describe how to design and implement object detection and

tracking framework by using Java programming.

The object detection and tracking framework is a set of classes that embodies an

abstract design for solutions to a family of object detection and tracking algorithms. It

provides a set of the reusable object detection and tracking architecture designs. Several

typical detection and tracking algorithms such as histogram-based change detection,

adaboost object detection, particle filter object tracking are implemented as case studies

in this framework. The framework is able to accommodate functionality in a number of

object tracking and detection, to provide common behavior while allowing users and

developers to customize behavior through configuration parameters and/or framework

sub-classing.

6.1 Future Work

Our ultimate goal is to build a tracking system to handle any type of video tracking and

detection method in a real video system. An important issue in video is to identify which

algorithm is best for what kind of video data. This following issue needs to be addressed

according to the classes suggested in the design in the future.

The case study is effective for generalizing using the framework. The purpose of

our case studies is to provide clear and well-documented examples which demonstrate
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or point to ways of how the framework. The linkage of issues across different sections of

information within and between case studies and other data sources will be a key feature.

The long term aim is to disseminate good practice in the sustainable management of

framework. The information in the case studies will also be used as learning or teaching

tools and for framework development. More detailed help and documents can help users

to understand how the framework works.

Recognition of objects in video can offer significant benefits to video analysis.

The problem in object recognition is to determine which, if any, of a given set of objects

appear in a given image or image sequence. Object recognition is an important stage for

pattern recognition. It can help the framework to extract objects from video frames faster.

This component will be added to the framework before object detection component for

extracting objects of interest.

Some algorithms are implemented in Java in our framework and more algorithms

are needed to be implemented in Java and we see that it has a potential to handle and

wrapper the existing algorithms in C++/C, MATLAB, and other programming languages.

More efficient algorithms deserve further investigations, and we hope to see the design

extended to cover them as well.

Based on our framework implementation, some algorithms may be combined to

improve the performance or effectiveness of them. Or some new algorithms may be

proposed through this framework development.
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