
ABSTRACT

COMPUTER AND INFORMATION SCIENCE

ENGLISH, JANTH B. B.S. TENNESSEE STATE UNIVERSITY, 1972

DEVELOPMENT OF AN OBJECT ORIENTED
PROGRAM INFORMATION DATABASEWITH

SUPPORT FOR SOFTWARE REUSE

Advisor: Dr. Roy George

Thesis dated May, 1996

This research addresses the need for organizations to have a project support

environment that can produce large, complex, quality systems at a reasonable cost.

Many researchers recommend a program database as the basis for this project support

environment. The development of an object-oriented database to store and retrieve

program information is described along with the design for a software reuse library. The

program objects are based on the common taxonomy of all software, e g. composed of

modules, programs, functions, and procedures, rather than the domain knowledge that

software represents. This design permits maximum flexibility in accommodating most

applications. The reuse library is composed of reusable components in the program

database. The multi-attributes of keywords and component signatures are used to

classify and retrieve reusable software objects.

This research demonstrates a means for an organization to provide immediate

improvement to its project support environment and to implement a software reuse

program. These benefits translate to improved software quality and productivity which

are needed to remedy the current software crisis.

DEVELOPMENT OF AN OBJECT ORIENTED

PROGRAM INFORMATION DATABASE WITH

SUPPORT FOR SOFTWARE REUSE

A THESIS

SUBMITTED TO THE FACULTY OF CLARK ATLANTA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE

BY

JANTH B. ENGLISH

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

ATLANTA, GEORGIA
MAY 1996

R . V T = 51

©1996

JANTH B. ENGLISH

All Rights Reserved.

ACKNOWLEDGMENTS

I would like to thank my husband, James, for his kind and patient endurance as I pursued

a lifelong dream over the past two years. He graciously gave me the space and support

that I needed to accomplish this goal. He always believed that I could do it. I would

also like to thank my advisor. Dr. George, for his gentle corrections, strong persuasions,

and constant nurturing as I matured in my understanding and this research effort

evolved.

11

TABLE OF CONTENTS

ACKNOWLEDGMENTS ii

LIST OF FIGURES v

Chapters

1. INTRODUCTION 1

A. Introduction 1

B. The Software Crisis 1

C. Program Databases 3

D. Contribution 4

n. TECHNICAL BACKGROUND AND PREVIOUSWORK 7

A. Introduction 7

B. Object-Oriented Terminology 7

C. Advantages of an 00 Program Database 8

D. Reuse and Program Databases 9

E. Previous Research 13

HI. PROGRAM DATABASE DESIGN 18

A. Introduction 18

B. Project Scope 18

C. Database Design Issues 19

D The Reuse Library Design 23

iii

E. REQUES Application Design 26

IV. PROGRAM DATABASE IMPLEMENTATION 28

A. Introduction 28

B. Implementation Environment 28

C. Implementation Issues 29

D. The Role of the Librarian 34

E. Library Implementation Issues 35

V. CONCLUSIONS/FUTURE WORK 42

A. Introduction 42

B. Conclusions 42

C. Future Work 44

APPENDIX A

CLASS DEFINITIONS 46

BIBLIOGRAPHY 53

IV

LIST OF FIGURES

Figure Page

1. Relationship ofPrecision and Recall to Total Components 10

2. Object Diagram — Analysis Model 22

3. Object Diagram--Analysis Model With Reuse Library 24

4. REQUES Application Architecture 27

5. Object Diagram — Implementation Model 33

6. The Retrieval and Classification Process 36

7. REQUES Menu 37

8. REQUES Enter Specifications Window 38

9. REQUES Select Keywords Window 38

10. REQUES Browse Component Window 40

V

CHAPTER I

INTRODUCTION

A. Introduction

This section describes the current software crisis and how Computer Aided Software

En^neering tools, which were designed to alleviate the software crisis, have not lived up

to the expectations ofmany organizations. Next, a discussion is presented on the

advantages of a program database and how its implementation can help organizations that

cannot procure CASE tools at this time. Finally, the contribution of this research effort is

discussed.

B. The Software Crisis

It is widely accepted that current software development techniques are unable to

produce high quality software at the rate required to keep pace with demand [2,11]. The

trend continues toward larger more complex systems with millions of lines of code created

by multiple software development groups. This necessarily generates volumes of

information about the software product including multiple revisions of requirements

documents, specifications, code, documentation, and test cases. It is, therefore, an

important task to provide an environment that manages and coordinates access to this

information. In fact, the software development environment should give the programmer

the facilities to create, view, modify, check, translate, and execute portions of this

information [19].

Brovra [2] has called the software development environment an Integrated Project

Support Environment, IPSE, to point out the need to provide consistent, coordinated

1

support throughout the software development lifecycle. He states that all development

groups can be classified as having either a first, second, or third generation IPSE. A first

generation IPSE has a set of existing tools whose only link is a file system, e g.

development under the UNIX operating system. A second generation IPSE consists of a

set of tools built on top of a database, and a third generation IPSE is built on knowledge

based techniques. Brown [2] fijither states that most organizations can be classified as

having first generation IPSE. The file system environment is incapable ofproviding the

data consistency and security required by the software projects of today. Furthermore,

there is a direct correlation between the project support environment and the price and

quality of the product delivered [2]. The support environment has directly contributed to

cost overruns, low productivity, low product quality, and high maintenance costs.

Therefore, an improvement in the project support environment would bring about a

corresponding improvement in software products.

Some years ago, it was recognized that due to its complex nature, software

development could no longer be considered an art and a consistent methodology needed

to be applied. The software engineering discipline brought with it rigorously defined

software development methods based on mathematical and engineering principles. When

these methods are supported by automated tools improved productivity and efficiency are

the expected results. Thus, Computer Aided Software Engineering, CASE, was

introduced as the answer to the software problem. The promise ofCASE is that

automated support for some aspects of software development and maintenance will

increase productivity, reduce the cost of software development, and improve the quality of

software products [3].

CASE tools have had many successes, but just as important to note is the reports of

partial usage or abandoning CASE tools in practice [5,12,13]. CASE tools often fail to

live up to the expectations of its purchasers and users [3]. The complaints against existing

2

CASE tools include issues of usability, learaability, flexibility, and effectiveness. Perhaps

the most consistent of these complaints is the issue of flexibility. According to Henninger

[13], a fundamental flaw in CASE tools is that their methods focus exclusively on the

project life cycle with only incidental references to previous development efforts,

development infrastructure, and other organizational factors affecting the development

process. In short, the current generation ofCASE tools force an organization to adapt

their styles to that of the tools and lack the flexibility necessary to meet the needs ofmany

organizations.

When an organization adopts a CASE tool, it is most often adopting a software

development methodology as well. Many CASE tools strictly enforce their methodology

with no deviations permitted. Moving from a first generation environment to a CASE

development methodology may be too big a step for many organizations. An

organization's corporate culture must be considered. Judging from some survey results

[5, 10 12], the corporate culture ofmany organizations will not allow them to make the

commitment to "marry" a particular software development methodology. What is needed

by these organizations is an intermediate step that allows them to reap some benefits a

CASE tool provides without fiill integration of the tool or the methodology.

C. Program Databases

Organizations need an environment that can produce large complex software systems to

a strict time scale, and produce a finished product of high quality. To do this, they must

be able to provide a means to share data while exercising control over that data to ensure

consistency and integrity. Further, they need tools in place that can provide that

functionality while being effective and flexible. Many in software engineering advocate a

database as the basis of a project support environment [2,10,19,21]. A database for the

project support environment is called a program database. It consists of requirements

3

documents, specifications, data definitions, software, test cases and test results, and

records data items and their relationships in a structured and accessible form, allowing

controlled access to shared data.

Database systems were first introduced in the commercial environment to correct the

same problems as those being experienced in the project support environment However,

the requirements of the typical commercial database differ substantially from that of a

program database. Commercial data are usually simple and fixed in length. Program data

are complex data types with variable lengths. Commercial databases usually have few

types with a large number of instances for each type. Program data usually has many

types with few instances of each type. A commercial database typically has short atomic

transactions with single valued data items updated in place. Program data has multiple

versions of the data with dependencies on versions, the transactions are long lived and can

leave the database inconsistent for long periods of time. It can be seen from these

differences that program data is more complex that typical commercial data. Researchers

have found that an object-oriented, 00, database models this complexity more readily
than other database models [19, 22]. In fact, using an 00 model allows these

complexities to be hidden from the user.

Besides the traditional advantages afforded by a database — reduced data redundancy,

data consistency, integrity, and security — a program database can provide other benefits

such as enforcing standards. Since all software is centrally located, rules can be invoked

to ensure that programming standards are maintained. Consistent programming standards

have been shown to lower program maintenance costs, the main source of expenditures in

the software development lifecycle. Another benefit of a program database is that

software reuse can be promoted. Reuse ofexisting software is a means to improve

productivity and reduce costs. Reuse also improves software reliability and offers a means

of improving quality by using components that have proven their integrity and

4

effectiveness over time. Of course, reuse does not occur just because the software is

centrally located, there must be an effective means to classify and retrieve reusable

components,

D. Contribution

This research describes the design and implementation of an 00 database to store and

retrieve program information. The program objects are based on the common taxonomy

of all software, e g. composed ofmodules, programs, functions, and procedures, rather

than the domain knowledge that software represents. This permits maximum flexibility in

accommodating a variety of applications from many organizations. A methodology to

classify and retrieve reusable software components is also presented.

Many organizations desire the improvements that CASE promises, but find the

tools too restrictive and inflexible for their environments. Researchers have basically

ignored this sizeable section of the information systems community. The focus of this

research is to provide a practical means for organizations to make meaningful,

effective improvements in their environment. This research proposes an 00 program

database to provide the immediate benefits of reduced data redundancy, data

consistency, integrity, and security to improve the project support environment. This

is accomplished without supporting any particular development methodology.

It is widely accepted that software reuse improves software productivity and

reliability [9, 14, 17, 25], Many CASE tools have a central repository but offer little

support for structured reuse. This research project includes a software reuse library

that is composed of software components identified as candidates for reuse, A multi¬

facet classification scheme is used to describe both the semantic and syntactic meaning

of each Reusable Software Component, RSC. The user can retrieve RSCs by

querying the database based on facet values, a browser is also supplied.

5

This research shows that the introduction of a program database to the project

support environment is a feasible and desirable undertaking. The approach ofbasing

the design on the taxonomy ofapplications makes a Commercial OflFThe Shelf,

COTS, database application for program data both technically and economically

feasible. Organizations whose corporate culture prevents them from adapting a

specific CASE methodology would not have the same problem with a program

database application since database products are familiar. The fact that no particular

methodology is enforced addresses the problem of flexibility. The addition of a

program database is desirable because of the many benefits it offers, especially the

benefit ofan improved project support environment. Improving the project support

environment translates directly to improved software productivity and quality. For

these reasons, a program database is an acceptable step toward a completely

integrated project support environment. This research presents a means for an

organization to take that step.

6

CHAPTER H

TECHNICAL BACKGROUND AND PREVIOUS WORK

A. Introduction

This chapter introduces the reader to some of the terms encountered when

discussing object-oriented concepts and gives a brief explanation of object-oriented

methodology. The advantages ofusing an object-oriented model for a program

database is presented. Software reuse in a program database environment is discussed

along with an introduction to the problem of information classification and retrieval.

This is followed by a synopsis ofprevious work in this area including TULUM, a

CASE environment for software documents and GRAS, a graph-oriented software

engineering database.

B. Object-oriented Terminology

Object orientation is the process of organizing software as a collection of discrete

objects that incorporate both data structure and behavior. The OO approach includes

the concepts of identity, classification, polymorphism, and inheritance. Identity

implies that data is represented as discrete distinguishable entities called objects. Two

objects are distinct even ifall their attribute values are identical. Classification is the

process ofgrouping objects with the same data structure, attributes, behavior, and

operations into a class. A class is an implementation of an object type. It describes

both the data structure and permissible operations for each object in its class. Each

class describes a possibly infinite set of individual objects, and each object is an

7

instance of its class. An object contains an implicit reference to its own class, e.g., "it

knows what kind of object it is" [21], Polymorphism describes the concept that the

same operation may behave differently on different classes [26], An operation is the

specification of an action or transformation that an object is subject to or performs.

The implementation of an operation by a certain class is called a method. Each object

knows how to perform its own methods. Inheritance is a means of sharing the

properties and methods among classes based on a hierarchical relationship. A class

can be broadly defined and then refined into successively finer subclasses. Each

subclass inherits all the properties of its superclass and adds its own unique properties

and operations.

Other 00 concepts include abstraction and encapsulation. Abstraction is the

selective examination of aspects of a problem; it focuses on what an object is and does

before deciding how it should be implemented. All abstractions are incomplete, but

they serve the purpose of limiting the universe so that things can be accomplished

[26]. Encapsulation is separating the external aspects of an object, which are

accessible to other objects, from the internal implementation details of the object. It

combines data structure and behavior in a single entity. This protects the data by

allowing access to the data only through predefined methods. Encapsulation allows

the implementation of an object to be changed without affecting the application that

uses it.

C. Advantages of an OO Program Database

Since a database is recommended as the basis of a good project support environment,

and program data requires a different approach than typical commercial data, the question

arises as to what database model should be chosen. The options in selecting a database

are to choose a commercially available one or to build a customized database to suit the

8

individual needs of the organization. Developing a customized database is complicated

and may take many man-years to achieve. Most software development shops would not

attempt such a task when there are commercially available databases on the market.

Besides this, the time frame would be such that no benefit could be realized immediately

from the expenditures incurred.

There are different models of commercially available databases, but the most widely

used are the relational and object-oriented, 00, models. Relational databases have the

advantage that they are widely used, and, thus have immediate acceptance in the work

place. However, because of the complex nature of the program data, it becomes

difficult to model some of the associations using relational technology. In an object-

oriented database, modeling these complex associations is made easier. An object-

oriented database approach allows the complexity of the data types to be hidden from

the users. The OO concept of encapsulation makes the access methods and

implementation of these complex types become a part of the object. Defining these

abstract data types facilitates the modularizing of large software systems which also

reduces complexity. These complex types and relationships caimot be implemented

using a file system such as UNIX, and are difficult to express and impossible to hide in

a relational model.

Multiple views of the same data (i .e. programs) may exist in a program database. In

an 00 database, it is possible to implement access methods for the different views.

This is achieved through the two important properties of polymorphism and

inheritance. By defining one view as a subclass of the other and defining different

methods in each view for the same operation, operations can be tuned independently

for different views. Two important aspects of project support, the automation of

version control and an incremental compilation system [19], can be easily

implemented.

9

D. Reuse and Program Databases

Reuse is not an unfamiliar concept to experienced programmers. Analysts recycle their

own previously developed code based on their understanding of the new code to be

generated. This improves productivity and perpetuates the same level ofquality as the

recycled code. A program database containing all software components of an

organization presents the opportunity to formalize software reuse and apply this principle

on a larger scale. This will improve productivity and, because methods will be in place to

ensure that only qualified components are reused, improve quality as well.

A project support environment that supports software development with reusable

software components needs a library ofReusable Software Components, RSCs, that can

be easily accessed and understood [28]. Accessing RSCs is a type of information retrieval

problem. Information retrieval tools can be measured in terms of precision and recall

[30]. Precision is the ratio of the number of components retrieved that satisfy the request

to the total number of components retrieved, and recall is the number of qualified

components retrieved relative to the total number of qualified components in the software

database. The Figure 1 explains this relationship.

Information retrieval tools have both a method of representation for retrieval and a

search methodology. The method of representation is important because the object

should be structured to facilitate retrieval. This will be discussed in Section III, Program

Database Design.

The method of search can generally be categorized as browsing, formal specifications,

and informal specifications. Browsers depend upon the user to make a selection by

physically viewing the available components. This methodology is effective only wdth very

small repositories, and then may have low recall, e g. there may be available components

not retrieved.

10

RC = Retrieved Components, QC = Qualified Components

Figure 1. Relationship ofPrecision and Recall to Total Components

Formal specifications can be very accurate in describing the semantics of a component

as most are based on predicate calculus. Theoretically, this means that any two

specifications can be normalized to the same formal specification regardless of the manner

in which the formal specifications were written. This methodology would have total

recall, however, it would require that software engineers learn a specification language

such as OBJ3, and that a set of rewrite rules be mechanized to normalize any specification

written [20]. Mechanization of rules to normalize specifications is a non-trivial matter

that has not yet been resolved by researchers. Utilizing formal specifications as a basis for

software retrieval is, therefore, not a viable alternative at this time for an organization.

Informal specifications allow the user to describe some attributes of the component

they are looking for. This search method includes such things as natural language search,

keyword search, and a multi-attribute search [30]. A natural language search offers many

potential advantages such as allowing different styles and sentence structures to be

normalized to the same representation. The domain vocabulary would have to be very

restricted to apply this approach. Besides being an expensive approach, researchers have

11

not mastered the inherent ambiguities in natural language processing. Here too, the

promise is far off and is not a viable alternative for implementation at this time.

Keywords offer a more practical approach to software retrieval. The main difficulty lies

in assigning appropriate keywords to components. An uncontrolled vocabulary for

keywords can lead to low precision and low recall. A controlled vocabulary may be too

restrictive to describe some components. Because keywords offer the most hope for

immediate implementation, researchers have applied differing modifications to this

approach including the multi-attribute search and facet classification systems.

A multi-attribute search uses keywords that describe the semantics of the component as

well as other attributes such as the type of component and its signature [22]. The facet

classification system is a type ofmulti-attribute search. The facet classification system

proposed by Pietro-Diaz [24] assigned a facet descriptor composed of values taken from

each of the three classifications Function, Object Type, and System Type. Other types of

facet schemes have been proposed such as the classifications of Abstraction, Operations,

Operates On, and Dependencies proposed by Sorumgard [29].

In keeping with the goal of providing a practical solution, a combination of the multi¬

attribute search and a facet classification scheme similar to Sorumgard [29] is used. The

classification scheme differs from Sorumgard's in that the facet Dependencies is not used.

This facet was thought to unnecessarily restrict retrieved components that could be

modified to suit the environment, or, at least, understood for reuse of the component

design. The attributes used include the component signature and keywords that include

the facets ofAbstraction, Operations, and Operates On. The component signature is used

to describe the syntax of the component and keywords are used to describe the semantics

of the program. Abstraction refers to the abstract concept being implemented by the

components. Operations is usually a verb that refers to the function being performed, e g.

update, print. Operates On is the class or classes of objects on which the component

12

operates, e g. integer, record. Each reusable component is described by its signature and a

non-empty set of keywords as a facet descriptor based on these facets.

Another problem to address in software reuse is the granularity of the software

component to reuse, e g. at what point in the Systems Development Life Cycle, SDLC,

should reuse occur. Different design methodologies vary in the type of support provided

for reuse. For example, 00 methods support reuse throughout the lifecycle [28].

Structured design methods support reuse at a functional level, and typically benefit from

reuse mostly in detail design, coding, and testing [28]. It is generally accepted that reuse

is desirable at all phases of the SDLC with the construction of an entire application from

reusable components being the ultimate success. However, large scale software reuse has

not been realized [14,15]. In fact, it is unrealistic to expect to take large pieces of

software and connect them to each other without a firm scientific foundation at the most

basic level [14], and there is no such foundation established for component based software

engineering [14]. To date, the most successful model for software reuse has been

components that implement a single fiinction [14, 15, 28].

Another fundamental question is at what cost should reuse be attempted. It has been

argued that the costs ofbuilding the "glue" to compose these functions into a complex

application is too much work [15]. However, with the lack of a formal methodology to

guide in the construction of applications from large software objects, this may be all that

can be realistically expected. To suggest that reuse cannot begin until everything is

known about it is impractical, especially in view of the fact that reuse is practiced and is

especially successful with small granularity software components. Ramamoorthy, et. al.

[25], states experience on the Genesis project shows that generally it is a good idea to

reuse code even if time has to be spent in understanding it and some changes have to be

made to reuse it. He further states that only after an initial effort finds the changes

required to be too extensive is it more pragmatic to abandon reusing the component.

13

Based on the discussions in this section, an underlying software reuse philosophy was

developed. That philosophy is that the most successful model for an RSC is that of a

single function, and that reuse should be attempted even ifmodifications must occur.

E. Previous Research

TULUM was developed as a Computer Aided Software Engineering environment

for software documents by Luis Miguel [22]. Miguel [22] proposed CASE database

requirements and examined the relevancy of these requirements for data manager

classes. The data manager classes examined include custom DBMS, custom DBMS

from a generator, persistent object store, relational DBMS, relational object shell, 00

DBMS, and extended relational DBMS. TULUM is the proposed CASE

environment architecture that addresses physical issues, logical issues, and

computational paradigms. These proposals are based on experiments that were

conducted to measure the performance and space utilization characteristics of the

different database designs. The effects of data representation, the number of relations,

and the granularity of the data are isolated to obtain meaningful results.

After analyzing the needs of a CASE data manager, each data manager class was

examined to determine if they satisfy those requirements. Conclusions were reached

based on how each class satisfied the requirements. A custom DBMS, whether

designed from scratch or a generator, only satisfies a subset of the required features.

The proprietary environment prohibits sharing data with other environments. Also,

applications built on a custom DBMS tend to be non-portable. Persistent object stores

lack sophisticated features such as rules, procedures, query language, abstract data

types, and inheritance. Relational data managers have no object management features

such as object encapsulation, inheritance, etc. Both relational data managers and

relational object shells --systems that provide object management on top of a relational

14

DBMS— have no rules or procedures for knowledge and process management. The

extended relational manager —a relational model that provides some object

management and knowledge management features such as data encapsulation and

rules system— and OO DBMS both satisfy most of the requirements for a CASE data

manager. TULUM uses an extended relational model as a data manager.

It was concluded from the experiments that data representation had minimal effect

on space usage but could have a profound impact on operation time. The closer the

internal representation to the actual object the less time spent in expensive

conversions. It was also found that small granularity design is very expensive in terms

of time and space. Larger granularity design pays off in terms of time and space but

provides a more limited functionality than a small granularity. However, for most

applications, the larger granularities may be sufficient.

TULUM is presented here because of the work done in the area of data

representation and because of the comparisons that were made between different

database models. Many design and implementation decisions for this research follow

the findings ofMiguel on TULUM and others, eg. [2, 19], Some of those decisions

for this research project include the use of a non-proprietary OO database, internal

representation of objects that are close to that of the original object, and use of large

granularity for storage.

A different approach to data representation for program database objects is that of

an attributed graph. This model was investigated because (1) graph theory is the

underlying mathematical model for some computer sciences formalisms, (2) a

comparison between this model and other database models was warranted, and (3) this

approach was different and invoked curiosity. The database system selected for study

was GRAS, GRAph Storage.

15

GRAS is a software engineering database system that utilizes the attributed graph as

the underlying model for complex software objects. Objects are modeled as nodes

with attributes, and relations between objects are modeled as edges. Attributes of

nodes may be either intrinsic, assigned explicitly, or derived. Edges are binary,

bidirectional, directed relations with two distinct end nodes, sink and source. Edges

do not carry attributes. Composite nodes act as source, and Component nodes act as

sink. Edges represent relations such as "Contains," "Precedes," and "RefersTo,"

Paths are derived relations that are calculated from edge and node properties. Paths

provide a way to define abstract views on graph structures.

Graph schemes, which describe the components of attributed graphs, are defined

using a formal specifications language called PROGRES, PROgrammed Graph

REwriting System. PROGRES is both a data definition language, defining graph

schemes, and a data manipulation language, performing complex graph

transformations. Graph transformations specified in PROGRES are mapped onto

basic operations provided by GRAS. GRAS serves as the kernel of a database

development environment for PROGRES.

Internally each graph is stored in a data structure called a graph base which consists

of separate storage areas, including the Node, Attribute, Index, and Edge storage

areas. All these storage areas are collectively knovm as the GraphStorage which is the

kernel of the system architecture. Storing different types of data in different stores has

the advantage ofmore efficient navigational queries, e g., traversing the graph.

However, operations which affect a node including all its attributes and edges such as

creation or deletion, are adversely affected [16]. The GraphStorage has an underlying

storage layer called the VirtualRecord storage layer which is a record-oriented

interface. It is designed for eflHcient access to medium-sized graph bases — a graph

base having the size of a typical document such as a program module.

16

GRAS is an active database system. Action routines are evoked when specific

event patterns are triggered. An event refers to a database transition which is an

atomic change to a graph object. These changes may involve multiple database

transitions, for example, deleting a node causes all associated edges to also be deleted.

Any changes to the graph database requires GRAS to preserve consistency of the

graph schema and recompute derived attribute values and derived relations or paths.

GRAS has been used in a variety of software engineering projects. In the IPSEN

project [16], a program database was constructed consisting of related documents

such as requirements, specifications, software architectures, modules, test plans, etc.

Documents were viewed as having a fine-grained internal structure which were

constructed with a corresponding database scheme. The documents were viewed as

the "natural" objects for distribution, concurrency control, version management, etc.,

and not the internal representation thereof From a user perspective, a document is a

hierarchically structured piece of text or diagram and modifications occur to this

structure using a text editor. The developer views the document as a complex graph

structure and tools are used to manipulate this structure. The internal representation

of the document is an abstract syntax tree augmented by context-sensitive edges which

is maintained by GRAS. As can be seen, the internal representation of the document

object is very different from that of the natural object. The overhead incurred for

transformations from the natural object to its internal representation and back can be

expensive in terms of efficiency. This problem is avoided in the current research effort

by using course granularity and an internal representation close to that of the natural

object, e g. the entire document is stored as one object whose data type is Text.

A program or software engineering database can be thought of as a set of

interrelated documents, and those documents are represented as graphs with each

graph corresponding to a certain document [16]. However, one drawback is that

17

GRAS does not provide built in support for representing inter-document relations.

The OO model, however, facilitates representing inter-document relations.

Associations such as "has" and "consists of between objects are maintained by the

program database application.

Other software databases were studied during this research effort. However, none

contributed significantly in the design or implementation of this program database.

18

CHAPTER HI

PROGRAM DATABASE DESIGN

A. Introduction

This chapter describes the design of the Program Information Database. The scope of

the project’s initial phase is stated including an explanation ofwhich program database

components will be implemented. Design issues are discussed including the selection of a

DBMS and the concept of an application as an abstract data type, ADT. The analysis

model for this program database is presented as well as the Reuse Library design.

B. Project Scope

Since a program database is a large undertaking consisting of requirements

documents, specifications, data definitions, software, test cases and test results, the

first issue to decide was the scope of the initial phase of this research project. Since

producing correct software in a timely manner is at the core of the software crises, the

initial phase of our implementation includes software objects. It was also decided to

include data definitions in the initial phase because incorrect and inconsistent usage of

data types are a typical source of errors in developing an application. Due to space

considerations, no object code or executables are stored in the database. These

objects are easily derived through methods used to compile the source code.

Requirements documents and specifications were not exploited fiilly in this version;

however, due to their importance in verifying correctness, documentation objects were

created as an attribute of the software objects.

19

It is generally accepted that software reuse will improve software productivity, and,

thus, will help to alleviate the software crises [2,9,20,24,27], With such overwhelming

conviction of its effectiveness, it was decided to include mechanisms for software

reuse within the initial implementation of the Program Information Database. This has

been accomplished by storing Meta-Data information describing the reusable software

components in the Program Information Database. A browser and query mechanism

are provided as part of the application. In addition, a separate application called

REuse QUEry Subsystem, REQUES, was developed to access and share reusable

components.

C. Database Design Issues

The first design issue to address was that of selecting a database manager. This is

arguably an implementation issue, however, it is contended that the choice of a DBMS

influences other design decisions, and can effect the scope of the project, e g. make some

desirable features either feasible or not feasible. Thus the choice of a DBMS should be

made during the design phase. It is generally accepted that an object-oriented database is

more suited for a program information database [19, 22], An 00 DBMS was, therefore,

sought for implementation. 02 was examined and found to support all fimctionality for

00 applications including data encapsulation, inheritance, and persistence. 02 has a data

definition language and data manipulation language, o2c, which is a superset of the C

language. In addition to o2c, C and C++ is supported. 02 has the ability to handle

complex objects such as text and graphics, it also has an SQL like query facility. 02 was

selected because it is a complete environment that is commercially available with all the

features required to implement our application.

To have a program database flexible enough to accommodate most applications, it was

decided to base the design on the nature and structure of software, e g. its taxonomy.

20

rather than tailor the design to a specific application domain. To decide what objects best

represent this domain, it is necessary to study a software application as an abstract data

type. The size and complexity of today's software systems makes it necessary to structure

them as modules, a software component which constitutes a coherent unit that provides a

certain functionality [8]. The modules that represent the basic fiinctionality of the

software system are called system modules. An application can then be defined as a non¬

empty set of system modules. This definition of a module can define any software

component that performs a function, so, for clarity, modules, in implementing this system,

refer only to system modules.

A module may require several software components — programs, functions, and

procedures -- to implement the desired functionality. A program is defined as a collection

of statements from a programming language that implement a certain functionality. In the

Program Information Database, a program is distinguished from a module in that a module

is the fimctionality or concept to be implemented and a program is the implementation of

the concept. Therefore, in this system, a module contains a non-empty set of programs.

Programs may contain other programs and subprograms, a process abstraction that allows

details ofprogram implementation to be hidden [27]. Functions and procedures are

classified as subprogram types. By definition, procedures are software objects that are

allowed to produce results in the calling program unit [27]. Functions, however, are not

allowed to modify variables outside its environment and may return a result to the calling

program. Programs then are composed of a set ofprograms, functions and procedures.

Programs, functions, and procedures have an "is-a" relationship with the Super class

Source Code. They are defined within the database by using the property of inheritance

from the Source_Code class and adding those attributes that make each specialized. The

Source Code class definition is follows.

21

class Source Code public type tuple
(public name : string,

public short description : string,
public doc : set (Documentation),
public language : string,
public compiler directive ; string,
public code : Text,
public variables: unique set (Variable),
public called functions : unique set (Function),
public called_procedures : unique set (Procedure),
private last modified : Date,
private date created : Date,
private modified by: string,
private checked out: boolean,
private application : string,
private where used : set (Source Code))

end;

The Variable class contains instances of data definitions for an application. Unique

names and consistent data types are maintained by Module within an Application. Only

those variables selected by the user are stored and maintained as objects. The Variable

class definition follows.

class Variable public type tuple
(public var name : string,

public var type ; string,
public description : Text,
private first declared : string,
private where used : list (Source Code))

end;

The Documentation class, as stated previously, was created to contain instances of all

types of documentation including requirements documents and specifications.

Programmers can also create documentation and save it with the object it represents. The

Documentation class as well as all other class definitions can be found in Appendix A.

The Program Information Database can store multiple applications within the database.

This allows different development groups to share this resource and creates a larger pool

22

of reusable software components to share, Figure 2 is an Object Diagram of the Analysis

Model depicting these relationships.

Function

calls

Application p-

^

has

consists
of

Module
has

consists
of has
c

Source Code

5
has

calls
Program

Documentation

f
has

4 Variable

1 5 > I 1

calls

1 1 IP

calls

calls
Procedure

calls

Figure 2. Object Diagram - Analysis Model

The next major design issue to resolve is that of data representation, One of the issues

involved in data representation is that of granularity. Questions like "should each

statement in the code of a Source Code object be an identifiable object or should it be the

entire text file" must be answered. Research done on TULUM and Allegro suggest that

using coarse granularity of the data improves efficiency. It can be seen that the smaller the

granularity the more complex the conversions required to present the object in the format

required by the application user. Course granularity is used in this design with the

smallest identifiable unit of the code being the entire text file. In other words, each

Source Code object has an attribute "code" which is a Text object. This internal

representation is sufficient for the functionality implemented as no operations are required
23

for any "sub-code" level, e g., words, phrases, lines. This design is also efficient in that

02 has methods that handle variable length text files so that no efficiency is lost in

converting data. Miguel [22] found that data representation has minimal effect on space

usage, therefore, our representation does not adversely affect disk space.

D. The Reuse Library Design

The objective in the design of the Reuse Library is to take full advantage of the

software components stored in the program database. Our research is focused on

software development and maintenance groups not presently utilizing CASE tools.

According to Fiejs [8], application domains are in one of the following phases.

1. No reuse

2. Ad hoc reuse

3. Structured reuse

4. Automation of the domain

This application is geared toward taking an organization from step 1 or 2 to step 3,

structured reuse. Research indicates that reuse has been most successful with small

atomic functions such as I/O, mathematical software, and string manipulations [15, 28].

While it is recognized that reuse is desirable at all phases and levels of software

production, it was decided best to start with the successful model of reusing small atomic

operations. Design and implementation is based on the philosophy that programs can be

constructed by putting together components that perform atomic operations. Therefore,

the Reuse Library is composed of a set ofLibrary Function which inherits from the

Function class and adds signature information. (For a formal class definition, see

Appendix A.) An Object Diagram of the Analysis Model including the Reuse Library is

shown in Figure 3.

24

Library

consists
of

Lib Function

describe

Keyword

calls

Function

calls

Application
has

consists
of

Module
has

Source Code

5
has

calls
Program

Documentation

75 J rnp
consists
of has

k. _1L

has

4 Variable

calls
calls

calls
Procedure

calls

Figure 3. Object Diagram ~ Analysis Model With Reuse Library

The first design issue for the Reuse Library is to represent the reusable components so

as to aid efficient retrieval. The design employs a multi-attribute search and a facet

classification scheme. The multi-attributes include keyword descriptions and the

component signature. The keywords used to describe a component are actually the facet

Abstraction and one or more of the facets Operations, and Operates On. This can be

expressed as follows:

Keyword = {<Abstraction>‘''(<Operations>)*(<Operates On>)*}
The Abstraction facet is usually a noun describing the type of component. The Operations

facet describes the actions that the component performs, and the Operates On facet states

the type of object that the component acts on. The Abstraction keyword is assigned when

the component is placed in a particular library. The Library Name is the first level of

25

abstraction indicating the concept being implemented by its components. The Library

Name then is equivalent to the facet Abstraction. For example a Library Name ofMatrix
would contain all components performing matrix operations such as multiply, add,

subtract, etc. One or more keywords are selected to indicate what functionality or

operations the component performs, e g. multiply. These keywords would then satisfy the

abstraction Operations. Keywords are also selected to satisfy the facet ofOperates On,

eg. real. A component. Cl, that multiplies a matrix of real numbers will have a set of

Keywords as follows:

Kci = {<Matrix>, <Multiply>, <Real>}

All components are thus classified by the Librarian who also maintains the Keyword class.

Each component can be an instance in only one Library and has a non-empty set of

Keywords that describe it.

The signature of the component is used to describe the syntactic representation of the

component. A syntactic query match would indicate little or no revisions would be

required for reuse when a match has occurred. Each component's signature is described in

terms of it's input and output data types. All data types are accepted. The program

performs a "normalization" procedure on the signature data types and stores both the

original and normalized data types with the object. This normalization procedure attempts

to match data type queries on the component signature with those in the database. For

example, if a query is received with keywords and signature of

K^ = {<Matrix>, <Multiply>} and = {Inputs: <Real>; Outputs: <Real>}

respectively, and, if the system can not find a component that has input data type ofReal

and output data type ofReal, it will normalize Real to Integer. The search will then be

conducted with the normalized input. This process is repeated until a match is found or

the data types can not be normalized further. All data types except "Private" eventually

normalize to "Integer". If the original input type is not recognized, it is mapped to the

26

"Private" data type. The private type includes all user defined data types. The Type class

contains predefined mappings for most data types which are maintained by the Librarian.

This normalization process is done in keeping with our philosophy that reuse should be

attempted even if revisions are required. Also, in this spirit, queries where no syntactic

match is found on the signatures will receive a response based on keyword match.

E. REQUES Application Design

REQUES is a client/server application that interfaces with the 02 database. It is

written primarily in C with some of the server fixnctions written in o2c. The server

program, o2_server, is the client's interface to the 02 database. The server performs the

following functions.

1. Opens a socket to communicate with clients.
2. Opens the 02 database.
3. Accepts and interprets requests from a client.
4. Calls 02 functions to satisfy client requests.
5. Formats 02 data for transmission to clients.
6. Transmits results to clients.
7. Closes 02 database.

Vahd transaction requests are OPEN, open the database, KEYWORD, get a list of the

valid keywords, QUERY, find components based on the semantic and syntactic

information sent, and CLOSE, close the 02 database. The OPEN transaction opens the

02 database if it has not already been opened by a previous client request. When the

server receives a KEYWORD transaction request, the 02 database is queried for all

existing keywords which are then sent to the client. A QUERY transaction request causes

the server to query the database for all components in the library that match the

accompanying component attributes. These attributes include the keywords used to

describe the semantic meaning of the component along with the data types of the inputs

and outputs. Ifmatching components are found, they are transmitted to the client

27

requesting the data. If no matching components are found, a message is transmitted

indicating zero as the number of components found. Upon receipt of a CLOSE

transaction request, the server determines if there are any active clients before closing.

The client application consists of a user interface and four executables that

communicate with the server program. The user interface performs the following

functions.

1. Displays and accepts user request options.

2. Formats user request for use by executables.

3. Calls executables to implement user requests.

4. Presents data received from the server.

Each executable performs one of the following functions — open o2 database, get valid

keywords, query o2 database, or close o2 database ftmctions. The REQUES Application

configuration is shown in Figure 4.

Client Server

Figure 4. REQUES Application Architecture
28

CHAPTER IV

PROGRAM DATABASE IMPLEMENTATION

A. Introduction

This chapter describes issues addressed while implementing the Program Information

Database. The implementation environment is defined, and implementation issues such as

improving eflBciency by adding redundant associations and locking are addressed. The

function of the Librarian, the person(s) who maintains the Reuse Library, is explained.

Finally, implementation details of the REuse QUEry Subsystem, including transaction

management and component retrieval is discussed.

B. Implementation Environment

The Program Information Database runs on a Sun workstation under the UNIX

operating system. It was written primarily in o2c, since, o2c is a very expressive

programming language. Due to 02 design, those programs accessing the database from

outside the 02 environment must be written in C or C^. REuse QUEry Subsystem,

REQUES, was written in C and calls 02 functions written in C or o2c. The user interface

to REQUES is written in TCL which usesMotif This gives the REuse QUEry Subsystem

the same look and feel as the Program Information Database since the 02 interface is

Motifbased as well.

The REuse QUEry Subsystem is a client server application using TCP/IP network

protocol. The server application runs on a Sun workstation and client applications may

run on any hardware having a UNIX operating system and supports TCP/IP. TCL is

public domain software.
29

C. Implementation Issues

Since the focus of this research is on providing inunediate, practical assistance to

software development groups, it was a safe assumption that existing applications would be

the primary source ofdata for the database. An application that exemplifies managing

shared resources. Dining Philosophers, was selected as the target application. This

application was selected because it is large enough to exercise all parts of the system, yet

small enough to have a controlled experiment. The Dining Philosophers application was

also selected because it was not constmcted using a CASE tool. Using an existing

application constructed without CASE demonstrates that the program database can

accommodate applications typical of the target group identified.

It is recognized that during design optimization, the designer must add redundant

associations to minimize access cost and maximize convenience [26]. In theory,

redundancy is undesirable as it adds no additional information. However, the associations

of the analysis model may not provide the most efficient access patterns for

implementation. This represents the situation for the Program Information Database.

For convenience, the Source Code class definition is restated below.

class Source Code public type tuple
(public name : string,

public short description: string,
public doc : set (Documentation),
public language; string,
public compiler directive: string,
public code: Text,
public variables : unique set (Variable),
public called functions : unique set (Function),
public called_procedures : unique set (Procedure),
private last modified: Date,
private date created: Date,
private modified by: string,
private checked_out. boolean,
private application; string.

30

private where_used : set (Source Code))
end.

To demonstrate this problem, the relationship between a Program and a Library Function

it calls is examined. This relationship is expressed in the association "Source Code-calls-

Library Function". An analyst desiring to modify a function in the Library needs to know

what objects might be affected. If the "SourceCode-calls-LibraryFunction" is used all

Source_Code objects would have to be searched to determine which objects are affected.

However, if a redundant association "Library Function-called by-Source Code" is added,

the Source Code objects that call the function are pointed to by the fimction called. In

the Dining Philosophers apphcation, both the server, c and client,c programs call the

Library Function sema signal.c which sends a signal operation to a semaphore. This

information is available by selecting the method Display Usage from the sema signal.c

Library Function object. Several redundant associations were added to the analysis

model to improve efBciency of the test-to-hit ratio and, thereby, improve performance.

An analysis of these situations are explained in detail.

A unique property of an 00 database is that no two objects are the same even if all of

their attributes are the same. This presents a challenge to the Program Information

Database when trying to ensure a correct application structure. This challenge is

compounded when the existence ofmultiple applications in the database is considered.

The question is whether to enforce unique identities on Source Code objects and if so, at

what level of implementation — database, application, or module — should this

enforcement take place.

It was decided that each Source_Code object be identified by a unique name, however,

enforcing unique names from one application to another was deemed impractical.

Therefore, enforcement at the database level was ruled out with the exception that all

Library Function objects must be uniquely named because two fiinctions having the same

31

name implies they provide the same functionality. This is undesirable in a Reuse Library.

The next question is the practicality of enforcing unique names at the application level. It

was decided that most applications would not have two different objects with the same

name, and, if this situation did exist, it would be cost efficient to correct. Therefore, it

was decided to enforce name uniqueness at the application level for all Program, Function,

and Procedure objects.

To accomplish this, a private attribute identifying the application was added to the

SourceCode object. An index composed of the application name and the object name

ensures a test-to-hit ratio of 1:1. This is important in a potentially very large database. A

global variable "Current Application" is used to determine the application in which the

user is currently working. This allows the program to find and modify the correct object

and prohibits adding a new object with the same name as an existing object in that

application. An example of this would be adding a Program object named "server ,c" to

the Dining Philosophers application. The system would check the persistent data stores to

verify if any Source Code object existed with name = "server.c" and application = "Dining

Philosophers". If such an object existed, an error message would be displayed and the

object would not be added to the database. However, if the same Program object were

added to another application where no Source Code object had the name "server.c", it

would be added to the database.

Similar questions concerning Variable objects are present. It was assumed that

variables could possibly have the same name across applications and modules, yet have

different meanings and uses. Therefore, unique variable names are enforced at the module

level. A redundant association between the Module class and Variable class was created

to implement this functionality. A Module "has" Variable objects and all Variable objects

associated with Source Code objects are a subset of those associated with a Module.

Users may select a variable to store at any Program, Function, or Procedure object A

32

reverse engineering technique is used to maintain this relationship of Source Code

Variable objects and Module Variable objects. If the variable is added at the

Source Code level, the program will update the object's list of variables used as well as

add the variable to the Module's selected variables if it has not been added previously. A

check for data type consistency is made against the Module's variable information if the

name of the variable is found to already exist. In the Dining Philosophers application,

there was no existing data dictionary type documentation. A Variable object, "operation",

which indicates the activity a client is requesting was added to the Program object

"server.c". The system automatically updated the server Module object to reflect

"operation" as one of the Variable objects that it "has". It should be noted that only those

variables selected by the user are added to the system. This avoids using system resources

to monitor insignificant variables such as temporary storage variables and counters.

Another redundant association, "where used", is given between the Variable class and

the Source Code class. It is recognized that one access pattern for variables in the

Program Information Database will be the operation to find all objects where a Variable is

used. This association is maintained automatically by the system. When a user selects the

Add Variable method, a new Variable object is created and the "where used" attribute is

modified to include the Source Code object adding the variable. If the variable is not new

to the module, it is retrieved and the "where used" attribute is updated to reflect the

addition of another Source Code object, the object adding the variable. To find all

objects where a Variable object is used, the only step is to find the variable and select the

appropriate method. Without this association, it would be necessary to check all Variable

objects for each Source Code object within an application in order to find where a

variable is used. This redundancy is well worth the improved performance.

Finally, a redundant association, "called by", was added between the Library Function

and Source Code classes. This association allows efficient retrieval of all Source Code

33

objects that call any Library Function. This is necessary in the event a Library_Function

object needs to be modified. It is also useful for determining how much reuse is taking

place and to what extent. This association is updated whenever a Source Code object

executes the method "Add_Library_Function" or "DeleteJLibrary Function". These

methods add a Source Code object to and deletes a Source_Code object form the

"called by" attribute. Figure 5 shows an Object Diagram of the Implementation Model

with all associations.

Figure 5. Object Diagram — Implementation Model

Locking is a significant issue in a program database. Program data normally have long

lived transactions that can leave the database inconsistent for long periods of time. Our

approach to this problem is a to implement updates using a two phase transaction

methodology. When the method to update a Source Code object is invoked, the object

34

locks itself, makes a copy of itself, and marks itself as "checked out". The lock is then

released thus completing the first phase. Only read type transactions are permitted on

objects in this state. When the user selects the option to save the update, a second

transaction is started in which the object again locks itself then overwrites the old version

with the new version and marks itself "in". The lock is then released which completes the

second transaction phase,

D. The Role of the Lihrarian

The quality of the components in the Reuse Library is very important. Errors in a

library component can propagate not only within an application, but, fi-om one application

to another. For this reason, there must be controls on all methods implemented by a

Library Function object. The Program Information Database maintains this control by

allowing only those logins defined as "Librarian" to perform update type transactions on

Library Function objects. In addition, separate menus are presented to other users.

There is also a separate Librarian application that only the Librarian can run.

The Librarian has the job ofmaintaining the Reuse Library. This includes creating

libraries, adding qualified components to the library, and modifying a component in the

library if necessary. The Librarian also maintains the Keyword and Type classes. The

Librarian application must be used to create a Library or add, modify, and delete instances

of the Keyword and Type classes. Other functionality such as adding or modifying a

Library Function can be performed either in the Librarian or the ProgramDB application.

All functions are performed through menu selections from the applications.

The Librarian must have a thorough understanding of the facet classification system

used in our Program Information Database as she is responsible for classifying or

reclassifying every component. The Librarian decides the names of each Library which is

also the first classification facet. Abstraction, The Librarian decides what Keyword

35

objects are contained in the database and maintains the Keyword class. The Type class is

already predefined but may be modified by the Librarian, Therefore, a thorough

knowledge ofhow the Library Function signatures and keywords are used to retrieve

reusable components is also necessary. In short, the success of the Reuse Library can

depend on how well the Librarian knows and performs her job.

E. Library Implementation Issues

Selecting matching components for a query was the biggest challenge for the Reuse

Library. The signature and a non-empty set of keywords are a part of each reusable

component. The keywords describe what exactly the component does. Therefore, a

match on keywords is the most important aspect of finding a reusable component. A

match of signatures is an indication that little or no modifications will be needed to reuse

the component. Our philosophy includes the idea that reuse should be attempted even if

modifications must occur. In implementing this philosophy, it becomes necessary to not

only look for exact matches of the signature, but to match on equivalent data types, or just

keywords if no equivalent signature matches can be found.

Sorumgard [29] states that reuse progresses from the idea phase to a description phase,

and after formalizing the description, to a requirements phase. The requirements are then

matched against the classifications in the Library. (See Figure 6 below.) The

requirements phase identifies more specifically how the component performs by, among

other things, defining the inputs and outputs needed, or, signature information. Another

school of thought is that over specification of components should be avoided because it

can preclude reuse of available RSCs [23], This methodology promotes the concept of

software development "for" reuse with reuse driving the design process. This is

comparable to other engineering disciplines where new products incorporate existing

components. Our query methodology accommodates both views. The user may be as

36

specific as desired in identifying a component. The design also allows the user to go from

the description stage directly to matching component classifications by not requiring

signature information as part of the query. This allows the user to skip formalizing the

design at this point and allow the syntactic structure of retrieved components to influence

the formal design.

Figure 6. The Retrieval and Classification Process

Our retrieval scheme first finds all components having a set of keywords that match

exactly the set of query keywords. Ifno components were found having an exact match,

then components having the largest subset of keywords in the set of query keywords are

selected. There will never be an empty set of components retrieved because

(i) each component has a non-empty set of keywords that describe it,

(ii) only keywords describing existing components can be used in the query, and

(iii) no query is processed with an empty set of keywords.
37

The query signature is converted to an equivalency data type based on a Type class

equivalencies. The signature of the retrieved components are then compared to the

normalized query signature. Ifno match is found, the query signature equivalency

conversion is performed until no additional equivalencies exist. If a signature match is

found, the subset of components found matching the query signature are retrieved. Ifno

signature match is found, the set of components matching the keyword search is retrieved.

F. REQUES Implementation Issues

REQUES is a client/server application, as such the server must manage transaction

requests among the clients. Valid transaction requests are OPEN, open the database,

KEYWORD, get a list of valid keywords, QUERY, find components based on the

semantic and syntactic information sent, and CLOSE, close the database. It was decided

that an entire client request would be implemented as one transaction in a critical section.

It can take more than one transmission from the server to fulfill a client request to send

valid keywords or a query result. During these times all new requests from other clients

are placed on a wait queue. When all data for the current request is sent, the server then

handles the next request in its entirety.

The OPEN transaction opens the 02 database if it has not already been opened by a

previous request. If the transaction completes satisfactorily, a satisfactory message is sent

to the client, else an error message is sent. An OPEN request is sent by the client to the

server when the REQUES application is started. Figure 7 shows the REQUES menu

selections.

38

Enter Specifications] Query Dataliase f Browse Components

Message area: Enter Specifications

Figure 7. REQUES Menu

The user must first select "Enter Specifications" from the menu. A new window is

displayed by the interface program that permits the user to describe the semantic and

syntactic descriptions of the desired component. Figure 8 below depicts the window

presented to the user to enter component specifications.

Figure 8. REQUES Enter Specifications Window

When the "Select Keywords" button is selected fi’om the "Enter Specifications"

window, a KEYWORD request is sent to the server. When the server receives a

KEYWORD transaction request, the 02 database is queried for all existing keywords

which are then sent to the client.

39

Figure 9. REQUES Select Keywords Window

When the client application requests and receives valid keywords, the executable,

o2^et_keys, writes the keywords received to the file /tmp/keyword. This file is used by

the interface program to allow the user to select keywords that describe the desired

component.

The interface program includes functionality that permits the user to describe the

signature of the function. This helps the system to retrieve components that have similar

syntactic matches. The format of the input and output data types should be specified

using C-like syntax. An array is specified by the data type followed by an open and close

bracket, e g., integer[] describes an integer array. A pointer data type is expressed by the

data type followed by an asterisk, e g., integer* indicates an integer pointer. All data

types are accepted by the user interface program and passed as parameters to the server

program. The interface program permits an empty set for the signature information, but

the set of keywords must not be the empty set.

Once the keyword and signature data is collected, the interface program allows the user

to select the query database option. The selected keywords and signature information are
40

formatted and passed as parameters to the query executable, o2_query. A QUERY

transaction request causes the server to query the database for all components in the

library that match the accompanying component attributes. Those attributes include the

keywords used to describe the semantic meaning of the component along with the data

types of the inputs and outputs. The server first calls a function to convert the input and

output data types to a normalized version of those types. Next, the server calls a function

that uses SQL-like syntax to find components matching the input description. Ifmatching

components are found, they are transmitted to the client requesting the data Ifno

matching components are found, a message is transmitted indicating zero as the number of

components found.

The executable writes the query result to /tmp/<name> where <name> is the program

name of a retrieved component. Each retrieved component is written to a separate file. In

addition, a file, /tmp/reuse_list is created. The /tmp/reuse_list file contains one line per

retrieved component containing the name of the component and a brief description. The

interface program allows the user to browse the components in /tmp/reuse_list and select

components from the list to preview. An example of a retrieved component selected to be

previewed is shown in Figure 10.

41

T*;
SUBROaiIN£ &BSLV (KO, H, N, A, NA, B, NB, C, NC, I£FtR) .

REAL A0JA,H)/ B(HB,M), C(NC^N), WK(*) \

c ABSLV SOLVES THE REAL HATRIX EQUATION AX + XB = C. A IS REBOCED
i
i

c TO LOSER SCHUR PORN, B IS REDUCED TO UPPER SCHOR FORM, AND THE
c TRANSFORMED SYSTEM IS SOLVED BY BACK SOBSTTrOTION, 1

1

c MO IS AN INPUT ARGUMENT SHICH SPECIFIES IF THE ROUTINE IS 1
c BEING CALLED FOR THE FIRST TIME . ON AN INITIAL CALL MO - 0 AND
c SE HAVE THE FOLLOWING SETUP. 1

c A(NA, H) 1 <■

c A IS A MATRIX OF ORDER M. IT IS ASSUMED THAT W
c
c
c

NA GE. M GE. 1.

B(NB,N) 'W-
c B IS A MATRIX OF ORDER N. rr IS ASSUMED THAT
c IB .GE. N .GE. 1.

c C(KC, N)
c C IS A MA3RIX HAVING M ROWS AND N COLUMNS.
c IT IS ASSUMED THAT NC . GE . M

c WKC)
c WK IS AN ARRAY OF DIMENSION M**2 + N+*2 + 2K fe
c WHERE K = HAX(M,N). WK IS A GENERAL STORAGE
c AREA FOR THE ROUTINE.

c lERR IS A VARIABLE THAT REPORTS THE STATUS OF THE RESULTS. WHEN
c THE ROOTINE TERMINATES, lERR HAS ONE OF THE FOLLOWING VALUES. .

ok| HELPj

Figure 10. REQUES Browse Component Window

Upon receipt of a CLOSE transaction request, the server decrements the number of

clients accessing the database. If no clients are currently active, the database is closed.

No return message is sent to the client when a CLOSE message is received.

If an error occurs at the host site, an error message is transmitted to the client

application. The server decrements the number of active clients, and if no clients are

communicating, the 02 database is closed. If the client receives an error message, it

displays the text of the error and closes the socket to the server. The user cannot send

any requests to the server until the server application at the host is corrected and restarted.

Once an error is received, the user may only exit from the interface program.

42

It should be noted that all of the executables o2_open_db, o2^et_keys, o2_query, and

o2_close_db are stand alone programs. It is an easy task to develop user interfaces that

call these programs for environments where TCL cannot operate.

43

CHAPTER V

CONCLUSIONS/FUTURE WORK

A. Introduction

This chapter summarizes the work done in this research project. It explains the

benefits an organization can derive fi'om implementing a program database and compares

the results of this research with an Information Repository. Finally, fiiture research goals

are stated.

B. Conclusions

This research describes the design and implementation of an object-oriented database to

store and retrieve program information. It has focused on providing a practical solution

for those organizations looking for a way to control aspects of the project support

environment and to improve productivity without making a commitment to a specific

CASE architecture. It is generally agreed that a centralized repository should be the basis

of a project support environment. We have shown that it is practical to develop an off-

the-shelf database application that is flexible enough to accommodate most business

applications. This flexibility is achieved by basing the design on the taxonomy of software

rather than targeting a specific application domain.

A query method to automatically retrieve components from the database was also

defined. The method used emphasizes both the semantic description through the use of

keywords to retrieve software components, and the syntactic description through the

component signature. This approach allows an organization to tailor their design to reuse

the available components by querying the Library based on a description of the
44

functionality desired, minimizing modifications needed to reuse components while

maximizing the reuse effort

Many organizations have a 1st generation Integrated Project Support Environment with

no reuse or ad hoc reuse capabilities. Their corporate cultures can not take the leap from

this loosely coupled project support environment to the structured, unyielding

methodologies imposed by many CASE tools. The Program Information Database offers

a bridge between the two philosophies. Since most software development groups are

familiar with database applications and no particular software engineering methodology is

imposed, this application should be easily accepted and unobtrusive. The benefits to be

gained by an organization utilizing this application are many including
- Reduced data redundancy,

- Data consistency,
- Data integrity,
- Data security, and
- Structured software reuse.

These benefits can translate into improved productivity and reduced software costs.

A general purpose DBMS was used in the implementation. This has an additional

advantage of sharing the repository with other company data thus allowing an exchange of

information. The unrestricted querying capabilities allows an organization to use the data

in unanticipated ways.

A closely related concept is that of an Information Repository whose components

include enterprise information, corporate business models, the corporate data architecture,

and application descriptions and components [1]. The long term benefits of a repository

are simplification of application maintenance because system components and information

are managed by the repository and software reuse because the repository provides an

inventory of reusable code and a means of easily depicting the code and components [1].

45

The initial implementation of the Program Information Database contains application

descriptions and most related components. Because this initial implementation manages

the components it contains and supports software reuse, it can be considered a subset of

and is a significant step towards an Information Repository.

The specific contribution of this research is the design and implementation of a program

database that can be easily used for any application which gives that application the

immediate advantages of a central repository and the productivity gained from automated

retrieval of reusable software components. It allows an organization to go immediately

from having no or ad hoc software reuse to structured software reuse. It demonstrates

that a Commercial OffThe Shelf program database application is a feasible and

worthwhile undertaking.

C. Future Work

The existing application does not address some specific issues of importance to a

program database, configuration management and incremental compilation. Configuration

management is one such issue; in theory, this should be made easier to implement with an

OO DBMS. Due to space considerations, no object code is stored in our database at this

time. As a result, we were unable to take advantage of an incremental compilation

system. Both issues will be addressed in the near future.

A methodology to provide greater security measures in the matter ofwho has update

capabilities and access permissions for all aspects of the system and not just for the Reuse

Library should be implemented. A rudimentary capability has been implemented as part of

the existing application. Each user must log into the application. Currently the login data

is only compared to those users permitted to access the 02 database, therefore, any 02

user has all permissions for all components except the Reuse Library components. When

46

this problem is corrected, the hard coded "Librarian" identification should be corrected as

well.

Deciding what keywords should be a part of the standard vocabulary to classify and

retrieve reusable software components is a critical task whose success determines the

success of the Reuse Library. Any two individuals may select very different keywords to

express the same functionality of a component. A case-based reasoning, CBR, approach

as suggested by Chen, et. al. [4], is better suited for describing reusable components. The

CBR approach is more robust and doesn't rely on knowledge abstracted from experience

[4], e g. an individual expert. It is a long term goal for this research project to incorporate

case-based reasoning to classify and retrieve reusable software components.

47

APPENDIX A

CLASS DEFINITIONS

48

Application Class

class Application public type tuple
(public appl name; string,
public appl icon: Bitsmap,
public doc: set(Documentation),
public modules: set(Module),
public run commands: string,
public compile link : Text)

method title : string,
init,
menu : list(string),
bitmap : tuple (width : integer, height: integer, bitsmap : bits),
writeapplication,
public Update,
public AddDocumentation,
public AddModule,
public DisplayModules,
public CompileApplication,
public RunApplication,
public display icon: Bitsmap

Module Class

class Module public type tuple
(public module name: string,
public doc : set(Documentation),
public pgms; set(Program),
public description: Text,
public variables : set(Variable))

method title: string,
init,
menu : list(string),
public Browse,
public Update,
public Add Documentation,
public AddProgram,
public DisplayPrograms,
public DeleteProgram,

49

public ListVariables
end;

SourceCode Class

class Source Code public type tuple
(public name: string,
public short description : string,
public doc : set(Documentation),
public language : string,
public compiler directive : string,
public code : Text,
public variables : unique set(Variable),
public called functions : unique set(Function),
public called_procedures ; unique set(Procedure),
public library functions : unique set(Library_Function),
private last modified: Date,
private date created : Date,
private modified by : string,
private checked out: boolean,
private application: string,
private where used : set(Source_Code))

method title : string,
init,
public menu ; list(string),
public Browse,
public Update,
public AddDocumentation,
public Add_Variable,
public List Variables,
public DeleteVariable,
public AddFunction,
public ListFunctions,
public DeleteFunction,
public AddProcedure,
public ListProcedure,
public DeleteProcedure,
private Where Used : set (Source Code)

end;

50

Program Class
sfc******************#**^
class Program inherit Source Code type tuple

(public called_programs: set(Program))

method init,
title , string,
menu : list(string).
Browse,
Update,
public AddDocumentation,
public AddVariable,
public ListVariables,
public DeleteVariable,
public Add Function,
public ListFunctions,
public DeleteFunction,
public AddProcedure,
public ListProcedure,
public DeleteProcedure,
public AddCalledProgram,
public ListCalledPrograms,
public DeleteCalledProgram,
public write_program,

Function Class

class Function inherit Source Code type tuple
(public retum type: string)

method menu : list(string),
init,
title : string.
Browse,
Update,
public Add Documentation,
public Add Variable,
public List Variables,
public Delete Variable,
public Add Function,
public List Functions,

51

public DeleteFunction,
public AddProcedure,
public ListProcedure,
public DeleteProcedure,
public writefiinction

end;

Procedure Class

class Procedure inherit Source Code

method init,
title : string,
menu : list(string).
Browse,
Update,
public AddDocumentation,
public AddVariable,
public ListVariables,
public Delete Variable,
public AddFunction,
public ListFunctions,
public Delete Function,
public Add Procedure,
public List Procedure,
public Delete Procedure,
public write_procedure

end,

Library_Function Class

class Library Function inherit Function public type
tuple (input types : set (string),

normal inputs: set (string),
output types: set (string),
normal outputs; set (string),
keys : set (string),
state machine: boolean)

method public title : string,
init,
public menu : list(string).

52

public updatekeys,
public Update

end;

Library Class

class Library public type tuple
(public name : string,
public category: string,
public doc : set(Documentation),
public functions: set(Library_Function))

method title : string,
menu : list(string),
init,
public AddDocumentation,
public ListFunctions

end.

Keyword Class

class Keyword public type tuple
(public key; string,
public facet: string,
public functions: set(Library_Function))

method private init (keyname : string, facet: string),
public title: string,
public menu; list(string),
public Get Facet Type: string

end;

Type Class

class Type public type
tuple (user type: string,

base_type: string)

53

method public title : string,
public menu : list(string),
public Get Base Type : string

Variable Class

class Variable public type tuple
(public var name: string,
public var type : string,
public description : Text,
public first declared : string,
public where used : set(Source_Code))

method init,
menu : list(string),
public ListUsage,
public Update,
public del usage (pgm : string)

end;

Documentation Class
9tc9(c:(c]te3fc:tc3|c:fc3|c:ft!le:|c;4c:|c:ft:(t%:1c:tC3|c:(c:1c:(c:)c)(t:(c9fcitc:f(]ic:1c:te:|t:4e}|c:|e;ft:|c:4c:(c:fe3|e9|C3|c9fc:fc:te:i|cic:tc3fct(c:^3(c9(c:|c3|c:fc:fc3|e:fE:4ciC3|c:fcic:tcy
class Documentation public type tuple

(public type documentation: string,
public subject: string,
public content; Text)

method title : string,
init,
menu : list (string),
public Browse,
public Update,
public WriteDocumentation,
public Add_Documentation(doctype : Documentation): integer

end;

54

BIBLIOGRAPHY

1. Advanced Testing Technologies, Inc. FAA Information Repository Report:
Analysis and Recommendations, Technical Report. Feb., 1993,

2. Brown, A.W. Database Support for Software Engineering. John Wiley & Sons
Inc. 1989.

3. Brown, Alan W., Carney, David J., Morris, Edwin J., Smith, Dennis B., and
Zarella, Paul F. Principles ofCASE Tool Integration. Carnegie Mellon
University Software Engineering Institute. 1994.

4. Chen, Yufeng F , George, Roy, and Warsi, Nazir A. A Knowledge-Based
Framework for Software Reuse Using Multiple-View Approach.
Proceedings of the International Society for Computers and Their
Applications (ISCA). International Conference, p. 66-70. San Francisco,
CA. June, 1995.

5. Church, Terry and Matthews, Philip. An Evaluation ofObject-Oriented CASE
Tools: The Newbridge Experience. CASE '95 Proceedings Seventh
International Workshop on Computer-Aided Software Engineering, p, 4-9.
Toronto, Ontario, Canada. 1995.

6. Desai, Bipin C. An Introduction to Database Systems. West Publishing Co.
1990.

7. Deubler, H. H. and Koestler, M. Introducing Object Orientation into Large and
Complex Systems. IEEE Transactions on Software Engineering, vol. 20
no. II. p. 840-847. Nov., 1994.

8. Feijs, Loe. A Formalisation ofDesign Methods. Ellis Horwood Limited,
1993.

9. Frakes, William B. and Pole, Thomas P. An Empirical Study ofRepresentation
Methods for Reusable Software Components. IEEE Transactions on
Software Engineering, vol. 20. no. 8. p 617-629. Aug, 1994.

10. Godart, C. and Charoy, F. Databases for Software Engineering. Prentice Hall.
1993.

55

11. Hall, Patrick A. U. Proceedings of Software Engineering 90. Cambridge
University Press, July, 1990.

12. Hardy, Colin, Thompson, Barrie, and Edwards, Helen. A Survey ofSSADM
Usage in the UK. School ofComputing and Information Systems, Unversity of
Sunderland, U K. May, 1995.

13. Henninger, Scott. Supporting the Domain Lifecycle. CASE'95 Proceedings
Seventh International Workshop on Computer-Aided Software Engineering,
p. 10-19. Toronto, Ontario, Canada. 1995.

14. Jazayeri, Mehdi. Component Programming - a fresh look at software
components. Technical Report. Technical University ofVienna. 1995.

15. Kaiser, Gail E. and Gamlan, David. Melding Software Systems From Reusable
Building Blocks. IEEE Software, p. 17-24. July, 1987.

16. Kiesel, Norbert, Schuerr, Andy, and Westfechtel, Bernhard. GRAS, A Graph-
Oriented (Software) Engineering Database System. Information Systems, vol.
20. no.l. p.21-51. 1995.

17. Liao, Hsian-Chou and Wang, Feng-Jian. Software Reuse Based on a Large
Object-Oriented Library. ACM SIGSOFT Software Engineering Notes,
vol. 18. no. 1. p. 74-80, Jan., 1993.

18. Lieberherr, K. J. and Xiao, C. Object Oriented Software Evolution. IEEE
Transactions on Software Evolution, vol. 19. no. 4. p. 314-341. April,
1993.

19. Linton, Mark A. Distributed Management of a Software Database. IEEE
Software, p. 70-76. Nov., 1987.

20. Luqi. Normalized Specifications for Identifying Reusable Software.
Proceedings ofFall Joint Computer Conference (FJCC) '87. p. 46-49.
Dallas, Tx. Oct., 1987.

21. Martin, James. Principles ofObject Oriented Systems. James Martin Insight,
Inc. 1991.

22. Miguel, Luis. The Design of a CASE Environment Architecture and the
Performance Evaluation of Database Designs for Software Documents.
University ofCalifornia, Berkeley. Ph D. Dissertation. 1992.

56

23. NATO Communications and Information Systems Agency. NATO Standard for
Software Reuse Procedures, vol. 3. 1994.

24. Pietro-Diaz, R. Implementation of a Faceted Classification for Software
Reuse. Communication ofACM. vol. 34. no. 5. p. 89-97. May, 1991.

25. Ramamoorthy, C.V., Garg, Vijay, and Prakash, Atul. Support for Reusability in
Genesis. IEEE Transactions on Software Engineering, vol, 14. no. 8. pll45-
1153. Aug., 1988.

26. Rumbaugh, James, Blaha, Michael, Premerlani, William, Eddy, Frederick, and
Lorensen, William. Object Oriented Modeling and Design. Prentice Hall.
1992.

27. Sebasta, Robert W. Concepts of Programming Languages. The Benjamin
Cummings Publishing Company, Inc. 1993.

28. Sommerville, Ian. Software Engineering. Addison-Wesley. 5th Edition. 1995.

29. Sorumgard, Lars Sinert, Sindre, Cuttorm, and Stokke, Frode. Experiences
from Application of a Faceted Classification Scheme. Technical Report,
Norweigein Institute of Technology. 1994.

30. Steigerwald, Robert Allen. Reusable Software Component Retrieval via
Normalized Algebraic Specifications. Ph.D. Dissertation, Naval Postgraduate
School. Dec., 1991

31. Wohlin, Claes and Runeson, Per. Certification of Software Components,
IEEE Transactions on Software Engineering, vol. 20. no. 6. p. 494-499.
June, 1994.

57

