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CHAPTER I 

INTRODUCTION 
 

 Physical systems can be classified as Hamiltonian or non-Hamiltonian. In a 

Hamiltonian system, the total energy of the system is conserved within the system, and 

the Hamiltonian operator is a description of the total energy (potential and kinetic) of a 

system in any given configuration. For energy levels to be real, the Hamiltonian operator 

must be Hermitian, meaning it is a square matrix that is self-adjoint and symmetric. The 

Hermiticity of a Hamiltonian can be expressing as  𝐻 = 𝐻† , where the symbol † denotes 

the usual Dirac conjugation, the transpose, and complex conjugate. 

In the past few years, it has been concluded that the necessity of Hermiticity 

might be supplanted by the physical prerequisite of space-time reflection symmetry (PT 

symmetry) without violating any of the fundamental physical concepts of quantum 

mechanics. Theories defined by non-Hermitian PT-symmetric Hamiltonians (P denotes 

parity reflection 𝑥 →  −𝑥, 𝑝 → −𝑝; T denotes time reversal 𝑥 → 𝑥, 𝑝 → −𝑝, 𝑖 → −𝑖) 

display strange and unexpected properties at the classical level and also at the quantum 

level [1]. The requirement of Hermiticity and the properties of some non-Hermitian PT-

symmetric quantum theories were discussed in Bender [2]. Non-Hermitian Hamiltonian 

potentials play a crucial role to several physical phenomena such as Higgs boson 

interaction [3], quantum tunneling, and PT phase transition in higher-dimensional 

quantum systems [4]. 



2 

 

Understanding certain systems in quantum mechanics are essential for scientists 

to have an in-depth comprehension for future applications. In general, there are only a  

few analytical solutions available for solving many quantum problems. One of the 

Primary reason is the slow convergence of the outcomes. Therefore, it is required to 

resort to numerical methods. Over time, there have been a variety of studies driving 

toward an accurate solution to the non-Hermitian quantum problem. This has been 

advanced by utilizing the Hill determinant, Airy function approach, Numerov method, 

perturbative method, and eigenvalue moment method [5-10]. The iteration method was 

introduced by Tymczak et al. [11]. This approach is simple to implement, and the 

outcomes are adequate for numerical purposes. It does not require a careful algebraic 

analysis; as other methods require.  

The purpose of this thesis is to present an exact and direct technique for bound 

state energies. Comparing this thesis results with the numerical values obtained by earlier 

works, our method provides exact results through the full range of parameter values. In 

this work, we use the iteration method for double-well potential−𝑍2𝑥2 + 𝑥4, complex 

double-well potential −𝑍2𝑥2 + 𝑥4 + 𝑖𝑎𝑥, and PT-symmetry breaking for 𝑖𝑥3 + 𝑖𝑎𝑥 

Hamiltonian and 𝑥4 + 𝑖𝑎𝑥  Hamiltonian. This thesis is organized into two chapters 

followed by conclusions. Chapter Ⅱ recalls the iteration method for one-dimensional 

parity symmetric system such as the double-well potential, and for PT-symmetry 

Hamiltonian. Chapter Ⅲ presents results of the iteration method along with discussion 

that covers wave functions for the potential as well as a comparison of these results with 

others. 
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CHAPTER II 

                         FORMULATION OF THE PROBLEM 

 

2.1. The iterative method for parity-invariant Hamiltonian  

Schrödinger Equation is the fundamental equation of physics for describing 

quantum mechanical behavior. The Hill determinant approach and power-series 

expansion [5] are efficient methodologies for solving Schrödinger equation. Studies have 

combined those techniques that result in the iterative method [12]. The power-series 

expansion can be written in terms of the wave function 

Ѱ(𝑥) = ∑ 𝑎𝐽(𝐸)𝑥𝐽𝑅𝛼(𝑥)𝐽 .                                                        (2.1) 

The coefficient 𝑅𝛼(𝑥) in our work is the Gaussian (symmetrical curve representing the 

normal distribution) reference function,  

𝑅𝛼(𝑥) = 𝑒−𝛽𝑥2
,                                                                          (2.2)    

where β is an adjustable parameter introduced to accelerate the rate of convergence of the 

iteration method. 

The importance of choosing reference functions that satisfy the boundary 

condition was discussed in earlier work by Wijewardena et al. [13]. The reference 
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function (wave function) is utilized to acquire bound state energies for the studied 

potential. Wijewardena et al. demonstrated that it is conceivable to accomplish 

convergence and obtain exact eigenvalues even if the required Stokes regions are not 

entirely within in the range of convergence of the reference function. However, it is 

suggested to use a wave function that meets the Stokes and anti-Stokes regions in order to 

dispose of the low rate of convergence. Tymczak et al. [14] proved that the recursive 

structure of the Hill determinant gives the capacity to acquire the eigenvalues. The 

starting point for the recursion relation is the transformation of the Schrödinger equation 

into a secular equation. Once the recursion structure is obtained, exact eigenvalues are 

readily acquired.  

The one-dimensional time-independent Schrödinger equation is given by 

𝑑2𝛹

𝑑𝑥2 + 𝐸𝛹(𝑥) = 𝑉(𝑥)𝛹(𝑥),                                                       (2.3) 

in which E is the eigenenergy, and V(x) is the potential. Tymczak et al. have confirmed 

that truncating the coefficient functions 𝑎𝑗(𝐸) in Eq. (2.1) by choosing a truncation point 

provide exact solutions  

𝑎𝐽(𝐸) = 0,                                                                      (2.4) 

where the value J is the number of iterations. The coefficient 𝑎𝐽(𝐸) is a polynomial in E. 

The roots of this polynomial give the exact eigenvalues. The accuracy of the eigenvalues 

depends on increasing the number of iterations. The polynomial coefficient for 𝑎𝑗(𝐸) can 

be expressed as in the following, which is a combination of odd and even polynomials 
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𝑎𝑗(𝐸) = 𝑏0 + 𝑏1𝐸 + 𝑏2𝐸
2 + ⋯ = ∑ 𝑏𝑗𝐸

𝑗
𝑗=0 .                                       (2.5) 

2.2. The iterative method for PT-symmetric Hamiltonian 

We generalized the iterative method implied in Eq. (2.1) to contain the PT-

symmetric potentials. The coefficient 𝑎𝑗(𝐸) linearly depends on the wave function and its 

derivative, 𝑎0 = 𝛹(0) and 𝑎1 = 𝛹´(0). Thus, we cannot compute the eigenvalues with 

Eq. (2.4) alone. To extend the method to solve PT-symmetric Hamiltonian we used an 

approach similar to that which was discussed for non-conserving Hamiltonian [12]. 

Wijewardenal et al. considered two polynomials determined from iterating the recursion 

relation [13].  

From [13] let us consider the following two coefficients  

𝑎𝑗(𝐸) = 𝑃𝑗,0(𝐸)𝑎0 + 𝑖𝑃𝑗,1(𝐸)𝑎1,                           

      𝑎𝑗+1(𝐸) = 𝑖𝑃𝑗+1,0(𝐸)𝑎0 + 𝑃𝑗+1,1(𝐸)𝑎1,                                  (2.6)   

where 𝑃(𝑗,0),(𝑗,1) and 𝑃(𝑗+1,0),(𝑗+1,1) are polynomials in E determined by the iteration of 

the recursion relation. The two consecutive iteration can be written as follows  

                                                                𝑎𝑗⃑⃑  ⃑ = 𝑃𝐽(𝐸)𝑎0⃑⃑⃑⃑ ,                                                (2.7) 

where 

  𝑎𝑗⃑⃑  ⃑ = [
𝑎𝐽(𝐸, 𝑎0, 𝑎1)

𝑎𝐽+1(𝐸, 𝑎0, 𝑎1)
],  𝑎0⃑⃑⃑⃑ = [

𝑎0

𝑎1
], and  𝑃𝐽(𝐸) = [

𝑃𝐽,0(𝐸) 𝑃𝐽,1(𝐸)

𝑃𝐽+1,0(𝐸) 𝑃𝐽+1,1(𝐸)
].               (2.8) 

The solution 𝑎𝐽⃑⃑  ⃑can be obtained from the matrix 𝑃𝐽which is acquired from the iterative 
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approach. To solve Eq. (2.7) we need to set the matrix 𝑎𝐽⃑⃑  ⃑ = 0⃑ . Then we can obtain the 

energies by taking the determinant 

                                                          𝑑𝑒𝑡[𝑃𝐽(𝐸)] = 0.                                                   (2.9) 

The 2x2 matrix determinant represents an independent polynomial for 𝑎0and 𝑎1. Exact 

eigenvalues are obtained from the converged roots of Eq. (2.9). After we obtained the 

eigenvalues, we could then determine the wave function from the following 

𝛹(𝑥) = ∑ 𝑎𝐽(𝐸)𝑒−𝛽𝑥2∞
𝐽=0 .                                                      (2.10) 

The wave function can also be written as   

𝛹𝑒𝑣𝑒𝑛(𝑥) = (𝑎0 + 𝑎2𝑥
2 + ⋯)𝑒−𝛽𝑥2

,       

 𝛹𝑜𝑑𝑑(𝑥) = (𝑎1𝑥 + 𝑎3𝑥
3 + ⋯)𝑒−𝛽𝑥2

.  

Numerical determination of the wave functions will be discussed further in Chapter Ⅲ. 

We will calculate the wave functions for the ground and first excited states and sketch 

their figures.    

2.3. Extraction of the recursion relation 

Recursion relation can be straightforwardly derived after we choose the wave 

function. First, we find the second derivative of the wave function. Then, we plug the 

wave function and its second derivative into Schrödinger equation. Then, we remove the 

variable x by carrying out the shift for the iterative number of the equation. Therefore, we 

have the recursion relation which is the iterative approach to get the eigenenergies.   
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Figure 1. The potential 𝑉(𝑥) = −𝑍2𝑥2 + 𝑥4 for 𝑍2 = 5. 

CHAPTER III 

          RESULTS AND DISCUSSION 
 

In this Section, we demonstrate the capacity of the iterative method described in 

the section above. We numerically implement the iteration method by obtaining the 

recursion structure for double-well, complex double-well potential, and PT-symmetry 

breaking potentials, then obtain the eigenvalues and the eigenfunctions for each potential. 

3.1.1. The iterative method for symmetric double-well 

The first example we study in this thesis is the double-well potential, which is an 

essential problem in quantum mechanics dealing with the energy level of two adjoining 

states. Specifically, the ground and first excited states energies are small due to the non-

degenerate nature of eigenvalues of bound states for one-dimensional potential.  
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Figure 2. Divergence of the potential 𝑉(𝑥) = −𝑍2𝑥2 + 𝑥4, where 𝑍2 = 5,10 

and 15. 

The formalism of the symmetric double well potential, see Fig. 1, is illustrated by the 

Hamiltonian 

𝐻 =
𝑃2

2𝑚
− 𝑍2𝑥2 + 𝑥4,                                                    (3.1) 

 where 𝑍2 is a real constant. As we can qualitatively see from Figure 1, the double-well 

potential is symmetric when 𝑍2 = 5. 

   

 

 

 

 

 

 

 

 

Figure 2 shows the divergences of the double well potential. It is observed that the 

wells depth depends on the value of the parameter 𝑍2and the selected points in the x-axis. 

In this case, we select points in the x-axis to be between -3<x<3, and notice that the value 

of 𝑍2 need to be between the range 1<𝑍2<25 or the potential will be degenerate.  

We obtain the recursion relation by rewriting Schrödinger equation Eq. (2.3) in 

the following form 

−
𝑑2𝛹

𝑑𝑥2
− (𝑍2𝑥2 − 𝑥4)𝛹(𝑥) = 𝐸𝛹(𝑥),                                       (3.2)  

where Ѱ(𝑥) = ∑ 𝑎𝑗(𝐸)𝑥𝑗𝑒−𝛽𝑥2

𝑗 , β is a positive real number.                                      (3.3) 
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The recursion relation obtained using Eq. (2.1) and Eq. (3.2) is 

    𝑎𝑗(𝐸) =
[4𝛽𝑗−6𝛽−𝐸]𝑎𝑗−2(𝐸)−[4𝛽2+𝑍2]𝑎𝑗−4(𝐸)+𝑎𝑗−6(𝐸)

𝑗(𝑗−1)
,                           (3.4) 

where [𝑎0 = 1, 𝑎1 = 0] or [𝑎0 = 0, 𝑎1 = 1]. Then, from the relation, Eq. (3.4) we get the 

eigenvalues by finding the roots of Eq. (2.4).  

3.1.2. Computing the eigenvalues for the symmetric double-well  

As mentioned earlier, in order to obtain the energies, we use the straightforward 

coefficient 𝑎𝑗(𝐸) which is a polynomial in E. In Table 1, we display the calculated 

polynomials of energies that were obtained from solving the recursion relation Eq. (2.4).  

Table 1. Calculated polynomials in E which are obtained by solving the relation Eq. (2.5). 

j 𝐸0 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 

0 1 0 0 0 0 0 

1 1 0 0 0 0 0 

2 1 -0.5 0 0 0 0 

3 1 -0.17 0 0 0 0 

4 0.42 -0.5 0.04 0 0 0 

5 0.45 -0.17 0.01 0 0 0 

6 0.12 -0.23 0.04 -0.0013 0 0 

7 0.14 -0.07 0.01 -0.0001 0 0 
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It is observed that the polynomials can be written as a polynomial that combines all the 

odd and the even terms of Eq. (2.5). This coefficient satisfies the recursion relation that 

we got above in Eq. (3.4). 

Table 2 displays the calculated energies for the ground and the first excited states 

for Eq. (3.4) which for the quartic anharmonic oscillator. The energies were obtained by 

our numerical method when the number of iterations is 160. The degeneracy of the two 

lowest states in the double-well potential is shown in the table. In figure 3, we plotted the 

results of the energies for the ground, first, and second excited states in DWP with 

parameters β=3 and 𝑍2 = 1. These energies were obtained by means of 160 iterations. 

Table 2. The calculated the ground and the first excited states energies for DWP. 

𝑍2 Parity E 

𝑍2 = 0             + 

- 

   1.060 362 090 484 172 

   3.799 673 029 801 485 

𝑍2 = 1             + 

- 

   0.657 653 005 180 715 

   2.834 536 202 119 293 

𝑍2 = 5             + 

- 

  -3.410 142 761 239 825 

  -3.250 675 362 289 231 

𝑍2 = 10             + 

- 

-20.633 581 690 973 539 

-20.633 557 834 357 433 

𝑍2 = 15             + 

- 

-50.841 454 633 550 270 

-50.841 474 252 254 841 
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Figure 3. The symmetric double-well potential, the energies in the ground, the first 

and the second excited states. 

Figure 4. The ground-state of the even (a) and odd(b) wave functions for the 

anharmonic oscillator,  𝑍2 = 5. 

 

 

 

 

 

 

 

 

 

3.1.3. The wave functions of double-well potential 

 Since the potential is symmetric, as it is shown in Figure 1, the eigenfunctions 

should be symmetric. Thus, the wave function would be either even or odd, leading to the 

condition 𝛹(0) = 0 for odd and 𝛹′(0) = 0 for even. 

 

 

 

 

 

 

                                      (a)                                                            (b) 
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Figure 5. The first excited-state of even (a) and odd (b) wave functions for the 

anharmonic oscillator, 𝑍2 = 5.      

 

 

 

 

 

 

                        (a)                                                           (b) 

      

 

Plots of the initial eigenfunctions of the double-well potential appear in Figures 4 

and 5.  The figures show the ground- and the first excited states wave functions obtained 

using the iteration method for  𝑍2 = 5, and in the range of −3 ≤ 𝑥 ≥ 3, where we 

observe even function 𝛹0 and odd function 𝛹1. 
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Figure 6. The PT-symmetry breaking asymmetric double-well potential. 

3.2.1. The iterative method for PT-symmetry breaking double-well potential 

The example presented here shows results for the eigenvalues and the 

eigenfunctions for the PT-symmetry breaking for asymmetric double-well potential, (see 

Figure 6). The potential can be expressed as in the following Hamiltonian,   

       𝐻 =
𝑃2

2𝑚
− 𝑍2𝑥2 + 𝑥4 + 𝑖𝑎𝑥.                            (3.5) 

 

 

 

 

 

 

 

 

The obtained recursion relation for this potential is giving by 

𝑎𝑗(𝐸) =
[4𝛽𝑗−6𝛽−𝐸]𝑎𝑗−2(𝐸)−[4𝛽2+𝑍2]𝑎𝑗−4(𝐸)+𝑎𝑗−6(𝐸)+𝑖𝑔𝑎𝑗−3(𝐸)

𝑗(𝑗−1)
,                (3.6)  

 where 𝑔 is the constant a. 

3.2.2. Computation the eigenvalues of PT-symmetry breaking asymmetric double-well 

The eigenenergies can be solved simply by our numerical approach for Eq. (3.6). 

In Table 3, we generate the convergence for the ground state for selected values of 𝑎, 𝑍2 

and where 𝛽 = 3. The value of β is arbitrary which influenced the speed of convergence. 

To verify the accuracy of our result, let us compare the present result for the PT- 
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symmetry breaking for asymmetric double-well potential with the result of 𝑉(𝑥) = 𝑥4 +

𝑖𝑎𝑥 potential when 𝑍2 = 0. We observed that we got the same results that confirms the 

validity of our result. In addition, in Table 3 we found that the energies are decreasing as 

the value of 𝑍2 is increased, which is the same as what happened with the potential 

𝑉(𝑥) = −𝑍2𝑥2 + 𝑥4, (see Table 2). 

Table 3. Calculated energies of the −𝑍2𝑥2 + 𝑥4 + 𝑖𝑎𝑥 when 𝛽 = 3, 𝐼 = 100. 

𝑍2  a Ground state energy 

0 

 

 

0 

1/2 

1 

1.060 362 090 484 182 899 

1.093 466 139 188 256 564 

1.194 489 941 700 681 387 

1 0 

1/2 

1 

0.657 653 005 180 715 123 

0.709 766 641 840 917 137 

0.874 018 501 170 905 018 

10 0 

1/2 

1 

-0.746 861 430 490 580 877 

-0.608 541 702 234 180 966 

-0.329 658 719 536 922 472 

15 0 

1/2 

1 

-10.986 879 892 897 338  

-11.061 490 126 645 762 828 

-2.319 216 019 191 387 423 
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Table 4, below, shows the rate of convergence when the number of iterations 

changes. It is apparent that the convergence is increased if we increased the number of 

iteration. This iteration method gives accurate results for the eigenvalues; the 

convergence is apparent in 27 digits when the number of iterations was around 500 and 

800.  

Table 4. The eigenvalues for PT-symmetry breaking DWP for different value for I 

Iteration  Ground state energy 

20 0.873 

80 0.874 018 497 

100 0.874 018 501 105 

160 0.874 018 501 170 905  

240 0.874 018 501 170 905 018  

400 0.874 018 501 170 905 018 521 306  

500 0.874 018 501 170 905 018 521 306 261  

800 0.874 018 501 170 905 018 521 306 261 741 242 634 813 750 935 387  

 

3.2.3. The wave functions of the PT-symmetry breaking asymmetric double-well                                                              

Once we obtained the eigenvalues for the potential 𝑉(𝑥) = −𝑍2𝑥2 + 𝑥4 + 𝑖𝑎𝑥 

using the Gaussian function by the iteration approach, the wave functions are calculated 

using (2.10). In Figure 7 and 8 we show the calculated wave functions for the ground and 

first excited states. In both figures, (a) and (b) represent the real and the imaginary parts 

of the ground and first excited states. 



16 

 

Figure 7. The real and the imaginary parts of the ground state wave function for 

−𝑍2𝑥2 + 𝑥4 + 𝑖𝑎𝑥; (a) the real and (b) the imaginary. 

Figure 8. The real and the imaginary parts of the first excited state wave function 

for −𝑍2𝑥2 + 𝑥4 + 𝑖𝑎𝑥; (a) the real and (b) the imaginary. 

𝑃𝑇 𝛹0(𝑥) = −𝛹0(𝑥) 

𝑃𝑇 𝛹1(𝑥) = −𝛹1(𝑥) 

 

 

 

 

 

 

                                     (a)                                                                (b) 

 

            

 

 

 

 

                                    (a)                                                                (b) 

    

The real part of the ground and first excited states wave functions are odd, and the 

imaginary part for both states (ground and first excited states) are odd. Thus, PT- 

symmetry is broken since the eigenfunctions of a non-Hermitian Hamiltonian are not the 

eigenfunctions of the PT operator. 



17 

 

3.3.1 The iterative method for 𝑖𝑥3 + 𝑖𝑎𝑥 potential 

The Schrödinger equation for the complex cubic oscillator takes the form  

−
𝑑2𝛹

𝑑𝑥2 + (𝑖𝑥3 + 𝑖𝑎𝑥)𝛹(𝑥) = 𝐸𝛹(𝑥),                                        (3.7) 

where Ψ(x) is a Gaussian function Eq. (7). Moreover, a is a real number. 

The recursion relation obtained using Eq. (2.1) and Eq. (3.7) is 

𝑎𝑗(𝐸) =
[4𝛽𝑗−6𝛽−𝐸]𝑎j−2(𝐸)−[4𝛽2]𝑎𝑗−4(𝐸)+𝑖𝑎𝑗−5(𝐸)+𝑖𝑔𝑎𝑗−3(𝐸)

𝑗(𝑗−1)
                      (3.8) 

where g is the constant a. 

3.3.2. The eigenvalues for PT-symmetry breaking 𝑖𝑥3 + 𝑖𝑎𝑥 

The main interest in studying PT-symmetry breaking potentials is focused on 

proving the reality and the analyticity of the spectrum. We obtain the eigenvalues by 

using the recursion relation above, Eq. (3.8). Table 5 represents the rate of convergence 

for the ground and first excited states energies when we use the iteration method. We 

obtain converging lower bounds to the real and the imaginary parts of the spectrum. To 

illustrate, we have only considered the ground and first excited states energies for PT-

symmetry breaking potential for different numbers of iteration in Table 6. We compare 

our result with EMM and MFR results. Table 6 is an examination of our results using the 
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iteration method with others [5,7]. Our results make a clear comparison between the 

present results and others. 

Table 5. The ground and the first excited states energies for 𝑖𝑥3 + 𝑖𝑎𝑥. 

I Ground state First-excited state 

20 

50 

1.894 

1.856 102  

6.576 

5.149 956 

100 1.856 110 766 050  5.150 168 955 811  

200 

400 

800 

1.856 110 766 056 684 162 

1.856 110 766 056 684 162 135  

1.856 110 766 056 684 162 135 435 

661  

5.150 168 955 614 649 670 

5.150 168 955 614 650 048 905  

5.150 168 955 614 650 048 905 575 

658  

 

Table 6. The calculated ground energies of 𝑖𝑥3 + 𝑖𝑎𝑥 potential. 

g Ground state energy Refs. [7] Refs. [5] 

0 1.1562670681075082420 1.1562673 1.15626695 

1 1.8561107115851683097 1.8561128 1.85611065 

2 2.7467401183563921144 2.7467434 2.74673952 

3 3.7985546301426592457 3.7985559 3.79855387 
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Figure 9. (a) the real and (b) the imaginary ground state wave function for 𝑖𝑥3 + 𝑖𝑎𝑥. 

Figure 10. (a) the real and (b) the imaginary first-excited state wave function for 

𝑖𝑥3 + 𝑖𝑎𝑥. 

3.3.3. The wave functions for 𝑖𝑥3 + 𝑖𝑎𝑥 

 We considered the wave functions for the ground and first excited states and 

sketched them in Figures 9 and10. Figure (a) represent the real parts of the ground and 

first excited states. Figure (b) represent the imaginary parts of both states. The real and 

imaginary parts of the wave functions are even and odd for the ground and first excited 

states. 

 

 

  

 

   (a)                                                                    (b) 

 

 

 

 

 

 

                                     (a)                                                                 (b) 
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3.4.1. The iterative method for complex quartic oscillator 𝑥4 + 𝑖𝑎𝑥 

In this example, we examine the PT-symmetry breaking potential 𝑥4 + 𝑖𝑎𝑥 which 

leads the Schrödinger equation to the form  

−
𝑑2𝛹

𝑑𝑥2 + (𝑥4 + 𝑖𝑎𝑥)𝛹(𝑥) = 𝐸𝛹(𝑥),                              (3.9) 

where Ѱ(𝑥) is a Gaussian Function Eq. (2.2) and a is a real number. 

For the quartic oscillator, the obtained recursion equation takes the form 

𝑎𝑗(𝐸) =
[4𝐵𝑗−6𝐵−𝐸]𝑎𝑗−2(𝐸)−[4𝐵2]𝑎𝑗−4(𝐸)+𝑎𝑗−6(𝐸)+𝑖𝑔𝑎𝑗−3(𝐸)

𝑗(𝑗−1)
                     (3.10) 

where g is the constant a. 

3.4.2. Computing the eigenvalues for PT-symmetry breaking 𝑥4 + 𝑖𝑎𝑥 

Some previous works [8,14,15] developed techniques to study the PT-symmetry 

breaking Hamiltonian. Within the framework of the iterative approach mentioned in the 

Chapter Ⅱ, the complex quartic oscillator eigenenergies are calculated by using Eq. 

(3.10). We calculated the energies for the ground and first excited states. In Table 7, we 

display the energies for the 𝑥4 + 𝑖𝑎𝑥 using the Gaussian function by the iteration method. 

The comparsion of our calculated eigenvalues with the results from reference [8] is 

presented in Table 8. We compare the present results for the ground state eigenvalues 

with the EMM [8] results by adjusting the value of a.This comparsion exhibits the 

accuracy of our strategy. It is observed that the obtained eigevalues are in excellent 

agreement with the EMM [8] results. 
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Table 7. Calculated energies for 𝑥4 + 𝑖𝑎𝑥 , β=1, a=1/2. 

I Ground state First-excited state 

50 1.094 981 3.819 790 

100 1.093 466 139   3.803 502 880  

150 1.093 466 139 188   3.803 502 880 349   

200 

300 

500 

800 

1.093 466 139 188 256 564  

1.093 466 139 188 256 564 273  

1.093 466 139 188 256 564 273 285 

1.093 466 139 188 256 564 273 285 

106 131 

3.803 502 880 349 278 336 

3.803 502 880 349 278 334 945 

3.803 502 880 349 278 334 945 227 

3.803 502 880 349 278 334 945 227 

882 965 

 

        

       Table 8. Comparison of the eigenvalues for 𝑥4 + 𝑖𝑎𝑥  with those of EMM. 

a Ground state energy  Refs. [8] 

0 1.060 362 090 491  1.060 362 090 481  

0.5 1.093 466 139 192  1.093 466 139 185 

1 1.194 489 941 700  1.194 489 941 696 

2 1.630 730 794 298  1.630 730 794 288  

3 2.622 699 057 180  2.622 699 057 103  
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Figure 11. The real and the imaginary parts of the ground state wave function for 𝑥4 +
𝑖𝑎𝑥; (a) the real and (b) the imaginary parts. 

Figure 12. The real and the imaginary parts of the first-excited state wave function 

for 𝑥4 + 𝑖𝑎𝑥; (a) the real and (b) the imaginary parts. 

3.4.3. The wave function for 𝑥4 + 𝑖𝑎𝑥 potential 

Similar to the complex cubic oscillator, the real part of the wavefunction is even, 

and the imaginary part is odd. In Figure 11 and 12, we have plotted the wave functions 

for the real and the imaginary parts of the ground and the first excited states. These plots 

were generated with the values of  𝑥 between −8 ≤ 𝑥 ≤ 8. 

 

 

 

 

 

                               (a)                                                                     (b) 

 

 

 

 

 

 

                                 (a)                                                                   (b) 
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CHAPTER IV 

CONCLUSION 
 

 To summarize, we have described in detail the use of an iterative approach to the 

double-well potentials. As such, for a deep well potential, the energy difference between 

the two levels are small for deep well potentials. This condition requires an efficient 

calculation method to handle the accuracy and convergence.  

In addition, we considered perturbations of PT-symmetric Hamiltonians. We 

considered a particular way to truncate the power series expansion. By using the iteration 

method, we were able to produce the converging bounds for the complex energies. We 

confirmed the general results which derived by other methods. Using readily accessible 

algebraic programming software, we obtained tight, lower bounds to the real and 

imaginary parts of the discrete state range. 

      In this thesis, we presented a precise and simple approach for implementation in the 

study of various potentials energies. We proved that an iteration method is an accurate 

approach to numerically extract the eigenvalues. Our results conclude that the iterative 

method is very easy to implement for calculating double-well potential and PT-

symmetric potentials.  
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APPENDIX A  

The Mathematica code for −𝑍2𝑥2 + 𝑥4 + 𝑖𝑎𝑥 

 

The code below is formed to find the eigenvalues for the potential −𝑍2𝑥2 + 𝑥4 + 𝑖𝑎𝑥. 

ClearAll ["Global`*"] 

n=100;(*Number of iterations*) B=3;(*Value of Beta*) g=1; (*Value of g*)   Z=0; 

(*Value of Z)T=Table[Subscript[m,i,j],{i,n},{j,1}];(*Creating a column matrix to store 

iterated polynomials*) 

For[i=2,i<n+1,i++,For[j=1,j<2,j++,T[[i,j]]=0]] 

Q=T;P=T;omg=T;A=T;Q=T;R=T;S=T;K=T;F=T; 

For[i=1,i<n+1,i++,omg[[i,1]]=(4*B*(i-1)-6*B-X)]; A[[1,1]]=1;A[[2,1]]=1; 

For[i=3,i<n+1,i++,(*This loop iterates the recursion relation*) 

(P[[i,1]]=Expand[((omg[[i,1]]*A[[i-2,1]]))]; 

If[i>4,Q[[i,1]]=Expand[(-Z-4*B*B)*A[[i-4,1]]]]; 

If[i>6,R[[i,1]]=Expand[A[[i-6,1]]]]; 

If[i>3,S[[i,1]]=Expand[I*g*A[[i-3,1]]]]; 

A[[i,1]]=Expand[((P[[i,1]]+Q[[i,1]]+R[[i,1]]+S[[i,1]]))/((i-2)*(i-1))];)] 

pa=Expand[A[[n,1]]];pb=Expand[A[[n-1,1]]]; 

ZZ=Expand[Re[pa]*Re[pb]+Im[pa]*Im[pb]]; 

FindRoot[ZZ==0,{X,1},WorkingPrecision->20 
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APPENDIX B 

The Mathematica code for 𝑥4 + 𝑖𝑎𝑥 

 

The code is formed to calculate the eigenvalues for the potential 𝑥4 + 𝑖𝑎𝑥. 

ClearAll["Global`*"] 

n=100;(*Number of iterations*)  B=1;(*Value of Beta*)   g=3; (*Value of g*) 

T=Table[Subscript[m,i,j],{i,n},{j,1}];(*Creating a column matrix to store iterated 

polynomials*) 

For[i=2,i<n+1,i++,For[j=1,j<2,j++,T[[i,j]]=0]] 

Q=T;P=T;omg=T;A=T;Q=T;R=T;S=T; 

For[i=1,i<n+1,i++,omg[[i,1]]=(4*B*(i-1)-6*B-X)]; A[[1,1]]=1;A[[2,1]]=1; 

For[i=3,i<n+1,i++,(*This loop iterates the recursion relation*) 

(P[[i,1]]=Expand[((omg[[i,1]]*A[[i-2,1]]))]; 

If[i>4,Q[[i,1]]=Expand[(-4*B*B)*A[[i-4,1]]]]; 

If[i>6,R[[i,1]]=Expand[A[[i-6,1]]]]; 

If[i>3,S[[i,1]]=Expand[I*g*A[[i-3,1]]]]; 

A[[i,1]]=Expand[((P[[i,1]]+Q[[i,1]]+R[[i,1]]+S[[i,1]]))/((i-2)*(i-1))];)] 

pa=Expand[A[[n,1]]];pb=Expand[A[[n-1,1]]]; 

ZZ=Expand[Re[pa]*Re[pb]+Im[pa]*Im[pb]]; 

 FindRoot[ZZ==0,{X,1},WorkingPrecision->20]    
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