
ABSTRACT

DEPARTMENT OF MATHEMATICAL AND COMPUTER SCIENCES

WALKER, REGINALD LOUIS B.S., MORRIS BROWN COLLEGE, 1981

THE IMPLEMENTATION OF A GRAPHICS PACKAGE IN ADA

Advisor: Dr. Benjamin Martin

Thesis dated July 1986

The motivation for this thesis was the need for an

inexpensive graphics package that could be used to support

courses in computer graphics and computer vision in the

Mathematical and Computer Sciences Department of Atlanta

University. The implemented graphics package used a portion

of the CORE Graphics System and the hardware used consisted

of Zenith Z-100 micro-computers in the Micro-computer

Laboratory of Atlanta University. This graphics system was

initially implemented in the Microsoft Pascal programming

language. Due to limitations inherent in Pascal, the

initial graphics package did not represent the best design

practices. The graphics package was converted and expanded

using the Ada programming language. The Ada programming

language had the ability to satisfy all of the objectives of

this project which were: to create a graphics package that

was portable, expandable, represented the best software

design practices, and able to support computer courses at

Atlanta University. Discussed in this thesis are the basic

features of the extended graphics system in Ada, the general

principles, an operation guide, and problems encountered

using the CORE Graphics System.

THE IMPLEMENTATION OF A GRAPHICS PACKAGE IN ADA

A THESIS

SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE

BY

REGINALD LOUIS WALKER

SCHOOL OF ARTS AND SCIENCES

ATLANTA, GEORGIA 30314

JULY 1986

ACKNOWLEDGMENTS

I would like to express my thanks to Dr. Benjamin

Martin, Dr. C. Bennett Setzer, and Dr. Robert Bozeman for

their encouragement, instruction, and examples during my

pursuit of this degree. I would like to thank my family and

friends for their encouragement. Special thanks is

expressed to my mother for her inspiration and patience.

TABLE OF CONTENTS

PAGE

INTRODUCTION 1

CHAPTER

I. THE EXTENDED GRAPHICS SYSTEM IN ADA 3

II. THE GLOBAL DATA STRUCTURES, VARIABLES,

AND CONSTANTS 6

III. THE SYSTEM COMMANDS 18

IV. ERROR MESSAGES 34

V. LINE GENERATION 39

VI. PROBLEMS ENCOUNTERED USING

THE CORE GRAPHICS SYSTEM 42

CONCLUSION 47

BIBLIOGRAPHY 48

APPENDIXES

APPENDIX A

A BRIEF OVERVIEW OF ADA 49

APPENDIX B

SOURCE CODE 50

INTRODUCTION

The motivation for this project was the need for an

inexpensive graphics package that could be used to support

courses in computer graphics and computer vision in the

Mathematical and Computer Sciences Department of Atlanta

University. The word "package" is used loosely here to mean

a group of routines. Graphics packages that were available

were too expensive or hosted by unsuitable languages, such

as BASIC. Since Pascal was the major language used

throughout the computer science curriculum at Atlanta

University, Pascal was chosen to be the host language for

the CORE Graphics System.

The CORE system creates pictures by drawing lines from

one point to another, positioning an imaginary pen at a

given point, and changing pen colors. Points on the medium

(CRT, paper, etc.) are referenced in normalized coordinates

so that the system is as device independent as possible. In

normalized coordinates, the medium measures 1 unit in height

and 1 unit in width. The lower left corner is the origin

and has coordinates (0.0,0.0); the upper right corner has

coordinate (1.0,1.0); and the middle has coordinates

(0.5,0.5). The commands, documented fully in the chapter

entitled THE SYSTEM COMMANDS, utilize these concepts.

1

Graphics become especially powerful through the ability

to create complicated pictures from previously created

pictures altered to fit into higher-level pictures. This

implementation of the CORE Graphics System utilizes the

three most commonly used geometric transformations:

translation, rotation, and scaling. Individual pictures are

stored in groups of basic graphics instructions called

segments. Each segment can be either visible or invisible.

Each segment can be translated, rotated or scaled

individually to create an infinite number of variations on

any given theme.

In implementing this system, a working knowledge of

computer graphics was developed and the potential power that

a graphics package can give the user was demonstrated.

CHAPTER 1

THE EXTENDED GRAPHICS SYSTEM IN ADA

The CORE system was derived from a proposal for a

standard graphics system developed by the Graphics Standards

Planning Committee of the Association for Computing

Machinery. This system was designed to be device

independent and contains basic graphics primitives from

which more complex or special-purpose graphics routines may

be built. The idea is that a program written for the CORE

system can be run on any installation's CORE system. The

reference used to implement the CORE system was: COMPUTER

GRAPHICS;A Programming Approach. This book, which was

written by Steven Harrington, contained a very detailed

description of a CORE subset, including pseudo-code

routines. An advantage of developing the system locally was

that the actual algorithms used would be available for study

in courses. The initial implementation was carried out by

G. Payne of Atlanta University [Payne]. The Ada

implementation is a translation and extension of this

initial implementation in Pascal.

After the successful implementation of the CORE system

in Pascal, two issues arose that prompted further

4

development of this graphics package. The first issue was

due to the limitations inherent in Pascal, in that the

package did not represent the best software design

practices. The second issue concerned research efforts in

computer graphics and computer vision that needed a dynamic

and hierarchical concept of a graphics image. Before these

issues arose, several faculty members in the Mathematical

and Computer Sciences Department became involved with

programming in Ada, especially Dr. Benjamin Martin and Dr.

Bennett Setzer. Also, some of the faculty proposed that Ada

become the basic language used throughout the computer

science curriculum. This led to the implementation of the

CORE graphics system in Ada.

The CORE Graphics System was implemented on the Zenith

Z-100 micro-computers using Z-DOS (Zenith's version of

Microsoft's MS-DOS Operating System). The initial

implementation was performed in Microsoft Pascal. The

initial subset of the CORE system supported included 2

dimensional pictures, segments, filled polygons, and

transformations [PAYNE]. No windowing or clipping and

mapping to viewports were supported by the initial

implementation. This was the starting point for the

graphics system in Ada. The initial Ada version was

implemented by converting the Pascal routines to Ada. The

Ada version was implemented in JANUS Ada, a subset

implementation for the Ada programming language. JANUS Ada

is produced by R&R Software for the Z80 and 8088 based

machines. The initial Ada implementation has been extended

to include windowing and clipping, mapping to viewports, and

3 dimensional pictures.

CHAPTER 2

THE GLOBAL DATA STRUCTURES, VARIABLES,

AND CONSTANTS

The CORE Graphics System uses eight basic data

structures to store instructions, alter instructions and

display the drawings. These data structures are the

CLIPPING ARRAY, the CLIPPING POLYGON ARRAY, the DISPLAY FILE

ARRAY, the 2D POLYGON ARRAY, the 3D POLYGON ARRAY, the

SEGMENT ARRAY, the 2D TRANSFORMATION MATRIX ARRAY, and the

3D TRANSFORMATION MATRIX ARRAY.

The CLIPPING ARRAY stores information that sets up

clipping plane test conditions for the "old" endpoint of the

next line segment to be clipped. Each entry is composed of

an X coordinate (XS) for a vertex, a Y coordinate (YS) for a

vertex, a Z coordinate (ZS) for a vertex, and the calculated

test conditions for the old endpoints of the four window

clipping planes (OPTTE). The array holds six XS, YS, and ZS

component entries and four OPTTE entries.

The CLIPPING POLYGON ARRAY stores the polygon side

instructions. Each instruction is composed of an operation

code (IT), an X coordinate (XT), a Y coordinate (YT), and a

Z coodinate (ZT). This array holds 32 entries.

The DISPLAY FILE ARRAY stores all graphic instruction.

Each instruction is composed of an operation code (DF_OP),

an X coordinate (DF_X), and a Y coordinate (DF_Y). This

array can hold a maximum of 2000 instructions.

The 2 dimensional POLYGON ARRAY stores information

pertaining to polygons. Each entry is composed of an X

coordinate (XARRAY) for a vertex, a Y coordinate (YARRAY)

for a vertex, a maximum Y value for the side (YMAX), a

minimum Y value for the side (YMIN), the X value

corresponding to the maximum Y value for the side (XA), and

the inverse slope of the side (DXARRAY). This array can

hold a maximum of 31 entries.

The 3 dimensional POLYGON ARRAY stores information

pertaining to polygons. Each entry is composed of an X

coordinate (XARRAY) for a vertex, a Y coordinate (YARRAY)

for a vertex, a Z coordinate (ZARRAY) for a vertex, a

maximum Y value for the side (YMAX), a minimum Y value for

the side (YMIN), the X value corresponding to the maximum Y

value for the side (XA), and the inverse slope of the side

(DXARRAY). This array can hold a maximum of 31 entries.

The SEGMENT ARRAY stores the information needed to

identify a segment's collection of instructions in the

DISPLAY FILE ARRAY. Each entry is composed of a pointer to

the first instruction in the DISPLAY FILE ARRAY associated

8

with the segment (SEG_START), the number of instructions

associated with the segment (SEG_SIZE), an indicator for

whether the segment is to be visible when the picture is to

be drawn (VISIBLE), the number of radians the segment is to

be rotated (ANGLE), the X scaling factor for the segment

(SCALE_X), the Y scaling factor for the segment (SCALE_Y),

the X translation for the segment (TRANS_X), and the Y

translation for the segment (TRANS_Y). This array can hold

a maximum of 2000 entries.

The 2 dimensional TRANSFORMATION MATRIX ARRAY (H)

stores the information needed to alter or transform a

point. This array is a 3 X 2 matrix.

The 3 dimensional TRANSFORMATION MATRIX ARRAY (TMAT)

stores information pertaining to translation and rotation

about an axis to create a viewing transformation. This

array is a 4 X 3 matrix.

The following pages list a brief description of each

global constant and variable used in the system.

ANGLE is an array in which each entry indicates the

number of radians a segment is to be rotated about the point

indicated by the array entries of TRANS_X and TRANS_Y.

BACK represents the back plane position.

BAC_Z represents the back plane position in view plane

coordinates.

B_FLAG indicates whether back clipping is used or not.

COUNT_IN represents the number of polygon sides

remaining to be processed.

COUNT_OUT represents a counter for the number af sides

on a clipped polygon.

DFSIZE represents the maximum number of entries that

can reside in the DISPLAY FILE ARRAY.

DF_OP is an array in which each entry represents the

operation code for a graphics instruction.

DF_PEN_X represents the X coordinate of the current pen

position in normalized coordinates.

DF_PEN_Y represents the Y coordinate of the current pen

position in normalized coordinates.

DF_PEN_Z represents the Z coordinate of the current pen

position in normalized coordinates.

DF_X is an array in which each entry represents the X

coordinate of a graphics instruction.

DF_Y is an array in which each entry represents the Y

coordinate of a graphics instruction.

DX represents the change in the X coordinate.

DXARRAY is an array in which each entry represents the

inverse slope of a polygon side.

DXN represents the X coordinate of the view plane

normal.

10

DXP represents the X coordinate of the direction of

projection.

DXUP represents the X coordinate of the view-up

direction.

DY represents the change in the Y coordinate.

DYN represents the Y coordinate of the view plane

normal.

DYP represents the Y coordinate of the direction of

projection.

DYUP represents the Y coordinate of the view-up

direction.

DZ represents the change in the Z coordinate.

DZN represents the Z coordinate of the view plane

normal.

DZP represents the Z coordinate of the direction of

projection.

DZUP represents the Z coordinate of the view-up

direction.

D_VIS represents the distance between the view

reference point and the view plane.

E_FLAG indicates whether the screen is to be erased or

not.

FILLER represents the color of the pen when filling in

a polygon.

11

FREE represents the index of the next free DISPLAY FILE

entry.

FRONT represents the front plane position.

FRO_Z represents the front plane position in view plane

coordinates.

F_FLAG indicates whether front clipping is used or

not.

F_PEN_X represents the X coordinate of the pen position

in screen coordinates.

F_PEN_Y represents the Y coordinate of the pen position

in screen coordinates.

H is an array which represents the 2 dimensional

TRANSFORMATION ARRAY.

HEIGHT represents the difference between the starting

vertical pixel and the ending vertical pixel position.

H_END represents the ending vertical pixel position on

the screen.

H_START represents the starting vertical pixel position

on the screen.

IT is an array in which each entry represents the

operation code for a graphics instruction.

LINECHR represents the color of the pen.

NUM_SEGS represents the maximum number of segments that

can be described in the SEGMENT FILE ARRAY.

12

NOW_OPEN indicates the segment which is currently

open.

ON indicates whether polygons are to be filled.

OPTTE is an array which represents the test conditions

for the four window clipping planes.

PERS_FLAG indicates the type of projection (parallel or

perspective).

P_FLAG indicates if a polygon is being clipped.

RNDOFF represents a constant value for some small

number greater than any round-off error.

SCALE_X is an array in which each entry indicates the X

scaling factor to be used when drawing a segment.

SCALE_Y is an array in which each entry indicates the Y

scaling factor to be used when drawing a segment.

SCAN_DEC represents the amount of line spacing to be

used in the filling of a polygon. If the value is 1.0, the

filling will be single spaced. If the value is 2.0, the

filling will be double spaced.

SEG_SIZE is an array in which each entry represents the

number of instructions in the DISPLAY FILE ARRAY defining a

segment.

SEG_START is an array in which each entry represents

the location in the DISPLAY FILE ARRAY of the first

instruction defining a segment.

13

SOLID indicates whether the polygon is to be filled or

not.

SXP represents the parallel projection vector ratio for

the X coordinate.

SYP represents the parallel projection vector ratio for

the Y coordinate.

TMAT is an array in which each entry represents the

translation or rotation applied to a 3 dimensional image

about an axis.

TRANS_X is an array in which each entry indicates the X

translation to be applied to a segment.

TRANS_Y is an array in which each entry indicates the Y

translation to be applied to a segment.

VISIBLE is an array in which each entry indicates

whether a segment is visible or not.

VXH represents the right viewport clipping parameter.

VXH_HOLD represents the right viewport boundary.

VXL represents the left viewport clipping parameter.

VXL_HOLD represents the left viewport boundary.

VXP represents the X coordinate for the direction of

projection in view planes coordinates.

VYH represents the top viewport clipping parameter.

VYH_HOLD represents the top viewport boundary.

VYL represents the bottom viewport clipping parameter.

14

VYL_HOLD represents the bottom viewport boundary.

VYP represents the Y coordinate for the direction of

projection in view planes coordinates.

VZP represents the Z coordinate for the direction of

projection in view planes coordinates.

V_LAR represents a constant value for a very large

number approximating infinity.

WIDTH represents the difference between the starting

horizontal pixel position and the ending horizontal pixel

position.

WSX represents the window to viewport scale factor for

the X coordinate.

WSY represents the window to viewport scale factor for

the Y coordinate.

WXH represents the right window clipping parameter.

WXH_HOLD represents the right window boundary.

WXL represents the left window clipping parameter.

WXL_HOLD represents the left window boundary.

WYH represents the top clipping parameter.

WYH_HOLD represents the top window boundary.

WYL represents the bottom clipping parameter.

WYL_HOLD represents the bottom window boundary.

WJEND represents the ending horizontal pixel position

on the screen.

15

W_START represents the starting horizontal pixel

position on the screen.

XA is an array in which each entry represents the X

coordinate corresponding to the maximum Y coordinate of a

polygon side.

XARRAY is an array in which each entry represents the X

coordinate of a vertex of a polygon.

XC represents the X coordinate for the center of

projection in view plane coordinates.

XHM represents the right window clipping plane slope.

XLM represents the left window clipping plane slope.

XPCNTR represents the X coordinate of the center of

projection.

XR represents the X coordinate for the reference

point.

XS is an array in which each entry represents the X

coordinate of the point where a line segment intersects the

window boundary.

XT is an array in which each entry represents the X

coordinate of a vertex of a polygon.

YARRAY is an array in which each entry represents the Y

coordinate of a vertex of a polygon.

YC represents the Y coordinate for the center of

projection in view plane coordinates.

16

YHM represents the top window clipping plane slope.

YLM represents the bottom window clipping plane slope.

YMAX is an array in which each entry represents the

maximum Y coordinate of a polygon side.

YMIN is an array in which each entry represents the

minimum Y coordinate of a polygon side.

YPCNTR represents the Y coordinate of the center of

projection.

YR represents the Y coordinate for the reference

point.

YS is an array in which each entry represents the Y

coordinate of the point where a line segment intersects the

window boundary.

YT is an array in which each entry represents the Y

coordinate of a vertex of a polygon.

ZARRAY is an array in which each entry represents the Z

coordinate of a vertex of a polygon.

ZC represents the Z coordinate for the center of

projection in view plane coordinates.

ZPCNTR represents the Z coordinate of the center of

projection.

ZR represents the Z coordinate for the reference

point.

ZS is an array in which each entry represents the Z

17

coordinate of the point where a line segment intersects the

window boundary.

ZT is an array in which each entry represents the Z

coordinate of a vertex of a polygon.

The global data structures used in this implementation

of the CORE Graphics System are all coded in the package

bodies. These packages must be 'withed' and 'used' as the

first line in the user's program. The global constants and

variables are defined in a library package for each package

body.

CHAPTER 3

THE SYSTEM COMMANDS

CREA_SEG(N)

ARGUMENTS N:INTEGER

This command defines a segment composed of the

proceeding instructions. The value N is an integer used to

identify the segment and must range in value from 1 to

2000. A corresponding CLOS_SEG command must be used after

all instructions that make up the segment N are coded. For

example, suppose the command CREA_SEG(2) was issued. This

would identify the next group of instructions as being those

used to create segment number 2.

CLOS_SEG

This command indicates that the preceeding instruction

is the last one in the segment N. This command must be used

before another segment can be opened. For example, suppose

the segment created is segment number 2, CREA_SEG(2). This

segment is closed so that every instruction between

CREA_SEG(2) and CLOS_SEG will be used to draw segment number

2.

DLET_SEG(N)

ARGUMENTS N:INTEGER

18

19

This command indicates that a segment that has been

created is now to be deleted. The value N is an integer

used to identify the segment to be deleted and must range in

value from 1 to 2000. For example, suppose the command

DLET_SEG(2) was issued. This command would delete the

segment identified as segment number 2.

E_FLAG:=A

ARGUMENTS A:BOOLEAN

This command controls the erasure of the screen. The

value A must be either TRUE or FALSE. If A is TRUE, the

screen will be erased. If A is FALSE, the screen will not

be erased. For example, suppose the command E_FLAG:=TRUE is

issued. This will result in the screen being cleared before

another drawing is made.

INIT

This command initializes all variables used internally

by the graphics system. It must be the first graphics

command used in a program. It sets the initial pen position

to (0.0,0.0), the initial pen color to blue, the initial

polygon fill color to blue, the initial fill option to

unfilled, the initial window and viewport coordinates to

(0.0,1.0,0.0,1.0), and the polygon, front and back clipping

flags to false. Also, it sets the view depth to (0.0,0.0),

reference point to (0.0,0.0,0.0), view plane normal vector

20

to (0.0,0.0,-1.0), view distance to 0.0, view up point to

(0.0,0.0,0.0), and parallel projection vector to

(0.0,0.0,1.0).

LIN_ABS2(X,Y)

ARGUMENTS X:FLOAT

Y:FLOAT

This command draws a line from the current pen position

(Xo,Yo) to the point (X,Y). X and Y must be real values

representing the point to which the pen is to be moved in

normalized coordinates (-1.0OU1.0 and -1.0£Y<1.0). For

example, suppose the current pen point is (0.1,0.1), and the

command LIN_ABS2(0.2,0.3) was issued. This command would

cause a line to be drawn from (0.1,0.1) to (0.2,0.3).

LIN_ABS3(X,Y,Z)

ARGUMENTS X:FLOAT

Y:FLOAT

Z:FLOAT

This command draws a line from the current pen position

(Xo,Yo,Zo) to the point (X,Y,Z). X, Y and Z must be real

values representing the point to which the pen is to be

moved in normalized coordinates (-1.0<X<1.0, -1.0<Y<1.0 and

-1.0£Z<1.0). For example, suppose the current pen point is

(0.1,0.1,0.1), and the command LIN_ABS3(0.2,0.2,0.3) was

issued. This command would cause a line to be drawn from

21

(0.1,0.1,0.1) to (0.2,0.2,0.3).

LIN_REL2(X,Y)

ARGUMENTS X:FLOAT

Y:FLOAT

This command draws a line from the current pen position

(Xo,Yo) to the point X units horizontally and Y units

vertically. X and Y must be real values (-1.0OC<1.0 and

-1.0<Y<1.0). For example, suppose the current pen point is

(0.1,0.1), and the command LIN_REL2(0.2,0.3) was issued.

This command would cause a line to be drawn from (0.1,0.1)

to (0.3,0.4).

LIN_REL3(X,Y,Z)

ARGUMENTS X:FLOAT

Y:FLOAT

Z:FLOAT

This command draws a line from the current pen position

(Xo,Yo,Zo) to the point X units horizontally, Y units

vertically, and Z units diagonally. X, Y and Z must be real

values (-1.0OU1.0, -1.0<.Y<1.0, and -l.(KZ<1.0). For

example, suppose the current pen point is (0.1,0.1,0.1), and

the command LIN_REL3(0.2,0.2,0.3) was issued. This command

would cause a line to be drawn from (0.1,0.1,0.1) to

(0.3,0.3,0.4).

MOV_ABS2(X,Y)

22

ARGUMENTS X:FLOAT

Y:FLOAT

This command moves the pen point from the current pen

position (Xo,Yo) to the point (X,Y). X and Y must be real

values representing the point to which the pen is to be

moved in normalized coordinates (-1.0<X<1.0 and

-1.0<Y<1.0). For example, suppose the current pen point is

(0.1,0.1), and the command MOV_ABS2(0.2,0.3) was issued.

This command would cause the pen point to be moved from

(0.1,0.1) to (0.2,0.3).

MOV_ABS3(X,Y,Z)

ARGUMENTS X:FLOAT

Y:FLOAT

Z:FLOAT

This command moves the pen point from the current pen

position (Xo,Yo,Zo) to the point (X,Y,Z). X, Y, and Z must

be real values representing the point to which the pen is to

be moved in normalized coordinates (-1.0OCO..0, -1.0<Y<_1.0,

and -l.(KZ<1.0). For example, suppose the current pen

position is (0.1,0.1,0.1), and the command

MOV_ABS2(0.2,0.2,0.3) was issued. This command would cause

the pen point to be moved from (0.1,0.1,0.1) to

(0.2,0.2,0.3).

MOV_REL2(X,Y)

23

ARGUMENTS X:FLOAT

Y:FLOAT

This command moves the pen point from the current pen

position (Xo,Yo) to the point X units horizontally and Y

units vertically. X and Y must be real values (-1.0OCO..0

and -1.0<Y<1.0). For example, suppose the current pen point

is (0.1,0.1), and the command MOV_REL2(0.2,0.3) was issued.

This command would cause the pen point to be moved from

(0.1,0.1) to (0.3,0.4).

MOV_REL3(X,Y,Z)

ARGUMENTS X:FLOAT

Y:FLOAT

Z:FLOAT

This command moves the pen point from the current pen

position (Xo,Yo,Zo) to the point X units horizontally, Y

units vertically, and Z units diagonally. X, Y and Z must

be real values (-1.0OU1.0, -1.0<y<1.0, and -1.0.<Z<1.0).

For example, suppose the current pen point is (0.1,0.1,0.1),

and the command MOV_REL3(0.2,0.2,0.3) was issued. This

command would cause the pen point to be moved from

(0.1,0.1,0.1) to (0.3,0.3,0.4).

M_PIC_CU

This command displays the drawing created by the

previous graphics commands.

24

POL_ABS2(XARRAY,YARRAY,N)

ARGUMENTS XARRAY:ARRAY(1..31) OF FLOAT

YARRAY:ARRAY(1..31) OF FLOAT

N:INTEGER

This command draws a polygon using the real coordinates

contained in the arrays XARRAY and YARRAY as its vertices in

the polygon. The value N is an integer representing the

number of polygon sides. For example, suppose the command

POL_ABS2(XARRAY,YARRAY,4) is issued. This command would

result in a four(4) sided polygon being created using the

contents of XARRAY and YARRAY as the vertices.

POL_ABS3(XARRAY,YARRAY,ZARRAY,N)

ARGUMENTS XARRAY:ARRAY(1..31) OF FLOAT

YARRAY:ARRAY(1..31) OF FLOAT

ZARRAY:ARRAY(1..31) OF FLOAT

N:INTEGER

This command draws a polygon using the real coordinates

contained in the arrays XARRAY, YARRAY, and ZARRAY as its

vertices in the polygon. The value N is an integer

representing the number of polygon sides. For example,

suppose the command POL_ABS3(XARRAY,YARRAY,ZARRAY,4) was

issued. This command would result in a four(4) sided

polygon to be created using the contents of XARRAY, YARRAY,

and ZARRAY as its vertices.

25

P0L_REL2(XARRAY,YARRAY,N)

ARGUMENTS XARRAY:ARRAY(1..31) OF FLOAT

YARRAY:ARRAY(1..31) OF FLOAT

N:INTEGER

This command draws a polygon using the real relative

coordinates contained in the arrays XARRAY and YARRAY as its

vertices. The value N is an integer representing the number

of polygon sides. For example, suppose the command

POL_REL2(XARRAY,YARRAY,4) was issued. This command would

create a four(4) sided polygon using the relative

coordinates contained in XARRAY and YARRAY as its vertices.

POL_REL3(XARRAY,YARRAY,ZARRAY,N)

ARGUMENTS XARRAY:ARRAY(1..31) OF FLOAT

YARRAY:ARRAY(1..31) OF FLOAT

ZARRAY:ARRAYd. .31) OF FLOAT

N:INTEGER

This command draws a polygon using the real relative

coordinates contained in the arrays XARRAY, YARRAY, and

ZARRAY as its vertices. The value N is an integer

representing the number of polygon sides. For example,

suppose the command POL_REL3(XARRAY,YARRAY,ZARRAY,4) was

issued. This command would create a four(4) sided polygon

using the relative coordinates contained in XARRAY, YARRAY,

and ZARRAY as its vertices.

26

RENA_SEG(No,Nn)

ARGUMENTS No:INTEGER

Nn:INTEGER

This command indicates that a segment that has been

created is now to be renamed. The value No is an integer

used to identify the segment to be renamed and the value Nn

is an integer used to identify the new name to be given to

the segment. No and Nn must range in value from 1 to 2000.

For example, suppose the command RENA_SEG(1,2) was issued.

This command would rename the segment number 1 as segment

number 2.

SET_BAC_CLIP(ON_OFF)

ARGUMENTS ON_OFF:BOOLEAN

This command turns the back clipping flag on or off. If

ON_OFF is TRUE, the back plane will be clipped. If ON_OFF

is FALSE, the back plane will not be clipped. For example,

suppose the command SET_BAC_CLIP(TRUE) was issued. This

command would cause the back plane to be clipped.

SET_FRO_CLIP(ON_OFF)

ARGUMENTS ON_OFF:BOOLEAN

This command turns the front clipping flag on or off.

If ON_OFF is TRUE, the front plane will be clipped. If

ON_OFF is FALSE, the front plane will not be clipped. For

example, suppose the command SET_FRO_CLIP(TRUE) was issued.

27

This command would cause the front plane to be clipped.

SET_PARA(DX,DY,DZ)

ARGUMENTS DX:FLOAT

DY:FLOAT

DZ:FLOAT

This command sets the direction of the parallel

projection vector. The values DX, DY, and DZ are the real

values that represent the X, Y, and Z coordinates

respectively. For example, suppose the current parallel

projection vector is (0.1,0.1,0.1), and the command

SET_PARA(0.2,0.2,0.2) was issued. This command would cause

the parallel projection vector to be moved from

(0.1,0.1,0.1) to (0.2,0.2,0.2).

SET_PERS(X,Y,Z)

ARGUMENTS DX:FLOAT

DY:FLOAT

DZ:FLOAT

This command indicates a perspective projection and

saves the center of projection. The values X, Y, and Z are

the real values that represent the X, Y, and Z coordinates

respectively. For example, suppose the current center of

projection is (0.1,0.1,0.1), and the command

SET_PERS(0.2,0.2,0.2) was issued. This command would cause

the center of projection to be moved from (0.1,0.1,0.1) to

28

(0.2,0.2,0.2).

SET_VIEW(XL,XH,YL,YH)

ARGUMENTS XL:FLOAT

XH:FLOAT

YL:FLOAT

YH:FLOAT

This command sets the left, right, bottom, and top

viewport boundaries. The values XL, XH, YL, and YH are the

real values that represent the left, right, bottom, and top

viewport boundaries respectively. For example, suppose the

command SET_VIEW(0.2,0.8,0.2,0.8) was issued. This command

would create a viewport where the left boundary is 0.2, the

right boundary is 0.8, the bottom boundary is 0.2, and the

top boundary is 0.8.

SET_VIEWDEP(F_DIS,B_DIS)

ARGUMENTS F_DIS:FLOAT

B_DIS:FLOAT

This command sets the position of the front and back

clipping planes. The values F_DIS and B_DIS are the real

values that represent the front clipping plane distance and

back clipping plane distance respectively. For example,

suppose the command SET_VIEWDEP(0.2,0.2) was issued. This

command would cause the position of front and back clipping

plane distances to be moved from (0.1,0.1) to (0.2,0.2).

29

SET_VIEWDIS(D)

ARGUMENTS D:FLOAT

This command sets the distance between the view

reference point and the view plane. The value D is a real

value that represents the new distance. For example,

suppose the current distance is (0.1) and the command

SET_VIEWDIS(0.2) was issued. This command would cause the

distance to be moved from (0.1) to (0.2).

SET_VIEWPLANOR(DX,DY,DZ)

ARGUMENTS DX:FLOAT

DY:FLOAT

DZ:FLOAT

This command sets the view plane normal vector

coordinates. The values DX, DY, and DZ are the real values

that represent the X, Y, and Z coordinates respectively.

For example, suppose the current view plane normal vector

coordinates are (0.1,0.1,0.1), and the command

SET_VIEWPLANOR(0.2,0.2,0.2) was issued. This command would

cause the view plane normal vector coordinates to be moved

from (0.1,0.1,0.1) to (0.2,0.2,0.2).

SET_VIEWREFPT(X,Y,Z)

ARGUMENTS X:FLOAT

Y:FLOAT

Z:FLOAT

30

This command sets the view reference point

coordinates. The values X, Y, and Z are the real values

that represent the X, Y, and Z coordinates respectively.

For example, suppose the current view reference point is

(0.1,0.1,0.1), and the command SET_VIEWREFPT(0.2,0.2,0.2)

was issued. This command would cause the view reference

point to be moved from (0.1,0.1,0.1) to (0.2,0.2,0.2).

SET_VIEWUP(DX,DY,DZ)

ARGUMENTS DX:FLOAT

DY:FLOAT

DZ:FLOAT

This command sets the direction that will be vertical

on the image. The values DX, DY, and DZ are the real values

that represent the X, Y, and Z coordinates respectively.

For example, suppose the current view-up direction is

(0.1,0.1,0.1), and the command SET_VIEWUP(0.2,0.2,0.2) was

issued. This command would cause the view-up direction to

be moved from (0.1,0.1,0.1) to (0.2,0.2,0.2).

SET_VIS(N,A)

ARGUMENTS N:FLOAT

A:BOOLEAN

This command turns the visibility of a given segment on

or off. The value N is an integer used to identify the

segment ranging in value from 1 to 2000. The value A must

31

be either TRUE or FALSE. If A is TRUE, the segment will be

visible. If A is FALSE, the segment will not be visible.

For example, suppose the command SET_VIS(2,TRUE) was

issued. This command would cause segment number 2 to be

visible on the screen.

SET_WINDOW (XL, XH, YL, YH)

ARGUMENTS XL:FLOAT

XH:FLOAT

YL:FLOAT

YH:FLOAT

This command sets the left, right, bottom, and top

window boundaries. The values XL, XH, YL, and YH are the

real values that represent the left, right, bottom, and top

window boundaries respectively. For example, suppose the

command SET_WINDOW(0.2,0.8,0.2,0.8) was issued. This

command would create a window where the left boundary is

0.2, the right boundary is 0.8, the bottom boundary is 0.2,

and the top boundary is 0.8.

S_FILL(A)

ARGUMENTS A:BOOLEAN

This command turns the fill option of the polygon

drawing routine on or off. The value A must be either TRUE

or FALSE. If A is TRUE, the polygon will be filled. If

FALSE, the polygon will not be filled. For example, suppose

32

the command S_FILL(TRUE) was issued. This command would

cause segment number 2 to be filled.

S_FILSTY(N)

ARGUMENTS N:INTEGER

This command sets the color to be used to fill the

proceeding polygons. The value N is an integer ranging from

1 to 3. If N is 1, then the polygons will be filled in

blue. If N is 2, then the polygons will be filled in red.

If N is 3, then the polygons will be filled in green. For

example, suppose the command S_FILSTY(2) was issued. This

command would cause polygons to be filled in red.

S_LINSTY(N)

ARGUMENTS N:INTEGER

This command sets the color of the pen to draw the

proceeding lines. The value N is an integer ranging from 1

to 3. If N is 1, then the pen color is blue. If N is 2,

then the pen color is red. If N is 3, then the pen color is

green. For example, suppose the command S_LINSTY(2) was

issued. This command would change the color of the pen to

red.

S_TRANSF(N,Sx,Sy,A,Tx,Ty)

ARGUMENTS N:INTEGER

Sx:FLOAT

Sy:FLOAT

33

A:FLOAT

Tx:FLOAT

Ty:FLOAT

This command scales, rotates, or translates a given

segment. The value N is an integer used to identify the

segment to be transformed and must range in value from 1 to

2000. The values Sx and Sy are the real values that

represent the X and Y scaling factors respectively. The

value A is a real number representing the angle in radians

the segment is to be rotated. The value Tx and Ty are real

values that represent the X and Y translating factors

respectively. When A is not 0.0, Tx and Ty represent the

point about which the segment will be rotated. For example,

suppose the command S_TRANSF(2,0.5,0.5,1.0,0.5,0.5) was

issued. This command would result in segment number 2 being

scaled in both the X and Y directions by 0.5 and rotated 1.0

radians about the point (0.5,0.5).

CHAPTER 4

ERROR MESSAGES

There are several error messages generated by the CORE

System due to user oversight of the systems limitations.

The error messages and a brief description of their causes

are listed below:

NO SEGMENT OPEN -

This message is issued whenever an attempt is made to

close a segment using the CLOS_SEG command and segment N has

not been opened using the CREA_SEG(N) command.

SEGMENT STILL OPEN -

This message is issued whenever an attempt is made to

create a segment using the CREA_SEG(N) command or delete a

segment using DLET_SEG(N) command before a CLOS_SEG command

has been issued for another segment.

INVALID SEGMENT NAME -

This message is issued whenever an attempt is made to

create a segment using the CREA_SEG(N) command, delete a

segment using the DLET_SEG(N) command, transform a segment

34

35

using the S_TRANF(N,Sx,Sy,A,Tx,Ty), or set the visibility of

a segment using the SET_VIS(N,Z) command and N does not fall

in the range of 1 to 2000.

SEGMENT ALREADY OPEN -

This message is issued whenever an attempt is made to

create a segment using the CREA_SEG(N) command and segment N

already exists.

POLYGON SIZE ERROR -

This message is issued whenever the

POL_ABS2(XARRAY,YARRAY,N), POL_ABS3(XARRAY,YARRAY,ZARRAY,N),

POL_REL2(XARRAY,YARRAY,N), or

POL_REL3(XARRAY,YARRAY,ZARRAY,N) commands are used and N

does not fall in the range of 3 and 31.

DISPLAY FILE FULL -

This message is issued whenever more than 2000 graphics

instructions are generated.

BAD VIEWPORT -

This message is issued whenever the left viewport

boundary is greater than the right viewport boundary, or the

bottom viewport boundary is greater than the top viewport

36

boundary using the SET_VIEW(XL,XH,YL,YH) command.

BAD WINDOW -

This message is issued whenever the left window

boundary is greater than the right window boundary, or the

bottom window boundary is greater than the top window

boundary using the SET_WINDOW(XL,XH,YL,YH) command.

CLIPPED POLYGON TOO BIG -

This message is issued whenever the number of polygon

sides stored, COUNT_OUT, is greater than 32 using the

POL_CLIP command.

INVALID VIEW PLANE NORMAL -

This message is issued whenever the length of the

user's specification vector, D, is less than some small

number greater than any round-off error, RNDOFF, using the

SET_VIEWPLANOR(DX,DY,DZ) command.

NO SET-VIEW-UP DIRECTION -

This message is issued whenever the sum of the absolute

values of DX, DY, and DZ is less than some small number

greater than any round-off error, RNDOFF, using the

SET_VIEWUP(DX,DY,DZ) command.

37

NO DIRECTION OF PROJECTION -

This message is issued whenever the sum of the absolute

values of DX, DY, and DZ is less than some small number

greater than any round-off error, RNDOFF, using the

SET_PARA(DX,DY,DZ) command.

SET-VIEW-UP ALONG VIEWPLANE NORMAL -

This message is issued whenever the square root of the

sum of the squares of each view-up direction coordinate is

less than some small number greater than any round-off

error, RNDOFF, using the SET_VIEWPLATRANS command.

CENTER OF PROJECTION BEHIND VIEW PLANE -

This message is issued whenever the z coordinate of the

center of projection in view plane coordinates is less than

zero using the M_PERS_TRANS command.

PROJECTION PARALLEL VIEW PLANE -

This message is issued whenever the z coordinate of the

direction of projection in view plane coordinates is less

than some small number greater than any round-off error,

RNDOFF, using the M_PARA_TRANS command.

38

FRONT PLANE BEHIND BACK PLANE -

This message is issued whenever the front plane

distance from the view reference point is greater than the

back plane distance from the view reference point along the

view plane normal using the SET_VIEWDEP(F_DIS,B_DIS)

command.

CHAPTER 5

LINE GENERATION

Computer graphics images are created by setting the

intensity (that is, brightness) and color of the pixels

which compose the screen. The method used in this project

to create graphical images is called vector graphics. In

this case, a vector is a line segment that has a single

direction and a length. The line segments are built from a

finite number of points. Since these points must have some

size, they are not really points but instead pixels (short

for picture elements). Each pixel has a x, y, and intensity

value [HARRINGTON]. The type of algorithm used to calculate

the x and y values for each pixel is called an incremental

alogorithm. The name comes from the fact that at each step,

incremental calculations are based on the preceeding step.

The incremental algorithm that was used after extending the

graphics system is called Bresenham's Line Algorithm.

Bresenham's algorithm was attractive because it uses only

integer arithmetic. No real variables are used and hence

rounding is not needed [FOLEY].

The algorithm uses a decision variable Di which at each

step is proportional to the difference between variables s

39

40

and t. The variable s represents the distance between the

actual slope and the calculated slope, S(i), that lies below

the actual slope. The variable t represents the distance

between the actual slope and the calculated slope, Ti, that

lies above the actual slope. At the ith step, the pixel

P(i-l) has been determined to be closest to the actual line

being drawn and the calculations must be performed to

determine the next pixel, P(i), to be set, T(i) or S(i). If

s < t, then S(i) is closer to the desired line and should be

set; else T(i) is closer and should be set. In other words,

S(i) is chosen if s - t < 0, otherwise T(i) is chosen

[FOLEY].

Parametric equations are used to represent the equation

of a line. In parametric equations, the x and y values are

given in terms of a parameter, in this case u (u=l). To

generate the line segment between two points (xl,yl) and

(x2,y2), it is necessary for the x coordinate to go

uniformly from xl to x2 and the y coordinate to go uniformly

from yl to y2. This may be expressed by the general

parametric equations

x = xl + (x2 - xl) * u

and

y = yl + (y2 - yl) * u.

The starting point used is, x is xl and y is yl. As the sum

41

increases by 1, x moves uniformly to x2 and y moves

uniformly to y2. These two equations together describe a

straight line. The idea is to start at (xl,yl) and

increment xl and yl by unit steps until they reach the point

(x2,y2). This is useful for drawing a line. At each step,

the intensity is set for the pixel which contains the point

(x,y). This process of "turning on" the pixels for a line

segment is called vector generation [HARRINGTON].

CHAPTER 6

PROBLEMS ENCOUNTERED USING THE

CORE GRAPHICS SYSTEM

The conversion of the Pascal routines into Ada had been

completed without any problems. Some problems occurred,

however, after the conversion was completed. The problems

encountered dealt with speed and the limitations of the

initial implementation. The word speed is used loosely here

to mean the rate at which a line segment is drawn.

The major problem with the graphics package is speed.

Vector generators are judged on linearity, speed,

brightness, uniformity, and endpoint matching [FOLEY]. The

extended graphics package possessed the qualities previously

mentioned except the speed factor. Speed is typically

either a constant or some function of vector length. In the

latter case, the time for short vectors is constant because

the set-up time for calculating and addressing a particular

pixel becomes the dominating factor. The actual time that

it takes to draw a vector is proportional to the change in x

or y, whichever is larger.

There are several additional factors which slow the

speed of the vector generator. In implementing a system

42

43

that uses vector graphics, more instructions are added to

the memory of the display file. The display file contains

all of the input commands used by the vector generator to

generate a particular image. These commands are examined

and lines are drawn using the vector-generating routine. In

order to present a steady image, the image must be drawn

repeatedly. This means that the vector generator must be

applied to all of the lines of the image before a flicker is

noticeable (more than 30 times a second). The implemented

graphics package also contains numerous subroutines and uses

floating point calculations for vector generation.

One solution to the above problem is to perform the

calculations needed by the vector generator and store the

calculated values in a separate file. This file would

contain all of the instructions required by the vector

generator for the construction of a particular image. This

type of file would be used with all of the created images.

To display a chosen file, the display file processor reads

this file and the vector generator generates the image. Due

to the lack of time, this solution to the problem will be

further explored at a later date. One possible constraint

that would be encountered using this approach would be due

to the lack of available computer memory on some

micro-computers. The lack of memory may be a problem using

44

a larger computer.

Another solution to the above mentioned problem is to

reduce the number of subroutines. Even though each

subroutine performs different tasks, some subroutines can be

merged together into a larger subroutine. This solution has

been implemented and it does increase the rate of drawing a

line segment, but it does not drastically increase the rate

of the vector generator. Also, the vector generator used in

the initial implementation used a mixture of integer and

floating point calculations involving rounding. The vector

generator implemented after extending the graphics package

used only integer calculations and hence rounding is not

needed with integer calculations. The line segments are

generated faster because it takes the computer longer to

perform floating point calculations. Even though the

initial Ada implementation used a subroutine that

accelerated floating point calculations, but due to the

large number of calculations, the rate was still slow. This

process of using only integer calculations has been

implemented and the speed of the vector generator has

drastically increased. However, there is still more

research needed to explore different algorithm for

increasing the speed of the vector generator.

A second problem was due the limitations of the initial

45

graphics packages. The initial implementation only included

2 dimensional pictures with no circles, windowing or

clipping and mapping to viewports. This problem was solved

by extending the graphics package. The extended version

includes circles, windowing, clipping, mapping to viewports,

and 3 dimensional images. With the ability to draw circles,

the circle routine has the capability to draw ellipses.

Parametric equations are used to represent the equation

of a circle. In the parametric equations for the circle,

the x and y values are calculated in terms of the equation

x = Z + A cos(U)

and

y = Z + B sin(U).

The radius of the circle is represented by the parameters A

and B. The Z parameter is the distance that the center of

the circle is away from the origin. The screen has

normalized coordinates and the measurements are 1 unit wide

and 1 unit high. The lower-left corner of the screen is the

origin and the upper-right corner is the point (1,1). When

A=B, the output is a circle. When A#B, the output is an

ellipse. The circle is generated by drawing line segments

along the boundary of the circle.

The technique used for windowing is a method for

selecting and enlarging or shrinking portions of a drawing.

46

This gives the effect of looking at the image through a

window. Clipping is the technique for not showing the parts

of a drawing that is not of interest for viewing. A window

can be considered as a box that contains a portion of an

object or the entire object. A viewport can be considered

as a box on the screen that the object is confined to. The

window box would in turn be viewed through the viewport

box. Now the image inside the box has been mapped to a

viewport. All of the images created by the extended version

are viewed through a window and mapped to a viewport. The

initial coordinates window and viewport are

(0.0,1.0,0.0,1.0). The coordinates are changed by using

window and viewport routines.

CONCLUSION

The CORE Graphics System serves as a foundation for

more complex and special purpose routines. Even though the

graphics package has been extended, it is desirable to

continue extending the graphics package so that the

implemented graphics package represents the best software

design practices. This can be accomplished by implementing

and testing new graphic techniques. This will lead to a

graphics package that can be suited to the needs of a

specific group of individuals for a specific purpose.

The Ada implementation had fewer limitations than the

Pascal implementation due to the standardization of the

language. Also, the Ada implementation can be expanded with

greater ease than the Pascal implementation. The Ada

programming language strengthens one of the goals of the

Graphics Standards Planning Committee of the ACM by being a

standardized language. This will allow the implemented

graphics package to be device independent and portable by

simply implementing the CORE Graphics System in Ada.

47

BIBLIOGRAPHY

[FOLEY] Foley, J. D. and Dam, A. Van. Fundamentals of
Interactive Computer Graphics. Addison-Wesley,

Reading, Ma., 1983.

[HARRINGTON] Harrington, Steven. Computer Graphics: A
Programming Approach. McGraw Hill, New York, 1983.

[HOROWITZ] Horowitz, Ellis. Programming Languages: A Grand

Tour. Computer Science Press, Rockville, Md., 1983.

[MARTIN] Martin, Benjamin J., Setzer, Bennett, and Walker,

Reginald. Implementation of a Graphics Package in

Ada. In Proceedings of the 4th Annual National

Conference on Ada Technology, Department of Commerce,

Springfield, Va., 1986, pp. 100-103.

[PAYNE] Payne, Gregory. "Implementation of the CORE Graphics

System on the Zenith Z-100". Thesis, Atlanta

University, Atlanta, Ga., 1985.

48

APPENDIX A

A BRIEF OVERVIEW OF ADA

The programming language, Ada, originated in the early

1970s from a proposal by the United States Department of

Defense to find a suitable language that would enable DoD to

cut the rising cost of software. Ada was designed for

so-called embedded computer systems, systems which must

reside in aircraft or ships. The embedded systems sector

embraces applications such as tactical weapon systems,

communications, command and control and so on. Nevertheless

the language which was developed is very broad in scope and

will likely find itself most suited for large-scale software

development on a large computer. Ada is the first practical

language of the second revolution and embodies the fruits of

research of the last decade [HOROWITZ].

49

APPENDIX B

SOURCE CODE

function CLIP_XORY(A1,B1,Z1,A2,B2,Z2,A_CLIP,

Z_CLIP:float) return float is

— This function calculates the third coordinate of the

— intersection of a line with the clipping plane

(A1,B1,Z1) and (A2,B2,Z2) are the coordinates of the

endpoints of the line segment being clipped

Bl and B2 correspond to the unknown coordinate

Z_CLIP is the z coordinate of the intersection point

A_CLIP is the other known coordinate of the

intersection point

RNDOFF is some small number greater than any

round-off error

begin

if abs(Z2-Zl)>RNDOFF then

return ((B2-B1)/(Z2-Z1)*(Z_CLIP-Z1)+B1);

elsif abs(A2-Al)>RNDOFF then

return ((B2-B1)/(A2-A1)*(A_CLIP-A1)+B1);

else

return Bl;

end if;

end CLIP XORY;

function CLIP_Z(Al,Zl,A2,Z2,M,B:float) return float is

— This function calculates the z value of the intersection

— of a line with the clipping plane

Al and Zl are the coordinates of one endpoint of the

line segment

A2 and Z2 are the coordinates of other endpoint

M is the slope of the clipping plane

B is the intercept in the clipping plane equation

begin

return ((A2-A1)*Z1+(B-Al)*(Z2-Z1))/(A2-A1-M*(Z2-Z1));

end CLIP Z;

function INT(E:float) return integer is

— This function will take the integer value of a

— floating point number

R:integer;

F:float;

begin

50

51

R:=intege (E);

F:=E;

if E<0.0 then

return(-(INT(abs(E))));

elsif abs(float(R)-E) >. 0.09 and float(R)-E < 0.5 then

F:=F-0.5;

return(integer(F));

else

R:= integer(E);

return(R);

end if;

end INT;

procedure BRESENHAM(XI,Y1,X2,Y2:float;INTENSE:integer) is

— Algorithm taken from Fund, of Computer Graphics

— Replaces DDA

— This procedure caluates the pixel values of the frame

— buffer along a line segment

XI and Yl are the coordinates of the starting point

X2 and Y2 are the coordinates of the ending point

INTENSE is the intensity setting to be used for the

vector

DX is the change in the X value

DY is the change in the Y value

XXI and YY1 represent the integer values of XI and Yl,

respectively

XX2 and YY2 represent the integer values of X2 and Y2

INCR1 is the constant used for incrementing D if D < 0

INCR2 is the constant used for incrementing D if D > 0

D is a decision variable which is proportional to the

difference in DX and DY for each step

X and Y are the points along the line segment

XEND equals the X2 coordinate of the end point

YEND equals the Y2 coordinate of the end point

DX,DY:integer;

XXI,XX2,YY1,YY2,INCR1,INCR2:integer;

D,X,Y,XEND,YEND:integer;

begin

XX1:=INT(X1);

XX2:=INT(X2);

YY1:=INT(Y1);

YY2:=INT(Y2);

DX:=abs(XX2-XXl);

DY:=abs(YY2-YYl);

D:=2*DY-DX;

INCR1:=2*DY;

52

INCR2:=2*(DY-DX);

if XXI > XX2 then

X:=XX2;

Y:=YY2;

XEND:=XX1;

YEND:=YY1;

else

X:=XX1;

Y:=YY1;

XEND:=XX2;

YEND:=YY2;

end if;

SET_PIX(X,Y,INTENSE);

if DX<DY then

while Y<YEND loop

Y:=Y+1;

if D<0 then

D:=D+INCR1;

elsif (XXKXX2 and YY1>YY2)

or (XX1>XX2 and YYKYY2) then

X:=X-1;

D:=D+INCR2;

else

X:=X+1;

D:=D+INCR2;

end if;

SET_PIX(X,Y,INTENSE);

end loop;

else

while X<XEND loop

X:=X+1;

if D< 0 then

D:=D+INCR1;

elsif (XXKXX2 and YY1>YY2)

or (XX1>XX2 and YYKYY2) then

Y:=Y-1•

D:=D+INCR2;

else

Y:=Y+1;

D:=D+INCR2;

end if;

SET_PIX(X,Y,INTENSE);

end loop;

end if;

end BRESENHAM;

53

procedure BUILDTRN(SEG_NAME:integer) is

— This procedure builds the image transformation matrix

SEG_NAME is the segment which is being transformed

SCALE_X, SCALE_Y, ANGLE, TRANS_X and TRANS_Y are the

arrays for the attribute part of the segment

table

H is the transformation array of 3 X 2 elements

I is for stepping through the array

begin

IDEN_MAT;

MULNSCAL;

if ANGLE(SEG_NAME) /= 0.0 then

MULNTRAN(0.0-TRANS_X(SEG_NAME),0.0-TRANS_Y(SEG_NAME));

MULNROTA(ANGLE(SEG_NAME));

MULNTRAN(TRANS_X(SEG_NAME),TRANS_Y(SEG_NAME));

else

MULNROTA(ANGLE(SEG_NAME));

MULNTRAN(TRANS_X(SEG_NAME),TRANS_Y(SEG_NAME));

end if;

end BUILDTRN;

procedure CIRCLE(D:in character;C:in integer;A,B,Z:in float)

is

E,X,Y:float;

begin

INIT;

if D='Y' or D='y' then

s_fill(true);

end if;

E:=l.5707963;

S_LINSTY(C);

FOR M IN 0..360 LOOP

IF D='Y' OR D='y' THEN

CREA_SEG(M);

END IF;

X:=Z+A*COS(E);

Y:=Z+B*SIN(E);

IF M=0 THEN

MOV_ABS2(X,Y);

ELSE

LIN_ABS2(X,Y);

END IF;

E:=E+0.0174533;

IF D='Y' or D='y' THEN

CLOS_SEG;

END IF;

54

END LOOP;

e_flag:=false;

m_pic_cu;

end CIRCLE;

procedure CLIP(OP:integer;X,Y,Z:float) is

-- This procedure is a top-level clipping routine. It

— decides between handling polygons and handling other

— graphics primitives.

OP, X, Y and Z are the instruction being clipped

P_FLAG indicates that a polygon is being processed

COUNT_IN is the number of polygon sides still to be

input

COUNTJDUT is the number of clipped polygon sides

stored

XS, YS and ZS are arrays for saving the last point

drawn

begin

if PFLAG then

POL_CLIP(OP,X,Y,Z);

elsif OP>2 and 0P<31 then

PFLAG:=TRUE;

COUNT_IN:=OP;

COUNT_OUT:=0;

for I in 1..6 loop

XS(I):=X;

YS(I):=Y;

ZS(I):=Z;

end loop;

M_CLIP_TEST;

else

CLIP_LEFT(OP,X,Y,Z);

end if;

end CLIP;

procedure CLIP_BACK(OP:integer;X,Y,Z:float) is

— This procedure clips against the back plane

OP, X, Y and Z are the instructions for the new

endpoint

BAC_Z is the position of the back clipping plane
B_FLAG is the back clipping flag

XS(5), YS(5) and ZS(5) are the coordinates of the line

segment's old endpoint

X_CLIP and Y_CLIP are the coordinates of the clipped

point

55

Z_CHAN is the fractional change in the z coordinate
due to clipping

X_CLIP,Y_CLIP,Z_CHAN:float;

begin

if B_FLAG then

if (Z^BAC_Z and ZS(5)<BAC_Z)

or (Z<BAC_Z and ZS(5)>BAC_Z) then

Z_CHAN:=(BAC_Z-Z)/(Z-ZS(5));

X_CLIP:=(X-XS(5))*Z_CHAN+X;
Y_CLIP:=(Y-YS(5))*Z_CHAN+Y;

if ZS(5)<BAC_Z or 0P>31 then

CLIP_FRONT(1,X_CLIP,Y_CLIP,BAC_Z);
else

CLIP_FRONT(OP,X_CLIP,Y_CLIP,BAC_Z);
end if;

end if;

XS(5):=X;

YS(5):=Y;

ZS(5):=Z;

if Z^BAC_Z then

CLIP_FRONT(OP,X,Y,Z);

end if;

else

CLIP_FRONT(OP,X,Y,Z);
end if;

end CLIP_BACK;

procedure CLIP_BOTTOM(OP:integer;X,Y,Z:float) is
— This procedure clips against the lower boundary

OP, X, Y and Z are the instructions for the new
endpoint

WYL is the lower window boundary

YLM is the slope of the lower clipping plane
XS(3), YS(3) and ZS(3) are the coordinates of the old

endpoint

OPTTE(3) the test condition for the old endpoint
NPTTE is the test condition for the new endpoint

X_CLIP, Y_CLIP and Z_CLIP are the coordinates of the
clipped point

NPTTE,X_CLIP,Y_CLIP,Z_CLIP:float;
begin

NPTTE:=YLM*Z+WYL;

if (Y^NPTTE and YS(3)<OPTTE(3))

or (Y<NPTTE and YS(3)>OPTTE(3)) then

— Crosses plane so find the intersection point

Z_CLIP:=CLIP_Z(Y,Z,YS(3),ZS(3),YLM,WYL);

56

Y_CLIP:=YLM*Z_CLIP+WYL;

X_CLIP:=CLIP_XORY(Y,X,Z,YS(3),XS(3),ZS(3),Y CLIP,
Z_CLIP);

if YS(3)<OPTTE(3) or OP>31 then
— Case of outside going in

CLIP_TOP(1,X_CLIP,Y_CLIP,Z_CLIP);
else

— Case of inside going out

CLIP_TOP(OP,X_CLIP,Y_CLIP,Z_CLIP);
end if;

end if;

— Remember point to serve as endpoint for the next line
— segment

XS(3):=X;

YS(3):=Y;

ZS(3):=Z;

— Remeber the test condition for the point too
OPTTE(3):=NPTTE;

— Case of point inside

if Y^NPTTE then

CLIP_TOP(OP,X,Y,Z);
end if;

end CLIP_BOTTOM;

procedure CLIP_FRONT(OP:integer;X,Y,Z:float) is
-- This procedure clips against the front plane

OP, X, Y and Z are the instructions for the new
endpoint

FRO_Z is the position of the back clipping plane
F_FLAG is the back clipping flag

XS(6), YS(6) and ZS(6) are the coordinates of the line
segment's old endpoint

X_CLIP and Y_CLIP are the coordinates of the clipped
point

Z_CHAN is the fractional change in the z coordinate
due to clipping

X_CLIP,Y_CLIP,Z_CHAN:float;
begin.

if F_FLAG then

if (Z<FRO_Z and ZS(6)>FRO_Z)
or (Z>FRO_Z and ZS(6)<FRO Z) then
Z_CHAN:=(FRO_Z-Z)/(Z-ZS(6));

X_CLIP:=(X-XS(6))*Z_CHAN+X;
Y_CLIP: = (Y-YS(6))*Z_CHAN+Y;

if ZS(6)>FRO_Z or OP>31 then
S_CLIP_PT(1,X_CLIP,Y_CLIP,FRO Z);

57

else

S_CLIP_PT(OP,X_CLIP,Y_CLIP,FRO Z) ;
end if; ~

end if;

XS(6):=X;

YS(6):=Y;

ZS(6):=Z;

if Z<FRO_Z then

S_CLIP_PT(OP,X,Y,Z);
end if;

else

S_CLIP_PT(OP,X,Y,Z);
end if;

end CLIP_FRONT;

procedure CLIP_LEFT(OP:integer;X,Y,Z:float) is
— This procedure clips against the left boundary

25t ?' Lan? Lare a disPlay file instruction
WXL is the left window boundary

XLM is the slope of the left clipping plane
XS(1), YS(1) and ZS(1) are the coordinates of the old

endpoint

OPTTE(l) is the test condition for the old endpoint
NPTTE is the test condition for the new endpoint
X_CLIP, Y_CLIP and Z_CLIP are the coordinates of the

clipped point

NPTTE,X_CLIP,Y_CLIP,Z_CLIP:float;
begin

NPTTE:=XLM*Z+WXL;

if (X>NPTTE and XS(1)<OPTTE(1))
or Tx<NPTTE and XS(1)>OPTTE(1)) then
— Crosses plane so find the intersection point

Z_CLIP:=CLIP_Z(X,Z/XS(1),ZS(1)/XLM/WXL);
X_CLIP:=XLM*Z_CLIP+WXL;

Y_CLIP:=CLIP_XORY(X,Y/Z,XS(1),YS(1)/ZS(1)/X CLIP,
Z_CLIP);

if XS(1)<OPTTE(1) or 0P>31 then

— Case of outside going in

CLIP_RIGHT(1,X_CLIP,Y_CLIP,Z_CLIP);
else

— Case of inside going out

CLIP_RIGHT(OP,X_CLIP,Y_CLIP,Z_CLIP);
end if;

end if;

— Remember point to serve as endpoint for the next line
— segment

58

XS(1):=X;

YS(1):=Y;

ZS(1):=Z;

-- Remember the test condition for the point too

OPTTE(l):=NPTTE;

— Case of point inside

if X^NPTTE then

CLIP_RIGHT(OP,X,Y,Z);

end if;

end CLIP_LEFT;

procedure CLIP_RIGHT(OP:integer;X,Y,Z:float) is

— This procedure clips against the right boundary

OP, X, Y and Z are the instructions for the new

endpoint

WXH is the right window boundary

XHM is the slope of the right clipping plane

XS(2), YS(2) and ZS(2) are the coordinates of the old

endpoint

OPTTE(2) the test condition for the old endpoint

NPTTE is the test condition for the new endpoint

X_CLIP, Y_CLIP and Z_CLIP are the coordinates of the

clipped point

NPTTE,X_CLIP,Y_CLIP,Z_CLIP:float;

begin

NPTTE:=XHM*Z+WXH;

if (X<NPTTE and XS(2)<OPTTE(2))

or (X>NPTTE and XS(2)>OPTTE(2)) then

— Crosses plane so find the intersection point

Z_CLIP:=CLIP_Z(X,Z,XS(2),ZS(2),XHM,WXH);

X_CLIP:=XHM*Z_CLIP+WXH;

Y_CLIP:=CLIP_XORY(X,Y,Z,XS(2),YS(2),ZS(2),X_CLIP,

Z_CLIP);

if XS(2)>OPTTE(2) or 0P>31 then

— Case of outside going in

CLIP_BOTTOM(1,X_CLIP,Y_CLIP,Z_CLIP);

else

— Case of inside going out

CLIP_BOTTOM(OP,X_CLIP,Y_CLIP,Z_CLIP);

end if;

end if;

— Remember point to serve as endpoint for the next line

— segment

XS(2):=X;

YS(2):=Y;

ZS(2):=Z;

59

— Remember the test condition for the point too
OPTTE(2):=NPTTE;

— Case of point inside

if X<NPTTE then

CLIP_BOTTOM(OP,X,Y,Z);

end if;

end CLIP_RIGHT;

procedure CLIP_TOP(OP:integer;X,Y,Z:float) is

— This procedure clips against the upper boundary
OP, X, Y and Z are the instructions for the new

endpoint

WYH is the upper window boundary

YHM is the slope of the upper clipping plane

XS(4), YS(4) and ZS(4) are the coordinates of the old
endpoint

OPTTE(4) the test condition for the old endpoint

NPTTE is the test condition for the new endpoint

X_CLIP, Y_CLIP and Z_CLIP are the coordinates of the

clipped point

NPTTE,X_CLIP,Y_CLIP,Z_CLIP:float;

begin

NPTTE:=YHM*Z+WYH;

if (Y^NPTTE and YS(4)>OPTTE(4))

or (Y^NPTTE and YS(4)<OPTTE(4)) then

— Crosses plane so find the intersection point

Z_CLIP:=CLIP_Z(Y,Z,YS(4),ZS(4),YHM,WYH);

Y_CLIP:=YHM*Z_CLIP+WYH;

X_CLIP:=CLIP_XORY(Y,X,Z,YS(4),XS(4),ZS(4),Y_CLIP,
Z_CLIP);

if YS(4)>OPTTE(4) or 0P>31 then

— Case of outside going in

CLIP_BACK(1,X_CLIP,Y_CLIP,Z_CLIP);
else

— Case of inside going out

CLIP_BACK(OP,X_CLIP,Y_CLIP,Z_CLIP);
end if;

end if;

— Remember point to serve as endpoint for the next line
— segment

XS(4):=X;

YS(4):=Y;

ZS(4):=Z;

— Remember the test condition for the point too

OPTTE(4):=NPTTE;

— Case of point inside

60

if Y<NPTTE then

CLIP_BACK(OP,X,Y,Z);

end if;

end CLIPJTOP;

procedure CLOS_SEG is

— This procedure closes a named segment

NOW_OPEN is the name of the currently open segment

FREE is the index of the next free display file cell

SEG_START and SEG_SIZE are the start and size of the

segments

begin

if NOW_OPEN = 0 then

put("NO SEGMENT OPEN");

new_line;

else

DLET_SEG(0);

SEG_START(0):=FREE;

SEG_SIZE(0):=0;

NOW_OPEN:=0;

end if;

end CLOSJSEG;

procedure CREA_SEG(SEG_NAME:integer) is
— This procedure creates a named segment

SEG_NAME is the segment name

NOW_OPEN is the segment currently open

FREE is the index of the next free display file cell

SEG_START, SEG_SIZE, ANGLE, SCALE_X, SCALE_Y, TRANS_X,

TRANS_Y and VISIBLE together make up the segment

table

NUM_SEGS is the size of the segment table

begin

if NOW_OPEN > 0 then

put("SEGMENT STILL OPEN");

new_line;

elsif (SEG_NAME < 1) or (SEG_NAME > NUM_SEGS) then
put("INVALID SEGMENT NAME");

new_line;

elsif SEG_SIZE(SEG_NAME) > 0 then

put("SEGMENT ALREADY EXIST");

new_line;

else

NEW_VIEW3;

SEG_START(SEG_NAME):=FREE;

61

SEG_SIZE(SEG_NAME):=0;

VISIBLE(SEG_NAME):=VISIBLE(O);

ANGLE(SEG_NAME):=ANGLE(0);

SCALE_X(SEG_NAME):=SCALE_X(0);

SCALE_Y(SEG_NAME):=SCALE_Y(0);

TRANS_X(SEG_NAME):=TRANS_X(0);

TRANS_Y(SEG_NAME):=TRANS_Y(0);

NOW_OPEN:=SEG_NAME;

end if;

end CREA_SEG;

procedure DFE(OP:integer) is

— This procedure combines operation and position to form an
— instruction and save it in the display file

OP is the operation to be entered

DF_PEN_X and DF_PEN_Y are the coordinates of the

current pen position

PERS_FLAG is the perspective vs. parallel projection
flag

X, Y and Z hold the coordinates of the point that is
transformed

X,Y,Z:float;

begin

if OP<0 then

PUT_PNT(OP,0.0,0.0);

else

X:=DF_PEN_X;

Y:=DF_PEN_Y;

Z:=DF_PEN_Z;

V_PLA_TRANS(X,Y,Z);

CLIP(OP,X,Y,Z);

end if;

end DFE;

procedure DLET_ALL is

— This procedure was used to delete all segments
begin

for I in 0..NUM_SEGS loop

SEG_START(I):=1;

SEG_SIZE(I):=0;

end loop;

NOW_OPEN:=0;

FREE:=1;

end DLET_ALL;

62

procedure DLET_SEG(SEG_NAME:integer) is

— This procedure is used to delete a segment

SEG_NAME is the segment name

NOW_OPEN is the currently open segment

FREE is the index of the next free display file cell

SEG_START and SEG SIZE are part of the segment table

NUM_SEGS is the size of the segment table

GEET is the location of an instruction to be moved

PUUT is the location to which an instruction should

be moved

SIZE is the size of the deleted segment

I is a variable for stepping through the segment

table

GEET,PUUT,SIZE,OP:integer;

X,Y:float;

begin

if (SEG_NAME < 0) or (SEG_NAME > NUM_SEGS) then

put("INVALID SEGMENT NAME");

new_line;

elsif (SEG_NAME = NOW_OPEN) AND (SEG_NAME /= 0) then

put("SEGMENT STILL OPEN");

new_line;

elsif SEG_SIZE(SEG_NAME) /= 0 then

PUUT:=SEG_START(SEG_NAME);

SIZE:=SEG_SIZE(SEG_NAME);

GEET:=PUUT+SIZE;

— Shift the display file elements

while GEET < FREE loop

GET_PNT(GEET,OP,X,Y);

SET_PNT(PUUT,OP,X,Y);

PUUT:=PUUT+1;

GEET:=GEET+1;

end loop;

— Recover the deleted storage

FREE:=PUUT;

— Update the segment table

for i in O..NUM_SEGS loop

if SEG_START(I) > SEG_START(SEG_NAME) then

SEG_START(I):=SEG_START(I)-SIZE;

end if;

end loop;

SEG_SIZE(SEG_NAME):=0;

if VISIBLE(SEG_NAME) then

NEW_FRAM;

end if;

end if;

end DLET_SEG;

63

procedure DOLINE(X,Y:float) is

— This procedure draws a line

X and Y are the coordinates of the point to which to
draw the line (normalized coordinates)

F_PEN_X and F_PEN_Y are the coordinates of the pen
position (actual screen coordinates)

WIDTH and HEIGHT are the frame dimensions (screen
dimensions)

W_START and H_START are the coordinates of the
lower-left corner

W_END and H_END are the coordinates of the upper-right
corner

LINECHR is the style of the line

XI and Yl are the old end point coordinates of the
line segment

MIN is the minimum value

XIfYl,MIN:float;
begin

X1:=F_PEN_X;

Y1:=F_PEN_Y;

if float(W_END) <. (X*float(WIDTH)+float(W START)) then
MIN:=float(W_END);

else

MIN:=X*float(WIDTH)+float(W_START);
end if;

if float(W_START) >_ MIN then
F_PEN_X:=float(W_START);

else

F_PEN_X:=float(MIN);

end if;

if float(H_END) < (Y*float(HEIGHT)+float(H START)) then
MIN:=float(H_END);

else

MIN:=Y*float(HEIGHT)+float(H_START);
end if;

if float (H_START) >. MIN then

F_PEN_Y:=float(H_START);
else

F_PEN_Y:=MIN;

end if;

BRESENHAM(XI,Yl,F_PEN_X,F_PEN_Y,LINECHR);
end DOLINE;

procedure DOMOVE(X,Y:float) is

— This procedure performs a move of the pen

X and Y are the coordinates of the point to which to

64

the pen (normalized coordinates)

F_PEN_X and F_PEN_Y are the coordinates of the pen

position (actual screen coordinates)

WIDTH and HEIGHT are the frame dimensions (screen)

W_START and H_START are the coordinates of the

lower-left corner

W_END and H_END are the coordinates of the upper-right
corner

MIN represents the minimum value

MIN:float;

begin

if float(W_END) <. X*float(WIDTH)+float(W START) then
MIN:=float(W_END);

else

MIN:=X*float(WIDTH)+float(W_START);
end if;

if float (W_START) >. MIN then

F_PEN_X:=float(W_START);

else

F_PEN_X:=MIN;

end if;

if float(H_END) ± Y*float(HEIGHT)+float(H_START) then
MIN:=float(H_END);

else

MIN:=Y*float(HEIGHT)+float(H_START);
end if;

if float(H_START) >. MIN then

F_PEN_Y:=float(H_START);

else

F_PEN_Y:=MIN;

end if;

end DOMOVE;

procedure DOPOLY(OP:integer;

X,Y:float;NTH:integer) is

— This procedure was used to process a polygon

— command

if SOLID then

FILLPOLY(OP,X,Y,NTH);

end if;

DOMOVE(X,Y);

end DOPOLY;

procedure DOPROJ(OP:integer;

X,Y,Z:float) is

65

-- This procedure projects and saves a drawing command

OP, X, Y and Z are the instruction to be saved

PERS_FLAG is the type of projection flag

PX, PY and PZ are the projected coordinates

PX,PY,PZ: float;

begin

PX:=X;

PY:=Y;

PZ•=Z *

if PERS_FLAG then

PERS_TRANS(PX,PY,PZ);

else

PAR_TRANS(PX,PY,PZ);

end if;

VIEW_TRANS(OP,PX,PY);

end DOPROJ;

procedure DOSTYLE(OP:integer) is

— This procedure inteprets the change of style commands
OP indicates the desired style

LINECHR is the line character used by BRESENHAM

FILLER is the polygon fill style

begin

case OP is

when -1 => LINECHR:=0;

When -2 => LINECHR:=1;

when -3 => LINECHR:=2;

when -31 => FILLER:=0;

when -32 => FILLER:=1;

when -33 => FILLER:=2;

end case;

end DOSTYLE;

procedure DO_TRAN is

— This procedure was used to transform a point

begin

TEMP:=X*H(1)(1)+Y*H(2)(1)+H(3)(1);

Y:=X*H(1)(2)+Y*H(2)(2)+H(3)(2);

X:=TEMP;

end DO_TRAN;

procedure ENABLE is

VIDEO_PORT:integer;

VALUE:byte;

66

begin

VIDEO_PORT:=16 0D8;

VALUE:=BYTE(1678);

OUTPORT(VIDEO_PORT,VALUE);
end ENABLE;

procedure ERASE is

-- This procedure clears the frame buffer by assigning
— every pixel a background value
begin

put(character'val(27)); PUT('E1);

new_line;

end ERASE;

procedure FILLPOLY(OP:integer;X,Y:float;INDEX:integer) is

— This procedure fills in a polygon

OP, X and Y are the polygon instructions

INDEX is the display file index of the instruction

YMAX is an array of the upper y coordinates for the

polygon sides

SCAN_DEC is the size of the scanline decrement

EDGES is the number of polygon sides considered

SCAN is the y value of the scanline

S_EDGE and E_EDGE indicate which polygon sides are

crossed by the scanline

XA is an array of edge intersection positions

NX is the number of line segments to be drawn

J is for stepping through the edges

K is for stepping through line segments

XI is the starting x coordinate of the line segment

X2 is the ending x coordinate of the line segment

Y is the y coordinate of the line segment

FILLER is the polygon fill style

EDGES,S_EDGE,E_EDGE:integer;

SCAN:float;

NX,J:integer;
XI,X2,YY:float;

begin

— Load global arrays with the polygon vertex information

LOADPOLY(OP,X,Y,INDEX,EDGES);

— Check number of sides to be considered

if EDGES>2 then

— Set scanline
SCAN:=float(INT(YMAX(l)-0.5));

— Initialize starting and ending index values for

67

— sides considered

S_EDGE:=1;

E_EDGE:=1;

-- Fill in polygon and pick up any new sides to be

— included in this scan

INCLUDE1(E_EDGE,EDGES,SCAN);

— Determine the side intersections for this scanline,

— removing any sides that have been passed

UPDXVAL(E_EDGE,S_EDGE,SCAN);

— Repeat the filling until all sides have been passed

while E_EDGE/=S_EDGE loop

— Fill in scanline

FILLSCAN;

SCAN:=SCAN-SCAN_DEC;

INCLUDE1(E_EDGE,EDGES,SCAN);

UPDXVAL(E_EDGE,S_EDGE,SCAN);

end loop;

end if;

end FILLPOLY;

procedure FILLSCAN is

— This procedure was used to fill in the scanline

begin

NX:=(E_EDGE-S_EDGE)/2;

J:=S_EDGE;

for K in 1..NX loop

X1:=XA(J);

YY:=SCAN;

X2:=XA(J+1);

BRESENHAM(XI,YY,X2,YY,FILLER);

J:=J+2;

end loop;

end FILLSCAN;

procedure GET_PNT(NTH:integer;OP:in out integer;

X,Y:in out float) is

— This procedure retrieves the Nth instruction from the

— display file

NTH is the number of the desired instruction

OP, X and Y form the instruction to be returned

DF_OP, DF_X and DF_Y are the three display file arrays

for holding instructions

begin

OP:=DF_OP(NTH);

X:=DF_X(NTH);

68

Y:=DF_Y(NTH);

end GET PNT;

procedure GETT_PNT(NTH,OP:in out integer;

X,Y:in out float) is

— This procedure retrieves and transforms the Nth

— instruction from the display file

NTH is the index of the desired instruction

OP, X and Y are the values of the instruction to be

returned

X and Y are the coordinates of the point to be

transformed

H is the 3X2 transformation matrix

TEMP is a temporary storage location for the new X

value

TEMP:float;

begin

GET_PNT(NTH,OP,X,Y);

if OP>0 then

DO_TRAN(X,Y);

end if;

end GETT_PNT;

procedure IDEN_MAT is

— This procedure creates the identity matrix

J is for stepping through the H array

begin

for I in 1..3 loop

for J in 1..2 loop

if I=J then

else

H(I)(J):=0.0;

end if;

end loop;

end loop;

end IDEN MAT;

procedure IDEN_PAR is

-- This procedure was used to set transformation

— parameters to the identity transformation

begin

SCALE_X(0):=1.0;

SCALE_Y(0):=1.0;

69

ANGLE(O):=O.O;

TRANS_X(0):=0.0;

TRANS_Y(0):=0.0;

end IDEN PAR;

procedure INCLUDEl(E_EDGE:in out integer;L_EDGE:integer;

SCAN:float) is

— This procedure includes any new edges that intersect the

— scanline

E_EDGE is the index of the last element of the

current side list

L_EDGE is the index of the last side

SCAN is the position of the current scanline

YMAX, XA and DX are arrays of edge information

SCAN_DEC is the size of a scanline decrement

begin

While (E_EDGE<L_EDGE) and (YMAX(E_EDGE)>SCAN) loop

— Set starting point back to the last scanline

XA(E_EDGE):=XA(E_EDGE)+(DXARRAY(E_EDGE)

*(SCAN_DEC+SCAN-YMAX(E_EDGE)));

— Save the change in x value per scan

DXARRAY(E_EDGE):=DXARRAY(E_EDGE)*(-SCAN_DEC);

E_EDGE:=E_EDGE+1;

end loop;

end INCLUDE1;

procedure INIT is

— This procedure is a combination of the procedures used

— in the extended implementation to initialize all of the

— necessary values for the graphics system

PFLAG is the polygon processing flag

XS, YS and ZS are arrays for saving the old endpoints

of a line segment

I is used for the initialization of the four clipping
routines

begin

— INIT6

INITIAL;

SET_VIEW(0.0,1.0,0.0,1.0);

SET_WINDOW(0.0,1.0,0.0,1.0);

FOR I IN 1..4 LOOP

XS(I):=0.0;

YS(I):=0.0;

END LOOP;

PFLAG:=FALSE;

70

-- INIT7 omitted

-- INIT9

SET_VIEWDEP(0.0,0.0);

-- INIT8

SET_VIEWREFPT(0.0,0.0,0.0);

SET_VIEWPLANOR(0.0,0.0,-1.0);

SET_VIEWDIS(0.0);

SET_VIEWUP(0.0,1.0,0.0);

SET_PARA(0.0,0.0,1.0);

NEW_VIEW3;

SET_FRONCLIP(false);

SET_BACCLIP(false);

for I in 1..6 loop

XS(I):=0.0;

YS(I):=0.0;

ZS(I):=0.0;

end loop;

end INIT;

procedure INITIAL is

— This procedure is a combination of the procedures used

— in the initial implementation to initialize all of the

— necessary values for the graphics system

W_START and H_START are the coordinates of the

lower-left corner

W_END and H_END are the coordinates of the upper-right

corner

HEIGHT is the height of the frame

WIDTH is the width of the frame

FREE is the index of the next free display file cell

DF_PEN_X and DF_PEN_Y are the coordinates of the

display file pen position

LINECHR is the line style used by the procedure

BRESENHAM

FILLER is the polygon fill style

VISIBLE is the segment visiblity table

NOW_OPEN is the currently open segment

SCALE_X, SCALE_Y, ANGLE, TRANS_X, and TRANS_Y are the

transformation parameters

SEG_START is the segment starting index array

SEG_SIZE is the segment size array

NUM_SEGS is the size of the segment table

I is used to step through the segment table

begin

71

ENABLE;

-- INIT1

W_START:=106;

H_START:=10;

W_END:=533;

H_END:=224;

HEIGHT:=H_END-H_START;

WIDTH:=W_END-W_START;

— INIT2A

FREE:=1;

DF_PEN_X:=O.O;

DF_PEN_Y:=O.O;

NEW_FRAM;

~ INIT2

DOSTYLE(-l);

-- INIT3

DOSTYLE(-31);

S_FILL(false);

-- INIT4

IDEN_PAR;

— INIT5

DLET_ALL;

NEW_FRAM;

VISIBLE(O):=true;

end INITIAL;

procedure INTRPRET(START,COUNT:integer) is

— This procedure scans the display file performing the

— instructions
START is the starting index of the display file scan

COUNT is the number of instructions to be interpreted

NTH is for stepping through the display file

NT is the the display file index

OP, X, and Y are the display file instructions

SOLID is a flag that indicates if the polgon should

be filled in

NT,OP:integer;

72

X,Y:float;

begin

— A loop to do all desired instructions

for NTH in START..((START+COUNT)-1) loop
NT:=NTH;

GETT_PNT(NT,OP,X,Y);

if OP<0 then

DOSTYLE(OP);

elsif OP=1 then

DOMOVE(X,Y);
elsif 0P=2 then

DOLINE(X,Y);

elsif OP<32 then

DOPOLY(OP,X,Y,NT);

else

put("OP-CODE ERROR");

new_line;

exit;

end if;

end loop;

end INTRPRET;

procedure LIN_ABS2(X,Y:float) is

— This procedure saves a command to draw a line

X and Y are the coordinates of the point to which to

draw the line

DF_PEN_X and DF_PEN_Y are the coordinates of the
current pen position

begin

DF_PEN_X:=X;

DF_PEN_Y:=Y;

DFE(2);

end LIN_ABS2;

procedure LIN_ABS3(X,Y,Z:float) is

— This procedure is the 3D absolute line drawing routine
X, Y and Z are the coordinates of the point to

draw the line to

DF_PEN_X, DF_PEN_Y and DF_PEN_Z are the coordinates

of the current pen position
begin

DF_PEN_X:=X;

DF_PEN_Y:=Y;

DF_PEN_Z:=Z;

DFE(2);

73

end LIN_ABS3;

procedure LIN_REL2(DX,DY:float) is

— This procedure saves a command to draw a line

DX and DY are the changes over which draw the line

DF_PEN_X and DF_PEN_Y are the coordinates of the

current pen position

begin

DF_PEN_X:=DF_PEN_X + DX;

DF_PEN_Y:=DF_PEN_Y + DY;

DFE(2) ;

end LIN REL2;

procedure LIN_REL3(DX,DY,DZ:float) is

— This procedure is the 3D relative line drawing routine

DX, DY and DZ are the displacements over which a line

is to be drawn

DF_PEN_X, DF_PEN_Y and DF_PEN_Z are the coordinates

of the current pen position

begin

DF_PEN_X:=DF_PEN_X+DX;

DF_PEN_Y:=DF_PEN_Y+DY;

DF_PEN_Z:=DF_PEN_Z+DZ;

DFE(2);

end LIN_REL3;

procedure LOADPOLY(OP:integer;X,Y:float;I:integer;

EDGES:in out integer) is

— This procedure retrieves polygon side information from

— the display file. Positions are converted to actual

— screen coordinates.

OP, X and Y are the polygon instruction

I is the display file index of the instruction

EDGES return the number of sides stored

W_START and H_START are the coordinates of the

lower-left corner

HEIGHT is the height in pixels of the actual screen

WIDTH is the width in pixels of the screen

XI, Yl, X2 and Y2 are the edge endpoints in actual

device coordinates

II is for stepping through the display file

K is for stepping through the polygon sides
DUMMY is a dummy argument

RNDOFF is a constant which is greater than any

74

round-off error

Xl,Yl,X2,Y2:float;

I1,DUMMY:integer;

begin

— Set starting point for a side

XI:=X*float(WIDTH)+float(W_START);

— Adjust y coordinate to lie between scanlines

Yl:=float{INT(Y*float(HEIGHT)+float(H_START)))+0.5;

-- Get index of first side command

II:=1+1;

— Inialize an index for storing side data

EDGES:=1;

— A loop to get information about each side

for K in 1..0P loop

— Get next vertex

GETT_PNT(II,DUMMY,X2,Y2);

X2:=X2*float(WIDTH)+float(W_START);

Y2:=float(INT(Y2*float(HEIGHT)+float(H_START)))+

-- Check to see if the line is a horizontal line

if abs(Yl-Y2)<RND0FF then

XI:=X2;

else

-- Save data about side in order of largest y value

POLYISRT(EDGES,XI,Y1,X2,Y2);

-- Increment index for side data storage
EDGES:=EDGES+1;

— Old point is reset

Yl:=Y2;

XI:=X2;

II:=11+1;

end if;

end loop;

— Set EDGES to be a count of the edges stored

EDGES:=EDGES-1;

end LOADPOLY;

procedure M0V_ABS2(X,Y:float) is

— This procedure saves an instruction to move the pen

X and Y are the coordinates of the point to which
to move the pen

DF_PEN_X and DF_PEN_Y are the coordinates of the

current pen position

begin

DF_PEN_X:=X;

DF_PEN_Y:=Y;

75

DFE(l);

end M0V_ABS2;

procedure MOV_ABS3(X,Y,Z:float) is

— This procedure is the 3D absolute move

X, Y and Z are the world coordinates of the point to

move the pen

DF_PEN_X, DF_PEN_Y and DF_PEN_Z are the coordinates

of the current pen position

begin

DF_PEN_X:=X;

DF_PEN_Y:=Y;

DF_PEN_Z:=Z;

DFE(l);

end MOV ABS3;

procedure M0V_REL2(DX,DY:float) is

— This procedure saves a command to move the pen

DX and DY are the changes in the pen position

DF_PEN_X and DF_PEN_Y are the coordinates of the

current pen position

begin

DF_PEN_X:=DF_PEN_X + DX;

DF_PEN_Y:=DF_PEN_Y + DY;

DFE(l);

end MOV_REL2;

procedure MOV_REL3(DX,DY,DZ:float) is

— This procedure is the 3D relative move

DX, DY and DZ are the changes to be made to the pen

position

DF_PEN_X, DF_PEN_Y and DF_PEN_Z are the coordinates

of the current pen position

begin

DF_PEN_X:=DF_PEN_X+DX;

DF_PEN_Y:=DF_PEN_Y+DY;

DF_PEN_Z:=DF_PEN_Z+DZ;

DFE(l);

end MOV_REL3;

procedure MRK_ABS2(X,Y:float) is

begin

MOV_ABS2(X,Y);

76

LIN_REL2(0.0,0.0)

end MRK_ABS2;

procedure MRK_REL2(X,Y:float) is

begin

MOV_REL2(X,Y);

LIN_REL2(0.0,0.0);

end MRK REL2;

procedure MULNROTA(A:float) is

— This procedure multiplies the transformation matrix

— by a rotation

A is the angle of counterclockwise rotation

C and S are the cosine and sine values

I is for stepping through the array

TEMP is for temporary storage of the first column .b

of the transformation matrix

TEMP,C,S:float;

begin

C:=cos(A);

S:=sin(A);

for I in 1..3 loop

TEMP:=H(I)(1)*C-H(I)(2)*S;

H(I)(2):=H(I)(1)*S+H(I)(2)*C;

H(II)(1):=TEMP;

end loop;

end MULNROTA;

procedure MULNSCAL is

— This procedure was used to multiply the transformation

— matrix by a scale transformation

for I in 1..3 loop

H(I)(1):=H(I)(1)*SCALE_X(SEG_NAME);

H(I)(2):=H(I)(2)*SCALE_Y(SEG_NAME);

end loop;

end MULNSCAL;

procedure MULNTRAN(TX,TY:float) is

-- This procedure multiplies the transformation matrix by

— a translation

TX is the translation in the x direction

TY is the translation in the y direction

begin

77

H(3)(1):=H(3)(1)+TX;

H(3)(2):=H(3)(2)+TY;

end MULNTRAN;

procedure M_CLIP_CONS is

— This procedure calculates some of the 3D clipping

— parameters

FRONT and BACK are the front and back plane distances

from the view reference point

V_DIS is the view plane distance from the view

reference point

FRO_Z and BAC_Z are the front and back plane positions

in view plane coordinates

PERS_FLAG is the type of projection flag

VXP, VYP and VZP are the parallel projection vector

coordinates

XC, YC and ZC are the perspective center of

projection coordinates

WXL, WXH, WYL, and WYH are the window boundary

specification

XLM, XHM, YLM and YHM are the window clipping plane

slopes

begin

FRO_Z:=V_DIS-FRONT;

BAC_Z:=V_DIS-BACK;

if PERS_FLAG then

XLM:=(XC-WXL)/ZC;

XHM:=(XC-WXH)/ZC;

YLM:=(YC-WYL)/ZC;

YHM:=(YC-WYH)/ZC;

else

XLM:=VXP/VZP;

XHM:=XLM;

YLM:=VYP/VZP;

YHM:=YLM;

end if;

end M_CLIP_CONS;

procedure M_CLIP_TEST is

— This procedure initializes test conditions for the
— "old" endpoints

OPTTE is an array to hold the test conditions for the

four window clipping planes

XLM, XHM, YLM and YHM are the slopes of the clipping

planes

78

WXL, WXH, WYL and WYH are the window boundaries

ZS is an array containing the z coordinates of the

"old" endpoints
begin

OPTTE(1):=XLM*ZS(1)+WXL;

OPTTE(2):=XHM*ZS(2)+WXH;

OPTTE(3):=YLM*ZS(3)+WYL;

OPTTE(4):=YHM*ZS(4)+WYH;

end M_CLIP_TEST;

procedure M_PARA_TRANS is

— This procedure calculates the direction of the projection
— in view plane coordinates

TMAT is a 4 X 3 coordinate transformation matrix
array

DXP, DYP and DZP are the parallel projection vector
coordinates

VXP, VYP and VZP are view plane coordinates in the
direction of projection

SXP and SYP are the slopes of the projection relative
to the Z direction

RNDOFF is some small number greater than any round-off
error

begin

VXP:=DXP*TMAT(1)(1)+DYP*TMAT(2)(1)+DZP*TMAT(3)(1);
VYP:=DXP*TMAT(1)(2)+DYP*TMAT(2)(2)+DZP*TMAT(3)(2);
VZP:=DXP*TMAT(1)(3)+DYP*TMAT(2)(3)+DZP*TMAT(3)(3);
if abs(VZP)<RNDOFF then

put("PROJECTION PARALLEL TO VIEW PLANE");
new_line;

end if;

SXP:=VXP/VZP;

SYP:=VYP/VZP;

end M_PARA_TRANS;

procedure M_PERS_TRANS is

— This procedure converts the center of projection to view
— plane coordinates

XPCNTR, YPCNTR and ZPCNTR are the center of projection
coordinates

XC, YC and ZC are the view plane coordinates for the
center of projection

begin

XC:=XPCNTR;

YC:=YPCNTR;

79

ZC:=ZPCNTR;

V_PLA_TRANS(XC,YC,ZC);

if ZC<0.0 then

put("CENTER OF PROJECTION IS BEHIND VIEW PLANE");

new_line;

end if;

end M_PERS_TRANS;

procedure M_PIC_CU is

— This procedure shows the current display file

SEG_START, SEG_SIZE and VISIBLE together make up the

segment table

E_FLAG indicates whether the frames should be cleared

I is a variable used for stepping through the segment
table

NUM_SEGS is the size of the segment table
begin

if E_FLAG then

ERASE;

E_FLAG:=false;

end if;

for I in O..NUM_SEGS loop

if (SEG_SIZE(I) /= 0) AND VISIBLE(I) then

BUILDTRN(I);

INTRPRET(SEG_START(I),SEG_SIZE(I));
end if;

end loop;

DLET_SEG(0);

end M_PIC_CU;

procedure M_VIEW_PLA_TRANS is

— This procedure makes the view-plane transformation

XR, YR and ZR are the view reference point

coordinates

DXN, DYN and DZN are the view plane normal

coordinates

DXUP, DYUP and DZUP are the view-up direction

coordinates

TMAT is a 4 X 3 transformation matrix array

PERS_FLAG is the perspective projection flag

V_DIS is the distance between the view reference

point and the view plane

V, XUP_VP, YUP_VP and RUP are storage variables for

partial results

RNDOFF is some small number greater than any

round-error

80

V, XUP_VP, YUP_VP, RUP -.float;

begin

— Start with the identity matrix

N_TRANS3;

-- Translate so that view plane center is new origin

TRANSLAT3(-(XR+DXN*V_DIS),-(YR+DYN*V_DIS),

-(ZR+DZN*V_DIS));

— Rotate so that view plane normal is z axis

V:=sqrt(DYN**2+DZN**2);

if V>RNDOFF then

ROTATEX3(-DYN/V,-DZN/V);

end if;

ROTATEY3(DXN,V);

— Determine the view-up direction in these new

— coordinates

XUP_VP:=DXUP*TMAT(1)(1)+DYUP*TMAT(2)(1)+DZUP*TMAT(3) (1) ;

YUP_VP:=DXUP*TMAT(1)(2)+DYUP*TMAT(2)(2)+DZUP*TMAT(3)(2);

— Determine rotation needed to make view-up vertical

RUP:=sqrt(XUP_VP**2+YUP_VP**2);

if RUP<RNDOFF then

put("SET-VIEW-UP ALONG VIEWPLANE NORMAL");

new_line;

end if;

ROTATEZ 3(XUP_VP/RUP,YUP_VP/RUP);

if PERS_FLAG then

M_PERS_TRANS;

else

M_PARA_TRANS;

end if;

end M_VIEW_PLA_TRANS;

procedure NEW_FRAM is

— This procedure was used to indicate when the frame

— buffer should be cleared before showing the display

-- file

E_FLAG is a flag to indicate whether the frame

should be cleared

begin

E_FLAG:=true;

end NEW_FRAM;

procedure NEW_VTEW2 is

— This procedure was used to set the clipping and

— viewing parameters from the current window and

-- viewport specifications

81

begin

WXL:=WXL_HOLD;

WYL:=WYL_HOLD;

WXH:=WXH_HOLD;

WYH:=WYH_HOLD;

VXL:=VXL_HOLD;

VYL:=VYL_HOLD;

VXH:=VXH_HOLD;

VYH:=VYH_HOLD;

WSX:=(VXH-VXL)/(WXH-WXL);

WSY:=(VYH-VYL)/(WYH-WYL);

end NEW_VIEW2;

procedure NEW_VIEW3 is

— This procedure creates a new overall viewing
— transformation

WXL_HOLD, WYL_HOLD, WXH_HOLD and WYH_HOLD are the

user's window parameters

VXL_HOLD, VYL_HOLD, VXH_HOLD and VYH_HOLD are the

user's viewport parameters

WXL, WYLf WXH, WYH, VXL, VYL, VXH and VYH are the

current clipping parameters

WSX and WSY are the window to viewport scale factors

begin

NEW_VIEW2;

M_VIEW_PLA_TRANS;

M_CLIP_CONS;

M_CLIP_TEST;

end NEW VIEW3;

procedure N_TRANS3 is

— This procedure initializes the viewing transformation

— matrix to identity

TMAT is a 4 X 3 transformation matrix array

I and J are for stepping through the array elements

begin

for I in 1..4 loop

for J in 1..3 loop

TMAT(I)(J):=0.0;

if I/=4 then

TMAT(I)(I):=1.0;

end if;

end loop;

end loop;

end N TRANS3;

82

procedure PAR_TRANS(X,Y,Z:in out float) is
— This procedure performs the parallel projection of a
-- point

X, Y and Z are the coordinates of the point to be
projected

SXP and SYP are the parallel projection vector
ratios

begin

X:=X-Z*SXP;

Y:=Y-Z*SYP;

end PAR_TRANS;

procedure PERS_TRANS(X,Y,Z:in out float) is
— This procedure performs the perspective projection of a
— point

X, Y and Z are the view plane coordinates of the
point

XC, YC and ZC are the coordinates of the center of
projection

RNDOFF is some small number greater than any
round-off error

V_LAR is a very large number approximating infinity
begin

if abs(ZC-Z)<RNDOFF then
X:=(X-XC)*V_LAR;

Y:=(Y-YC)*V_LAR;
else

X:=(X*ZC-XC*Z)/(ZC-Z);

Y:=(Y*ZC-YC*Z)/(ZC-Z);
end if;

end PERSJTRANS;

procedure POLYISRT(J:integer;Xl,Yl,X2,Y2:float) is
-- This procedure performs the ordered insertion of polygon
— edge information

J is the insertion index

XI, Yl, X2 and Y2 are the endpoints of the polygon
side

YMAX, YMIN, XA and DX are arrays that store polygon
edge information

Jl is for stepping through the stored edges
YM is the maximum y value of the new edge

Jl:integer;

YM:float;

begin

83

-- Insertion sort into global arrays on maximum y value
Jl:—J;

— Find the largest y value
if Y1^Y2 then

YM:=Y1;

else

YM:=Y2;

end if;

— Find the correct insertion point, moving items out of
— the way

while (Jl/=1) and then ((YMAX(Jl-1))<YM) loop
YMAX(J1):=YMAX(J1-1);
YMIN(Jl):=YMIN(Jl-1);

XA(J1):=XA(J1-1);

DXARRAY(Jl):=DXARRAY(Jl-1) ;
J1:=J1-1;

end loop;

— Insert information about side
YMAX(Jl):=YM;

DXARRAY(J1):=(X2-X1)/(Y2-Y1);
if Y1>Y2 then

YMIN(J1):=Y2;

XA(J1):=X1;

else

YMIN(J1):=Y1;

XA(J1):=X2;

end if;

end POLYISRT;

procedure P0L_ABS2(AX,AY:P0LARRAY;N:integer) is
— This procedure is used to enter an absolute polygon into
— the display file

N is the number of polygon sides

AX and AY are arrays containing the vertices of the
polygon

DF_PEN_X and DF_PEN_Y are the coordinates of the

current pen position

I is used for stepping through the polygon sides
begin

if (N>31) or (N<3) then

put("POLYGON SIZE ERROR! MM");

new_line;

else

— Enter the polygon instruction

DF_PEN_X:=AX(N);

DF_PEN_Y:=AY(N);

84

DFE(N);

-- Enter the instructions for the sides

for I in 1..N loop

LIN_ABS2(AX(I),AY(I));

end loop;

end if;

end POL_ABS2;

procedure POL_ABS3(AX,AY,AZ:POLARRAY;N:integer) is

— This procedure is used for 3D absolute polygon drawing

N is the number of polygon sides

AX, AY and AZ are arrays containing the coordinates

DF_PEN_X, DF_PEN_Y and DF_PEN_Z are the coordinates

of the current pen position

I is used for stepping through the polygon sides

begin

if (N>31) or (N<3) then

put("POLYGON SIZE ERROR!!!!!");

new_line;

else

DF_PEN_X:=AX(N);

DF_PEN_Y:=AY(N);

DF_PEN_Z:=AZ(N);

DFE(N);

for I in 1..N loop

LIN_ABS3(AX(I),

end loop;

end if;

end POL ABS3;

procedure POL_CLIP(OP:integer;X,Y,Z:float) is

— This procedure is the polygon clipping routine

OP, X, Y and Z are a display file instruction

PFLAG indicates that a polygon is being drawn

COUNT_IN is the number of sides remaining to be

processed

COUNT_OUT is the number of sides to be entered in the

display file

IT, XT, YT and ZT are the temporary storage cells for

a

polygon

I is use for stepping through the polygon sides

begin

COUNT_IN:=COUNT_IN-1;

CLIP_LEFT(OP,X,Y,Z);

85

if COUNT_IN=0 then

— Close the clipped polygon

if COUNT_OUT>0 then

CLIP_LEFT(2,XT(1),YT(1),

end if;

PFLAG:=false;

— Remove the extra side

COUNT_OUT:=COUNT_OUT-1;

if COUNT_OUT>3 then

if COUNT_OUT<32 then

-- Enter the polygon into the display file

DOPROJ(COUNT_OUT,XT(COUNTJDUT),YT(COUNTJDUT),

ZT(COUNT_OUT));

for I in 1..COUNT_OUT loop

DOPROJ(IT(I),XT(I),YT(I

end loop;

else

put("CLIPPED POLYGON TOO BIG");

new_line;

end if;

end if;

end if;

end POL_CLIP;

procedure POL_REL2(AX,AY:POLARRAY;N:integer) is

— This procedure is used for entering a relative polygon

— into the display file

N is the number of polygon sides

AX and AY are arrays containing the vertices of the

polygon

DF_PEN_X and DF_PEN_Y are the coordinates of the

current pen position

I is used for stepping through the polygon sides

TMPX and TMPY are used to store the coordinates of

the point at which the polygon is closed

TMPX,TMPY:float;

begin

if (N>31) or (N<3) then

put("POLYGON SIZE ERROR!!!!!");

new_line;

else

DF_PEN_X:=DF_PEN_X+AX(1);

DF_PEN_Y:=DF_PEN_Y+AY(1);

— save the starting point for closing the polygon

TMPX:=DF_PEN_X;

TMPY:=DF PEN Y;

86

— enter the polygon instruction
DFE(N);

— enter the instructions for the sides
for I in 2..N loop

— close the polygon

LIN_REL2(AX(I),AY(I)) ;

end loop;

LIN_ABS2(TMPX,TMPY);

end if;

end POL_REL2;

procedure POL_REL3(AX,AY,AZ:POLARRAY;N:integer) is
— This procedure is used for 3D relative polygon drawing

N is the number of polygon sides

AX, AY and AZ are arrays containing the displacements
for the polygon sides

DF_PEN_X, DF_PEN_Y and DF_PEN_Z are the

coordinates of the current pen position

I is used for stepping through the polygon sides
TMPX, TMPY and TMPZ are storage locations for the

point at which the polygon is closed
TMPX,TMPY,TMPZ:float;

begin

if (N>31) or (N<3) then

put("POLYGON SIZE ERROR!!!!!");

new_line;

else.b — Move to starting vertex

DF_PEN_X:=DF_PEN_X+AX(1);

DF_PEN_Y:=DF_PEN_Y+AY(1);

DF_PEN_Z:=DF_PEN_Z+AZ(1);

— Save vertex for closing the polygon

TMPX:=DF_PEN_X;

TMPY:=DF_PEN_Y;

TMPZ:=DF_PEN_Z;

DFE(N);

-- ENTER THE POLYGON SIDES

for I in 2..N loop

LIN_REL3(AX(I),AY(I),AZ(I));
end loop;

— Close the polyon

LIN_ABS3(TMPX,TMPY,TMPZ);

end if;

end POL_REL3;

procedure PUT_IN_T(OP:integer;X,Y,Z:float;

87

INDEX:integer) is

— This procedure places the a polygon edge instruction in a

— temporary storage buffer

OP, X, Y and Z are the instruction to be stored

INDEX is the position at which to store the

instruction

IT, XT, YT and ZT are the temporary storage arrays for

the polygon sides

begin

IT(INDEX):=OP;

XT(INDEX):=X;

YT(INDEX):=Y;

ZT(INDEX):=Z;

end PUT_IN_T;

procedure PUT_PNT(OP:integer;X,Y:float) is

— This procedure places a full instruction into the display

— file and updates the segment table

OP, X and Y form the instruction to be entered

NOW_OPEN is the segment currently open

SEG_SIZE is the segment size array

FREE is the position of the next free display file

cell

begin

SEG_SIZE(NOW_OPEN):=SEG_SIZE(NOW_OPEN) + 1;

SET_PNT(FREE,OP,X,Y);

FREE:=FREE + 1;

end PUT_PNT;

procedure RENA_SEG(SEG_OLD,SEG_NEW:integer) is

— This procedure renames a segment

SEG_OLD is the old name of the segment

SEG_NEW is the new name of the segment

SEG_START, SEG_SIZE, VISIBLE, ANGLE, SCALE_X, SCALE_Y,

TRAN_X and TRAN_Y together make up the segment table

NUM_SEGS is the size of the segment table

■ NOW_OPEN is the segment currently open

begin

if (SEG_OLD<1) or (SEG_NEW<1) or (SEG_OLD>NUM_SEGS)

or (SEG_NEW>NUM_SEGS) then

put("INVALID SEGMENT NAME");

new_line;

elsif (SEGJDLD = NOWJDPEN) or (SEG_NEW = NOW_OPEN) then

put("SEGMENT STILL OPEN");

new_line;

88

elsif SEG_SIZE(SEG NEW) /= 0 then
put("SEGMENT ALREADY EXIST");
new_line;

else

— Copy the old segment table entry into the new
— position

SEG_START(SEG_NEW):=SEG_START(SEGJDLD);
SEG_SIZE(SEG_NEW) : =SEG_SIZE (SEG_OLD) ;

VISIBLE(SEG_NEW):=VISIBLE(SEGJDLD);
ANGLE(SEG_NEW):=ANGLE(SEG OLD);

SCALE_X(SEG_NEW):=SCALE_X(SEG_OLD);
SCALE_Y(SEG_NEW):=SCALE_Y(SEG_OLD);
TRANS_X(SEG_NEW):=TRANS_X(SEG_OLD);
TRANS_Y(SEG_NEW):=TRANS_Y(SEG_OLD);
— Delete the old segment

SEG_SIZE(SEG_OLD):=0;
end if;

end RENA_SEG;

procedure ROTATE(A:float) is

-- This procedure sets the image rotation
A is the angle of rotation

ANGLE is the segment angle parameter table
begin

ANGLE(0):=A;

NEW_FRAM;

end ROTATE;

procedure ROTATEX3(3,0:float) is

-- This procedure calculates the rotation about the x axis
— (y into z)

S and C are the sine and cosine of the rotation angle
TMAT is a 4 X 3 transformation matrix array
I is for stepping through the matrix elements
TMP is a temporary storage

TMP:float;

begin

for I in 1..4 loop

TMP:=TMAT(I)(2)*C-TMAT(I)(3)*S;
TMAT(I)(3):=TMAT(I)(2)*S+TMAT(I)(3)*C;
TMAT(I)(2):=TMP;

end loop;

end R0TATEX3;

89

procedure R0TATEY3(S,C:float) is

— This procedure calculates the rotation about the y axis
— (z into x)

S and C are the sine and cosine of the rotation angle

TMAT is a 4 X 3 transformation matrix array
I is for stepping through the matrix elements
TMP is a temporary storage

TMP:float;

begin

for I in 1..4 loop

TMP:=TMAT(I)(1)*C+TMAT(I)(3)*S;

TMAT(I)(3):=TMAT(I)(1)*S+TMAT(I)(3)*C;
TMAT(I)(1):=TMP;

end loop;

end ROTATEY3;

procedure ROTATEZ3(S,C:float) is

-- This procedure calculates the rotation about the z axis
-- (x into y)

S and C are the sine and cosine of the rotation angle
TMAT is a 4 X 3 transformation matrix array
I is for stepping through the matrix elements
TMP is a temporary storage

TMP:float;
begin

for I in 1..4 loop

TMP:=TMAT(I)(1)*C-TMAT(I)(2)*S;

TMAT(I)(2):=TMAT(I)(1)*S+TMAT(I)(2)*C;
TMAT(I)(1):=TMP;

end loop;

end ROTATEZ3;

procedure SCALES(SX,SY:float) is

-- This procedure sets the image scaling transformation
SX and SY are the scaling parameters

SCALE_X and SCALE_Y are the segment scaling parameter
tables

begin

SCALE_X(O):=SX;

SCALE_Y(0):=SY;

NEW_FRAM;

end SCALES;

procedure SET_BACCLIP(ON_OFF:boolean) is

90

— This is a user routine to set the back clipping flag

ON_OFF is the user's clipping flag setting

B_FLAG is the back clipping flag

begin

B_FLAG:=ON_OFF;

end SET_BACCLIP;

procedure SET_FRONCLIP(ON_OFF:boolean) is

— This is a user routine to set the front clipping flag

ON_OFF is the user's clipping flag setting

F_FLAG is the front clipping flag

begin

F_FLAG:=ON_OFF;

end SET_FRONCLIP;

procedure SET_PARA(DX,DY,DZ:float) is

— This procedure is for user input of the direction of
— parallel projection

DX, DY and DZ are the new parallel projection vector

coordinates

PERS_FLAG is the perspective vs. parallel projection

flag

DXP, DYP and DZP are the permanent storage variables

for the direction of projection
RNDOFF is some small number greater than any

round-off error

begin
if (abs(DX)+abs(DY)+abs(DZ)) < RNDOFF then

put("NO DIRECTION OF PROJECTION");

new_line;

else

PERS_FLAG:=false;

DXP:=DX;

DYP:=DY;

DZP:=DZ;

end if;
end SET_PARA;

procedure SET_PERS(X,Y,Z:float) is
— This procedure indicates a perspective projection and

— saves the center of projection

X, Y, and Z are the new center of projection

coordinates

XPCNTR, YPCTNTR, and ZPCNTR are the permanent storage

91

variables for the center of projection

PERS_FLAG is the perspective vs. parallel projection

flag

begin

PERS_FLAG:=true;

XPCNTR:=X;

YPCNTR:=Y;

ZPCNTR:=Z;

end SET_PERS;

procedure SET_PIX(X,Y,INTENSE:in integer) is

XI,X2,Yl,Y2:integer;

VIDEO_SEG,VIDEO_OFFSET:integer;

M,DATA:byte;

begin — SET_PIX

X1:=((X / 8));

Yl:=(((224-y) / 9));

X2:=((X mod 8));

Y2:=(((224-Y) mod 9));

VIDEO_OFFSET:=-32766+(2048)*Yl+(128)*Y2+X1;

M:=byte(2**(7-X2));

case INTENSE is

when 0 => VIDEO_SEG:=16C000;

when 1 => VIDEO_SEG:=16D000;

When 2 => VIDEO_SEG:=16E000;

end case;

DATA:=peek(VIDEO_SEG,VIDEO_OFFSET);

DATA:=byte(LOR(INTEGER(DATA),INTEGER(M)));

poke(VIDEO_SEG,VIDEO_OFFSET,DATA);

end SET_PIX;

procedure SET_PNT(INDEX,OP:integer;X,Y:float) is

-- This procedure replaces an instruction in the display

-- file

OP, X and Y are the replacement instructions

INDEX is the position of the instruction to be changed

DF_OP, DF_X and DF_Y are the arrays which together

make up the display file

DF_SIZE is the length of the display file

begin

if INDEX > DFSIZE then

put("DISPLAY FILE OVERFLOW");
new_line;

else

DF_OP(INDEX):=OP;

92

DF_X(INDEX):=X;

DF_Y(INDEX):=Y;

end if;

end SET PNT;

procedure SET_VTEW(XL,XH,YL,YH:float) is

— This procedure is used for specifying the viewport
— boundary

XL and XH are the left and right viewport boundaries
YL and YH are the bottom and top viewport boundaries
VXL_HOLD, VXH_HOLD, VYL_HOLD and VYH_HOLD are the

storage variables for the viewport boundaries
begin

if XL>XH or YL>YH then

put("BAD VIEWPORT");

new_line;

else

VXL_HOLD:=XL;

VXH_HOLD:=XH;

VYL_HOLD:=YL;

VYH_HOLD:=YH;

end if;

end SET_VIEW;

procedure SET_VIEWDEP(F_DIS/B_DIS:float) is

— This procedure is a user routine to specify the position
— of the front and back clipping planes

F_DIS and B_DIS are the coordinates of the plane

distance from the view reference point along the
view plane normal

FRONT and BACK are the storage variables for the plane
position

begin

if F_DIS>B_DIS then

put("FRONT PLANE BEHIND THE BACK PLANE");
new_line;

else

FRONT:=F_DIS;

BACK:=B_DIS;

end if;

end SET_VIEWDEP;

procedure SET_VIEWDIS(D:float) is

— This procdure is used for changing the distance between

93

— the view reference point and the view plane

V_DIS is the permanent storage variable for the view

distance

begin

V_DIS:=D;

end SET VIEWDIS;

procedure SET_VIEWPLANOR(DX,DY,DZ:float) is

— This procedure is used for changing the view plane

-- normal

DX, DY and DZ are the new view plane normal vector

coordinates

D is the length of the user's specification vector

RNDOFF is some small number greater than any

round-off error

D:float;

begin

D:=sqrt(DX**2+DY**2+DZ**2);

if D<RNDOFF then

put("INVALID VIEW PLANE NORMAL");

new_line;

end if;

DXN:=DX/D;

DYN:=DY/D;

DZN:=DZ/D;

end SET VIEWPLANOR;

procedure SET_VIEWREFPT(X,Y,Z:float) is

— This procedure is used for changing the view reference

— point

X, Y and Z are the new view reference point

coordinates

XR, YR and ZR are permanent storage for the

reference point

begin

XR:=X;

YR:=Y;

ZR:=Z;

end SET_VIEWREFPT;

procedure SET_VIEWUP(DX,DY,DZ:float) is

— This procedure is used for changing the direction that

— will be vertical on the image

DXUP, DYUP and DZUP are the permanent storage

94

variables for the view-up direction
RNDOFF is some small number greater than any

round-off error

begin

if (abs(DX)+abs(DY)+abs(DZ)) < RNDOFF then
put("NO SET-VIEW-UP DIRECTION");

new_line;

else

DXUP:=DX;

DYUP:=DY;

DZUP:=DZ;

end if;

end SET_VIEWUP;

procedure SET_VIS(SEG_NAME:integer;ON_OFF:boolean) is

— This procedure is used to set the visibility attribute

SEG_NAME is the name of the segment

ON_OFF is the new visibility setting

VISIBLE is an array of visibility flags

NUM_SEGS is the size of the segment table
begin

if (SEG_NAME < 1) or (SEG_NAME > NUM_SEGS) then

put("INVALID SEGMENT NAME");

new_line;

else

VISIBLE(SEG_NAME):=ON_OFF;

if not ON_OFF then

NEW_FRAM;

end if;

end if;

end SET_VIS;

procedure SET_WINDOW(XL,XH,YL,YH:float) is

— This procedure is used for specifying the window

— boundary

XL and XH are the left and right window boundaries

YL and YH are the bottom and top window boundaries

WXL_HOLD, WXH_HOLD, WYL_HOLD and WYH_HOLD are the

storage variables for the window boundaries

begin

if XL>XH or YL>YH then

putt"BAD WINDOW");

new_line;

else

WXL_HOLD:=XL;

95

WXH_HOLD:=XH;

WYL_HOLD:=YL;

WYH_HOLD:=YH;

end if;

end SET_WINDOW;

procedure S_CLIP_PT(OP:integer;X,Y,Z:float) is

— This procedure saves a clipped polygon instruction
OP, X, Y and Z are a set of 3D drawing instructions

COUNT_OUT is a counter of the number of sides on
the clipped polygon

PFLAG indicates if a polygon is to be clipped
begin

if PFLAG then

COUNT_OUT:=COUNT_OUT+1;

if COUNT_OUT<33 then

PUT_IN_T(OP,X,Y,Z,COUNT_OUT);
end if;

else

DOPROJ(OP,X,Y,Z);
end if;

end S_CLIP_PT;

procedure S_FILL(ON_OFF: boolean) is

~ This procedure is used to set a flag indicating when a
-- polygon is to be filled

ON_OFF is the flag used for the fill setting
SOLID is the flag which indicates the filling of

polygons
begin

SOLID:= ON_OFF;

end S_FILL;

procedure S_FILSTY(STYLE:integer) is

— This procedure is used to set the polygon interior style
STYLE is the user's style request

begin

DFE(-(30+STYLE));
end S FILSTY;

procedure S_LINSTY(LSTYLE:integer) is
-- This procedure is used for changing line style

LSTYLE is the line-style specification

96

begin

DFE(-LSTYLE);
end S_LINSTY;

procedure S_TRANSF(SEG_NAME:integer;SX,SY,A,TX,TY:float) is
~ This procedure is used to set the image transformation
— parameters of a segment

SEG_NAME is the segment being transformed
SX, SY, A, TX and TY are the new image transformation

parameters

VISIBLE, SCALE X, SCALE_Y, ANGLE, TRAN X and TRAN_Y
are arrays Tor the attribute part of* the segment
table

NUM_SEGS is the size of the segment table

begin

if (SEG_NAME < 1) or (SEG_NAME > NUM_SEGS) then

put("INVALID SEGMENT NAME");

new_line;

else

SCALE_X(SEG_NAME):=SX;

SCALE_Y(SEG_NAME):=SY;

ANGLE(SEG_NAME):=A;

TRANS_X(SEG_NAME):=TX;

TRANS_Y(SEG_NAME):=TY;

if VISIBLE(SEG_NAME) then

NEW_FRAM;

end if;

end if;

end SJTRANSF;

procedure S_TRANSL(SEG_NAME:integer;TX,TY:float) is

— This procedure is used to set the image translation for
— an segment

SEG_NAME is the segment being transformed

TX and TY are the transformation parameters

TRANS_X and TRANS_Y are arrays containing the segment

translation parameter table

NUM_SEGS is the size of the segment table

begin

if (SEG_NAME < 1) or (SEG_NAME > NUM_SEGS) then

put("INVALID SEGMENT NAME");

new_line;

else

TRANS_X(SEG_NAME):=TX;

TRANS_Y(SEG_NAME):=TY;

97

if VISIBLE(SEG_NAME) then
NEW_FRAM;

end if;

end if;

end S_TRANSL;

procedure TRANSLAT(TX,TY:float) is

— This procedure set the translation parameters for the
— unnamed segment

TX and TY are the translation specfication

TRANS_X and TRANS_Y are part of the segment table for
translation

begin

TRANS_X(O):=TX;

TRANS_Y(O):=TY;

NEW_FRAM;

end TRANSLAT;

procedure TRANSLAT3(TX,TY,TZ:float) is

— This procedure multiplies the viewing transformation
— matrix by a translation

TX, TY and TZ are the amount of the translation

TMAT is a 4 X 3 transformation matrix array-
begin

TMAT(4)(1):=TMAT(4)(1)+TX;
TMAT(4)(2):=TMAT(4)(2)+TY;

TMAT(4)(3):=TMAT(4)(3)+TZ;
end TRANSLAT3;

procedure UPDXVAL(E_EDGE:integer;S_EDGE:in out integer;
SCAN:float) is

— This procedure updates points of intersection between
— edges and the scanline

S_EDGE and E_EDGE are the limits of the current edge
list

SCAN is the current scanline

YMIN, XA and DX are arrays of edge information

B_EDGE and STP_EDGE are the limits on edges that are
considered for updating

K and L are for stepping through the edges
I is for stepping through the edges that are to

be shifted up

B_EDGE,STP_EDGE:integer;

L,K,I:integer;

98

begin

STP_EDGE:=E_EDGE-1;

B_EDGE:=S_EDGE;

for K in B_EDGE..STP_EDGE loop

if YMIN(K)<SCAN then

XA(K):=XA(K)+DXARRAY(K);

XSORT(B_EDGE,K);

else

S_EDGE:=S_EDGE+1;

if S_EDGE£K then

for I in K..S_EDGE loop

YMIN(I):=YMIN(I-1);

XA(I):=XA(I-1);

DXARRAY(I):=DXARRAY(1-1);

end loop;

end if;

end if;

end loop;

end UPDXVAL;

procedure VIEW_TRANS(OP:integer;X,Y:float) is

— This procedure calculates the viewing transformation of

— a point

OP, X and Y are the intructions to be transformed

WXL, WYL, WSXf WSY, VXL and VYL are the window and

viewport parameters

XI and Yl are the transformed point

XI,Yl:float;

begin

XI:=(X-WXL)*WSX+VXL;

Yl:=(Y-WYL)*WSY+VYL;

PUT_PNT(OP,X1,Y1);

end VIEW TRANS;

procedure V_PLA_TRANS(X,Y,Z:in out float) is

— This procedure transforms a point into the view plane

— coordinate system

X, Y and Z are the coordinates of the point to be

transformed

TMAT is a 4 X 3 transformation matrix array

T is a three-element array to hold results until

calculations are finished

I is for stepping through the TMAT columns

T:array (1..3) of float;

begin

99

for I in 1..3 loop

T(I):=X*TMAT(1)(I)+Y*TMAT(2)(I)+Z*TMAT(3)(I)

+TMAT(4)(I);

end loop;

X:=T(1);

Y:=T(2);

Z:=T(3);

end V PLA TRANS;

procedure XCHANGE(A,B:in out float) is

— This procedure is used to exchange two elements

A and B are the two elements to be exchanged

TEMP is a temporary storage variable

TEMP:float;

begin

TEMP:=B;

B: =A*

A:=TEMP;

end XCHANGE;

procedure XSORT(S_EDGE,K) is

— This procedure was used to check the order of

— the x value intersection

L:=K;

begin

while (L>S_EDGE) and then (XA(L)<XA(L-1)) loop

XCHANGE(YMIN(L),YMIN(L-1));

XCHANGE(XA(L),XA(L-1));

XCHANGE(DXARRAY(L),DXARRAY(L-1));

L:=L-1;

end loop;

end XSORT;

