
ABSTRACT

COMPUTER AND INFORMATION SCIENCE

THOMAS, JAMAR E. B.S. CLARK ATLANTA UNIVERSITY, 2005

ASYNCHRONOUS INSTANT MESSAGING USING SERVICE-ORIENTED

ARCHITECTURES rAIMSOA)

Advisor: Professor Roy George, Ph.D.

Thesis dated June 2005

Instant messengers suffer from poor scalability, flexibility, security, and

interoperability. This study attempts to solve these problems using the strengths of

Service-Oriented Architectures. The key components to achieve these improvements

include several Java related technologies such as JAX-RPC, JAXM, SOAP, WSDL,

J2EE servlets and Enterprise Java Beans. SOAP provides a universal messaging protocol

that heterogeneous parties can understand. JAX-RPC provides synchronous SOAP

messaging, as well as a loosely coupled design that allows for a very flexible distributed

architecture. JAXM provides asynchronous SOAP messaging. When used together,

applications can implement robust instant messaging functionality. Registration, login,

and other instant messaging configuration operations can be fulfilled through the use of

JAX-RPC while JAXM can be used to fulfill requirements such as send and receive.

Servlets and Enterprise Java Beans augment the benefits of Service-Oriented

Architectures with the former being extremely scalable, portable, and modular.

AIMSOA encapsulates these components to provide an instant messaging architecture

solution that will augment the weaknesses of current instant messaging architectures by

providing a solution for better scalability, flexibility, and interoperability.



ASYNCHRONOUS INSTANT MESSAGING USING SERVICE-ORIENTED

ARCHITECTURES (AIMSOA)

A THESIS

SUBMITTED TO THE FACULTY OF CLARK ATLANTA UNIVERSITY IN

PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER SCIENCE

BY

JAMAR E.THOMAS

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

ATLANTA, GEORGIA

AUGUST 2005



©2005

JAMAR THOMAS

All Rights Reserved



ACKNOWLEDGEMENTS

First and foremost, I give all glory and honor to God. Secondly, I wish to thank

my mother, Annette Weathington, father, Anthony Thomas, and brother, Malcolm

Thomas for their support and unyielding love during my life and especially throughout

my matriculation at Clark Atlanta University. I would also like to thank my fiance and

very best friend, Angela Strange, for all of her patience and endurance during this trying

and very hectic time ofmy life. I extend a warm thanks to the PRISM-D and Honors

program for being my second family during my time at CAU. Lastly, I would like to

thank the entire Department of Computer Science, especially Dr. George, in helping in

finalizing my requirements for this thesis.

n



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

LIST OF FIGURES v

LIST OF ABBREVIATIONS vi

Chapter

I. INTRODUCTION 1

Problem Statement 2

Background 2

Significance of Study 7

II. REVIEW OF EXISTING CONCEPTS 8

IM Background 8

Service-Oriented Architecture (SOA) 9

Design Principles of Distributed Computing 13

Interoperability 13

Flexibility and Scalability 13

Portability 15

Instant Messaging and Cell Phones 15

Key Terms and Concepts 16

Limitations of Current Architectures and Solutions 29

Security 29

OMS 32

Current Client Architecture Design 33

iii



Limitations of Distributed Messaging Tools 34

CORBA, Java RMI, DCOM 34

JAXM 35

JMS 35

JAX-RPC 36

Summary of Existing Concepts 36

III. DESIGN -38

Architecture 38

Presentation Layer: Web clients 39

Middle Layer: Provider 40

Middle Layer/Application Layer: Servlet Container 41

Middle Layer/Service Layer: JAXM Servlet 41

Middle Layer/Service Layer: JAX-RPC Servlet 42

Middle Layer/Application Layer: EJB Container 43

Middle Layer/Application Layer: Session Beans 43

Data Layer: Data Tier 44

Methodology 45

Sequence Diagrams of Methods 46

IV. DISCUSSION 48

REFERENCES 54

IV



LIST OF FIGURES

FIGURE PAGE

1. Traditional Client/Server Architecture 4

2. Traditional IM Application Architecture 5

3. Multi-Tiered Architecture 6

4. Find, Bind, and Execute Paradigm 11

5. Traditional Client/Server Architecture augmented with a Service Layer 12

6. ebXML profile 21

7. SOAP Message Structure 22

8. J2EE Platform 27

9. AIMSOA Architecture 39

10. Sequence Diagram for login and registration IM operations 46

11. Sequence Diagram for Send Message operations 47

12. Sequence Diagram for Receiving Message operations 47

13. WSDL for implementing only IM registration functionality 49



LIST OF ABBREVIATIONS

AIM AOL Instant Messenger

CORBA Common Object Request Broker Architecture

DCOM Microsoft Distributed Component Object Model

ebXML Electronic Business using Extensible Markup Language

EJB Enterprise Java Beans

IM Instant Messenger

J2EE Java 2 Platform Enterprise Edition

Java RMI Remote Method Invocation

JAXM Java API for XML Messaging

JAX-RPC Java API for XML Remote Procedure Call

JMS Java Messaging Service

LDAP Lightweight Directory Access Protocol

OSCAR Open System for Communication in Real-time

SAAJ SOAP with Attachments API for Java

SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions

SIP Session Initiation Protocol

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

UDDI Universal Description Discovery and Integration Protocol

vi



WSDL Web Service Definition Language

XML Extensible Mark Up Language

XMPP Extensible Messaging and Presence Protocol

vn



CHAPTER ONE

INTRODUCTION

Many of today's software applications axe developed and constructed on

traditional architecture strategies to deliver stable services to the user. These architecture

strategies range from monolithic to client-server to n-tier development systems. A

monolithic architecture is characterized by having all parts of a software system running

on the same machine. Client-server and n-tiered based systems have logical or physical

separations within the software system. Each architecture suffers from its own set of

drawbacks and disadvantages. In today's heterogeneous computing environment, it is

necessary for different systems to communicate and even integrate, in which case,

drawbacks multiply. This leads to some of the biggest problems Information Technology

(IT) enterprises and organizations face: challenging and cost consuming application to

application integration, data integration incompatibilities, and inflexible architectures that

cannot be reconfigured quickly enough to meet changing needs and requirements.

Recently, there has been a paradigm shift towards a new way of constructing applications

called Service-Oriented Architectures (SOA) that serve to eliminate such problems.

Instant messaging is an area that suffers from the inherent drawbacks of traditional

architectures. The researcher is proposing an architecture, AIMSOA, that can be adapted

by existing and to be created instant messaging (IM) applications to achieve functionality

that is by default scalable, loosely coupled, interoperable, and flexible in nature.

1



Problem Statement

Progress in IM interoperability and extendibility is stagnant due to the weaknesses

of the underlying architecture. IM applications have been slow to extend themselves to

other environments such as email and cell phone systems. Although IM to IM

interoperability is slowly taking form, it is years too late and has come at expensive costs.

Ideally, users should be able to IM other users regardless of firewalls, vendors, or

platforms. Unfortunately, to do so means modifying current architecture and design

implementations. Interoperability, scalability, and flexibility are major problems in the

IM industry. AIMSOA is inherently interoperable, and can integrate easily with other

entities. IM environments are suffering from security vulnerabilities and subject their

users to unwanted spam. AIMSOA's architecture and security infrastructure can, at the

minimum, rival that of the current implementations. Instead ofmaking incremental

changes to existing architecture, AIMSOA can be used as a new base infrastructure or as

a wrapper to the current infrastructures to achieve the desired improvements.

Background

The Instant Messenger (IM) market provides several alternatives to instant

messaging with AOL leading the competition with both its AIM and ICQ commercial

chatting applications. The majority of instant messaging solutions are developed around

client/server architectures. In client/server systems, clients are logically or physically

separated from the server system. Clients submit and retrieve data to and from the server

across a network connection. Figure 1 illustrates a traditional client/server system and



Figure 2 depicts a client/server architecture when applied to instant messaging.

Client/server architectures provide several advantages including encapsulation, code

separation, and enhanced flexibility (McGovern et al. 2003). They also introduce several

drawbacks when trying to communicate between the two entities. Indeed, when

client/server entities are constrained within an enterprise or organization, operations can

run smoothly: the likelihood of data formats, protocols, architectures, and languages all

being the same is very high. But when, for instance, a client from an outside organization

wants to communicate with the server, incompatibility and integration issues will have to

be resolved: the client may function on a different architecture set, programming

language, or data format than the server. In addition, the protocols for communication

between client and server may be proprietary, further hindering integration of

heterogeneous architectures. Multi-tiered or N-tiered architectures add additional client

or server layers, and are considered extensions to the traditional client/server paradigm as

depicted in Figure 3.



■Server Tier

Client Tier

Client Machines

Figure 1: Traditional Client/Server Architecture



-Client/Web Tier

Instant

Messaging

Resources

Seiver/App/Data

Directory

ServerJLDAP)

Figure 2: Traditional IM Application Architecture



Data Services Tier-

Dstabase/LDAP

I B
Database

Server

1

Stored

Procedure

Business Services/Application Tier

User Services Tier

" fflBusiness Logics

Server

Figure 3: Multi-Tiered Architecture

The largest IM systems are proprietary, and therefore unusable for systems that

may need to implement, extend or control the servers (Shigeoka 2002). Because of the

limitations of the architecture, it is inherently difficult for two different IM vendors, small

or large, to communicate with each other. In addition, IM messaging formats must be the



same. Two parties must agree on a predefined encoding scheme in order to communicate

(McGovern et al. 2003). Encoding refers to how messages are serialized and sent over

the wire. Recently, work has been done to bridge the incompatibility issues between

systems, but because of the inflexible nature of the architectures on many IM systems, the

task is difficult.

Significance of Study

I am proposing an instant messaging architecture that can augment the

client/server or tiered constructs to deliver flexible software systems. The most

widespread architectures are proprietary, and it has become seemingly more inadequate at

the inability to chat with users on different IM systems. There has been a substantial

amount of effort in the research communities to provide interoperable solutions, only to

be limited by the weaknesses of the underlying architecture and design utilized by IM

vendors. Additionally, as popularity has increased, IM vendors are finding it increasingly

difficult in dealing with security threats. AIMSOA provides a solution to such problems

with benefits that include increased flexibility, interoperability, and scalability. These

improved IM systems will then be able to offer better services to users. For example,

buddy lists and messages can be shared amongst IM vendors. Buddy lists can also be

easily linked to contacts provided by email hosts, or even phonebook contacts offered by

wireless companies. Instant messengers based on AIMSOA will be more likely accepted

by enterprises concerned with security.



CHAPTER TWO

REVIEW OF EXISTING CONCEPTS

Organization of Review

This section breaks down the key concepts related to SOAs that can be applied to

create an improved instant messaging architecture. First, a background on instant

messaging and service-oriented architectures is discussed. Next, distributed computing

design principles that are being sought as a solution are addressed. Instant messengers

have been recently deployed to embedded devices like cell phones. AIMSOA's benefits

in such an arena are briefly discussed, followed by a definition of key terms. Lastly, the

shortcomings of current solutions are investigated.

IM Background

Instant messaging first garnered wide-scale attention and usage when AOL

released 'I Seek You' (ICQ) in November of 1996. Instant messaging is used to send text

messages electronically in real time. ICQ, like many of its peers, was developed to

connect family, friends, and associates over the computer to promote a viable electronic

social community. AOL Instant messenger (AIM), Yahoo! Instant Messenger, and MSN

Messenger are the three biggest public IM vendors besides ICQ. AIM, the largest of the

IM vendors, holds the largest share of the IM market with 30 million active users and 180

million registered members worldwide (Richard 2002). These instant messengers allow

for contact lists storage and provide presence notification. Hereby, presence refers to the

ability of users to be notified when other users are online. Instant messengers can be

8



divided into two categories: public and enterprise. Public instant messengers are usually

geared for communication amongst friends and family without restriction. Enterprise

messengers are usually located behind firewalls, and can only communicate with users

within the organization. Although first intended for public commercial use, the

popularity for IM usage amongst enterprises and organizations has increased

tremendously over the years as a tool to communicate with co-workers. In a society

where organizations are distributed across states and countries, companies are driving

down the costs of long distance phone calls by communicating via instant messengers

over the Web. In addition, IM messengers, unlike phone technology, can keep track of

presence information. In the work environment, users can know whether their co-

workers are at their desks at all times, a convenient feature that promotes better

productivity and consequently better business.

Service-Oriented Architecture (SOA)

SOAs are the perfect solution to providing flexibility, interoperability, and

scalability to IM applications. SOAs have been used in other areas to provide similar

performance benefits. In general, any existing system that utilizes SOAs within an

organization can be easily integrated because they provide well-defined interfaces that

can be accessed using standard protocols and transports (Pasley 2005). Abstraction,

simplicity, and loose coupling are all components of a flexible system. The interfaces

make up what is known as the service tier in a service-oriented architecture. A service

tier abstracts the details of the data sources, thus creating a very simple loosely coupled



10

environment to develop applications such as instant messengers. SOAs are often used to

expose application functionality and to integrate systems with newer applications. SOAs

are based on standards. The support of these standards gives enterprises the ability to

map data from disparate systems, route messages, ensure services are delivered, and

enforce security rules automatically by using XML.

In simple terms, SOAs are service providers. To be service-oriented, an

architecture must implement the find, bind, and execute paradigm (McGovern et al.

2003). A SOA is composed of three roles: provider, consumer, and service broker. In

order for a consumer to find the service, the provider must first register and describe this

service in a registry or service broker. UDDI and ebXML are the most popular and

standard registries for service discovery. Once the consumer is able to find the service,

the next step is to bind to the formats and protocols associated with the service.

Registries store WSDL files which describe the functional characteristics of a service:

how the service is invoked and where the service is located. The find, bind, execute

process can be seen in Figure 4. The J2EE or .NET platforms provide tools to process

the given WSDL file to create proxies for the consumer. Once created, the proxies

provide the necessary bindings for the consumer to interact with the service. The last step

is to execute the service operations.



11

Service

Consumer
Find

Bind and Execute Contract

Service

Provider

Register

Figure 4: Find, Bind, and Execute Paradigm

SOAs are also extensions of the distributed computing model. Scalability,

openness, concurrency, transparency, and heterogeneity are all characteristics of

distributed systems, and likewise that for SOAs. Additionally, and more importantly,

SOAs are modular; they separate implementation from its interface. Distributed

interoperable messaging solutions such as Web services, CORBA, and DCOM are all

examples of SOAs.

SOAs can augment existing client/server architectures by providing an additional

service tier. Service tiers are characteristics of SOAs because they provide a standardized

interfacing layer. The importance of a service layer can be described as follows:

"Architecture without a service tier has a huge flaw- the lack of data hiding or

abstraction. Without a service tier, application code must have intimate knowledge of the

associated details, such as database schemas or low level software APIs" (Bruno 2005).



12

The service tier lies between the web/user tier and the application tier as described in

Figure 2. Figure 5 shows an augmented traditional architecture utilizing a service tier. A

service tier adds significant value to an application's architecture because it limits the

coupling between components and promotes greater software reuse (Bruno 2005).

-Service Tier-

PHP Java(WSDP) .NET

-Web/Applcatian Tier

Java

(Servlet

JSP. EJB)

.NET

-Data Tier-
API. JDBC. ODBC. ADO,...

Database Other

Legacy System

Figure 5: Traditional Client/Server Architecture augmented with a Service Layer



13

Design Principles of Distributed Computing

Interoperability

Interoperability is defined as the ability of systems using different platforms and

languages to communicate with each other. A standard protocol and data format are

needed to achieve interoperability. JAX-RPC and JAXM are considered interoperable

because of the existence of defined Java type format mappings for SOAP, which is the

standard protocol for SOAs. Currently, few applications can communicate across

different networks because IM services and systems employ proprietary protocols

(Woods, "Interoperability Coming," 2002). To come in correspondence with such

proprietary protocols, companies such as Jabber and Trillion offer interoperability

solutions with other IM vendors by backward engineering code. Jabber offers what are

known as transports to transparently send and receive messages to users and track

presence. Transports connect with the foreign message systems and act as a client or

server on that system in order to relay the messages and presence updates between the

two systems (Shigeoka 2002). There are several legality issues with such a process

which keeps enterprise messaging solutions from migrating to those platforms. More

importantly, large vendors such as AIM, Yahoo Messenger, and MSN Messenger

actively change their protocols to keep 3rd party vendors off their networks.

Flexibility and Scalability

A flexible IM architecture promotes changeability and scalability of an



14

application. A scalable architecture will be able to handle unanticipated numbers of

concurrent users, increased load on the hardware, and unsatisfactory availability.

Flexible architectures should be able to scale into unexpected environments or loads

seemingly. Additionally, a systems degree of flexibility can be directly related to its

modifiability. Inflexible architectures require extensive amounts of maintenance and

even downtime. As an example, Bantu, an enterprise instant messaging solution, once

had to temporarily sever its link with Yahoo Messenger because the portal giant made

changes to its IM network (Woods, "Bantu Restores," 2002). Because of the loosely

coupled nature of SOAs, AIMSOA offers very few dependencies, making modifications

easy to implement. The J2EE architecture provides plenty of flexibility to accommodate

changes as the requirements for throughput, performance, and capacity change (Weaver

and Mukhar 2003). Hubz is a Web-based instant messaging solution whose architecture

is based on J2EE components. Because Hubz is built on enterprise-level Java Server

technology and the company's own enterprise level chat-server technology, it is more

secure, scalable, and reliable than many other messaging solutions on the market (Woods,

"Web-based," 2002).

Over the years, AIM has experienced significant resistance in entering the

enterprise messaging community because of its lack of support for organizations behind

firewalls. This is because AIM was never designed to be used in corporate environments.

Several modifications have been made to make it more enterprise friendly, but an

architecture implementing a service tier can be extended beyond the boundaries of itself,

allowing for a more flexible, scalable architecture (Brund 2005).



15

Portability

Portability refers to software that can be easily moved and implemented from one

machine to another. Less portable applications require additional effort to function

properly. Java, the language of the J2EE environment is well-known for its portability.

In fact, Hubz is a Java-based web applet that allows visitors on the same website to see

and interact with one another without using special programs, plug-ins or client-side

software (Woods, "Web-based," 2002). Applets and servlets are all Java Web-based

technologies that can be combined with Java SOA tools to generate an extremely portable

environment that can go and function anywhere. The benefits of Web-based

architectures have encouraged Jabber to develop a Web client for its popular IM servers.

Web-based architectures allow for firewall friendly connections with no installed client,

ideal for the enterprise market.

Instant Messaging and Cell Phones

Wireless vendors currently offer services that require information to be "pushed

down" to phones such as weather updates, sports updates, stock quotes, and instant

messengers. AIMSOA will allow phones to "pull" or consume services allowing for

smarter, smaller applications. Because they are so small, embedded devices such as cell

phones have high memory constraints, and restrict the amount of processing that can be

made in memory. AIMSOA allows for major processing to be done on a server, while

the results are delivered to or retrieved from the cell phone. The other significant



16

advantage AIMSOA provides is that the user interface deployed on the wireless cell

phone utilizes the same Web service a normal, much heavier user interface would; the

service deployed need not change.

Key Terms and Concepts

The following are terms and concepts that apply to SOA or IM technology. These

terms are listed here as a reference to the AIMSOA architecture presented in the next

section. This section concludes by providing an overall summery of the key terms and

concepts and how they are related to each other and to AIMSOA.

Web Services

A Web service is a service offered by an application to be consumed by other

applications. Therefore, Web services are often used in a B2B (Business to Business)

environment. Web services serve as an Application Service Provider (ASP) for many

businesses, enabling one business to invoke a service of another business, thus allowing

the former business to forgo the cost and time of developing the service itself. These

services are programs that perform some logic and generate a result. A common simple

example of a typical Web service is a stock quote service. Instead of implementing the

service itself, a business can just request to use the service and send the appropriate

inputs to the service. In this case, a stock name would be sent, and a stock price would be

returned.



17

The key to this technology is that all information is communicated and transferred

in a truly independent manner. Additionally, Web services function around the use of

standards. This is especially important in the real world, when many enterprises operate

with different information systems. Web services communicate using a platform

independent protocol known as Simple Object Access Protocol (SOAP), based on XML

(Extensible Markup Language). XML is a language neutral document that enables any

application to communicate with another.

Web services improve on the shortcomings of technologies like RPC, DCOM and

CORBA by combining a standards based approach to distributed computing with the

availability and accessibility of the Internet (Fischer, 2002). Web services are

implementations of SOAs.

Security

• Secure Sockets Layer (SSL): SSL is a technology that allows Web browsers and

Web servers to communicate over secure connections because data is encrypted

and decrypted on delivery. SSL uses server certificates and keys.

• Security Assertions Markup Language (SAML): SAML was first developed by

the Oasis Security Services Technical Committee. It is an XML-based framework

for security information exchange across heterogeneous business entities. SAML

is primarily used for authentication and authorization.

• XML Digital Signatures: XML Digital Signatures specify syntax and processing

standards for attaching digital signatures to XML documents.



18

Extensible Access Control Markup Language (XACML): XACML provides a

standard for security access control using XML to state authorization, validation,

and revocation rules over a connection

Key Management Specification (XKMS): XKMS is a standard that details

protocols for registration and distribution of public keys, so that keys can be

integrated with XML digital signatures and encryption (McGovern et al. 2003).

XML encryption: The following Web service specifications have been developed

to provide SOAs with a robust security infrastructure:

• WS-Security: Describes how to attach security tokens (certificates and

Kerberos tickets),signatures, and encryption headers to SOAP messages

• WS-Policy: Describes the features and limitations of the security policies on

intermediaries and endpoints

• WS-Trust: Describes a framework for secure interoperation of trust models

between Web services

• WS-Privacy: Describes how both Web services and their requestors specify

subject privacy preferences and organizational privacy practice statements

• WS-Secure Conversation: Describes how to authenticate and manage message

exchange between parties

• WS-Federation: Describes how to manage and broker trust relationships in a

heterogeneous federated environment

• WS-Authorization: Describes how to manage authorization data and policies.



19

SOA Clients

Unlike traditional architectures, SOAs provide for extremely loosely coupled

flexible client solutions. This is made possible through interfaces and WSDL files.

WSDL files contain information such as the location of the Web service and the

operations and its functional signatures. Because clients interact with the interface only,

changes to application logic will not affect the client as long as the return types remain

the same. In the event that the interface does change, or the location of the service

changes, SOAs provide what is known as early or late binding to keep the client from

breaking. Bindings govern the links between the service and the client for interaction.

Early binding processes the WSDL file at compile time to generate client side

proxies to interact with the service. Clients interact with the stubs, and the stubs handle

transferring the data to the correct endpoint and operation on the server. Additionally,

Serializes and Deserializers can be created to encode SOAP data types into types

recognized by the client. Early bindings, also known as client side stubs, can function in

different forms: static compile time binding, static deploy time binding, static runtime

binding. Stubs are characterized by the fact that the service's operations and functional

signatures are always known before runtime, but the location may or may not be known

before runtime.

Late binding processes the WSDL file at runtime on the fly. Although this

method may have slower performance than an early binding scheme, changes to the

consumed Web service will have less impact on the consumer (McGovern et al. 2003).

This is a truly flexible architecture. For normal cases, early bindings can be utilized



20

because of its efficiency, and when for instance, the service changes, the client can fall to

a late binding technique ad hoc, thus avoiding crashes. Late bindings can be

characterized into two types: dynamic binding and dynamic binding with known location.

In both types, the functional signature is not known until runtime.

Profiles

A profile is a protocol that extends what is supported by SOAP 1.1 and SOAP

with Attachments standards. It provides additional specifics about the message that

SOAP does not. Providers rely on profiles because SOAP messages do not provide

enough information for delivery and store and forward operations. Clients, therefore,

may need to augment their SOAP message with a profile. EbXML is the most common

profile used today and is depicted in Figure 6.



21

SOAP with Attachments MIME EnvelapeMessage

MIME Part

SOAP-ENV: Envelope

SOAP-ENV: Headers

C7 eb: MessaqeHeaders J^

C7 eb:TraceHeaderList J^

C^_ eb: etc _J~}

C^" other: etc _J^>

SOAP-ENV: Body

C7 eb: Manifest _J^

(~~ eb: etc J)

C7 other: etc ^

MIME part(s)

c pavloadfs)

Figure 6: ebXML profile

Simple Object Access Protocol (SOAP)

Soap is an XML based protocol for exchanging messages over a distributed

environment. Messages are made up of a SOAP envelope, SOAP header, and a SOAP

body. SOAP is the standard protocol for communication among Web services. It

specifies, among other things, what is required and optional in a SOAP message and how



22

data can be encoded and transmitted. It defines standards for messaging and data type

mappings. Because SOAP is based on XML, it is very extensible. A graphical

description of a SOAP message can be seen in Figure 7.

SOAPMessage

SOAPPart

SOAPEnvelope

SOAP Headers

r Headers }

SOAPBody

fXML Content}

f SOAP Fault}

AttaachmentPart(O ptio n al)

c

c

"" MIMI Headers _^>

content fxml pr nan-xmfl ^2

Attaach rn entPart(O pti o n al)

C

c

" MIMI Headers

content fxml pr non-xm 11 ^ 1

Figure 7: SOAP Message Structure



23

Registries

Registries serve as a look-up service for consumers to look up business services.

Consumers can look up services by an address or identifier, or they can look up services

by category. Registries maintain taxonomies to categorize services. Information stored

in a registry for s single service includes a business entity, service, specification pointers,

and service types. Generally, look-ups to registries are performed by first time parties or

clients unfamiliar with the service. If the WSDL document changes or the service

location changes, a future look up to the registry may be needed to obtain the out of date

information.

DCOM, CORBA, Java RMI

• Common Object Request Broker Architecture (CORBA)

• Microsoft Distributed Component Object Model(DCOM)

• Java Remote Method Invocation (Java RMI)

These technologies are built from a client/server foundation focused on creating a

standard technology platform on which to accomplish true application to application

communication by providing access to remote methods (Fischer 2002).

Java API for XML based RPC (JAX-RPC)

JAX-RPC is a Java API to expose remote procedure calls using XML as the data

format. A Web service based on RPC (Remote Procedure Call) is a set of procedures

called by a remote client over the Internet. A Web service on a server implements these



24

procedures, as well as publishes information that describes the methods that are available

in a repository for clients to look up. JAX-RPC hides the complicated infrastructure of

transferring data from the developer. It handles the marshalling, unmarshalling, and

transmission details so that the developer only has to worry about making method calls.

J2EE vendors provide the JAX-RPC functionality to automatically convert Java

primitives such as int and objects such as String into XML data types. This is a very

powerful feature ofJ2EE because developers do not have to concern themselves with

such mappings. Because data exchanged to and from Web service operations are of

SOAP protocol, JAX-RPC is interoperable. Some important characteristics ofJAX-RPC

include:

• Synchronous: JAX-RPC is synchronous in nature, performing request blocking

calls until a response is received. Although JAX-RPC has send-and-forget

capability, it is not able to receive responses later in time, nor is it capable of

receiving incoming messages from the server.

• Method oriented: JAX-RPC is method oriented, meaning, the primary means of

communication is through a call to a method, and response from its output.

• Point to point: JAX-RPC requests are directed to endpoints, so a service needs to

provide an endpoint to the repository

• XML: The data format exchanged is a standard format that any participating party

can understand.

Message Oriented Middleware (MOM)



25

MOM is a piece of software that sits between communicating parties and provides

the infrastructure responsible for handling disparate dependencies between them, such as

operating systems, hardware, and communication protocols (McGovern et al. 2003).

Java API for XML Messaging (JAXM)

JAXM provides the capability for users to send and receive SOAP messages

asynchronously. JAXM interacts with a provider that accepts messages on behalf of

intended recipients (McGovern et al. 2003). A profile must be used for asynchronous

messaging. JAXM is a type ofMOM that is transport independent, meaning it can run

over HTTP and other various types of transport protocols.

Java Messaging Service (JMS)

JMS provides Java applications with a standard interface to create, deliver, and

retrieve distributed messages. JMS is a type ofMOM and is included in the J2EE

platform.

JAXM Provider

A provider is an implementation of the JAXM APIs. It layers over existing

applications.

ebXML (Electronic Business using Extensible Markup Language)



26

The ebXML initiative developed by OASIS (Organization for the Advancement

of Structured Information Standards) is a set of specifications for message formatting,

business processes, and registry services (McGovern et al. 2003). EbXML profiles

provide several additional fields to SOAP required for asynchronous usage including

ConversationID, MessagelD, TimeStamp, Service, and Action.

Java 2 Platform Enterprise Edition (J2EE)

The J2EE is a specification developed by Sun Microsystems and the Java

Community Process for an application server to implement. Any application server that

fully implements the specification is considered J2EE compliant. This is important in the

enterprise world for portability reasons; applications created on one server should be able

to run on any compliant server. Examples of such servers include IBM Websphere,

JBOSS, Sun Java, BEA, Redhat, and Borland Application Servers.

The J2EE platform provides an infrastructure for the development and

deployment of server applications. The infrastructure provides services that are needed

for distributed architectures or server related applications commonly used in the

enterprise level of companies. Such services include management, resource, transaction,

mail, messaging, deployment, and security services. These services facilitate the

developer in creating software, because the developer can spend the majority of time

writing business logic that directory adds value to the company or organization. The

J2EE platform also provides a framework for the development of Web services and



27

layers on top of the Java SDK which provides an API for Java Programming. A

graphical description of the components can be seen in Figure 8.

AVK
Tools

IDE
BluePrints Tutorial

JavaBeans

Applets

Enterprise

Beans

Web

Services

Servlets JSP Pages

Container

Transactions Messaging

Mail Security

Management! | Deployment

Connectors

Java 2 SDK. Standard Edition

Corba Security Database Directory XML

Figure 8:J2EE Platform

The J2EE architecure provides flexibility to accommodate changes as the

requirements for throughput, capacity, and performance change (Weaver and Mukhar

2003). Much ofthis is due to its multi-tiered approach and its robust scaleble services:

clustering, connection pooling, and failover. Because J2EE is based on the the Java

programming model, it benefits from platform independence. Additionaly, J2EE

functions as a specification as well. There are a muliitude of vendors who offer J2EE

application products, but each product is governed by the specfication, ensuring

compliemce amongst vendors.



28

Container

This layer serves as an interface to the application server services. Two

important containers include Java servlet and Enterprise Java Beans (EJB). A servlet

container provides services for Web development like session management,

communication, and Web server integration. A common servlet container for Web

services is Tomcat developed by Apache. EJB containers provide services such as

transaction management and threading.

Servlets

Servlets are similar to CGI applications, but without its performance limitations.

CGI applications are limited by scalability because each new request starts a new process.

Servlets create new threads for each request, improving scalability functionality. In

simple terms, they are server applications that can generate dynamic content to Web

clients. Servlet technology is used to extend the capabilities of a Web server. Besides

being platform independent, they are server independent as well (unlike Netscape server

API and Apache models). Servlets have access to all Java APIs. Servlets process

requests from clients and return responses.

Enterprise JavaBeans (EJB)

EJBs are often used in a J2EE environment for developing business logic because

EJB containers provide services for client communication, session state management,

transaction management, database connection management, user authentication, role-



29

based authorization, asynchronous messaging, and application server administration.

They are server based components used for building data access.

Current Protocols used for IM

• Session Initiation Protocol (SIP): SIP is a flexible text based protocol over HTTP

and MIME that can be used for many different media types, particularly voice

over IP.

• SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE): SIP

adds presence and instant messaging capabilities to the SIP protocol.

• Extensible Messaging and Presence Protocol (XMPP): XMPP is a set of

streaming XML protocols and technologies that enable entities on the Internet to

exchange XML messages and presence in real time. Jabber provides what are

known as gateways or transports to legacy IM services. XMPP was developed by

the Jabber organization.

• Open System for Communication in Real-time (OSCAR): Oscar was developed

by AOL for AIM and is used for core IM functions.

Limitations of Current IM Architectures and Solutions

Security

Security holes plague the majority of instant messengers out on the market. In



30

October 2003, Symantec has found that 19 of the top 50 virus threats the first half of the

year were related to IM and peer-to-peer(P2P) technology, resulting in a 400 percent

increase from the previous year (Saunders, "IM Viruses," 2003). With the exception of

Jabber's decentralized client server architecture, the majority of instant messengers route

all communications through a central server (AIM, Yahoo Messenger, MSN Messenger).

Some instant messengers such as the PP Messenger by Code Generation are P2P. P2P

connections allow connections through a variety of ports that may not be safeguarded by

firewalls, allowing entry points for viruses and hackers. The second major security

vulnerability is in the fact that conversations between public IM networks (AIM, MSN

Messenger, Yahoo Messenger, ICQ), appear in clear text, making it easy for hackers to

listen in on chats (Woods, "Impasse Rolls," 2002). Many IM products transmit

unencrypted data outside of the firewall, making them an easy target for interception on a

network. The minimal security associated with P2P and IM invites malicious code

propagation because of the absence of a server responsible for routing and filtering of

request. Additionally, client machines are not equipped with robust enterprise firewalls

to block necessary security threats.

Several solutions have been created to handle the aforementioned security issues.

IMpasse, created in 2002, is a security platform solution that encrypts and decrypts text

messages on the fly. Its major disadvantage lies in its portability and interoperability; to

work, users on both ends must have Impasse installed on their computers. Trillion has

also developed measures to encrypt communications to vendors such as AIM or ICQ.

But just like Impasse, both communicating parties must use Trillion in order to operate.



31

Jabber and other vendors have created Web-based clients, unlike the traditional client of

AIM and Yahoo. "Most companies are clamping down and not even letting other non-

Web traffic in and out (of their systems). The fact that it is Web-based makes it easily

compliant with corporate security guidelines" (Woods, "Jabber goes," 2001).

Companies are also utilizing enterprise-grade IM solutions to circumvent firewall

issues. Companies are paying extra costs for copies of current IM solutions to be

implemented within the enterprise. In this scenario, an IM server exists within the

company's firewall. Messages are transferred within the bounds of the firewall, keeping

them from the outside world. Anything that needs to go outside the organization requires

proxy and logging actions to maintain the integrity of the system.

Security holes in current software designs are hampering the interoperability

effort between vendors. The "unfortunate truism" (Svoboda 2002) of all security systems

is that the level of security of the system as a whole is the same as the level of the

security of its weakest part (Svoboda 2002). Although smaller IM vendors like Jabber

have achieved a measure of interoperability with larger vendors like AIM, the larger

vendors actively block such advances because interoperability may bring more

opportunity for malicious code and hackers within their own networks.

SOAs are perfect solutions to the current IM problems because all communication

is done through HTTP, alleviating any firewall restrictions or problems that can occur.

Additionally, SOAs have developed over time a very comprehensive security

infrastructure to combat the on-going prevalence of viruses and worms that plague instant

messaging software. Unfortunately, the main problem with using most common security



32

architectures with SOAs is that the security infrastructure is distributed and these

architectures usually require that key security features and algorithms are implemented

by all parts of the system (Svoboda 2002). Providing a common security standard for

diverse applications and systems is nearly an impossible feat.

SOAs provide Single Sign-On (SSO) capabilities that can be utilized to bypass

such problems. SSO packages all the security requirements into a SSO Web service,

releasing such obligations from other pats of the system. The SSO service then becomes

the single authentication point for the software. The SSO server or Web service, acts as

the wrapper around the existing security infrastructure that exports various security

features like authentication and authorization (Svoboda 2002). IM vendors can use this

as a common security base for AIMSOA implementations. Som Sengupta and

Venkatakrishnan Padmanabhan present a SOA for enabling centralized authentication

SSO implementation that can be used in correspondence with AIMSOA to enable the

robust set of SOA security specifications and tools (2004). SAML is the language used

to provide single sign on capability in their implementation.

Online Messenger Service (OMS)

OMS is a new IM application that utilizes the SOA architecture to provide its IM

operations. Although it is able to achieve true interoperability by exchanging SOAP

messages, it is limited by its synchronous messaging. Clients must poll the server in

order to retrieve one way messages from other clients. AIMSOA augments this behavior

by providing an architecture for asynchronous capability.



33

Current Client Architecture Design

Oftentimes, even within a layered approach, clients become tightly coupled with

business logic and data processing. Application layers that present data to users can be

intermingled with the layers of the application that act on the database (McGovern et al.

2003). The main drawback of this type of architecture is in its inability to be flexible

enough to cope with change. Updates to servers can affect client behavior and cause

problems in a tightly coupled environment. In an effort to thwart spam, Yahoo! once

made upgrades to its highly popular Yahoo Messenger service, and as an unintended

result, rendered several permitted third party clients unusable (Saunders, "Yahoo! Closes

Door," 2003)'. Problems ranged from incorrect passwords to all out crashes on the

client.

SOAs allow for applications to be tailored to an organization's business need.

The current solution amongst the three major IM vendors is to package application logic

into a single software unit to be delivered to enterprise and commercial users.

Companies are choosing the on-demand model instead of packaged software (Knorr

2005).

On Demand computing can be described as providing resources and services to

organizations as needed. Organizations have different needs, so the idea of creating a

single piece of software to serve the requirements ofmany different groups is

problematic. Some companies may prefer a simple, easy to use client over a clunky

1 As of June 2004, Yahoo no longer permits these 3rd party clients to access to their IM network



34

complex software package that barely does what is desired (Woods, "MSN Messenger,"

2002). A user or organization may not need all the features of an instant messenger, but

another user may require IM capabilities that far exceed the common case. For example,

users in Europe tend to use IM applications to send SMS messages to cell phones, and

messages as mail to email servers. "SMS has yet to make a serious market impact in the

United States. AIM users, on the other hand, tend to just message between other

computer users and don't seek to turn their AIM clients into mail or SMS clients"

(Richard 2002). Healthy enterprises need to develop their own unique applications, and

any modern IT infrastructure needs to be fully integrated in a manner that can't be

achieved with the current solutions of today (Knorr 2005).

Using AIMSOA, users are no longer tied to client graphical user interfaces so

prevalent in many of today's packaged instant messaging software. Instead of being tied

to a single user interface, enterprises can purchase the software as a service, and use

custom user interfaces that may better fit the style or need of the organization.

Distributed Messaging Tool Limitations

CORBA, Java RMI, DCOM

These distributed communication standards suffer from several drawbacks that

keep them from being viable solutions for IM communication. Interoperability is the key

issue here. Java RMI is only compatible with other Java clients. CORBA is not firewall

friendly because it uses the Internet Inter-Orb Protocol (HOP) and port which is not



35

accepted by all firewalls. DCOM possesses functionality that is only operable with

Windows platforms. In order to achieve an open, scalable, interoperable application,

these solutions are unsuitable choices for deployment.

JAXM

Although developed to be included in the Web services toolkit for J2EE, JAXM

was unfortunately left out of the specification. Therefore, JAXM must be downloaded

and configured separately to be used with J2EE compliant application servers.

Additionally, because many application servers are not required to support JAXM, the

portability of applications utilizing JAXM may suffer. Lastly, unlike JAX-RPC, there is

no support for WSDL file automatic generation.

JMS

JMS was designed as a common messaging API to be layered over existing

enterprise message-oriented middleware applications, and not for Internet SOAP

messaging. JMS was designed to be used within an enterprise, and not across enterprises

using HTTP. Additionally, JMS clients are only interoperable with other clients over the

same messaging system. Some vendors have tried circumvent these problems by

wrapping SOAP messages into JMS text messages and passing them over HTTP.

Unfortunately, the message format ends up becoming vendor proprietary. Even more

importantly, SOAP messages are intended to function with attachments. By wrapping



36

SOAP messages into JMS text messages, there becomes no way to create and manipulate

SOAP message envelopes that have attachments.

JAX-RPC

Although JAX-RPC Web services are the most common services utilized in many

organizations, they lack asynchronous capability. JAX-RPC based messaging can only

function in a synchronous based manner, meaning, if a process on the server takes a long

time to compute, then the calling client is forced to wait until the process is finished.

Summary of Existing Concepts

AIMSOA is classified as a Web service. The security specifications and

technology can be used to provide AIMSOA with a secure instant messaging

environment that exceeds that of current architectures. DCOM, CORBA, and Java RMI

are tools considered for communication in AIMSOA, but due to unacceptable

shortcomings, were rejected as viable solutions. JAX-RPC and JAXM are SOA

distributed messaging solutions because of their ability to transfer XML like SOAP

messages. SOA clients can locate services in a registry for interaction with the service.

In order for new SOA clients to perform JAXM based messaging, a reference to an

ebXML registry must be done to be able to conduct future communications with a

service. Additionally, in order for the client and service to communicate, they have to

agree on a common structure and the kind of information being transferred; the JAXM

profile provides such information. JAXM, like JMS, is an implementation of the MOM



37

concept, which means that it interacts with a provider that handles the forwarding and

persisting of messages. Since JMS was not designed to operate outside of an enterprise,

JAXM is a better solution to provide interoperable messaging across environments. The

J2EE architecture offers implementations for the SOA standards and tools. More

importantly, it offers tools such as servlets, EJBs, and containers that can be used to

deliver and deploy powerful IM applications. AIMSOA looks to provide an alternative

solution to the current protocols used by current IM architectures including SIMPLE,

SIP, XMPP, and OSCAR.



CHAPTER THREE

DESIGN

Architecture

AIMSOA is a modular architecture, and can be seen in Figure 9. The architecture

is broken into four tiers: user, service, application/web, and data access. The middle

layer encompasses both the service tier and the application tier. The IM client and the IM

registration client fall into the presentation layer. JAX-RPC and JAXM provide the

services layer. The servlets and EJBs perform the business logic or server processing of

the architecture. The database makes up the data access layer. A combination of JAX-

RPC and JAXM communication APIs have been chosen for the AIMSOA messaging

solution.

38



39

>».I2EE Server

IM Client a- —Soap Message

*^{ Servlct
•' \ ImplpmRntntinn /

User Tier

Figure 9: AIMSOA Architecture

Presentation Layer: Web clients

Because the majority of processing will be done on the server, software Web

clients can be characterized as thin clients. Clients can be coded in any language as long

as they can read XML messages and can communicate with a provider that functions over

HTTP. The J2EE platform provides a tool named wscompile that clients can use to bind

to the services offered by AIMSOA. Wscompile can be used on the client side and the



40

server side passing client/server flags respectively as input to the command. Other

platforms have their own tools to bind languages such as C# and C to the service. To

invoke methods exposed by RPC based Web services, the location of the service,

protocol, and the service's methods and signatures must be understood beforehand. An

application that is deployed based on the AIMSOA architecture must have a WSDL file

that can be located from an ebXML registry or URL. The WSDL file contains the

protocol to be used (HTTP) and the methods and method signatures of the IM service.

wscompile is responsible for importing the WSDL file and generating specific Serializer,

Deserializer, and stub classes for the client. The stubs, in conjunction with other

wscompile generated classes, are used to handle any conversions needed such as data type

mappings to communicate with the service.

In the architecture diagram, two clients are depicted: one a basic IM client and

the other a registration client. With the exception of registration, the basic IM client can

implement all necessary IM operations. The registration client is used specifically for

registration, thus only interacting with the JAX-RPC servlet. A client developer can

choose to merge the functionality into a single interface. There are no performance

disadvantages, just a matter of style and abstraction.

Middle Layer: Provider

Providers act as proxies to forward messages to other users. The JAXM provider

can be configured to forward messages to endpoints, either server endpoints or other

provider endpoints. If an external client is deployed on a platform other than J2EE, any



41

provider that supports HTTP and SOAP can be utilized. The JAXM Provider can be

deployed within a firewall if specific security requirements are demanded. The JAXM

provider receives and delivers SOAP messages when available. If a particular endpoint is

not available to receive, messages can be stored in a database and forwarded at a later

time, thus creating persistence capability in a non persistence (HTTP) environment.

Middle/Application Layer: Servlet Container

The main focus of the container is to accept requests from clients. The majority

of processing will be done by the EJB container. At times it may be necessary for a

servlet to perform processing, which can be easily created and invoked from the

container.

Middle/Service Layer: JAXM Servlet

The JAXM servlet's main function is to provide asynchronous capability.

Actions such as sending and receiving messages should go through the JAXM servlet for

delivery. For performance reasons, JAX-RPC should only be used for IM operations that

do not require asynchronous functionality. This is because JAX-RPC is call oriented and

JAXM is document oriented. JAX-RPC sends SOAP messages that contain only the

information necessary for a methods execution. JAXM delivers full blown XML

documents to and from the service. JAXM messages are larger and require more

bandwidth so JAX-RPC should be used over JAXM whenever possible.



42

JAXM servlets must implement thejavax.xml.messaging. OnewayListener

interface to provide capabilities for asynchronous communication. The OnewayListener

interface allows the servlet to listen for incoming messages. Messages are funneled into

a method called onMessageQ which accepts SOAP messages as a parameter. The local

JAXM provider forwards messages to this servlet, which in turn can parse the message,

and send to a session bean for processing. Headers in ebXML contain To and From

fields that can be used to identify the sender and receiver. Additionally, the payload in

the MIME Part can be used to store the actual message being sent. SAAJ can be used to

easily parse these fields. Once parsed, a session bean can be used to send the message to

the target recipient. The target recipient can be external clients like Jabber or other

internal clients running on the server. Because JAXM servlets inherit all functionality of

traditional servlets, session information can be stored and retrieved via the HttpSession

object to retain certain state variables. Because the container controls all servlets, JAX-

RPC servlets have access to the same variables, allowing for easy communication

between the two.

Middle/Service Layer: JAX-RPC Servlet

The JAX-RPC servlet is used for IM operations that do not require asynchronous

functionality. Operations such as registration, login, logout, add users, and remove users

can function in a synchronous environment. Developers do not code the JAX-RPC

servlet. It is the servlet container's job to create and deploy the servlet. Developers code

an interface and implementation class which gets invoked by the servlet. In order to have



43

access to the servlets behavior, the implementation class must implement the

javax.xml.rpc.server.ServiceLifeCycle interface. This allows the implementation to have

access to objects such as HttpSession which maintains state and can be shared with

JAXM. JAX-RPC hides all SOAP related information from developers. The SOAP

message is extracted by the JAX-RPC servlet. The servlet can then invoke the

appropriate method call exposed by the service (from the interface) passing it the

extracted parameters. Unlike JAXM, the developer never comes in contact with the

SOAP message. Clients indirectly interact with the implementation class through

representatives called ties. Ties are also created by the wscompile tool used at the server

level by passing a server flag as input to the command.

Middle/Application Layer: EJB Container

As mentioned earlier, the EJB container provides AIMSOA with extended

scalability by providing services such as clustering, connection pooling, and failover to

the developers. The EJB container is where the majority of IM processing is done.

Middle/Application Layer: Session Beans

Session beans are modular and consist of three classes: a home interface, a bean

interface, and a bean implementation. The home interface provides access to the bean

interface. The bean interface is what a developer uses to invoke methods on the bean's

implementation class. The J2EE application server can be used to configure either



44

stateful or stateless session beans. Stateless session beans can be implemented to provide

the necessary processing for the majority of IM operations. Session beans can also be

implemented as stateful if the developer needs a more stateful environment for

processing. Beans are categorized into local and remote beans. Remote beans utilize

Java RMI in order to function on other machines; this allows for greater scalability and

distributed functionality. If the performance requirements are not as necessary, local

beans can be implemented on the same server.

AIMSOA provides the functionality for complete IM application development as

well as wrapping functionality for existing IM applications. IM vendors that seek the

benefits ofAIMSOA can wrap their code around AIMSOA. In this scenario, instead of

using session beans to implement custom IM functionality, session beans will act as

clients to the vendor's software, forwarding and receiving messages to the vendor's

server. AIMSOA will then take on the role as a new client to the vendor's

implementation.

Data Layer: Data Tier

Entity beans interact directly with a database and provide Java developers with an

object oriented view of its tables. Entity beans also consist of an interface,

implementation, and home class. Entity beans and the EJB container provide developers

with concurrency control and other database specific necessities. If needed, Lightweight

Directory Access Protocols (LDAP) can also be accessed in this tier from EJBs.



45

Methodology

The J2EE architecture is chosen as the base architecture of choice because of its

powerful distributed computing infrastructure and service-oriented capabilities. As

discussed earlier, software applications developed today are based on either the J2EE or

.NET platform. The .NET platform offers tools and subcomponents analogous to those

of J2EE. Because .NET is developed and controlled by Microsoft Corporation, which is

known to be extremely proprietary, AIMSOA is designed around the J2EE architecture.

Additionally, and although .NET utilizes a comparative C# language, Java has proven to

be an extremely portable application.

The SOAP protocol is used for messaging between parties. The underlying

transport protocol is HTTP. Although HTTP is an unreliable transport mechanism

without store and forward capabilities, it is a universal standard transport protocol for

communication, which is necessary to achieve interoperability with existing systems.

JAXM providers provide the reliability and forwarding capabilities needed for

messaging.

This paper only presents an architecture to where a Web service can be wrapped

around existing or to be developed fully functional IM applications. To show the benefits

of this architecture, three sequence diagrams of operations are displayed in figures 10,11,

and 12 respectively: registration, login, send, and receive messages. Registration and

login are shown on the same diagram. Fortunately, the process for implementing these

four operations is the same process that can be utilized for most IM services to 'create

fully featured robust applications.



46

Sequence Diagrams of Methods

IMCIiant

I

(f
: response

JAX-RPC Sawlnl kW-RPC Survlst Tifi JAX-RPC Implaro«nt3ti«i Session Bean

mca

4f Unpack SO/*PM«ssage

iJackSOAPMEasags

:Da1abas« operation

Figure 10: Sequence Diagram for login and registration IM operations



47

IM Client Client Provider JAXM Saver Provider <savlet> IM Savtee

; sendMessage

Map TO heatterto physics) URL

lellver to Seiver Provider Endtoint

-Extract To Header

line URL oflM service

: Deliver Message

Session Bean

: message

'onMessagejSoapM essage)

-Pwiess Message

Figure 11: Sequence Diagram for Send Message operations

JAXM Seiver Provider I

a'O Message

ap To heaaerw pnyjsMl URL

essage fe provider emfpfiint

Extract To header from mess^o

tomine URL of target clieit

: Deliver Message

Figure 12: Sequence Diagram for Receiving Message operations



CHAPTER FOUR

DISCUSSION

The methodology discusses how clients can bind to AIMSOA and how AIMSOA

provides IM functionality. To be fully considered a service-oriented architecture, clients

must be able to find or locate the service in some type of registry. WSDL files are the

entities that get published to a registry. An example of a WSDL file for an instant

messenger that implements the registration operation can be found in Figure 13. Because

AIMSOA uses ebXML as a SOAP profile to send messages, an ebXML registry is the

registry to be used with AIMSOA. Because publishing and locating services are standard

and well known operations in SOAs, they will not be discussed further in this paper, but

can be referenced in McGovern (2003).

48



49

- <dBftnltions namB="JimSenrice" targetNamespace="um:Jim">

- <types>

- <schemataiBEtNamespace="urn:Jim">

<faiportnaiiiespace=^ttp://schmras.xrnlsoap.org/soap/encoding/7>

- <conipIexType namB="JimError">

<element name="message" type="string"/>

</seipifitreB>

</sciiema>

</types>

- <message name=^imRegistration_registerJb''>

<part naniB="String_l" type="xsd:string"/>

<part name="String_2" type="ssd:string"/>

<part namfi="String_3" type="xsd:string"/>

<part naitie="String_4" typB="xsd:string"/>

</message>

- <message name=*JiniRegisttation_registerJl]Response">

«part name="result" type="xsd:boDlean"/>

- <message namB="JiniEtror">

<part name="JiniEiTor" type="tnsJimEiTDr7>

</mBssage>

- <portType name="JfaiRegistration">

- <operatfonnamE="registerJb"paraineterOrter-"5tring_l String_2 Stmg_3 String_4">

<input inBSsagB^'tnsiJiinRegistratiDn^registerJb^

<ou^mtnifissagB="tas:JiraRegisttation_registerJbResponsen/>

<fault namB="JtaEtTDr" mBssagB="tns:JimError7>

</operation>

4
- <binding namB="JtaRegistrationBinding" type="tasJimRegistiation">

<so^):binding transport-"http://schen!as.xnilsoap. org/soap/http" style="rpc"/>

- coperatlon name^registerjb'^

<soap:operation soapA£tions""/>

- <iiput>

<soap:))ody encodingStyWhttpV/schemas.xmlsoap.org/soap/mcoding/" use="encoded" namespace="ura:Jiin7>

- <output>

<soap:bodyencodingStyle="http://schemas.iinilsoap.org/soap/encoding/" use="encoded" namespa0e-"urn:Jim7>

- <faultname="JiniError">

<soap:fault name="JimError' encodiiigStylB="http://schemas.xmlsoap.org/soap/encoding/" ose="encoded" naitiEspare-"um:Jim7>

</fault>

</operation>

- <serrice namB="JtaSeroice">

- <port namB="JiraRegistrationPDrt" bindinff""tns:JimRegtstrationBinding">

<saap:address]DcatiDn="http://thornas-p't06g3gd.cau.edu:8QS0/jim-jaxrpc/jim7>

</definitions>

Figure 13: WSDL for implementing only IM registration functionality

This paper also introduced several security mechanisms that can be applied to

AIMSOA to deliver secured messaging. Security is a very exhaustive topic and cannot

be adequately discussed within the scope of this paper. The goal here is to present the



50

many security related technologies that can be and should be used in conjunction with

AIMSOA.

SOAP functions over a variety of transports, therefore, HTTPS can be used to

deliver messages over SSL. SSL allows for secure encrypted document transmission

over the transport. SSL does not handle security requirements once IM messages are

persisted nor does it possess the capability to encrypt specific parts of a SOAP document

carrying the IM message. Additionally, most SSL deployments only utilize server side

authentication through server side certificates. In a distributed secure SOA oriented IM

environment, its necessary to provide client/requestor side authentication. SSL operates

at the session layer ofthe OSI model and cannot secure communication end to end; it can

only secure communication to the next hop. The chain in a communication path may

involve un-trusted links or communication that lacks adequate security. These are the

reasons why IM vendors such as AIM do not allow third party vendors such as Jabber

and Trillion to use their protocol. SSL also cannot protect AIMSOA from buffer

overflow and replay attacks. For these reasons, other security mechanisms such as XML

encryption and Web service security specifications are better suited for secure

messaging..

SAML, XML digital signatures, XACML, XKMS, and XML encryption are all

XML security strategies for securing XML based SOAP messages. These mechanisms

offer security at the message level instead of at the session or transport level. XML

encryption allows for SOAP messages to be encrypted designated by the EncryptedKey

and EncryptedData XML fields. SAML can be used to guarantee a certain level of



51

security in a distributed environment by providing authorization and authentication

information that can be maintained across participating parties. XML Digital Signatures

is a standard that allows XML to functionally sign itself over insecure networks.

XACML can provide access control to individual messages being transferred in an

Instant Messenger; only users with the rights to access the message can read or modify

the message. SOA security mechanisms support a variety of encryption mechanisms

including AES, Blowfish, CAST-256, GOST, IDEA, RC-6, Serpent, Triple DES, and

Twofish. WS-I specifications are Web service specific security specifications that can

provide additional trust, policy, proof of identity, privacy, and authorization requirements

to instant messengers and the messages they deliver.

Security requirements for an instant messenger are based on the requirements of

the parties and organizations the IM looks to serve. This section presents a summary of

the many security related mechanisms that can be applied to AIMSOA to satisfy such

requirements. For a more thorough investigation on how to implement the security

features mentioned in this paper, please refer to McGovern (2003).

The main limitation in the AIMSOA architecture is the lack of automatic WSDL

file generation. JAX-RPC provides tools for automatic WSDL file generation, but JAXM

does not, and when used conjunctively, there is no support. This is a major drawback as

WSDL files are very extensive and error prone. A future study is needed to provide such

functionality. Unfortunately, because JAXM is not included in the J2EE architecture,

vendors are not expected to provide such support. In addition, JAXM is not included in

the J2EE standard specification or implantation. J2EE vendors are not required to



52

support it, therefore, portability may suffer when moving IM code from one application

server to another. JAXM has been tested and deployed on the Sun Java Application

Server.

The last limitation to this architecture lies in performance. Because SOAP

messages are transferred between client and server, parsing must be done behind the

scenes to grab the necessary information. This is a performance sacrifice for

standardization and interoperability. Likewise, document oriented SOAP message can

become large, and may occupy bandwidth. Because SOAP supports messages with

attachments, IM applications can implement functionality that allows for files to be

included in the sending of messages. Binary data formats can greatly reduce the

bandwidth required by a system as well as provide other features such as error detection

and correction. These benefits are sacrificed for standardization and interoperability that

XML based messaging provides. These performance limitations are acceptable for the

IM environment unless attachments are used heavily, clogging the bandwidth necessary

for communication. For attachment use, IM requirements should specify maximum

attachment sizes very much like email systems utilize. In addition, J2EE provides tools

to zip and unzip files for faster delivery to limit the effects of large file transfer. There

also may be a small performance cost for implementations that intend to use AIMSOA as

a wrapper to existing IM functionality because AIMSOA adds an additional layer of

communication and processing. Again, this cost is very much acceptable for the majority

of IM environments.



53

In conclusion, AIMSOA can be used to augment existing architectures to provide

better scalability, interoperability, flexibility, and security. AIMSOA can also be used to

create robust custom IM systems that mirror the same functionality. J2EE provides ideal

service-oriented implementations as well as a robust application programming platform.

Vendors such as AIM, Jabber, Yahoo!, and MSN can utilize AIMSOA to help mitigate

the many problems they are facing at minor costs. Technologies such as EJBs, JAX-

RPC, JAXM, and servlets can be combined to provide an extremely loosely coupled,

interoperable IM architecture.



REFERENCES

Bruno, Eric. "Java Web Services & Application Architectures." Dr. Dobb 's Journal,

February 2005,16-21.

Fischer, Peter. "Answering the critical Web services questions." Application

Development Trends, July 2002, 52.

Knorr, Eric. "A Field Guide to Hosted Apps." InfoWorld, 1 April 2005, 39-40.

McGovern, James, Sameer Tyagi, Michael Stevens, and Sunil Mathew. Java Web

Services Architecture. San Francisico: Morgan Kaufmann Publishers, 2003.

Richard, Kevin. "AOL, ICQ to Interoperate—But in a Limited Fashion."

atnewyork.com, 30 October 2002. Article on-line. Available from

http://www.atnewyork.eom/news/article.php/l490771. Internet.

Saunders, Christopher. "Yahoo! Closes the Door on Third Party IM." Instant Messaging

Planet.com, 26 September 2003. Article on-line. Available from

http://itmanagement.earthweb.com/entdev/article.php/3084151. Internet.

. "Report: IM Viruses on the Rise." Instant Messaging Planet.com, 1 October

2003. Article on-line. Available from

http://www.instantmessagingplanet.eom/security/article.php/3086291. Internet.

Sengupta, Som and Venkatakrishnan Padmanabhan."A Service-Oriented Architecture for

Enabling Centralized Authentication Across WebLogic Domains." dev2dev,

September 2004,1-10.

Shigeoka, Iain. Instant Messaging in Java. Greenwich: Manning, 2002.

Svoboda, Zdenek. "Securing Web Services with Single Sign-On: Developing Web

Services Series Part VI." Systinet, February 2002. Paper on-line. Available from

54



55

http://www.theserverside.com/articles/article.tss?l=Systinet-web-services-part-6

Internet.

Weaver, James L. and Kevin Mukhar. Beginning J2EE 1.4. Birmingham: Wroxx Press,

2003.

Woods, Bob. "Jabber goes to the Web," Instant Messaging Planet.com, 29 November

2001. Article on-line. Available from

http://www.instantmessagingplanet.com/enterprise/article.php/928171. Internet.

. "Report: Interoperability Coming to IM" 8 Instant Messaging Planet.com, 8

Jan 2002. Article on-line. Available from

http://www.instantmessagingplanet.com/public/article.php/950431. Internet.

. "New: Web-based IM," Instant Messaging Planet.com, 21 May 2002. Article

on-line. Available from

http://www.instantmessagingplanet.eom/public/article.php/l 142121. Internet.

. "Review MSN Messenger," Instant Messaging Planet.com, 7 June 2002.

Article on-line. Available from

http://www.instantmessagingplanet.eom/public/article.php/l348031. Internet.

. "Bantu Restores Yahoo Interoperability," Instant Messaging Planet, com, 10

June 2002. Article on-line. Available from

http://www.instantmessagingworld.com/public/article.php/1356811. Internet.

."Impasse Rolls out IM Security Platform" atnewyork.com 20 June 2002.

Article on-line. Available from

http://www.atnewyork.com/news/article.php/1368821. Internet.



40

server side passing client/server flags respectively as input to the command. Other

platforms have their own tools to bind languages such as C# and C to the service. To

invoke methods exposed by RPC based Web services, the location of the service,

protocol, and the service's methods and signatures must be understood beforehand. An

application that is deployed based on the AEVISOA architecture must have a WSDL file

that can be located from an ebXML registry or URL. The WSDL file contains the

protocol to be used (HTTP) and the methods and method signatures of the Evl service.

Wscompile is responsible for importing the WSDL file and generating specific Serializer,

Deserializer, and stub classes for the client. The stubs, in conjunction with other

wscompile generated classes, are used to handle any conversions needed such as data type

mappings to communicate with the service.

In the architecture diagram, two clients are depicted: one a basic EVI client and

the other a registration client. With the exception of registration, the basic EVI client can

implement all necessary EVI operations. The registration client is used specifically for

registration, thus only interacting with the JAX-RPC servlet. A client developer can

choose to merge the functionality into a single interface. There are no performance

disadvantages, just a matter of style and abstraction.

Middle Layer: Provider

Providers act as proxies to forward messages to other users. The JAXM provider

can be configured to forward messages to endpoints, either server endpoints or other

provider endpoints. If an external client is deployed on a platform other than J2EE, any



40

server side passing client/server flags respectively as input to the command. Other

platforms have their own tools to bind languages such as C# and C to the service. To

invoke methods exposed by RPC based Web services, the location of the service,

protocol, and the service's methods and signatures must be understood beforehand. An

application that is deployed based on the AIMSOA architecture must have a WSDL file

that can be located from an ebXML registry or URL. The WSDL file contains the

protocol to be used (HTTP) and the methods and method signatures of the EVI service.

Wscompile is responsible for importing the WSDL file and generating specific Serializer,

Deserializer, and stub classes for the client. The stubs, in conjunction with other

wscompile generated classes, are used to handle any conversions needed such as data type

mappings to communicate with the service.

In the architecture diagram, two clients are depicted: one a basic EVI client and

the other a registration client. With the exception of registration, the basic EM client can

implement all necessary DVI operations. The registration client is used specifically for

registration, thus only interacting with the JAX-RPC servlet. A client developer can

choose to merge the functionality into a single interface. There are no performance

disadvantages, just a matter of style and abstraction.

Middle Layer: Provider

Providers act as proxies to forward messages to other users. The JAXM provider

can be configured to forward messages to endpoints, either server endpoints or other

provider endpoints. If an external client is deployed on a platform other than J2EE, any



CHAPTER THREE

DESIGN

ARCHITECURE

AIMSOA is a modular architecture, and can be seen in Figure 9. The architecture

is broken into four tiers: user, service, application/web, and data access. The middle

layer encompasses both the service tier and the application tier. The IM client and the IM

registration client fall into the presentation layer. JAX-RPC and JAXM provide the

services layer. The servlets and EJBs perform the business logic or server processing of

the architecture. The database makes up the data access layer. A combination of JAX-

RPC and JAXM communication APIs have been chosen for the AIMSOA messaging

solution.

38



CHAPTER THREE

DESIGN

ARCHITECTURE

AIMSOA is a modular architecture, and can be seen in Figure 9. The architecture

is broken into four tiers: user, service, application/web, and data access. The middle

layer encompasses both the service tier and the application tier. The BVI client and the BVI

registration client fall into the presentation layer. JAX-RPC and JAXM provide the

services layer. The servlets and EJBs perform the business logic or server processing of

the architecture. The database makes up the data access layer. A combination of JAX-

RPC and JAXM communication APIs have been chosen for the AIMSOA messaging

solution.

38


