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An important problem in the area of pattern recognition

is automatic detection of certain pre-assigned elements of

an image distorted by noise. In this research, a global ap

proach will be used. One such approach is to use an optimal

smoothing algorithm which depends on efficient dynamic

programming computational techniques. The basic purpose of

this research is to make this dynamic programming process

efficient in terms of storage requirement and computational

effort. Our goal, using the objective function, is to find

an optimal order of optimization and then design an effi

cient computational technique.

Two global techniques will be presented in this paper.

Included is a graph-searching technique and the above men

tioned technique using dynamic programming. Emphasis will

be on the development of an algorithm using dynamic program

ming.
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CHAPTER I

Introduction

The purpose of this paper is to describe the develop

ment of an optimal smoothing algorithm which will recognize

images in a digitized noisy environment. The problem is to

automatically recognize certain pre-assigned elements of an

image which is distorted by noise. The main objective is to

find an image as similar as possible to the given image. A

global approach of optimal smoothing algorithm may be used

for this purpose.

The optimal smoothing algorithm involves, first,

digitizing the original image and dividing it into regions

which contain points called pixels. At each pixel, we

measure a property "P," such as verticality, dottedness,

linearity, rectangularity, etc. We assign the most reliable

property value to each pixel. Then we use a smoothing algo

rithm to develop an objective function which is used to ob

tain a smoothed (optimal) value of the property "P." This

problem amounts to unconstrained dynamic programming op

timization. Also, any optimization problem which can be

posed as dynamic programming can also be stated as a

problem of finding the shortest path on a weighted graph.

That is, a graph searching method can be used to find the

optimal path (value). Graph searching methods have advan-



tages over dynamic programming, mainly because there are

many algorithms for finding the shortest path which use

heuristic information to speed up the search.

Heuristics can be thought of as "rules of thumb," that

is, heuristic information can be embedded in a objective

function or figure of merit. This objective function

would contain information about the edges or contours of the

given image to help speed up the search by rejecting image

components that do not meet certain criteria.

Graph searching, in general, involves starting with a

directed graph network G = <V,E> where V represents a set of

nodes and E represents a set of directed edges with positive

lengths. One of the nodes will be designated the start

node. The problem is to find the shortest path from the

start node to other nodes. The shortest path or length in

volving directed edges, can also be represented as a cost.

Our problem can then be stated as finding the cheapest path

from the start node to the other node. To find the cheapest

path, we use one of the many algorithms which has been

developed for this purpose. We begin with the start node

and generate step by step our graph G until a goal node is

found. At each step a node, already generated, is selected

and the successors for that node are generated and pointers

are setup from each successor back to its parent node. The

nodes selected depend on the cost estimate as determined by

a function used to evaluate the cost at each step. To speed



up the search, global information can be used. That is, in

formation concerning the shape or the contour of our image

can be put into a figure of merit function to aid in search

ing for the shortest path thereby minimizing the search

time.

Dynamic programming can best be described as recursive

optimization. We take a large problem and break it up into

a number of smaller problems. Then the smaller problems are

solved sequentially such that the results from the preced

ing problem is used recursively to solve the subsequent

problem.

The simplest form of dynamic programming is the serial

type. Basically a serial system consists of two or more

stages connected or joined together in series where the out

put of one stage becomes the input to the next stage. A

typical Dynamic programming stage is characterized by five

factors:

1. An input or initial state (X) which contains all

the necessary information about the input.

2. An output or final state (Y) which contains all the

relevant information about the output.

3. A decision variable which contains the information

to be manipulated to achieve the desired result.

4. A return variable, scalar, to measure effectiveness

using the objective function.

5. A transformation function which expresses each



component of the output as a function of the input

state and decision variable.

A more complex form of dynamic programming is the non-

serial type. There are four basic nonserial structures.

All nonserial structures, have one thing in common: from at

least one of the stages there are two or more inputs and/or

outputs. The implications are that one would have two or

more serial systems within a nonserial dynamic programming

structure. The problem then becomes that of finding the op

timal path or optimal serial structure. If an exhaustive

search procedure is employed, the required storage and com

putation time become exponential for large problems. There

fore, we must develop a special procedure or heuristic to

minimize the storage and computation requirements of these

problems.

The dynamic programming aspect of this research con

sists of two parts.' First, an optimal order in which the

nonserial dynamic programming stages can be solved must be

found. Second, the design and use of an efficient computa

tional technique must be effected to process the linearized

dynamic programming once an optimal order has been ob

tained. This paper describes a method or technique which

will help to solve the problems caused by dimensionality,

increased time, and increased storage due to multiple inputs

at each stage. Using this method, the goal is to make the

storage and central processing unit time manageable for
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Chapter II

Intelligent Techniques For Complex Problems

2.1 Heuristics

Heuristics may be described as criteria for selecting

courses of action from among many alternatives based on

which the most efficient results can be obtained for reach

ing a particular goal. One could view heuristics as rules

of thumb used in determining what actions to take. For ex

ample, a popular method for determining if a cake has com

pletely baked involves inserting a toothpick into the cake

then removing it to see if crumbs remain. This method does

not always determine if the cake is completely baked but is

effective most of the time.

The requirements for good heuristics is that they

should not only provide a simple means for determining the

best course of action but also, sufficiently often,

guarantee to identify the most effective course.

Most complex problems require the evaluation of an

astronomical number of possibilities to determine an exact

solution. In many of these complex problems, the time

required to find an exact solution takes more than a

lifetime. Heuristics are used to indicate a way to reduce

the number of evaluations and obtain solutions within

reasonable time constraints.



2.2 The Traveling Salesman Problem

An example of a complex problem is the Traveling Sales

man Problem. In this problem, the object is to find the

cheapest path for visiting every city, given a number of

cities, once and only once and then returning to the initial

city. This problem is represented by a graph, with each

node representing a city and the edges representing the cost

(distance) between nodes (cities). This problem is usually

stated for a complete graph, that is, a graph in which every

node is connected to each other node.

The Traveling Salesman Problem belongs to a class of

problems known as np-complete in which all known algorithms

for obtaining exact solutions require exponential time in

the worst case. Using a good bounding function makes the

determination of optimal paths a lot faster and a lot

cheaper.

Figure 2.1 represents a graph for the Traveling Sales

man Problem. This graph shows two paths marked ABC and ADE,

with ABC and ADE representing two partially completed paths

which are to be considered in our search to find the optimal

path. By using the two marked paths, the final solution

will ultimately be determined by the cost of the initial

path (ABC or ADE) plus the cost of the final path through

the remaining nodes. Even while using the partial paths,

the final solution still remains almost as difficult as



finding the entire solution. Therefore, we need heuristics

to come up with an estimate of the completion cost. Once we

have this estimate, we can determine which partial path to

explore first, and then combine the cost of the explored

path with the estimate of its completion (the one that of

fers the lower overall cost estimate).

Using this heuristic estimate at each stage, we select

for expansion that partial path which gives the lowest es

timated completed path cost. If our heuristic function gives

a good estimate, then the partial path that is selected and

found to be complete is also the cheapest path.

D

Figure 2.1 Graph Representing the Traveling Salesman

Problem.

Two of the more popular bounding functions used to

solve the Traveling Salesman Problem involves finding the

cheapest Second Degree Graph going through the remaining

nodes and finding the Minimum Spanning Tree through all

remaining nodes. These functions are obtained by solving the
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optimal assignment problem. The second degree graph func

tion requires computational steps of the order N3 and the

minimum spanning tree computational requirement is of the

order N2. The fact that these two functions provide optimis

tic estimates of the completion cost is apparent when we

consider that completing the tour requires selecting a path

that goes through all unvisited cities. We have a path

which is a special case of a Two Degree Graph and a path

which is a special case of a Spanning Tree. Since the set

of all completion paths is included in the optimization over

the set of path only, the cost of the solution found must be

lower than the optimistic estimate. Figure 2.2a shows the

shortest Two Degree Graph with sub-path AED. Figure 2.2b

shows a Minimum Spanning Tree completion of the sub-path

AED.

D

(a) (b)

Figure 2.2 (a) Two Degree Graph and (b) Minimum Spanning

Tree.



Even though the shapes of these graphs do not resemble

the desired tour, the costs of their solutions represent

good optimistic estimates of the optimal tours. Therefore,

they can be used as heuristics for improving the search ef

ficiency.

2-3 Optimizing. Satisficing, and Semi Optimizing Tasks

By optimization we mean, as mentioned in the Traveling

Salesman Problem, finding a tour (path) at least as cheap as

any other tour. Satisficing refers to finding a qualified

object or solution with as little search effort as possible.

Most problems can be posed as both constraint-

satisfaction and optimization tasks. As an example, sup

pose we take a chess board and attempt to place eight queens

on the board in such a way that no queen can attack another.

That is, each queen is placed on the board such that no two

queens are located on the same row, column, or diagonal.

The goal is to find the cheapest placement of the queens on

the board where each capturable queen represents a cost of

one unit. Presenting the problem in this manner generally

makes it more difficult since we are not certain if a zero-

cost solution exists. Even if we could prove that such a

solution exists, we would still have to search other higher

configurations to determine the optimal solution. However,

using heuristics can be very instrumental in reducing the

10



effort of finding a quality solution.

In theorem proving, we would normally be satisfied with

the first proof found, however ugly. By focusing the search

effort toward finding the shortest proof, prevents us from

making aimless explorations in a large space of pos

sibilities, which leads to smaller search efforts in finding

a more elegant proof. This principle, called the small-is-

quick, plays a major role in heuristic methods for satisfic

ing search.

Often the difference between the complexity of satis-

ficing and task optimization is substantial. For example,

in the Traveling Salesman Problem, finding some tour through

a set of cities is trivial , but finding the optimal tour is

np-hard. In order to minimize, search time one may be

forced to relax optimality requirements and settle for find

ing a good solution using a reasonable amount of search ef

fort. Whenever our criterion allows us to accept a solution

close to optimal or within a neighborhood of optimal, the

problem becomes one of semi-optimization.

Semi-optimization falls into one of two categories.

If the neighborhood for our solution is sharply defined

(which means the solution must be very near optimal), our

task is called near-optimization. If the criterion is fur

ther relaxed and the required solution must only be near

optimal with a sufficiently high probability, the problem

then becomes an approximate-optimization task.

11
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Chapter III

Intelligent Graph-Searching Procedures

3.1 Graph—Searching

An optimal smoothing algorithm basically involves

search strategies with graphs. To make the discussion

easier, we will define some nomenclature regarding graphs

and graph searching.

A graph *G' is a pair of finite sets {V,E}, where W

is called the set of nodes (or vertices) and %E' (which may

be empty) is called the set of edges. With each edge e in

E, we associate an unordered pair of nodes (a,b) that are

called the end nodes of !e'. Each graph under consideration

will have a unique node %s' called the start node. As an

example, consider a Graph 'G' which has the set V =

{a,b,c,s} as its set of nodes and the set E = {ei#e2fe3,e4} as

its set of edges, where ei = (a,b), e2 = (bfc), ea = (b,s),

and e4 = (a,c) (Figure 3.1).

Figure 3.1 Graph G.

13



If an edge is directed from node n to node n*, node n% is

said to be a successor of n and node n is the parent of n*.

The number of successors emanating from a given node is

called the degree of that node. A complete graph on n nodes

is a simple graph where every pair of distinct nodes is con

nected by an edge. This graph is represented by Cn. Figure

3.2 shows the representation for complete graphs C3 and Cs.

Figure 3.2 Complete Graphs for C3 and C5.

A digraph (directed graph) D is a finite set A, which

contains the nodes or vertices of a graph, together with a

subset E of AxA. Each ordered pair (a,b) in E is called a

directed edge from a to b. Edges in digraphs are repre

sented by arrows. Figure 3.3 (a) and (b) are examples of

digraphs.

Let D be a digraph and let a be a node in D. The out-

degree of a is the number of directed edges (arrows) leaving

a and the in-degree of a is the number of edges entering a.

The total degree of a is the sum of its in-degree and its

14



out-degree. In Figure 3.3a the in-degree of b is 2 and the

out-degree of b is 1. The total degree of b is 3 (out-

degree 1 and in-degree 2). In any digraph, a node with in-

degree 0 is called a source and a node with out-degree 0

is called a sink. Figure 3.3b is an example of a graph

where a has an in-degree of 0 and c has an out-degree of 0.

(a) (b)

FIGURE 3.3 Digraphs.

Consider a set of edges, (a^a^ , (a^a,),..., (an_1#an)

where a - a . Such a set is called a directed cycle denoted

by ao => aA => a2 -^..a^ -> an - a0. A digraph is acyclic if

it contains no cycles. If D is an acyclic digraph, then D

has at least one and only one sink. Figure 3.4 shows ex

amples of acyclic graphs. In Figure 3.4a we have a tree

structure which clearly does not have a cycle. In figure

3.4b the circuit (a,bfc,e,a) does not form a directed cir-

15



cuit due to the violation of edge orientation (c,e). There

fore Figure 3.4b is also acyclic. b

a.

FIGURE 3.4 Acyclic Digraphs,

A tree is a graph in which each node (except one root

node) has only one parent. A node that has no successor is

called a leaf or a terminal node. Often the edges on the

tree are assigned weights representing either costs or

rewards determining whether they will be a part of the final

solution in procedures involving graph traversals.

The most elementary step of graph searching is node

generation, that is, generating or computing a code repre

senting a node with respect to its parent. The new succes

sor is then said to be generated and its parent explored.

Another computational step of great importance is

called node expansion, which consists of generating all the

16



successors of a parent node. The parent is then said to be

expanded. Pointers are usually set up from each successor

node back to the parent node. These pointers provide for

tracing a path from a goal node n back to the start node or

some other ancestor node.

A search procedure is a prescription for determining

the order in which nodes are to be generated. These search

procedures can be either uninformed (blind), informed,

guided, or directed. In the uninformed situation, the order

in which the nodes are expanded depends only on the informa

tion gathered by the search, but remains unaffected by the

unexplored nodes or by the goal criterion. The informed

search uses partial information about the problem domain and

the nature of the goal criterion for making the search as

efficient as possible.

The set of nodes in a graph being searched can at any

time be divided into four disjoint subsets:

(1) Nodes that have been expanded;

(2) Nodes that have been explored, but not yet expand

ed;

(3) Nodes that have been generated, but not yet ex

plored; and

(4) Nodes that are still not generated.

In the search procedures to be subsequently discussed,

it is necessary that a distinction be made between the first

and third groups of nodes. Nodes that are expanded, making

17



their successors available to the search procedure, are

called closed; nodes which have been generated and are

awaiting expansion are called open.

3.2 Search Algorithms

Search algorithms used for trees includes, Depth-First

Search, Breadth-First Search, Hill-climbing, and their

variations. Many np-hard problems use other more complex

techniques such as heuristic search using shortest path al

gorithms such as Dijkstra's algorithm (also called Greedy

Algorithm), A* algorithm and Dynamic Programming. Many

problems in Artificial Intelligence are reduced to finding

an optimal path in a weighted graph.

Let G(N,A) be a directed graph with nL belonging to N

and edge (nlfn ) belonging to A. If an edge is directed from

node ni to n , then n is the successor of n1 and n1 is the

parent of n . A cost c(ni#n ) is assigned to each edge

(nlfn5). A sequence of nodes nu,ni2, ...,nik with each node n^

a successor of n^ yi for j = 2,...,k is called a path from nu

to nik and the value

c =

is its cost.

A procedure for finding a shorter path (using minimal

18



cost), starts with a specified or initial node *s' and then

finds the shortest path (goal nodes). An algorithmic

description of the procedure is as follows:

(1) Start with the initial node *s';

(2) Expand successors nodes and set pointers from each

successor back to its parent node; and

(3) Check the successor nodes to see if they are goal

nodes

(4) When a goal node is found trace back from the goal

node to the start node to produce a solution path.

To speed up the search, special information called

heuristic information, is used to direct the search. Let

f'(n) be an estimate of the cost of the minimal cost path

from %s' to a goal node *n'. The node having the smallest

value of f is the node estimated to be on a minimal cost

path; therefore it is expanded next. The estimate f'(n) can

be expressed as the estimate of a minimal cost path from

node n to a goal node:

f'(n) = g'(n) + h'(n)

Let g'(n) be the cost from *s' to *n' given by the sum of

all edge costs encountered in tracing the pointers from *n'

to 1s' (this represents the lowest cost path); and h'(n) ob

tained from the heuristic information. The following is the

A* Algorithm which makes use of the f cost estimate.

19



Algorithm A*

(1) Mark the start node %s' open and set g'(s) = 0.

(2) If no node is open, exit with failure; otherwise

continue.

(3) Mark the open node *n' whose total estimate

f'(n) = g'(n) + h'(n)

is smallest as closed. (resolve ties for minimal

f' values arbitrarily, but always in favor of any

goal node).

(4) If *n' is a goal node, exit with the solution path

obtained by tracing back through the pointers;

otherwise continue.

(5) Expand node *n', generating all if its successors.

(if there are no successors go to (2)).

(6) If a successor nt is not marked, set

g'Crg = g'(n) + c(n,nl);

mark it open; and direct pointers from it back to

n.

(7) If a successor n1 is marked closed or open, update

its value:

q"(nL) = min (g'(nt) ,g'(i^) + ctn,^)).

20



Mark those closed successors open, whose g' values were

lowered, and redirect to »n' the pointers from all

nodes whose g' values were lowered.

(8) Go to (2).

In general, this algorithm is not guaranteed to find a

minimal cost path to a goal. Hart, Nilsson, and Raphael

have shown that, if h(n) is a lower bound on the cost of the

minimal cost path from node *n' to a goal node, then algo

rithm A* will find an optimal path to a goal node [101]. If

h' =0 (no heuristic estimate available) then algorithm A*

is called the uniform cost algorithm and it coincides with

the Dijkstra algorithm (see next algorithm).

The following is a greedy algorithm called Dijkstra's

algorithm. The sets »C and 'S' are the set of available

candidate nodes and the set of nodes already chosen. At

every moment, %S' contains the nodes with the known minimal

distance with respect to the source and XC contains all the

other nodes. Initially »S' contains only the source. Once

the algorithm is finished, »S' contains all the nodes of the

graph and the solution to the problem. The length of the

shortest of the nodes in S is stored in an array »D'.

The nodes of the graph are numbered from 1 to n, and N

= {1,2,..., n}, where node 1 is the source or start, and

Matrix L gives the length of each directed edge: L[i,j] => 0

if edge (i,j) exists and L[i,j] = infinity otherwise.
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Dijkstra's Algorithm

Function dijkstra[l..n, l..n]): array[2..n]

1. {initialization}

C <= {2,3, n} {S = N\C exists only by implica

tion) ;

2. For i <= 2 to n do D[i] <= L[l,i];

3. {greedy loop}

Repeat n-2 times

v <= some element of C minimizing D[v];

C <= C\{v} {and implicitly S <= S u {v}};

For each w € C do

If D[w] > D[v] + L[v,w] then

D[w] <= D[v] + L[v,w];

P[w] <= v;
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Chapter IV

Serial Dynamic Programming Calculation

4.1 Three Stage Serial Dynamic Proqrammi ncf Problem

The following is an example of a simple serial dynamic

programming problem. Figure 4.1 is a block diagram which

represents a one stage system characterized by five factors

which includes: the input state, the output state, the

decision variable, the stage return, and stage transforma

tion. Next we describe the steps involved in solving a

Figure 4.1 One Stage in a Dynamic Programming

Problem.
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three stage Serial Dynamic Programming problem:

min f2(X2/X3) + f3(X3, X4)],

where X , X2, X3 take discrete values and functional values

(f , f , and f3) are known. This can be optimized as follows

using serial dynamic programming as follows:

1.

2.

3.

4.

F (X ) = min f3(X ,X )

= min[F3(X3) + f2(X2,X3)]

= min[F2(X2) + fx(Xi#X2)]

F2(X2)

= min

Figure 4.2 is a graphical representation of the above three

stage optimization process. Figure 4.3 includes three

tables which contains the input values for each stage.

X

1

X

■f

2

jtr

X

f
3

A
4

stage by stage

Figure 4.2 Graphical Representation of a Three Stage

Dynamic Programming System.
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Given X2

Example

X X

1

1

2

2

1

2

1

2

4

3

1

2

1

1

2

2

1

2

1

2

1

2

3

1

1

1

2

2

1

2

1

2

2

2

3

1

Figure 4.3 Input Values for Three Stage Dynamic

Programming System.

Calculations

Use table 1 to calculate F3(X3) for X =1,2:

F3(l) = min f3(l,X4) = min {f,(l,l) ,f,(l,2)}

= min{2,2} =2 for X4 = 1;

F3(2) = min{f3(2,l), f3(2,2)}

= min{3,1} = 1;

Calculate F2(X2) for X2 = 1,2 (use table 2):

F2(l) = min{F3(X3) + f2(l,X3)

F2(2)

= min <F3(1) + f2(l,l), F3(2) + f2(l,2)}

= min {2+1, 1+2} =3;

= min{F3(l) + f2(2,l), F3(2) + f2(2,2)}

= min{2 + 3,1 + 1} = 2;
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Calculate F^XJ Xi = 1,2:

= min<F2(l) , F2(2)

= min{3 + 4, 2 + 3} = 5;

= min{F2(l) + fx(2,l), F2(2) + ^(2,2)}

= min{3 + 1, 2 + 2} = 4;

2

1

1

1

1

2

TABLE 1

1

2

3

2

1

2

5

4

2

1

TABLE 2 TABLE 3

Figure 4.4 Tables Used to Calculate or Determine the

Optimal Value and Optimal Variables.

Now from table 3, min F^XJ = 4 with Xi = 2. But Table

3 gives X2 = 1 for Xi = 2. Table 2 gives X3 = 1 for X2 = 1.

Table 1 gives X4 = 1 for X3 = 1. The optimal variables are

Xa = 2, X2 = 1, X3 = 1, and X4 = 1. Hence the Optimal value

is given by fi(2,l) + f2(l,l) + f3(l,l) = 4. The order of

optimization is obvious: f3 < fa < fx.

4.2 A Simple Algorithm for Serial Dynamic
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1. Find the order: f3 < f2 < fx as in the above example,

i.e. the optimization of f3 must precede that of f2

and the optimization of f2 must precede that of fx.

2. Start with f3 (the last one) and execute stage-by-stage

optimization until f1 has been processed. At each

stage, before optimization, add the result of the pre

vious stage.

3. Store results, when you optimize a stage, for use at

the next stage. Optimal variables will be stored so

that after the final optimization, the optimal vari

ables at various stages can be retraced.
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CHAPTER V

Computational Techniques in Nonserial Dynamic Programming

5.1 Nonserial Dynamic Programming

Consider the following optimization problem:

min f,(XllfXJ + f,(XufXJ4),(XufXJ4

An equivalent graph representation is given by Figure 5.1

Figure 5.1 Simple Nonserial Dynamic Programming Sys

tem.

The order of optimization is not obvious in this case;

however, an ad hoc examination of interacting variables
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gives the following:

3) F^XJ -min [F3(X3,X2) + f^X

4) F (XJ = min F^XJ

Therefore the order is f4 < f3 + f2 < f^

In a complex nonserial case, the optimal order is

rather difficult to determine by mere observation. For the

sake of efficiency, the process of finding the optimal order

must be automated. In the following section we consider a

complex nonserial dynamic programming, whose ordering issues

are discussed in details. We shall see in the next chapter

that this example is exactly the formulation of the smooth

ing algorithm.

5.2 Example of Nonserial Dynamic Programming

Consider the following nonserial dynamic programming:

££„<VW'W1^ where
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Figure 5.2 shows a possible graphical representation of the

problem.

Figure 5.2 Graphical Representation of Nonserial Dynamic

Programming.

An observation reveals that there are several optimal or

ders, one of which is given below.
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f« f«3 f« f41

f, f33 f32 f3,

*M f23 f. fn

f f
14 13 f12 fH

Figure 5.3 One Order of the Graph in Figure 5.2.

Here first, second, third, and fourth rows must be

processed in that order, step by step. Such an ordering

gives:

- FJXJ VT P f«<x..'X«'X"'P«)

2. F43(X43) = min [PJXJ +

Obviously we need to store only F43(X43) and F44(X44) . In

general, when we optimize: F^t^) then we need to store

X1+1 (Xtl) and X: j+1(X1;)).

5.3 Problems

Generally, in complex nonserial dynamic programming,
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the order of optimization is not clear. Even if we find an

order, we need to worry whether it is optimal. Yet there is

another issue: can we reduce computational effort and

storage.

In the literature there exist numerous attempts for

finding optimal orders [14]. However, the computational and

storage requirements of all existing algorithms are for

midable. In the following we give a method akin to

topological sorting of graphs. Because of the nature of ap

plications (e.g., smoothing algorithm), the graph to be

sorted will be assumed to have no cycles.

5.4 Topoloqical Sorting

The process of finding the topological ordering of

nodes of an acyclic digraph is called topological sorting.

We will apply this method to the digraph in Figure 5.2.

Once the graph has been sorted using the sorting procedure,

the result will be a linearized ordering to which we can

apply serial dynamic programming techniques.

This algorithm proceeds in a straightforward manner by

listing out a vertex in the network with in-degree zero

(note there always exists one because of no cycles). Then

this vertex and all edges leading away from it are deleted

from the network. These two steps are repeated until all

nodes have been listed and then deleted from the network. A
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simple or crude form of the topological sorting algorithm is

as follows:

1. Input the network and let "n" be the number of ver

tices ;

2. Output the vertices (in sorted order);

3. Put all nodes with in-degree zero on a stack;

If stack is empty then end the procedure, else go

to 4;

4. Pick a vertex with in-degree zero by popping the

stack;

5. Output the vertex and remove the vertex and all

out edges from the graph;

6. In removing an out edge consider the vertex to

which this edge is leading. If its in-degree has

reduced to 0 by removal of the edge then push the

vertex on the stack and repeat 4.

The algorithm can be implemented by representing the

network by adjacency lists. The adjacency lists for the

graph in Figure 5.2 is given in Figure 5.4. The head nodes

of these lists contain two fields: COUNT and LINK. The

COUNT field contains the in-degree of that vertex and LINK

is a pointer to the first node on the adjacency list. Each

list has two fields: VERTEX and LINK. Count fields are

easily set up at the time of input. When edge <i,j> is in

put, the count of vertex "j" is incremented by 1. As seen
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above, the list of vertices with zero count is maintained in

a stack. The strategy of maintaining a stack of zero-degree

nodes makes the procedure fast. We note that when the

removal of an edge reduces the degree of a node to zero, it

can be pushed onto the stack without much effort; otherwise

each call for a vertex with in-degree 0 will require a

search of n elements in the list.

The details of the sorting algorithm using appropriate

data structures are provided below.

5.5 Topoloaical Sorting Procedure

procedure TOPOLOGICAL_SORT(COUNT,VERTEX,LINK,n)

{The "n" vertices of the network are listed in topo-

logical order. The network is represented as a set

of adjacency lists with COUNT(i) = the in-degree of

vertex i}

1. top := 0 { initialize stack }

2. for i := 1 to n do { create a linked stack of ver

tices with no predecessors }

3. if COUNT(i) = 0 then ( COUNT(i) := top: top := i )

4. end

5. for i := 1 to n do {print the vertices in topological

order}

6. if top = 0 then [print ('network has a cycle'):stop]

7. j := top: top := COUNT(top):print(j)
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{ unstack a vertex}

8. ptr := LINK(j)

9. while ptr # 0 do

{ decrease the count of successor vertices of j }

10. k := VERTEX(ptr) { k is a successor of j }

11. COUNT(k) := COUNT(k) - 1 { decrease count }

12. if COUNT(K) = 0 { add vertex k to stack }

13. then [ COUNT(k) := top: top := k ]

14. ptr := LINK(ptr)

15. end

16. end

17. end TOPOLOGICAL SORT
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FIGURE 5.4 Adjacency Structure or List for Graph in Figure

5.2.

Using Figure 5.4 as input to the Topological Sort algo

rithm we see that fir has an in-degree of zero and f44 has an

out-degree of zero. This is the minimum requirement for a

digraph to be acyclic. As the algorithm proceeds, the first
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node, f , will be listed on the stack. Then all the edges

leading out from fxi will be deleted along with the vertex

itself. Next we decrement the count of the successors of

f , f and fai. The count (in-degree) of fia and fai is now

zero, therefore either fxa or fai could be selected as the

next vertex to be evaluated or added to the stack. Suppose

we select f , then fal is added to the stack and the vertex

f with its edges are deleted. Afterward we decrement the
21

count of the successors of fn, fai and faa. The count of f3i

is decremented to zero and the count of faa is decremented to

one. We now have two nodes or vertices with in-degree of

zero, f and f . We continue this process until all ver

tices have been selected or a cycle has been detected. The

topological order selected is stored in the stack in

reversed order. This order is; fu, f21, f31, f41, fia, f22#

orders. We now have a linearized order in which to perform

our dynamic programming.
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CHAPTER VI

Optimal Smoothing Algorithm

The problem is to automatically recognize certain pre-

assigned elements of an image which is mixed or distorted by

noise. The main objective is to find an image as similar

as possible to the given image. A global approach of op

timal smoothing algorithm may be used for this purpose.

Generally, global information (heuristic) is needed or used

to reduce the search or computation time. The global infor

mation contains knowledge about edges, contours, or some

property relating to the given image.

A high level description of such a pattern recognition

process for rectangular images is as follows:

1) Digitize the original image into pixels. The

image

or picture can be represented or stored in the

form of a rectangular array, [y^].

2) Let "P" denote a property such as linearity, verti-

cality, rectangularity, dottedness, etc. Measure a

given property MP" at each pixel. In this smooth

ing algorithm, the properties being measured

are verticality, horizontality, etc.

3) Reduce regions to points: A region Rijf 1 <= i <= m,

1 <= j <= n shrinks to a single point Y^.
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4) Assign the most "reliable" property value Ptj of

"P" to Y .

5) Use smoothing algorithm:

Suppose x13 denotes P-values in pl;). Let h and v

be the costs of horizontal and vertical irregu

larities respectively, and q the function penalizing

the difference between x^ and p^. Now xljt, mini

mizing the following objective function gives the

smoothed value of xtj:

This is an example of unconstrained dynamic program

ming. The problem is potentially np-complete in terms of

computation and storage. To reduce the computational ef

forts, we use global information which contains information

about the given image. A picture has many horizontal and

vertical levels and it is also noisy. To aid in the recog

nition of an image, global information relating to the edges

or contours can be embedded in the objective function. In

the absence of convexity conditions, this problem amounts to

dynamic programming optimization.

To reduce the intermediate storage problem, all redun

dant and blocked states will be eliminated and a pseudo-
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memory technique will be used.

Various techniques found in the literature [107] to

reduce dimensionality, storage, and computation time

includes; Fathoming (Elimination by Bounds), Reaching,

Nearest Neighbor Technique, Minimum State Representations,

and Data Structures (Computer Techniques and Codes).

Fathoming is a simple, yet extremely effective, tech

nique of branch and bound used to eliminate states in

dynamic programming algorithms. This technique or approach

can be applied to finite dynamic programming problems.

Basically, if we can demonstrate that no completion of an

optimal sub policy for a state can lead to an optimal

policy, then that state can be eliminated with no chance of

overlooking any optimal policy. The computer storage

requirements are reduced since it is not necessary to store

either f(x) or the decision(s) which led to f(x) for any

fathomed state "x." When compared to pure dynamic program

ming, applying a branch and bound technique results in a

storage saving factor of 103 and computational time saving

factor of 102.

Reaching is a label-setting technique for solving the

functional equation of dynamic programming. This differs

from the usual recursive computation procedure of dynamic

programming (termed pulling) due to the order in which the

calculations are performed. The use of reaching allows the

exploitation of special structure in a manner that is not
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possible with the usual recursive computation procedure of

dynamic programming. Reaching can often be accelerated as

in the case of dynamic programming with bounds. Even when

there is no special structure to exploit or any means of ac

celerating reaching, it requires no more effort than the

usual recursive computation.

The Nearest Neighbor Techniques are those techniques

which reduces dimensionality by characterizing pairs of sub

sets. The state space of these subsets has the property

that the only allowable transitions from the states of one

subset are to the states of the other. An example of this

type of reduction of dimensionality is a control problem

with M state variables and m transition equations. Since

the transition equations govern the motion of the system, it

is often possible to reduce an M dimension problem to an in

dimensional problem.

Dimensionality can often be reduced by exploiting spe

cial structures. The resulting dynamic programming algo

rithm is a special case of "reaching" in which candidates

for current states are first temporarily labeled from the

set of permanently labeled states of the previous embedded

state space. The new labels are not declared permanent un

til tentative labeling has been completed and all infeasible

and dominated states have been discarded. In this manner

the embedded state space approach uses reaching to sequen

tially generate the complete family of undominated feasible
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solutions to the resource allocation problem.

Finally, to improve the overall storage and efficiency

of the algorithm, the use of data structures are of fun

damental importance. In dynamic programming, the structures

of primary importance are linked lists (dynamic structures),

trees, and heaps. Effective and efficient implementation of

techniques such as reaching and elimination by bounds neces

sitates linked lists (as opposed to arrays) storage. In

linked lists, storage is allocated as needed.

The development of parallel computers may greatly in

fluence future techniques for reducing dimensionality.

These parallel machines have a number of different process

ing units which can execute instructions simultaneously.

The problem is to isolate those computational components

which can be processed in parallel.
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Chapter VII

Summary of Graph-Search vs. Dynamic Programming

Graph-search techniques using global information about

the given image can be very effective in finding a solution.

If the optimal solution is not important, that is, if a

semi-optimal solution will suffice, then several heuristics

can be used to reduce the search for a solution and con

sequently the search time.

Even when the noise level is high, the use of good

heuristics (global information) facilitates the detection of

objects in the picture. The computing time for detecting

images is directly related to the amount of noise associated

with the image. As the noise level increases the computing

time increases.

Dynamic programming techniques are considered blind.

That is, the search time does not vary with the amount of

noise associated with the image. Dynamic programming is

very effective in recognizing patterns in a noisy environ

ment. The use of global information (heuristics) will

greatly reduce the search time. In our problem, we have ap

plied a technique which reduces the search to O(n+k) time

where n is the number of variables and k is the number of

edges in the graph. In any event, hopefully our technique ,

in the worst case, will be as good as any graph-search tech-
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nique.

Whether one uses a graph-search or a dynamic program

ming technique, for maximum efficiency, the global informa

tion should be embedded in a figure of merit function

(objective function) and not in the whole program.
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