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ABSTRACT: A Ru(II) complex supported by an N-heterocyclic carbene
annulated to a redox-active naphthoquinone (NQ) was interrogated using a
range of potentiodynamic and potentiostatic electrochemical techniques. The
complex exhibited two redox processes, one of which was attributed to the
Ru(II)|Ru(III) couple (E1/2 = +1.10 V vs a saturated calomel electrode) and the
other to the NQ|NQ− couple (E1/2 = −0.62 V). Using potentiostatic coulometry
or bulk electrolysis, the application of a fixed negative potential (−0.95 V) to
electrodes placed in a dichloromethane solution containing the complex resulted
in a reduction reaction. The complex was quantitatively reduced within minutes,
as determined by coulometry, and subsequently oxidized to its initial, neutral
form through the application of a relatively positive potential (+0.34 V) over
similar periods of time. The interconversion process was found to be reversible
and used to modulate a series of ring-closing metathesis and ring-opening
metathesis polymerization reactions. While relatively high activities were
observed when the neutral form of the catalyst was employed, the reaction rates were attenuated upon in situ, potentiostatic
reduction. Toggling between relatively negative or positive potentials enabled the aforementioned olefin metathesis reactions to be
switched between fast and slow states.

1. INTRODUCTION

Significant efforts have been directed toward the integration of
responsive units1−7 into contemporary catalysts in order to
gain control over the corresponding catalyzed transforma-
tions.8−15 The units are typically designed to selectively
respond to chemical (e.g., pH),16−19 thermal,20−22 photo-
chemical,23−28 mechanical,29−31 redox,32−40 or electrochem-
ical41−44 stimuli. The latter approaches, which include
potentiostatic coulometry or bulk electrolysis (BE), feature a
number of distinct advantages, including the ability to (1)
finely tune the electric potential applied to the reaction
mixture, (2) precisely control the extent of the reduction or
oxidation reaction, and (3) modulate the redox chemistry in a
temporal fashion.45 For example, Matyjaszewski46 demon-
strated that BE can be used to modulate the kinetics of copper-
catalyzed polymerizations of methyl acrylate (Scheme 1a:
termed “electrochemical atom transfer radical polymerization”
or eATRP). The effect was achieved by applying a relatively
negative potential (−0.69 V vs Ag/Ag+) in order to transform
copper complexes into their more active, reduced states. The
subsequent application of a relatively positive potential (−0.40
V) effectively oxidized the catalysts which inhibited the
polymerization reaction. Balancing the applied potential
between these two states facilitated the synthesis of polymers
with tunable molecular weights and narrow polydispersity.
Variations of this methodology have enabled control over the
polymerization of other vinyl monomers.42

Electrochemical regulation of other types of catalyzed
polymerizations has also been reported. For example, Fors47

demonstrated that the chain growth of poly(vinyl ethers) can
be modulated through the intermittent formation of
carbocations (Scheme 1b: termed “electrochemical cationic
polymerization” or eCP). Applying a relatively positive
potential (e.g., +0.33 V vs Fc/Fc+; Fc = ferrocene) effectively
oxidized a dithiocarbamate to its corresponding radical and
afforded a carbocation at the terminus of a growing polymer
chain.48 Subsequent application of a relatively negative
potential (e.g., −0.88 V) reduced the active species to its
corresponding anion and terminated polymer growth.49 A
variety of poly(vinyl ethers) with narrow polydispersities and
controlled molecular weights were obtained with this
approach. Over the same time frame, Byers50 reported an
electrochemical method that enabled the chemoselective
polymerization of rac-lactide or cyclohexene oxide (Scheme
1c: termed “electrochemical ring-opening polymerization” or
eROP). Applying different potentials (e.g., +2.3 or +3.7 V vs
Li+/Li) toggled the metal center embedded in a bis(imino)-
pyridine iron alkoxide complex between two different states
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(FeII vs FeIII). The neutral form of the catalyst (FeII)
polymerized rac-lactide, whereas the oxidized derivative
(FeIII) facilitated the conversion of cyclohexene oxide to its
corresponding polymer.45

We previously disclosed the Ru complex 1 (Figure 1a) and
described methods for using the complex to modulate various

olefin metathesis reactions.51,52 In these reports, attenuated
catalytic activity was achieved by reducing the naphthoquinone
(NQ) unit embedded in the catalyst; subsequent oxidation
restored the catalytic activity. The redox chemistry was
accomplished through the addition of stoichiometric quantities
of CoCp2 (Cp = C5H5

−) or FcPF6 to cycle 1 between its

reduced and neutral states, respectively. We reasoned that
potentiostatic regulation of the oxidation state of the complex,
and thus its catalytic activity, would not only circumvent the
need to add stoichiometric quantities of redox agents but also
promote temporal control. In a broader context, the study of
the proposed transformation was envisioned to enrich our
understanding of electrochemically modulating well-defined
organometallic complexes using a potentiostatic methodology
while establishing a new approach for controlling olefin
metathesis and related types of chemical transformations.

2. RESULTS AND DISCUSSION
The electrochemical properties of 1 were first comprehensively
assessed through a series of potentiodynamic experiments,
including cyclic voltammetry (CV) (Figure 1b) and differential
pulse voltammetry (DPV) (Figure 1c). In the former, two
processes were found in the range of −1.0 to +1.5 V vs a
saturated calomel electrode (SCE). One process occurred at an
E1/2 value of −0.63 V and was attributed to the NQ|NQ−

couple (i.e., the interconversion of the NQ moiety and its
respective semiquinone radical anion).53 A second process was
recorded at an E1/2 value of +1.10 V and was assigned to the
Ru(II)|Ru(III) couple.54 Inspection of data recorded for the
former revealed near-unity current and charge ratios recorded
for the anodic and cathodic responses (i.e., Iap/Icp = 0.99 and
Cap/Ccp = 0.96, respectively). The balanced signals reflect the
high reversibility of the electrochemical process associated with
reducing 145 and were in agreement with a DPV analysis,
where a single symmetrical signal characteristic of a reversible
process with a current maximum at a potential of −0.61 V was
recorded.55

To determine if the aforementioned electrochemical current
responses stem from analytes that are freely diffusing and
dissolved or adsorbed to an electrode,56 a series of CV analyses
were performed at different scan rates (Figure 1d). A linear
relationship between the peak current (Ip) and the scan rate
was observed (Figure S2), which indicated that the electron
transfer process was diffusion-controlled and did not occur
through surface-adsorbed species.45,57 On the basis of these
results, 1 and its reduced derivative (1red) appeared to remain
soluble during the electrochemical transformations.58

Next, a series of potentiostatic experiments were conducted
using a three-electrode setup and a three-chamber cell (Figure
S1).59 The counter electrode was separated from the working
and reference electrodes by a middle chamber to minimize the
formation of byproducts.45 The cell was loaded with a stir bar
and a dichloromethane solution of 1 ([1]0 = 0.5 mM)
containing tetrabutylammonium hexafluorophosphate
([TBAPF6]; 0.01 mM) as electrolyte, and a fixed potential of
−0.95 V was applied. As shown in Figure 2a (red line), a
diffusion-controlled current response was observed during the
early stages of the electrolysis. After 10 min, the current began
to decrease, which indicated that the electrolysis was becoming
limited by mass transfer and reaching saturation. A color
change from light green to brown, consistent with the
conversion 1 → 1red,

51 accompanied the change in current.
After 20 min, the current approached zero, consistent with
consumption of the neutral complex. Coulometry revealed that
a total of 0.51 C (Figure 2b, red line) was transferred during
the electrolysis experiment. The transferred charge was in good
agreement with the theoretical value (0.50 C), which was
based on the initial loading of the complex and a one-electron
process. The slight excess of charge measured was attributed to

Scheme 1. Examples of Electrochemically Controlled
Redox-Switchable Reactions: (a) eATRP, (b) eCP, and (c)
eROPa

aAbbreviations: Me6TREN = tris[2-(dimethylamino)ethyl]amine, Ar
= 4-methoxyphenyl, Ar′ = 2,6-dimethylphenyl.

Figure 1. (a) Potentiostatic reduction and oxidation of 1. (b) CV of 1
as recorded at 0.1 V s−1. (c) DPV of 1 as recorded at 0.25 mV s−1. (d)
CV of 1 as recorded at different scan rates (indicated). Conditions:
[1]0 = 0.5 mM, [TBAPF6] = 0.01 M, CH2Cl2.
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non-Faradaic or capacitive processes associated with the
charging of the electrical double layer at the electrode interface
during electrolysis.45 CV of the resulting solution revealed
signals that were consistent with the NQ|NQ− and Ru(II)|
Ru(III) couples of the starting material (Figure S4a).
After the complex was reduced, a fixed potential of +0.34 V

was applied to the aforementioned mixture. As before, the
initial current response appeared to be controlled by diffusion
and began to plateau over time (Figure 2a, blue line) and a
reversal in color (from brown to light green) was observed.
The current approached zero after 18 min, and a total of 0.52
C (Figure 2b, blue line) was transferred over the course of the
experiment. Signals consistent with the NQ|NQ− and Ru(II)|
Ru(III) redox couples of 1 were recorded upon CV of the
resulting product mixture (Figure S4b).
The aforementioned electrolysis experiments were repeated,

and conversions that typically exceeded 95% were achieved
within 18−20 min (Table S1). For example, over three redox
cycles (Figures S5 and S6), an average of 0.52 ± 0.01 C was
transferred during the reduction process, whereas 0.51 ± 0.01
C was transferred during subsequent oxidation. The number of
electrons transferred during each of the aforementioned
processes was confirmed to be 1 using the Faraday equation.
These observations are in concordance with results that were
obtained when redox reagents were used and reflect the high
fidelity of the electrochemical process of 1.51,52

Inspection of the electrolysis data revealed that the diffusion-
controlled reduction processes appeared to occur slightly more
quickly than the subsequent oxidations. To ascertain the origin
of this observation, diffusion coefficients were calculated using

the Randles−Sevcik equation. The diffusion coefficient
calculated for 1 was larger than that of 1red (2.57 × 10−5

cm2 s−1 vs 1.47 × 10−5 cm2 s−1, respectively) and was
attributed to the relative sizes of the corresponding species.
Since the reduced complex should contain tetrabutylammo-
nium as a countercation and thus additional solvent molecules,
it can be expected to diffuse relatively slowly in comparison to
its neutral precursor.60

Subsequent efforts were directed toward potentiostatically
controlling the catalytic activity displayed by 1 in ring-closing
metathesis (RCM)61,62 and ring-opening metathesis polymer-
ization (ROMP)63−65 reactions.66 Initial experiments were
directed toward investigating the activities displayed by the
neutral and the reduced forms of the complex (1 and 1red,
respectively) in the RCM of diethyl diallylmalonate (DDM).
The addition of the substrate ([DDM]0 = 0.05 M) to a
dichloromethane solution of 1 ([1]0 = 0.5 mM) containing
TBAPF6 (0.01 M; TBA = n-tetrabutylammonium) as the
electrolyte and 1,3,5-trimethoxybenzene (TMB) (0.05 M) as
an internal standard resulted in a reaction that proceeded with
a pseudo-first-order rate constant k1 of 8.39 × 10−5 s−1 (Figure
3a), as determined by analyzing aliquots that were periodically

removed from the reaction mixture over time and analyzed
using gas chromatography (GC). For comparison, adding
DDM to a solution of the catalyst that was first reduced using
the BE method outlined above (Eapp = −0.95 V, t = 20 min)
under otherwise identical conditions resulted in a relatively
slow reaction: k1,red = 1.29 × 10−5 s−1. The ratio of the
corresponding rate constants, k1/k1,red, was calculated to be 6.5;
for comparison, a ratio of 6.7 was measured for analogous
reactions that were performed using chemical oxidants and

Figure 2. (a) Plots of current vs relative time upon the application of
a potential of −0.95 V (red) or +0.34 V (blue) to a solution
containing 1 or 1red. (b) Plots of charge vs relative time as obtained
from the corresponding data shown in (a). Note: the data shown
under oxidizing conditions (blue) were recorded after the complex
was reduced (red). Conditions: [1]0 = 0.5 mM, [TBAPF6] = 0.01 M,
CH2Cl2.

Figure 3. (a) Plots of conversion of DDM to its ring-closed product
vs time as initiated with 1 (blue) or in situ generated 1red (red). (b)
After the reaction was initiated with 1, a potential of −0.95 V was
applied (red) followed by the subsequent application of a potential of
+0.34 V (blue). (c, d) Analogous experiments wherein the periods of
applied potentials were varied. Conditions: [DDM]0 = 0.05 M,
[DDM]0/[1]0 = 100, [TBAPF6] = 0.01 M, [TMB] = 0.05 M, CH2Cl2.
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reductants to effect the redox chemistry.51 The different
catalytic activities that were observed can be attributed to the
N-heterocyclic carbene ligand, which upon reduction stabilizes
the ruthenacyclobutane resting state of the catalytic cycle in a
manner that suppresses retro-[2 + 2] cycloadditions and thus
decreases the rate of the RCM reaction.67

The catalytic activity displayed by 1 after a full electrolysis
cycle (reduction and oxidation) was also assessed. A cell was
charged with a dichloromethane solution of 1 ([1]0 = 0.5 mM)
containing TBAPF6 (0.01 M) and TMB (0.05 M). After the
complex was reduced and then oxidized, DDM was added
([DDM]0 = 0.05 M) and the conversion of the starting
material to its ring-closed product was monitored over time by
GC. The reaction proceeded with a first-order rate constant k1
= 8.01 × 10−5 s−1 (Figure S16), a value that agreed with the
rate constant measured for the virgin catalyst under otherwise
identical conditions and indicated that the initially added
complex was restored after the electrolysis cycle.
Building on these results, we explored the ability to

modulate the catalytic activity of 1 over the course of an
ongoing reaction. As shown in Figure 3b, the RCM of DDM
([DDM]0 = 0.05 M, [DDM]0/[1]0 = 100, [TBAPF6] = 0.01
M, [TMB] = 0.05 M, CH2Cl2) was measured to proceed at a
rate constant k1 of 4.39 × 10−5 s−1. After 15% of the DDM
converted to its ring-closed product, a potential of −0.95 V was
applied to the reaction mixture and a lower rate constant was
measured: k1,red = 9.54 × 10−6 s−1 (k1/k1,red = 4.6). When the
conversion of the reaction reached 30%, a relatively positive
potential (+0.34 V) was applied, which restored the catalytic
activity: k2 = 2.38 × 10−5 s−1 (k2/k1,red = 2.5). Subsequent
experiments were directed toward assessing the ability to alter
the rate of the RCM of DDM during intermittent reduction/
oxidation intervals and over various periods of time. In accord
with previous results, catalytic activity was toggled between
relatively fast and relatively slow states over multiple cycles by
applying either a positive or negative potential, respectively.
Moreover, the catalytic activity was maintained in either state
for relatively short (Figure 3c) or long (Figure 3d) periods of
time. While temporal control was achieved, attenuation of the
activity was observed over successive redox cycles. The
phenomenon was attributed to the relative instability of the
alkylidene or methylidene propagating species,68 which may
undergo premature decomposition under the reductive or
oxidative conditions utilized.51

After demonstrating that BE may be used to control RCM
reactions, we directed our attention toward controlling the
ROMP of 1,5-cyclooctadiene (COD). Efforts began by
evaluating the activities displayed by the neutral and reduced
forms of the complex (1 and 1red, respectively). Charging an
electrochemical cell with COD ([COD]0 = 0.05 M) and a
dichloromethane solution of 1 ([1]0 = 0.5 mM), TBAPF6
(0.01 M), and TMB (0.05 M) resulted in a pseudo-first-order
reaction that proceeded with a rate constant k1 of 4.58 × 10−4

s−1 (Figure 4a), as determined by GC. In a separate
experiment, the reduced form of the catalyst was first generated
by applying a negative potential (Eapp = −0.95 V, t = 20 min)
to a dichloromethane solution containing 1 ([1]0 = 0.5 mM),
TBAPF6 (0.01 M), and TMB (0.05 M). As observed in the
RCM experiments described above, the addition of substrate
(COD) to the mixture resulted in a relatively slow reaction:
k1,red = 6.49 × 10−5 s−1 (k1/k1,red = 7.1). Similar to the
aforementioned RCM reactions, the difference in catalytic

activity was attributed to the suppression of the retro-[2 + 2]
cycloaddition step of the corresponding catalytic cycle.69

To determine if the rate constant differential may be utilized
to potentiostatically control the kinetics of ROMP reactions
over time, a cell was charged with a dichloromethane mixture
of monomer ([COD]0 = 0.05 M), electrolyte ([TBAPF6] =
0.01 M), and an internal standard ([TMB] = 0.05 M). The
addition of catalyst ([COD]0/[1]0 = 100) resulted in a ROMP
reaction that proceeded with a rate constant k1 of 3.20 × 10−4

s−1 (Figure 4b), as determined by GC. After 20% of the
monomer converted to polymer, a potential of −0.95 V was
applied which effectively slowed the reaction: k1,red = 6.10 ×
10−5 s−1 (k1/k1,red = 5.3). The subsequent application of a
positive potential (+0.34 V) restored the catalytic activity: k2 =
2.90 × 10−4 s−1 (k2/k1,red = 4.8). Moreover, the different rates
were maintained for relatively short (Figure 4c) or extended
periods of time (Figure 4d) and the reaction was modulated
over multiple cycles by varying the applied potential.
The effect of the potentiostatically controlled kinetics on the

molecular weights of the polymers obtained using the
aforementioned methodology was also explored. An electro-
chemical cell was charged with a dichloromethane solution of
monomer ([COD]0 = 0.05 M), catalyst ([1]0 = 0.5 mM),
TBAPF6 (0.01 M), and TMB (0.05 M). After 22% of the
monomer converted to polymer, an aliquot was removed from
the reaction mixture. Size exclusion chromatography (SEC)
and NMR spectroscopy revealed that a polymer with a
number-average molecular weight (Mn) of 13.1 kDa and a
polydispersity index (Đ) of 2.24 was produced. A potential of
−0.95 V was then applied to the residual mixture. After 40 min,
minimal changes in the conversion of monomer to polymer

Figure 4. (a) Plots of conversion of COD to polymer vs time as
initiated with 1 (blue) or in situ generated 1red (red), (b) After the
reaction was initiated with 1, a potential of −0.95 V was applied (red)
followed by the subsequent application of a potential of +0.34 V
(blue). (c, d) Analogous experiments wherein the periods of applied
positive or negative potential were varied. Conditions: [COD]0 = 0.05
M, [COD]/[1] = 100, [TBAPF6] = 0.01 M, [TMB] = 0.05 M,
CH2Cl2.
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(29%) as well as the polymer molecular weight and
polydispersity (Mn = 16.7 kDa, Đ = 2.30) were observed.
Subsequent application of a potential of +0.34 V increased
monomer conversion to 80% after 20 min and afforded a
polymer with a relatively high molecular weight: Mn = 23.4
kDa (Đ = 2.17). For comparison, a polymer with an Mn value
of 25.6 kDa (Đ = 2.20) was obtained when an analogous
reaction was conducted in the absence of an applied potential
and after reaching a similar monomer conversion (81%).

3. CONCLUSIONS
In summary, a potentiostatic approach for controlling olefin
metathesis reactions was developed. The attendant method-
ology employs bulk electrolysis, which was used to toggle a
redox-switchable catalyst between reduced and oxidized states.
The process proceeded to high conversions and with high
fidelity, as determined by a series of electrochemical
techniques. The feature was utilized in a series of ring-closing
metathesis and ring-opening metathesis polymerization re-
actions where catalytic activities were switched between two
different states through the application of different applied
potentials. Moreover, variation of the applied potentials
enabled control over the olefin metathesis reactions over
time. The methodology described herein not only provides a
template for examining and developing potentiostatically
controlled reactions that are catalyzed by organometallic
complexes but also obviates the need for redox agents and
enables the use of electrochemical feedback (e.g., potential,
current, and total charge transferred) to inform control.
Finally, this work effectively expands bulk electrolytic methods
beyond radical-triggered syntheses and thus can be expected to
facilitate the development of other types of redox-switchable
transformations.
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