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Computational planning of the synthesis of 
complex natural products

Barbara Mikulak-Klucznik1, Patrycja Gołębiowska1, Alison A. Bayly2, Oskar Popik1,  
Tomasz Klucznik1, Sara Szymkuć1, Ewa P. Gajewska1, Piotr Dittwald1,  
Olga Staszewska-Krajewska1, Wiktor Beker1, Tomasz Badowski1, Karl A. Scheidt2,  
Karol Molga1 ✉, Jacek Mlynarski1 ✉, Milan Mrksich2 ✉ & Bartosz A. Grzybowski1,3,4 ✉

Training algorithms to computationally plan multistep organic syntheses has been a 
challenge for more than 50 years1–7. However, the field has progressed greatly since 
the development of early programs such as LHASA1,7, for which reaction choices at 
each step were made by human operators. Multiple software platforms6,8–14 are now 
capable of completely autonomous planning. But these programs ‘think’ only one 
step at a time and have so far been limited to relatively simple targets, the syntheses of 
which could arguably be designed by human chemists within minutes, without the 
help of a computer. Furthermore, no algorithm has yet been able to design plausible 
routes to complex natural products, for which much more far-sighted, multistep 
planning is necessary15,16 and closely related literature precedents cannot be relied on. 
Here we demonstrate that such computational synthesis planning is possible, 
provided that the program’s knowledge of organic chemistry and data-based artificial 
intelligence routines are augmented with causal relationships17,18, allowing it to 
‘strategize’ over multiple synthetic steps. Using a Turing-like test administered to 
synthesis experts, we show that the routes designed by such a program are largely 
indistinguishable from those designed by humans. We also successfully validated 
three computer-designed syntheses of natural products in the laboratory. Taken 
together, these results indicate that expert-level automated synthetic planning is 
feasible, pending continued improvements to the reaction knowledge base and 
further code optimization.

Because purely data-oriented artificial intelligence (AI) approaches are 
not adequate to plan syntheses of complex targets (see Methods for 
discussion), we have long been developing a hybrid expert–AI system, 
called Chematica (or Synthia)8,9,19–26. Although Chematica has been 
effective in the design of syntheses that lead to high-value, medici-
nally relevant targets (validated by experiment9,20), its extension to 
complex natural products—for which the space of synthetic options 
to explore is orders of magnitude larger (Fig. 1)—has been challeng-
ing, and has required numerous improvements. Since the publication 
of ref. 9, the program has been taught an additional roughly 50,000 
mechanism-based reaction rules (it now knows more than 100,000), 
especially stereoselective and scaffold-directed transformations (see 
Extended Data Fig. 1a and discussion in Methods). The applicability of 
these high-quality27 rules to specific retrons has been further fine-tuned 
by the addition of various filters (Extended Data Fig. 1b), which evalu-
ate site- or regio-selectivity, by using either machine-learning21 or 
quantum-chemistry methods9, and estimate reaction yields28,29. Sets 
of heuristic rules gauge whether synthons are prone to (unwanted) 
side reactions and rearrangements8,9 (Extended Data Fig. 1c), whereas 
molecular-mechanics-derived heuristics help to evaluate the ability 

of select classes of synthons to cyclize27. During synthesis planning, 
decisions about each subsequent reaction move can be made by either 
heuristic or best-in-class neural-network (Extended Data Fig. 1d) scor-
ing functions22. The exploration of synthetic space is guided by mul-
tiple beam-like searches performed simultaneously (Extended Data 
Fig. 1e), some that search ‘wide’ (to suggest diverse chemistries) and 
others that search ‘deep’ (to trace pathways to available substrates 
in the shortest possible time). In our experience, this search strategy 
worked more effectively for complex targets than did either standard 
A*8,9 or Monte Carlo tree-search10,11 algorithms, which we also tested. 
Finally, if large numbers of viable pathways are found to form a complex 
graph of solutions, then this graph is searched by another algorithm, 
which back-propagates from substrates to the product and, in doing 
so, assigns realistic cost estimates by which the pathways are ranked 
(see ref. 23 for details).

With these additions, Chematica began to find routes to some 
natural products, but produced no results (or only roundabout and 
unremarkable routes) for others, even when it knew all the individual 
reactions from which a viable synthesis could have been constructed. 
These problems were present irrespective of the scoring function used, 
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including those that prioritize certain types of disconnections accord-
ing to Corey’s rules of synthesis logic30. Analyses of the reaction net-
works that Chematica generated during such unsuccessful searches 
revealed that the program was particularly unlikely to follow a series 
of steps that individually offered little or no structural simplification 
but could lead to an efficient disconnection downstream. The program 
showed marked improvement only after the inclusion of relatively few 
but carefully chosen heuristics that prescribe how to strategize over 
multiple steps, taking into account how certain reaction choices imply 
succession (or elimination) of other transformations. These causal 
relationships—essential for artificial generalized intelligence, which is 
believed to mimic human reasoning better than models based solely on 
data-derived correlations17,18—were largely inspired by the logic of clas-
sic total syntheses designed by human experts, and were of four types.

(1) Two-step sequences are those in which the first step (in the ret-
rosynthetic direction) complexifies the structure but, by doing so, 
enables a disconnection that offers a high degree of structural sim-
plification (Extended Data Fig. 1f). If the first reaction matches the 
retron, then the second is executed automatically, allowing Chematica 
to overcome local maxima of structural complexity and suggest ele-
gant and counterintuitive synthetic strategies. A systematic, big-data 
analysis26 allowed us to identify millions of such reaction combinations 
(compared to the roughly 500 known before); we incorporated of the 
order of 100,000 of the most useful ones into Chematica.

(2) Functional-group interconversions (FGIs; Extended Data Fig. 1g) 
are two- or three-step reaction sequences often used in the syntheses 
of natural products31, which convert (in the retrosynthetic direction) 
highly reactive groups into more stable ones and adjust the oxidation 
level of carbon. If a retron comprises a pattern of functional groups that 
signals a potential FGI, then the entire sequence is executed, provided 
none of the individual steps entails any chemical incompatibilities. 
On the basis of a thorough analysis of several thousand classic total 
syntheses, we selected around 100 common FGI sequences.

(3) Bypasses (Extended Data Fig. 1h) resolve intermittent reactiv-
ity conflicts for otherwise very promising reactions. At a given step,  
Chematica may encounter a reaction that could lead to a substantial 
structural simplification (that is, is ranked by the scoring function 
within the top 10% of possible choices) but is unfeasible because some 
group(s) within the molecule is incompatible with this proposed 

reaction. When this happens, the algorithm first checks whether it 
can execute another reaction (or FGI sequence) that removes the con-
flict, and only then retries the original, very promising transformation.

(4) Simultaneous and tandem reactions are combinations (pairs, 
triplets or quadruplets) of reactions types that, under given reaction 
conditions, should be applied in one rather than multiple reaction 
steps. Inclusion of this algorithm is important, for instance, for the 
management of protecting groups, so that several of them can be intro-
duced or removed in one step (Extended Data Fig. 1i).

With these improvements, Chematica became adept in construct-
ing plausible and original routes to targets such as callyspongiolide 
(Fig. 2a; for discussion and examples of even more complex targets, 
see Methods and Extended Data Figs. 1–8). Neither the previous ver-
sions of Chematica nor other AI tools11,12 could de-novo construct 
any sensible routes to such complex targets. In many of its designs,  
Chematica combined strategies (1)–(4) to effectively probe logically 
coherent sequences that reach as far as four or five steps downstream. 
We evaluated these syntheses by using a human-versus-machine 
Turing-like test and through synthetic validation.

Turing test
We compiled a collection of 40 total syntheses: 20 from the 
organic-chemistry literature (for example, from Organic Letters, Journal 
of Organic Chemistry, Angewandte Chemie, Journal of the American 
Chemical Society or Synlett) and 20 designed by Chematica. The chosen 
literature covered the period 1999–2019, and the syntheses were chosen 
to be representative of these journals. The targets chosen for Chematica 
were of similar complexity in terms of average mass, number of atoms, 
stereocentres or rings (see Supplementary Fig. 1 for statistics). For Che-
matica’s designs, we wished to mimic how the program is used by the 
general chemical audience, so all searches used its default scoring func-
tion. Stop points were either commercially available chemicals or sim-
ple molecules with known syntheses (but that could be further traced 
by Chematica, to even simpler substrates, if desired). For each target, 
the searches (several hours per target; Methods) were run on the new-
est version of Chematica (which explicitly performs all protection and 
deprotection steps rather than suggesting the most suitable protect-
ing groups only at steps requiring protection, as in previous versions 
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Fig. 1 | Automatic synthesis planning over large networks of possible 
reactions. This screenshot from Chematica illustrates the synthetic possibilities 
the machine considers for just one intermediate en route to the natural product 
aplykurodinone-1 (shown on the left). When designing the full pathway (Extended 
Data Fig. 6) that traces to the simple starting materials (shown on the right), the 
program explored and evaluated around 20,000 such graphs connected into  a 

very large network of synthetic options. Each graph comprises one-reaction-step 
options (white reaction arrows) and multistep sequences (FGIs; red arrows). 
Nodes correspond to specific molecules: orange, current retron; violet, unknown 
substances; green, literature-reported substances; red, commercially available 
chemicals; blue halos, protection needed.
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of the program) and the top-scoring pathways were retrieved. All 40 
syntheses, arranged in no particular order, were posted online using 
a quiz service (https://www.quiz-maker.com); they are also included, 
along with the answer key, in Supplementary Information section 1.

On such a set, we queried 18 synthesis experts (see Acknowledge-
ments). We asked these experts to assign a ‘human versus machine’ 
(HVM) score, on a 0-to-10 scale, corresponding to the perceived likeli-
hood that a given pathway was designed by a human or by the machine 
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Fig. 2 | Synthesis Turing test. a, One of the total syntheses evaluated by the 
experts. This particular pathway leading to callyspongiolide was designed by 
Chematica, but was judged by experts as slightly more likely to be human-designed 
(and of average elegance, although without any chemical issues). In the test, 
syntheses were redrawn in ChemDraw in one unified format, such as that shown 
here, to preclude detection of their origin—that is, literature-derived pathways 
were drawn with experimental conditions but no yields, and Chematica-derived 
pathways were drawn with conditions suggested by the program (from the most 
relevant publication linked to Chematica’s particular reaction rule). The answer 
key and raw test statistics for all 40 pathways are provided in Supplementary 
Information section 1. b, Distribution of HVM scores, quantifying the perceived 
origin of the pathways (see main text), and elegance E scores. The red heatmap is 
for literature pathways; the blue heatmap is for pathways designed by Chematica. 

Each cell corresponds to a particular combination of HVM and E scores. Numbers 
in white give the number of judges who voted for the given (HVM, E) combination; 
a darker colour means more votes. c, ROC curves representing the answers of 
individual experts (thin lines) and the average ROC curve for all experts (thick red 
line). ROC curves are constructed by plotting the true assignment rate against the 
false assignment rate for different thresholds, and are used to evaluate the 
accuracy of the classifier. The (0, 0)–(1, 1) diagonal (dashed black line; AUC = 0.5) 
corresponds to an uninformative, random-guessing scenario. In our Turing test, 
the mean ROC (red curve) and mean AUC (0.53; inset) of all responders are close to 
the random-guessing scenario. As shown in the inset, more experienced 
responders (higher H-index) did not achieve better results than less experienced 
responders (lower H-index). The correlation coefficient between AUC and H-index 
is only R2 = 0.000267.

https://www.quiz-maker.com
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(HVM = 0 means definitely human-designed; HVM = 10 means definitely 
machine-designed). We also asked the experts to judge the synthetic 
elegance of the pathways, from uninspired (E = 0) to remarkable (E = 10).

The key question was whether the machine would pass the 
synthetic-chemical version of the so-called Turing test32—that is, 
whether a considerable portion of the experts would believe that 
the machine-generated synthetic plans were created by humans.  
The HVM and E scores assigned by the experts are summarized in Fig. 2b, 
c; detailed responses for all participants are summarized in Supple-
mentary Figs. 2–4. For the machine-generated pathways, there were 
144 (42%) incorrect votes (HVM < 5), 44 (12.8%) votes for “I do not know” 
(HVM = 5), and 155 (45.2%) correct votes (HVM > 5). Using the average 
expert scores for each pathway, 10 were (incorrectly) judged to be of 
human origin and 10 were (correctly) judged to be designed by Chemat-
ica (in the 20 literature pathways, 12 were judged as human-designed 
and 8 as machine-designed.) The average HVM scores over all pathways 
were only 0.6 points higher for Chematica-designed routes than for 
literature routes (⟨HVMhuman-designed⟩ = 4.58, ⟨HVMmachine-designed⟩ = 5.17). 
In terms of elegance, machine-designed pathways were voted to be 
slightly more elegant (⟨Ehuman-designed⟩ = 4.55, ⟨Emachine-designed⟩ = 4.75; E did 
not correlate with HVM.) When ⟨HVMmachine-designed⟩ was transformed onto 
the 0–100 scale of the perception of human-likeness used to evaluate 
chatbots in Turing tests (HL = 10 × (10 − ⟨HVMmachine-designed⟩) = 48.23), Che-
matica performed better than or comparably to chatbots described in 
ref. 33. We also analysed the responses of the experts by using the meth-
ods used to evaluate binary classifiers. For each expert, we constructed 
the receiver operating characteristic (ROC) curve (Fig. 2c; the average 
of the individual ROC curves is shown in red). The area-under-the-curve 
(AUC) metric for this curve is 0.53, with a standard error of 0.03. This 
means that guesses of the cohort of experts were close, to within error, 
to random guessing (AUC = 0.5). These guesses did not correlate with 
the experts’ H-indices (Fig. 2c, inset). Taken together, these results 

indicate that Chematica passes the Turing test, because the experts 
were generally not able to discern the origin (machine or human) of 
the natural-product syntheses provided in the quiz.

Experimental validation
We chose three natural-product targets of different complexities. The 
simplest target was (–)-dauricine (Fig. 3), a potent autophagy blocker 
and anticancer agent34, which has been synthesized only in racemic form, 
via a Bischler–Napieralski reaction35. The intermediate-complexity 
target was a recently isolated36 but not-yet-synthesized iboga alkaloid, 
called tacamonidine (Fig. 4). The most complex target was lamellody-
sidine A (Fig. 5), a bridged polycyclic sesquiterpene isolated37 in 2017, 
yet lacking total synthesis. Lamellodysidine A comprises a tetracyclic 
carbon framework, with seven contiguous (including three quaternary) 
stereocentres and an acid-labile hemiacetal, which make its synthesis 
challenging and of contemporary synthetic interest.

For each of these targets, Chematica suggested multiple routes  
(see examples in Supplementary Information section 3.12), of which 
the top ones were chosen. Because our main objective was to verify the 
predictions of the program, no alterations to the proposed disconnec-
tions were allowed. When needed, organic chemists performing the 
syntheses were allowed to adjust reaction conditions (such as tempera-
ture, solvent, specific base or catalyst) for the sake of optimization.

The satisfactory experimental yields (given next to reaction arrows 
in Figs. 3–5) demonstrate that all three syntheses worked as planned 
(see Methods and Supplementary Information sections 2–4 for syn-
thetic details). The synthesis of dauricine (Fig. 3) was straightforward, 
with the key step being the Pictet–Spengler cyclization, which was 
performed using Davis auxiliary. The synthesis of tacamonidine (Fig. 4) 
was interesting because the multiple syntheses of its close analogue, 
tacamonine, are not readily adaptable to this target; they do not allow 
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for the necessary stereochemical control, and the intermediates gen-
erated in these pathways are not amenable to the ultimate construc-
tion of the quaternary hydroxylated stereocentre of tacamonidine 
(see Supplementary Information section 3.2 for details). In its route, 

Chematica initially constructed the tricyclic tryptoline system by Pictet– 
Spengler cyclisation—a common, step-efficient method of preparing  
chiral tetrahydroisoquinoline and tetrahydrocarboline alkaloids—
but then followed this with an original and logical sequence of 
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Fig. 5 | Total enantioselective synthesis of lamellodysidine A. The synthesis 
was planned by Chematica (top) and executed in the laboratory (bottom). The 
colours of the nodes (top) are as in Fig. 3. Substrates drawn or listed in red 
(green) in the bottom panel correspond to the red (green) nodes in the top 

panel. Experimental yields are given in blue. The synthesis of the starting 
material 29 is known; here, it was obtained via a modified procedure from 
enone 28, which is available in three steps from dihydrocarvone. See Methods 
and Supplementary Information section 4.2 for experimental details.
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intramolecular indole N-acylation, asymmetric dihydroxylation and 
final ring-closing alkylation. Finally, in the synthesis of lamellodysidine 
A (Fig. 5), the key elements were the conversion of 29 into triene 32, its 
subsequent hydroboration and Suzuki coupling with vinyl halide 27-I 
and, ultimately, intramolecular Diels–Alder cycloaddition, which pro-
vided access to the desired tetracyclic [2.2.2]-bicyclooctene framework 
of lamellodysidine. The stereodefined hemiacetal was then obtained 
via hydrolysis of methoxyfuranone. Chematica correctly predicted 
the stereochemistry of the Diels–Alder cycloadduct and the selective 
formation of the thermodynamically more stable and less hindered 
stereoisomer in the last step. With these experimental demonstrations, 
the number of Chematica-predicted pathways validated by experi-
ment is now 16 (8 in ref. 9, 4 in ref. 20, 1 in ref. 26 and 3 here), which in total 
comprise more than 70 individual reaction steps.

In summary, our results indicate that computers are finally becom-
ing capable of creating reliable synthetic plans, comparable to those 
designed by highly trained synthetic chemists, and with the upper 
bound on the complexity of the targets as in Extended Data Figs. 2–7. 
Reaching this level took decades of work1–7 (nearly two for our team 
alone8,9,20–27,38,39) because automated synthetic planning at the expert 
level is so multifaceted. It requires large numbers of accurate rules 
that describe individual reactions, careful structural evaluation of the 
generated synthons, efficient algorithms for graph searching, scoring 
functions and, as we highlighted here, routines to mimic human-like 
strategizing over multiple steps. Recognizing that mastering the art 
of synthesis for extremely complex natural products will require addi-
tional advanced-chemistry rules, improvements in hardware and fur-
ther acceleration of code, we believe that Chematica can now be a useful 
companion to practising synthetic chemists (see Methods section 
‘Extended discussion’ for additional examples of syntheses of very com-
plex targets, discussion of current limitations, performance under dif-
ferent constraints or risk-taking scenarios and pending improvements). 
Looking forward, the next challenge will be to teach the machine to 
discover completely new reaction types, which could then be validated 
by experiment and used in retrosynthetic planning.
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Methods

Additional algorithmic considerations
Computer-aided synthesis of simple versus complex molecules. 
Simple molecules are made in few synthetic steps, usually via sequences 
of disconnections into increasingly simpler synthons. Stereocentres, 
if present, are often sourced from starting materials, and the use of 
protection chemistries is limited. There are often many different ways 
to make a product, and the space of synthetic options to explore is rela-
tively small, of the order of billions (for example, O(1005) for a five-step 
synthesis8). By contrast, synthesis of complex natural products is more 
like chess, in which sequences of preparatory moves—which do not 
simplify the structure per se—build the position that leads to a key 
disconnection. The stereocentres have to be carefully set up and the 
protecting-group strategies must be thoughtfully planned. There are 
often very few viable ways of reaching the target, yet the space of po-
tential syntheses can be extremely large8—O(100n), where the number 
of steps n is typically tens. Navigation of this vast space must be guided 
by very accurate (yet often chemically advanced) reaction rules, using 
methods to prioritize which reaction steps to take and which to avoid.

Limitations of data-driven AI in advanced synthesis planning. There 
are multiple reasons why purely data-oriented AI methods trained on 
even the largest reaction repositories (such as Reaxys or SciFinder), 
but without mechanistic insight, are not adequate for natural-product 
syntheses. First, the reaction rules automatically derived from such 
repositories do not capture all the relevant stereochemical informa-
tion (not to mention that a sizeable fraction of reactions suffer from 
manual-entry errors; see ref. 27 for comprehensive discussion of these 
and other aspects). Second, because failed and side-reactions are usu-
ally not published, the machine cannot deduce the scope of potentially 
conflicting groups; this is especially problematic when a given reaction 
type has only a few literature precedents for complex scaffolds and 
it is not warranted to assume that not-reported reactions are impos-
sible (see also next paragraph). Third, these repositories are largely 
dominated by simple, non-stereoselective reactions, so scoring func-
tions derived from them to select the most promising reaction moves 
are geared towards these simpler and more popular chemistries (see 
ref. 22 for a detailed discussion). Because chess-like, total syntheses of 
natural products are a very small fraction of these repositories, the 
machine is not incentivized to learn and purposefully apply sequences 
of position-building, but not structure-simplifying, steps; in addition, 
it does not learn for which rare scaffolds it is worth performing FGIs or 
structure-complexifying steps, when to perform two or more different 
reactions on the same molecule, which reactions should be performed 
in tandem, or how to navigate around intermittent reactivity conflicts.

Reaction rules, reactivity conflicts and selectivity issues. The main 
set of Chematica’s >100,000 expert-coded reaction transforms are 
mechanism-based. These rules generalize and are broader than the 
underlying literature precedents. From the beginning of our effort 
on Chematica, the rules have been added to the software following an 
iterative procedure, in which we test the performance of the program 
in finding routes to increasingly complex types of scaffolds. In doing 
so, we focus on adding methodologies that enable synthesis of entire 
target classes (for example, cationic cyclizations of polyenes to make 
steroid targets) rather than specific literature precedents. After adding 
a given methodology and testing the performance of the algorithm 
(that is, its ability to synthesize a given class of targets it was previously 
not able to synthesize), a new class of targets is selected and the process 
is repeated. However, the software also supports a comparable number 
of rules that were machine-extracted from reaction repositories. But 
these transforms are used only optionally (mostly for rare types of ring), 
as their quality is considerably lower than the expert-coded set; they 
were not used in this study. The issues of rule quality are described in 

detail elsewhere27. In the context of natural-product synthesis, machine 
extraction is ill-suited for stereoselective reactions, especially those 
in which stereochemistry is dictated by distant stereocentres already 
present in the molecule; in complex scaffolds, these directing motifs 
may lie far from the core of atoms that change their immediate environ-
ments, and their automated extraction from the underlying reaction 
precedent is problematic. Another aspect of the rules is that they must 
be accompanied by comprehensive lists of groups that are incompatible 
with the reaction under its specified reaction conditions. In Chematica, 
reactivity conflicts are treated very stringently. Nearly 400 potentially 
conflicting groups are considered when coding each transform; selec-
tion of specific conflicting groups is especially meaningful because it 
is based on the underlying reaction mechanism, in conjunction with 
appropriate reaction conditions. In this way, only chemically sound 
options are allowed and the number of conflict-free reaction candi-
dates that match a given retron is typically a few tens to roughly 100. 
With the lower-quality machine-extracted rules, the numbers of reac-
tions considered per retron are typically much higher (for example, 
roughly 46,000 during expansion and more than 300 during rollouts 
in 3M Monte Carlo tree searches10), exacerbating the combinatorial 
explosion of the search space. Specification of reaction conditions 
for each transform is also essential for assessing chemoselectivity and 
preventing potential side-reactions: “machine-extraction methods can 
learn about chemoselectivity problems by considering hypothetical, 
computer-generated reactions not reported in the literature. They 
assume that such a hypothetical reaction is not feasible if, starting 
from the same substrates, it generates a product that is different than 
a product already reported in literature—which is a dangerous chemi-
cal oversimplification, since different products can often be obtained 
by simply changing reaction conditions or a catalyst. In effect, such 
methods disqualify large numbers of potentially feasible though not 
yet reported reactions.”22

The need to fine tune the rules. A reaction rule might be perfectly 
applicable to a given retron, but the synthons it generates may be prob-
lematic. In some cases, the synthons contain highly strained motifs (such 
as small rings with triple bonds or unsaturations at bridgehead atoms), 
which are readily eliminated by globally imposed filters that eliminate 
such motifs for all reactions8,9,27. However, sometimes the synthons are 
not obviously problematic, but contain motifs that, under the conditions 
of a specific reaction, are known to be unstable (for example, prone to 
rearrangement). Accordingly, Chematica’s reaction rules are accompa-
nied by lists of motifs or scaffolds that are problematic in a particular 
reaction class (see example in Extended Data Fig. 1c). Another problem 
arises when synthon or retron molecules are not themselves strained, 
but excessive strain develops in the transition state, for example, during 
intramolecular cyclization within a polycyclic system. Such problematic 
motifs, at least the most obvious ones, are identified and prohibited 
on the basis of molecular-mechanics calculations (these simulations 
benefit from the knowledge of the reaction mechanism and narrow the 
conformational space to the known angles of approach; see refs. 9,27 for 
discussion). Yet another class of problems pertains to reaction types 
for which the number of possible substituents is not only extremely 
large—too large to enumerate exhaustively—but also their mutual 
placement and steric and/or electronic properties are essential. One 
example is aromatic substitutions, which in Chematica are guided 
by electron-density calculations (see supplementary information for 
ref. 9). In reaction types for which the reaction core is uniquely defined 
and the number of literature examples is large (thousands or more), 
machine-learning models enable very accurate predictions of regio-, site- 
or diastereoselectivity21. However, the training set must be selected very 
carefully, excluding reactions that involve the same types of retron and 
synthon, but proceed through different reaction mechanisms (for exam-
ple, nucleophilic aromatic substitution versus transition-metal-catalysed 
coupling between an aryl chloride and an amine). Machine-learning 
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models give the best results—not only accurate for a given test or train-
ing set but also transferrable to not-yet-seen types of substrate—when 
they are trained using physically meaningful descriptors, which capture 
steric and electronic features of the molecules involved (see ref. 21 for 
discussion).

Scoring functions, search algorithms and retrieval of top-scoring 
pathways. Scoring functions used within Chematica are described 
and compared in ref. 22. Regarding the search algorithms that these 
functions guide, most recent works on computer-aided retrosynthesis 
use Monte Carlo tree searches. However, in our experience, apply-
ing Monte Carlo tree searches to complex molecules did not produce  
viable pathways, and in many cases did not identify any pathways, 
probably because the roll-outs could not solve the complex retrons  
(which was not a serious problem for simple retrons during planning 
of short syntheses10). On the basis of these experiences, the newest 
version of Chematica relies on a combination of algorithms, some 
that search wide and others that search deep. Our earlier algorithm 
(see supplementary information for ref. 9) always popped from the 
priority queue search graph nodes (representing found beginnings 
of synthetic pathways) with the lowest scores (computed as sums of 
costs of encountered terminal substrates and of scoring functions of 
reactions and nonterminal substrates). To increase the search width, 
the improved algorithm uses a beam-search-inspired40 priority queue, 
which keeps a given number (beam width) of encountered nodes with 
the lowest scores at each search depth. The queue ensures that before a 
node with the lowest overall score is popped the nodes with beam-width 
record scores at all lower search depths are popped. The new algorithm 
also allows the use of several such queues with different chemical scor-
ing functions simultaneously, in which case new nodes are pushed to all 
queues, while pops are done from each queue in turn. In a typical sce-
nario, two such queues are used, one with a scoring function that prefers 
wide searches, and another with a scoring function that prefers to go 
deeply, trying to reach commercially available and/or literature-known 
starting materials as rapidly as possible. When used together, the first 
queue allows us to discover promising beginnings of routes (that is, 
breaking some of the beam-width score records at lower depths), which 
can then be quickly finished with the help of the second queue.

Although details of search performance vary from target to target, 
typical execution times for complex natural products are hours, during 
which time the search may expand 10,000–100,000 synthon nodes. 
Because each synthon has, on average, O(100) progenies, the total 
chemical space being evaluated in a search is therefore up to O(107) 
molecules. We stress that most of the CPU time is not spent on perform-
ing the reaction and search operations (which are very rapid), but on 
enforcing proper stereochemistry of the reactions (via the Stereofix 
module8,9) and evaluating the molecules using the auxiliary routines 
discussed above.

Finally, even for complex targets Chematica is capable of identifying 
multiple plausible syntheses (compare some tacamonidine examples in 
Supplementary Information section 3.11). These syntheses are scored 
and ranked (and clustered, to avoid similar pathways dominating the 
rankings) by previously described algorithms23.

Synthetic details
Syntheses of (−)-dauricine. The stereoselective route designed by Che-
matica (Fig. 3; details in Supplementary Information section 2) applies 
the 4-hydroxyethylphenol (1) substrate in two unique bond-forming 
steps and installs stereocentres present in the structure of dauricine in 
a single step via a stereoselective Pictet–Spengler cyclization. Starting 
from 1, a straightforward sequence of iodination, benzylation, cou-
pling and bisoxidation proceeded smoothly (compare yields in blue in 
Fig. 3) to provide the dialdehyde 5 on a gram scale. The stereoselectiv-
ity of the subsequent Pictet–Spengler cyclization was controlled by a 
chiral auxiliary attached to the homobenzylamine 6. Specifically, we 

followed Koomen’s approach41, and used a N-sulfinyl (Davis auxiliary) 
decorated amine S-7 as the coupling partner. This two-step condensa-
tion–auxiliary-removal procedure afforded 8 in 30% yield (correspond-
ing to about 55% per ring formed), isolated as a single diastereoisomer 
(apparent diastereomeric ratio > 20:1). To complete the synthesis,  
8 was subjected to robust reductive amination conditions to provide 
the benzyl-protected dauricine 9 in 72% yield, which was further deben-
zylated (97%) to achieve (−)-dauricine 10. Spectroscopic and physical 
data matched the values we measured for the commercially purchased 
standard of (−)-dauricine (AdooQ Bioscience).

Synthesis of (R,R,S)-tacamonidine. The graph of the top-scoring 
pathway for (R,R,S)-tacamonidine is shown at the top of Fig. 4. Within 
five steps (plus protection and deprotection of carboxylic acid and 
secondary amine; protections indicated by blue halos) from the target, 
the program reached 4-methylenehexanal as the starting substrate. The 
green colour of this node indicates that a synthesis of this compound 
has been reported in the literature and is available within the Network of 
Organic Chemistry19,38,39, with which Chematica can communicate. How-
ever, because the established five-step sequence42 involves low-yielding 
steps, and starts from volatile and irritating 2,3-dibromopropene, we 
permitted the de novo search to continue to identify an alternative 
five-step sequence. This alternative sequence involves straightforward, 
scalable reactions (hydrolysis of a lactone, oxidation of a secondary 
alcohol, esterification, Wittig olefination and ester reduction to an 
aldehyde) and terminates in commercially available γ-hexalactone and 
methanol (red, terminal nodes, with prices in USD per gram).

This route was validated in the laboratory and is detailed at the 
bottom of Fig. 4, with conditions mirroring those proposed by the 
program (see detailed screenshots in Supplementary Information 
section 3.4). The synthesis commenced with quantitative hydrolysis 
of γ-hexalactone 11, followed by oxidation of the secondary alcohol. 
The resulting carboxylic acid (12) was then converted to its methyl ester 
in high yield (86%). Further Wittig exomethylenation produced the 
unsaturated ester (13), which was immediately subjected to DIBAL-H 
reduction to yield 14 (78% over two steps); this was used in the subse-
quent step without isolation. The first stereocentre was introduced 
using a standard Enders procedure: condensation of 14 with RAMP  
(90% yield) afforded 15, which was deprotonated with LDA, and 
alkylated with methyl bromoacetate to give 17 in 61% yield. The resulting 
hydrazone 17 (96% diastereomeric excess) was subjected to reaction 
with MeI and subsequent acid hydrolysis to remove the chiral auxil-
iary, and to provide chiral aldehyde 18 in 55% yield. This aldehyde was 
allowed to react with tryptamine 19 to give the desired imine, which 
was subsequently protonated43 with TFA to induce the Pictet–Spengler 
cyclization. The isolated product was immediately protected with 
CbzCl to provide 20 in 76% yield as an inseparable (at this stage) mixture 
of (R,R) and (R,S) diastereoisomers (method ‘A’; see also Supplementary 
Fig. 24a). The obtained mixture was subjected to reaction with tBuOK 
in THF to give a mixture (R,R:R,S = 58:42) of tetracyclic amides 21, from 
which the desired (R,R) isomer was isolated via flash column chroma-
tography in 31% yield over four steps. Alternatively, we sought to obtain 
21 via a N-acyliminium Pictet–Spengler cyclization44 (method ‘B’; see 
also Supplementary Fig. 24b). To do so, aldehyde 18 was reacted with 
tryptamine 19 to form an imine, which was directly treated with CbzCl to 
induce cyclization. Subsequent lactamization afforded a 82:18 mixture 
of R,R:R,S 21 from which (R,R)-21 was isolated (relative configuration 
confirmed by COSY, HSQCAD, HMBCAD and 2D-NOESY techniques; 
see Supplementary Information section 3.10), albeit in lower yield (17% 
over three steps). The remaining steps towards (R,R,S)-tacamonidine 
(25) required formation of the quaternary hydroxylated stereocentre. 
For the Sharpless asymmetric dihydroxylation, Chematica suggested 
either AD-mix-α or OsO4; both variants were performed. AD-mix-α gave 
23% yield (65% yield based on recovered starting material) and 81% 
diastereomeric excess. The reaction with only OsO4/NMO provided the 



diol mixture in higher yield (84%) and similar diastereomeric excess 
(82%), pointing to the stereodirecting effect of the scaffold (quantum 
mechanical calculations suggest that OsO4 coordination from the si face 
is energetically favoured over the re face by 1.6 kcal mol−1; such subtle 
effects are not considered by Chematica during synthesis planning). 
The primary alcohols within the diols were then tosylated (75%), the 
amine groups were deprotected and the intermediate was subjected to 
intramolecular amination to afford the R,R,S-tacamonidine target 25 
in 40% yield over the last two steps. Spectroscopic (1H NMR, 13C NMR, 
COSY, HSQCAD, HMBCAD, 2D-NOESY, IR, UV–Vis and HRMS) and physi-
cal (optical rotation) data confirmed the structure of the target and 
matched literature36. This data and all synthetic details are provided 
in Supplementary Information section 3.5–3.10.

Synthesis of lamellodysidine A. The graph of the top-scoring pathway 
for lamellodysidine A is shown at the top of Fig. 5. Within six steps from 
the target, Chematica reached cyclohexanone 29 and vinyl bromide 
27-Br, the syntheses of which have already been reported in the litera-
ture. The key elements of Chematica’s plan are the conversion of 29 
into triene 32, its subsequent hydroboration and Suzuki coupling with 
vinyl halide 27, and finally intramolecular Diels–Alder cycloaddition to 
provide access to the desired tetracyclic [2.2.2]-bicyclooctene frame-
work of lamellodysidine. The stereodefined hemiacetal is obtained via 
hydrolysis of methoxyfuranone, which leads to the thermodynamically 
more stable and less hindered stereoisomer. This plan was executed in 
the laboratory and commenced with the addition45 of the vinyl cuprate 
to enone46 28 to give 29 in 83% yield after acidic workup. Subsequent 
oxidation47 with IBX-DMSO gave enone 30 in 85% yield, which was then 
methylated under standard conditions (LDA, MeI, HMPA in THF) to 
give enone 31 in 84% yield. Subsequent enolization with LiHMDS and 
triflation with PhNTf2 gave the vinyl triflate, which was then reduced 
with Pd(OAc)2/HCOOH and gave access to the desired triene 32 in 81% 
yield. The remaining steps to lamellodysidine A required attachment 
of the methoxyfuranone fragment, which was realized by the one-pot 
hydroboration of 32 with 9-BBN-H and subsequent coupling with 27-I, 
which is available in a single step from 5-methoxy-2(5H)-furanone 26 
(a more reactive iodoacetal 27-I was used instead of the proposed  
bromoacetal 27-Br). The obtained intermediate 33, which had all frag-
ments of lamellodysidine A, was subjected to short (roughly 5 min) 
microwave heating in toluene to trigger the intramolecular Diels–Al-
der reaction and afford the expected cycloadduct 34. Subsequent  
hydrolysis of crude 34 yielded the more stable diastereoisomer exclu-
sively and gave lamellodysidine A in 67% yield and with 17.7% overall 
yield from 28. Spectroscopic (1H NMR, 13C NMR, COSY, HSQCAD, HMB-
CAD, 2D-NOESY, IR and HRMS) and physical (optical rotation) data 
confirmed the structure of the target and matched literature37. This 
data and all synthetic details are provided in Supplementary Informa-
tion section 4.2–4.3.

Extended discussion
Limits of the complexity of the target. Beyond the examples provided 
in the main text, it is important to estimate the upper level of the com-
plexity of the targets for which Chematica can plan plausible syntheses. 
The examples in Extended Data Figs. 2–5 demonstrate that the program 
designs plausible routes to targets such as cephanolide B48, conidiog-
enone B49, scabrolide A50 and taxuyunnanine D51, the syntheses of which 
were recently published in leading chemical journals (pathways to the 
less complex targets aplykurodinone-152 and dendrobine53 are shown 
in Extended Data Figs. 6, 7).

On the other hand, Chematica was not able to find routes to tar-
gets such as CJ-16,26454, ryanodol55 or taxol56. In some cases (for 
example, CJ-16,264), failure could be attributed to the program not 
yet being taught a certain class of reaction (for example, stereoselec-
tive substrate-controlled condensation of enolate with imide57 for 
the synthesis of CJ-16,264). However, when the program fails to find 

a plausible route despite having the requisite chemical knowledge, 
it is likely that an insufficiently small fraction of the synthetic space 
has been explored. This seems to be the case for taxol. For such com-
plex targets, the numbers of viable options per step may be very high 
(around 200 or more); searches over a 100n–200n-sized search space 
usually time out, exceeding the available RAM (roughly 500 GB on our 
machines). However, Chematica was able to design synthesis to a less 
oxidized taxane (taxuyunnanine D51; Extended Data Fig. 5), which lies 
roughly half-way in Baran’s pyramid of taxanes56 and was synthesized 
by Baran’s group in 201451.

The synthesis of taxol56 (building on a modified taxane carbon 
framework) is interesting for another reason—the allowable level of 
risk taking. In several steps of the synthesis route, multiple equivalent 
sites were present but reactions were still performed on one of them 
selectively, owing to a skilful choice of advanced reagents (for example, 
initial, selective oxidation at C13 using a chromium(v)–hydroxyacid 
complex), isotopic exchange (to prevent oxidation of a secondary alco-
hol during C1 oxidation with DMDO) or solvent effects (only a unique 
protic and non-nucleophilic mixture of HFIP/TMSOH (2:1) led to a high 
selectivity of C13 oxidation)56. In these steps, the humans were taking 
calculated and creative risks that capitalized on the structure of the 
particular scaffold. By contrast, in its typical configuration, Chematica 
is told to act more conservatively, using generally applicable reaction 
types and assigning a high penalty for any potential non-selectivities 
encountered (if a competing position, non-equivalent by symmetry, 
is found, the reaction is deemed non-selective and is heavily penal-
ized). However, the non-selectivity parameter in the scoring function 
in Chematica can be lowered by the user. For complex targets, this 
could permit riskier yet more elegant disconnections (with the hope 
that non-selectivity nuances can be tweaked by the structure of the 
scaffold). However, for simpler targets (or intermediates), lowering 
the penalty usually leads to serious non-selectivity issues that cannot 
be remedied. One potential solution to this problem might be adjust-
ing the degree of the penalty proportionally to the complexities of the 
targets or intermediates. In the absence of such a self-adjusting scoring 
scheme, the remedy is to code additional reaction rules for specific 
or complex scaffolds (which encompass much wider reaction cores). 
Still, for targets of industrial or medicinal interest and mid-complexity 
natural products, we recommend the use of a high non-selectivity pen-
alty, as used here.

Performance with different search parameters. In Chematica, it is 
possible to exclude from the searches specific structures or reactions. 
Because each reaction used by Chematica comes with a common name 
(for example, Michael addition or Sharpless dihydroxylation) and typi-
cal conditions and reagents, the user can exclude entire reaction classes 
(and/or reagents) by using appropriate keywords. This could be useful 
when looking for routes that have no precedent in the literature or il-
lustrating the usefulness of certain methodologies if using Chematica 
as a teaching aid. The use of such exclusion is illustrated in the synthesis 
of scabrolide A (Extended Data Fig. 4), where we excluded SAMP and 
RAMP hydrazones to minimize the use of chiral auxiliaries. Another 
example is provided in Extended Data Fig. 8. The top panel illustrates 
the results of an unconstrained search for the synthesis of mevastatin. 
The suggested route relies on an intramolecular Diels–Alder reaction 
to construct the 6–6 ring system of mevastatin. By contrast, in the 
bottom panel, the program was forbidden from using any Diels–Al-
der reactions. Predictably, the route with the additional constraint is 
longer, although it is still chemically plausible (the rings are formed 
via ring-closing metathesis).

The multistep strategizing routines described in the main text (tacti-
cal combinations, FGIs, bypasses and tandem reactions) may also be 
used optionally, although this is not recommended. For very simple 
targets, numerous synthetic solutions may be found even without 
these enhancements, but for more complex ones, problems arise. First, 
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for very complex natural products, searches without any multistep 
strategizing typically time out with no pathways found; second, for 
less advanced (but not trivially simple) targets, the routes—even if 
found in realistic search times—are often less elegant (longer or more 
roundabout). One example of the latter is provided in Extended Data 
Fig. 9; we used Chematica to search for syntheses of ramelteon (a sleep 
medication). Without strategizing algorithms, only an unremarkable 
13-step pathway was found, even after several hours of searching. By 
contrast, with strategizing algorithms, the program found a much 
more concise (8 steps) and elegant route after only about 10 min. In this 
route, Chematica used a tactical combination of Robinson annulation 
followed by the aromatization of cyclohexenone (in the retrosynthetic 
direction, dearomatization of phenol offered no immediate structural 
simplification but set the scene for the structure-simplifying Robinson 
annulation). In another example (Extended Data Fig. 10), the program 
was searching for syntheses of tybost, a drug used for the treatment 
of HIV. The route designed without any strategizing routines involved 
an additional protection–deprotection sequence mid-way; no bet-
ter pathway was identified after hours of searching. By contrast, with 
the strategizing routines, a more elegant pathway (which relied on  
two bypasses and one FGI) was found after only about 15 min. In this 
route, the program sourced this synthesis from substrates that were 
already appropriately protected (so that no mid-way protection–depro-
tection sequence was needed) and easily available from appropriate 
amino acids.

Pending and future improvements. As discussed above, searches 
for very complex targets can time out, exceeding the available RAM. 
Preventing such outcomes will require hardware improvements, which 
is one of the main focuses of the ongoing commercial deployment of 
Chematica as Synthia. Improving memory size and management is 
also a prerequisite for using advanced options such as library-wide 
searches, in which Chematica designs syntheses to several targets si-
multaneously, often benefiting from the use of common intermediates 
(provided the targets are not completely unrelated). The effectiveness 
of such searches has been demonstrated24 for small libraries of medici-
nally relevant targets, although the large search graphs were already 
straining memory limits; for more complex natural products, these 
problems are compounded.

Several of our algorithmic improvements have yet to be incorporated 
into Chematica/Synthia. One is the neural-network tool to estimate the 
pKa of CH acids (https://pka.allchemy.net/)58 and thus choose the loci of 
reactions such as alkylations more accurately (when many similar sites 
are present). Another class of improvements regards an algorithm that 
increases the diversity of the search results: after initial pathways are 
found, but are similar and use the same key disconnection (algorithmi-
cally detected as the reaction that offers the highest degree of structural 
simplification), the program prevents the use of this reaction type in 
subsequent steps. In this way, the searches are forced to abandon the 
already-visited regions of the search space and seek materially differ-
ent solutions. A similar objective can, to some extent, be achieved by 
starting a new search with the exclusion of a given reaction (compare 
above and Extended Data Fig. 8), but this loses the search graph already 
explored. Another improvement focuses on optimizing the endings of 
the already-found pathways. The point here is that, as the search graphs 
spread out from the target outwards, the algorithm might spend less 
and less time on smaller and smaller intermediates. This means that the 
endings of the pathways might not be optimized (compare the synthesis 
of scabrolide A in Extended Data Fig. 4). To remedy this, we have been 
implementing an algorithm that, using an already-found path, moves 
to an intermediate, say, five steps away from the starting materials and 
initializes a local search from this molecule. If it finds a shorter and/or 
lower-scoring route to this intermediate, then the five-step ending is 
replaced by the shorter, say, three-step, one. An intermediate five steps 
from the new end of the updated pathway is then chosen and another 

search is performed. This cycle is repeated until the endings cannot 
be shortened or optimized any more.

Finally, it is often useful to scrutinize Chematica-designed path-
ways by using additional quantum-mechanics, molecular-mechanics 
or machine-learning post-filters. During the searches for the path-
ways, the algorithm explores thousands to millions of intermediates 
and reactions, the evaluation of which must be very rapid (a fraction 
of a second each). When a pathway or several top-scoring pathways 
are found and selected as interesting, it is no longer a problem to 
spend an additional few seconds on each intermediate or step and 
use more accurate evaluation methods. For instance, in the current 
version of Chematica, the user can examine strain within each inter-
mediate; such molecular-mechanics calculations take only about 
1–10 s. Similarly, we have developed, but not yet connected to Che-
matica, hybrid machine-learning–knowledge-based models to evaluate 
scaffold-directing (non-covalent) effects for certain reaction types for 
which the trajectory of approach can be reasonably approximated. 
These methods rest on a vectorized representation of distances 
between the atoms of the approaching substrates.

Data availability
All data that support the findings of this study are available within the 
paper and its Supplementary Information, or from the corresponding 
authors on reasonable request.

Code availability
In Supplementary Data, we provide the pseudocode for the multistep 
retrosynthetic design, pathway generation and retrieval (PSEUDOC-
ODE_Aug2.pdf), an example of one of the reaction rules as coded in 
Chematica (RULE.pdf), and additional details of the availability and 
execution of the software (README_Aug2.pdf).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | New components of Chematica essential to its ability to 
plan the syntheses of complex, natural-product targets. Only key algorithmic 
improvements (since the publication of ref. 9) are highlighted. a, Increase in the 
knowledge base of reactions rules to more than 100,000, including a large 
fraction of advanced stereoselective transforms. b, Implementation of various 
machine-learning molecular mechanics and quantum-mechanics routines to 
further evaluate the correctness of the reaction prediction. Illustrated here is the 
machine-learning method (random forest classifier) that evaluates the 
applicability of Diels–Alder cyclizations21. c, Information about specific motifs in 
the synthons that are not only too strained (top)8 but also prone to side reactions. 
An electron-rich allylic alcohol substrate in the Prins cyclization may undergo a 
competitive oxonia-Cope rearrangement59 (bottom). d, Scoring functions, either 
improved heuristics-based or best-in-class neural networks22. e, Search 
algorithms that combine two strategies: searching broadly to explore wide 
spectrum of options and deeply to reach stop-point substrates as soon as 
possible. Each search strategy maintains its own priority queue (PQ), with 
different queues sharing results. f, Large numbers of previously unrecognized 
two-step reaction sequences that allow the program to overcome local  
maxima of structural complexity. Image reproduced with permission from  

ref. 26 (https://doi.org/10.1016/j.chempr.2019.11.016; Elsevier), which is published 
under a Creative Commons license (CC BY-NC-ND 4.0; http://creativecommons.
org/licenses/by-nc-nd/4.0/). g, Hard-coded sequences of some 100 FGIs to 
rapidly reach less reactive synthons. h, Bypasses—that is, routines that navigate 
around intermittent reactivity conflicts (red reaction arrow), by first converting 
the conflicting group into a non-conflicting one (here, a primary alcohol into an 
alkene or a silyl ether) and only then performing a high-gain, structure-
simplifying step (here, stereoselective alkylation of cyclohexenone). Without the 
bypass algorithm, the search would explore other, less-structure-simplifying 
options such as the allylic oxidation indicated by blue arrow. i, The ability to 
perform two different reactions on the retron simultaneously, if multiple 
reaction loci are reactive under the reaction conditions. Here, treatment with 
hydrogen and Pd catalyst should remove both phosphonate esters and benzyl 
ethers (left). Under these conditions, only esters or only ethers cannot be 
selectively removed. Attempting such selective removal, Chematica would see 
the unremoved groups (marked in red) as incompatible; in effect, it would not be 
able to perform the desired global deprotection. Similarly, global debenzylation 
of an aminoalcohol should be performed in a single step (right).
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Extended Data Fig. 2 | Enantioselective synthesis of a pentacyclic diterpenoid, 
cephanolide B, designed by Chematica. This target was recently prepared in 
racemic form in 12 steps48, with Pd-catalysed carbonylative cyclization as the key 
step. In its design, Chematica used 13 steps to reach commercially available 
crotonyl chloride and a known iodoalkyne 2 (available in two steps from the 
commercially available oxirane and TMS-acetylene). The synthesis commences 
with the formation of enantioenriched diene 5 via stereoselective alkylation of the 
enolate (with stereochemistry controlled by a chiral auxiliary) and subsequent 
metathesis of the enyne 4. Subsequently, addition of a Grignard reagent derived 

from bromide 6, cyanation, reduction of ketone, lactonization, methylenation 
and oxidation of the less hindered allylic position derives triene 12. This is then 
used in an elegant, intramolecular Diels–Alder cycloaddition (the feasibility of 
which was confirmed separately by molecular-mechanics calculations) to form 
the tetracyclic skeleton of cephanolide B. The synthesis of the target is then 
accomplished via the (non-intuitive) construction of the aromatic part via 
Robinson annulation of 13 with butanone 14 and oxidation of the thus-obtained 
enone.



Extended Data Fig. 3 | Enantioselective synthesis of a cyclopiane diterpene, 
conidiogenone B, and its derivative designed by Chematica. Synthesis of 
conidiogenone B, which includes a challenging 6–5–5–5 ring system and six 
contiguous stereocentres (of which three are quaternary), was recently 
accomplished in 14 steps49 (starting from trimethylcyclopentenone, itself one step 
from a buyable substrate) and relied on a substrate-controlled Nicholas/Pauson–
Khand reaction and Danheiser annulation. Chematica’s plan (top panel) also uses 
14 steps and relies on intramolecular alkylations to construct five-membered rings 
and Diels–Alder cycloaddition to build the six-membered ring of conidiogenone B. 
The synthesis commences with the chiral-auxiliary-controlled alkylation of 
cyclopentenone 4 with protected bromoethanol 5 to install the first stereocentre. 
Subsequent Stork–Danheiser transposition is followed by a substrate-controlled 
addition of a tertiary organocuprate and intramolecular alkylation to yield the 
bicyclic ketone 10, which is further methylenated to enone 11. Formation of the 
six-membered ring of conidiogenone B is accomplished via the Diels–Alder 
reaction of 11 with diene 12 to give the tricyclic ketone 13, which is further 
elaborated into iodoketone 17. Formation of the last ring of conidiogenone B is 
accomplished via the intramolecular alkylation of the ketone. In the bottom panel, 
Chematica was asked to design a plan for a more complex derivative of 
conidiogenone B, which differs by an extra methyl group (at a new quaternary 
stereocentre). Within 18 steps from the target, Chematica reached a known 

enantioenriched ketoester 4 (marked with a yellow asterisk) which was then 
sourced, in a few minutes of additional searching, to the commercially available 
and inexpensive 1. The synthesis commences with the reduction of the ketone 
(with stereochemistry controlled by Noyori’s catalyst). Subsequent 
substrate-controlled alkylation and oxidation are followed by elaboration of ester 
4 into iodoenone 10. Stereoselective alkylation with protected bromoethanol 11 
and subsequent cyclization yields the bicyclic ketone 13, which is further 
elaborated to tricyclic enone 17. We make two notes here. First, owing to the 
presence of a matched stereocentre, conversion of 10 to 12 could probably be 
performed as one step, without Enders’ auxiliary to control the stereochemical 
outcome. Chematica did not recognize this possibility, probably because it has not 
yet been taught detailed rules that govern substrate-directed alkylations 
controlled by quaternary stereocentres. Second, desmethyl analogue of enone 17 
was also used in the published synthesis of conidiogenone B, but, to form the 
six-membered ring, it was subjected to Danheiser annulation followed by 
ozonolysis-aldol condensation rather than to Diels–Alder cyclization. The 
formation of the last ring of conidiogenone B is accomplished via intermolecular 
Diels–Alder reaction with electron-rich diene 18 (available in a single step from 
pent-3-enal) approaching from the less hindered face of the enone (see refs. 60–62 
for similar Diels–Alder cyclizations promoted by Lewis-acid catalysts). From this 
point, the target molecule is obtained in three straightforward steps.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Chematica’s synthetic plan for scabrolide A. 
Scabrolide A is a polycyclic furanobutenolide-derived norcembranoid 
diterpenoid that belongs to a family of marine natural products isolated from 
Sinularia soft corals63,64. The molecule poses a synthetic challenge owing to its 
compact, densely functionalized core: a fused 5–6–7 carbocyclic scaffold 
decorated with five adjacent stereocentres and one additional remote 
stereocentre on the seven-membered ring. A recent literature pathway50  
(to the enantiomer from ref. 64) comprises 21 synthetic steps and relies  
on the intramolecular Diels–Alder cycloaddition and late-stage [2+2] 
photocycloaddition/fragmentation sequence. During computer planning of 
the enantiomer from ref. 63, several constrains were imposed; for example, 
Chematica was asked to design an enantioselective strategy (using the 
REMOVE_DIAST variable to exclude reactions that lead to a single racemic 
diastereoisomer), and was not allowed to use SAMP or RAMP hydrazones  
(to minimize the use of chiral auxiliaries), or highly strained bridgehead 
intermediates. The route proposed by the software is longer (about 30 steps) 
and more conservative in the sense that it relies on only broadly applicable 
chemistries. When planning its route, Chematica did not know the highly 
scaffold-specific (though elegant) fragmentation–recombination–elimination 

sequence of steps used towards the end of the literature pathway. The synthesis 
proposed by the machine relies on an intramolecular aldol addition of 17 
followed by FGI, which sets the scene for the closure of a six-membered ring via 
alkylation reaction to yield intermediate 20. Subsequent substrate-controlled, 
stereoselective addition installs the tertiary alcohol. Reduction (with double-
bond migration) of intermediate 21 followed by reductive ozonolysis sets the 
scene for the construction of the second five-membered ring of scabrolide’s 
scaffold. The fourth and final, seven-membered ring is closed via Pd-mediated 
coupling. The starting material initially identified by the software (aldehyde 11) 
is not commercially available, but can be sourced in four steps from (±)-cis-
bicyclo[3.2.0]hept-2-en-6-one. Looking for alternative endings of the 
pathways, that terminate in commercially available, achiral and inexpensive 
starting materials, we restarted the search from a node marked in the graph 
view (top) by a yellow asterisk (bicyclic intermediate 18). The alternative ending 
(blue reaction arrows in the bottom scheme) was found within about half an 
hour and commenced from readily available, protected hydroxyaldehyde and 
cyclopentanone. The initial ending, starting from the aldehyde 11, is marked by 
green arrows.
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Extended Data Fig. 5 | Chematica-designed, enantioselective synthesis of 
taxuyunnanine D, a less oxidized taxane. The previous synthesis51,65 of this target 
was accomplished in 12 steps via a two-phase cyclase-oxidase strategy, and 
required extensive exploration of conditions to achieve satisfactory selectivity 
during C–H oxidations. Here, within 14 steps from the target molecule, Chematica 
reached simple and known starting materials: iodocyclohexenone 6 and protected 
iodoethanol 7. The synthesis commences with the Pd-mediated coupling of 6 and 
7. Subsequent catalyst-controlled methylation and oxidation introduce the 
all-carbon quaternary and C5 hydroxylated stereocentres of taxuyunnanine D. 
Subsequently, protection of alcohol, stereoselective alkylation of cyclohexanone 
(with proposed Enders’ auxiliary controlling the stereochemical outcome, but 
probably also feasible when performed directly; see notes in the caption of 

Extended Data Fig. 3), Hofmann elimination, removal of protecting groups and 
Appel reaction yield iodide 15, which is coupled with iododiene 5 (available in four 
steps from enone 1) to give triene 16, setting the scene for the key formation of the 
taxane skeleton via electron-neutral intramolecular Diels–Alder cycloaddition 
(such an electronically neutral system that lacks electron-withdrawing groups may 
require activation with high temperature or a transition-metal catalyst66). 
Formation of taxuyunnanine D from the [4+2] cycloadduct 18 is then accomplished 
in two steps and requires olefination of ketone and allylic oxidation. The latter step 
appears less risky compared to the known solution51, because 19 lacks any 
competitive allylic CH2 groups, which are prone to oxidation and could cause 
selectivity problems.



Extended Data Fig. 6 | Chematica-designed, enantioselective synthesis of a 
marine steroid, aplykurodinone-1. Prior syntheses67 of this target, featuring six 
contiguous stereocentres, either relied on the late-stage introduction of the side 
chain via Michael addition to cyclopentenone (which suffers from low selectivity), 
or started67 from chiral building blocks (in the latter case, in 11 steps but from 
much more advanced, chiral substrates). Chematica used 17 steps to reach achiral 
and commercially available substrates: crotonyl chloride, allyl bromide and 
bromochloropropane 2. This synthesis commences with the installation of two 
contiguous stereocentres via stereoselective vic-difunctionalization of 
unsaturated amide and subsequent hydroboration and bisoxidation, followed by 
McMurry coupling to give cyclopentene 7. From there on, oxidation of the less 

hindered allylic position, methylation of cyclopentenone, reoxidation and 
formation of imine (elegantly ensuring that a single regioisomer would form in 
the Diels–Alder reaction) with aminodiene 10 (available in four steps from ethyl 
sorbate) derives triene 11, which is then used in an intramolecular Diels–Alder 
cycloaddition that forms the desired 6–5 ring system of aplykurodinone-1. 
Hydrolysis of the imine linker and conversion of the primary amine to the 
carboxylic acid via oxidation and hydrolysis yields 15, which is then subjected to 
iodolactonization followed by dehalogenation to form the entire 5–6–5 ring 
system. The synthesis is completed by elaborating the remaining alkyl chloride to 
the desired alkene.
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Extended Data Fig. 7 | Chematica-designed enantioselective synthesis of a 
tetracyclic alkaloid, dendrobine. Synthesis of this target, which features a 
challenging 5–6–5–5 ring system and seven contiguous stereocentres, was 
performed recently53 in 11 steps, taking advantage of enantioselective 
Diels-Alder reaction, substrate-controlled hydroboration and reduction of 
imine as the key steps. In Chematica’s synthetic plan, within 14 steps from the 
target, the software reached the commercially available crotonyl chloride and 
known 3-iodopropanol (that is, simpler starting materials than the 
Danishefsky’s diene and unsaturated imide used in the literature synthesis). 

The synthesis commences with the chiral-auxiliary-controlled alkylation of the 
amide enolate. Ensuing steps allow for the preparation of enoate 10. Further 
homologation with allylic phosphonate 11 (available in two steps from an 
appropriate alcohol) and hydrolysis yield the triene 13, setting the scene for an 
intramolecular Diels–Alder reaction that forms the desired 6–5 ring system. 
Subsequent hydroxylactonization gives tricyclic alcohol 15, which is then 
efficiently transformed into the target molecule via stereoretentive 
chlorination of the alcohol, Cbz removal and substitution of chloride.



Extended Data Fig. 8 | Enantioselective synthesis of mevastatin designed 
by Chematica with all its reaction knowledge and on exclusion of 
user-specified reaction types. Top, synthetic plan obtained when the 
program was allowed to use all of its reaction knowledge base. Under these 
circumstances, the planned route relies on an intramolecular Diels–Alder 
reaction to construct mevastatin’s 6–6 ring system. The synthesis commences 
with stereoselective reduction of a ketone to give iodoalcohol 2, which is 
transformed in five steps into triene 8. Subsequent cycloaddition (note that 

such an electronically neutral system that lacks electron-withdrawing groups 
may require activation with high temperature or a transition-metal catalyst66) 
and elaboration of the side chain give the target molecule in the total of 14 
steps. Bottom, synthetic plan designed by Chematica when it was forbidden 
from using the key Diels–Alder reaction and was thus forced to come up with a 
completely different approach; the synthesis is now much longer. The 
formation of each ring is accomplished via ring-closing metathesis.
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Extended Data Fig. 9 | Pathways leading to ramelteon designed by the 
software with and without multistep strategizing routines. The top 
synthetic pathway was designed without the new, multistep heuristics. The 
scaffold of the target was constructed via Cu-catalysed hydroalkylation of 
alkenes68. Although the pathway does not contain chemically erroneous steps, 
it is long, relies heavily on reductions and oxidations, and involves many FGIs. 

The bottom route, designed with the new strategizing routines, is more 
concise and elegant. The key element in this path is a strategy that relies on 
Robinson annulation followed by dehydrogenation of enones (in the 
retrosynthetic direction, when planning the route, the program strategizes 
and first performs a seemingly unproductive dearomatization of a phenol, 
which then enables Robinson annulation).



Extended Data Fig. 10 | Pathways leading to tybost designed by the 
software with and without multistep strategizing routines. The top 
synthetic pathway was designed without the new multistep algorithms. This 
route is longer and requires additional protection and deprotection operations 
on intermediate 11 (node in blue halo). The program was not able to find better 
routes even after hours of searching. In the bottom route, when the program 

was allowed to strategize, it found a more elegant route that relies on two 
bypasses (two sets of red reaction arrows) and one FGI (pair of violet reaction 
arrows). The software navigated the pathways to starting materials that already 
had relevant groups protected (such that no protections were required 
mid-way into the pathway) and were easily available from appropriate amino 
acids.
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