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Mass and Number Size Distributions of rBC in Snow
and Firn Samples From Pine Island
Glacier, West Antarctica
Luciano Marquetto1,2 , Susan Kaspari1 , and Jefferson Cardia Simões2,3

1Department of Geological Sciences, Central Washington University, Ellensburg, WA, USA, 2Centro Polar e Climático,
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 3Climate Change Institute, University of Maine, Orono,
ME, USA

Abstract An extended‐range Single Particle Soot Photometer (SP2) coupled to a Marin‐5 nebulizer was
used to measure the refractory black carbon (rBC) mass and number size distributions in 1,004 samples
from a West Antarctica snow/firn core. The SP2 was calibrated using Aquadag and a Centrifugal Particle
Mass Analyzer for BC particles ranging from 0.5 to 800 fg. Our results indicate a significant contribution of
rare, large particles of mass‐equivalent diameter (DBC) > 500 nm to the total rBC mass (36%), while
small particles (DBC < 100 nm) are abundant but contribute <8% to total rBC mass. We observed a primary
mass median diameter of 162 ± 40 nm, smaller than reported for snow in other regions of the globe but
similar to East Antarctica rBC size distributions. In addition, we observed other modes at 673, 1,040, and
>1,810 nm (uncontained mode). We compared two sets of samples from different seasons (wet vs. dry) and
observed that dry season concentrations are 3.4 and 2 times that of the wet season in the ranges of
80 nm < DBC < 500 nm (small particles) and 500 nm < DBC < 2,000 nm (large particles), respectively, while
number of particles in the dry season is 3.5 and 2 times that of the wet season for the same size ranges.
Millimeter thickmelt layers have been observed in some samples, although they did not change the observed
median diameter. This study provides the first detailed rBC mass and number size distribution from
West Antarctica.

Plain Language Summary Black carbon (BC) is a particle produced by the incomplete
combustion of biomass burning and fossil fuels and plays an important role in the climate system due to
its strong light absorption properties. The size of BC particles in snow is important for determining the
effects that BC has on the cryosphere and provides insight into the processes controlling BC emission
history, transport, and deposition. Past studies indicate spatial differences of BC size distributions in snow,
but these studies are limited in number, and more are needed to address this spatial variability. Here the
size distribution is presented of BC particles from 1,004 samples from a Pine Island Glacier ice core,
West Antarctica, in a region where there is no information of BC particle size in snow. BC inWest Antarctica
is smaller than other regions of the globe but large, rare particles are also present. These large BC
particles are larger than what other studies have reported and could be a result of long‐range transport from
other continents and/or agglomeration from small particles during transport or deposition.

1. Introduction

Black carbon (BC) is a carbonaceous aerosol emitted by incomplete combustion of fossil fuels and biomass
that affects the climate due to its strong light‐absorption properties (Goldberg, 1985; IPCC, 2013). BC absorbs
the most solar light per unit mass of any atmospheric aerosol (Schwarz et al., 2013) and, when deposited on
snow and ice, reduces albedo and accelerates melt (Bond et al., 2013; Hadley & Kirchstetter, 2012). Increases
in BC concentrations since the industrial revolution have been observed in ice sheets and glaciers around the
world (McConnell et al., 2007; Osmont et al., 2019; Thevenon et al., 2009), with direct implications to the
planetary albedo (Bice et al., 2009; Bond et al., 2013; Hansen & Nazarenko, 2004).

The impact of BC on snow albedo depends on a number of factors, including BC content in snow (He
et al., 2018), mixtures with other particles (Warren & Wiscombe, 1980), and BC particle properties. BC size
is a significant source of uncertaintywhen estimating BC absorption properties in snow (Schwarz et al., 2013).
These authors state there is a possible overestimation of BC global mean snow forcing up to 30% as
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atmospheric BC size distributions, rather than snow BC size distributions, are used to model BC impacts in
the cryosphere.

The Single Particle Soot Photometer (SP2) is a useful method to address these uncertainties, as the technique
is able to provide size distributions of BC in the atmosphere and snow. The SP2 measures thermal radiation
emitted by laser‐induced incandescence of individual BC particles (reported as refractory black carbon—
rBC, as recommended by Petzold et al., 2013). The rBC size distributions are commonly presented in mass
and number (or count) distributions, and by fitting a lognormal function to them, it is possible to obtain
the mass median diameter (MMD) and number median diameter (NMD) of the distributions, respectively.

Previous studies have shown rBC size distribution in the atmosphere tends to follow a pure lognormal
function, with an MMD of ~220 nm or smaller and less than 1% of total mass associated with particles
of mass equivalent diameter (DBC) > 600 nm (Schwarz et al., 2013). Urban atmosphere rBC MMD tends
towards lower medians (~100 nm), while remote atmosphere rBC MMD presents higher values
(~220 nm—Schwarz et al., 2012, 2013), although the opposite has also been reported (Wu et al., 2017,
and references therein).

The size distribution of rBC in snow presents an MMD similar to remote atmospheric sites (~220 nm—Lim
et al., 2014; Schwarz et al., 2013) but deviates from a lognormal distribution due to the contribution of par-
ticles with DBC > 500 nm. Schwarz et al. (2013) found that particles with DBC > 600 nm represented 28% of
the rBCmass in snow samples from rural and semirural Colorado, USA. This is an important observation, as
BC absorption properties differ with particle size. When BC diameter is small relative to the light's wave-
length, the particle absorbs light proportionally to its mass. However at larger sizes, light absorption is pro-
portional to particle surface area (Schwarz et al., 2013).

In Antarctica, the literature about BC size distributions is still scarce; thus, more observations are needed.
The most extensive work was carried out by Kinase et al. (2019) for East Antarctica around Syowa
Station. The authors found a bimodal distribution in BC in snow, with MMDs of ~140 and 690 nm and
NMDs around 70 nm; postdepositional processes affected BC concentrations but not size distributions.
Khan et al. (2018) presented rBC volume distributions (rather than MMD) showing large rBC particles of
300–400 nm in a shallow snow pit in McMurdo Dry Valleys. Ellis et al. (2016) observed a substantial fraction
of small particles (DBC < 90 nm) in East Antarctica snow and ice, although only qualitatively. Thus, further
studies of Antarctic BC mass size distributions are necessary. Furthermore, as BC is mainly deposited in
snow through wet deposition (Flanner et al., 2007), measuring the size distribution of BC particles in snow
should improve our quantitative understanding of the BC wet removal mechanism from the atmosphere
(Mori et al., 2016).

In this work we present the rBC number and mass size distributions of 1,004 snow samples from a 20 m
snow/firn core (TT07) drilled in West Antarctica during the 2014/2015 austral summer that spans
1968–2015 (Marquetto, Kaspari, & Simões, 2020). The rBC present in the core likely reflects long‐range
transport from sources in South America and Australia/New Zealand and is associated mostly with biomass
burning emissions (Arienzo et al., 2017; Bisiaux, Edwards, McConnell, Albert, et al., 2012; Koch et al., 2007;
Stohl & Sodemann, 2010).

2. Site Description and Field Campaign

The core presented in this study (TT07) was drilled on the Pine Island Glacier at 79°55′34.6″S, 94°21′13.3″W
(elevation 2,122 m a.s.l.), near the Mount Johns Nunatak (located 70 km NE of the drilling site) (Figure 1).

The core was retrieved in 21 sections of less than 1m each, weighed in the field, packed in polyethylene bags,
and then stored in high‐density Styrofoam boxes. Borehole temperature measured in the field was −34°C at
12 m deep. We used a probe previously calibrated that remained in the borehole for at least 8 hours. The core
was sent by air to Punta Arenas (Chile), then to a deposit in Bangor (USA) for storage and finally to the
Central Washington University Ice Core Laboratory (Ellensburg, WA), where it was kept at−18°C in a clean
cold room until subsampling and analysis. During transport between Antarctica and Bangor the core was
exposed to above‐freezing temperatures, and some sections were partially melted and refrozen. As the core
was transported lying down in the boxes, this melt and refreeze occurred in the external part of the core and
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did not reach the center of it. The melted and refrozen portion of the core was removed by saw and hand
scraping, and only a small 10‐cm piece of section 07 was discarded as it was totally refrozen.

3. Materials and Methods
3.1. General Information on the SP2

Weused an extended range SP2 coupled to aMarin‐5 nebulizer (TeledyneCETACTechnologies, Omaha,NE,
USA), in the Department of Geological Sciences, Central Washington University (CWU), WA, USA to ana-
lyze the snow and firn samples.The SP2 (Droplet Measurement Technologies—DMT, Boulder, CO, USA)
is widely applied in aerosol science and is one of the most reliable instruments to analyze BC on a particle‐
by‐particle basis (Wendl et al., 2014). It was adapted to analyze meltwater of snow and ice samples by
McConnell et al. (2007), and since then it has been extensively used to analyze seasonal snow
(e.g., Delaney et al., 2015; Schwarz et al., 2012), high‐altitude glacier surface snow and ice cores
(e.g., Kaspari et al., 2011, 2014; Lim et al., 2017; Osmont et al., 2019; Sigl et al., 2018), and polar snow and
ice (e.g., Arienzo et al., 2017; Bisiaux, Edwards, McConnell, Albert, et al., 2012; Bisiaux, Edwards,
McConnell, Curran, et al., 2012; Casey et al., 2017). The SP2 uses laser‐induced incandescence to measure
the rBC mass of individual particles as the peak intensity of light that a particle emits is proportional to its
size and mass (Schwarz et al., 2006; Slowik et al., 2007). The SP2 rBC measurement is negligibly affected
by other materials (Moteki & Kondo, 2010; Schwarz et al., 2006, 2012).

These characteristics allow the SP2 to reconstruct accumulation‐mode size distributions of rBC from sam-
ples (Schwarz et al., 2010), as the indirect mass measurement can be then converted to size using the
equation:

Figure 1. Drilling location for the snow/firn core analyzed in this work (TT07). Black lines show West Antarctic ice
divides (1 g = Institute Glacier; 22 g = Pine Island Glacier). Data from BEDMAP 2 project (Fretwell et al., 2013).
The bottom right shows the drilling site relative to South America.
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DBC ¼ 6 M
π ρtrue

� �1=3

(1)

where DBC is the rBC particle mass equivalent diameter, M is the particle mass, and ρtrue is the true den-
sity of the particle considered (commonly assumed to be 1.8 g cm−3; Moteki & Kondo, 2010). Mass equiva-
lent diameter is also presented in the literature as DMEV (Cheng et al., 2018).

The standard SP2 detects particles in the 70–500 nm mass‐equivalent diameter (DBC) range (DMT, 2013b),
but CWU has an extended‐range SP2, capable of detecting particles between 80 and 2,000 nmDBC (assuming
a BC density of 1.8 g cm−3). For details of the extended range SP2, see Mori et al. (2016) and Moteki and
Kondo (2010).

Data processing was performed with the SP2 Toolkit 4.200 developed by the Laboratory of Atmospheric
Chemistry at Paul Scherer Institute (PSI) and was used on the scientific data analysis software IGOR Pro
versions 6.3 and 7. Data are reported as rBC, following recommendations from Petzold et al. (2013).

3.2. Sample Preparation

Details on laboratory and cold room cleaning as well as the cut plan for the samples are presented in
Marquetto, Kaspari, Simões, and Babik (2020). Briefly, the samples were hand scraped with a clean ceramic
knife in a laminar flow hood inside a cold room, to remove the outer snow/firn layer (2–4 mm). They were
stored in precleaned 50‐mLpolypropylene vials and kept frozen until analysis. Just prior to analysis, the sam-
ples were melted at room temperature or in a warm bath (not exceeding 25°C) and sonicated for 15 minutes
prior to analysis. Most samples were analyzed in less than 30 minutes after melting, and all samples were
analyzed in less than 2 hours after melting.

3.3. Sample Nebulization

As the SP2 was initially designed to analyze BC from the atmosphere (dry aerosol), it is necessary to nebulize
the sample before it enters the SP2 inlet. For this step, we used a CETAC Marin‐5 nebulizer.

The nebulization step induces losses of rBC particles during the sample analysis (imperfect nebulization,
removal of rBC with the drain water, and adsorption of rBC at the surface of the capillaries), meaning that
only a fraction of BC particles initially pumped from the sample will reach the SP2 inlet (Katich et al., 2017).
This fraction corresponds to the nebulization efficiency. Previous works have shown that the Marin‐5 neb-
ulization efficiency is not size dependent in the 200–3,000 nm diameter range (Katich et al., 2017; Mori
et al., 2016). The nebulization efficiency for the Marin‐5 at CWU was calculated to be 68.31% ± 5.91% (1σ)
(Marquetto, Kaspari, Simões, & Babik, 2020).

In this work we assume that the melting and nebulization processes do not cause BC agglomeration that
would shift the size distribution to larger sizes, based on the same assumptions as Schwarz et al. (2013).
We also assume that the sonication process did not alter the mass or number size distribution of samples,
based on results obtained by Mori et al. (2014) for 25 rainwater samples analyzed for rBC in the
70–850 nm detection range. TheMarin‐5 and SP2 were arranged to minimize bends in the conductive silicon
tubing transport line, with one bend in the SP2 inlet. We consider the mass size distribution curve obtained
by the SP2 to represent the original rBC size distribution of the snow samples. Our results may have been
affected by transport losses of aerosols, which increase quickly with increasing size above 1,000 nm (personal
communication with J. Schwarz); however, this was not assessed in this work.

3.4. SP2 Calibration

The SP2 needs empirical calibration to assign a BC mass to a given SP2 response, referred to as internal cali-
bration by Wendl et al. (2014). The internal calibration is obtained by recording the average incandescent
signal peak height for pure BC particles of a known mass over the whole dynamic range of the SP2 (Gysel
et al., 2011). An additional calibration, called external calibration, is necessary when analyzing liquid sam-
ples to correct for BC losses during the nebulization process.

The internal calibration was carried out on CWU's SP2 using a Centrifugal Particle Mass Analyzer (CPMA)
to mass‐select BC particles of a known polydisperse BC standard consisting of Aquadag (Acheson Industries
Inc., Port Huron, MI, USA) diluted in Milli‐Q water (MilliQ‐Element, Millipore, Milford, USA; 18.2 M Ω).
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Aquadag was also used for the daily SP2 external calibration (details of the external calibration are in
Marquetto, Kaspari, Simões, & Babik, 2020).The use of a CPMA to mass‐select BC particles in the SP2 inter-
nal calibration is recommended in Schwarz et al. (2012) to reduce uncertainties associated with detection of
large rBC particles. Particle mass analyzers select particles by their mass‐to‐charge ratio by balancing elec-
trostatic and centrifugal forces and are a better choice for particle calibration than Differential Mobility
Analyzers (DMA) as the latter classifies particles by size and thus needs further corrections along with BC
density assumptions in order to calculate the particle mass (Gysel et al., 2011; Olfert & Collings, 2005).
Also, the CPMA has an uncertainty of only 1.4% in mass measurements for single‐charge particle
(Symonds et al., 2013). Even though the use of a CPMA reduces the uncertainty associated with large rBC
particles, there are uncertainties related to the behavior of Aquadag at very large masses, due to the
unknown morphology of the rBC in the snow/ice (personal communication with J. Schwarz). These uncer-
tainties are beyond our scope and are not addressed in this work.

We configured the CPMA to select 23 particle masses from 0.5 to 800 fg (translating to DBC ~ 80–1,000 nm);
each mass was measured for 30 minutes to 6 hours to provide statistically significant particle triggers to cali-
brate the SP2. Most literature about BC in snow and ice used a DMA for calibration and ran up to particle
sizes equivalent to 100 fg (Katich et al., 2017; Lim et al., 2014; Osmont et al., 2018; Schwarz et al., 2012); some
extended further (Lim et al., 2017—220 fg; Mori et al., 2016—300 fg). Moteki and Kondo (2010) extended
their calibration up to 400 fg with Aquadag and to 800 fg with Glassy Carbon (although the later consists
of >400 nm spherical, compact particles, different from ambient soot). To our knowledge, no calibration
as broad as this work (0.5–800 fg) using a CPMA is documented in the literature.

Extrapolations of the calibration limits (80–1,000 nm) to the full detection limits of the CWU SP2
(80–2,000 nm) were made based on the relationship between particle mass and incandescent signal.
Moteki and Kondo (2010) observed that for small particles (M< 10 fg) the incandescent signal is linearly pro-
portional to particle mass, while the relationship for larger particles (10 fg < M < 800 fg) is dependent on
particle shape and calculated using an empirical power law. These observations, though, were made using
a DMA for the SP2 internal calibration. In the internal calibration carried out in this work we observed that
the polynomial splines (least squares fit) from the PSI SP2 toolkit presented the best fit both in the lower and
higher end of the SP2 detection range, so we used these for extrapolation. We note that between 1,000 and
2,000 nm void free diameter the calibration is extrapolated by a factor of 8. When necessary to adjust the cur-
vature of the calibration curve at the low end, the fits were adjusted by segments as described in
DMT (2013a). The power law and the linear fit fromMoteki and Kondo (2010) do not agree with our calibra-
tion data as well as the polynomial splines in the lower and higher end of the calibrated ranges
(Figures 2a–2c).

The use of Aquadag for the SP2 internal and external calibrations is described in the literature (Gysel
et al., 2011; Moteki & Kondo, 2010). We utilized Aquadag because the SP2 sensitivity to its BC‐type is known,
and its mass‐size distribution most closely represents the mass size distributions observed in snow:
~100–1,000 nm (Wendl et al., 2014). Regarding particle morphology, Aquadag is characterized by fluffy
aggregates of thin flakes and small spherules of crystalline graphite (Moteki et al., 2009), similar to non‐com-
pact ambient soot (Moteki & Kondo, 2010). A scaling factor of 0.75 was applied for the external calibration
carried out in this work, which accounts for the non‐BC mass in Aquadag. Baumgardner et al. (2012) indi-
cate that internal calibrations done with Aquadag should also be scaled downwards by a factor of 0.75, as the
SP2 is 23–29% less sensitive to fullerene soot, the recommended reference material for atmospheric calibra-
tions, than to Aquadag. These different sensitivities represent about a 10% shift in volume‐equivalent dia-
meter when comparing uncorrected and corrected calibrations. However, we opted to keep our internal
calibration uncorrected because the signal ratio of BC from ice cores and snow samples sometimes resembles
that of fullerene soot, sometimes that of Aquadag (Wendl et al., 2014, supporting information) and might
more often resemble that of the latter (M. Gysel, personal communication).

The data presented in this work were obtained from the duplicated extended range broadband detector of
the SP2 (the combination of the high gain and low gain amplifications: B2HG + B2LG). These channels pre-
sented the best fit calibration curve of all channels, with a precise fitting in the lower (B2HG) and higher
(B2LG) end of the particle mass range (calibration curves in Figure 2). The B2HG channel was able to detect
particles in the 80–600 nm size range, while the B2LG detection range was 80–2,000 nm. As expected from
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previous works (Mori et al., 2016; Moteki & Kondo, 2010), the incandescence peak height observed in the
internal calibration for larger particles is not linearly correlated to their mass as particle effective density
(ρeff) is ≠0. ρeff is a measure of the compactness of the particle shape and can vary from zero for extremely
non‐compact particles (highly branched aggregates), up to the true density (∼1.8 g cm−3) for extremely
compact particles (spherical) (Moteki & Kondo, 2010).

3.5. Sample Grouping and Seasonal Classification

To achieve a statistically significant rBC size distribution it is necessary to collect a large number of rBC par-
ticles in the SP2. Katich et al. (2017) empirically determined this number to be ~40,000 particles for typical

Figure 2. Calibration curves for the (a) B2HG channel (0.5 < M < 10 fg—linear scale), (b) B2HG channel (0.5 < M < 200 fg—logarithmic scale), and (c) B2LG
channel (14 < M < 800 fg—logarithmic scale), obtained from the internal calibration carried out using the SP2 + CPMA. The B2HG channel showed a good
fit for low mass particles (0.5–200 fg), while the B2LG channel presented a good fit for larger particles (200–800 fg). Also shown for comparison are the measured
relationships from Moteki and Kondo (2010)—linear fit for M < 10 fg and power law for 20 < M < 800 fg. Incandescence peak height is presented in
(arbitrary) defined units (d.u.). Particle size was calculated using the formula presented in section 3.1, assumingρtrueas 1.8 g cm−3. Error bars represent one
standard deviation of mean peak height (Table S1presents more results of calibration time, particle triggers, and mean peak height ± standard deviation for
each calibration mass).
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ambient snow, although this number could be much higher if rare, large rBC particles are present in the
sample, as these could change the size distribution towards larger values.

Considering the low BC concentration in the samples, especially in the wet season (as low as 200 detected
particles/sample), we present our results as a grouping of individual samples in 94 seasonally resolved clus-
ters (wet season subset = summer/fall, 474 samples and 47 clusters; dry season subset = winter/spring, 530
samples and 47 clusters). The number of clusters is due to the estimated dating of the core (47 years,
Marquetto, Kaspari, & Simões, 2020). Although the dry season subset presented considerably more particles
(n= 8.28 × 105) than the wet season subset (n= 2.03 × 105), both have a robust number of collected particles.

The size distributions for the full set of samples (Figure 3) are the result of grouping and averaging the 94
clusters together, and the MMD and NMD were obtained by fitting Gaussian fits to the mass and number
size distributions, respectively, using Igor Pro 7 multipeak fitting tool version 2 (noise level: 0.000190962;
min fraction: 0.05; smooth factor: 10 for particles with DBC < 500 nm; smooth factor 30 for particles with
DBC > 500 nm). Dry and wet season primary MMDs were obtained using the same tool but different para-
meters (dry season—noise level: 0.000190962; min fraction: 0.05; smooth factor: 10; wet season—noise level:
8.21095e‐05; Min fraction: 0.05; smooth factor: 30). Standard deviation was obtained from the full width at
half maximum (FWHM) of the Gaussian fits, as the standard deviation in a Gaussian fit is equal to the
FWHM divided by 2.35.

Seasonal sample discrimination was based on the core dating presented in Marquetto, Kaspari, and Simões
(2020). Antarctic ice core BC records show a well‐defined seasonality, with peak concentrations in the dry
season due to increased biomass burning activity in the Southern Hemisphere (SH) during this time of the
year (Bisiaux, Edwards, McConnell, Curran, et al., 2012; Sand et al., 2017; Winstrup et al., 2019); more effi-
cient transport to the ice core site (Marquetto, Kaspari, & Simões, 2020; Neff & Bertler, 2015; Schwanck
et al., 2017; Stohl & Sodemann, 2010); and weaker precipitation (Legrand & Mayewski, 1997; Sinclair
et al., 2010). The wet season is identified by much lower BC concentrations. The core presented in this

Figure 3. Mass and number size distributions for the full set of samples. Shaded areas represent one standard deviation
(68.3%) of the number distribution (shaded purple) and mass distribution (shaded gray). Gaussian fits are shown for
the mass size distributions at the bottom of the graph. The larger mode at ~1,810 nm is not fully characterized and may
extend further than 2,000 nm. Standard deviation for DBC > 1,500 nm (up to 2.5 times the scale) not shown.
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studywas dated to 47 years and showed geometricalmean concentration of 0.06 μg L−1 for the dry season and
0.01 μg L−1 in the wet season (Marquetto, Kaspari, & Simões, 2020). As for BC size distribution, we consid-
ered only results in the CWU SP2 calibration range (80 nm > DBC > 2,000 nm).

4. Results and Discussion
4.1. Size Distribution of rBC in the Antarctic Snow Samples

Figure 3 shows the mass and number size distributions for the full set of samples. We observed the mass size
distribution presented a multimodal distribution with threeMMDs at 162 ± 40, 673 ± 48, and 1,040 ± 88 nm.
A larger MMD was identified at 1,810 ± 174 nm, although this larger mode is not fully characterized and is
an uncontained mode that extends to masses >2,000 nm.

The number counting of BC particles (NBC) indicates most particles analyzed are of very small size. Particles
with DBC < 100 nm were abundant (45% of the total NBC between 80 and 2,000 nm) but represent only 7.4%
of the total mass. Particles with DBC > 500 nm, on the other hand, proved to be very rare (0.46% of the total
NBC between 80 and 2,000 nm) but represent 36.4% of the total rBC mass. These results indicate that large
particles exist in Antarctic snow and ice and that despite their low occurrence, they can represent an impor-
tant fraction of total rBC mass in the snow.As for seasonal variations (Figure 4 and Table 1), particles with
DBC < 100 nm represent ~48% of all rBC NBC both in the dry and wet season and 8.5% (dry season) and 6.7%
(wet season) of total rBCmass. The MMD for both seasons is similar to the full core, with the dry season pre-
senting a slightly lower (160 ± 40 nm) than the wet season MMD (187 ± 31 nm). The wet season presented a
lower contribution of particles in the 100 nm > DBC > 500 nm to total seasonal mass than the dry season,
which is observed in Figure 4a as a flatter curve. We also observed that the contribution of particles with
DBC > 500 nm to total rBC mass is higher in the wet season than in the dry season: 45.4% versus 33.3%
and represent 0.38% and 0.21% of all rBC particles in each season, respectively. Dry season concentrations
are 3.4 and 2 times that of the wet season in the ranges of 80 nm < DBC < 500 nm (small particles) and
500 nm < DBC < 2,000 nm (large particles), respectively; particle abundance in the dry season is 3.5 and 2
times that of the wet season for the same size ranges. The seasonal differences may indicate different rBC
origins, transport, aging, or deposition processes for both seasons.

We observedmillimeter thick ice layers in the core's stratigraphy, likely associated with summermelting due
to solar radiation in austral summer. However, these samples are not necessarily associated with high BC
concentrations, as they ranged from as low as 0.02 to 0.08 μg L−1. Also, they did not present MMD differ-
ences compared to samples of similar concentrations but with no ice layers (not shown). This suggests the
melting was not an important postdepositional process for rBC. This result is supported by Doherty
et al. (2013) that found only very limited redistribution of BC in a snow and firn vertical profile with melt
layers much thicker (>10 cm) than the ones found in TT07 (~1 mm).

4.2. Comparison With Other Studies

Figure 5a compares the rBC mass distribution observed in the Antarctic samples with previous studies in
snow from different parts of the globe, and Table 2 summarizes them. Ohata et al. (2013) analyzed 20 snow
samples from Sapporo, a semi urban area in northern Japan; Schwarz et al. (2013) analyzed five fallen snow
samples from three snowfalls in semirural and rural areas of Denver, CO, USA; Sinha et al. (2018) analyzed
167 samples of different types (fresh snow, falling snow, and from the snowpack) from Ny‐Ålesund,
Spitsbergen; Mori et al. (2019) did an extensive work analyzing the size distribution of BC in 296 samples
from the snowpack over Finland, Alaska, Siberia, Greenland, and Spitsbergen during early spring in
2012–2016. At last, for Antarctica, Kinase et al. (2019) analyzed the mass and size distribution of 26 snow
samples collected from April to December 2011 at Syowa station (East Antarctica) and along a traverse route
to an inland (Mizuho) station, and Khan et al. (2018) presented an averaged rBC volume distribution of 11
samples from a snow pit in theMcMurdo Dry Valleys, West Antarctica. We do not include results fromKhan
et al. (2018) as rBC volume distribution differs from size distributions presented here.

TheMMD of the samples analyzed in this work is similar to Kinase et al. (2019) for East Antarctica and smal-
ler than the MMDs observed for snow in other regions of the globe. As for the number distribution, the
Antarctic samples from this study presented a slightly lower but still similar NMD than other very remote
regions (East Antarctic samples from Kinase et al., 2019) and Greenland samples from Mori et al. (2019),
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while differing greatly from more populated areas (Sapporo samples from Ohata et al., 2013) and
Ny‐Ålesund samples from Sinha et al. (2018).

While other studies have shown the contribution of particles with DBC > 500 nm to total mass in snow
(e.g., for the USA, Schwarz et al., 2013; Spitzbergen, Sinha et al., 2018; the Arctic, Mori et al., 2019; East
Antarctica, Kinase et al., 2019; and in the [Chinese] atmosphere, Huang et al., 2011; Wang et al., 2014; and
Wu et al., 2017), our results showed the highest contribution of all (Figure 5 and Table 2). The snow
samples from Japan (Ohata et al., 2013), the United States (Schwarz et al., 2013), and Spitzbergen (Sinha
et al., 2018) do not present a secondary mode, although particles with DBC > 500 nm represent ~25% of the
total mass in Spitzbergen (Sinha et al., 2018) and ~30% in the United States (Schwarz et al., 2013). The sam-
ples fromEast Antarctica (Kinase et al., 2019) show a secondarymode at ~690 nm, similar to this work'smode
at 673 nm, and some of the Arctic samples (Mori et al., 2019) presented secondary modes around
1,200–1,400 nm, closer to the 1,040 nm found in this work.

4.3. Size Distribution Interpretation

The rBC size distribution in snow can be affected by several factors: emission type (biomass or fossil fuel
burning), aging, transport, removal from the atmosphere, and postdepositional processes (Bond et al., 2013).

The formation of rBC particles is a complex process that depends on oxygen/fuel mixing states and involves a
series of reactions of polycyclic aromatic hydrocarbon molecules. Different burning origins (e.g., open bio-
mass burning and fossil fuel combustion) generate different particle morphologies, size distributions, and
MMDs (Bond et al., 2013). Even the same burning origin generates BC with different characteristics as the
process evolves, as happens when biomass burning changes from flaming to smoldering (Reid et al., 2005).

Aging in the atmosphere, agglomeration of water‐bound rBC particles
and size selection during snow formation and deposition would also influ-
ence BC size distribution in snow (Schwarz et al., 2013). Postdepositional
processes also influence BC distributions (Doherty et al., 2013), although
this happens due to snow melt, which was very limited at the sampling
site (~1 mm each melt layer and borehole temperature of −34°C at 12 m
depth). Other postdepositional processes such as agglomeration of BC
via impaction of snowflakes or wind remobilization are unlikely without
the presence of melt, due to the extreme volume dilution of BC in the
snow (Schwarz et al., 2013).

The NMD observed in the Antarctic samples in this work (<80 nm) is
similar to the NMD observed in Greenland snow (~90 nm—Mori

Figure 4. Mass and number size distributions for the dry (n = 8.28 × 105 particles) and wet season (n = 2.03 × 105 particles). Shaded areas represent one standard
deviation (68.3%) of the wet (shaded blue) and dry (shaded red) seasons. Standard deviation for DBC > 1,500 nm (up to 2.5 times the scale) not shown in 4a.

Table 1
Comparison Between the Full Core, Dry Season and Wet Season Number,
and Mass Size Distributions

Full core Dry season Wet season

MMD (primary mode) 162 ± 40 nm 160 ± 40 nm 187 ± 31 nm
NMD <80 nm <80 nm <80 nm
DBC < 100 nm mass 7.4% 8.5% 6.7%
DBC < 100 nm number 45.4% 47.9% 48.0%
DBC > 500 nm mass 36.4% 33.3% 45.4%
DBC > 500 nm number 0.25% 0.21% 0.38%
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et al., 2019) and in East Antarctica (~70 nm—Kinase et al., 2019). This is also in agreement to previous
qualitative observations that found abundant small rBC spherules with DBC ~ 30 nm in Antarctic snow
and ice (Ellis et al., 2016). An NMD in the Aitken mode (less than 100 nm diameter) is commonly related
to fresh, high temperature BC emissions, originated from efficient fuel burning (Bond et al., 2013),
although we consider unlikely that this NMD is related to fossil‐fuel combustion or to fresh emissions.
The sampling site is a remote place, with no nearby anthropogenic activity and air masses arriving at it
underwent significant aging (Stohl & Sodemann, 2010). Also, previous works (Arienzo et al., 2017;
Bisiaux, Edwards, McConnell, Albert, et al., 2012; Koch et al., 2007; Stohl & Sodemann, 2010) stated that
BC in Antarctica mostly reflects long‐range transport of biomass burning emissions from South America
and Australia. At last, Ellis et al. (2016) observed these small BC spherules with DBC ~ 30 nm in Antarctic
ice dated to the year 1759 CE (before industrialization), which cannot reflect fossil fuel emissions. They
did not observe discernable differences in BC morphology and sizes between the different time periods
studied (preindustrialization and postindustrialization), which also corroborates that biomass burning is
the likely origin.

Thus, long‐range transport and aging of rBC particles in the atmosphere might be the dominant factors
affecting the snow size distribution presented in this work. Kinase et al. (2019) found a similar MMD

Figure 5. (a) Mass size distribution and (b) number distribution in snow from this work in comparison to previous studies in snow. Data were normalized to
the finer mode peak (maximum y‐value at the median size of the finer mode). Data from Alaska, Finland, and Siberia (Mori et al., 2019) were averaged together
to maintain figure readability (results were similar to each other). Data from this work were normalized to the peak value of the finer mode maximum y‐value
(162 nm).

Table 2
Size Distribution in Snow (MMD and NMD) From Different Parts of the Globe and Related References

Location Reference Number of samples Type of sample Primary MMD (nm) Secondary MMDs (nm) NMD (nm)

West Antarctica This work 1,004 Snow/firn core 162 ± 40 673/1,040/1,810a <80
West Antarctica Khan et al. (2018) 11 Snowpit 300–400 ‐ ‐
East Antarctica Kinase et al. (2019) 26 Surface snow 140 690 <80
Sapporo, Japan Ohata et al. (2013) 20 Surface snow 175 ‐ 115
Denver, USA Schwarz et al. (2013) 5 Surface snow 220 ‐ ‐
Ny‐Ålesund,
Spitsbergen

Sinha et al. (2018) 167 Fresh snow, falling snow,
and snowpack

240 ‐ 102

Finland Mori et al. (2019) 11 Snowpack and surface snow 358 ‐ 110
Greenland Mori et al. (2019) 68 Snowpack and surface snow 200 ‐ 90
Alaska Mori et al. (2019) 182 Snowpack and surface snow 320 1,200–1,400 100
Siberia Mori et al. (2019) 29 Snowpack and surface snow 300 ‐ 105

aUncontained mode; see text.
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(140 nm vs. 162 nm in this work) and attributed it to these factors, considering that larger rBC particles are
removed more easily from the atmosphere than smaller ones during transport from source regions to
Antarctica. The removal of large rBC particles from the atmosphere would also reflect minimal presence
of large particles (>1,000 nm) in Antarctic snow, which is observed in this work.

Nevertheless, a few large particles were still present in the samples. As we observed that postdepositional
processes that could affect rBC size distributions were very limited in the sampling site (e.g., melting), we
suppose these few large particles may be a result of processes acting during snow formation in the atmo-
sphere or during snow deposition. Unfortunately, rBC atmospheric measurements done so far are mostly
up to 900 nm volume equivalent diameter (Cheng et al., 2018; Huang et al., 2011; Wang et al., 2014; Wu
et al., 2017), and we do not have any measurements of the atmosphere at the drilling site to compare both
atmospheric and snow size distributions.

Another supposition is that the large particles could be the remainders of long‐range transport that removed
most large rBC particles from the atmosphere but not all. Long‐range transport of large particles generated
in the atmosphere far away from Antarctica has been suggested by Ellis et al. (2016), which is not unreason-
able considering mineral dust up to 5,000 nm can be transported over long distances (Gaiero et al., 2007;
Mahowald et al., 2014) and be deposited in Antarctic snow (Delmonte et al., 2013; Li et al., 2008). Dust up
to 2,400 nm has been found at the sampling site, associated with remote continental sources (e.g., South
America—Cataldo et al., 2013; Schwanck et al., 2017), suggesting that large BC particles could also be trans-
ported this far. Further studies on rBC transport and deposition in snow, along with rBC size distributions
from the atmosphere above it, would be of extreme value to improve our understanding in BC deposition
in Antarctica.

5. Conclusions

Measurements of rBC size distributions in snow are important to adequately model BC impacts on the cryo-
sphere but are still scarce. In this work we presented an rBC size distribution obtained from a 20 m deep
snow/firn core from West Antarctica (1,004 melted samples). Results show a multimodal size distribution
with a primary MMD of 162 ± 40 nm and secondary modes at 673 ± 48 and 1,040 ± 88, with slight seasonal
differences (dry season MMD: 160 ± 40 nm; wet season MMD: 187 ± 31 nm). We observed a larger mode at
~1,810 nm but believe it is not fully characterized and in fact extends further than 2,000 nm. Our results are
similar to recently published literature about East Antarctica rBC size distributions (Kinase et al., 2019) that
found a primary MMD of ~140 nm, although one secondary mode observed in this study is similar to the one
observed in Kinase et al. (2019) (~673 nm vs. ~690 nm, respectively). We consider postdepositional processes
to have negligible influence to rBC size distribution due to very limited melt and to the extreme volume dilu-
tion of BC in the snow. Small particles (80 nm < DBC < 100 nm) are abundant, accounting for 45.4% of all
rBC cores detected by the SP2 but do not add significantly to rBC total mass (7.4%). Large particles
(500 nm > DBC > 2,000 nm) are very rare (0.25%) but represent a large portion of rBC total mass (36.4%).
Contribution of particles with DBC > 500 nm was higher in the wet season (mass: 45.4%, number: 0.38%)
than in the dry season (mass: 33.3%, number: 0.21%). Dry season concentrations are 3.4 and 2 times that of
the wet season in the ranges of 80 nm <DBC < 500 nm (small particles) and 500 nm <DBC < 2,000 nm (large
particles), respectively; particle abundance in the dry season is 3.5 and 2 times that of the wet season for the
same size ranges. These results corroborate the findings by Schwarz et al. (2013) that snow size distribution
presents a significant contribution of larger particles to total rBC mass, much larger than atmospheric rBC
size distributions. Also, our results indicate that large particles exist in Antarctic snow and ice and that
despite their low occurrence, they can represent an important fraction of total rBC mass in the snow.
More research comparing rBC size distributions in snow and in the air above it would be of great value
to improve the understanding of rBC deposition in snow and the role of aging and snow formation processes
to size distributions.
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Data Availability Statement

rBC size distribution data have been published online on PANGAEA repository as Marquetto, Kaspari, &
Simões (2020): Refractory black carbon mass and number size distributions in West Antarctica snow and
firn samples, PANGAEA (https://doi.org/10.1594/PANGAEA.920981).
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