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ABSTRACT 

 
HIV infection has risen to pandemic proportions. Interleukin-10 (IL-10), a potent anti-

inflammatory cytokine has been shown to enhance the establishment and persistence of 

chronic viral infections through inactivation of effector antiviral immune responses and it 

may also directly influence HIV-1 replication in cells of diverse lineages.  IL-10 promoter 

polymorphisms have been shown to affect HIV-1 susceptibility and pathogenesis. However, 

the underlying mechanisms are poorly understood. We investigated the relationship between 

IL-10 promoter variants, plasma IL-10 levels, and markers of disease outcome in chronically 

HIV-1-infected individuals. To investigate the mechanistic role of IL-10 and its genetic 

variants on HIV pathogenesis, we studied markers of activation on B cells, CD4
+
 and CD8

+
 T 

cells, and assessed effects on CD4
+
 T cell proliferation with and without blockade of the IL-

10 pathway.  

 

We used Taqman genotyping assays to genotype three IL-10 promoter single nucleotide 

polymorphisms (SNPs) in our study cohort. Baseline plasma IL-10 levels were measured 

using Luminex technology for 112 individuals. Viral load, CD4+ T cell counts and cytotoxic 

T lymphocyte (CTL) immune responses were measured at baseline. The rate of CD4
+
 T cell 

decrease was calculated in 300 individuals with a median follow-up of 25 months. CD38, 

CD95, Ki67, IgG and PD-1, markers of activation or exhaustion were measured on B cells, 

and CD38, CD95, Ki67, HLA-DR and PD-1 were measured on CD4
+
 and CD8

+
 T cells in a 

subset of 63 individuals. CD4
+
 T cell proliferation was measured using Carboxyfluorescein 

succinimidyl ester (CFSE) assays, following IL-10 receptor blockade in a subset of 31 

individuals.   

 



 xi

The IL-10 -1082G, -592A and -3575 variants were observed at frequencies of 0.3, 0.34 and 

0.23 respectively, in our study cohort. Plasma IL-10 levels were significantly higher in the -

1082GG group than in the combined AA/AG group (p=0.0006). There was a significant 

association between the 592AA genotype and a greater breadth of CTL responses compared 

to the CC and CA (p= 0.002 and 0.004 respectively). The -592AA genotype associated 

significantly with an attenuated loss of CD4 cells (p= 0.0496), with -592AA having the least 

change in CD4 cells per year. The median expression of HLA-DR, a marker of T cell 

activation was significantly higher in the-1082AA group for CD8 cells (p= 0.047), and the -

592AA group for CD4 T cells (p= 0.01). The median expression of IgG on the surface of B 

cells was significantly higher in the -1082GG genotype and the -592CC genotype (p=0.0183 

and 0.0659 respectively). Overall, IL-10 variants correlated with IL-10 expression and CD4 

decline during chronic HIV-1 infection. IL-10 promoter variants may influence the rate of 

HIV-1 disease progression by regulating IL-10 levels, which in-turn, may affect the breadth 

of CTL responses. Furthermore, the increased expression of HLA-DR and PD-1 on CD8
+
 and 

CD4
+
 T cells, indicates that lower IL-10 levels are associated with increased immune 

activation and immune exhaustion. The increased expression of IgG on B cells, suggests that 

in a setting of lower IL-10, there is possibly a bias towards a Th2 immune response. These 

data suggest a significant role for IL-10 genetic variants and IL-10 in HIV pathogenesis. 

Further studies to determine whether and how the IL-10 pathway may be manipulated for 

therapeutic or vaccine strategies for HIV are warranted.  
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1.1 INTRODUCTION 

 

We have come along approximately three decades since HIV was first described and the 

proportion of infected individuals has risen to pandemic proportions. According to the 2009 

UNAIDS Global Report: AIDS epidemic update (UNAIDS, 2009), almost 60 million people 

have become infected with HIV since the beginning of the epidemic, and 25 million deaths have 

resulted from HIV-related causes. About two-thirds (67%) of the world’s HIV infected 

individuals are from the sub-Saharan African region, which includes South Africa (see Figure 

1.1.1). Of the infections among children worldwide, 91% of new infections occur in the sub-

Saharan African region. Figure 1.1.2 shows an illustration of the disproportionate global 

distribution of HIV infection in 2004. 

 

Figure 1.1.1 The global distribution of HIV infection (taken from UNAIDS (UNAIDS, 

2010)). The shading of the different geographic regions represents the adult HIV prevalence in 

2009. The darker the shading, the larger the number of HIV-infected adults in that region.  
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Figure 1.1.2 Global HIV prevalence in 2004 (taken from www.worldmapper.org (Newman, 

2006)). Colour is used to group the different territories into 12 geographical regions. The shading 

is consistent to allow easy visual comparison between the maps. A) This map of the world shows 

the standard land distribution of the different regions. This is used as a reference map. B) This 

distorted map of the world is a re-projection of the world, showing each country in proportion to 

the HIV prevalence in that region in 2004.  

 

Investigation of the underlying biological mechanisms of HIV infection could lead to a 

preventative vaccine or cure. Studies show that the disproportionate global distribution of HIV 

infection could be due to different biological factors (Abdool Karim et al., 2007, Cohen et al., 

2008, Quinn, 1996). Socio-economic factors such as poor nutrition, legal and economic 

disadvantages may make populations more vulnerable to HIV infection and spread (UNAIDS, 
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2009). HIV has different subtypes and strains, that are distributed geographically, which may 

contribute to the disproportionate distribution of HIV infection. The genetic variation of the 

population itself may play a role in HIV susceptibility and pathogenesis an example of which are 

single nucleotide polymorphisms (SNPs). Previous studies have shown that SNPs within the 

interleukin-10 (IL-10) promoter region of the gene may influence HIV susceptibility and 

pathogenesis. Understanding the role of IL-10 in a South African population could help with 

identifying the specific mechanisms involved in facilitating HIV transmission and progression to 

clinical disease.  
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1.2 HUMAN IMMUNODEFICIENCY VIRUS 

HIV is a lentivirus that targets certain cells of the human immune system. Specifically, HIV 

attacks helper T-cell lymphocytes, macrophages and dendritic cells (Wallace, 1996). When these 

vital cells of the immune system are targeted and become depleted, the immune system becomes 

compromised, leading to co-infections and eventually Acquired Immune Deficiency Syndrome 

(AIDS).  

 

1.2.1 SUBTYPES & GLOBAL DISTRIBUTION OF HIV 

Several factors drive HIV-1 genetic heterogeneity, for example the reverse transcriptase lacks a 

proofreading ability, the rapid replication of HIV-1 in vivo, host immune pressure, and 

recombination during replication (Buonaguro et al., 2007). Based on the genetic make-up of 

HIV-1, phylogenetic analyses have led to the classification of HIV-1 into four genetic groups, 

i.e. M (major), O (outlier) and N (non-M, non-O) (Buonaguro et al., 2007, Hemelaar et al., 2006, 

McCutchan, 2006, Simon et al., 2006) and the more recently identified P group (Plantier et al., 

2009, Vallari et al., 2011). HIV-1 group M is responsible for the majority of infections 

worldwide. Group M is further divided into subtypes or clades (see Figure 1.2.1), as well as 

recombinant forms.  
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Figure 1.2.1 Phylogenetic tree of HIV-1 groups and subtypes (taken from Plantier (Plantier et 

al., 2009)). HIV-1 is divided into 4 groups based on genetic analyses, with group M accounting 

for the majority of infections worldwide. Group M is further divided into subtypes, or clades. 

Intra-subtype variation can be between 15–20%, while inter-subtype variation is approximately 

25–35%, depending on the subtypes and genome regions investigated.  

 

The recombinant forms can be divided into circulating recombinant forms (CRFs) or unique 

recombinant forms (URFs). With almost all regions of the world being affected by this 

pandemic, group M dominates infection globally, and group O and N resulting in a small 

minority of infections (see Figure 1.2.2). There is an unequal geographic distribution of subtypes 

globally with subtypes A, B and C dominating infection globally (see Figure 1.2.3). Subtype C is 

responsible for 50-60% of infections worldwide, and is concentrated in Southern and East Africa 

and India (Buonaguro et al., 2007, Hemelaar et al., 2006, McCutchan, 2006, Simon et al., 2006).  
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Figure 1.2.2 Geographic distribution of HIV groups, subtypes and recombinant forms 

globally (taken from (McCutchan, 2006)). This map shows the distribution of the subtypes found 

in different regions globally. 
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Figure 1.2.3 Global prevalence of HIV-1 subtypes (taken from Buonaguro (Buonaguro et al., 

2007)). This is a global distribution of subtypes. Subtypes A, B and C cause the majority of 

infections worldwide with subtype C being responsible for 50-60% of infections globally.  

 

1.2.2 STRUCTURE 

The HIV virus is spherical in shape (see Figure 1.2.4). Free virus particles, known as virions, can 

be 110nm in diameter (Richman, 2003). HIV contains a protein core or capsid which is 

surrounded by a lipid bilayer membrane or envelope (Wallace, 1996).  
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Figure 1.2.4 Structure of HIV (taken from http://www.niaid.nih.gov (NIAID), accessed 30 

September 2011). The virus consists of an outer envelope (phospholipid layer) which contains 

different sized glycoproteins, i.e. either gp120 or gp41. The core of the virus contains the RNA 

material and accessory enzymes.  

 

Studies suggest that approximately 72 glycoprotein structures are embedded along the lipid 

bilayer membrane (Richman, 2003). Each glycoprotein trimer is composed of envelope surface 

glycoprotein gp120, and the transmembrane glycoprotein gp41. The conical shaped protein 

capsid is found within the envelope. Two copies of the HIV single-stranded RNA genome are 

found within the capsid, along with several enzymes that are required for host cell infection and 

viral replication (Richman, 2003). Enzymes required for infection and early viral replication 

include integrase, reverse transcriptase and protease.  
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1.2.3 GENOMIC ORGANIZATION 

HIV-1 contains 2 copies of single-stranded RNA, each of which are about nine kilobases (kb) 

long. Each of these strands contains the HIV-1 genome and genetic information encodes all the 

viral components and proteins (Richman, 2003). During HIV replication, the virus is copied and 

converted into double-stranded DNA by the process of reverse transcription. Duplication of 

sequences occurs within the long-terminal repeat (LTR) during reverse transcription, resulting in 

a slightly longer viral DNA genome of around 10 kb (Richman, 2003). LTRs are essential for the 

integration into the host cell DNA, and contain gene regulatory protein binding sites which 

control viral gene expression (Janeway, 2005).  The double-stranded viral DNA is referred to as 

proviral DNA once it is integrated into the host cell by the enzyme integrase. Once integrated, 

the viral proteins are then expressed during transcription and translation.  

 

The HIV genome is composed of nine genes flanked by LTRs (see Figure 1.2.5).  Retrovirus 

genomes all contain 3 essential genes, i.e. gag, pol, and env. These three genes encode viral 

structural proteins and are vital for viral replication. The remaining six genes are involved in 

viral replication and infectivity.  
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Figure 1.2.5 Genomic structure of HIV (taken from www.gladstone.ucsf.edu (Institutes), 

accessed 30 September 2011). The HIV genome consists of nine genes flanked by LTRs. Three 

genes, gag, env and pol are common to all retroviruses, and the remaining six genes have 

regulatory or accessory functions in viral replication and infection.  

 

The gag (group-specific antigen) gene encodes for structural proteins of the viral core, as well as 

matrix (involved in virion assembly and structure), capsid (forms the conical shaped core) and 

nucleocapsid (found within the core, and contains reverse transcriptase and integrase) protein 

domains. The pol (polymerase) gene encodes enzymes such as reverse transcriptase, protease and 

integrase, which are involved in viral replication and integration. The env (envelope) gene 

encodes the viral envelope glycoprotein. The gp160 precursor is cleaved to form the 

transmembrane glycoprotein gp41 (required for virus fusion and internalisation), and the surface 

glycoprotein gp120 (binds CD4 and CCR5). The rev (regulator of viral expression) gene encodes 

for proteins involved in processing and expression of viral transcripts. The tat (transactivator) 

gene encodes for proteins that are involved in the positive regulation of transcription, and is 

essential for viral replication. The nef (negative-regulation factor) gene encodes proteins that 

enhance viral replication and decreases the expression of CD4, and MHC Class I and Class II. 
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The vif (viral infectivity factor) gene encodes for proteins that affect viral particle infectivity and 

is required for efficient viral replication. The vpr (viral protein R) gene encodes for proteins that 

are involved in transporting the DNA to the nucleus and enhances virion production. Vpr also 

initiates cell cycle arrest, allowing for efficient viral replication. The vpu (viral protein U) gene 

encodes for proteins that encourage intracellular CD4 degradation and improves virion release. 

(Janeway, 2005, Richman, 2003)  

 

1.2.4 PATHOGENESIS OF HIV-1 

HIV replication occurs within a host cell, as it utilises host enzymes, amino acids, ribosomes and 

energy to produce components that will be assembled into new virions. The spikes on the HIV-1 

envelope are formed by two glycoproteins. The gp120 glycoprotein is the surface glycoprotein 

and gp41 is the transmembrane protein. As shown in Figure 1.2.6, entry into the cell occurs when 

the gp120 surface glycoprotein binds to the CD4 receptor on the host cell (Simon et al., 2006, 

Wallace, 1996). This triggers ensuing interactions between the virus and chemokine receptors 

such as CCR5 and CXCR4. Fusion of the two membranes occurs within minutes and the viral 

core is then released into the cytoplasm of the host cell. The virus core then disassembles, and 

the single-stranded RNA genome is then reverse (retro) transcribed into DNA by the viral 

enzyme reverse transcriptase (Rhoades, 1996). It is during this stage of reverse transcription that 

viral variants may occur as a result of the lack of proofreading ability of reverse transcriptase 

(Simon et al., 2006). The viral DNA is then incorporated into the host cell’s genome by the viral 

enzyme integrase. New viral RNA, proteins and particles are generated at the host’s expense. 

The newly produced viral components are then transported to the host cell’s plasma membrane, 

where they are then packaged into new virions which bud from the surface of the cell. This 
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disrupts normal cell functions and leaves the host cell’s plasma membrane perforated, ultimately 

leading to the death of cells that are essential to the immune response (Wallace, 1996).  

 

CD4
+
 helper T cells are the main target of HIV. These cells are key participants in cell-mediated 

and antibody-mediated immune responses. Healthy HIV-negative individuals contain about 1000 

CD4
+
 T cells per cubic millimeter of blood, i.e. 1,200 cells/mm

3
 (Janeway, 2005, Rhoades, 

1996). Gradual decline in CD4
+
 T cells results in a compromised immune defense, allowing for 

the development of opportunistic infections or malignancies.  
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Figure 1.2.6 Life cycle of HIV (taken from http://www.niaid.nih.gov (NIAID) accessed 30 

September 2011). HIV enters the cell, where replication occurs. New virions bud from the 

surface of the cell and continue to infect other cells.  
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The acute phase of HIV infection is usually the first 2-4 weeks after infection with HIV. During 

this phase 80% of individuals will experience flu-like symptoms (Janeway, 2005, Roitt, 2000, 

Snustad, 1999). During this initial phase of HIV infection the population of CD4
+
 T cells 

declines, with an increase in plasma levels of HIV (see Figure 1.2.7).  

 

 

Figure 1.2.7 The course of HIV-1 infection (taken from Simon (Simon et al., 2006)). (A) Acute 

HIV infection results in a rise in plasma viremia and usually decreases to a viral set point over 

time. The risk of transmission is higher during the early stages of infection. Viral diversity 

A 

B 
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increases over time. (B) As plasma viral loads increase (seen in A) CD4
+
 T cell counts decrease. 

As the HIV antibodies develop and CTL responses start to appear, when viral loads start to 

decrease.  

 

Within 2-6 weeks of infection, HIV antibodies to core and surface proteins can be detected using 

enzyme-linked immunoassays (Roitt, 2000). The cytotoxic T-cell response is crucial in 

controlling viremia (Koup et al., 1994) . These responses peak then decline after CD4 T cell 

counts rebound. Following acute infection, the viral load reaches a set point, which is usually a 

predictor of the rate of disease progression (Lyles et al., 2000, Mellors et al., 1996, O'Brien et al., 

1996, Schacker et al., 1998). An asymptomatic phase follows acute infection, where persistent 

viral replication continues (Bailey et al., 2006, Koup et al., 1994). Despite efforts to fight the 

infection by the immune system, the population of CD4
+
 T cells gradually diminishes. It can take 

between 1-20 years to reach clinical disease when opportunistic infections begin to appear.  

 

In order to become a successful parasite, the final phase in the HIV life cycle is to be passed onto 

a second host, where it can infect and replicate again. HIV is a sexually transmitted infection, 

and can be passed on from one individual to the next via semen and vaginal secretions (Wallace, 

1996). HIV can also be passed on through blood on hypodermic needles used to inject 

intravenous drugs. Mother-to-child infection can also occur across the placenta and to infants 

from breast milk.  

 

The typical course of infection explained here can however vary widely between individuals. 

Most individuals infected with HIV will follow this typical course of infection and develop 

AIDS, eventually leading to opportunistic infections and death. However, some individuals, 
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known as long-term non-progressors (LTNPs) are HIV-positive individuals that have the ability 

to control the infection without antiretroviral therapy. The mechanisms responsible for LTNP are 

poorly understood but may involve multiple immune mechanisms such as humoral immunity, for 

example LTNPs may develop antibodies against HIV proteins, which may help in controlling the 

virus to relatively low levels of viremia (Braibant et al., 2006, Cao et al., 1995, Carotenuto et al., 

1998, Montefiori et al., 1996, Pereyra et al., 2009, Pilgrim et al., 1997), also host genetics may 

play a role in controlling HIV pathogenesis, for example protective Human Leukocyte Antigen 

alleles may assist in controlling HIV pathogenesis. It has also been established that certain 

individuals remain seronegative despite being highly exposed to HIV (Beyrer et al., 1999, 

Kulkarni et al., 2003, Rowland-Jones et al., 1999). The ability to control or be resistant to HIV 

infection may lie in the host genetic factors of the individual.  

 

1.2.5 HOST GENETIC FACTORS  

It has been shown that individuals exposed to HIV have a differential propensity to become 

infected, and once infected the rate of progression to severe immunodeficiency leading to AIDS 

and eventually death differs between individuals. Allelic variants in the human genome may play 

a role in the regulation of HIV susceptibility or resistance to infection, and the pathogenesis of 

HIV progression. Several genes have been identified to influence the outcome of HIV-1 

exposure or infection, and O’Brien and Nelson termed these as AIDS restriction genes (ARGs) 

(O’Brien and Nelson, 2004). Table 1.2.1 shows the ARGs and their effects, as well as a 

comparison in allelic frequencies between African Americans and European Americans (Winkler 

et al., 2004). These host restriction factors vary in the mode of inheritance, i.e. dominant, 
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recessive or codominant; the phase of HIV infection in which they play a role and the stage that 

the effect is evident (O'Brien and Nelson, 2004).  

 

Two cytokine genes have been identified as ARGs, i.e. interleukin-10 (IL-10) and interferon-γ 

(IFN-γ) (O'Brien and Nelson, 2004, Winkler et al., 2004). Polymorphisms in these cytokine 

genes have been shown to play a role in HIV susceptibility and HIV-1 pathogenesis. IL-10 

promoter polymorphisms have been shown to limit HIV-1 infection and affect the rate of disease 

progression, while IFN-γ allelic variants affect the rate of disease progression. Polymorphisms in 

these genes that restrict HIV infection are mainly due to single nucleotide polymorphisms 

(SNPs). SNPs are single base mutations in DNA.  
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Table 1.2.1 Comparison of the effects of ARGs on African Americans and European Americans (taken from (Winkler et al., 

2004)) 

 

2
2
 



23 

 

1.3 HUMAN IMMUNE SYSTEM  

 

The human immune system is a multifaceted organisation of cells, tissues and organs that aim 

to protect the body from potential harmful molecules. Microbes such as bacteria, viruses, 

parasites and fungi are thought to be the primary source of foreign attacks against the body.  

The immune system also protects against unusual or defective self-processes such as tumours. 

Two types of immunity come into play during the immune response, i.e. the innate immune 

response and the adaptive immune response (see Figure 1.3.1).  

 

Figure 1.3.1 The Human Immune System. The immune system is divided into two arms, the 

innate immunity and adaptive immunity. The innate immunity reacts over a short period of 

time, following pathogen invasion. The innate response involves epithelial barriers, natural 

killer cells and phagocytic cells, complement, cytokines, host restriction factors and pattern 

recognition receptors. The adaptive response reacts which largely involves B cells and T cells 

confers life-long (or long-lived) immunity.  
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Innate immune responses produce the first line of defense against foreign pathogens (Janeway, 

2005, Sherwood, 2001). This arm of the immune response is a combination of nonspecific 

responses, including cytokine secretion, natural killer (NK) cells and the complement system.  

Cytokines are chemical messengers of the immune system that relay signals from one cell to 

another in order to initiate an immune response. NK cells have the ability to non-specifically 

lyse and destroy virus-infected cells. The complement system, which consists of serum and 

membrane proteins, is the major effector of the humoral branch of adaptive immunity. The 

complement system involves a number of proteins that come together to ‘complement’ 

antibodies in destroying bacteria. Upon activation by a trigger, proteases cleave specific 

proteins which release cytokines, this in turn, initiates an amplifying cascade of further 

cleavages (Delves and Roitt, 2000b, Delves and Roitt, 2000a). Genes aid in natural immunity, 

as we inherit it. Certain genes, or mutations in genes, enhance the immune response against 

immune invasion. In HIV infection, host restriction factors play a role in HIV susceptibility 

and pathogenesis. Another component of the innate immune system is pattern-recognition 

receptors (PRRs). These receptors are germline-encoded, and are involved in identifying 

components of foreign pathogens. The innate immune response is the key to initiating the 

adaptive immune response. 

 

The adaptive immune response is more specific as it can distinguish between millions of 

different foreign molecules. The adaptive immune response is divided into two branches of 

immunity: antibody-mediated (also commonly referred to as humoral) and cell-

mediated.Lymphocytes are the key cells involved in the adaptive immune response. B cells 

and T cells are the main types of lymphocytes. Plasma cells are derived from B cells and they 

are responsible for the antibody-mediated immunity (Rhoades, 1996, Sherwood, 2001, 
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Snustad, 1999). Plasma cells produce antibodies. Coordination of the antibody-mediated 

response involves the coordination of CD4
+ 

T cells, antigen-presenting cells such as 

macrophages, and B cells. This coordination of cells involves cytokines. T cells are involved 

in the cell-mediated immunity. Cytokines such as interleukins and interferons coordinate the 

interaction between antigen-presenting cells, such as macrophages and B cells, and CD4
+
 and 

CD8
+
 T cells (Rhoades, 1996).  

 

1.3.1 IMMUNE RESPONSES TO HIV INFECTION 

Although the genome size of HIV-1 may seem modest in size being less than 10kb, it has the 

ability to utilise cellular pathways while neutralising and evading components of the immune 

system.   

 

During the asymptomatic phase of HIV infection, the viral load is controlled to a quasi-stable 

level, this could be due to cytotoxic T cells invading and killing productively infected cells 

found in sites of HIV replication (Janeway, 2005). Another explanation could be that the virus 

runs out of target cells, i.e. CD4
+
 T cells, most of which are destroyed and reside in the gut 

mucosa (Brenchley et al., 2006). It has been shown that high levels of HIV-specific CD8
+
 T 

cells correlated with slower disease progression. CD4
+ 

T cells have also been shown to play an 

essential role in the host’s response to HIV infection (Michael, 1999). Evidence shows that a 

correlation was found between the strength of CD4
+
 T cell proliferative responses and viral 

load, strong CD4
+
 T cell proliferative responses were seen in individuals that did not progress 

to AIDS (Michael, 1999). CD4
+
 T cell responses play a central role in controlling infection, 
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but on the other hand are the main target for HIV, the depletion of these vital cells may 

explain the inability of the immune system to control the infection.  

 

Evidence that certain individuals may be more resistant to HIV infection and some may 

respond differently during the course of HIV infection suggests that innate immunity and the 

natural response may play a role in the natural mechanisms that control HIV resistance and 

disease pathogenesis. In the last decade in the field of HIV, a significant discovery has been 

the identification of host restriction factors (also called intrinsic immunity) that play a key role 

in antiretroviral defense by diverse mechanisms. Host restriction factors like APOBEC3G, 

Trim5 and tetherin are some of the host restriction factors that have been shown to play a role 

in HIV-1 infection.  

 

Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) is a 

cytidine deaminase, which deaminates deoxycytodine to deoxyuridine in viral DNA during 

reverse transcription, therefore altering the HIV RNA. This results in hypermutation in the 

plus strand DNA. APOBEC3G has been shown to be a potent inhibitor of HIV replication 

(Browne et al., 2009, Goila-Gaur and Strebel, 2008, Kao et al., 2007, Xu et al., 2007). 

However HIV has an accessory protein, Vif, which counteracts the effect of APOBEC3G. 

Trim5α is another host restriction factor, which targets HIV (Sayah et al., 2004, Stremlau et 

al., 2004). The process by which Trim5α restricts HIV replication is by recognition of the 

retroviral capsid and promoting the premature capsid disassembly (Nisole et al., 2005, 

Stremlau et al., 2006) . However, human Trim5α has limited efficacy and is not as potent as 

primate Trim5α. Tetherin, also referred to as BST-2, is a host restriction factor which restricts 

HIV virion release from infected cells by tethering nascent enveloped virions to the cell 
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membrane. However, the HIV accessory protein Vpu down-regulates tetherin on the cell 

surface . (Hammonds et al., 2012, Van Damme et al., 2008) 
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1.4 CYTOKINES 

 

Cytokines are small secreted signaling proteins usually with molecular weights of between 8-

70 kD. These proteins are produced by a variety of cell types and are essential in mediating 

and regulating both the innate and adaptive immune responses, and inflammation.  

 

The cytokine network is a highly regulated system of cytokines that mediate intercellular 

communication, and the development and function of the immune response (see Figure 1.4.1). 

These intercellular communicators are synthesised, released and recognised by immune 

system cells (Kiyono, 1990). Cytokines mediate the intensity and duration of the immune 

response, as well as many significant interactions between cells of the immune system (Stites, 

1994). These signaling proteins bind to their respective receptors on the cell surface, in 

response to a stimulus, which then results in the activation of successive signal transduction 

pathways within a cell (Smith and Humphries, 2009). The binding of the cytokine to its 

respective receptor initiates specific cytokine action.   

 

Interleukins (IL) are cytokines which are released from T helper (Th) cells of the immune 

system. There are different subsets of Th cells which produce different sets of cytokines, i.e. 

Th1 and Th2, and the recently described Th17 subset. Th1 cells produce cytokines such as 

interferon-gamma (IFN-γ), interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-α) 

whereas Th2 cells produce cytokines such as IL-4, IL-5 and IL-10. The balance between the 

secretion of Th1 and Th2 cells may influence the phenotype and outcome of several diseases 

(Tsiligianni et al., 2005). The Th17 subset of T cells is responsible for producing the cytokine 
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IL-17, and has been identified to be involved in various autoimmune diseases (Stockinger and 

Veldhoen, 2007).  

 

Cytokine gene expression is highly regulated. Cytokine expression may vary due to 

environmental factors, or genetic polymorphisms. Altered cytokine expression has been 

implicated in various chronic diseases, resistance/susceptibility to infection and pathogenesis 

and response to treatment of certain diseases (Smith and Humphries, 2009).  
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Figure 1.4.1 The cytokine network (taken from www.abcam.com, accessed on 2 October 

2011). The cytokine network is an intricate system of a variety of cells and cytokines. 

Cytokines are intercellular communicators that signal different pathways within different cells.  
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1.4.1 IL-10 

Interleukins are a group of cytokines which are involved in stimulating immune cell 

proliferation and differentiation. The IL-10 gene is located on human chromosome 1, between 

1q31 and 1q32 (see Figure 1.4.2) (Lazarus et al., 2002). The gene consists of 5 exons, and 

spans about 5kb. IL-10 prevents unnecessary inflammation during the immune response 

(Abbas, 2007, O'Farrell et al., 1998). IL-10 is a powerful cytokine that is produced by Th2 

cells, monocytes, macrophages, regulatory T cells, and certain activated B and T cells, while 

the IL-10 receptor is expressed on a range of cells, in particular the immune cells (Asadullah 

et al., 2003) It has been shown that IL-10 downregulates the expression of major 

histocompatibility complex (MHC) Class I and Class II antigens, as well as the expression of 

numerous Th1 cytokines such as IL-1, IL-2, IL-6, IL-8, IL-12 and TNF-α (Ness et al., 2004, 

Tedgui and Mallat, 2006).  

 

IL-10 has been shown to enhance B cell proliferation, survival and antibody production 

(Croxford et al., 1998, Hunt et al., 2000). IL-10 is a negative feedback regulator for 

macrophage activation. Many studies have shown that IL-10 production may vary widely 

between individuals. Polymorphisms found within the promoter region of the IL-10 gene, 

which is upstream from the transcription start site, have been found to be associated with 

differential IL-10 production. These polymorphisms are SNPs and are named based on their 

position which is upstream from the transcription start site. Studies have focused on three 

polymorphisms found in the proximal region of the promoter (the region closer to the 

transcription start site) and three polymorphisms found in the distal region of the promoter (the 

region further away from the transcription start site). The three proximal IL-10 polymorphisms 
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are the -1082 polymorphism (rs1800896), which is an A to G transition; -819 (rs1800871), 

which is a C to T transition; and the -592 polymorphism (rs1800872), which is a C to A 

transversion. The -819 mutation T is in complete linkage disequilibrium with the -592 

mutation A, therefore these mutations are almost always inherited together, so if there is a 

mutation at the one position, there will always be a mutation at the other (Stanford et al., 

2005). The three distal IL-10 polymorphisms are -2763 (rs6693899), which is C to A 

transversion; -2849 (rs6703630), which is a G to A transition; and -3575 (rs1800890), which is 

a T to A transversion. Previous studies have shown that these polymorphisms can either up-

regulate or down-regulate the expression of IL-10. The mutation from A to G at position -1082 

has been associated with higher IL-10 production in vitro (Turner et al., 1997). Previous 

reports demonstrate that the wild-type -1082A allele is associated with low IL-10 production, 

and the mutation -592A allele is associated with low IL-10 production (Hutchinson et al., 

1998, Turner et al., 1997). Previous studies have also demonstrated that IL-10 production 

varies between different IL-10 haplotypes based on positions -1082, -819 and -592 (Eskdale et 

al., 1998). The GCC/GCC haplotype is associated with high IL-10 production; the GCC/ATA 

or GCC/ACC haplotypes are associated with intermediate IL-10 production; the ATA/ATA, 

ATA/ACC or ACC/ACC haplotypes are associated with low IL-10 production (Edwards-

Smith et al., 1999). 
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Figure 1.3 Location of Interleukin-10 (IL-10) gene. The IL-10 gene is located on the q 

arm of human chromosome 1, between the region 1q31 and 1q32. The IL-10 gene spans about 

5 kilobases, and consists of 5 exons. The polymorphic region is found within the promoter 

region, which is upstream from the transcription start site.  

 

1.4.2 IL-10 AND HIV 

IL-10 is a pleiotropic cytokine that has various anti-inflammatory and immunosuppressive 

activities. This potent cytokine has been associated with HIV susceptibility and has been 

shown to play a role in disease progression to AIDS. However, the underlying mechanisms on 

how the cytokine may control HIV infection and pathogenesis are not well understood.  

 

As this Th2 cytokine has the ability to down-regulate the expression of Th1 cytokines it has 

been suggested that it may have adverse effects on HIV infected individuals. The down-

regulation of Th1 cytokines may result in the inhibition of robust T cell-mediated responses 

and the presentation of antigen on the cell surface (Ji et al., 2005). SNPs that affect the 
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expression of IL-10 production have been shown to play a role in HIV susceptibility and 

pathogenesis.  

 

IL-10 has been shown to inhibit HIV replication within macrophages and monocytes 

(Porcheray et al., 2006, Wang and Rice, 2006). Infection within monocytes and macrophages 

is less productive than it is within CD4
+
 T cells, as these are the primary target population, 

however HIV replication within macrophages and monocytes may have significant 

consequences for HIV transmission and pathogenesis, especially during the late stages of 

infection, when CD4
+
 T cells have been depleted (Orenstein et al., 1997).  

 

Previous genetic studies focused on IL-10 promoter polymorphisms have shown that these 

SNPs play a role in HIV susceptibility and pathogenesis of infection. In a study by Shin et al 

in 2000  results showed that IL-10 promoter polymorphisms affect HIV-1 infection and 

pathogenesis in a cohort comparing individuals of different ethnicity (Shin et al., 2000). In this 

study they found a significant association between the -592A polymorphism and an 

acceleration to AIDS in Caucasians. They also found that low-IL-10-producing genotypes 

were associated with susceptibility to HIV infection and an AIDS-accelerating effect. In 

another genetic study of a Zimbabwean cohort of HIV infection (Erikstrup et al., 2007) it was 

shown that survival was doubled in individuals carrying the -1082G polymorphism and this 

allele was also associated with an attenuated loss of CD4
+
 T cells. More recently Oleksyk et al 

(Oleksyk et al., 2009), showed that European individuals carrying the low-IL-10-producing 

ATA haplotype had a faster progression to AIDS, however, this was not the case among 

African Americans. In our previous study on the role of IL-10 promoter variants in acute HIV 

infection, we found that individuals with high-IL-10-producing genotypes were less likely to 
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become infected, but once infected showed a significantly higher median viral load during the 

first 3 months, than the other IL-10 variants (Naicker et al., 2009). However this association 

seemed to reverse as infection progressed.   

 

Mechanistic studies examining lymphocytic choriomeningitis virus (LCMV) in mice showed 

that IL-10 gene knock-out or signaling blockade enhanced T-cell immune responses, which 

resulted in rapid viral elimination and the development of antiviral memory T cell responses 

(Brooks et al., 2006, Ejrnaes et al., 2006). A recent study by Brockman et al, showed that IL-

10 receptor blockade in vitro within peripheral blood mononuclear cells (PBMCs) from HIV-

infected individuals resulted in restoration of proliferative and effector CD4
+
 T cell function 

(Brockman et al., 2009). IL-10 is also reported to enhance detrimental deletion of dendritic 

cells by NK cells, therefore intensifying immune dysfunction in chronic HIV-1 infection 

(Alter et al., 2010). Taken together, these studies suggest a complex but significant role for IL-

10 in HIV pathogenesis. It has been suggested that the IL-10 pathway be manipulated to boost 

antiviral immune responses and improve vaccine effectiveness (Brooks et al., 2008), therefore 

there is a clear and urgent need to better understand the underlying mechanisms of IL-10 in 

HIV pathogenesis, particularly in geographical regions most severely affected by the HIV-1 

epidemic, as this may have implications for immunotherapeutic strategies and vaccine design. 
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1.5 PROJECT AIMS AND STRATEGY 

Previous genetic studies have identified IL-10 to be a host genetic factor which restricts HIV 

susceptibility and pathogenesis. However, these studies have mostly focused on populations in 

geographic groups where the burden of HIV infection is low. It is important to study the 

effects of these polymorphisms in a South African setting, to determine the effects of these 

polymorphisms in this setting of high HIV disease burden. The effects of these mechanisms 

may vary based on the strain and subtype present, and given that the subtypes found within 

sub-Saharan Africa are different compared to subtypes found in previous studies done on 

American and European individuals. Also, the effect of IL-10 may vary depending on the 

stage of HIV-1 infection. Environments with poor resources and health care are more at risk 

for infectious diseases to persist at higher rates. It is evident from the global distribution of 

HIV and co-infections that the incidence of co-infections varies between the West and low 

income, developing settings such as South Africa (Corbett et al., 2002). Co-infections such as 

malaria, STIs and tuberculosis have played a major role in enhancing the spread of HIV-1 

(Girardi et al., 2000, Samba, 2001, Wasserheit, 1992). Therefore our overarching hypothesis 

was that IL-10 single nucleotide polymorphisms associated with high IL-10 production are 

associated with reduced susceptibility to HIV-1 subtype C infection, higher viral loads during 

the acute or early HIV-1 infection phase and delayed rate of disease progression or loss of 

CD4
+
 T cell counts during the chronic/late phase of infection.   

 

The first aim of this study was to determine the allele frequency of three IL-10 SNPs in three 

study cohorts. The SNPs that were of interest were found at positions -592, -1082, and -3575. 

The cohorts that were included in this study included individuals at varying stages of HIV 



37 

 

infection, as well as some individuals that were at high risk of infection, but remained HIV-

negative. The cohorts that were included in the study were the CAPRISA Acute Infection 

cohort, the HPP Acute Infection cohort and the HPP Sinikithemba cohort of chronic HIV 

infection.  

 

The second aim of this study was to investigate the association between IL-10 promoter 

polymorphisms and IL-10 levels, as well as the association between IL-10 variants and the 

expression of other pro- and anti-inflammatory cytokines in vivo during chronic HIV-1 

infection. This would give us an indication of cytokine profiles in individuals with different 

genotypes in an HIV setting. These cytokine profiles were measured in individuals during the 

chronic phase of infection. 

 

The third aim of this study was to determine the association between IL-10 variants and 

different biomarkers of HIV infection. Here we wanted to determine the association between 

IL-10 variants and viral load, CD4
+
 T cell count and CD4

+ 
T cell decline. We also wanted to 

determine the association between IL-10 variants and the breadth and magnitude of HIV-1 

specific CD8
+
 T cell immune responses. These were measured at routine visits in individuals 

at both the acute and chronic phase of infection.  

 

The last aim of this study was to look at the mechanistic effects of these IL-10 variants and the 

role they play in an HIV setting. This would help us determine if IL-10 promoter variants 

provide either detrimental or beneficial effects. Activation of three different cell populations 

was measured in individuals in the chronic phase of HIV infection. We determined the 

association between CD4
+
 T cell, CD8

+ 
T cell and B cell activation with IL-10 promoter 
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variants. We next looked at the association between IL-10 promoter variants and proliferation. 

We used IL-10 receptor blockade assays, either with or without stimulation to determine if IL-

10 genotype associated with IL-10 blockade. Figure 1.5.1 below shows an overview of the 

study strategy. The following chapters will present the different aims and objectives 

separately. 

 

 

Figure 1.5.1 Outline of project strategy 
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2.1 INTRODUCTION 

 

There is an uneven distribution of HIV globally, with two-thirds of the world’s infected 

population found in sub-Saharan Africa. There are multiple factors which contribute to this 

uneven distribution of HIV infection, including socio-economic factors and biological factors. 

Some examples of socio-economic factors include poverty, nutrition, and health-care. 

Examples of biological factors include the strain or subtype of the virus present in a specific 

geographical region, concomitant infections and host genetic factors. As HIV replication takes 

place within the host’s cells, it utilises host proteins, enzymes, amino acids, ribosomes and 

energy. Therefore if certain host genetic factors influenced any part of the HIV replication 

cycle, this would affect susceptibility to HIV infection and the rate of disease progression. It 

has been demonstrated that different host genetic factors may influence different stages of 

HIV infection, such as HIV susceptibility, acute or chronic infection (Gao et al., 2005, Naicker 

et al., 2009, Shin et al., 2000). Thus understanding the effect of host genetic factors which may 

influence different stages of HIV infection is essential.   

 

Allelic frequencies in one geographic or ethnic population, may not always translate to another 

geographic or ethnic population. These differences can be attributed to the age of the 

population and diverse mutational forces that shape human evolution (Donfack et al., 2006). 

Systematic and evolutionary forces, such as natural selection, random genetic drift, migration 

and mutation shape the process of evolution (Snustad, 1999). Therefore allelic frequencies of 

certain polymorphisms may not always translate from one geographic population to the next. 
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Therefore ethnic diversity of a population may possibly play a role in the distribution of host 

genetic factors that restrict HIV susceptibility and pathogenesis.  

 

An example of the geographical differences of host genetic factors that influence HIV 

infection and pathogenesis is the mutation found in the chemokine binding co-receptor CCR5, 

i.e. the CCR5∆32 variant (Dean et al., 1996, Kostrikis et al., 1999, Paxton et al., 1996). This 

was the first host restriction factor shown to effectively block against HIV-1 infection. HIV 

requires two surface receptors to enter a cell, i.e. CD4 and the chemokine binding receptor that 

is most commonly used is the CCR5 co-receptor. The CCR5∆32 mutation is a 32 base pair 

deletion in the CCR5 gene. If an individual is homozygous for this mutation, then the CCR5 

co-receptor is non-functional and this mutation is strongly associated with protection against 

HIV-1 infection (Kostrikis et al., 1999). However, the frequency of this mutation differs 

geographically and is very rare among Africans. It has been shown that the frequency of the 

CCR5∆32 mutation is higher among Northern Europeans, such as the Swedish population, 

decreasing geographically south in the British, German, French, Italian, Greek and Turkish 

populations (Stephens et al., 1998).  

 

The human leukocyte antigen (HLA) locus is a highly polymorphic region which has also 

been implicated as an HIV host genetic restriction factor. HLA genes are part of the MHC 

locus. The function of HLA class I molecules is to present pathogen-derived peptides on the 

surface of infected cells for CD8
+
 T lymphocyte recognition. Different HLA genotypes have 

been associated with a difference in immune responses, HIV-1 susceptibility to infection and 
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disease progression (Fellay et al., 2007, Kiepiela et al., 2004, Limou et al., 2009). Similarly, 

the distribution (or population frequencies) of these HLA genes varies geographically.  

 

IL-10 is a potent, anti-inflammatory Th2 cytokine, which is involved in regulating the immune 

response. Previous genetic studies have focused on the three classic proximal promoter SNPs. 

These SNPs are found at positions -592 (a C to A transversion); -819 (a C to T transition); and 

-1082 an A to G transition. The -592 and -819 SNPs are in complete linkage disequilibrium, so 

the mutation at one position is always present with the mutation at the other position. Three 

SNPs found in the distal region have recently been identified, they are found at positions -

2763 (C to A transversion); -2849 (G to A transition); and -3575 (T to A transversion).  

 

The IL-10 -592A variant has shown to be associated with an increased susceptibility to HIV-1 

infection, and an acceleration to AIDS among Caucasians (Oleksyk et al., 2009, Shin et al., 

2000, Vasilescu et al., 2003). In a genetic study performed in an African Zimbabwean cohort, 

it was found that carriers of the -1082G allele showed that survival was doubled (Erikstrup et 

al., 2007). We have recently shown in a cohort of high-risk black South African women that 

the -1082AA and -592AA genotypes were associated with an increased risk of HIV infection 

(Naicker et al., 2009). Once infected, these genotypes associated with high viral load and low 

CD4
+ 

T cell counts during the acute phase of infection. This suggests that the effect of IL-10 

polymorphisms may depend on the phase of infection.  

 

In this part of the study we wanted to determine, in South African cohorts, the allele and 

genotypes frequencies of three IL-10 promoter polymorphisms (-592, -1082 and -3575) shown 

to be associated with HIV-1 susceptibility and pathogenesis. We expanded this study to 
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include high risk HIV-negative women, acutely HIV-1 infected individuals and chronically 

HIV-1 infected individuals. This would give us an indication of the role of IL-10 

polymorphisms during different stages of HIV infection. Our project strategy included 

association analyses for viral load, CD4
+
 T cell counts, and CD4 decline. These analyses 

would allow us to investigate the role of a previously identified ARG in mediating differential 

susceptibility and pathogenesis in high risk women, and antiretroviral naïve individuals at 

different stages of HIV-1 infection. Understanding the protective mechanisms against HIV-1 

infection may lead to the design and development of therapeutic interventions and possible 

vaccine strategies.  
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2.2 MATERIALS AND METHODS 

 

2.2.1 STUDY POPULATION  

This study population consisted of three different cohorts (See Figure 2.2.1). These groups 

were the CAPRISA (Centre for the AIDS Programme of Research in South Africa) Acute 

Infection cohort, the HPP (HIV Pathogenesis Programme) Acute Infection cohort, and the 

HPP Sinikithemba Chronic Infection cohort.  

 

Figure 2.2.1 Breakdown of study population. Three different cohorts were studied at 

different stages of infection. 
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Figure 2.2.2 shows the breakdown of the CAPRISA Acute Infection cohort. The CAPRISA 

Acute Infection (CAI) study is a longitudinal cohort study on viral set point and clinical 

progression in HIV-1 subtype C infection (van Loggerenberg et al., 2008). This cohort was 

established in Durban, South Africa in 2004. The study enrolled 245 high risk HIV negative 

women who were screened monthly for HIV infection using two rapid antibody tests 

(Determine, Abbott Laboratories, Illinois, IL, USA; and Capillus, Trinity Biotech, Jamestown, 

NY, USA). Negative or indeterminate samples were subjected to pooled plasma PCR testing, 

and positive pools were deconstructed and individually tested (COBAS Ampliscreen
TM

 HIV-1 

Test, Roche Diagnostics, Indianapolis, IN, USA). HIV-1 infection was further confirmed in 

RNA positive samples with a positive HIV enzyme immunoassay test (Enzygost, Siemens 

Healthcare Diagnostics, Eschborn, Germany), and a diagnostic nucleic acid test (Roche 

Diagnostics, Indianapolis, IN, USA). Women from this HIV-negative cohort and other 

seroincidence cohorts were enrolled into phase II of the study if they seroconverted during 

follow-up.  CD4
+
 T cell counts were determined by flow cytometry (Becton Dickinson, San 

Jose, CA, USA). Plasma viral loads and CD4
+
 T cells counts were performed at various time 

points post-infection. As this study follows individuals from before seroconversion and early 

seroconversion, this allowed us to study susceptibility from HIV-negative individuals as well 

as progression from acute infection to early chronic infection. 

 

The HPP Acute Infection (HAI) cohort had 33 participants at the time of this study (see Figure 

2.2.3). This study was initiated in March 2007, in Durban, South Africa (Radebe et al., 2011). 

All participants were identified by screening at three voluntary counseling and testing centres 

at St Mary’s hospital, McCord hospital and Prince Mshiyeni hospital in Durban, South Africa. 

Participants that tested negative by Rapid HIV-1 tests (Bioline, Standard Diagnostics; and 
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Sense, Hitech Healthcare) were tested for being HIV-1 RNA positive; negative HIV-1 enzyme 

immunoassay (SD HIV1/2 enzyme-linked immunosorbent assay [ELISA] 3.0, Standard 

Diagnostics), and a negative or indeterminate Western blot (Genetic System, Bio-Rad, 

Hercules, CA, USA). Once identified as acutely infected, participants are followed 

longitudinally. Viral load measurements were performed using Roche Amplicor version 1.5 

assay or Cobas Taqman HIV-1 test, and CD4
+
 T cell counts were measured by Tru-Count 

technology and flow cytometry (Becton Dickinson, San Jose, CA, USA).  

 

 

 

Figure 2.2.2 The breakdown of the CAPRISA Acute Infection Cohort. This cohort was 

initiated in 2004, in Durban, South Africa. The Acute Infection Cohort has followed 

individuals at high risk for HIV infection from when they were HIV-negative until 

seroconversion. Various measurements and follow-up is done following seroconversion.  
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Figure 2.2.3 An overview of the HPP Acute Infection Cohort. The HPP Acute Infection 

cohort was initiated in March 2007, in Durban, South Africa. Once individuals are identified 

as acutely infected they are enrolled into the study with longitudinal follow-up.  

 

The HPP Sinikithemba (SK) cohort is a longitudinal study of chronic HIV infection (see 

Figure 2.2.4). This cohort was established in Durban, South Africa in August 2003, and 

participants were enrolled into the study until June 2006 (Kiepiela et al., 2007). This study 

group consists of 451 antiretroviral naïve, chronically HIV-1 subtype C-infected adults. The 

Sinikithemba cohort is based at McCord Hospital in Durban, South Africa. CD4
+
 T cell counts 

and plasma viral loads were performed routinely for study participants, including the baseline 

time point of study entry. CD4
+
 T-cell counts were measured by flow cytometry (Becton 

Dickinson, San Jose, CA, USA) while plasma viral loads were measured using the Roche 
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Amplicor version 1.5 assay (Roche Diagnostics, Indianapolis, IN, USA). CD4
+
 T cell counts 

were performed at 3-month intervals and plasma viral loads were performed at 6-month 

intervals. The number and magnitude of HIV peptides targeted by CTL were measured at 

baseline by interferon-γ (IFN-γ) enzyme-linked immunosorbent (ELISPOT) assay using a 

panel of 410 overlapping peptides spanning the HIV-1 subtype C (HIV-1C) proteome. 

 

Figure 2.2.4 An overview of the Sinikithemba Chronic Infection cohort. This cohort was 

initiated in August 2003, in Durban, South Africa. Participants were enrolled into the cohort 

after they tested positive for HIV infection. Longitudinal measurements of biomarkers of HIV 

infection were done.  

 

At the time of assessment, the total number of individuals enrolled in the CAI cohort was 222. 

Of this total, 3 individuals were later found to have been HIV-positive at enrollment, and were 

excluded from the cohort. Of the remaining 219, 212 samples were available for genotype 

assessment and were included in this study. A total of 25 individuals acquired HIV during the 

follow-up period. At the time of assessment, the total number of individuals included in the 
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HAI cohort was 33. Of this total, 22 samples were available for genotype assessment and were 

included in this study. At the time of assessment, the total number of individuals included in 

the SK cohort was 451. All 451 samples were available for genotype assessment, and were 

included in this study. Overall, 685 individuals were included in this study, 498 HIV-positive 

individuals and 187 HIV-negative individuals.  

 

2.2.2 SAMPLE PREPARATION 

Participants enrolled in these studies provided blood samples at scheduled visits and time 

points. At each visit blood samples were collected by venipuncture into EDTA tubes. Samples 

from the CAI cohort were prepared to separate cellular components from plasma, before DNA 

extraction was performed. DNA was extracted from whole blood samples from the HAI and 

SK cohorts.  

 

For CAI samples, cellular components were separated from plasma. This was done by 

centrifuging whole blood at 2,500 x g for 10 minutes at room temperature, using a Jouan 

MR23i centrifuge. After whole blood is centrifuged, it separates into three layers based on 

their density (see Figure 2.2.5). After centrifugation the erythrocytes (red blood cells) settle at 

the bottom of the tube, the intermediate layer follows consisting of leukocytes (white blood 

cells) and thrombocytes (platelets), and the uppermost layer is the plasma. The intermediate 

layer is known as the buffy coat, from which DNA extraction is performed.  
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Figure 2.2.5 Separation of whole blood. After whole blood is centrifuged, it separates into 

three layers, i.e. bottom layer of red blood cells, middle layer of buffy coat and top layer of 

plasma.  

 

Buffy coats were carefully removed from EDTA tubes using fine tip plastic Pasteur pipettes 

(Copan, Murrieta, CA, USA) and placed into clean 1.5 ml Eppendorf tubes (Axygen, Union 

City, CA, USA). Buffy coats were stored at       -80
o
C until processed for DNA extraction. 

Excess red blood cells were removed from the buffy coat using RBC Lysis Solution 

(QIAGEN, Valencia, CA, USA), to avoid downstream inhibition of polymerase chain reaction 

(PCR). 1 ml of RBC Lysis Solution was added to each sample, which was then left at room 

temperature for 10 minutes. To allow for lysis of red blood cells samples were periodically 

inverted. After 10 minutes, samples were centrifuged at 4,000 rpm for 10 minutes at room 

temperature, using the Jouan A14 microcentrifuge. After centrifugation the buffy coat forms a 
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pellet at the bottom of the microcentrifuge tube. The supernatant contains lysed red blood 

cells, which were removed from the microcentrifuge tube, leaving behind 200 µl to resuspend 

the buffy coat pellet. This amount of sample was sufficient for DNA extraction.  

 

2.2.3 DNA EXTRACTION 

DNA was extracted from samples from the CAI cohort using the QIAamp DNA Blood Mini 

Kit (QIAGEN, Valencia, CA, USA). DNA extraction was performed on 200 µl of buffy coat 

following the manufacturer’s protocol. If samples were less than 200 µl, then PBS was used to 

bring the starting volume up to 200 µl. If samples were more than 200 µl, then the amount of 

lysis buffer and other reagents were increased proportionally. An overview of this protocol is 

shown in Figure 2.2.6. Briefly, Protease (or Proteinase K) was added to the sample to lyse and 

expose the contents of the cells. Buffers were added to the samples which enabled the DNA to 

bind to the spin column provided in the kit. During centrifugation, the DNA from samples 

bound to the membrane of the spin column and cellular debris flowed through the membrane 

and collected in a collection tube which was then discarded. The salt and pH conditions of the 

lysate prevents cellular debris such as protein and other contaminants from binding to the 

membrane. Thereafter, two wash steps allow for the removal of residual contaminants. Finally, 

the purified DNA is eluted using Buffer AE, allowing for long-term storage of DNA at -80
o
C 

for future use.  

 

DNA from samples from the HAI and SK cohorts were extracted using the Gentra Puregene 

DNA extraction kit (QIAGEN, Valencia, CA, USA). DNA was extracted from 300 µl of 

whole blood, following the manufacturer’s protocol (see Figure 2.2.6). Briefly, RBC Lysis 



53 

 

Solution was used to lyse excess red blood cells, which may inhibit downstream PCR 

reactions. After incubating in RBC Lysis Solution for 1 minute at room temperature, samples 

were centrifuged for 20 seconds at 13,000 x g to pellet the white blood cells. The supernatant, 

containing the lysed red blood cells, was then carefully discarded leaving behind 

approximately 10 µl of residual liquid to resuspend the pellet. The Cell Lysis Solution was 

added to lyse the cells, followed by the Protein Precipitation Solution to the lysed cells. After 

centrifuging, the protein debris formed a pellet at the bottom of the tube, and the supernatant 

containing the DNA was pipetted into a clean tube containing isopropanol. After inverting this 

mix, the DNA became visible as threads or a clump. This was then centrifuged, and the 

supernatant discarded. The DNA pellet was then washed using 70% ethanol. After 

centrifuging again, the supernatant was discarded leaving behind the DNA pellet, which was 

then hydrated using the DNA Hydration solution. Finally, the DNA was incubated at 65
o
C for 

5 minutes, and then stored at -80
o
C for future use.  
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Figure 2.2.6 Overview of protocols used for DNA extraction (taken from QIAGEN). The 

QIAmp Spin Procedure was used to extract DNA from CAPRISA Acute Infection Cohort. The 

Puregene DNA procedure was used to extract DNA from samples from both the HPP Acute 

Infection cohort and the Sinikithemba chronic infection cohort.  
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All DNA samples were quantified using the NanoDrop (Thermo Scientific, Waltham, MA, 

USA). Blank measurements were made using Buffer AE (elution buffer) for samples extracted 

using the QIAamp DNA Blood Mini Kit, and DNA Hydration Solution for samples extracted 

using the Gentra Puregene DNA extraction kit. DNA samples were quantified using 1.5 µl of 

sample which was placed on the NanoDrop sample platform, and a measurement was then 

taken and recorded.  

 

2.2.4 GENOTYPE ASSESSMENT USING TAQMAN SNP GENOTYPING 

Three IL-10 promoter polymorphisms were genotyped in our study cohort. These SNPs are 

found at positions -592 (rs1800872), -1082 (rs1800896) and -3575 (rs1800890). Genotype 

assessment was done on our study cohort using TaqMan SNP Genotyping assays (Applied 

Biosystems, Life Technologies, Grand Island, NY, USA). Predesigned primers and probes 

were used to genotype all three SNPs analysed in this study.  

 

An overview of the TaqMan Genotyping assay is shown in Figure 2.2.7. The TaqMan 

genotyping assay consists of a single tube per SNP. Each assay contains two primers which 

amplify the polymorphic sequence of interest, and two TaqMan MBG (Minor groove binder) 

probes which distinguish between the two alleles, i.e. the wild-type and the polymorphism.  
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Figure 2.2.7 An overview of the Taqman Genotyping assay (images taken from (Abgene, 

Biosystems)). Samples are prepared and reactions are arranged on a 96-well plate. PCR 

amplification is performed and samples are subjected to a post-read on the ABI Prism 7000 

Sequence detection system. Analysis of data is performed on the ABI software and genotypes 

are assigned to samples.  

 

The TaqMan SNP genotyping assay requires 1-20 ng of genomic DNA per reaction. All DNA 

samples genotyped, were diluted down to 20 ng/µl of DNA with sterile distilled water. If the 

sample was less than 20 ng/µl after quantification, then those samples were used as is, 

provided the purity of the sample was adequate, i.e. the ratio of the A260/A280 was between 

1.7-1.9. Each reaction contained: 12.5 µl of TaqMan Universal PCR Master Mix, 0.625 µl of 

genotyping assay probe and primer mix, 1 µl of DNA (at concentration between 1-20 ng/µl), 

and 10.875 µl of sterile distilled water to make up the reaction volume to a total of 25 µl per 

well. Samples were prepared on a 96-well plate. All reaction plates contained negative 

controls, i.e. sterile distilled water was used instead of DNA template, and these negative 

controls are referred to as non-template controls (NTC). All reaction plates contained positive 
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controls as well. These were samples from the CAPRISA Acute Infection cohort that produced 

positive results previously by TaqMan genotyping and were further confirmed by sequencing. 

Each plate also contained random duplicates of test samples. An example of a typical plate 

layout is shown in Table 2.2.1.  

 

The thermal cycling conditions used were from the standard protocol provided in the 

manufacturer’s protocol (see Table 2.2.2). All reactions were run on a GeneAmp PCR system 

9700 (Applied Biosystems, Life Technologies, Grand Island, NY, USA).  

 

Table 2.2 An example of a plate layout 

 
1 2 3 4 5 6 7 8 9 10 11 12 

A SK061 SK069 SK076 SK084 SK091 SK099 SK107 SK114 SK121 SK129 SK137 SK062 

B SK062 SK070 SK077 SK085 SK092 SK100 SK108 SK115 SK122 SK130 SK138 0028 

C SK063 SK071 SK078 SK086 SK093 SK101 H2O SK116 SK123 SK131 SK139 SK073 

D SK064 H2O SK079 SK087 SK094 SK102 SK109 SK117 SK124 SK132 SK140 SK078 

E SK065 SK072 SK080 SK088 SK095 SK103 SK110 SK118 SK125 SK133 SK141 SK098 

F SK066 SK073 SK081 H2O SK096 SK104 SK111 H2O SK126 SK134 SK142 0048 

G SK067 SK074 SK082 SK089 SK097 SK105 SK112 SK119 SK127 SK135 SK143 SK119 

H SK068 SK075 SK083 SK090 SK098 SK106 SK113 SK120 SK128 SK136 0001 SK136 

 

1. Distilled water, indicated by blue blocks, were used as non-template controls (NTC) 

2. Positive controls were included, indicated by green blocks 

3. Random duplicates are indicated by orange blocks 
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Table 2.2.2 PCR conditions used for TaqMan SNP Genotyping 

Step 
AmpliTaq Gold 

Enzyme Activation 

PCR (40 cycles) HOLD 

Denature Anneal/Extend  

Time 10 minutes 15 seconds 1 minute ∞ 

Temperature 95
o
C 92

o
C 60

o
C 4

o
C 

 

 

During PCR amplification the 5’ nuclease process occurs, this is shown in Figure 2.2.8. Each 

probe anneals to its complementary sequence of template DNA, between the forward and 

reverse primer sites. The TaqMan MGB probes contain a reporter dye at the 5’ end of the 

probe. The reporter dye is either VIC or FAM, which are linked to either the probe for Allele 1 

or Allele 2 respectively. The MGB is found at the 3’ end of the probe, which allows probes of 

shorter length to stably hybridise to the complementary DNA sequence. This results in the 

melting temperature between the matched and mismatched probes, resulting in robust allelic 

discrimination.  The probes also contain a nonfluorescent quencher (NFQ) at the 3’ end. This 

prevents fluorescence of the dye from unhybridised probes. The AmpliTaq Gold DNA 

polymerase extends the primers which are bound to the template DNA. Cleaving of probes 

only occurs when they are hybridised to the target DNA sequence. When the probes are 

cleaved the reporter dye is separated from the quencher dye, resulting in fluorescence of the 

reporter dye VIC or FAM. When probes that have hybridised to the complementary sequence 

are cleaved, an increase in fluorescence occurs. Therefore, fluorescence resulting from PCR 

amplification indicates which alleles are present in the sample. For example, when there is an 

increase in the VIC dye, then the sample is homozygous for Allele 1, when there is an increase 
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in FAM-dye, then the sample is homozygous for Allele 2, when both the VIC and FAM dyes 

fluoresce, then the sample is heterozygous for both alleles.  

 

 

Figure 2.2.8 Overview of the 5’ Nuclease assay process (taken from ABI). Two primers 

specifically amplify the region of interest, while the two probes with reporter dyes fluoresce 

based on the allele present in the target sequence. After the probe binds to the region of 

interest, the AmpliTaq Gold DNA Polymerase cleaves the quencher dye, causing the reporter 

dye to increase in fluorescence, thus allowing for allelic discrimination based on increase in 

fluorescent signal.  

 

Allelic discrimination plate reads and analyses were performed on the ABI Prism 7000 

Sequence Detection System (Applied Biosystems, Life Technologies, Grand Island, NY, 
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USA). After PCR amplification, the endpoint plate read was performed. The Sequence 

Detection System (SDS) software plotted the fluorescence measurements based on signals 

from each well, i.e. each sample. Based on the fluorescence signal, alleles are identified for 

each sample. An example of the plotted fluorescence signals is shown in Figure 2.2.9. This 

example shows the fluorescence plot for the -592 mutation. The fluorescence signal for the 

mutation -592A is plotted on the x-axis, while the fluorescence signal for the wild-type allele -

592C is plotted on the y-axis. Here, the three genotypic groups are represented by different 

shapes and colours. The genotypes group separately, allowing for allelic discrimination. The 

blue diamonds represent individuals homozygous for the wild-type allele, i.e. the -592CC 

genotype, the green triangles represent individuals heterozygous for both alleles, i.e. -592CA 

and the red circles represent individuals homozygous for the polymorphism, i.e. -592AA. The 

grey squares are the NTCs. The genotypes are reported in table form as well for easy allelic 

discrimination.  



61 

 

 

Figure 2.2.4 An example of a fluorescence plot used for allelic discrimination. The three 

genotypes group separately allowing for easy allelic discrimination. The NTCs are represented 

by the grey squares.  

 

2.2.5 STATISTICAL ANALYSIS 

Various methods of statistical analysis were used. The association between different IL-10 

variants and plasma viral load, CD4
+
 T cell count, the rate of CD4

 
decline and the magnitude 

and breadth of immune responses were analysed.  

 

The allelic frequencies of the IL-10 variants, in the total study population as well as 

subpopulations included in different analyses, were confirmed to be in Hardy-Weinberg 

equilibrium using the χ
2
 (Chi-square) test. To determine the association between IL-10 
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variants and either plasma viral load or CD4
+
 T cell count, we used the Kruskal-Wallis test. 

The haplotypes were generated using an unpublished program from the Head of the 

Bioinformatics Section of the Frederick National Laboratory. Haplotypes were generated 

using the using the expectation maximization (EM) algorithm (Excoffier and Slatkin, 1995). 

To determine if there was an association between IL-10 haplotypes and either viral load or 

CD4
+
 T cell count, we used the Wilcoxon rank sums test. The rate of CD4 decline was 

measured over a period of 24 months, the association between IL-10 variants and CD4 decline 

was estimated using the multivariate mixed effects models. To determine the association 

between IL-10 variants and the breadth and magnitude of immune responses, the Kruskal-

Wallis test was used.  
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2.3 RESULTS 

 

2.3.1 CLINICAL DETAILS OF PARTICIPANTS INCLUDED IN STUDY 

Demographics of the three cohorts included in this study are shown in Table 2.3.1. All 

participants in the CAI cohort underwent monthly screening for HIV-1 infection. Of the 212 

individuals included in this study, 25 had acquired HIV during the two-year follow-up period 

and were enrolled into phase II of the study. The remaining 187 HIV-negative individuals did 

not acquire HIV infection during the follow up period and were disenrolled from the study 

after two years. The median age of individuals in the CAI cohort was 36 years, and all 

individuals were female. The median age of individuals in the HAI cohort was 32 years and 

52% of individuals in this study were female. The median age of individuals in the SK cohort 

was 31 years and 82% of individuals in this cohort were female.  

 

Table 2.3.1 Demographics of individuals included in study 

Cohort Number of Individuals Median Age (years) Female (%) 

CAPRISA Acute Infection 212 
36 

(18-58) 
100 

HPP Acute Infection 22 
32 

(21-66) 
52 

HPP Sinikithemba 451 
31 

(27 – 37) 
82 
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2.3.2 DNA EXTRACTION AND QUANTIFICATION 

DNA was extracted from the buffy coat of 212 individuals from the CAI cohort using the 

QIAamp DNA Blood Mini Kit (QIAGEN). DNA was quantified using the Nanodrop and the 

concentration ranged from 5-150 ng/µl. DNA was extracted from both the HAI and SK 

cohorts routinely using the Gentra Puregene DNA Extraction kit (QIAGEN). DNA was 

quantified using the Nanodrop and the concentration ranged from 9-2,000 ng/µl. All samples 

had a purity of + 1.8 (A260/A280 ratio). The amount of DNA required for the genotyping was 

between 1-20 ng. Samples with concentrations lower than 20 ng/µl were used as is, and 

samples with concentrations more than 20 ng/µl were diluted down to 20 ng/µl using sterile 

distilled water.  

 

2.3.3 IL-10 GENOTYPE AND HAPLOTYPE FREQUENCIES AND -3575 DISTRIBUTION 

Previously described IL-10 promoter polymorphisms were present in this study population. 

The overall allele frequencies of the three SNPs studied are shown in Table 2.3.2. The -592 

and -1082 SNPs were studied previously (Naicker et al., 2009). Genotype data for all 

individuals included in this study are found in Appendix 1. Previous studies determined the 

frequency of these alleles in different ethnic populations. The frequency of the -592A allele 

was 0.24 in Caucasians, 0.4 in African Americans, 0.33 in Hispanics, and 0.6 in Asians (Shin 

et al., 2000). The frequency of the 1082G allele was 0.5 in Dutch Caucasians, 0.35 (Italian 

cohort), 0.47 (Netherlands cohort), and 0.28 (Indian cohort) (Bagnoli et al., 2007, Chatterjee et 

al., 2009, de Jong et al., 2002, Keijser et al., 2009). The frequency of the -3575A allele was 

0.43 in Caucasians, 0.29 (Spanish cohort), 0.29 in Afro-Brazilians, 0.33 in Euro-Brazilians, 



65 

 

0.4 in Dutch, 0.3 in Brazilians (de Jong et al., 2002, Domingo-Domenech et al., 2007, Moraes 

et al., 2003).  

 

Haplotypes were generated for individuals genotypes for all three polymorphic regions of 

interest. Haplotypes were then generated based on these three genotypes, and assigned to 

individuals based on probabilities. If an individual was homozygous for a SNP at all three 

regions, then that individual would only have one haplotype. However, if an individual was 

heterozygous at any of these three polymorphic sites then there would be a possibility of 

having two haplotypes based on the highest probability score (a score of 0.89 or greater). 

Table 2.3.3 below shows the percentage of individuals with a specific haplotype, shown 

separately, i.e. based on whether an individual had the haplotype or not. In this study group, 

there was a possibility of 7 haplotype groups: CAT, AAT, CGA, CGT, CAA, AGT and AGA.  

 

Table 2.3.2 Allele frequencies of all three SNPs in study cohorts 

Cohort 
-592C 

(Wild-type) 

-592A 

(Mutation) 

-1082A 

(Wild-type) 

-1082G 

(Mutation) 

-3575T 

(Wild-type) 

-3575A 

(Mutation) 

CAPRISA Acute 

Infection 
* * * * 0.8 0.2 

HPP Acute 

Infection 
0.73 0.27 0.59 0.41 0.68 0.32 

HPP 

Sinikithemba 
0.69 0.31 0.68 0.32 0.77 0.23 

*These mutations were previously studied and allele frequencies were described in my preceding research 

(Naicker et al., 2009) 
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Table 2.3.3 Haplotype frequencies of all three study cohorts 

Cohort AAT AGA AGT CAA CAT CGA CGT 

CAPRISA Acute 

Infection 
0.29 0.0003 0.03 0.02 0.34 0.21 0.12 

HPP Acute 

Infection 
0.24 0 0 0.02 0.27 0.32 0.15 

HPP 

Sinikithemba 
0.34 0 0 0.02 0.32 0.23 0.11 
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2.3.4 ASSOCIATION OF IL-10 -3575 GENOTYPE WITH DISTRIBUTION AND TIME TO 

INFECTION 

The CAI cohort, was the only cohort in this study that followed individuals from when they 

were HIV-negative until seroconversion. Therefore, for this analysis we only included the CAI 

as we had data for both HIV-negative and HIV-positive individuals. As they were also 

followed up until seroconversion, we were able to analyse if the IL-10 -3575 SNP had any 

association with HIV-status or time to infection.  

 

For this part of the analysis, 212 individuals were genotyped for the -3575 SNP using TaqMan 

Genotyping assays (Applied Biosystems). The distribution of the -3575 genotypes is shown in 

Figure 2.3.1. The blue bars indicate HIV-negative individuals and the red bars indicate HIV-

positive individuals. The number of individuals is indicated within bars and the percentage of 

each genotype according to HIV-status is also indicated. The Fisher’s exact test was used to 

determine if there was a significant association between -3575 genotype and HIV-status. The 

distribution of HIV-positive individuals was TT: 13.6% (18/132), TA: 6.8% (5/74) and AA: 

33.3% (2/6) (p= 0.08). Therefore, looking at the -3575 mutation on its own, there was no 

significant association between -3575 genotype and HIV status, however there seemed to be a 

trend towards an association.  

 

We also wanted to investigate if there was an association between CAI haplotype and HIV 

acquisition (Table 2.3.4). All participants that were followed since they were HIV negative 

were included in this analysis. Time to HIV acquisition was calculated as time from enrolment 

into the HIV negative cohort to estimated date of infection. A proportional hazards model was 
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fitted to time-to-HIV acquisition with haplotype. We did not find any significant association 

between any CAI haplotype and HIV acquisition. As the AGA and CGT haplotypes had zero 

HIV-positive individuals, we used the Fisher’s exact test to calculate the p- value. The AGA 

haplotype was not significantly associated with HIV acquisition (p= 1.00), however, we found 

that the CGT haplotype was significantly associated with HIV acquisition (p= 0.003). There 

were zero HIV-positive individuals with the CGT haplotype.  

 

 

 

Figure 2.3.1 The percent distribution of -3575 genotype with HIV-status. The blue bars 

indicate the HIV-negative individuals and the red bars indicate the HIV-positive individuals. 

The numbers in/above the bars indicate the number of individuals in that group. 
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Table 2.3.4 Association between CAPRISA Acute Infection cohort haplotypes and HIV 

acquisition 

Haplotype %HIV (n/N) 
Unadjusted Hazard 

Ratio (95% CI) 
p-value 

AAT Yes 13.6% (14/103) 1.37 (0.62 – 3.01) 
0.44 

 No 10.2% (11/108) 1.00 (reference) 

AGA Yes 0.0% (0/1) - 
- 

 No 11.9% (25/210) - 

AGT Yes 12.5% (1/8) 1.07 (0.15 – 7.92) 
0.95 

 No 11.8% (24/203) 1.00 (reference) 

CAA Yes 14.3% (1/7) 1.13 (0.15 – 8.33) 
0.91 

 No 11.8%  (24/204) 1.00 (reference) 

CAT Yes 12.1% (15/124) 1.05 (0.47 – 2.34) 
0.90 

 No 11.5% (10/87) 1.00 (reference) 

CGA Yes 9.6% (7/73) 0.71 (0.30 – 1.70) 
0.44 

 No 13.0% (18/138) 1.00 (reference) 

CGT Yes 0.0% (0/44) - 
- 

 No 15.0% (25/167) - 

 

 

We used a Kaplan-Meier survival curve to determine if -3575 genotype had an association 

with HIV-infection (see Figure 2.3.2). There seemed to be a trend towards individuals with the   

-3575AA genotype being more likely to become HIV-infected, however this did not reach 

significance (p= 0.09).  
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Figure 2.3.2 Kaplan-Meier graph showing the percent of individuals remaining HIV-

negative based on IL-10 -3575 genotype.  Data shows that individuals with the -3575AA 

genotype were more likely to become infected, however this did not reach significance (p= 

0.09).  
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2.3.5 ASSOCIATION OF IL-10 VARIANT WITH VIRAL LOAD 

For this part of the analysis, we analysed the association between viral load and the -3575 

genotype for the CAI cohort. For the HAI and SK cohorts, we analysed the association 

between all three SNPs, i.e. -592, -1082 and -3575, and viral load (see Table 2.3.5). 

 

We included 25 HIV-positive individuals from the CAI cohort in this part of the analysis. We 

found no significant association between the median viral load at three months and -3575 

genotype. We next looked at the association between baseline viral load measurements and -

592, -1082 and -3575 genotypes in the HAI and SK cohorts. This sample contained 22 

individuals from the HAI cohort, and 300 individuals from the SK cohort. To determine if 

there was any association between IL-10 variant and baseline log viral load, we used the 

Wilcoxon rank sum test. We found no significant association between viral load and any IL-10 

variant for both the HAI and SK cohorts (Table 2.3.5).  

 

Longitudinal data for the CAI cohort was also analysed to see if there was any association 

with -3575 genotype and viral load over time (see Table 2.3.6). We found no significant 

association between -3575 genotype and median viral load at any of the three time points 

measured. We also fitted a linear mixed model to log viral load to measure its association with 

-3575 genotype over time. Taking into account repeated measures as well as adjusting for viral 

load, we found no significant association between genotype and viral load (p= 0.83).  
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Table 2.3.5 Association between IL-10 variant and baseline median viral load (log copies/ml) in the study cohorts 

 

Table 2.3.6 Association between -3575 genotype and median viral load longitudinally in the CAPRISA Acute Infection cohort 

Genotype 
3 Months Log VL 9 Months Log VL 12 Months Log VL 

Median (IQR) Median (IQR) Median (IQR) 

AA 4.3 (4.3 – 6.3) 4.7 (3.5 – 4.9) 4.9 (3.6 – 6.1) 

TA 4.8 (4.1 – 5.2) 4.2 (4.0 – 4.7) 4.3 (4.0 – 4.6) 

TT 4.6 (3.8 – 4.9) 4.7 (4.3 – 5.2) 4.8 (4.3 – 5.2) 

p-value 0.60 0.29 0.23 

 Genotype: -592 Genotype: -1082 Genotype: -3575 

Cohort CC CA AA p-value AA AG GG p-value TT TA AA p-value 

CAPRISA Acute 

Infection 
- - - - - - - - 4.6 4.8 4.3 0.60 

HPP Acute 

Infection 
5.7 5.8 5.3 0.57 5.2 5.8 5.3 0.24 5.5 5.8 4.8 0.24 

Sinikithemba 4.8 4.8 4.8 0.41 4.8 4.8 4.7 0.40 4.6 4.9 4.6 0.23 

7
2
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Based on the three SNPs that were genotyped, i.e. -592, -1082 and -3575, haplotypes were 

generated and analyses were done to determine if there was an association between viral load 

and any haplotype within the three cohorts that were included in this study.  

 

We looked at association between IL-10 haplotype in the CAI and viral load post-infection. 

First we wanted to determine if there was an association between viral load and time post-

infection, specifically at 0-3, and 3-12 months post-infection (see Table 2.3.7). During the first 

three months of infection, individuals with the AAT haplotype had lower median viral loads 

(4.5 vs. 4.96 log/copies/ml, p= 0.03). Those individuals with the CGT haplotype had a 

significantly higher median viral load (5.72 vs. 4.64 log copies/ml, p= 0.04)  

 

We next investigated association between haplotype and viral load during the first year of 

infection. We analysed viral load over the first 12 months of infection (see Table 2.3.8). A 

linear model was fitted to each log viral load, adjusting for the repeated measures over time, in 

order to determine the effect of each haplotype on viral load overall. The viral load models 

were adjusted for time post-infection and CD4
+
 T cell count. There was no significant 

association between any haplotype and mean viral load over the first 12 months post-infection.  

  



74 

 

Table 2.3.7 The association between CAPRISA Acute Infection cohort haplotype and viral load post-infection 

 

Haplotype 

0-3 months 3-12 months 

Estimated 

mean (SE) 
p-value 

Estimated 

mean (SE) 
p-value 

AAT 

No 4.96 (0.16) 

0.03 

4.39 (0.16) 

0.86 

Yes 4.50 (0.14) 4.35 (0.13) 

AGA 
No 4.69 (0.11) 

- 
4.37 (0.10) 

- 

Yes - - 

AGT 

No 4.70 (0.11) 

0.80 

4.40 (0.11) 

0.31 

Yes 4.59 (0.43) 3.98 (0.39) 

CAA 

No 4.70 (0.11) 

0.96 

4.36 (0.10) 

0.65 

Yes 4.66 (0.71) 4.68 (0.69) 

CAT 

No 4.72 (0.16) 

0.80 

4.44 (0.15) 

0.52 

Yes 4.67 (0.15) 4.30 (0.14) 

CGA 

No 4.62 (0.13) 

0.31 

4.40 (0.13) 

0.70 

Yes 4.85 (0.19) 4.31 (0.18) 

CGT 

No 4.64 (0.11) 

0.04 

4.34 (0.10) 

0.21 

Yes 5.72 (0.49) 4.97 (0.48) 

7
4
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Table 2.3.8 Association between haplotype and viral load over the first 12 months of 

infection in the CAPRISA Acute Infection cohort 

Haplotype 
Log Viral Load 

Estimated mean (SE) p-value 

AAT 
No 4.56 (0.15) 

0.43 
Yes 4.40 (0.13) 

AGA 
No 4.47 (0.10) 

- 
Yes - 

AGT 
No 4.50 (0.10) 

0.34 
Yes 4.12 (0.39) 

CAA 
No 4.47 (0.10) 

0.69 
Yes 4.73 (0.67) 

CAT 
No 4.54 (0.14) 

0.52 
Yes 4.41 (0.14) 

CGA 
No 4.47 (0.12) 

0.98 
Yes 4.47 (0.17) 

CGT 
No 4.44 (0.10) 

0.12 
Yes 5.18 (0.47) 

 

 

 

To determine if there was any association between haplotype and log viral load, the Wilcoxon 

rank sums test was used. Table 2.3.9 shows the association between IL-10 haplotype and the 

HAI cohort. Only the CGT haplotype showed a significant impact on viral load, with those 4 

individuals having higher viral load measurements than those without the CGT haplotype (6.2 

vs. 5.4 log copies/ml, p= 0.02).  
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Table 2.3.9 Association between HPP Acute Infection cohort haplotypes and log viral 

load 

Haplotype n 
Median Log VL 

(IQR) 
p-value 

AAT 
No 9 5.66 (4.87 - 5.85) 

0.66 
Yes 9 5.57 (5.34 - 6.12) 

CAA 
No 17 5.66 (5.14 - 6.12) 

0.44 
Yes 1 5.00 (5.00 - 5.00) 

CAT 
No 10 5.69 (5.14 - 6.12) 

0.51 
Yes 8 5.50 (4.85 - 5.96) 

CGA 
No 9 5.52 (5.14 - 6.22) 

0.72 
Yes 9 5.66 (5.00 - 5.80) 

CGT 
No 14 5.43 (4.87 - 5.75) 

0.02 
Yes 4 6.17 (5.99 - 6.34) 

 

 

We next analyzed for association between baseline viral load and the IL-10 haplotype in the 

SK cohort (see Table 2.3.10). We found that there was no significant association between any 

haplotype and baseline viral load in the SK cohort.  

 

Table 2.3.10 Association between IL-10 haplotypes in the Sinikithemba cohort and 

baseline viral load 

Haplotype n Median Log VL (IQR) p-value 

AAT 
No 178 4.72 (3.95 - 5.27) 

0.62 
Yes 246 4.86 (3.97 - 5.26) 

CAA 
No 412 4.76 (3.96 - 5.27) 

0.43 
Yes 12 4.99 (4.50 - 5.27) 

CAT 
No 194 4.79 (3.90 - 5.21) 

0.75 
Yes 230 4.71 (4.10 - 5.32) 

CGA 
No 259 4.70 (3.95 - 5.27) 

0.62 
Yes 165 4.85 (3.99 - 5.26) 

CGT 
No 345 4.77 (3.97 - 5.27) 

0.87 
Yes 79 4.76 (3.92 - 5.21) 
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2.3.6 ASSOCIATION OF IL-10  VARIANTS WITH CD4
+
 T CELL COUNT 

For this part of the analysis we determined the association between the -3575 genotype and 

CD4
+
 T cell count for individuals in the CAI cohort, and the association between all three 

SNPs, i.e. -592, -1082 and -3575 for individuals in both the HAI and SK cohorts (see Table 

2.3.11).  

 

To determine if there was an association between -3575 genotype and CD4
+
 T cell count for 

individuals in the CAI cohort, we analyzed median CD4
+
 T cell count during the first three 

months post-infection. Here we included 25 HIV-positive individuals from the CAI cohort. 

The association between CD4
+
 T cell count and -3575 genotype is shown in Table 2.3.11. We 

found no significant association between -3575 genotype and CD4
+ 

T cell count. We also 

analysed IL-10 genotypes for 22 HIV-positive individuals from the HAI cohort, and 300 HIV-

positive individuals from the SK cohort. These baseline CD4
+
 T cell counts showed no 

association between any IL-10 variant.  

 

We analysed CD4
+
 T cell counts longitudinally for the first 12 months of infection for 

individuals in the CAI cohort (see Table 2.3.12). We found no significant association between 

-3575 genotype and CD4
+
 T cell count during any of the three time points measured. We 

investigated association between -3575 genotype and median CD4
+
 T cell count longitudinally 

over the first 12 months overall. For this part of the analysis we fitted a linear model to 

CD4
+ 

T cell count to determine its association with -3575 genotype. Taking into account the 

repeated measurements performed and adjusting for viral load, we found no significant 

association overall (p= 0.29).  
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Table 2.3.11 Association between baseline median CD4
+
 T cell (cells/µµµµl) count and IL-10 variant in the study cohorts 

 

 

Table 2.3.12 Association between -3575 genotype and CD4
+
 T cell count longitudinally in the CAPRISA Acute Infection cohort  

Genotype 
3 Months CD4 9 Months CD4 12 Months CD4 

Median (IQR) Median (IQR) Median (IQR) 

AA 613 (255 – 727) 416 (249 – 599) 341 (202 – 479) 

TA 499 (374 – 647) 424 (396 – 485) 410 (396 – 470) 

TT 539 (445 – 766) 397 (316 – 710) 390 (313 – 642) 

p-value 0.41 0.85 0.70 

 

 
Genotype: -592 Genotype: -1082 Genotype: -3575 

Cohort CC CA AA p-value AA AG GG p-value TT TA AA p-value 

CAPRISA Acute 

Infection 
- - - - - - - - 613 499 539 0.41 

HPP Acute 

Infection 
417 425 385 0.78 303 492 418 0.28 375 417 554 0.36 

Sinikithemba 397 339 341 0.22 341 375 431 0.23 339 368 431 0.21 

7
8
 



79 

 

The analysis for the CAI cohort was broken down to compare the association between 

haplotype and CD4
+
 T cell count at different phases post-infection, and longitudinally. Table 

2.3.13 shows the association between haplotype and CD4
+
 T cell count at 0-3, and 3-12 

months post-infection. The Wilcoxon rank sums test was used. We found no significant 

association between haplotype and CD4
+
 T cell count at either 0-3 or 3-12 months post-

infection.  

 

The next analysis we did was to determine if there was an association between CAI haplotype 

and CD4
+
 T cell count over time. A linear mixed model was fitted to each CD4

+
 T cell count, 

while adjusting for multiple measurements over time. CD4
+
 T cell count models were adjusted 

for time post infection and viral load. The overall change in the first year of infection is shown 

in Table 2.3.14. This data shows that in the first 12 months of infection, there was no 

association between any haplotype and CD4
+
 T cell count in the CAI cohort.  
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Table 2.3.13 Association between CAPRISA Acute Infection cohort IL-10 haplotypes and 

CD4
+
 T cell count post infection  

Haplotype 

0-3 months 3-12 months 

Estimated 

mean (SE) 
p-value 

Estimated 

mean (SE) 
p-value 

AAT 
No 

519.64 

(41.45) 
0.26 

472.0 

(40.33) 
0.29 

Yes 
581.94 

(35.46) 

527.96 

(34.20) 

AGA 
No 

555.57 

(26.86) - 

504.55 

(26.09) - 

Yes - - 

AGT 
No 

543.41 

(27.18) 
0.08 

493.88 

(26.65) 
0.12 

Yes 
726.85 

(101.85) 

352.47 

(99.33) 

CAA 
No 

554.68 

(27.48) 
0.83 

500.83 

(26.42) 
0.35 

Yes 
593.09 

(180.55) 

666.79 

(174.49) 

CAT 
No 

549.76 

(38.83) 
0.83 

492.49 

(37.58) 
0.65 

Yes 
561.10 

(38.00) 

51.18 

(36.96) 

CGA 
No 

585.02 

(32.42) 
0.12 

543.81 

(31.32) 
0.1 

Yes 
495.95 

(46.18) 

444.76 

(44.08) 

CGT 
No 

559.09 

(27.71) 
0.55 

508.96 

(26.84) 
0.43 

Yes 
479.54 

(129.15) 

408.70 

(125.06) 
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Table 2.3.14 Association between CAPRISA Acute Infection cohort haplotype and CD4
+
 T cell count over the first 12 months 

of infection 

Haplotype 
CD4 count 

Estimated mean (SE) p-value 

AAT 
No 486.13 (39.25) 

0.26 
Yes 543.88 (33.42) 

AGA 
No 519.60 (25.50) 

- 
Yes - 

AGT 
No 508.60 (25.92) 

0.10 
Yes 673.24 (96.79) 

CAA 
No 516.53 (25.89) 

0.43 
Yes 654.00 (171.21) 

CAT 
No 508.23 (36.76) 

0.67 
Yes 530.53 (36.05) 

CGA 
No 549.93 (30.55) 

0.09 
Yes 459.21 (43.12) 

CGT 
No 523.28 (26.26) 

0.51 
Yes 440.04 (122.11) 

 

 

8
1
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We next investigated the association between IL-10 haplotype and CD4
+
 T cell count in the 

HAI and SK study cohorts. Table 2.3.15 shows the association between HAI haplotypes and 

CD4
+ 

T cell count at baseline. The Wilcoxon rank sums test was used to determine if there was 

an association between any haplotype and CD4
+
 T cell count. We found no significant 

association between any of the haplotypes and CD4
+
 T cell count at baseline.  

 

Table 2.3.15 Association between HPP Acute Infection cohort haplotypes and baseline 

CD4
+
 T cell count 

Haplotype n Median CD4 (IQR) p-value 

AAT 
No 12 417 (276 - 526) 

0.67 
Yes 10 401 (304 - 626) 

CAA 
No 21 411 (304 - 514) 

0.16 
Yes 1 676 (676 - 676) 

CAT 
No 12 415 (339 - 570) 

0.34 
Yes 10 363 (242 - 559) 

CGA 
No 10 375 (245 - 626) 

0.45 
Yes 12 425 (314 - 537) 

CGT 
No 16 414 (275 - 537) 

0.63 
Yes 6 404 (318 - 626) 

 

 

We next studied the association between the SK cohort haplotypes and baseline CD4
+
 T cell 

count (see Table 2.3.16). The Wilcoxon rank sums test was used here and we found no 

significant association between any IL-10 haplotype and baseline CD4
+
 T cell count.  
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Table 2.3.16 Association between Sinikithemba cohort haplotypes and baseline CD4
+
 T 

cell count 

Haplotype n Median CD4 (IQR) p-value 

AAT 
No 177 376 (251 - 513) 

0.32 
Yes 247 339 (231 - 492) 

CAA 
No 412 351 (239 - 506) 

0.75 
Yes 12 409 (175 - 593) 

CAT 
No 195 357 (230 - 516) 

0.73 
Yes 229 352 (254 - 481) 

CGA 
No 260 339 (238 - 468) 

0.15 
Yes 164 380 (242 - 517) 

CGT 
No 345 347 (241 - 505) 

0.63 
Yes 79 373 (227 - 513) 
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2.3.7 ASSOCIATION OF GENOTYPE WITH CD4
+
 T CELL  DECLINE IN CHRONIC HIV-1 

INFECTION 

As we wanted to determine the effect of IL-10 genetic variants on CD4
 
decline during chronic 

infection we focused on the SK cohort. We investigated at the association between the -592 

and -1082 genotypes and CD4
+
 T cell decline. We included 300 individuals with follow-up 

data. As individuals in the SK cohort may not be at the same stage of chronic infection, we 

therefore stratified the data according to viral load and CD4
+
 T cell count to reduce any bias 

which may be introduced due to participants being in different phases of infection.  

 

Figure 2.3.3 shows the rate of CD4 decline during the first 24 months of follow-up. CD4 

decline was stratified according to CD4
+
 T cell count and viral load as follows: CD4>350, 

VL>100 000; CD4>350, VL<100,000; CD4<350, VL>100,000; CD4<350, VL<100,000. 

Across all strata we found that the -592AA genotype (indicated by pink bars), had an 

attenuated loss of CD4
+
 T cells during the first 24 months of follow-up, which was significant 

(p= 0.05). Similar analysis was performed for the -1082 genotype (see Figure 2.3.4). Although 

in all strata the -1082AA genotype had an attenuated loss of CD4
+
 T cells, this did not reach 

significance (p= 0.15).  
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Figure 2.3.3 Association between -592 genotype and CD4 decline in the Sinikithemba cohort. The -592AA genotype (pink bars) 

had an attenuated loss of CD4
+ 

T cells over all strata, which was significant (p= 0.05).  

8
5
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Figure 2.3.4 The association between -1082 genotype and CD4 decline in the Sinikithemba cohort. The -1082AA genotype (pink 

bars) seemed to trend towards an attenuated loss of CD4
+
 T cells over all strata, however this did not reach significance (p= 0.15).  

8
6
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2.4 DISCUSSION 

 

We wanted to determine if previously identified IL-10 promoter polymorphisms were present 

in our predominantly black African study population. We therefore genotyped a total of 685 

individuals from three different cohorts of HIV-1 infection, of which 498 had either acquired 

HIV-1 infection or were HIV-positive upon enrollment to the chronic cohort. The three 

cohorts included in this study were the CAPRISA Acute Infection (CAI) cohort, the HPP 

Acute Infection (HAI) cohort, and the HPP Sinikithemba (SK) cohort of Chronic Infection. 

These three cohorts allowed us to study both HIV-negative individuals as well as HIV-positive 

individuals at different stages of infection.  

 

We investigated the association of three IL-10 promoter polymorphisms, i.e. -592, -1082 and -

3575, with biomarkers of HIV-1 infection, such as viral load, CD4
+
 T cell count and the rate 

of CD4 decline. All cohorts and subgroups within cohorts were found to be in Hardy-

Weinberg equilibrium, using the Chi-Square test. This means that the observed allele 

frequencies were not significantly different from the expected allele frequencies. This 

confirms that the study population and subpopulations used in analyses did not deviate from 

Hardy-Weinberg equilibrium, and that there was no underlying forces driving these allele 

frequencies, such as non-random mating, mutations, selection, random genetic drift, gene flow 

and meiotic drive.  

 

We previously studied the CAI cohort, focusing on the -592 and the -1082 polymorphisms and 

biomarkers of HIV-1 infection (Naicker et al., 2009). Here we found that individuals with IL-
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10 polymorphisms associated with high-IL-10 production were less likely to become infected, 

and once infected these individuals had significantly higher median viral loads during the 

acute phase of infection. However, as infection progressed the association between high-IL-

10-producing genotypes and high viral load seemed to reverse or the association was lost 

during the later stages of infection. Therefore it seems that the role of IL-10 is dependent on 

the stage of infection.  

 

In this study we characterised the -3575 genotype in 212 individuals from the CAI cohort, 25 

of which had seroconverted during the follow-up period. Using the Kaplan-Meier survival 

curve, we looked at the association between the -3575 genotype and time to infection. There 

was no significant association between the -3575 genotype and susceptibility to HIV infection. 

However, we found that there seemed to be a trend individuals with the -3575AA genotype 

being more susceptible to HIV infection, as compared to individuals with the other 3575 

genotypes, however this did not reach statistical significance (p= 0.09). Interestingly, we 

found that the CGT haplotype had an association with HIV acquisition. We found that all 

individuals with the CGT haplotype were HIV-negative (Fisher’s exact test, p= 0.003). The 

three alleles that make up this haplotype are all associated with high IL-10 production. 

Therefore, individuals with this haplotype were more likely to have increased IL-10 

production, which may have protecting them against HIV infection.  

 

To determine if there was an association between viral load and CD4
+
 T cell count and -3575 

genotype in the CAI cohort, we looked at longitudinal measurements at 3, 9 and 12 months 

post-infection. However, we did not find any association between any -3575 genotype and 

either viral load or CD4
+
 T cell count at any time point.  
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We analyzed the IL-10 haplotype data for association between haplotypes and viral load or 

CD4
+
 T cell count longitudinally.  We found no association between any IL-10 haplotypes and 

cross-sectional measurements of CD4
+
 T cell counts at 0-3, and 3-12 months post-infection. 

Also, there was no association between the IL-10 haplotype and the first 12 months of 

infection. However, when we broke down the first 12 months into 0-3 and 3-12 months post-

infection, we found that the AAT and CGT haplotypes associated significantly with viral load. 

Individuals with the AAT haplotype and those without the CGT haplotype had lower viral 

loads during the first 3 months of infection. The same time point or infection phase breakdown 

approach was used for CD4
+
 T cell count. We found no significant association between CD4

+
 

T cell count, and any haplotype during the first 12 months of follow-up.  

 

We next studied the HAI and the SK Chronic Infection cohorts. Here we characterised three 

IL-10 promoter polymorphisms, i.e. -592, -1082 and -3575. At the time of assessment we 

included 22 acutely infected individuals from the HAI cohort, and 451 individuals in the 

chronic phase of infection from the SK cohort. We wanted to determine if there was an 

association between biomarkers of HIV-1 infection and IL-10 variants. To do this we first 

determined if there was an association between IL-10 variants and either viral load or CD4
+
 T 

cell count at the baseline (entry) time point. There was no significant association between any 

IL-10 haplotype and either viral load or CD4
+
 T cell count at the baseline time point. In this 

cross-sectional analysis, we did not find any association between any IL-10 variant and either 

viral load or CD4
+
 T cell count.  

 

We then focused on the SK cohort, investigating the rate of CD4 decline in 300 individuals 

with follow-up data for the first 24 months. We wanted to determine if there was an 
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association between any IL-10 variant and the rate of CD4 decline. Here we focused on the 

two proximal IL-10 promoter polymorphisms, i.e. -592 and -1082. The data was stratified 

according to CD4
+
 T cell count and viral load. Here we found that individuals with IL-10 

genotypes that have been previously found to be associated with low-IL-10-production, had an 

attenuated loss of CD4
+ 

 T cells during the first 24 months of follow-up, this did not reach 

significance for the -1082 genotype, but was significant for the -592 genotype (p= 0.15 and 

0.05, respectively).  

 

The genotype data is consistent with the findings of Shin et al (Shin et al., 2000), as they 

found that high-IL-10-producing genotypes were associated with protection against infection, 

but an acceleration to AIDS, particularly during the late stages of infection. We hypothesise 

that during the early stages of infection, higher IL-10 levels (and by extension, high-IL-10-

producing genotypes) can dampen the antiviral adaptive and innate effector mechanisms, 

resulting in poor control of viral replication (Alter et al., 2010, Herbein and Varin, 2010, 

Martinic and von Herrath, 2008). However, the beneficial effects of IL-10 are more 

pronounced during the later stages of infection by its anti-inflammatory effects and the direct 

inhibition of HIV-1 replication within macrophages (Ancuta et al., 2001, Bento et al., 2009, 

Wang and Rice, 2006).  

 

We did not see any association between the -3575 genotype and either viral load or CD4
+
 T 

cell count for the CAI cohort. As the sample size of the HIV-positive individuals included was 

small, this may explain why we were not able to see the effect of the -3575 in this small 

sample size. Similarly, the small sample size of the HAI cohort, may have limited our power 

to detect any effects of IL-10 variants on viral load and CD4
+
 T cell count. As the AAT and 
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CGT haplotypes associated with viral load, we would need to further investigate the 

phenotypes of these haplotypes in this cohort, to determine the effect of IL-10 on viral load.  

 

There are some limitations to the SK cohort, which may account for no significance in the 

association between IL-10 variants and viral load or CD4
+
 T cell counts in this cross-sectional 

analysis. As the time since HIV-1 infection is unknown for study participants in the SK 

cohort, a survivor bias may have been introduced. Also, as we do not know time of infection 

for individuals in the SK cohort, it is possible that we may be analysing individuals at different 

phases of infection altogether. In order to minimize these limitations, the study population was 

stratified according to baseline viral loads and CD4
+
 T cell counts.  

 

In conclusion, this part of the study emphasizes the complex role of IL-10 genetic variants in 

HIV-1 susceptibility and pathogenesis. In cross-sectional analysis we found that IL-10 genetic 

variants did not associate with viral load and CD4
+
 T cell counts. However, we did find that 

there was a trend that IL-10 variants associated with low-IL-10-production, showed an 

attenuated loss of CD4
+
 T cells during the 24 months of follow-up during chronic infection. 

This may be due to its anti-inflammatory effects and the role IL-10 plays in the direct 

inhibition of HIV replication within macrophages, which have a more pronounced effect in the 

late stages of infection when the CD4
+
 T cells have become depleted. However, mechanistic 

studies are needed to address this hypothesis. 
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3.1 INTRODUCTION 

 

Interleukin-10 is a potent, anti-inflammatory cytokine that has been shown to play a role in 

immunoregulation. This powerful cytokine is produced by Th2 cells, and has been shown to 

down-regulate the expression of MHC class I and class II antigens, and numerous other 

proinflammatory Th1 cytokines.  

 

The expression of cytokines is under genetic control (Hutchinson et al., 1998). Polymorphisms 

found within the promoter (regulatory) region of these genes can affect gene expression and 

disease pathogenesis. The promoter region of IL-10 has polymorphisms in both the proximal 

and distal regions of the promoter. The proximal region has three well studied single 

nucleotide polymorphisms (SNPs), found upstream from the transcription start site, at 

positions -592, -819 and -1082. The -592 and -819 SNPs are in complete linkage 

disequilibrium, so the mutations will always be inherited together.  

 

Polymorphisms at these positions have been shown to affect IL-10 production. An A to G 

transition at position -1082 has been shown to be associated with an increase in IL-10 

production in vitro (Turner et al., 1997). Previous studies report that the wild-type -1082A 

allele and the polymorphism -592A alleles are associated with low IL-10 production 

(Hutchinson et al., 1998, Turner et al., 1997). Previous studies have also shown that 

haplotypes, resulting from the combination of the three proximal SNPs have varying affects on 

IL-10 production (Eskdale et al., 1998). Based on the -1082, -819 and -592 combination of 

alleles, the GCC/GCC haplotypes is associated with high IL-10 production, the GCC/ATA or 
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GCC/ACC haplotypes with intermediate IL-10 production and the ATA/ATA, ATA/ACC or 

ACC/ACC haplotypes with low IL-10 production (Edwards-Smith et al., 1999).  

 

Also, the -1082G polymorphism is recessive, which means that to see the effect of the -1082G 

being associated with high IL-10 production the genotype has to be homozygous for the 

polymorphism, i.e. -1082GG. Therefore both the -1082AA and -1082AG are associated with 

low IL-10 production. The -592A polymorphism is dominant. So, if an individual is a carrier 

of the mutation, the effect of the -592A allele (associated with low-IL-10-production) can be 

seen, i.e. either -592AA or -592CA (Shin et al., 2000).  

 

The -3575 SNP is found in the distal region of the IL-10 promoter region. The polymorphism 

at this region is a T to A transversion. This -3575A polymorphism has previously been shown 

to be associated with low IL-10 production (Gibson et al., 2001). Gibson et al studied the 

effect of IL-10 polymorphisms on IL-10 production, and its association with Systemic Lupus 

Erythematosus.  In this study they showed that when characterising the -3575 in the healthy 

control group, they found that the -3575T allele was at a much higher frequency in the African 

American group than the Dutch Caucasian group. Here they found no significant difference 

between the distribution of the -3575 genotype in the control individuals and individuals with 

Systemic Lupus Erythematosus (SLE).  

 

Infection with HIV stimulates strong immune responses by cytotoxic T lymphocytes (CTLs). 

During the acute phase of HIV infection, the rise of viral load results in a CTL response 

(McMichael and Rowland-Jones, 2001). When the CTL response reaches a peak, the viral load 

levels drop, this results in an inverse relationship between CTL responses and viral load. The 
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CTL response during HIV infection is also influenced by the individual’s human leukocyte 

antigen (HLA) type (Carrington et al., 1999, Kaslow et al., 1996). Different HLA molecules 

present different virus peptides for recognition by the CTLs, the HLA type of an individual is 

important because different HLA types present different HLA peptides, which therefore 

determine the specificity of the immune response.  

 

Mechanistic studies of the lymphocytic choriomeningitis virus (LCMV) in the mouse model 

showed that IL-10 gene knock-out or signaling blockade enhanced T-cell immune responses, 

which resulted in rapid viral elimination and the development of antiviral memory T-cell 

response (Brooks et al., 2006, Ejrnaes et al., 2006).  

 

As our data showed that there was an attenuated loss of CD4 cells in individuals with IL-10 

variants associated with low IL-10 production, the aim of this part of the study was to 

determine if IL-10 variants did in fact impact the expression of IL-10 in an HIV setting, as the 

role of IL-10 variants on IL-10 expression during HIV-1 infection had not previously been 

studied. We also wanted to determine if the levels of IL-10 had any effect on biomarkers of 

HIV-1 infection or the level of expression of other pro-inflammatory cytokines, such as IFN-γ, 

IL-2, IL-6 and TNF-α. We next wanted to determine if IL-10 variants or levels of IL-10 

influenced the breadth (number of HIV peptides targeted by CTL) or magnitude (number of 

IFN-γ producing cells per million PBMCs) of HIV-1 specific immune responses in vivo, as 

measured by IFN-γ ELISPOT. This data would allow us to understand the role of IL-10 

genetic variants and the expression of IL-10 in an HIV setting, the influence on other pro-

inflammatory cytokines and the effect on the breadth and magnitude of CTL response.  
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3.2 MATERIALS AND METHODS 

 

3.2.1 STUDY POPULATION 

We measured the cytokine profile in a subset of 112 individuals chronically infected with 

HIV-1 subtype C. These were individuals from the HPP Sinikithemba chronic infection 

cohort. Cytokine measurements were done using plasma samples. These plasma samples are 

routinely separated from whole blood by centrifugation and stored at -80
o
C until further use.  

 

HIV-1 specific CTL responses were measured in a subset of 409 individuals from the 

Sinikithemba cohort and 22 individuals from the HPP Acute Infection cohort.  

 

3.2.2 CYTOKINE PROFILING USING LUMINEX METHODOLOGY 

Luminex methodology was used to simultaneously measure the levels of both pro- and anti-

inflammatory cytokines in individuals chronically infected with HIV-1 subtype C. An 

overview of the technique is shown in Figure 3.2.1. With luminex methodology microspheres 

that are 5.6 microns in size are dyed to create 100 distinct colours through internal colouring 

of the bead. Two fluorescent dyes are used, therefore the precise concentrations of these 

fluorescent dyes creates 100 distinctly coloured bead sets.  These beads are coated with a 

specific capture antibody, therefore this methodology has the potential to analyse 100 different 

analytes simultaneously. When the sample is added to the microspheres the analyte is 

captured. A biotinylated detection antibody is introduced and the sample is then incubated 

with Streptavidin-PE conjugate, which is the reporter molecule, which completes the reaction 
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on the surface of each microsphere. When the microspheres are passed through a laser which 

excites the fluorescent dyes within the microsphere, the red laser classifies the bead 

classification, i.e. what is being analysed, and the green laser classifies the assay result, i.e. the 

concentration of the analyte. The results are therefore quantified based on the fluorescent 

reporter signals.  

 

Plasma IFN-γ, IL-2, IL-6, IL-10 and TNF-α concentration was determined by Luminex 

methodology, using the Millipore Milliplex
TM

 MAP High Sensitivity Human Cytokine Kit. The 

assay was followed as per manufacturer’s protocol as shown in Figure 3.2.2. Plasma samples 

were centrifuged at 1,500 rpm for 5 minutes at room temperature, prior to assay setup, to 

remove particulates which may clog the Microtiter Filter Plate wells. Standards and quality 

controls are included in each kit. The standards were serially diluted to 1:5 starting with 2000 

pg/ml; 400 pg/ml; 80 pg/ml; 16 pg/ml; 3.2 pg/ml; 0.64 pg/ml; 0.13 pg/ml; and 0 (assay buffer 

alone). These standards were used as a reference for the quantification of the analytes. Briefly 

wash buffer was added to the microtiter filter plate and placed on a shaker for 10 minutes to 

wet the well membrane. The detection beads (microspheres) were added to the wells and the 

supernatant was vacuumed, leaving the beads in the well. The standards, assay buffer, Matrix 

and samples were added and left to incubate overnight at 4
o
C. This allowed for the antibody to 

capture the analytes. After 16-18 hours the samples were vacuumed again, and the detection 

antibody was added. After an hour of incubation at room temperature, the Streptavidin-PE 

conjugate was added, which acted as the reporter dye. After incubation at room temperature 

for 30 minutes, samples were vacuumed and washed twice. Sheath fluid was added and then 
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samples were quantified on the Luminex 200 (Invitrogen, Life Technologies, Grand Island, 

NY, USA).  

 

Figure 3.2.1 Overview of Luminex Methodology (images taken from (Bonetta, Invitrogen, 

Panomics)). Beads are coloured with precise concentrations of two fluorescent dyes, which are 

coated with specific capture antibodies. When the analyte is added it is captured by the 
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antibody, a biotinylated detection antibody is added then the samples are incubated with 

Streptavidin-PE conjugate, which is the reporter molecule. Samples are passed through a laser 

which excites the fluorescent dyes, and identification and quantification is reported.  
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Figure 3.2.2 Overview of Luminex assay (Millipore). 
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3.2.3 CYTOTOXIC T LYMPHOCYTE RESPONSES 

CTLs are measured routinely in the lab at scheduled visits for both the HPP Acute Infection 

and the HPP Sinikithemba Chronic Infection cohorts. The number and magnitude of HIV 

peptides targeted by CTL were measured at baseline by interferon-γ (IFN- γ) enzyme-linked 

immunosorbent (ELISPOT) assay using a panel of 410 overlapping peptides spanning the 

HIV-1C proteome (Kiepiela et al., 2004, Radebe et al., 2011). 

 

3.2.4 STATISTICAL ANALYSIS 

Different methods of statistical analysis were used to determine if there was any association 

between IL-10 variants and pro- and anti-inflammatory cytokine production, as well as the 

association between IL-10 variants and the breadth and magnitude of immune responses. To 

determine if there was an association between a specific IL-10 variant and plasma IL-10 

concentration, the Kruskal-Wallis test was used. To determine if there was association 

between IL-10 haplotype, cytokine production and the breadth and magnitude of immune 

responses, we used the Wilcoxon rank sum test. The Pearson’s correlation test was used to 

determine the association between IL-10 concentration and other plasma cytokines. To 

determine if there was an association between IL-10 variants and magnitude or breadth of 

immune responses, we used the Kruskal-Wallis test. 
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3.3 RESULTS 

 

3.3.1 THE ASSOCIATION BETWEEN IL-10 VARIANTS AND IL-10 EXPRESSION 

To investigate if IL-10 genetic variants had an effect on IL-10 production in an African setting 

of chronic HIV-1C infection, we focused on 112 individuals from the HPP Sinikithemba 

cohort, analysing the association between the -592 and -1082 SNPs with IL-10 production.  

 

We first examined the -592 genotype. We measured the levels of IL-10 expression in plasma 

from the baseline (entry) time point. The -592 genotypes were grouped according to the 

dominance pattern of the polymorphism (see Figure 3.3.1). A study by Shin et al. (2000) 

showed that the -592A allele is dominant, therefore all carriers of the -592A allele were 

grouped together, i.e. -592CA (carriers for the dominant polymorphism) or -592AA 

(individuals homozygous for the polymorphism). Previous studies show that the -592CC 

genotype is associated with high IL-10 production (Hutchinson et al., 1998, Turner et al., 

1997). In this cross-sectional analysis of IL-10 production, although the -592CC group had 

higher median level of plasma IL-10, this was not statistically significant (p= 0.22).  
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Figure 3.3.1 Association between -592 genotype and IL-10 expression. Although the -

592CC group had a higher median expression of IL-10, this was not statistically significant.  

 

We then went on to investigate the association between the -1082 genotype and IL-10 

expression for 112 individuals from the HPP Sinikithemba Chronic Infection cohort (see 

Figure 3.3.2). Based on previous studies, the -1082G polymorphism is shown to be recessive, 

therefore in order for the high-IL-10-producing effect of the -1082G allele to be seen, the 

individual would have to be homozygous for the polymorphism. As the -1082G polymorphism 

is recessive, we grouped carriers of the wild-type -1082A allele together, i.e. -1082AA 

(homozygous for the wild-type allele) and -1082AG (carrier of the wild-type allele). Here we 

found that the -1082GG group had a significantly higher median level of IL-10 expression as 

compared to the combined -1082AA/-1082AG group (p= 0.0006).  
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Figure 3.3.2 Association between -1082 genotype and IL-10 expression. The -1082GG 

group had a significantly higher median level of IL-10 expression as compared to the 

combined -1082AA/-1082AG group.  

 

We next wanted to determine if IL-10 haplotypes has an association with cytokine expression 

in the Sinikithemba Chronic Infection cohort. We measured the expression of IL-10, IL-2, IL-

6, IFN-γ and TNF-α. To determine if there was an association between IL-10 extended 

haplotype and cytokine expression, we used the Wilcoxon rank sums test. However, as some 

haplotypes were present in only very small numbers in this subgroup of the SK cohort, groups 

with less than 5 individuals were excluded from the analysis.  

 

Table 3.3.1 shows the association between IL-10 haplotype and IL-10 expression. We found a 

significant association between the CAT haplotype and IL-10 expression. Individuals with the 

CAT haplotype had significantly lower IL-10 expression than individuals without the CAT 

haplotype (median 5.81 vs. 18.25pg/ml, p < 0.0001).  
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Table 3.3.1 Association between IL-10 haplotype and IL-10 expression in the 

Sinikithemba cohort of chronic infection 

Haplotype n Median IL-10 (IQR) p-value 

AAT 
No 56 17.66 (8.01 - 38.28) 

0.21 
Yes 68 13.73 (6.42 - 27.65) 

CAA 
No 123 15.04 (6.75 - 33.02) 

- 
Yes 1 9.72 

CAT 
No 105 18.25 (8.07 - 37.31) 

<.0001 
Yes 19 5.81 (3.16 - 9.52) 

CGA 
No 73 12.68 (6.25 - 24.23) 

0.06 
Yes 51 18.55 (8.11 - 40.02) 

CGT 
No 87 15.04 (6.58 - 32.61) 

0.8 
Yes 37 13.76 (7.52 - 33.02) 

 

 

The association between IL-10 haplotype and IL-2 expression is shown in Table 3.3.2. Using 

the Wilcoxon rank sums test, we found that individuals with the CAT haplotype had 

significantly lower IL-2 expression as compared to those without the CAT haplotype (median 

0.29 vs. 0.43 pg/ml, p= 0.03).  

Table 3.3.2 The association between IL-10 haplotype and the expression of IL-2 in the 

Sinikithemba cohort of chronic infection 

Haplotype n Median IL-2 (IQR) p-value 

AAT No 56 0.46 (0.22 - 1.76) 0.13 

Yes 65 0.29 (0.18 - 0.90) 

CAA No 120 0.38 (0.20 - 1.30) - 

Yes 1 0.18 

CAT No 102 0.43 (0.19 - 1.50) 0.03 

Yes 19 0.29 (0.11 - 0.37) 

CGA No 70 0.32 (0.21 - 0.91) 0.28 

Yes 51 0.48 (0.16 - 1.82) 

CGT No 85 0.33 (0.18 - 1.23) 0.72 

Yes 36 0.47 (0.23 - 1.30) 
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Table 3.3.3 shows the association between IL-6 expression and IL-10 haplotype. The CAT 

haplotype had a significant association between IL-10 haplotype and IL-6 expression. 

Individuals with the CAT haplotype had significantly lower IL-6 expression as compared to 

those without the CAT haplotype (median 0.3 vs. 2.04pg/ml, p < 0.0001).  

 

Table 3.3.3 The association between IL-10 haplotype and IL-6 expression in the 

Sinikithemba cohort of chronic infection 

Haplotype n Median IL-6 (IQR) p-value 

AAT 
No 55 1.70 (0.60 - 4.16) 

0.22 
Yes 65 0.99 (0.40 - 3.85) 

CAA 
No 119 1.53 (0.47 - 4.16) 

0.69 
Yes 1 0.81 

CAT 
No 101 2.04 (0.68 - 5.21) 

<.0001 
Yes 19 0.30 (0.19 - 0.66) 

CGA 
No 70 0.96 (0.32 - 3.85) 

0.08 
Yes 50 1.72 (0.68 - 4.16) 

CGT 
No 84 1.15 (0.38 - 3.91) 

0.16 
Yes 36 2.16 (0.68 - 4.63) 

 

 

Table 3.3.4 shows the association between IFN-γ expression and IL-10 haplotype. There was a 

significant association between IFN-γ expression and IL-10 haplotype. Individuals with the 

CAT haplotype had significantly lower IFN-γ expression as compared to those without the 

CAT haplotype (Median 1.09 vs. 2.81pg/ml, p= 0.01).  
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Table 3.3.4 Association between IL-10 haplotype and IFN-γγγγ expression in the 

Sinikithemba cohort of chronic infection 

Haplotype n Median IFN-γ (IQR) p-value 

AAT 
No 52 2.81 (0.69 - 10.51) 

0.25 
Yes 61 1.69 (0.79 - 5.18) 

CAA 
No 112 2.36 (0.74 - 7.59) 

- 
Yes 1 0.3 

CAT 
No 94 2.81 (0.88 - 10.50) 

0.01 
Yes 19 1.09 (0.40 - 1.94) 

CGA 
No 67 1.79 (0.79 - 5.18) 

0.31 
Yes 46 2.93 (0.66 - 12.67) 

CGT 
No 78 2.07 (0.66 - 7.62) 

0.6 
Yes 35 2.40 (0.88 - 7.00) 

 

 

Table 3.3.5 shows the association between the IL-10 haplotype and TNF-α expression. We 

found a significant association between the IL-10 haplotype and TNF-α expression. 

Individuals with the CAT haplotype had a significantly lower expression of TNF-α as 

compared to those without (median 3.91 vs. 8.63pg/ml, p= 0.002).  
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Table 3.3.5 Association between IL-10 haplotype and TNF-α expression in the 

Sinikithemba cohort of chronic infection 

 

Haplotype n Median TNF-α (IQR) p-value 

AAT 
No 56 8.39 (4.88 - 14.96) 

0.6935 
Yes 68 8.39 (4.91 - 14.63) 

CAA 
No 123 8.35 (4.84 - 14.82) 

- 
Yes 1 14.74 

CAT 
No 105 8.63 (5.90 - 14.84) 

0.0024 
Yes 19 3.91 (2.33 - 9.32) 

CGA 
No 73 8.28 (4.65 - 14.53) 

0.3607 
Yes 51 8.54 (5.56 - 15.10) 

CGT 
No 87 8.63 (4.70 - 14.84) 

0.9174 
Yes 37 8.08 (4.92 - 14.72) 
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3.3.2 ASSOCIATION BETWEEN IL-10 LEVELS AND BIOMARKERS OF HIV-1 

INFECTION 

To determine if IL-10 levels were correlated with biomarkers of HIV-1 infection, we 

determined the association between levels of IL-10 and viral load, CD4
+
 T cell count, and the 

breadth and magnitude of immune responses. We used the Pearson’s correlation to determine 

if there any association between IL-10 levels and biomarkers of HIV infection (see Figure 

3.3.3). IL-10 plasma levels did not significantly correlate with viral load (Pearson’s 

correlation= 0.08, p= 0.38; Figure 3.3.3A), CD4
+
 T cell count (Pearson’s correlation= -0.03, 

p= 0.77; Figure 3.3.3B), the breadth of immune responses (Pearson’s correlation= -0.06, p= 

0.53; Figure 3.3.3C) or the magnitude of immune responses (Pearson’s correlation=0.06, p= 

0.54; Figure 3.3.3D).  
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Figure 3.3.3 Correlation between IL-10 levels and biomarkers of HIV-1 infection. IL-10 

did not correlate with any biomarkers of HIV-1 infection. (A) Correlation between IL-10 

concentration and viral load (Pearson’s correlation= 0.08, p= 0.38). (B) Correlation between 

IL-10 concentration and CD4
+
 T cell count (Pearson’s correlation= -0.03, p= 0.77). (C) 

Correlation between the breadth of immune responses and IL-10 concentration (Pearson’s 

correlation= -0.06, p= 0.53). (D) Correlation between IL-10 concentration and the magnitude 

of immune responses (Pearson’s correlation=0.06, p= 0.54).  

 

Pearson’s correlation= 0.08, p= 0.38 Pearson’s correlation= -0.03, p= 0.77

Pearson’s correlation= -0.06, p= 0.53

Pearson’s correlation= 0.06, p= 0.54
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3.3.3 ASSOCIATION AND CORRELATION BETWEEN IL-10 LEVELS AND OTHER 

CYTOKINES 

As IL-10 is a major inhibitory immunoregulator, we wanted to determine the correlation 

between IL-10 levels and some pro-inflammatory cytokines, i.e. IFN-γ, IL-2, IL-6 and TNF-α 

(see Figure 3.3.4). There was significant positive correlation between the levels of each of the 

proinflammatory cytokines (IFN-γ, IL-2 and IL-6 and TNF-α) and IL-10 levels (p <0.0001, 

Spearman’s r test).   

 

 

Figure 3.3.4 Correlation between IL-10 levels and pro-inflammatory cytokines. There 

was a significant correlation between IL-10 levels and levels of pro-inflammatory cytokines. 

(A) Correlation between IFN-γ and IL-10. (B) Correlation between TNF-α and IL-10. (C) 

Correlation between IL-2 and IL-10. (D) Correlation between IL-6 and IL-10. 
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We next investigated the proportions of measured cytokines based on IL-10 genetic variant in 

the 112 individuals from the HPP Sinikithemba cohort. Figure 3.3.5A and B shows that 

overall, IL-10 dominated the measured plasma cytokine levels in this chronic HIV-1C setting 

irrespective of the IL-10 genotype.  

 

 

Figure 3.3.5 Cytokine expression during chronic HIV-1C infection. IL-10 dominated 

cytokine expression overall, regardless of IL-10 genotype. (A) Proportion of cytokine 

expression, based on IL-10 -592 genotype. (B) Proportion of cytokine expression, based on IL-

10 -1082 genotype.  
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3.3.4 ASSOCIATION OF IL-10 VARIANTS WITH BREADTH AND MAGNITUDE OF 

IMMUNE RESPONSES 

In the LCMV mouse model of chronic viral infection, mice deficient in IL-10 showed an 

increased frequency of tetramer positive virus-specific CD8
+
 T cells and IL-10 receptor 

blockade increased interferon-γ production by virus-specific CD8
+
 T cells (Brooks et al., 2006, 

Ejrnaes et al., 2006).  Therefore, we reasoned that in HIV-1 infection IL-10 variants that 

influence IL-10 production and disease progression may also be linked with the magnitude 

(number of IFN-γ producing cells per million PBMCs) and the breadth (number of HIV 

peptides targeted by CTL) of HIV-1-specific immune response in vivo, as measured by IFN-γ 

ELISPOT.   

 

We thus investigated the association between IL-10 variants and the magnitude and breadth of 

CD8
+
 T cell immune responses in 409 individuals from the HPP Sinikithemba Chronic 

Infection cohort. Figure 3.3.6A and 3.3.6B shows the association between the magnitude of 

immune responses based on the -592 and -1082 genotypes respectively. We found no 

significant association between the magnitude of HIV-1 specific immune responses and either 

the -1082 genotype (p= 0.44) or the -592 genotype (p= 0.17).  

 

We then assessed the breadth of immune responses based on IL-10 genotype. There was a 

significant association between the number of HIV peptides targeted and the -592 genotype 

(p= 0.007 see Figure 3.3.6C). We found no significant association between -1082 genotype 

and the number of HIV peptides targeted by CTL (p= 0.23; see Figure 3.3.6D). The low-IL-



115 

 

10-producing -592AA group had a median of 12 HIV peptides versus 7 peptides targeted for 

the -592CC or -592CA genotypes (p= 0.002 and 0.004 respectively).  

 

Figure 3.3.6 Magnitude and breadth of immune responses based on genotype. (A) The 

association between the magnitude of HIV peptides targeted by CTL (IFN-γ) and -592 

genotype. There was no significant association noted (p= 0.17). (B) The association between 

magnitude of HIV peptides targeted by CTL (IFN-γ) and -1082 genotype. There was no 

significant association (p= 0.44). (C) The association between the number of HIV peptides 

targeted by CTL (IFN-γ) and -592 genotype. There was a significant association between the 

number of HIV peptides targeted by CTL and -592 genotype (p= 0.007). The -592AA group 

targeted a significantly larger number of HIV peptides as compared to the -592CC or 592CA 

groups (p= 0.002 and 0.004 respectively). (D) The association between the number of HIV 

peptides targeted by CTL (IFN-γ) and -1082 genotype. There was no significant association 

noted (p= 0.23).  
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We used the Wilcoxon rank sums test to determine if there was an association between any IL-

10 haplotype and either the breadth or magnitude of immune responses (see Table 3.3.6). We 

did not find any significant association between any IL-10 haplotype and the magnitude of 

immune responses. However, we found that only the CGA haplotype had a significant 

association with the breadth of immune responses. Individuals with the CGA haplotype had a 

larger breadth of immune responses as compared to those individuals without the CGA 

haplotype (p= 0.02).  

 

Table 3.3.6 Association between IL-10 haplotype and the magnitude and breadth of 

immune responses in the HPP Acute Infection cohort 

Haplotype n 
Median 

Magnitude (IQR) 
p-value n 

Median Breadth 

(IQR) 
p-value 

AAT 
No 9 0 (0 - 190) 

0.81 
9 3 (2 - 5) 

0.71 
Yes 7 0 (0 - 200) 7 4 (2 - 4) 

CAA 
No 16 0 (0 - 195) 

- 
16 4 (2 - 4) 

- 
Yes 0 - 0 - 

CAT 
No 8 0 (0 - 170) 

1.00 
8 4 (2 - 4) 

0.91 
Yes 8 0 (0 - 195) 8 4 (1 - 5) 

CGA 
No 7 0 (0 - 200) 

0.54 
7 2 (0 - 4) 

0.02 
Yes 9 0 (0 - 140) 9 4 (3 - 5) 

CGT 
No 12 0 (0 - 95) 

- 
12 4 (2 - 5) 

- 
Yes 4 170 (70 - 750) 4 2 (2 - 3) 

 

 

We next investigated the relationship between IL-10 haplotype and the breadth and magnitude 

of immune responses in the SK cohort of chronic infection (see Table 3.3.7). Here we found a 

significant association between the CAA haplotype and the magnitude of immune responses. 

We found that individuals without the CAA haplotype had a significantly larger magnitude of 
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CTL responses as compared to individuals with the CAA haplotype (p= 0.0005). We also 

found a significant association between the IL-10 haplotype and the breadth of immune 

responses. Individuals without the CAA haplotype had a wider breadth of CTL responses as 

compared to individuals with the CAA haplotype (p= 0.005).  

 

Table 3.3.7 Association between the IL-10 haplotype and the breadth and magnitude of 

immune responses in the Sinikithemba Chronic Infection cohort 

Haplotype n 
Median 

Magnitude (IQR) 
p-value n 

Median Breadth 

(IQR) 
p-value 

AAT 
No 189 966 (0 - 2105) 

0.9752 
167 8 (5 - 13) 

0.1715 
Yes 259 980 (0 - 2428) 211 9 (6 - 14) 

CAA 
No 436 1002 (0 - 2295) 

0.0005 
369 9 (6 - 14) 

0.0046 
Yes 12 0 (0 - 0) 9 2 (1 - 6) 

CAT 
No 204 938 (0 - 2215) 

0.5910 
169 9 (5 - 14) 

0.8085 
Yes 244 1002 (0 - 2295) 209 9 (5 - 13) 

CGA 
No 274 998 (0 - 2331) 

0.6296 
230 9 (6 - 14) 

0.2748 
Yes 174 920 (0 - 2180) 148 8 (5 - 13) 

CGT 
No 367 940 (0 - 2300) 

0.8392 
308 9 (6 - 14) 

0.3512 
Yes 81 1000 (0 - 1945) 70 9 (5 - 11) 
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3.4 DISCUSSION 

 

In this part of the study, we wanted to investigate the mechanisms underlying the role of IL-10 

promoter polymorphisms on the pathogenesis of HIV-1 infection. For this part of the analysis 

we examined the association between IL-10 genetic variants and IL-10 expression, biomarkers 

of disease progression, select pro-inflammatory cytokines and the breadth and magnitude of 

immune responses.  

 

IL-10 promoter polymorphisms have been shown to affect IL-10 production (Edwards-Smith 

et al., 1999, Eskdale et al., 1998, Hutchinson et al., 1998, Turner et al., 1997). However, the 

effect of IL-10 polymorphisms on IL-10 expression in the setting of chronic HIV-1 infection 

has not been previously investigated.  Our analysis into the role of IL-10 in HIV-1C 

pathogenesis showed that these IL-10 promoter polymorphisms that have been previously 

shown to be associated with differing levels of IL-10 expression, significantly associated with 

differential plasma IL-10 expression in an HIV setting. The IL-10-1082GG group, previously 

shown to be associated with increased IL-10 expression, showed a significantly higher median 

level of IL-10 expression as compared to the combined -1082AA/AG groups. Although we did 

not see an association with IL-10 expression and -592 group, the combined -592AA/CA 

groups, previously shown to be associated with decreased IL-10 expression, had a lower 

median level of IL-10 expression as compared to the -592CC group, however this was not 

significant. Also, the level of IL-0 expression may be influenced by HIV-infection itself or 

other co-infections (Crowley-Nowick et al., 2000). With regards to haplotype and IL-10 

expression, we found that the CAT haplotype had a strong association. We found that 
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individuals without the CAT haplotype had a significant higher median IL-10 expression as 

compared to individuals with the CAT haplotype. The CAT haplotype is broken down as -

592C/-1082A/-3575T. The observation is consistent with the observation that individuals 

carrying the -1082A allele had significantly lower levels of IL-10 as compared to individuals 

without the -1082A allele. We also found that overall, individuals without the CAT haplotype 

had significantly higher median levels of all cytokines measured, i.e. IL-2, IL-6, IFN- γ and 

TNF-α.  

 

We investigated the role of IL-10 production with biomarkers of HIV-infection, such as viral 

load, CD4
+
 T cell count, and the breadth and magnitude of immune responses. We did not find 

a correlation between plasma levels of IL-10 and any of these biomarkers of HIV-1 infection. 

As time of infection is not known in individuals in this cohort, we may be analysing 

biomarkers at different stages of infection. This may explain the lack of correlation between 

IL-10 expression and biomarkers of HIV-1 infection. Also, as there is an intricate network of 

cytokine expression, the expression of IL-10 may be affecting the expression of other pro- and 

anti-inflammatory cytokines, which may directly affect these biomarkers of HIV-1 infection. 

Also, the expression of cytokines in plasma may differ from the expression levels found 

within the mucosal or lymphoid tissue. We may have observed a different outcome, had we 

looked at the expression of cytokines in mucosal or lymphoid tissue, as it is in this tissue that 

HIV-1 predominantly replicates.  
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As the cytokine network is an intricate balance of signals and feedback, we wanted to 

determine the cytokine profile of select cytokines in an HIV setting of chronic infection. We 

sought to determine the association between IL-10 and the predominant Th1 cytokines IFN-γ, 

IL-2, IL-6 and TNF-α. We found that there was a significantly positive correlation between 

IL-10 and all of these cytokines measured. This suggests that during the chronic phase of HIV-

1 infection, there is an upregulation of both pro- and anti-inflammatory cytokines. We 

investigated the proportions of cytokines, to determine the cytokine profile during chronic 

HIV-1 infection, and found that regardless of genotype, IL-10 expression seemed to dominate 

over the expression of the other cytokines. This suggests that as the production of pro-

inflammatory cytokines increases, the production of IL-10 also increases, perhaps as a 

mechanism to reduce to inflammation and activation.  

 

As IL-10 has been shown to play an important role in the immune response and 

immunoregulation, we then wanted to determine if IL-10 variants had any association with the 

breadth (number of HIV peptides targeted by CTL) or magnitude (number of IFN-γ producing 

cells per million PBMCs) of HIV-1 specific immune responses in vivo, as measured by IFN-γ 

ELISPOT. IL-10 genetic variants did not significantly associate with the magnitude of 

immune responses, however, the -592AA genotype did have a significant association with the 

number of HIV-specific peptides targeted by cytotoxic T lymphocytes (CTLs). This is 

consistent with mechanistic studies done on LCMV in the mouse model, where the removal or 

blockade of IL-10 enhanced T-cell immune responses (Brooks et al., 2006, Ejrnaes et al., 

2006). The -592AA genotype has been previously shown to be associated with low IL-10 

production, and in our study we found that individuals with this genotype tended towards a 
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lower median level of IL-10 expression, however this was not significant. The resulting lower 

IL-10 levels may allow for increased expression of HLA Class I and II molecules on the 

surface of cells. This therefore increases pathogen-derived peptide presentation on the cell 

surface of infected cells, which can be recognised by CD8
+
 T lymphocytes.  However, as IL-

10 levels did not correlate with biomarkers of HIV-1 infection, IL-10 genetic variants may 

contribute to the quality of immune responses via a complex pathway that has yet to be 

elucidated. The CGA and CAA haplotypes had a significant association with breadth and 

magnitude of immune responses. We found that individuals with the CGA haplotype in the 

HPP Acute Infection cohort had a significantly larger breadth of immune responses as 

compared to individuals without the CGA haplotype. In the Sinikithemba Chronic Infection 

cohort, individuals without the CAA haplotype had a significantly greater magnitude of 

immune responses, as well as a significantly larger breadth of immune responses, as compared 

to individuals with the CAA haplotype. Individuals with the CAA haplotype had a lower 

median IL-10 expression, however this was not significant. This suggests that lower levels of 

IL-10 may favour a greater magnitude of immune responses, and a larger breadth of peptides 

targeted by CTL.  

 

Overall, our data suggest an association between IL-10 promoter genotypes with plasma IL-10 

levels, a predominance of the anti-inflammatory IL-10 over proinflammatory cytokines in the 

plasma of HIV-1 infected individuals and an effect of IL-10 polymorphisms on the breadth but 

not the magnitude of CD8
+
 T-cell immune response. Additional mechanistic studies will also 

be required in order to fully understand how best to target the IL-10 pathway for effective 

immunotherapy or a vaccine.  
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4.1 INTRODUCTION 

 

The underlying mechanisms on the role of IL-10 and its genetic variants in HIV pathogenesis 

have not been well studied despite the evidence of their importance from the genetic 

association studies. Previous studies have shown that IL-10 promoter polymorphisms play a 

role in HIV-1 susceptibility and pathogenesis (Erikstrup et al., 2007, Naicker et al., 2009, Shin 

et al., 2000). However, the underlying mechanisms that control the effect of these 

polymorphisms are not well studied, particularly in the African setting of high incidence and 

prevalence and where viral genetic subtypes differ from the Western countries.  

 

HIV-1 infection severely compromises the immune system, resulting in dramatic CD4
+
 T cell 

loss. Previous studies have shown that individuals that are able to control HIV replication, i.e. 

controllers, maintain high levels of IL-2-secreting CD4
+
 T cells, which proliferate when 

exposed to HIV peptides (Emu et al., 2005, Rosenberg et al., 1997). Generalised T cell 

activation has been implicated in contributing to immunodeficiency in HIV-1 infection. Many 

studies have demonstrated that elevated T cell activation levels are associated with a rapid 

HIV disease progression and CD4 decline in antiretroviral naïve individuals (Deeks et al., 

2004, Giorgi et al., 1999, Giorgi et al., 2002, Liu et al., 1998, Liu et al., 1997, Sousa et al., 

2002).  

 

Generalised T cell activation due to chronic HIV stimulation may drive excessive T cell 

proliferation, expansion and death, eventually leading to immunologic exhaustion of the 

regenerative capacity of the immune system (Hazenberg et al., 2000, McCune, 2001, Pantaleo 

et al., 1997).  
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IL-10 has been implicated in modulating T cell activation and has been shown to suppress T 

cell proliferation, as well as blocking pro-inflammatory cytokine production. IL-10 acts on T 

helper cells to regulate Th1 cell proliferation and differentiation (Filippi and von Herrath, 

2008). In a study by Torheim et al (Torheim et al., 2009), it was demonstrated that a small 

subset of HIV-specific T cells that secrete IL-10 had the ability to inhibit proliferation of other 

T cells. Previous studies have also demonstrated that individuals with severely compromised T 

helper cell function have higher levels of IL-10 (Clerici et al., 1994, Ostrowski et al., 2001). 

Studying the underlying mechanisms of IL-10 promoter polymorphisms can assist in better 

understanding the role of IL-10 in T helper cell function.  

 

Blockade of IL-10 and the IL-10 receptor has been shown to result in resolution of a chronic 

viral infection (Brockman et al., 2009). Brockman et al (2009) studied the effect of IL-10 

blockade on HIV- specific T cell function. They demonstrated that the blockade of IL-10 

restored HIV-specific CD4
+
 T cell proliferation, as well as antigen-specific CD8

+
 T cell 

proliferation. Mechanistic studies of lymphocytic choriomeningitis virus (LCMV) in the 

mouse model showed that IL-10 blockade or gene knock-out resulted in enhanced T cell 

immune responses (Brooks et al., 2006, Ejrnaes et al., 2006). As a result this led to rapid 

elimination of LCMV and the development of antiviral memory T cell responses. IL-10 has 

also been shown to enhance detrimental deletion of dendritic cells by natural killer cells (Alter 

et al., 2010), adding to severe immune dysfunction in chronic HIV-1 infection.  

 

Our data suggests that IL-10 and its genetic variants may play a role in CD4 decline; IL-10 

may also dominate the cytokine profile during chronic infection favouring an anti-

inflammatory profile; as well as play a role in the breadth of immune responses. In this study, 
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we sought to determine whether the previously observed associations of IL-10 genetic variants 

and IL-10 on chronic HIV-1 pathogenesis are mediated via impact on CD4
+
 T cell, CD8

+
 T 

cell and B cell activation and proliferation. Specifically, the following markers were measured 

in CD4
+ 

and CD8
+
 T cells, to determine if there is an association between expression of these 

markers and IL-10 genetic variants: CD38, CD95, Ki67, HLA-DR and PD-1. The following 

markers were measured on B cells: CD38, CD95, IgG, Ki67 and PD-1. The CD38 molecule 

acts as a receptor that controls adhesion and signaling in leukocytes (Deaglio et al., 2001). The 

CD95 receptor has a significant role in the immune system, as it is responsible for cell death 

signaling by apoptosis, which plays a significant role in the life and function of immune 

system cells (Krammer, 2000). The expression of the Ki67 protein is a marker for proliferating 

cells, and is used to determine the growth-fraction of a given cell population (Scholzen and 

Gerdes, 2000). HLA-DR molecules are responsible for presenting antigen, on the surface of 

cells, to T helper cells. This presentation of antigen then results in the initiation of immune 

responses (Bottazzo et al., 1983). HLA-DR is used as a marker for immune activation during 

HIV-1 infection (Giorgi and Detels, 1989, Kestens et al., 1992, Liu et al., 1997, Prince and 

Jensen, 1991, Salazar-Gonzalez et al., 1985). The PD-1 molecule is a marker of T cell 

exhaustion in the face of chronic antigenic stimulation, a cell-death inducer, and is involved in 

programmed cell death (Day et al., 2006, Ishida et al., 1992). Immunoglobulin G (IgG) 

molecules are antibody molecules indicate the induction of the secondary immune response on 

B cells, they have the ability to inactivate viruses, and activate the classical complement 

pathway on various cell types (Meulenbroek, 1996, Pier, 2004).  
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4.2 MATERIALS AND METHODS 

 

4.2.1 STUDY POPULATION 

For the activation and proliferation assays we focused on the HPP Sinikithemba Chronic 

Infection cohort. We analysed the activation of CD4
+
 T cells, CD8

+
 T cells and B cells in a 

subset of 63 individuals. These individuals were chosen based on extreme genotypes (based on 

the dominant/recessive pattern of the SNP variants) to increase our chances of detecting a 

difference between groups, as our sample size was restricted due to sample availability and 

viability. Specimen collection and preparation was performed on fresh blood samples taken at 

scheduled visits. Blood samples were collected in ACD tubes and PBMCs were isolated by 

density gradient centrifugation no longer than 4 hours after phlebotomy was performed. The 

PBMCs were then directly processed for flow cytometry.  

 

The CFSE proliferation assays were performed on a subset of individuals from the HPP 

Sinikithemba cohort. Blood samples were taken at scheduled visit, and PBMCs were isolated. 

PBMCs were frozen down and stored in liquid nitrogen until assays were performed. As the 

assays were performed on samples that had been thawed, the viability of the samples varied. 

We were able to assess IL-10 blockade in 31 out of the intended subset of 40 individuals from 

the SK cohort. We simultaneously measured cytokine expression after IL-10 blockade in 40 

individuals.  
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As baseline samples were not available for all individuals included in the blockade assays, we 

included timepoints where samples were available. We also measured plasma cytokine levels 

in the 40 individuals included in the blockade analysis.  

 

4.2.2 FLOW CYTOMETRIC DETECTION OF ACTIVATION MARKERS 

Levels of CD8
+ 

T cell, CD4
+
 T cell and B cell activation were assessed by flow cytometry. 

The following monoclonal antibody combinations were used: anti-CD3 Pac-blue, anti-CD38 

PE-Cy7, anti-HLA-DR ACP-Cy7, anti-CD95 PE, anti-CD19 Alexa-700, anti-IgG PE-Cy5, 

anti-PD-1 APC, anti-Ki67 FITC (Becton Dickinson, San Jose, CA, USA) and anti-CD4 

Qdot605 and anti-CD8 Qdot655 (Invitrogen, Life Technologies, Grand Island, NY, USA). All 

markers were assessed by surface staining, except Ki67, which was stained after 

permeabilizing cells with PERM B (Invitrogen, Life Technologies, Grand Island, NY, USA). 

Samples were analysed on a LSRII flow cytometer (Becton Dickinson, San Jose, CA, USA). 

For all activation markers percentages of positive cells were analyzed within T cell and B cell 

subsets. Activation marker co-expression profiles were determined using the Flowjo software 

(Tristar, Ashland, OR, USA). The gating strategy is shown in Figure 4.2.1.  

 

PBMCs were used for the detection of activation markers, 1 million cells/tube. 2 ml of PBS 

was added to the samples which were then centrifuged at 1,700 rpm for 7 minutes. After 

centrifugation, the supernatant was discarded, and residual liquid was blotted on gauze without 

turning over the tubes. The FMO stain was added to all tubes as follows: 1.5 µl of CD3 

PacBlue, 0.4 µl of CD4 Qdot605, 0.4 µl of CD8 Qdot655, and 4 µl of CD19. The surface stain 

was added to the tubes as follows: 6 µl of HLA-DR APC-Cy7, 6 µl of CD38 PE-Cy7, 10 µl of 
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CD95 PE, 12 µl of PD-1 APC and 12 µl of IgG Pe-Cy-5 (or Ki67 FITC in B cells). These 

samples were then incubated at 4
o
C in the dark, for 15 minutes. Samples were then washed by 

adding 2 ml PBS and then centrifuging at 1,700 rpm for 7 minutes. The supernatant was 

decanted as before. Finally, 200 µl of PBS was added to resuspend the beads and this was 

stored at 4
o
C in the dark until acquired on the LSRII Flow Cytometer (Becton Dickinson, San 

Jose, CA, USA). 
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Figure 4.2.1 Gating strategy used for detection of activation markers by flow cytometry 

1
3
1
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4.2.3 IL-10 BLOCKADE ON CD4
+
 T CELLS: CFSE ASSAYS AND SUPERNATANTS FOR 

CYTOKINE PROFILES 

To determine whether IL-10 or its genetic variants played a role in CD4
+
 T cell proliferation, 

IL-10 blockade was performed and CFSE assays, and supernatants were collected and 

measured. IL-10 blockade assays were performed on frozen PBMCs from 40 individuals from 

the Sinikithemba Chronic Infection cohort, of which 31 had positive results for proliferation. 

Cytokines were measured in all 40 individuals. The percent of proliferating CD4
+
 T cells were 

determined using the Flowjo software (Tristar, Ashland, OR, USA). The gating strategy is 

shown in Figure 4.2.2.  

 

PBMC samples were prepared prior to proliferation and stimulation assays. PBMC samples 

were thawed by following a standard operating procedure (SOP) as follows: samples were 

thawed (incompletely) in a water bath set to 37
o
C for about 1 minute. Samples were added to a 

15 ml tube containing 8 ml R+ (a solution composed of 500 ml RPMI media, 10 ml HEPES 

buffer solution, 5.5 ml of Penicillin Streptomycin and 5.5 ml of l-glutamine). 1 ml of FCS 

(fetal calf serum) and 30 µl of DNAse was added to the vials. Samples were mixed by gently 

inverting the tubes. The tubes were then centrifuged at 1,500 rpm for 7 minutes at 4
o
C. 

Supernatant was discarded after centrifugation and the pellet was resuspended in a total of 3 

ml R+ and centrifuged again at 1,500 rpm for 7 minutes at 4
o
C. Cell count was performed 

manually using a microscope.  
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Figure 4.2.2 Gating strategy used to measure CD4
+
 T cell proliferation after IL-10 blockade 1

3
3
 



134 

 

The PBMCs were then CD8
+
 T cell depleted, so that only CD4

+ 
T cells were used for the 

assays. CD8+ T cell depletion was done using the CD8 Dyna Beads (Invitrogen Life 

Technologies, Grand Island, NY, USA). The manufacturer’s protocol was followed. Briefly, 

25 µl of the beads were added for every 10 million cells used. Beads were washed by adding 1 

ml PBS with 1% FCS prior to samples addition then placing in the magnetic tube rack for 

about 1 minute. The beads attracted to the magnet and the supernatant was removed leaving 

behind the beads on the side of the tube. The tubes were removed and the beads resuspended 

in PBS with 1% FCS proportional to the amount used. This was then added to the samples and 

placed back in the magnetic rack for 20 minutes at 4
o
C. After 20 minutes the supernatant 

(containing the CD4
+
 T cells) was placed into a clean tube, leaving behind the CD8

+
 T cells 

captured on the Dyna beads. Cells were then manually counted and washed again, then 

resuspended. At this point the samples that were prepared for Luminex were resuspended in 2 

ml R10 HAB (a mix of R+ and Human antibody serum, where 10% of the solution is HAB) 

for 3 hours at 37
o
 C, until blockade and stimulation.  

 

 Samples for the CFSE assay were resuspended in 1 ml PBS/CFSE mix (0.25 µl of CFSE was 

used per millilitre of PBS). After adding the PBS/CFSE mix, samples were immediately 

mixed and placed in an incubator for exactly 7 minutes at 37
o
C. After 7 minutes 1 ml FCS and 

8 ml R+ were added, to bring the volume up to 10 ml. This was centrifuged at 1,500 rpm for 7 

minutes at 4
o
C, and the supernatant was then discarded. The PBMC pellet was then washed 

again by adding 10 ml R+ and centrifuging for at 1,500 rpm for 7 minutes at 4
o
C, and the 

supernatant was then discarded. The remaining pellet was then resuspended in 2 ml R10 HAB. 
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The cells were then rested for 3 hours in an incubator at 37
o
C. This final volume would allow 

us to measure four different conditions with 1 tube of 500 µl each.  

 

The four different conditions of IL-10 blockade and stimulation were done using the 

following: IL-10 receptor blockade with the human IL-10Rα antibody, the isotype control was 

IGg1 and the Gag antigen for stimulation. The four conditions were prepared as follows:  

1) 5 µl IGg1 with no antigen stimulation;  

2) 5 µl IGg1 with 5 µl Gag for stimulation;  

3) 5 µl IL-10Rα with no antigen stimulation; and  

4) 5 µl IL-10Rα with 5 µl Gag for stimulation.  

 

Cells for both the Luminex and CFSE assays were stimulated using the same conditions as 

described above. The 2 ml of sample for the Luminex and CFSE assays was split into 4 tubes 

containing 500 µl of sample each, and the respective antibody, isotype or stimulation was 

added to the respective tube. After stimulation using the above conditions, the samples were 

treated differently for either the Luminex assays or the CFSE assays, as described below. 

 

For the Luminex assays the stimulated cells were then vortexed gently and incubated for 48 

hours at 37
o
C. After 48 hours cells were transferred to microcentrifuge tubes and centrifuged 

at 5,000 rpm for 5 minutes at room temperature to pellet the cells. After centrifugation the 

supernatant was collected and split into two tubes for further use, and the cells were 

resuspended in 300 µl of RLT Buffer/Betamercaptoethanol (10µl of betamercaptoethanol was 

added for every 1ml of RLT Buffer used). The cells were then stored at -80
o
C for future use. 
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Cytokines were measured in the supernatant using Luminex methodology, as previously 

described in Chapter 3.2.2. We measured 6 cytokines, i.e. IFN-γ, IL-2, IL-6, IL-10, IL-13, and 

TNF-α.  

 

For the CFSE assays, the samples were incubated at 37
o
C for 7 days after stimulation. After 7 

days, 100 µl was removed from the isotype-no-antigen tube and put in a clean tube to use for 

the compensation setup for flow cytometry. 3 ml of PBS/1%FCS was added to all tubes and 

then centrifuged at 1,500 rpm for 7 minutes at 4
o
C. Supernatant was discarded and the cells 

were then stained before analysing on the flow cytometer. Staining antibodies were used as 

follows: 5 µl of CD4 APC; 5 µl of CD25 Pe-Cy7; 1.5 µl of CD8 APC-Cy7; and 1.5 µl of CD3 

Alexa 700. After the staining antibodies were added, the cells were incubated at 4
o
C for 20 

minutes in the dark. After 20 minutes of incubation, samples were washed by adding 3 ml 

PBS/1%FCS and centrifuged at 1,500 rpm for 7 minutes at 4
o
C. The supernatant was then 

discarded and 200 µl of 4% PFA (Paraformaldehyde) was added to fix the cells so that they 

could be analysed on the flow cytometer. This was then left in the dark at room temperature 

for 20 minutes. After 20 minutes incubation, the samples were washed again by adding 3 ml 

PBS/1%FCS and centrifuged at 1,500 rpm for 7 minutes at 4
o
C. The supernatant was 

discarded and the pellet was then resuspended in 200 µl PBS/1%FCS, ready for analysis. The 

samples were kept at 4
o
C in the dark until they were acquired on the LSRII Flow Cytometer 

(Becton Dickinson, San Jose, CA, USA).  
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4.2.4 PLASMA CYTOKINE PROFILING BY LUMINEX METHODOLOGY 

Cytokines were measured in the plasma of samples with matched timepoints as the PBMCs 

used in the IL-10 blockade assays. These plasma samples were prepared routinely in the lab at 

scheduled visits. The plasma was removed from whole blood by centrifugation and stored in 

liquid nitrogen until used. We measured six cytokines using Luminex methodology. We 

measured the plasma concentration of IFN-γ, IL-2, IL-6, IL-10, IL-13, and TNF-α, using 

methods described in Chapter 3.2.2.   

 

4.2.5 STATISTICAL ANALYSIS 

Both univariate and multivariate analyses were performed in assessing the association between 

activation markers and IL-10 genetic variants. The Kruskal-Wallis test was used to compare 

activation markers between genotypes and haplotypes. Subsequent analysis of difference 

between any two genotypes/haplotypes was performed using Wilcoxon rank sum test. Rank 

analysis of covariance was used to adjust for the effect of HIV viral RNA while comparing the 

activation markers between the genotypes and haplotypes. A 5% level of significance in the 

univariate analyses was used to consider variables for the multivariate analyses. For the IL-10 

blockade assays, in determining whether there is any difference in cell proliferation after 

blockade, a paired non-parametric test, namely the Wilcoxon signed rank test was performed 

on the difference between isotype and IL-10Rα. With cytokine profiling after IL-10 blockade 

a similar analysis was undertaken by performing a paired non-parametric test, i.e. the 

Wilcoxon signed rank test, on the difference between the isotype and IL-10Ra within each 

cytokine. For the matched timepoint plasma cytokine profiles, the Wilcoxon rank sums test 

was used to compare the IL-10 genotypes -592 and -1082, within each of the cytokines. The 
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Wilcoxon ranks sums test was used to determine whether the presence of a haplotype was 

associated with the following: cell proliferation after IL-10 blockade, cell proliferation and 

viral load, cytokine production after IL-10 blockade and plasma cytokine expression.  
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4.3 RESULTS 

 

4.3.1 ASSOCIATION BETWEEN BIOMARKERS OF HIV INFECTION AND MARKERS OF 

ACTIVATION ON CD4
+
 T CELLS, CD8

+
 T CELLS AND B CELLS 

 

We wanted to determine if there was an association between biomarkers of HIV infection and 

any activation marker on CD4
+
 T cells, CD8

+
 T cells and B cells. To do this we fitted Linear 

regression models to CD4
+
 T cell count, viral load, and the number and magnitude of HIV 

peptides targeted by CTL. For each cell subset unadjusted analyses were performed, and then, 

adjusted models were created by including factors which were significant at a 20% level of 

significance. Figure 4.3.1 shows the relationship between the expression of activation markers 

on CD8
+
 T cells and CD4

+
 T cell count. In the adjusted analyses CD38 and CD95 were 

significantly negatively associated with CD4
+
 T cell count. For every one percent increase in 

the expression of CD38, CD4
+
  T cell count decreased by approximately 3 cells/µl (p= 0.04) 

and decreased by almost 5 cells/µl for every one percent increase in CD95 expression (p= 

0.04).  

 

We next investigated the relationship between the expression of activation markers on CD4
+
 T 

cells and CD4
+
 T cell count (see Figure 4.3.2). Again CD38 and CD95 expression had a 

significant negative association with CD4
+
 T cell count. With every one percent increase in 

expression of CD38, there was a decrease in almost 5 cells/µl (p= 0.02), and a decrease of 

almost 4 cells/µl for CD95 expression (p= 0.05). 
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Figure 4.3.1 The relationship between activation markers on CD8
+
 T cells and CD4

+
 T cell count. CD38 and CD95 expression 

had a significant negative association with CD4 T cell count.  The Standard Error is shown in parenthesis. 1
4
0
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Figure 4.3.2 The relationship between activation markers on CD4
+
 T cells and CD4

+
 T cell count. CD38 and CD95 expression 

had a significant negative association with CD4 T cell count. The Standard Error is shown in parenthesis. 1
4
1
 



142 

 

The relationship between the expression of activation markers on B cells and CD4
+
 T cell 

count is shown in Figure 4.3.3. CD95 was the only marker that showed a significant negative 

association with CD4
+
 T cell count. For every one percent increase in the expression of CD95, 

there was a decrease of 3 cells/µl (p= 0.03).  

 

We next investigated the relationship between the expression of activation markers on CD4
+
 T 

cells, CD8
+
 T cells, and B cell and viral load. Figure 4.3.4 shows the relationship between 

markers of activation on CD8
+
 T cells and viral load. CD38 was the only marker of CD8

+
 T 

cell activation that showed a significant positive association with viral load. For every one 

percent increase in expression of CD38, there was a 0.02 log increase in viral load (p= 0.02).  

 

Figure 4.3.5 shows the relationship between the expression of markers of activation on CD4
+
 

T cells and log viral load. We found no significant association between any activation markers 

on CD4
+
 T cells and log viral load.  

 

Figure 4.3.6 shows the association between the expression of activation markers on B cells 

and log viral load. CD95 was the only activation marker on B cells that showed a significant 

positive assocation with log viral load. For every one percent increase in the expression of 

CD95, there was a 0.03 log increase in viral load (p= 0.004).  
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Figure 4.3.3 The relationship between markers of activation on B cells and CD4
+
 T cell count. CD95 had a significant negative 

association with CD4
+
 T cell count. The Standard Error is shown in parenthesis. 

1
4
3
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Figure 4.3.4 The relationship between markers of activation on CD8
+
 T cells and viral load. CD38 had a significant positive 

association with log viral load. The Standard Error is shown in parenthesis. 1
4
4
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Figure 4.3.5 The relationship between markers of activation on CD4
+
 T cells and log viral load. There was no significant 

association between the expression of any markers of CD4
+
 T cell activation and log viral load. The Standard Error is shown in 

parenthesis.  

1
4
5
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Figure 4.3.6 The relationship between markers of activation on B cells and log viral load. CD95 was the only expression marker 

to associate positively with log viral load. The Standard Error is shown in parenthesis. 1
4
6
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We then went on to measure the relationship between the magnitude and number of HIV 

peptides targeted by CTL and the expression of any of the activation markers on CD4
+
 T cells, 

CD8
+
 T cells and B cells. First we looked at the relationship between the expression of 

markers of activation on CD8
+
 T cells and the magnitude of HIV peptides targeted by CTL 

(see Figure 4.3.7). We did not find any significant association between the expression of any 

of the markers of activation on CD8
+
 T cells and the magnitude of HIV peptides targeted by 

CTL. 

 

Figure 4.3.8 shows the relationship between the magnitude of HIV peptides targeted by CTL 

and the expression of markers of activation on CD4
+
 T cells. There was no significant 

association between the expression of any markers of activation on CD4
+
 T cells and the 

magnitude of HIV peptides targeted by CTL.  

 

We next investigated the relationship between the expression of activation markers on B cells 

and the magnitude of HIV peptides targeted by CTL (see Figure 4.3.9). The only marker that 

had a significant positive association with the magnitude of the immune response was the PD-

1 marker. For every one percent increase in the expression of PD-1, there was an increase 

magnitude of immune responses by 21.32 units (p= 0.02).  

 

We next investigated the relationship between the number of HIV peptides targeted by CTL 

and the expression of any activation markers on CD4
+
 T cell, CD8

+
 T cells, and B cells. Figure 

4.3.10 shows the relationship between activation markers on CD8
+
 T cells and the breadth of 

immune responses. There was no significant association between any activation marker on 

CD8
+
 T cells and the breadth of immune responses.   
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Figure 4.3.7 The relationship between markers of CD8
+
 T cell activation and the magnitude of HIV peptides targeted by CTL. 

There was no significant association between the magnitude of immune responses and the expression of any activation markers on 

CD8
+
 T cells. The Standard Error is shown in parenthesis. 

1
4
8
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Figure 4.3.8 The relationship between the magnitude of immune responses and activation markers on CD4
+
 T cells. There was 

no significant association between the expression of any activation markers on CD4
+
 T cells and the magnitude of the immune 

response. The Standard Error is shown in parenthesis. 1
4
9
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Figure 4.3.9 The relationship between activation markers on B cells and the magnitude of the immune response. PD-1 had a 

significant positive association with the magnitude of HIV peptides targeted by CTL. The Standard Error is shown in parenthesis. 1
5
0
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Figure 4.3.10 The relationship between activation markers on CD8
+
 T cells and the number of HIV peptides targeted by CTL. 

There was no association between the expression of any activation marker on CD8
+
 T cells and the breadth of immune responses. The 

Standard Error is shown in parenthesis.  

1
5
1
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Figure 4.3.11 shows the relationship between the expression of activation markers on CD4
+
 T 

cells and the number of HIV peptides targeted by CTL. There was no association between the 

expression of any activation marker on CD4
+
 T cells and the breadth of the immune response.  

 

We next investigated the relationship between the expression of activation markers on B cells 

and the number of HIV peptides targeted by CTL (see Figure 4.3.12). There was no 

association between the expression of any activation marker on B cells and the breadth of the 

immune response.    
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Figure 4.3.11 The relationship between activation markers on CD4
+
 T cells and the breadth of immune responses. There was no 

significant association between the expression of any activation marker on CD4
+
 T cells and the breadth of the immune response. The 

Standard Error is shown in parenthesis.   1
5
3
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Figure 4.3.12 The relationship between activation markers on B cells and the breadth of immune responses. There was no 

significant association between the expression of any activation marker on B cells and the breadth of the immune response. The 

Standard Error is shown in parenthesis.  

1
5
4
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4.3.2 ASSOCIATION BETWEEN IL-10 GENETIC VARIANTS AND MARKERS OF CD4
+
, 

CD8
+
 T CELLS AND B CELLS 

To determine the association between IL-10 genetic variants and markers of activation, we 

measured the percentage of cells positive for each marker within T and B cell subsets. For this 

part of the analysis we focused on 63 individuals from the Sinikithemba cohort of chronic 

infection.  

 

In CD4
+
 T cells

 
and CD8

+
 T cells we measured the association between IL-10 genetic variants 

and the following markers of activation: CD38, CD95, Ki67, HLA-DR and PD-1. Within the 

B cells subset, to determine the association between IL-10 genetic variants and markers of B 

cell activation, we measured the following markers of B cell activation: CD38, CD95, IgG, 

Ki67 and PD-1.  

 

We first investigated whether each genotype had an effect on activation, without grouping. 

Figure 4.3.13 shows the association between IL-10-592 genotype and markers of CD4
+
 T cell 

activation. The -592 genotype had no significant association with CD38 or Ki67 expression on 

CD4
+
 T cells (p= 0.68 and 0.23 respectively). However, we did find a significant association 

between -592 genotype and CD95, HLA-DR and PD-1 expression on CD4
+
 T cells (p= 0.04, 

0.01 and 0.03 respectively). With the significant association between -592 genotype and CD95 

expression in CD4
+
 T cells, we found that the -592AA group had a significantly higher median 

expression of CD95 as compared to the -592CC or -592CA groups (p= 0.03 and 0.02 

respectively); the -592AA genotype had a significantly higher median expression of HLA-DR 

as compared to the -592CC or -592CA (p= 0.03 and 0.005 respectively); and the -592AA 
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group had a significantly higher median expression of PD-1 compared to the -592CA group 

(p= 0.01).  
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Figure 4.3.13 Association between -592 genotype and markers of CD4

+
 T cell activation. The association between -592 genotype 

and CD4
+
 T cell activation was measured by the expression of CD38, CD95, HLA-DR, Ki67 and PD-1. -592 genotype did not 

associate with CD38 or Ki67, but did significantly associate with CD95, HLA-DR and PD-1 expression.  

 

1
5
7
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We next investigated the association between IL-10-1082 genotype and markers of CD4
+
 T 

cell activation (see Figure 4.3.14). This was performed by measuring the expression of CD38, 

CD95, Ki67, HLA-DR and PD-1. The -1082 genotype did not associate with any of the 

markers expressed on CD4
+
 T cells. Here, we found that the -1082 genotype did not 

significantly associate with CD38, CD95, Ki67, HLA-DR or PD-1 (p= 0.54, 0.15, 0.39, 0.27 

and 0.62 respectively).  

 

We then investigated the association between the -592 genotype and markers of activation on 

CD8
+
 T cells. We measured activation by measuring the expression of the following markers: 

CD38, CD95, Ki67, HLA-DR and PD-1. Figure 4.3.15 shows the association between IL-10-

592 genotype and these markers of CD8
+
 T cell activation. We did not find any significant 

association between the -592 genotype and any markers of activation on CD8
+
 T cells. The -

592 genotype did not associate with CD38, CD95, Ki67, HLA-DR or PD-1 (p= 0.45, 0.51, 

0.66, 0.2 and 0.82 respectively).   

 

To determine the association between the IL-10-1082 genotype and activation of CD8
+ 

T cells, 

we measured the following markers of activation: CD38, CD95, Ki67, HLA-DR and PD-1 

(see Figure 4.3.16). The -1082 genotype did not significantly associate with the expression of 

CD38, CD95, Ki67 and PD-1 (p= 0.73, 0.11, 0.27 and 0.5 respectively). However, we found a 

significant association between the -1082 genotype and the expression of HLA-DR on CD8
+
 T 

cells (p= 0.05). Here we found that the -1082AA group had a significantly higher median 

expression of HLA-DR than the -1082AG group (p= 0.02).  
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Figure 4.3.14 Association between the -1082 genotype and markers of activation on CD4

+
 T cells. The -1082 genotype did not 

significantly associate with any of the markers of CD4
+
 T cell activation.  

1
5
9
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Figure 4.3.15 Association between -592 genotype and markers of activation on CD8
+
 T cells. The -592 genotype did not 

significantly associate with any markers of activation on CD8
+
 T cells.  1

6
0
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Figure 4.3.16 The association between -1082 genotype and markers of activation on CD8
+
 T cells. The -1082 genotype showed a 

significant association with the expression of HLA-DR (p= 0.047).  

  1
6
1
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We next investigated the association between IL-10-592 genotype and markers of activation of 

B cells. We measured the following markers of activation: CD38, CD95, Ki67, IgG and PD-1. 

We first looked at the association between the -592 genotype and these markers of activation 

(see Figure 4.3.17). We found no significant association between the -592 genotype and the 

expression of CD38, CD95, Ki67 and PD-1 (p= 0.78, 0.83, 0.86 and 0.86 respectively). 

However, we found a trend between the -592 genotype and expression of IgG (p= 0.07). We 

found that the -592CC genotype had a significantly higher median of IgG expression 

compared to the -592AA group (p= 0.03).  

 

We next looked at the association between -1082 genotype and markers of activation of B 

cells, by looking at the following markers: CD38, CD95, Ki67, IgG and PD-1 (see Figure 

4.3.18). We did not find any significant association between the -1082 genotype and the 

expression of CD38, CD95, Ki67 and PD-1 (p= 0.79, 0.92, 0.54 and 0.55 respectively). 

However, we found a significant association between the -1082 genotype and the expression 

of IgG on B cells (p= 0.02). Here we found that the -1082GG group had a significantly higher 

median expression of IgG than the -1082AA and -1082AG groups (p= 0.005 and 0.04 

respectively).  
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Figure 4.3.17 Association between the -592 genotype and markers of activation on B cells. The -592 genotype was significantly 

associated with the expression of IgG (p= 0.03).  1
6
3
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Figure 4.3.18 The association between the -1082 genotype and markers of activation on B cells. The -592 genotype was 

significantly associated with the expression of IgG (p= 0.02).   1
6
4
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4.3.3 ASSOCIATION BETWEEN IL-10 GENETIC VARIANTS AND CD4
+
 T CELL 

PROLIFERATION AFTER IL-10 BLOCKADE 

To determine the association between the role of IL-10 genetic variants on CD4
+
 T cell 

proliferation after IL-10 receptor blockade, CFSE assays were used. Carboxyfluorescein 

diacetate succinimidyl ester (CFSE) is used to measure cell proliferation by flow cytometry. 

CFSE passively diffuses into cells and combines with cellular proteins. Therefore, during cell 

division the CFSE is equally distributed between the two resulting cells resulting in a decrease 

in the percent of CFSE within cells. Therefore, the % of CFSE low cells, as measured through 

the gating strategy used for flow cytometry, indicates the amount of resulting proliferation.  

 

For this part of the analysis, we focused on 40 individuals from the HPP Sinikithemba cohort. 

We first investigated the overall proliferation of CD4
+
 T cells before and after IL-10 receptor 

blockade with anti-IL-10Rα antibody (see Figure 4.3.19). Although there was a trend towards 

increased proliferation following IL-10 receptor blockade, this was not significant (p= 0.09).  

 

 

 

 

 

 

Figure 4.3.19 CD4
+
 T cell proliferation after IL-10 receptor blockade. There appears to be 

a trend to increased proliferation after IL-10 receptor blockade, but this was not significant (p= 

0.09).  
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We then went on to assess if IL-10 genotype played a role in CD4
+
 T cell proliferation after 

IL-10 receptor blockade (see Figure 4.3.20). As the samples size was small, we grouped 

individuals according to genotypes at both positions, placing them into extreme genotype 

groups, i.e. -592AA/-1082AA (low-IL-10-producing) and -592CC/-1082GG (high-IL-10-

producing). We did not find any significant association between extreme IL-10 genotype and 

CD4
+
 T cell proliferation after IL-10 receptor blockade (p= 0.60).  

 

 

Figure 4.3.20 Association between extreme IL-10 genotypes and CD4
+
 T cell 

proliferation. There was no significant association between genotype and proliferation (p= 

0.60).  

 

We also investigated whether the viral load of the individuals played a role in CD4
+
 T cell 

proliferation after IL-10 receptor blockade (see Figure 4.3.21). Here, we grouped the 

individuals by log viral load into a low log viral load (less than or equal to the median log viral 

load of 4.69 log copies/ml) or high log viral load (greater than the median log viral load of 
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4.69 copies/ml). Viral load did not significantly associate with CD4
+
 T cell proliferation after 

IL-10 receptor blockade (p= 0.1239).  

 

 

Figure 4.3.21 The association between viral load and CD4
+
 T cell proliferation after IL-

10 receptor blockade. There was no significant association between viral load and 

proliferation (p= 0.1239).  

 

We next investigated whether IL-10 haplotype had any association with proliferation after IL-

10 blockade (see Table 4.3.1). We were able to analyse data for 3 of the 7 haplotypes, as we 

did not have sufficient numbers for the other haplotypes to make statistical comparisons. 

Using the Wilcoxon rank sums test, we found no significant association between any IL-10 

haplotype and proliferation after IL-10 blockade.  
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Table 4.3.1 Association between haplotype and proliferation after IL-10 blockade 

Haplotype n Median IL-10Ra – ISO (IQR) p-value 

AAT 
No 12 0.20 (0.11 - 1.02) 

0.46 
Yes 9 0.16 (0.04 - 0.51) 

CGA 
No 10 0.18 (0.04 - 0.60) 

0.81 
Yes 11 0.15 (0.07 - 0.87) 

CGT 
No 13 0.16 (0.12 - 0.51) 

0.69 
Yes 8 0.20 (0.05 - 1.39) 
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4.3.4 ASSOCIATION BETWEEN IL-10 GENETIC VARIANTS AND SECRETED 

CYTOKINE PROFILES AFTER IL-10 BLOCKADE  

To determine if IL-10 receptor blockade had an effect on the production of select cytokines, 

supernatants were collected and cytokine concentrations were measured for IFN-γ, IL-2, IL-6, 

IL-10, IL-13 and TNF-α. We first investigated whether IL-10 receptor blockade had an effect 

on cytokine production (see Figure 4.3.22). Overall we found that there was no significant 

association between IL-10 receptor blockade and levels of IFN-γ, IL-6, IL-10, IL-13 and TNF-

α (p= 0.49, 0.67, 0.87, 0.32 and 0.51 respectively). However, we did find that there was a 

significant association between IL-10 receptor blockade and IL-2 production (p= 0.004). 

Figure 4.3.23 shows that the median level of IL-2 was significantly increased after IL-10 

receptor blockade.  

 

We next wanted to investigate if extreme IL-10 genotype influenced the expression of these 

cytokines after IL-10 receptor blockade (see Table 4.3.2). We found that within individuals 

with the -592AA/-1082AA genotype there was a significant increase in IL-2 production after 

IL-10 receptor blockade (p= 0.02).  

 

We then wanted to determine whether viral load played a role in cytokine production after IL-

10 receptor blockade (see Table 4.3.3).  We found that within individuals in the high log viral 

load group, there was a significant increase in IL-2 production after IL-10 receptor blockade 

(p= 0.008).  
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Figure 4.3.22 Effect of IL-10 receptor blockade on cytokine production. IL-10 receptor blockade did not significantly affect the 

production of IFN-γ, IL-6, IL-10, IL-13 or TNF-α. IL-2 production significantly increased following IL-10 receptor blockade (p= 

0.004). 

1
7
0
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Figure 4.3.23 Median IL-2 levels are increased after IL-10 receptor blockade.  

 

Table 4.3.2 Association of extreme IL-10 genotype on cytokine production after IL-10 

receptor blockade 

Cytokine 

-592 AA or -1082 AA -592 CC or -1082 GG 

n 
Median difference 

IL10Ra – ISO (IQR) 
p-value n 

Median difference 

IL10Ra – ISO (IQR) 
p-value 

IFN-γ 14 
9.923  

(-215.485 – 43.475) 
0.95 25 

0.000 

(-11.280 – 31.635) 
0.52 

TNF-α 10 
-11.600  

(-83.440 – 361.505) 
0.85 21 

-3.140  

(-96.200 – 11.680) 
0.35 

IL-2 15 
1.140  

(0.230 – 4.25) 
0.02 25 

0.180  

(-0.035 – 0.550) 
0.08 

IL-6 7 
131.065  

(-19.025 – 377.480) 
0.58 16 

-5.545  

(-49.550 – 34.463) 
0.85 

IL-10 15 
5.930  

(-25.905 – 79.560) 
0.42 24 

-2.390  

(-75.515 – 14.713) 
0.34 

IL-13 15 
0.800  

(-0.775 – 2.530) 
0.42 25 

-0.070  

(-0.425 – 0.510) 
0.67 
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Table 4.3.3 Association between viral load on cytokine production after IL-10 receptor 

blockade 

Cytokine 

Low viral load* High viral load* 

n 
Median difference 

IL10Ra – ISO (IQR) 
p-value n 

Median difference 

IL10Ra – ISO (IQR) 
p-value 

IFN-γ 15 
22.005  

(-16.755 – 202.76) 
0.27 17 

0.185  

(-7.785 – 34.185) 
0.64 

TNF-α 13 
0.000  

(-83.350 – 361.505) 
0.57 11 

-3.140  

(-155.305 – 16.330) 
0.46 

IL-2 16 
1.078  

(-0.118 – 3.988) 
0.06 17 

0.530  

(0.180 – 1.340) 
0.008 

IL-6 9 
0.000  

(-22.705 – 131.065) 
0.46 8 

-5.545  

(-310.310 – 203.173) 
0.74 

IL-10 15 
14.755  

(-25.905 – 107.125) 
0.22 17 

-0.145  

(-20.120 – 5.930) 
0.75 

IL-13 16 
0.540  

(-1.295 – 3.780) 
0.39 17 

0.390  

(-0.185 – 1.035) 
0.18 

 

* Viral load was classified as being low and high, based on the median for the group, which was 4.69 log 

copies/ml. 

 

We investigated whether IL-10 haplotype had an association with cytokine expression after IL-

10 blockade. We were able to analyse only three of the six cytokines measured, as the other 

cytokines did not have adequate samples size. The three cytokines analysed were IL-2, IL-13 and 

IFN- γ. Table 4.3.4 shows the association between IL-10 haplotype and IL-2 expression after IL-

10 blockade. Using the Wilcoxon rank sums test we found that there was a significant 

association between IL-10 haplotype and IL-2 expression after IL-10 blockade. Individuals with 

the AAT haplotype had significantly higher IL-2 levels than those without, following IL-10R 

blockade (median 1.34 vs. 0.47pg/ml, p=0.02). Also, individuals with the CGT haplotype had 

significantly lower IL-2 levels than those without (median 0.16 vs. 1.11, p= 0.03).  
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Table 4.3.4 Association between IL-10 haplotype and IL-2 expression after IL-10 receptor 

blockade 

Haplotype n Median IL-10Ra – ISO (IQR) p-value 

AAT 
No 16 0.47 (0.14 - 1.67) 

0.02 
Yes 11 1.34 (0.80 - 4.25) 

CGA 
No 12 1.24 (0.67 - 3.79) 

0.09 
Yes 15 0.49 (0.16 - 2.26) 

CGT 
No 20 1.11 (0.54 - 3.53) 

0.03 
Yes 7 0.16 (0.13 - 0.49) 

 

 

Table 4.3.5 shows the association between the IL-10 haplotype and IL-13 expression after IL-10 

blockade. We found no significant association between any haplotype and IL-13 expression after 

IL-10 blockade.  

 

Table 4.3.5 Association between IL-10 haplotype and IL-13 expression after IL-10 blockade 

Haplotype n Median IL-10Ra – ISO (IQR) p-value 

AAT No 7 2.49 (0.43 - 7.72) 0.4 

Yes 4 1.55 (0.71 - 2.52) 

CGA No 4 1.55 (0.71 - 2.52) 0.4 

Yes 7 2.49 (0.43 - 7.72) 

CGT No 8 2.16 (0.73 - 2.73) 0.48 

Yes 3 7.72 (0.20 - 24.62) 

 

 

Table 4.3.6 shows the association between IL-10 haplotype and IFN- γ expression after IL-10 

pathway blockade. We found no significant association between any IL-10 haplotype and IFN-γ 

expression after IL-10 receptor blockade.  
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Table 4.3.6 Association between IL-10 haplotype and IFN- γ expression after IL-10 

receptor blockade 

Haplotype n Median IL-10Ra – ISO (IQR) p-value 

AAT 
No 11 31.63 (4.12 - 202.77) 

0.97 
Yes 8 35.18 (20.68 - 86.12) 

CGA 
No 8 35.18 (20.68 - 86.12) 

0.97 
Yes 11 31.63 (4.12 - 202.77) 

CGT 
No 14 29.26 (22.01 - 123.21) 

0.96 
Yes 5 34.19 (4.12 - 43.17) 
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4.3.5 PLASMA CYTOKINE PROFILES AT MATCHED TIME POINT 

We measured select cytokines in plasma samples from matched time points to the PBMCs used 

in the IL-10 receptor blockade assays. Here we wanted to investigate whether the proliferation 

profiles, had an effect on cytokine expression. We measured IFN-γ, IL-2, IL-6, IL-10, IL-13 and 

TNF-α in 40 individuals from the HPP Sinikithemba cohort (see Table 4.3.7). We measured 

overall cytokine expression, as well as whether extreme IL-10 genotypes associated with 

cytokine production. Overall the plasma taken from individuals at different timepoints did not 

associate with extreme IL-10 genotype combinations.  

 

We also investigated the association between cytokine expression and IL-10 haplotype in plasma 

samples matched to timepoint of PBMCs used in the blockade assays. This was to determine the 

association between IL-10 levels at the same timepoint of the PBMCs used to carry out the 

proliferation assay following IL-10 blockade. With regards to the other cytokines measured, we 

found no significant association between any IL-10 haplotype and any of the cytokines 

measured, i.e. IL-10 (Table 4.3.8), IL-2 (Table 4.3.9), IL-6 (Table 4.3.10), IL-13 (Table 4.3.11), 

IFN- γ (Table 4.3.12) and TNF-α (Table 4.3.13).   
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Table 4.3.7 Association between plasma cytokine measurement and extreme IL-10 genotype 

combination 

Cytokine 

 

Overall -592AA or -1082AA -592CC or -1082GG 
p-value 

n Median (IQR) n Median (IQR) n Median (IQR) 

IFN-γ 37 
11.83  

(8.04 – 18.35) 
14 

12.06  

(8.48 – 17.68) 
23 

11.83  

(6.89 – 23.40) 
0.94 

TNF-α 39 
14.86  

(13.42 – 22.49) 
14 

14.46  

(13.72 – 17.08) 
25 

15.65  

(13.42 – 22.92) 
0.46 

IL-2 40 
5.25  

(3.34 – 8.51) 
15 

5.13  

(3.41 – 8.56) 
25 

5.39  

(3.12 – 8.46) 
0.93 

IL-6 40 
5.24  

(3.76 – 7.98) 
15 

4.83  

(3.16 – 8.18) 
25 

5.27  

(4.84 – 7.78) 
0.43 

IL-10 39 
31.57  

(22.88 – 42.14) 
15 

33.31  

(21.33 – 45.17) 
24 

29.06  

(23.55 – 41.85) 
0.82 

IL-13 35 
2.93  

(1.38 – 4.31) 
13 

2.93  

(1.36 – 4.31) 
22 

2.73  

(1.65 – 4.17) 
0.72 

 

 

 

Table 4.3.8 Association between IL-10 haplotype and plasma IL-10 expression 

Haplotype n Median plasma IL-10  (IQR) p-value 

AAT 
No 24 29.06 (23.55 - 41.85) 

0.8174 
Yes 15 33.31 (21.33 - 45.17) 

CGA 
No 17 31.57 (22.88 - 40.76) 

0.8986 
Yes 22 30.84 (24.22 - 42.14) 

CGT No 25 32.05 (22.88 - 42.14) 0.8836 

 
Yes 14 28.26 (22.88 - 41.57)  
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Table 4.3.9 Association between IL-10 haplotype and plasma IL-2 expression 

Haplotype n Median plasma IL-2  (IQR) p-value 

AAT 
No 25 5.39 (3.12 - 8.46) 

0.9332 
Yes 15 5.13 (3.41 - 8.56) 

CGA 
No 17 5.13 (3.42 - 8.56) 

0.7844 
Yes 23 5.39 (3.08 - 8.46) 

CGT 
No 26 5.19 (3.41 - 6.72) 

0.6399 
Yes 14 6.16 (3.12 - 9.74) 

 

 

Table 4.3.10 Association between IL-10 haplotype and plasma IL-6 expression 

Haplotype n Median plasma IL-6  (IQR) p-value 

AAT 
No 25 5.27 (4.84 - 7.78) 

0.4341 
Yes 15 4.83 (3.16 - 8.18) 

CGA 
No 17 4.83 (3.56 - 7.78) 

0.4601 
Yes 23 5.27 (4.84 - 8.32) 

CGT 
No 26 5.15 (3.56 - 8.18) 

0.7230 
Yes 14 5.49 (4.02 - 7.78) 

 

 

Table 4.3.11 The association between IL-10 haplotype and plasma IL-13 expression 

Haplotype n Median plasma IL-13  (IQR) p-value 

AAT 
No 22 2.73 (1.65 - 4.17) 

0.7200 
Yes 13 2.93 (1.36 - 4.31) 

CGA 
No 15 2.93 (1.36 - 4.31) 

0.7015 
Yes 20 2.73 (1.51 - 4.91) 

CGT 
No 22 3.03 (1.36 - 4.85) 

0.9049 
Yes 13 2.07 (1.93 - 3.88) 
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Table 4.3.12 Association between IL-10 haplotype and plasma IFN-γ expression  

Haplotype n Median plasma IFN-γ  (IQR) p-value 

AAT 
No 23 11.83 (6.89 - 23.40) 

0.94 
Yes 14 12.06 (8.48 - 17.68) 

CGA 
No 16 11.55 (8.35 - 16.05) 

0.63 
Yes 21 16.26 (7.17 - 23.40) 

CGT 
No 23 11.42 (8.05 - 16.84) 

0.58 
Yes 14 16.73 (4.87 - 26.04) 

 

 

Table 4.3.13 Association between IL-10 haplotype and plasma TNF-α expression 

Haplotype n Median plasma TNF-α  (IQR) p-value 

AAT 
No 25 15.65 (13.42 - 22.92) 

0.46 
Yes 14 14.46 (13.72 - 17.08) 

CGA 
No 16 14.46 (12.89 - 19.37) 

0.37 
Yes 23 15.65 (13.42 - 24.18) 

CGT 
No 25 14.86 (13.79 - 21.89) 

0.93 
Yes 14 14.82 (11.89 - 22.92) 
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4.4 DISCUSSION 

 

Previous studies on the potent, immunoregulatory cytokine interleukin-10 have focused mainly 

on the polymorphisms and their role in HIV-1 susceptibility and rate of disease progression. The 

underlying mechanisms which may be associated with these polymorphisms have not been 

studied in an African setting of chronic HIV-1 infection.  

 

With the onset of HIV-1 infection and rapid viral replication, chronic stimulation by HIV results 

in generalised activation of T cells. The increase in T cell proliferation and expansion 

dramatically depletes the CD4
+
 T cell population, eventually leading to immunologic exhaustion 

and death. IL-10 has been shown to inhibit pro-inflammatory cytokines, and suppresses T cell 

function.  

 

Mechanistic studies in the LCMV mouse model show that the blockade of IL-10 resulted in 

enhanced T cell responses (Brooks et al., 2006, Ejrnaes et al., 2006). In a more recent study, the 

blockade of IL-10 in PBMCs from HIV-infected individuals in vitro, resulted in robust 

proliferative and effector CD4
+
 T cell function (Brockman et al., 2009).  

 

This part of the study aimed to investigate the mechanistic role of IL-10 in chronic HIV 

infection. IL-10 genotypes were characterised in individuals with chronic HIV-1C infection. In a 

subset of these individuals, we measured select markers of activation on CD4
+
 T cells, CD8

+
 T 

cells, and B cells. Interestingly, we found that the -592AA genotype (associated with low IL-10 

production) and the -1082AA genotype (associated with low IL-10 production), were 
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significantly associated with increased expression of HLA-DR in CD4
+ 

T cells and CD8
+ 

T cells 

respectively. This has not been previously demonstrated based on IL-10 promoter 

polymorphisms in an HIV setting. These results suggest that with decreased levels of IL-10, 

there is more expression of HLA-DR on the surface. As HLA-DR is a marker for immune 

activation, this suggests that with lower levels of IL-10, this allows for increased immune 

activation.  

 

However, the -592AA genotype (associated with low IL-10 production) is also associated with 

higher levels of CD95 and PD-1 in CD4
+ 

T cells. CD-95 is a death receptor found on the surface 

of cells (Wajant, 2002). As PD-1 is a marker of immune exhaustion on CD8
+
 T cells, further 

studies are required to determine the role of PD-1 expression on CD4
+
 T cells. 

 

The -592CC genotype (associated with high IL-10 production) and the -1082GG genotype 

(associated with high IL-10 production) were associated with increased expression of IgG on the 

surface of B cells. IgG has been shown to be involved in the secondary immune response. These 

results suggest that high IL-10 levels will result in an increased secondary immune response. 

These data may suggest that IL-10 shifts the immune response towards a Th2 phenotype 

associated with a robust humoral response.  Therefore, IL-10 may reduce immune activation in 

chronic HIV-1 infection but bias the immune response toward Th2 phenotype.  Th2 biased 

responses are thought to be detrimental in HIV-1 infection (Breytenbach et al., 2001, Clerici and 

Shearer, 1993, Rizzardi et al., 1998).  In summary, our observations here suggest a complex and 

perhaps paradoxical role for IL-10 with reduced immune activation being beneficial while a Th2 

bias may be detrimental in the control of this chronic viral infection.  
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Taken together these results suggest that higher levels of IL-10 down-regulates the expression of 

HLA molecules on the surface of cells and dampens immune activation, which is known to be 

one of the main drivers of disease progression in HIV-1 infection. However, the role of IL-10 is 

complex and lower levels of IL-10 may result in increased cell death (loss in CD4
+
 T cells), 

while higher levels of IL-10 may be beneficial to the secondary immune response.  

 

As IL-10 has been implicated in the inhibition of T cell proliferation, which leads to the 

dampening of T cell function, IL-10 receptor blockade assays were performed to see if this 

resulted in CD4
+
 T cell proliferation. As these assays were performed on frozen PBMCs, the 

viability of the cells varied, and affected the outcome of these assays. Although we did not see 

any significant association with proliferation after IL-10 receptor blockade, there did however, 

seem to be a trend towards an increase in CD4
+
 T cell proliferation after blockade. We may have 

not had adequate sample size to reach significance here. This may suggest that IL-10 has the 

ability to suppress proliferation.  

 

Previous studies done on HIV controllers show that these individuals maintain high levels of IL-

2 secreting cells, which proliferate when exposed to HIV peptides (Emu et al., 2005, Rosenberg 

et al., 1997). Therefore, we wanted to determine if IL-10 receptor blockade had any effect on 

cytokine production. We measured the levels of cytokines after IL-10 receptor blockade and 

found that consistently, IL-2 production was increased after IL-10 receptor blockade. This 

suggests that IL-10 inhibits the production of cytokines which play a significant role in the 

immune response. And that the blockade of IL-10 may result in enhanced production of these 

cytokines. IL-10 haplotype did not associate with proliferation after IL-10 blockade. IL-2 was the 
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only cytokine that associated with IL-10 haplotypes after IL-10 blockade. Individuals with the 

AAT haplotype, and individuals without the CGT haplotype had increased levels of IL-2 

production following IL-10 blockade.  

 

Plasma cytokine measurements did not significantly associate with extreme IL-10 genotypes or 

haplotypes. We did not expect to see an effect on cytokine production, as samples included in 

this analysis were taken from individuals at varying timepoints. Also, co-infections may have 

affected the production of pro- and anti-inflammatory cytokines, masking the effect of these IL-

10 variants. 

 

Overall, IL-10 and its genetic variants seem to have a complex role in HIV-1 pathogenesis. 

Results suggest that lower IL-10 levels may favour cell death, while on the other hand IL-10 

blockade may result in increased cell proliferation and IL-2 production. Better understanding of 

these underlying mechanisms may help to better understand immune activation and dysfunction 

in HIV-1 infection.  
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Chapter 5 

Overall Discussion and Conclusion 
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It has been 30 years since the human immunodeficiency virus (HIV) was first described, and the 

resulting epidemic has since risen to pandemic proportions. The global epidemic of HIV-1 

infection has resulted in high morbidity and mortality. The global distribution of HIV-1 infection 

is disproportionate, with almost two-thirds of the world’s infected population found in the sub-

Saharan African region, and many factors may contribute to this uneven distribution. Human 

genetic factors have been implicated in this disproportionate distribution, these are known as host 

restriction factors. 

 

The cytokine interleukin-10 (IL-10) has been demonstrated to play a role in HIV-1 susceptibility 

and pathogenesis (Erikstrup et al., 2007, Naicker et al., 2009, Shin et al., 2000). Genetic studies 

suggest that polymorphisms associated with low IL-10 production were associated with an 

increased risk in HIV infection and with an acceleration to AIDS. However, the underlying 

mechanism of the role of IL-10 is not well understood. Recent studies on the LCMV mouse 

model show that the blockade of IL-10 results in enhanced T cell responses (Brooks et al., 2006, 

Ejrnaes et al., 2006). More recent studies show that IL-10 blockade in the PBMCs of HIV-

infected individuals in vitro showed an increase in proliferative and effector CD4
+
 T cell 

function (Brockman et al., 2009).  

 

To explain the difference in the effects of these mutations we hypothesised the following models 

from our preliminary results (Naicker et al., 2009). With regards to HIV susceptibility, the high 

expression of IL-10 will lead to general inactivation of T lymphocytes, rendering them less 

susceptible to HIV-1 infection (see Figure 5.1).  On the other hand, low IL-10 production is 

likely to result in increased T cell activation, thereby making the HIV target cells more 
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susceptible to HIV infection.  Individuals who are genetically predisposed to low IL-10 

production will therefore be more likely to have activated T cells particularly when they become 

infected with other infectious pathogens such as those which lead to sexually transmitted 

infections.   

 

 

Figure 5.5 The role of IL-10 in HIV susceptibility 
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Once infected the role of IL-10 is complex and seems to be dependent on the phase of infection 

(see Figure 5.2). We hypothesise that during acute infection higher levels of IL-10 expression 

will result in decreased mobilisation, activation and proliferation of immune effector cells, this 

leads to a higher rate of viral replication. However, during the chronic phase of infection, HIV 

replication is more productive in macrophages as there is dramatic depletion of CD4
+
 T cells. 

Therefore, in the chronic phase of infection higher IL-10 levels result in decreased immune 

activation and direct inhibition of viral replication within macrophages.  

 

To test these hypotheses and to determine the effects and mechanisms of interleukin-10 promoter 

polymorphisms in HIV-1 susceptibility and pathogenesis, we aimed to characterise previously 

described IL-10 promoter SNPs in HIV-negative individuals at high risk for HIV infection, and 

HIV-positive individuals in the acute and chronic phase of HIV-1 infection.  

 

Three IL-10 promoter polymorphisms, i.e. -592, -1082 and -3575, were characterised in a total of 

685 individuals. These polymorphisms were found in different ethnic groups in previous genetic 

studies, and we found the presence of these polymorphisms in our South African cohort. The 

distal -3575 SNP was characterised in individuals from the CAPRISA Acute Infection cohort, 

where individuals at high risk for HIV-1C infection were followed up over time, and if they 

seroconverted they entered into phase two of the study where routine viral load and CD4 

measurements were done at scheduled visits. There was no significance between the -3575 

genotype and time to infection. However, we observed a trend that individuals with the -3575AA 

genotype (previously shown to be associated with low IL-10 production), were more likely to 

become HIV-infected, although this did not reach significance.   
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Figure 5.6 The role of IL-10 in acute and chronic HIV infection 

 

1
8
7
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We determined the association between the three IL-10 genetic variants and biomarkers of HIV 

infection (Naicker et al., 2012). Here we investigated the association between IL-10 variants and 

viral load, CD4
+
 T cell count, and the rate of CD4 decline. We found no association between any 

IL-10 genotype and either viral load or CD4
+
 T cell count. Different haplotypes associated with 

viral load and CD4
+
 T cell count in the CAPRISA Acute Infection cohort, and further analysis is 

required to determine how these haplotypes exert their effect. However, we found that IL-10 

genetic variants associated with low IL-10 production showed an attenuated loss of CD4
+
 T cells 

during the first 24 months of follow-up, this did not reach significance for the -1082 genotype, 

but was significant for the -592 genotype. Interestingly the CGT haplotype was associated with a 

protection against HIV acquisition, as all the individuals with this haplotype were HIV-negative. 

This is possibly due to the association of high IL-10 production, with the alleles that make up 

this genotype.  

 

We hypothesised that during the early stages of infection, high-IL-10-producing genotypes (and 

by extension higher IL-10 levels) can dampen the antiviral adaptive and innate effector 

mechanisms, resulting in poor control of viral replication (Alter et al., 2010, Brooks et al., 2006, 

Herbein and Varin, 2010, Martinic and von Herrath, 2008). However, the beneficial effects of 

IL-10 are more pronounced during the later stages of infection by its anti-inflammatory effects 

and the direct inhibition of HIV-1 replication within macrophages (Ancuta et al., 2001, Bento et 

al., 2009, Wang and Rice, 2006).  

 

Previous studies have shown that IL-10 promoter polymorphisms affect the expression of IL-10, 

however this had not been investigated in an HIV setting (Edwards-Smith et al., 1999, Eskdale et 
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al., 1998, Hutchinson et al., 1998, Turner et al., 1997). We investigated the effect of IL-10 SNPs 

on IL-10 expression in an African setting of HIV infection. Our analysis showed that the -

1082GG genotype, previously shown to associate with high IL-10 production, associated with 

high IL-10 levels in an HIV setting. We did not see any significant associations with the -592 

genotype, but we saw a trend towards the -592AA genotype having lower IL-10 expression. The 

CAT haplotype showed an association with IL-10 expression, where individuals without the 

haplotype showed higher expression of IL-10, i.e. individuals carrying the A at position -1082 

had lower levels of IL-10 expression.  

 

The levels of IL-10 did not correlate with any of the biomarkers of HIV infection, such as viral 

load, CD4
+ 

T cell count, and the breadth and magnitude of immune responses. However, the time 

of infection was not known in individuals included in this part of the analysis, therefore we may 

be looking at a cross-section of individuals at different timepoints of infection, and therefore are 

not able to see a distinct association between IL-10 levels and these biomarkers of HIV infection.  

 

The cytokine network is a precise balance of signals and feedback mechanisms. We investigated 

the effect of IL-10 levels on other pro-inflammatory cytokines such as IFN-γ, IL-2, IL-6 and 

TNF-α. Overall, we found that there was a significant positive correlation between IL-10 

expression and these cytokines, showing that during the chronic phase of HIV infection, there 

seems to be a generalised upregulation of both pro- and anti-inflammatory cytokines. IL-10 also 

seemed to dominate the proportion of cytokine production during chronic infection suggesting its 

anti-inflammatory properties as pro-inflammatory cytokine production increases.  
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IL-10 is a pleiotropic cytokine involved in the immune response. These SNPs had not been 

investigated with regards to its role in the breadth and magnitude of immune response during the 

chronic phase of infection. Here we found that the low-IL-10-producing -592AA genotype is 

significantly associated with a larger number of HIV-specific peptides targeted by cytotoxic T 

lymphocytes (CTLs). This genotype also associated with an attenuated loss of CD4
+
 T cells. 

Individuals with the CAA haplotype had a significantly greater magnitude of immune responses, 

as well as a significantly larger breadth of immune responses, as compared to individuals without 

the CAA haplotype, in the Sinikithemba Chronic Infection cohort. Expression analysis showed 

that individuals with the CAA haplotype tended to have a lower median IL-10 expression, 

however this was not significant. This suggests that lower levels of IL-10 may favour a greater 

magnitude of immune responses, and a larger number of peptides targeted by CTL.  

 

HIV infection is characterised by a phase of rapid viral replication. Generalised T cell activation 

results in rapid T cell activation and proliferation, leading to exhaustion. As IL-10 has been 

shown to inhibit proliferation and higher levels of IL-10 have been demonstrated in individuals 

with severely compromised T helper cell function (Clerici et al., 1994, Ostrowski et al., 2001), 

we investigated the role of IL-10 receptor blockade on activation, proliferation and cytokine 

production. Markers of activation were measured in CD4
+
 T cells, CD8

+
 T cells and B cells. 

Interestingly, we found that in an HIV setting, the HLA-DR expression was significantly 

increased in individuals displaying the low-IL-10-producing -592AA and -1082AA genotypes. 

The higher levels of HLA-DR expression suggests that there is increased immune activation in 

individuals with low-IL-10-producing variants. This is particularly interesting as it suggests that 
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during chronic infection, higher levels of IL-10 may be beneficial, as it has the potential to 

reduce immune activation.  

 

We found that the markers of cell death and immune exhaustion, i.e. CD95 and PD-1 were 

upregulated in individuals with the low-IL-10-producing -592AA genotype. This may suggest 

that lower levels of IL-10 may during the chronic phase of HIV-1 infection, may result in 

negative regulation of the immune response and increased immune exhaustion. This further 

emphasises the potential for IL-10 to be beneficial during the chronic stage of infection as it may 

reduce immune exhaustion. In B cells, the IgG marker, which is associated with the secondary 

immune response, was increased in the -592CC genotype (associated with high IL-10 

production). This suggests that the production of higher levels of IL-10 during the chronic phase 

of HIV-1 infection may result in an enhanced secondary humoral immune response. Although 

we found higher expression of IgG in B cells associated with high IL-10 producer genotypes, this 

area of research will require further investigation as the subclasses of this IgG was not 

determined and neither were titers of secreted IgG measured.  However, the data may be 

indicative to Th2 bias in the immune response in high IL-10 producers.  The impact of IL-10 

genotypes and especially of IL-10 on B cells and the humoral immune response warrant further 

investigation.    

 

IL-10 receptor blockade showed a trend towards higher CD4
+ 

T cell proliferation, however this 

was not significant. Factors which may have influenced this outcome are the viability of the cells 

and the small sample size. However, we did find a significant upregulation of IL-2 expression 
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following IL-10 receptor blockade. This suggests that with lower levels of IL-10, the high levels 

of proliferating IL-2 secreting cells may result in HIV control.  

 

There are, however, some limitations to this study. As the time since HIV-1 infection is not 

known for study participants in the Sinikithemba cohort, this may have introduced a survivor 

bias in analysis of IL-10 polymorphisms since these have been shown to affect survival.  Also, 

this may suggest that we may be analysing individuals at different phases of infection altogether, 

although we aimed to account for this by stratifying our data according to viral loads and CD4
+
 T 

cell counts. This study also focused on three IL-10 promoter polymorphisms, only a subset of IL-

10 SNPs shown to affect IL-10 production. IL-10 and other cytokines can be induced by various 

other pathogens and co-infection data was not available for all individuals in this study.  

 

With regards to our previous models from our preliminary data, the hypothesis still stands that 

individuals with genotypes associated with higher IL-10 levels are less susceptible to HIV 

infection compared to individuals with genotypes associated with lower IL-10 levels, although in 

this study we focused on pathogenesis following infection. During the acute phase of infection 

we found similar results based on the Acute Phase hypothesis, i.e. individuals with genotypes 

associated with higher IL-10 production will have a more dampened antiviral, T-cell adaptive 

and innate effector mechanisms, which in turn results in poor control of viral replication. Based 

on the results from this study, we can now update the hypothesis for the role of IL-10 in chronic 

infection (see Figure 5.3). Based on results from our study, we hypothesise that during chronic 

infection individuals with higher levels of IL-10 show an increase in the secondary immune 

response (IgG), which may lead to better control of viral replication. On the other hand, 
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individuals with lower levels of IL-10 have elevated levels of immune activation (HLA-DR 

expression) defective immune signaling in CD4
+
 T cells leading to poor control of HIV 

replication.  

 

Figure 5.3 The role of IL-10 in chronic HIV-1 infection 
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Overall, IL-10 seems to play a complex role against HIV infection and pathogenesis.  IL-10 

seems to protect against infection, but its role during HIV-infection seems to be phase-

dependant. IL-10 genetic variants may be in linkage disequilibrium with other genes with a 

modulatory role, and may have underlying undetermined epigenetic or environment modulatory 

factors that affect HIV-susceptibility and pathogenesis.  

 

Understanding the underlying factors and mechanisms by which IL-10 plays its role is essential 

in the development of an effective vaccine. A recent study investigating HIV-specific antibody-

dependant cellular cytotoxicity (ADCC), showed that IL-10 enhanced the ability of natural killer 

cells to respond to HIV-specific ADCC antibodies (Wren et al., 2012). The results from our 

research add to the growing body and increasing interest into the role of IL-10 in HIV 

susceptibility and pathogenesis. This data suggests that overall, there is an upregulation of both 

pro- and anti-inflammatory cytokines, however IL-10 seems to dominate the proportion of 

production. The anti-inflammatory effect of IL-10 seems more evident during the chronic stages 

of infection in a setting of increased immune activation and immune exhaustion.  

 

In order to fully understand the effects and mechanisms of IL-10 promoter polymorphisms on 

HIV susceptibility and pathogenesis, expanded SNP analysis and additional mechanistic and 

functional studies should be performed on larger sample sizes. The aim of expanding the SNP 

analysis would be to include other IL-10 promoter polymorphisms that are found further 

upstream from the transcription start site, in the distal region. This expanded SNP analysis will 

provide a better understanding of the extended haplotypes and their role in IL-10 production. 

Future analysis should ideally include larger sample sizes, including individuals at different 
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stages of HIV- infection, such as the acute stage of infection. This will help us to understand the 

role of IL-10 during different stages of HIV infection. Mechanistic and functional studies should 

include larger sample sizes for the activation and proliferation assays. This assay could be further 

strengthened by investigating the role of IL-10 by both receptor blockade, as well as 

supplementing IL-10 levels.  

 

Understanding the role of this potent, anti-inflammatory cytokine and its polymorphisms may 

lead to a deeper understanding of the complex role of this gene in the immune response, which 

will help us understand how to target the IL-10 pathway for effective therapeutic or vaccine 

strategies.  
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

HAI031 CC AG TA CAT CGA 

HAI703 CA AG TT CGT AAT 

HAI919 CC AG TA CAT CGA 

HAI323 CC GG TA CGT CGA 

HAI876 CC AG TA CAT CGA 

HAI016 CC AG TA CAT CGA 

HAI050 CA AG TA CGA AAT 

HAI110 CA AG TA CGA AAT 

HAI184 CC AG AA CAA CGA 

HAI207 CA AA TT CAT AAT 

HAI174 AA AA TT AAT 

 

HAI341 CC AG TA CAT CGA 

HAI358 CC AG TA CAT CGA 

HAI483 CA AG TT CGT AAT 

HAI802 AA AA TT AAT 

 

HAI945 CA AA TT CAT AAT 

HAI973 CC AA TT CAT 

 

HAI017 CA AG TT CGT AAT 

HAI1037 CC GG TA CGT CGA 

HAI268 CC AG TA CAT CGA 

HAI369 CC GG AA CGA 

 

HAI458 CA AG TT CGT AAT 

HAI513 CC AA TT CAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK001 CA AA TT CAT AAT 

SK002 CC AG TA CAT CGA 

SK003 CC AG TA CAT CGA 

SK004 CA AG TA CGA AAT 

SK005 CA AA TT CAT AAT 

SK006 CC AG TA CAT CGA 

SK007 CC AA TT CAT 

 

SK008 CC GG AA CGA 

 

SK009 AA AA TT AAT 

 

SK010 CC AA TT CAT 

 

SK011 AA AA TT AAT 

 

SK012 AA AA TT AAT 

 

SK013 CA AG TA CGA AAT 

SK014 CA AA TT CAT AAT 

SK015 CC AA TT CAT 

 

SK016 CC AG TT CAT CGT 

SK017 CA AG TA CGA AAT 

SK018 CA AA TT CAT AAT 

SK019 AA AA TT AAT 

 

SK020 CA AG TA CGA AAT 

SK021 AA AA TT AAT 

 

SK022 AA AA TT AAT 

 

SK023 CC AA TT CAT 

 

SK024 CC AG TA CAT CGA 

SK025 CC GG TA CGT CGA 

  



223 

 

PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK026 CC - AA 

  

SK027 CC GG TA CGT CGA 

SK028 CC AG TA CAT CGA 

SK029 CC AA TT CAT 

 

SK030 CC GG TA CGT CGA 

SK031 CC AG TT CAT CGT 

SK032 CC AA TT CAT 

 

SK033 CA AA TT CAT AAT 

SK034 AA AA TT AAT 

 

SK035 CC GG TA CGT CGA 

SK036 CA AA TT CAT AAT 

SK037 CC GG TA CGT CGA 

SK038 CC AG TA CAT CGA 

SK039 CA AA TT CAT AAT 

SK040 CA AG TT CGT AAT 

SK041 CC AG TA CAT CGA 

SK042 CC AG TA CAT CGA 

SK043 CA AA TT CAT AAT 

SK044 CC GG TA CGT CGA 

SK045 CA AA TT CAT AAT 

SK046 CA AA TT CAT AAT 

SK047 CC GG TA CGT CGA 

SK048 AA AA TT AAT 

 

SK049 CA AA TT CAT AAT 

SK050 CC AG TT CAT CGT 

SK051 CC AG TT CAT CGT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK052 CA AA TT CAT AAT 

SK053 CA AG TA CGA AAT 

SK054 CC AA TT CAT 

 

SK055 CC AG TA CAT CGA 

SK056 CA AA TT CAT AAT 

SK057 CC - AA 

  

SK058 CC AG TA CAT CGA 

SK059 CA AG TA CGA AAT 

SK060 CA AG TA CGA AAT 

SK061 CC GG TA CGT CGA 

SK062 CA AG TA CGA AAT 

SK063 CA AA TT CAT AAT 

SK064 CC AG TA CAT CGA 

SK065 AA AA TT AAT 

 

SK066 AA AA TT AAT 

 

SK067 CC AG TT CAT CGT 

SK068 CC AG TA CAT CGA 

SK069 CA AG TA CGA AAT 

SK070 CA AG TT CGT AAT 

SK071 CA AG TA CGA AAT 

SK072 AA AA TT AAT 

 

SK073 CA AG TA CGA AAT 

SK074 CC GG TA CGT CGA 

SK075 CA AA TT CAT AAT 

SK076 CA AG TT CGT AAT 

SK077 CA AA TT CAT AAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK078 CA AA TT CAT AAT 

SK079 CA AG TT CGT AAT 

SK080 CC AA TT CAT 

 

SK081 CC AG TA CAT CGA 

SK082 CA AA TT CAT AAT 

SK083 AA AA TT AAT 

 

SK084 AA AA TT AAT 

 

SK085 CC AG TA CAT CGA 

SK086 AA AA TT AAT 

 

SK087 CA AG TA CGA AAT 

SK088 CC GG AA CGA 

 

SK089 CC AG TA CAT CGA 

SK090 CA AA TA CAA AAT 

SK091 CA AA TT CAT AAT 

SK092 CC AA TT CAT 

 

SK093 CA AG TA CGA AAT 

SK094 CC AG TA CAT CGA 

SK095 CA AG TA CGA AAT 

SK096 CA AA TT CAT AAT 

SK097 CA AA TT CAT AAT 

SK098 CA AG TA CGA AAT 

SK099 CC AG TA CAT CGA 

SK100 CA AA TT CAT AAT 

SK101 CC AG TA CAT CGA 

SK102 CA AA TT CAT AAT 

SK103 AA AA TT AAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK104 CC GG AA CGA 

 

SK105 CC AG TA CAT CGA 

SK106 CA AA TT CAT AAT 

SK107 AA AA TT AAT 

 

SK108 CA AG TA CGA AAT 

SK109 CA AA TA CAA AAT 

SK110 CA AG TA CGA AAT 

SK111 CC AA TT CAT 

 

SK112 CC AA TT CAT 

 

SK113 CA AA TT CAT AAT 

SK114 CC AG TT CAT CGT 

SK115 AA AA TT AAT 

 

SK116 CC AA TT CAT 

 

SK117 AA AA TT AAT 

 

SK118 CA AA TT CAT AAT 

SK119 CC AA TT CAT 

 

SK120 CA AG TT CGT AAT 

SK121 CA AG TT CGT AAT 

SK122 CC AG TA CAT CGA 

SK123 CA AG TT CGT AAT 

SK124 CC AG TA CAT CGA 

SK125 AA AA TT AAT 

 

SK126 CA AG TA CGA AAT 

SK127 CA AG TA CGA AAT 

SK128 CA AA TT CAT AAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK129 AA AA TT AAT 

 

SK130 CA AG TA CGA AAT 

SK131 CC AG TT CAT CGT 

SK132 AA AA TT AAT 

 

SK133 CA AG TA CGA AAT 

SK134 CA AG TT CGT AAT 

SK135 CA AA TT CAT AAT 

SK136 CA AG TT CGT AAT 

SK137 AA AA TT AAT 

 

SK138 AA AA TT AAT 

 

SK139 CA AA TT CAT AAT 

SK140 CC AG TT CAT CGT 

SK141 CA AA TT CAT AAT 

SK142 CC GG TA CGT CGA 

SK143 CC AA TT CAT 

 

SK144 CA AA TT CAT AAT 

SK145 AA AA TT AAT 

 

SK146 CA AA TT CAT AAT 

SK147 CC GG AA CGA 

 

SK148 CC AA TT CAT 

 

SK149 CA AA TT CAT AAT 

SK150 AA AA TT AAT 

 

SK151 CA AG TA CGA AAT 

SK152 AA AA TT AAT 

 

SK153 CA AG TA CGA AAT 

SK154 CA AG TA CGA AAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK155 CC AA TA CAT CAA 

SK156 CA AA TT CAT AAT 

SK157 CA AG TA CGA AAT 

SK158 CC GG TA CGT CGA 

SK159 CA AG TT CGT AAT 

SK160 CA AA TT CAT AAT 

SK161 CC AG TA CAT CGA 

SK162 CC AG TT CAT CGT 

SK163 CC AA TT CAT 

 

SK164 CA AA TT CAT AAT 

SK165 CC GG AA CGA 

 

SK166 CC AA TT CAT 

 

SK167 CC AG TT CAT CGT 

SK168 CA AG TA CGA AAT 

SK169 CA AG TA CGA AAT 

SK170 CA AA TT CAT AAT 

SK171 CC AA TT CAT 

 

SK172 CC AG TT CAT CGT 

SK173 AA AA TT AAT 

 

SK174 CC GG AA CGA 

 

SK175 CC AA TT CAT 

 

SK176 CC AG TA CAT CGA 

SK177 CA AG TT CGT AAT 

SK178 CA AG TA CGA AAT 

SK179 CA AA TT CAT AAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK180 CA AG TA CGA AAT 

SK181 CC AG TT CAT CGT 

SK182 CA AA TT CAT AAT 

SK183 CA AG TA CGA AAT 

SK184 AA AA TT AAT 

 

SK185 CA AG TA CGA AAT 

SK186 CC GG TA CGT CGA 

SK187 CA AA TT CAT AAT 

SK188 CC GG TA CGT CGA 

SK189 CA AG TA CGA AAT 

SK190 CC AG TA CAT CGA 

SK191 CA AG TT CGT AAT 

SK192 CA AA TT CAT AAT 

SK193 CC AA TT CAT 

 

SK194 CA AA TT CAT AAT 

SK195 CA AG TA CGA AAT 

SK196 CC AA TT CAT 

 

SK197 CA AA TT CAT AAT 

SK198 CA AG TA CGA AAT 

SK199 CC AG TA CAT CGA 

SK200 CA AA TT CAT AAT 

SK201 CC GG TA CGT CGA 

SK202 CA AA TT CAT AAT 

SK203 CA AG TA CGA AAT 

SK204 CC AG TA CAT CGA 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK205 CC GG TA CGT CGA 

SK206 CC AA TT CAT 

 

SK207 CC GG TA CGT CGA 

SK208 CC AG TA CAT CGA 

SK209 CA AG TA CGA AAT 

SK210 CC AA TT CAT 

 

SK211 CA AA TT CAT AAT 

SK212 CA AA TT CAT AAT 

SK213 CC AA TT CAT 

 

SK214 AA AA TT AAT 

 

SK215 CA AA TT CAT AAT 

SK216 CA AA TT CAT AAT 

SK217 CA AA TT CAT AAT 

SK218 AA AA TT AAT 

 

SK219 AA AA TT AAT 

 

SK220 CC AA TT CAT 

 

SK221 CC GG TA CGT CGA 

SK222 CC AG TA CAT CGA 

SK223 CA AA TT CAT AAT 

SK224 CA AG TA CGA AAT 

SK225 CC AA TT CAT 

 

SK226 CC AG TA CAT CGA 

SK227 CA AG TA CGA AAT 

SK228 CC AA TT CAT 

 

SK229 CC AA TT CAT 

 

SK230 CC AG TA CAT CGA 

      



231 

 

PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK231 CA AA TA CAA AAT 

SK232 CC AG TA CAT CGA 

SK233 CA AG TA CGA AAT 

SK234 CA AG TA CGA AAT 

SK235 CC GG AA CGA 

 

SK236 CC AG TA CAT CGA 

SK237 CC AA TT CAT 

 

SK238 CA AG TT CGT AAT 

SK239 AA AA TT AAT 

 

SK240 CC AG TA CAT CGA 

SK241 CA AG TT CGT AAT 

SK242 CC AG TA CAT CGA 

SK243 CA AA TT CAT AAT 

SK244 CC AA TT CAT 

 

SK245 CC AA TT CAT 

 

SK246 CA AA TT CAT AAT 

SK247 CC AG TT CAT CGT 

SK248 CC GG AA CGA 

 

SK249 CA AG TA CGA AAT 

SK250 CC AG TT CAT CGT 

SK251 CC GG TT CGT 

 

SK252 CC AA TT CAT 

 

SK253 CC AA TT CAT 

 

SK254 CA AA TT CAT AAT 

SK255 CC AA TT CAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK256 CC AA TT CAT 

 

SK257 CA AG TA CGA AAT 

SK258 CC AA TT CAT 

 

SK259 CA AG TA CGA AAT 

SK260 CC AG TA CAT CGA 

SK261 CA AG TA CGA AAT 

SK262 CC AA TT CAT 

 

SK263 CA AG TT CGT AAT 

SK264 CA AA TT CAT AAT 

SK265 CA AA TT CAT AAT 

SK266 CA AA TT CAT AAT 

SK267 CC AA TT CAT 

 

SK268 CA AA TT CAT AAT 

SK269 CC GG AA CGA 

 

SK270 CA AA TT CAT AAT 

SK271 CA AG TA CGA AAT 

SK272 CC AG TT CAT CGT 

SK273 CA AG TT CGT AAT 

SK274 CA AA TT CAT AAT 

SK275 CA AA TT CAT AAT 

SK276 AA AA TT AAT 

 

SK277 CA AA TT CAT AAT 

SK278 AA AA TT AAT 

 

SK279 CC AG TA CAT CGA 

SK280 CA AG TT CGT AAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK281 CC GG TA CGT CGA 

SK282 CA AG TA CGA AAT 

SK283 CC AA TA CAT CAA 

SK284 CC AG TA CAT CGA 

SK285 CC AG TA CAT CGA 

SK286 CA AG TA CGA AAT 

SK287 CC AG TA CAT CGA 

SK288 CC AG TA CAT CGA 

SK289 CA AA TT CAT AAT 

SK290 CA AG TA CGA AAT 

SK291 CA AA TT CAT AAT 

SK292 CA AA TT CAT AAT 

SK293 CC AG TT CAT CGT 

SK294 CA AA TT CAT AAT 

SK295 CA AA TT CAT AAT 

SK296 AA AA TT AAT 

 

SK297 CA AA TA CAA AAT 

SK298 CA AG TA CGA AAT 

SK299 CA AG TT CGT AAT 

SK300 CC GG AA CGA 

 

SK301 CA AG TT CGT AAT 

SK302 CA AG TT CGT AAT 

SK303 CA AA TA CAA AAT 

SK304 CC AA TT CAT 

 

SK305 CA AG TA CGA AAT 

SK306 AA AA TT AAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK307 CA AA TA CAA AAT 

SK308 CC GG AA CGA 

 

SK309 CA AA TT CAT AAT 

SK310 AA AA TT AAT 

 

SK311 CA AA TT CAT AAT 

SK312 CC AA TT CAT 

 

SK313 CC GG TA CGT CGA 

SK314 CA AG TA CGA AAT 

SK315 CA AA TT CAT AAT 

SK316 CA AA TT CAT AAT 

SK317 AA AA TT AAT 

 

SK318 CA AA TT CAT AAT 

SK319 CC AG TA CAT CGA 

SK320 CA AA TT CAT AAT 

SK321 CA AA TT CAT AAT 

SK322 AA AA TT AAT 

 

SK323 CC AA TT CAT 

 

SK324 CA AG TA CGA AAT 

SK325 CC AA TT CAT 

 

SK326 CA AG TA CGA AAT 

SK327 CC AG TA CAT CGA 

SK328 CC AA TT CAT 

 

SK329 CA AA TT CAT AAT 

SK330 CA AA TT CAT AAT 

SK331 CC GG TA CGT CGA 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK332 CA AA TT CAT AAT 

SK333 CA AA TT CAT AAT 

SK334 CA AG TA CGA AAT 

SK335 CC AA TT CAT 

 

SK336 CA AG TA CGA AAT 

SK337 CA AG TA CGA AAT 

SK338 CC AG TA CAT CGA 

SK339 CC AG TT CAT CGT 

SK340 AA AA TT AAT 

 

SK341 CC AG TA CAT CGA 

SK342 CA AA TT CAT AAT 

SK343 CA AA TT CAT AAT 

SK344 CA AG TA CGA AAT 

SK345 CA AA TT CAT AAT 

SK346 CA AG TA CGA AAT 

SK347 CA AG TA CGA AAT 

SK348 CA AG TA CGA AAT 

SK349 CC GG TA CGT CGA 

SK350 CC GG TA CGT CGA 

SK351 CA AA TT CAT AAT 

SK352 CA AA TT CAT AAT 

SK353 CC AG TT CAT CGT 

SK354 CA AA TT CAT AAT 

SK355 CC AG TT CAT CGT 

SK356 CC AG TA CAT CGA 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK357 CA AG TA CGA AAT 

SK358 CC GG AA CGA 

 

SK359 CC AA TT CAT 

 

SK360 AA AA TT AAT 

 

SK361 CA AA TT CAT AAT 

SK362 CC AA TT CAT 

 

SK363 CA AG TA CGA AAT 

SK364 CA AA TT CAT AAT 

SK365 CC AG AA CAA CGA 

SK366 CC AG TT CAT CGT 

SK367 CC GG AA CGA 

 

SK368 CA AG TA CGA AAT 

SK369 CC AA TT CAT 

 

SK370 CC AA TT CAT 

 

SK371 CC AG TA CAT CGA 

SK372 AA AA TT AAT 

 

SK373 CA AG TA CGA AAT 

SK374 CC AA TT CAT 

 

SK375 CA AG TA CGA AAT 

SK376 CC GG TA CGT CGA 

SK377 CA AG TT CGT AAT 

SK378 CC GG TA CGT CGA 

SK379 AA AA TT AAT 

 

SK380 CC AA TT CAT 

 

SK381 CA AA TT CAT AAT 

SK382 CA AG TA CGA AAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK383 CC GG TA CGT CGA 

SK384 CC AA TT CAT 

 

SK385 CA AG TT CGT AAT 

SK386 CA AG TT CGT AAT 

SK387 CC GG TA CGT CGA 

SK388 CA AG TT CGT AAT 

SK389 AA AA TT AAT 

 

SK390 AA AA TT AAT 

 

SK391 CC AG TA CAT CGA 

SK392 CC AG TT CAT CGT 

SK393 CC AG TT CAT CGT 

SK394 CA AA TT CAT AAT 

SK395 CA AA TT CAT AAT 

SK396 CA AA TA CAA AAT 

SK397 CC AG TA CAT CGA 

SK398 CC AA TT CAT 

 

SK399 CA AA TT CAT AAT 

SK400 CA AG TT CGT AAT 

SK401 AA AA TT AAT 

 

SK402 CC AA TA CAT CAA 

SK403 CC AA TA CAT CAA 

SK404 CA AA TT CAT AAT 

SK405 CC AG TA CAT CGA 

SK406 CC GG AA CGA 

 

SK407 CC AG TA CAT CGA 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK408 AA AA TT AAT 

 

SK409 CA AA TT CAT AAT 

SK410 CA AA TT CAT AAT 

SK411 CA AA TT CAT AAT 

SK412 CC AA TT CAT 

 

SK413 CC GG TA CGT CGA 

SK414 CA AG TA CGA AAT 

SK415 CA AG TT CGT AAT 

SK416 CA AG TA CGA AAT 

SK417 CC AA TT CAT 

 

SK418 CA AA TT CAT AAT 

SK419 AA AA TT AAT 

 

SK420 CC GG TT CGT 

 

SK421 CC GG AA CGA 

 

SK422 CC AG TT CAT CGT 

SK423 CC AA TT CAT 

 

SK424 CC GG TT CGT 

 

SK425 AA AA TT AAT 

 

SK426 CA AA TT CAT AAT 

SK427 CC AG TA CAT CGA 

SK428 CA AA TT CAT AAT 

SK429 - AA TT 

  

SK430 CC AG TA CAT CGA 

SK431 CA AG TA CGA AAT 

SK432 CA AA TT CAT 

AAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

SK433 CC AG TA CAT CGA 

SK434 CC AG TT CAT CGT 

SK435 CA AA TT CAT AAT 

SK436 CA AG TA CGA AAT 

SK437 CA AG TA CGA AAT 

SK438 CA AA TT CAT AAT 

SK439 CC AA TT CAT 

 

SK440 CA AG TA CGA AAT 

SK441 CC AG TA CAT CGA 

SK442 CA AA TT CAT AAT 

SK443 CA AA TT CAT AAT 

SK444 CC GG AA CGA 

 

SK445 CA AG TA CGA AAT 

SK446 CC AG TA CAT CGA 

SK447 CA AG TT CGT AAT 

SK448 CC AA TT CAT 

 

SK449 CC AA TT CAT 

 

SK450 CA AG TA CGA AAT 

SK451 CC AG TA CAT CGA 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

CAI0001 CA AG TA CGA AAT 

CAI0002 CC AG TA CAT CGA 

CAI0004 CC AG TA CAT CGA 

CAI0006 CC AA TT CAT 

 

CAI0008 AA AA TT AAT 

 

CAI0009 CA AG TA CGA AAT 

CAI0010 CA AG TT CGT AAT 

CAI0011 CA AA TA CAA AAT 

CAI0012 CC AG TT CAT CGT 

CAI0015 CA AG TT CGT AAT 

CAI0016 CC AA TT CAT 

 

CAI0017 AA AA TT AAT 

 

CAI0020 CC AG TT CAT CGT 

CAI0021 AA AA TT AAT 

 

CAI0022 CA AA TT CAT AAT 

CAI0023 CC AG TA CAT CGA 

CAI0024 CA AG TT CGT AAT 

CAI0025 CA AA TT CAT AAT 

CAI0027 AA AA TT AAT 

 

CAI0028 AA AA TT AAT 

 

CAI0029 CC GG TA CGT CGA 

CAI0030 CA AA TT CAT AAT 

CAI0031 CA GG TT CGT AGT 

CAI0032 CC AA TT CAT 

 

CAI0033 AA AA TT AAT 

 

CAI0034 CC AG TA CAT CGA 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

CAI0035 CC AA TT CAT 

 

CAI0036 CA AG TT CGT AAT 

CAI0037 CA AA TT CAT AAT 

CAI0038 AA AA TT AAT 

 

CAI0039 CA AG TT CGT AAT 

CAI0040 CA AA TT CAT AAT 

CAI0041 CC GG AA CGA 

 

CAI0042 CC AG TT CAT CGT 

CAI0044 CC AG TT CAT CGT 

CAI0045 CC AA TT CAT 

 

CAI0047 CC AG TA CAT CGA 

CAI0048 CC AG TT CAT CGT 

CAI0051 CA AA TT CAT AAT 

CAI0052 CA AG TA CGA AAT 

CAI0053 AA AA TT AAT 

 

CAI0054 CC AG TA CAT CGA 

CAI0055 CA AA TT CAT AAT 

CAI0056 CA AG TT CGT AAT 

CAI0057 CC AG TA CAT CGA 

CAI0058 CA GG TT CGT AGT 

CAI0059 CC AA TT CAT 

 

CAI0060 AA AA TT AAT 

 

CAI0061 CA AA TT CAT AAT 

CAI0063 CC AG TT CAT CGT 

CAI0065 CC AA TT CAT 

 

CAI0066 CC GG TA CGT CGA 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

CAI0067 CA AA TT CAT AAT 

CAI0068 CC AG TT CAT CGT 

CAI0069 CC GG AA CGA 

 

CAI0070 CA AA TT CAT AAT 

CAI0072 AA AA TT AAT 

 

CAI0074 CC AA TT CAT 

 

CAI0076 CA AA TT CAT AAT 

CAI0077 CA AA TT CAT AAT 

CAI0078 CA AG TA CGA AAT 

CAI0080 CC GG TA CGT CGA 

CAI0081 CC AA TT CAT 

 

CAI0082 CC AG TA CAT CGA 

CAI0083 AA AA TT AAT 

 

CAI0084 CC GG AA CGA 

 

CAI0085 CA AA TT CAT AAT 

CAI0086 CA AA TT CAT AAT 

CAI0087 CC AG TA CAT CGA 

CAI0088 AA AA TT AAT 

 

CAI0089 CA AG TA CGA AAT 

CAI0091 CC AA TT CAT 

 

CAI0092 CA AA TA CAA AAT 

CAI0093 CA AA TT CAT AAT 

CAI0094 CA AA TT CAT AAT 

CAI0095 CA AG TA CGA AAT 

CAI0096 CA AA TT CAT AAT 

CAI0098 CA AA TT 

  

CAI0099 CA AG TA CAT AAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

CAI0100 CA AG TT CGA AAT 

CAI0101 CA AA TA CGT AAT 

CAI0102 CC GG TT CAA AAT 

CAI0103 CA AA TT CGT 

 

CAI0106 CA GG TT CAT AAT 

CAI0107 AA AA TT CGT AGT 

CAI0108 CA AA TT AAT 

 

CAI0109 CC AA TT CAT AAT 

CAI0110 CC AG TA CAT 

 

CAI0113 CA GG TA CGA AGT 

CAI0114 CC GG TT CGT 

 

CAI0115 CC GG AA CGA 

 

CAI0116 CC AG TA CAT CGA 

CAI0117 CC GG TA CGT CGA 

CAI0120 CA AG TT CGT AAT 

CAI0122 CA AA TT CAT AAT 

CAI0123 CA AA TT CAT AAT 

CAI0124 CC AG TA CAT CGA 

CAI0125 CC AG TA CAT CGA 

CAI0126 CA AA TT CAT AAT 

CAI0128 CC AA TT CAT 

 

CAI0129 CC AG AA CAA CGA 

CAI0130 CC AG TT CAT CGT 

CAI0131 CC AG TA CAT CGA 

CAI0132 CA AA TT CAT AAT 

CAI0133 CC AA TT CAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

CAI0134 CA AA TT CAT AAT 

CAI0135 CA AG TA CGA AAT 

CAI0136 CA AA TT CAT AAT 

CAI0137 AA AA TT AAT 

 

CAI0138 CA AA TT CAT AAT 

CAI0139 CA AA TA CAA AAT 

CAI0140 CA AA TT CAT AAT 

CAI0141 CA AG TA CGA AAT 

CAI0142 CA AA TT CAT AAT 

CAI0143 CC AG TA CAT CGA 

CAI0144 CC AG TT CAT CGT 

CAI0145 CA AG TT CGT AAT 

CAI0146 CC AG TA CAT CGA 

CAI0147 CC AA TT CAT 

 

CAI0148 CC AG TA CAT CGA 

CAI0149 CC AA TT CAT 

 

CAI0150 CA AG TT CGT AAT 

CAI0151 CC AA TT CAT 

 

CAI0152 CC AG TA CAT CGA 

CAI0153 CC AG TA CAT CGA 

CAI0154 CA AG TA CGA AAT 

CAI0155 CA AA TT CAT AAT 

CAI0156 CC GG TA CGT CGA 

CAI0157 AA AA TT AAT 

 

CAI0158 CC AG TA CAT CGA 

CAI0159 AA AA TT AAT 

 



245 

 

PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

CAI0161 CC GG TA CGT CGA 

CAI0162 CC AG TT CAT CGT 

CAI0163 CC AA TT CAT 

 

CAI0164 CA AG TA CGA AAT 

CAI0165 AA GG TT AGT 

 

CAI0166 CA AA TT CAT AAT 

CAI0167 CC AA TT CAT 

 

CAI0168 AA AA TT AAT 

 

CAI0169 CA AG TA CGA AAT 

CAI0170 CA AA TT CAT AAT 

CAI0171 CA AA TT CAT AAT 

CAI0172 CC AA TT CAT 

 

CAI0173 CA GG TA CGA AGT 

CAI0174 AA AA TT AAT 

 

CAI0175 CA AA TT CAT AAT 

CAI0176 CC GG TT CGT 

 

CAI0177 CA AG TA CGA AAT 

CAI0178 CC GG TT CGT 

 

CAI0179 AA GG TT AGT 

 

CAI0181 CA AG TA CGA AAT 

CAI0182 CC AG TA CAT CGA 

CAI0183 CA AA TT CAT AAT 

CAI0184 CC AG TA CAT CGA 

CAI0185 CC AA TA CAT CAA 

CAI0186 CA AA TT CAT AAT 

CAI0187 CA AA TT CAT AAT 

CAI0188 CA AA TT CAT AAT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

CAI0189 CC AA TT CAT 

 

CAI0190 CA AG TA CGA AAT 

CAI0191 CC AA TT CAT 

 

CAI0192 CC AG TA CAT CGA 

CAI0193 CC AA TT CAT 

 

CAI0194 CA AG TA CGA AAT 

CAI0195 CA AG TA CGA AAT 

CAI0197 CA AA TT CAT AAT 

CAI0198 CC AA TT CAT 

 

CAI0199 CA AA TT CAT AAT 

CAI0200 CC AA TT CAT 

 

CAI0201 AA AA TT AAT 

 

CAI0202 CA AA TT CAT AAT 

CAI0203 CC AG TA CAT CGA 

CAI0205 CA AG TA CGA AAT 

CAI0206 CC AA TT CAT 

 

CAI0207 CC AG TA CAT CGA 

CAI0208 CA AG TA CGA AAT 

CAI0209 CC AG TA CAT CGA 

CAI0210 AA AA TT AAT 

 

CAI0211 CA AG TA CGA AAT 

CAI0212 CC AG TA CAT CGA 

CAI0213 CC GG TT CGT 

 

CAI0214 CC AG TA CAT CGA 

CAI0215 CC AG TT CAT CGT 

CAI0216 CC AG TT CAT CGT 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

CAI0217 CC AG TA CAT CGA 

CAI0218 CA AA TT CAT AAT 

CAI0219 CC AG TA CAT CGA 

CAI0220 CC AA TT CAT 

 

CAI0221 AA AA TT AAT 

 

CAI0222 CC AG TA CAT CGA 

CAI0223 CC AG AA CAA CGA 

CAI0224 CC AG TA CAT CGA 

CAI0225 AA AA TT AAT 

 

CAI0227 CC AA TT CAT 

 

CAI0228 AA AG TT AAT AGT 

CAI0229 AA AG TT AAT AGT 

CAI0230 AA AA TT AAT 

 

CAI0231 CA AA TT CAT AAT 

CAI0232 CC AG TT CAT CGT 

CAI0233 CC AG TA CAT CGA 

CAI0234 CC AG TA CAT CGA 

CAI0235 CA AA TT CAT AAT 

CAI0236 CC GG TA CGT CGA 

CAI0237 CC AA TT CAT 

 

CAI0238 CA AG TT CGT AAT 

CAI0239 CA AA TT CAT AAT 

CAI0240 AA AG TA AAT AGA 

CAI0241 CC AG TT CAT CGT 

CAI0242 CC GG TA CGT CGA 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

CAI0243 CA AA TT CAT AAT 

CAI0244 CA AG TA CGA AAT 

CAI0245 CC AG TT CAT CGT 

CAI0246 CC GG TT CGT 

 

CAI0247 CC GG AA CGA 

 

CAI0248 AA AA TT AAT 

 

CAI0249 CC AG TA CAT CGA 

CAI0250 CC AG TA CAT CGA 

CAI0251 CC AA TT CAT 

 

CAI0252 CA AA TT CAT AAT 

CAI0253 CC GG TA CGT CGA 

CAI0254 CC GG TA CGT CGA 

CAI0255 CC AG TA CAT CGA 

CAI0256 CC AA TT CAT 

 

CAI0257 CA GG TA CGA AGT 

CAI0259 CC AA TT CAT 

 

CAI0261 CC GG TA CGT CGA 

CAI0262 CA AG TA CGA AAT 

CAI0264 CA AG TA CGA AAT 

CAI0265 CA AA TT CAT AAT 

CAI0266 CC AA TT CAT 

 

CAI0267 CA AG TA CGA AAT 

CAI0268 AA AA TT AAT 

 

CAI0269 CC AA TA 

  

CAI0270 CA AG TA 

  

CAI0271 CC AG TA 
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PID 
-592 

(rs1800872) 

-1082 

(rs1800896) 

-3575 

(rs1800890) 
Haplotype 1 Haplotype 2 

CAI0274 AA AA TT 

  

CAI0275 AA AA TT 

  

CAI0276 CA AG TA 

  

CAI0277 CC GG TT 

  

CAI0278 CC AA TT 

  

CAI0279 CA AG TA 

  

CAI0280 AA AA TT 

  

CAI0281 CC AG TT 

  

CAI0282 AA AA TT   
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H I V / A I D S M A J O R A R T I C L E

Association of IL-10-Promoter Genetic Variants
With the Rate of CD4 T-Cell Loss, IL-10 Plasma
Levels, andBreadthofCytotoxicT-Cell Lymphocyte
Response During Chronic HIV-1 Infection

Dshanta D. Naicker,1 Bingxia Wang,2 Elena Losina,2 Jennifer Zupkosky,4 Susan Bryan,1 Shabashini Reddy,1

Manjeetha Jaggernath,1 Mammekwa Mokgoro,1 Philip J. R. Goulder,3 Daniel E. Kaufmann,4,5 and Thumbi Ndung'u1,4

1HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban,
South Africa; 2Program in HIV Outcomes Research, Massachusetts General Hospital, Boston; 3Department of Paediatrics, Nuffield Department of
Medicine, University of Oxford, United Kingdom; 4Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and
Harvard University, Boston; 5Division of Infectious Diseases, Massachusetts General Hospital, Boston

Background. Interleukin-10 (IL-10) is a potent immunoregulatory cytokine. IL-10-promoter polymorphisms

have been shown to affect human immunodeficiency virus type 1 (HIV-1) clinical outcomes but the underlying

mechanisms are poorly understood.

Methods. We investigated the relationship between IL-10-promoter variants, plasma cytokine levels, immune

responses and markers of disease outcome in antiretroviral-naı̈ve HIV-1 chronically infected individuals from South

Africa. Two IL-10-promoter single nucleotide polymorphisms (SNPs) were genotyped in 451 participants. Baseline

plasma levels of select cytokines were measured for 112 individuals. Viral load, CD41 T-cell counts and HIV-1-specific

interferon-gamma CD81 T-cell immune responses were measured at baseline. CD41 T-cell counts were measured

longitudinally and rates of CD41 T-cell decline computed for 300 study subjects.

Results. The minor IL-10-1082G and -592A variants occurred at frequencies of 0.31 and 0.34, respectively.

The -592AA genotype associated significantly with attenuated loss of CD41 T cells (P 5 .0496). Individuals

possessing -1082GG had significantly higher IL-10 levels compared to -1082AA/AG (P 5 .0006). The -592AA

genotype was associated with greater breadth of virus-specific CD81 T-cell responses compared to CC and CA

(P 5 .002 and .004 respectively).

Conclusions. IL-10-promoter variants may influence the rate of HIV-1 disease progression by regulating IL-10

levels and the breadth of CD81 T-cell immune responses.

It is now approximately 3 decades since the human im-

munodeficiency virus type 1 (HIV-1) was first described,

and the virus has since spread to become a pandemic

with high morbidity and mortality. Almost two-thirds of

the world’s HIV-infected individuals are found in sub–

Saharan Africa, including South Africa [1]. Although

antiretroviral drugs are now widely available for the

clinical management of HIV-1 infection, significant

challenges in the roll-out and subsequent lifelong use of

these drugs remain, and it is unlikely that the spread

of HIV-1 will be substantially curtailed without a pre-

ventive vaccine or immunotherapy. However, vaccine

development efforts have been significantly hampered

by the limited knowledge of the biological factors that

underlie HIV-1 pathogenesis, and so far, only modest

success or failure has been achieved with candidate HIV-1

vaccines that have undergone large-scale human trials

[2–4]. The considerable variation in the natural history

of HIV/AIDS and disproportionate global distribution

of HIV infection present an opportunity to study

Received 5 August 2011; accepted 16 September 2011; electronically published
18 November 2011.
Correspondence: Thumbi Ndung'u, PhD, HIV Pathogenesis Programme, University

of KwaZulu-Natal, 719 Umbilo Rd., Durban, 4013, South Africa (ndungu@ukzn.ac.za).

Clinical Infectious Diseases 2012;54(2):294–302
� The Author 2011. Published by Oxford University Press on behalf of the Infectious
Diseases Society of America. All rights reserved. For Permissions, please e-mail:
journals.permissions@oup.com.
DOI: 10.1093/cid/cir811

294 d CID 2012:54 (15 January) d HIV/AIDS

 at H
arvard U

niversity on January 13, 2012
http://cid.oxfordjournals.org/

D
ow

nloaded from
 

http://cid.oxfordjournals.org/


biological factors that may influence HIV/AIDS pathogenesis,

and have the potential to be manipulated for effective vac-

cination or therapy [5, 6].

Geographical differences of host genetic factors that influence

HIV/AIDS exposure or infection are well illustrated in the dis-

tribution of the CCR5 chemokine receptor mutation CCR5-D32,

which has been associated with protection against HIV-1 in-

fection by R5 HIV-1 variants [7, 8]. Studies have shown that the

frequency of the CCR5-D32 alleles is higher among Northern

Europeans, decreasing geographically further south [9]. Likewise,

the HLA locus, which codes for HLA class I molecules (which

function to present pathogen-derived peptides on the cell surface

of infected cells for recognition by CD81 T lymphocytes [5, 9]),

displays significant natural variation among geographically di-

verse populations, and has been associated with differences in

HIV/AIDS disease progression and natural viral control [9–11].

Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine,

whichplays a key role in regulating the immune response [12, 13].

IL-10 has also been shown to downregulate the expression of

proinflammatory cytokines as well as the expression of major

histocompatibility complex class I and II molecules [14–17].

Previous studies have focused on the 3 classic single-nucleotide

polymorphisms (SNPs) found in the proximal promoter region

[18–21]. These polymorphisms are found at positions -1082

(rs1800896), an A to G transition; -819 (rs1800871), a C to T

transition; and -592 (rs1800872), a C to A transversion. The 819

and -592 mutations are in complete linkage disequilibrium.

IL-10 variants are associated with differential IL-10 production

[19, 22–24]; -1082G with high IL-10 production and the -592A

with low IL-10 production. Genetic association data suggests that

IL-10 variant -592A, a low IL-10 producer variant, is linked with

increased susceptibility to HIV-1 infection and an accelerated

progression to AIDS, particularly in the late stages of the disease

among European Americans [20, 21, 25]. Consistent with these

data, it was demonstrated in an African cohort that survival was

doubled in carriers of the IL-10-1082G allele, which is asso-

ciated with increased IL-10 production [18]. Therefore, there

is evidence that suggests that IL-10 polymorphisms associated

with increased IL-10 production have a protective role against

disease progression, possibly by decreasing the chronic im-

mune activation that is a major factor in HIV pathogenesis.

On the other hand, we have recently shown in a cohort of

high-risk black African women that although the IL-10 poly-

morphisms -1082AA and -592AA associated with decreased

IL-10 production were overrepresented among seroconverters

compared with those who remained HIV-1 negative in longitu-

dinal follow-up, these polymorphisms also associated with high

viral loads and low CD4 counts during the acute/early phases of

infection, suggesting that the effects of IL-10 polymorphisms may

be infection-phase dependent and that high IL-10 levels during

the early phase may be detrimental [26]. Mechanistic studies of Ta
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the lymphocytic choriomeningitis virus (LCMV) in mice showed

that IL-10 gene knock-out or signaling blockade enhanced T-cell

immune responses, resulting in rapid viral elimination and the

development of antiviral memory T-cell responses [27, 28]. We

have also shown in vitro that IL-10 blockade in peripheral blood

mononuclear cells (PBMCs) from HIV-infected individuals re-

sulted in restoration of proliferative and effector CD4 T-cell

function [29]. IL-10 is also reported to enhance detrimental de-

letion of dendritic cells by natural killer cells, further exacerbating

immune dysfunction in chronic HIV-1 infection [30]. Taken

together, these studies suggest a complicated but significant role

for IL-10 in viral pathogenesis, and considering that manipula-

tion of the IL-10 pathway to boost antiviral immune responses

and improve vaccine effectiveness has been suggested, there is

a clear and urgent need to better decipher underlying mecha-

nisms of pathogenesis for this immunoregulatory cytokine, par-

ticularly in geographical regions most severely affected by the

HIV-1 epidemic, as this may have implications for immuno-

therapeutic strategies and vaccine design.

Therefore, the purpose of this study was to investigate the

frequency of IL-10-promoter polymorphisms in a large cohort of

antiretroviral-naive chronically HIV-1-infected predominantly

Zulu/Xhosa individuals to determine whether these polymor-

phisms affect markers of HIV-1 disease progression; namely, viral

load, CD41 T-cell counts, and the rate of CD41 T-cell decline.

We also wanted to determine whether these polymorphisms are

associated with differential levels of select pro- and anti-

inflammatory plasma cytokines. Furthermore, we sought to

explore the link between these polymorphisms and levels of

cytotoxic T-cell immune responses, which have been shown to

play a role in the control of HIV-1 replication. Our data suggest

that IL-10-promoter polymorphisms may modulate HIV-1

pathogenesis, possibly through effects on plasma IL-10 levels and

the breadth of immune responses, among other mechanisms.

MATERIALS AND METHODS

Study Population, Materials, and Methods
The HIV Pathogenesis Programme (HPP) Sinikithemba co-

hort is described in detail elsewhere [31]. This cohort is based

at McCord Hospital in Durban, South Africa. The cohort was

established in August 2003, with 451 antiretroviral-naive

chronically HIV-1-infected adult study subjects enrolled until

June 2006.

CD4 cell counts and plasma viral loads were performed

routinely for study participants. CD41 T-cell counts were enu-

merated by flow cytometry (Becton Dickinson, San Jose, CA),

while plasma viral loads were measured using the Roche Am-

plicor version 1.5 assay (Roche, NJ). CD41 T-cell counts were

performed at 3-month and plasma viral loads at 6-month in-

tervals. The number and magnitude of HIV peptides targeted by

cytotoxic T lymphocytes (CTLs) were measured at baseline by

interferon-c (IFN- c) enzyme-linked immunospot (ELISPOT)

assay using a panel of 410 overlapping peptides spanning the

HIV-1C proteome [31, 32].

IL-10 genotype data for SNPs -1082 and -592 were generated

using predesigned TaqMan SNP Genotyping assays (Applied

Biosystems, CA). Plasma IFN-c, IL-2, IL-6, IL-10, and tumor

necrosis factor (TNF)–a concentrations were determined by

Luminex, using the Millipore Milliplex MAP High Sensitivity

Human Cytokine Kit.

Different methods of statistical analysis were used to de-

termine the association and correlation of IL-10 variants/levels

with aforementioned biomarkers. We used the v2 test to com-

pare the allelic frequencies of the IL-10 variants, confirming their

fit to Hardy–Weinberg equilibrium. Kruskal–Wallis tests were

used to determine the association between IL-10 variants and

viral load or CD41 T-cell count. The CD4 decline over

24 months of follow-up was estimated using multivariate mixed

effects models. The Kruskal–Wallis test was used to determine

the association between IL-10 variants andmagnitude or breadth

of immune responses. To determine if there was an association

between IL-10 variant and plasma IL-10 concentration, the

Kruskal–Wallis test was used. The Pearson product moment

correlation test was used to determine the association between

IL-10 concentration and markers of HIV-1 pathogenesis or

plasma cytokines.

RESULTS

IL-10-Promoter Genotyping
The2 IL-10 promoter positions -1082 and -592 were polymorphic

in this cohort of HIV-1C chronically infected individuals. The

allele frequencies of the minor -1082G and -592A polymorphisms

Table 2. Baseline Viral Load and CD41 T-Cell Count Based on IL-10 Genotype

21082 Genotype 2592 Genotype

AA AG GG P value CC CA AA P value

Baseline CD4 (cells/lL) 341 375 431 0.23 397 339 341 .22

Log mean pVL (log copies/mL) 4.8 4.8 4.7 0.40 4.8 4.8 4.8 .41

Abbreviation: pVL, plasma viral load.
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were 0.31 and 0.34, respectively. Allele frequencies were confirmed

by v2 tests to be in Hardy–Weinberg equilibrium for the entire

cohort and for subgroups analyzed in this study. The baseline

characteristics of the cohort are shown in Table 1. The median age

of the study group was 31 years, 82% were female, 36% had

a baseline viral load (VL) .100 000 copies/mL, 62% had

Figure 1. The rate of CD41 T-cell decline over 24 months based on IL-10 variants. Data was stratified into different groups based on viral load
and CD4 count (ie, CD4 .350, VL .100 000; CD4 .350, VL #100 000; CD4 #350, VL .100 000; and CD4 #350, VL #100 000). The numbers in
the bars indicate the number of people in each category. A, The rate of CD41 T-cell decline over 24 months based on -1082 genotype. The low
IL-10-producing -1082AA groups tended to have an attenuated loss of CD4 cells as compared to the other groups; however, this was not significant
(P 5 .15). B, The rate of CD41 T-cell decline over 24 months based on -592 genotype. The low IL-10-producing -592AA group had an attenuated loss
of CD4 cells over 24 months. The was a significant association between -592 genotype and CD4 cell loss (P 5 .0496). Abbreviations: IL, interleukin;
VL, viral load; k, thousands.
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a baseline CD4 count.350 cells/lL, and had a median follow-up

of 24.7 months.

Viral Load, CD41 T-Cell Count, and CD4 Decline
For the 409 individuals with baseline data, we investigated the

association between the IL-10 genotypes and baseline viral load

and CD41 T-cell counts. Table 2 shows the association between

baseline viral load and CD41 T cells. In this cross-sectional

analysis, we found no association between any IL-10 variant and

viral load or CD41 T-cell count.

We investigated the rate of CD41 T-cell decline in 300 in-

dividuals with follow-up data. Figure 1 shows the rate of CD41

T-cell decline over 24 months based on genotype. CD4 de-

cline was stratified according to CD4 and viral load (ie, CD4

.350, VL .100 000; CD4 .350, VL #100 000; CD4 #350,

VL .100 000; CD4 #350, VL #100 000). The low-IL-10-

producing -1082AA genotype had an attenuated CD4 cell loss

compared with the -1082AG or -1082GG groups (Figure 1A). This

trend was seen in each strata; however, there was no significant

association (P 5 .15). The low-IL-10-producing -592AA geno-

type had an attenuated loss of CD4 cells over all strata (Figure 1B),

with a borderline significant association between the -592 geno-

type and CD4 decline over 24 months (P 5 .0496). Overall, low-

IL-10-producing variants had an attenuated loss of CD4 cells over

all strata in this study cohort.

Cytokine Expression Analysis
We next investigated the association between IL-10-promoter

polymorphisms and plasma IL-10 and/or plasma proinflam-

matory cytokines IFN-c, IL-2, IL-6, and TNF-a in a subset of

112 individuals. To determine if IL-10 levels associate with IL-10

polymorphisms in an African setting of chronic HIV-1C in-

fection, we investigated if plasma IL-10 levels associate with

IL-10 variants (Figure 2). We grouped the genotypes according

to dominance patterns previously described by Shin et al. [21].

Figure 2A shows that based on a recessive model, the -1082GG

group had significantly higher median plasma IL-10 concen-

tration compared with the combined -1082AA/AG groups

(P 5 .0006). Figure 2B shows that when considering a dominant

model [33], the -592CC group had a higher median IL-10 con-

centration as compared with the combined -592CA/AA groups;

however, this was not significant (P 5 .2180). In a cross-sectional

analysis, and in contrast to what had been seen in other cohorts

of different ethnicities located in other geographic areas [29],

IL-10 plasma levels did not significantly correlate with viral load

(Pearson correlation 5 0.08465, P 5 .3838), CD4 count (Pear-

son correlation520.02797, P 5 .7749), the breadth of immune

responses (Pearson correlation 5 20.0613, P 5 .5304), or the

magnitude of immune responses (Pearson correlation 5 0.0597,

P 5 .5412), data not shown. As IL-10 is a major inhibitory im-

munoregulator, we next examined whether the different

IL-10-promoter polymorphisms were associated with dis-

tinct cytokine profiles in peripheral blood. Figure 3 repre-

sents the analysis of the 5 cytokines that were measured.

Figure 3A shows that there was significant positive correlation

between the levels of each of the proinflammatory cytokines

(IFN-c, IL-2, and IL-6 and TNF-a) and IL-10 levels (P , .0001,

Spearman rank correlation [q]). Figure 3B and 3C shows that,

overall, IL-10 dominated the measured plasma cytokine levels

in this chronic HIV-1C setting irrespective of the IL-10

genotype.

Breadth and Magnitude of Immune Responses
In the LCMV murine model of chronic viral infection,

IL-10-deficient mice showed an increased frequency of tetramer-

positive virus-specific CD81 T cells, and IL-10 receptor blockade
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Figure 2. The association of IL-10 expression based on IL-10 genotype. A, the association of IL-10 expression based on -1082 genotype. Genotypic
groups were grouped according to a recessive model of inheritance. We found a significant association between -1082 genotype and IL-10 expression
(P 5 .0006). B, The association of IL-10 expression based on -592 genotype. Genotypic groups were grouped according to a dominant model of
dominance. There was no significant association between -592 genotype and IL-10 expression (P 5 .2180). Abbreviations: IL, interleukin; VL, viral load;
k, thousands.
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increased IFN-c production by virus-specific CD81 T cells

[27, 28] We therefore reasoned that IL-10 variants that affect

IL-10 production and influence disease progression may also be

linked with the magnitude (number of IFN-c-producing cells

per million PBMCs) and breadth (number of HIV peptides

targeted by CTLs) of HIV-1-specific immune response in vivo, as

measured by IFN-c ELISPOT. We thus investigated the associ-

ation between IL-10 variants and the magnitude and breadth of

CD81 T-cell immune responses. Figure 4A and 4B shows the

association between the magnitude of immune responses based

on the 1082 and -592 genotypes, respectively. We found no

significant association between the magnitude of HIV-1-specific

immune responses and -1082 genotype (P 5 .44) or the -592

genotype (P 5 .17). We then assessed the breadth of immune

responses in relation to IL-10 genotype. We found no significant

association between -1082 genotype and the number of HIV

peptides targeted by CTLs (P 5 .2316). However, there was

a significant association between the number of HIV peptides

targeted and the -592 genotype (P 5 .0069). The low-IL-10-

producing -592AA group had a median of 12 HIV peptides

versus 7 peptides targeted for the -592CC or -592CA genotypes

(P 5 .002 and 0.004, respectively).

Figure 3. Cytokine expression during chronic HIV-1C infection. IL-10, IFN-c, TNF-a, IL-2, and IL-6 were measured by Luminex methodology in 112
individuals. A, The correlation between IL-10 and IFN-c, TNF-a, IL-2, and IL-6. Overall, all the cytokines had a significantly positive correlation with IL-10
expression (P , .0001 for each cytokine, Spearman q). B, Proportion of cytokine expression based on IL-10 -592 genotype. IL-10 seemed to dominate
cytokine expression overall. C, Proportion of cytokine expression based on IL-10 -1082 genotype. IL-10 seemed to dominate cytokine expression overall.
Abbreviations: HIV, human immunodeficiency virus; IL, interleukin; IFN, interferon; TNF, tumor necrosis factor.

HIV/AIDS d CID 2012:54 (15 January) d 299

 at H
arvard U

niversity on January 13, 2012
http://cid.oxfordjournals.org/

D
ow

nloaded from
 

http://cid.oxfordjournals.org/


DISCUSSION

In this study, we sought to extend earlier observations on the

modulation of HIV-1 infection by genetic polymorphisms of the

IL-10 promoter to an investigation of possible underlying mech-

anisms in vivo. We therefore characterized IL-10-promoter SNPs

in a large, predominantly black African cohort chronically in-

fected with HIV-1 subtype C. IL-10 polymorphisms were in-

vestigated for association with biomarkers of disease progression;

namely, plasma viral load, CD41 T-cell counts, and the rate of

CD41 T-cell decline. These polymorphisms were then analyzed

for association with plasma IL-10 and select proinflammatory

cytokines levels (as this had not previously been investigated in an

HIV setting), and the breadth and magnitude of CD81 T-cell

immune responses. Our data suggest an association between

IL-10-promoter genotypes with the rate of CD41 T-cell loss

during chronic HIV-1 infection, an association with plasma IL-10

levels, a predominance of the anti-inflammatory IL-10 over

proinflammatory cytokines in the plasma of HIV-1-infected

individuals, and an effect of IL-10 polymorphisms on the breadth

but not the magnitude of CD81 T-cell immune response.

Our data suggest that in an African setting of chronic HIV-1

infection, IL-10 variants may influence the rate of disease pro-

gression. Our investigation into the role of IL-10 in HIV-1C

pathogenesis showed that these IL-10-promoter polymorphisms

that have been previously shown to be associated with differing

levels of IL-10 expression [19, 22–24] significantly associate with

differential IL-10 expression in an HIV setting. Low-IL-10-

producing -592 variants showed a trend toward attenuated

CD41 T-cell loss. These data differ from earlier studies in

European and African cohorts in which high-IL-10-producing

genotypic variants were associated with attenuated CD41 T-cell

loss or progression to AIDS [18, 21]. A possible explanation for

these differences might be that the effect of IL-10-promoter

variants on HIV-1 pathogenesis is infection-phase dependent, as

we have previously suggested [26]. This interpretation is also

consistent with the observations of Shin and colleagues [21] who

found that high-IL-10-producing genetic variants were
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Figure 4. Magnitude and breadth of immune responses based on genotype. A, the magnitude of HIV peptides targeted by CTLs (IFN-c) based on -1082
genotype. There was no significant association between -1082 genotype and the magnitude of immune responses (P 5 .044). B, The magnitude of HIV
peptides targeted by CTLs (IFN-c) based on -592 genotype. There was no significant association between -592 genotype and the magnitude of immune
responses (P 5 .17). C, The number of HIV peptides targeted by CTLs (IFN-c) based on -1082 genotype. There was no significant association between the
number of HIV peptides targeted by CTLs and -1082 genotype (P 5 .23). D, the number of HIV peptides targeted by CTLs (IFN-c) based on -592 genotype.
There was a significant association between the number of HIV peptides targeted by CTLs and -592 genotype (P 5 .007). The -592AA group targeted
a significantly larger number of HIV peptides as compared to the -592CC or 592CA groups (P 5 .002 and .004, respectively). Abbreviations: HIV, human
immunodeficiency virus; CTLs, cytotoxic T lymphocytes; IFN, interferon.
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protective against disease progression, particularly during late

states of infection, and yet the genetic removal of or blockade of

IL-10 in a mouse model of chronic viral infection has been

shown to result in viral clearance [27, 28]. Our hypothesis is that

high IL-10 production (and by extension high-IL-10-producing

promoter genotypes) are detrimental during early HIV-1 in-

fection because of downregulation of antiviral adaptive and

innate effector mechanisms [30, 34, 35] but beneficial in late

stages of infection because of anti-inflammatory effects of IL-10

and direct-inhibition viral replication in macrophages [36–38].

It is also possible that different strains of HIV-1 induce different

levels of IL-10, as has been recently demonstrated for HIV-1 B

versus C trans-activating proteins [39], although this explana-

tion is unlikely to account for the different results observed in

our study versus the other African study [18] since both were

done in settings where HIV-1 subtype C predominates. Alter-

natively, IL-10 SNPs may have underlying undetermined epi-

genetic or environment modulatory factors, or these SNPs may

be in linkage disequilibrium with other genes with a modulatory

role on attenuated CD41 T-cell loss. Further studies will be

needed to discriminate between these possibilities.

Overall, IFN-c, IL-2, IL-6, and TNF-a had a significant positive

correlation with IL-10 expression. Showing that in an HIV-1C

setting, both pro- and anti-inflammatory cytokines are upregu-

lated. However, we found that the proportion of IL-10 expression

seemed to dominate over the expression of the other cytokines.

The dominance of IL-10 expression suggests that as the pro-

duction of proinflammatory cytokines increases, the production

of IL-10 also increases to reduce inflammation and activation.

The -592A variant, associated with low IL-10 production,

significantly associated with a higher number of HIV-1 peptides

targeted by CTLs. These data are consistent with results from

mechanistic studies on the LCMV mouse model, which show

that the removal or blockade of IL-10 enhance T-cell immune

responses [27, 28]. Similarly, results from our study of IL-10

blockade in vitro resulted in restoration of proliferative and

effector CD4 T-cell function [29]. Lower IL-10 levels may allow

for the expression of HLA class I and II molecules, which in turn

increases the presentation of pathogen-derived peptides on the

cell surface of infected cells, for recognition by CD81 T lym-

phocytes. However, as IL-10 levels did not correlate with plasma

viral load, CD41 T-cell count, or the breadth of immune re-

sponses, IL-10 polymorphisms may contribute to the quality of

immune responses via a complex pathway that has yet to be

elucidated. Alternatively, differential levels of IL-10 secretion

that are critical for paracrine cell–cell interactions may not be

reflected by differences in IL-10 plasma levels.

There are a number of limitations to this cohort study. First,

the time since HIV-1 infection is unknown for study partic-

ipants, which may have introduced a survivor bias in analysis of

IL-10 polymorphisms since these have been shown to affect

survival [18]. Second, since time of infection was unknown, we

may be analyzing individuals at different phases of infection

together, although we stratified our data according to viral loads

and CD4 cell counts to partially mitigate for this limitation. This

study also focused on 2 proximal IL-10-promoter poly-

morphisms, only a subset of IL-10 SNPs shown to affect IL-10

production. Finally, IL-10 and other cytokines can be induced

by a plethora of pathogens, and we lacked data on coinfection

status of participants in this study.

In conclusion, our study highlights the complex role that

IL-10 and IL-10 genetic variants may play in HIV-1 pathogen-

esis. We show that IL-10-promoter polymorphisms may play

a role in the rate of CD4 T-cell loss in chronic HIV infection, and

affect IL-10 plasma levels and the breadth of anti-HIV CD81

T-cell immune responses. However, to fully understand the ef-

fects and underlying mechanisms of IL-10 in HIV-1C patho-

genesis, expanded analysis is required of the proximal and distal

SNPs. Additional mechanistic studies will also be required in

order to fully understand how best to target the IL-10 pathway

for effective immunotherapy or a vaccine.
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