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ABSTRACT

A NEAT Approach to Malware Classification

by Jason Do

Current malware detection software often relies on machine learning, which is

seen as an improvement over signature-based techniques. Problems with a machine

learning based approach can arise when malware writers modify their code with the

intent to evade detection. This leads to a cat and mouse situation where new models

must constantly be trained to detect new malware variants. In this research, we

experiment with genetic algorithms as a means of evolving machine learning models to

detect malware. Genetic algorithms, which simulate natural selection, provide a way

for models to adapt to continuous changes in a malware families, and thereby improve

detection rates. Specifically, we use the Neuro-Evolution of Augmenting Topologies

(NEAT) algorithm to optimize machine learning classifiers based on decision trees and

neural networks. We compare the performance of our NEAT approach to standard

models, including random forest and support vector machines.
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CHAPTER 1

Introduction

As the Internet grows to be an integral part of human society, so too does malware

grow in response. Over 50 million malware samples were detected in 2019 [1], and this

total increases every year. It can be said that malware is just as much a part of our

daily experience as the Internet is. Hence, malware detection is a critically important

topic in computer security.

Today, malware detection relies on finding and classifying the signatures of

common malware threats. By searching for these signatures in software, most viruses

can be found and disposed of before any major harm can occur. However, viruses that

can mask or change their signature will be essentially invisible to signature-based anti-

virus (AV) tools [2]. Because of this, virus writers have developed various techniques

to hide or alter signatures [3]. For example, metamorphic malware changes its internal

structure—and hence its signature—when it propagates [4]. Although few effective

metamorphic viruses have been seen in the field, the threat posed by such malware

remains real.

Machine learning techniques, such as support vector machines [5], have proven

useful for defending against malware that evolves over time. However, such machine

learning models must be updated regularly to detect new variants, even within the

same malware family [6]. We propose to use genetic algorithms to deal with this

malware evolution problem. Genetic algorithms will enable our malware detection

techniques to evolve and adapt in ways that mimic natural selection [7].

In this research, we consider using genetic algorithms to optimize the training of

several machine learning classifiers, such as decision trees and neural networks. Our

goal is to determine whether this pairing is possible, and if it results in models that

perform comparably to popular malware classification systems currently used. We
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perform various experiments measuring classification accuracy and run time complexity.

These experiments include cross validation in classifying between malware families

and hyperparameter tuning to optimize our model’s run time. Our aim is to create a

malware classification system that can evolve in response to attempts made to evade

detection.

The remainder of this paper is organized as follows. Chapter 2 provides an

overview of current malware detection methods, genetic algorithms, previous work,

as well as the specific genetic algorithm used in this project. Chapter 3 covers the

methodology of this research, including feature extraction, proposed experiments, and

the machine learning pipeline. Chapter 4 covers implementation details, such as the

data sets used, programming specifications, and experimental design. In Chapter 5, we

present and analyze the results obtained from our experiments. Finally, in Chapter 6,

we summarize the research and discuss further possibilities for experimentation.
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CHAPTER 2

Background

In this chapter, we first discuss several machine learning techniques that will

be used as a baseline for comparing our research to. We will then provide a brief

introduction into the main topic of our research, genetic algorithms. We also discuss

previous work in the field of malware detection using genetic algorithms, and how

that has influenced our research. Finally, we provide an in depth look into the main

algorithm in our research, the Neuro-Evolution of Augmenting Topologies.

Popular commercial methods of classifying malware primarily rely on signature-

based malware detection [8]. This requires scanning known malware staples and

identifying key, repeated patterns in the code, known as the signature. Should this

pattern be discovered in any other file, it is highly likely that the file contains that

specific type of malware. This technique excels when dealing with previously seen

threats, as large libraries of known signatures can be compiled and cross-referenced

with ease. However, in the case of new viruses, or even old malware edited to mask

the signature, performance can drop significantly [9].

Currently, malware detection techniques have become more sophisticated, and

have turned to machine learning as a method of combating the ever evolving issue of

malware. A recent survey covers several machine learning models used in state of the

art research for malware detection [10]. There are several advantages of using machine

learning to tackle this problem, such as using data from known threats to detect new

malware and scaling up detection for situations involving big data. However, the same

issues can cause machine learning models to fail, requiring the retraining of models

on new data, which can become expensive. Several techniques outlined in the survey

include support vector machines and random forest classifiers, which we use in our

research as base models for comparison.
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2.1 Base Models for Comparison

Recently, machine learning has been used to detect unknown malware with great

success. By allowing machines to learn hidden patterns that are invisible to the

human eye, virus writers will have a harder time changing the code to avoid detection.

The following subsections discuss popular machine learning algorithms for malware

classification. These classifiers will serve as the base models upon which we will

compare the performance of our proposed system.

2.1.1 Decision Trees

Decision trees are one of the simplest classifiers available for use. Essentially,

decision trees involve answering a series of questions based on the features of the

sample being classified [11]. The root node of the decision tree is the initial question

that branches into further decisions. The nodes and branches form the tree structure

that gives this classifier its name. By following the branches from the answers given,

a final decision is made on the sample’s class based on a majority of training samples

that ended up at the same leaf node.

2.1.2 Random Forest

While decision trees are easy to understand, they are often vulnerable to overfitting

on the training data. Random forest classifiers combat this by employing multiple

decision trees and taking a majority vote on the final classification [12]. The decision

trees are often minimal in complexity, but the nodes and decision thresholds are

randomized. By relying on an ensemble of these randomized decision trees, the

classifier improves as a whole.

2.1.3 Support Vector Machines

Support vector machines (SVM) focuses on plotting all data points in space and

finding a separating hyperplane that can divide the data into two classes [13]. By
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using the kernel trick to transform the data into a higher dimensional space, it becomes

easier to find the hyperplane and maximize the margin between the two classes. This

allows for a more generalized classifier while minimizing classification error. Previous

work has found that SVMs can perform extremely well in classifying malware [5].

2.2 Genetic Algorithms

Despite the progress made in the field of machine learning based malware detection,

in general, most models still require retraining on new samples when malware evolves

and changes its structure. In the future, this cost can add up and become infeasible

to upkeep. It may become necessary to have a way for models to naturally evolve in

response to the changing malware and adapt to detect new strains. This would lessen

the cost of having to train a new model from scratch every time malware families

mutate.

We propose using genetic algorithms to simulate this evolution. Genetic algo-

rithms allow for random mutations and changes in the weights and structure of the

model itself, and favors the changes that improve performance [7]. The topic of genetic

algorithms is heavily inspired by Charles Darwin’s theory of natural selection and

the concept of survival of the fittest. In nature, any slight advantage a creature gets

from their parent’s genes or a slight mutation can slowly push that individual to be

fitter than its peers. Naturally, these advantages would allow it more opportunities

to propagate and pass on its genes to the next generation. Applying these notions

to the field of computer science can hopefully create classification models that can

evolve in response to the malware’s evolution. To accomplish this, genetic algorithms

employ four key factors: fitness, speciation, crossover, and mutation.
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2.2.1 Fitness

The most important aspect of genetic algorithms would be determining which

models perform better than others. Many models will be operating in parallel to solve

the problem, and there needs to be a way to determine which model is the most fit.

This necessitates the definition of a fitness function which can evaluate the performance

of each model such that the best performing models are easily distinguished. In terms

of malware classification, fitness can be measured as simply as the validation accuracy

of the model, to something as complex as dynamically rewarding correct and incorrect

classification, or even some combination of different factors. The goal is to define a

fitness function that will push the model to evolve towards a desirable solution.

2.2.2 Speciation

Another concept of genetic algorithms is that of speciation. In nature, animals

that are similar enough to each other are classified as a single species, and evolve within

their group. A single species can branch out to become multiple different species,

and species unfit for their environment can go extinct. Genetic algorithms apply this

concept to machine learning models by representing them as genomes. A genome is

an encoding of the model in a comparable and mutable way. Similar genomes are

classified as a single species while dissimilar genomes are separate. Because of this, a

way to distinguish the genes of each classifier is necessary to compare genomes. This

will heavily depend on the type of classifier that is used. For example, a population of

neural networks might compare the number of nodes and connections shared between

them, and a decision tree classifier may simply compare the features and values for

each decision node. Individuals within a species will compete among themselves, while

mostly leaving other species alone. This will promote diversity in the population, as

unique solutions will less likely be dominated by a singular strategy.
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2.2.3 Crossover

Crossover determines the process of how two different genomes can reproduce to

create a new genome of the next generation. In nature, the fittest specimens reproduce

the most, and the same goes for genetic algorithms. If less fit models were allowed

to reproduce freely, the model could stagnate and never reach an optimal solution.

To avoid this, the fittest members, as determined by the fitness function, should

reproduce to propagate healthy genes to the next population. How this is determined

can once again be done in numerous ways. In the case of neural networks, The fitter

parent can be more likely to pass on its node and connection layout to its children,

while the less fit parent has a smaller chance, but a chance nonetheless. This is

because genetic diversity is usually beneficial in promoting the survival of a species,

which is the core idea in genetic algorithms as well.

2.2.4 Mutation

Finally, there must be a way for genomes to change and mutate. Time and

time again in nature, the tiniest mutations to a species’ genome end up having major

impacts to their ability to survive and thrive. Without a chance for new solutions

to appear, stagnation will overtake the population of machine learning models and

they will never improve. Each time classifier pairs reproduce, the offspring should

have a chance to mutate and alter the very genes it inherited from its parents. In

the case of neural networks, a mutation can be as simple as a change in the weights

between connections to growing a new node or connection altogether. Once again, the

definition of mutation will heavily depend on the technique being used.

2.2.5 Behavior

Once all of these methods have been defined and implemented, the genetic

algorithm will behave as follows. There will be an initial population of a machine
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learning technique of choice, for example, a neural network. The goal of the algorithm

will be to optimize the neural network population such that it solves a desired problem

efficiently. Performance of each neural network will be measured by the defined fitness

function, which will allow natural selection to take place and select the fittest members

to reproduce. Species will be determined from the population of neural networks and

those within the species will reproduce with each other to crossover their genes, with an

emphasis on the fittest members. Some of the newly offspring will undergo mutation

and may end up as an entirely new species. All of the offspring are considered the next

generation and the genetic algorithm process begins again. All of these definitions,

such as mutation rates, fitness function, and crossover method can be considered

hyperparameters and can be fine tuned to further improve performance [14].

2.3 Previous Work

The authors of [15] proposed using a K-Means clustering algorithm to group

malware together based on their features. They would then employ a genetic algorithm

guided boosting process in order to further refine their results. Clusters or regions

that do not meet a minimum accuracy threshold are discarded. However, as they are

using a clustering algorithm, explicit malware classification is not guaranteed. Our

research aims to use a genetic algorithm to directly optimize a malware classifier using

a machine learning model.

In [16], the authors proposed using genetic algorithms for discriminatory feature

selection. These features will be used in a machine learning model in order to classify

Android based malware. By utilizing this method, they manage to minimize feature

dimensionality and maintain a classification accuracy of more than 94%. Our research

aims to utilize genetic algorithms to explicitly optimize a machine learning classifier,

not just the feature set.
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The authors of [17] proposed using a genetic algorithm to optimize a decision

tree classifier for detecting malware. They focused on worms and Trojan horses for

their malware families, and continuously trained their model to build up a malware

profile. By having the genetic algorithm update and adjust the weights of the decision

tree, the authors intended to develop a system that would not fail when presented

with an unseen malware sample. Our research intends to implement their proposed

system using NEAT as the genetic algorithm. Not only will we test using a decision

tree as the classifier, we will also attempt to integrate genetic algorithms with neural

networks.

In [18], the authors took an entirely different approach with genetic algorithms,

and instead use them to evolve malware to evade detection. This process can be used

to generate adversarial examples for training malware classifiers. In their experiments,

the generated examples achieved up to "82% of cross-evasion rates."

The authors in [19] appear to take this a step further and allow for the creation

of new malware entirely. By integrating the concepts of crossover and mutation

operators for virus evolution, this suggests that two different viruses can pass fit genes

to create a new generation of viruses that are even harder to detect. It would be

interesting to utilize this system with our research in order to create an adversarial

system in which a classifier constantly evolves to detect malware while the malware

also evolves to evade detection.

2.4 Neuro-Evolution of Augmenting Topologies

In general genetic algorithms focused mainly on updating the weights within a

machine learning model, while the actual structure, such as the amount of nodes and

layers in a neural network, required manual input. This neural network structure is

referred to as a topology. In some cases, an incorrect topology would lead to poor
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results, requiring scientists to make educated guesses on how to alter the structure.

This proved to be costly as randomly trying various topologies would take too much

time and resources. To address this issue, the authors of [20] proposed the Neuro-

Evolution of Augmenting Topologies algorithm (NEAT).

The NEAT algorithm mimics the old adage of putting a million monkeys in

a room full of typewriters with the inevitability of one monkey eventually typing

out the works of William Shakespeare. NEAT begins by initializing a population of

classifiers, such as neural networks, with randomized weights. As each are trained,

tested, and scored for fitness, the best are chosen to crossover and speciate, similar to

normal genetic algorithms. However, NEAT differs from the standard in 5 specific

areas: minimal structure initialization, historical marking crossover, genetic encoding,

speciation, and fitness sharing.

Firstly, NEAT emphasizes the importance of starting from the absolute minimum

topology necessary. Using neural networks for example, this usually results in an input

layer and and output layer, possibly fully connected. As classifiers mutate and evolve

during NEAT, weights can change, connections can arise between nodes, and even

new nodes can be formed in the process. Given enough time, every possible topology

can be explored, but with a minimalistic start, it is most likely that a solution with a

smaller topology is explored first.

Before mutation and crossover can occur, there must first be a way to encode a

classifier that allows for the necessary swapping of genes and traits. NEAT encodes

each genome as a list of nodes and connection genes in the case of neural networks.

The list of nodes includes every unique node in the network, and the connection genes

detail the edges between nodes. Data such as the connected nodes, the weight, and

whether a connection is enabled or disabled. During mutation, weights may change,

but new connections or even nodes can be created. These mutations are tracked by an
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innovation number, that is a sort of global ordering system that organizes mutations.

Next, NEAT employs a system that allows two genomes to crossover and repro-

duce. This is done by comparing the node and connection history of the two networks

and using the innovation number to determine which genes are shared, and which are

different. Once established, the genomes are merged together with the fitter parent’s

genes overwriting the lesser in cases of overlapping genes. This provides a way for

genomes to consistently improve as they evolve.

However, there is a possibility that a particular strategy may require some time to

reach its potential. NEAT provides a way to protect these weaker strategies through

speciation. By comparing two genomes together, a distance is calculated between

them that determines how different they are. Genomes that are within a certain

distance threshold are classified as the same species.

Generally, classifiers are compared against members of their own species as

opposed to those in other species. This allows niche or complex strategies to evolve

between themselves instead of competing with earlier dominating strategies. With the

concept of fitness sharing, the strongest member of a species is found by comparing

all of their fitnesses and finding the maximum. This champion is usually stored as

the highest performing sample, and will be used to ensure that its genes will always

be passed to the next generation.

In the end, NEAT promotes neural networks keeping minimalistic topologies

while also allowing for the exploration of all possible orientations given enough time

to train and mutate. If there is a simpler optimal solution to the problem, NEAT will

tend to discover it before any solution with a more robust structure. According to

authors of [20], “NEAT strengthens the analogy between GAs and natural evolution

by both optimizing and complexifying solutions simultaneously.”
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CHAPTER 3

Methodology

In this section, we will discuss how the features are extracted from the data,

the proposed experiments we will be running on the data, and the machine learning

pipeline for our experiments. We will be using 4 distinct malware families of 1000

samples each. The families will be paired up and compared against the other in

our tests. Once gathered, the data will have their opcodes extracted. Opcodes are

extracted directly from malware executables and stored in order in a text file.

3.1 Feature Extraction

The top 29 assembly opcodes will be selected from the malware samples based on

frequency. Opcodes not part of these 29 will be classified as other, creating a 30th

feature. These opcodes are extracted from the malware executable files. This data

will be labeled by family, represented as an array, and stored in a file.

3.2 Proposed Experiments

This section will be presenting a high level overview of our proposed experiments.

In general, we will be training various malware classification models using the NEAT

algorithm to optimize performance. The proposed classification models are a deci-

sion tree, a standard feed-forward neural network, and a recurrent neural network.

The performances of these models will be compared against standard classification

techniques as a baseline. These techniques are random forest classifiers and support

vector machines. The main metric we will be evaluating on is model accuracy, and

the results will include the confusion matrix.

3.3 Machine Learning Pipeline

In this section, we will cover the step-by-step machine learning process for each

experiment, including selecting the subset of features, processing the data, training

and testing, and evaluating the model performance using metrics.
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3.3.1 Feature Selection

From the malware samples, the top 29 opcodes are gathered based on frequency,

while the other opcodes are grouped under the “other” category, providing 30 key

features. Each malware family is its own class, and we classify between two classes.

3.3.2 Data Preprocessing

We will be processing the data in two distinct ways. The first is by representing

the data as an array of frequency percentages for each of the top 30 opcodes. This

allows both small and large files to be represented equally as a histogram of the

opcodes, similar to the concept of a bag of words in Natural Language Processing [21].

This form of data will be used in the experiments for the NEAT-Decision Tree model

and the NEAT-Feed-Forward-NN model.

However, this method of data processing destroys the sequence of opcodes in

the malware, erasing the presence of possible malware signatures. In an attempt to

preserve and learn from this information, we also represent each file as an array of the

first 2000 opcodes from the sample. Each opcode is encoded as a number from 0-28,

with the “other” category being assigned the value 29. This can allow our models to

detect malware signatures, hopefully improving detection rates. However, this method

also has the drawback of being influenced by the size of the sample. Some malware

samples can have hundreds of thousands of opcodes, and the virus’s signature is not

guaranteed to be contained within the first 2000 features.

3.3.3 Classification and Evaluation

We use 5-fold cross validation to remove bias from the results of our experiments.

This helps in avoiding overfitting. 5-fold cross validation involves splitting the dataset

into five parts, and utilizing each part as the testing set with the others as the training

set. Finally, we evaluate our results based on the metrics detailed in Chapter 4.
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CHAPTER 4

Implementation

In this chapter, we present a brief summary of the malware families and the data

sets used in our research, as well as the specific packages used in our project. We will

also go over the specific types of experiments we will be running on both the NEAT

models and the base models.

4.1 Dataset and Malware Families

The experiments mainly involve distinguishing between two families of malware.

The malware families include Vobfus and ZBot from the Malicia data set [22], as well

as Obfuscator and Onlinegames from an external data set used in another paper [23].

Vobfus and ZBot serve as the default families being classified, while Obfuscator and

Onlinegames were selected as a more challenging pair of malware families to classify.

We selected 1000 samples from each family to serve as our data set. The table shows

the 4 families as well as a description of what type of malware they are.

Vobfus is a worm type malware known to spread through infected drives [24].

The malware takes advantage of the auto run feature in most computers to activate it.

It will then connect to servers to download malicious code onto the victim’s machine.

The malware can continue spreading through the same infected drives as well as any

new drives infected by new malware copies.

ZBot is a Trojan horse type malware known to spread through emails or malicious

websites [25]. Once a victim’s machine is infected, the malware will attempt to discover

personal information such as bank account information, log in credentials, or security

details. It will then use this information to make unauthorized money transfers from

the victim’s accounts to the hackers’.

Obfuscator is a Trojan horse type malware that is usually spread through spam

emails and phishing attempts [26]. Upon infecting a victim’s machine, it can perform
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a variety of attacks. It can monitor user activity to send sensitive information to the

hackers. It can also pretend to be an actual system process and attempt to take over

the machine to lock out the user.

OnlineGames is a keylogger Trojan horse type malware that is usually spread

though spam emails and phishing attempts [27]. It mainly targets people who play

computer games over the internet. Once a victim’s machine is infected, the malware

spies on the user’s online activities and attempts to steal log in credentials for online

games. These credentials are sent to the hackers, and are usually sold for real world

money.

4.2 Programming Specifications

In this section, we discuss implementation-related details of our experiments. We

utilized Python to code the experiments, which were run on Windows 10. All the

data was stored on the local hard drive of the laptop used in the experiments.

After each malware sample is processed as discussed in Chapter 3, the feature

data is represented as an array and stored in a file. We used the pickle library [28] to

store this information. Pickle is a Python library that enables the serialization of data

objects for later unpacking. Pickle is used again to extract the data for further use.

This allows for not only an efficient way to store data, but also easy method to save

trained models for distribution. As stated in Chapter 3, the opcode information is

either stored as an array of histogram frequency percentages for each malware sample,

or an array of the first 2000 opcodes in sequence.

The Scikit-learn library [29] was used for its wide variety of established machine

learning models, several of which were used as a baseline model to compare against.

Specifically, we used the random forest classifier and support vector machine libraries

included in Scikit-learn. These are popular classifiers used in malware detection and
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provide a good representation of current classification systems.

The pandas library [30] was used for its data frame object, which allowed for easy

data loading and management. This was necessary to utilize Scikit-learn’s train test

split function, which automated both 5-fold cross validation and dividing data into a

training and testing set.

The NEAT-python library was used for its implementation of the NEAT algorithm

with neural networks [31]. By default, the library allows for the use of a feed-forward

or a recurrent neural network as its main classifier. Many of the hyperparameters

such as mutation rate and structural design are easily edited using a configuration file

as well. This package allowed for a relatively smooth implementation of NEAT into a

malware classifier.

In order to incorporate NEAT with a decision tree classifier, we utilized an open

source implementation of NEAT maintained by a computer science YouTube content

creator known as Code Bullet [32]. Their implementation exposed much of the inner

mechanisms of NEAT and allowed us to customize many aspects of the algorithm in

order for it to work with decision trees.

4.3 Experimental Design

In this section, we discuss the specific experiments we will be running on our

classification models. The main metric of success we will be using is validation

accuracy, demonstrated by the confusion matrix for each test. The results will be

obtained by a standard 5-fold cross validation training and testing on our selected

data, where the performance of our NEAT models will be compared against the base

models. As discussed earlier, we have three NEAT model implementations using a

decision tree, a feed-forward neural network, and a recurrent neural network, and our

base models are a random forest classifier and support vector machines.
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We will also be observing the run time complexity of the NEAT model in contrast

to the base models. As NEAT takes in parameters such as population size and

generation size, we will attempt to find the best setting that maximizes performance

while minimizing run time.
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CHAPTER 5

Results and Analysis

In this chapter, we discuss the results and analysis of the experiments performed on

the the NEAT-Decision Tree Model, the NEAT-Feed Forward Neural Network Model,

and the NEAT-Recurrent Neural Network model. We compare their performance

against the base models of decision trees, random forest, and SVMs. All models are

evaluated on accuracy and run time complexity. The four malware families described

in Chapter 4 are paired up as Vobfus and Zbot, and Obfuscator and OnlineGames, to

create two binary class problems.

5.1 NEAT Decision Tree

In this section, we go over the results obtained from testing the NEAT Decision

Tree. As discussed, this model was custom built using an open source implementation

of NEAT. As such, we begin by explaining the particular features unique to our

implementation of this model. Specifically, we discuss implementation details regarding

fitness, speciation, crossover, and mutation.

5.1.1 Fitness

As mentioned in Chapter 2, fitness is the score we give each classifier in order

to determine which decision tree performs better. In this case, we chose to base the

fitness score on accuracy. Specifically, we multiplied the accuracy by 100, squared

the result, and added 1 to prevent cases of 0 fitness. We chose this method of fitness

calculation in order to magnify any slight changes in accuracy, and allow for small

improvements over time. For example, an accuracy of 0.7 would result in a fitness

score of 4901.

5.1.2 Speciation

Another important issue is how to determine a decision tree’s genome and whether

they are close enough to be in the same species. To simplify this process, we set the
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maximum depth for decision trees to 2. In these experiments, we use the bag of words

method of representing malware as discussed in Chapter 3. Each node has an opcode

and a percentage threshold between 0 and 1. If a malware sample has a percentage

value less than the threshold for that particular opcode, it will traverse the left branch,

and will traverse the right branch otherwise. The initial population of decision trees

have randomized opcode and threshold values.

Decision tree genomes are represented by the features of each of its nodes, and

decision trees with similar enough genomes are classified as the same species. We

determine genome similarity by seeing whether both decision trees share the root node

feature and at least one child node feature. For example, if one decision tree has

a root feature of add, and child features of push and sub, while another has a root

feature of add, and child features of mul and push, those two decision trees would

be classified in the same species. On the other hand, if one decision tree has a root

feature of add and another had a root feature of mul, those would be classified as

different species, even if they both have child features of other and mov.

5.1.3 Crossover

Our implementation of reproduction between two decision trees involves the

direct passing of nodes to the offspring decision tree. The child is a direct clone of the

fitter parent 35% of the time. There is a 25% chance for each of the less fit parent’s

children nodes to be passed on to the child. Otherwise, the child will be a direct clone

of the less fit parent. These percentages and the overall implementation of crossover

is one of many possible implementations of crossover. Testing other implementations

is out of the scope of this project.
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5.1.4 Mutation

Each node in the decision tree has a 40% chance of undergoing mutation, leading

to a 78.4% chance of the decision tree undergoing at least one mutation. Within

the nodes themselves, 30% of the time, mutation will occur on the value it decides

on. The value will be modified by a randomly chosen decimal with a Gaussian

distribution about 0 with a standard deviation of 0.03. This usually results in either

an addition or subtraction of a value between 0 and 0.15. The slight adjustment to

the value of a decision node is meant to allow the fine tuning of decision boundaries

as generations pass. 5% of the time, the decision node will mutate an entirely random

threshold value and the remaining 5% results in a mutation in a random new feature.

This implementation of mutation may not be optimal, but testing other mutation

implementations is also out of the scope of this project.

5.1.5 Results

For the NEAT Decision Tree (NDT), we used a random forest classifier (RF)

as the base model for comparison. The NDT was trained for 50 generations with a

population size of 250 for a starting level. Later on, we experiment with different

values to test run time optimization. The RF model has a maximum depth of 2 to

match the NDT, with 100 estimators.

On the Vobfus and Zbot families, the average accuracy of 5 fold cross validation

testing for NDT was 95.45%. On the other hand, RF had an average accuracy of 98%.

Table 1 displays confusion matrices for each model.

It appears that accuracy wise, the performance across both models is relatively

similar, only differing by a few percentage points. This suggests that NDT can perform

as well as similar traditional models, and may perform better with enough optimization.

However, the biggest difference between NDT and RF was that it took much longer
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Table 1: Confusion Matrices for Vobfus and Zbot

Table 1.A Confusion Matrix for NDT

Predicted Vobfus Predicted Zbot
True Vobfus 191 11
True Zbot 6 192

Table 1.B Confusion Matrix for RF

Predicted Vobfus Predicted Zbot
True Vobfus 180 6
True Zbot 8 206

Table 2: Population and Generation Size Experiments for Vobfus and Zbot

Population Size Generation Size Accuracy
250 50 0.9575
125 50 0.9475
250 25 0.9175
125 25 0.9125

to train. RF took only seconds to run while NDT took at least 3 times as long. This

led us to conduct optimization experiments on population and generation size to see

if favorable trade offs can be made in accuracy. The results are shown in Table 2.

As expected, lowering either the generation or population size had a negative

effect on the model’s accuracy. However, the overall loss was relatively small in

comparison to the speed up in run time. By halving the population size to 125 and

the generation size to 25, we achieved an accuracy of 91.25% and reduced run time 4

fold. This provides the option of prioritizing speed over model performance.

However, these two families appear to be relatively easy to separate; with scores

above 90% accuracy, it is difficult to notice meaningful improvement between the

subjects. In response, we selected the families of Obfuscator and OnlineGames as a

21



more challenging data set to separate. These families were shown in [23] to have low

classification accuracy when compared against each other. Using these families as a

binary classification problem, we ran the same experiments again.

During 5 fold cross validation, NDT scored an average accuracy of 76.6%. Com-

paratively, RF had a score of 88%. The results are displayed in Table 3. As expected,

the models performed noticeably worse on this new challenging data set, with all

models dropping around 10% accuracy or higher. Most notably, NDT is performing

noticeably worse than the base models while maintaining the increased run time.

However, the decrease in performance can most likely be rectified with fine tuning of

hyperparameters; it still performs much better than random guessing. We also ran

optimization experiments on population and generation size on this data set as well,

with the results listed in Table 4.

Table 3: Confusion Matrices for Obfuscator and OnlineGames

Table 3.A Confusion Matrix for NDT

Predicted Obfuscator Predicted OnlineGames
True Obfuscator 168 34

True OnlineGames 46 152
Table 3.B Confusion Matrix for RF

Predicted Obfuscator Predicted OnlineGames
True Obfuscator 173 13

True OnlineGames 33 181

Table 4: Population and Generation Size Experiments for Obfuscator and OnlineGames

Population Size Generation Size Accuracy
250 50 0.8000
125 50 0.7525
250 25 0.7500
125 25 0.7150
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Surprisingly, the decrease in accuracy stayed relatively the same as the first

optimization experiments. With a population size of 12 and a generation size of

25, we achieved an accuracy of 71.5%, which is only a 5% decrease from our cross

validation results. With enough fine tuning and adjustments, acceptable accuracy

may be achieved with minimal run time.

In conclusion, NDT is a viable malware classification strategy and has potential

to evolve to detect malware utilizing obfuscation strategies. With these experiments

completed, we elected to advance our model from decision trees to neural networks to

see how more complex models interact with NEAT.

5.2 NEAT Feed Forward Neural Network

In this section, we go over the results obtained from testing the NEAT Feed

Forward Neural Network (NFFNN). As discussed, this model utilizes the NEAT-

Python library [31] to implement NEAT. The model we compare NFFNN against is

the support vector machine (SVM) provided by the Scikit-Learn library [29]. Like

the previous experiments, our data set consists of two family pairs: Vobfus and Zbot,

and Obfuscator and OnlineGames. NEAT-Python runs off of a configuration file

that stores the hyperparameter values used in the model. Figure 1 shows a portion

of the configuration file used in our experiments. We use the same fitness function

as described earlier in our NDT experiments. First, we run a standard 5-fold cross

validation on both data sets for both models and compare results. Then, we perform

run time optimization experiments on parameters of population and generation size.

For the 5-fold cross validation testing, NFFNN ran a population of 256 for 128

generations. NFFNN managed to score an average accuracy of 96.1% for the Vobfus

and Zbot pair. On the other hand, SVM scored an average accuracy of 95%. Table 5

displays the confusion matrices for each model.

23



Figure 1: A Selection of Hyperparameters from the NEAT Config File

Table 5: Confusion Matrices for Vobfus and Zbot

Table 5.A Confusion Matrix for NFFNN

Predicted Vobfus Predicted Zbot
True Vobfus 193 7
True Zbot 9 191

Table 5.B Confusion Matrix for SVM

Predicted Vobfus Predicted Zbot
True Vobfus 200 9
True Zbot 7 184

Accuracy wise, both models perform quite well in distinguishing these two malware

families; there is little difference between them. This supports NEAT as a viable

method to optimize classifiers for malware detection. Further optimization may

produce even better results. Figure 2 shows a visualization of a top performing Neural

Network generated by NEAT. The rectangles represent inputs and the two nodes
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with class names are the outputs. Nodes in between were generated through random

mutation and evolution, and edges are randomly disabled and enabled as well.

Figure 2: A Winning Neural Network Generated by NEAT

However, as with our previous experiments with NDT, run time is an issue with

NFFNN. SVM was able to complete its results within a few seconds while NFFNN

took nearly 5 minutes. This led us to experiment with optimizing the population and

generation size parameters. The results are shown in Table 6. In addition to tracking

accuracy, we measure the average time in seconds for a single generation to complete.

By multiplying the time by the total number of generations, a total run time can be

calculated.

Surprisingly, the accuracy of NFFNN stays relatively stable despite having

decreased both population and generation size four fold. With this, NFFNN finishes

running within seconds, comparable to the speed of SVMs with similar performance.

However, with such low parameter values, NFFNN is highly vulnerable to high

variance in performance. For example, one of the strengths of NEAT lies in having a

large enough population size to explore most possible solutions. Figure 3 displays the

speciation during one run through of the NFFNN.
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Table 6: Population and Generation Size Experiments for Vobfus and Zbot

Population Size Generation Size Accuracy Average Generation Time
256 128 0.9600 2.104
128 128 0.9525 1.120
64 128 0.9650 0.516
32 128 0.9425 0.281
256 64 0.9625 2.560
128 64 0.9675 1.225
64 64 0.9500 0.682
32 64 0.9575 0.212
256 32 0.9600 2.504
128 32 0.9425 1.032
64 32 0.9625 0.411
32 16 0.9475 0.207
256 16 0.9450 2.486
128 16 0.9550 1.018
64 16 0.9500 0.546
32 16 0.9375 0.202

Each different color represents a different species. Some species are unable to

improve and go extinct, while others dominate the field. By having so many different

species, many solutions can be explored and the fittest will survive to reproduce. On

the other hand, while lowering population size can improve run time, it can also

prevent winning solutions from being created and tested, leading to lower performance.

This can be seen in Figure 4.

As seen in this figure, with such a low population size, the number of different

species drops significantly; in this case only 4 species arose, and 2 became extinct fairly

quickly. This may not be an issue in situations where the data is easier to separate.

In this example, it appears as if a strong solution was found immediately, which was

why it dominated over the rest. However, in more difficult problems, there may not

be enough genetic diversity to discover an optimal solution.
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Figure 3: NEAT Species Visualization for Vobfus and Zbot: Population Size of 256

The other parameter tested in our experiments was generation size, which is

another major contributor to the run time of our model. More generations allow

species within the model more opportunities to mutate and evolve, fine tuning the

weights towards a more optimal solution. In the case of classifying between Vobfus

and Zbot, a strong solution tends to appear quite quickly. Figure 5 displays the fitness

graph during one run through of the NFFNN.

In this graph there are several lines showing various fitness metrics, but the most

important one is the line showing the best fitness, as this species will be selected as the

winner. In this case, the best fitness starts at around 6400 which translates to about
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Figure 4: NEAT Species Visualization for Vobfus and Zbot: Population Size of 32

80% accuracy based on our fitness function as mentioned in our NDT experiments.

This quickly rises to over 9000 which corresponds to around 95% accuracy, matching

earlier results. Once this peak is reached, little improvement to fitness is seen.

With these results, it is apparent that further generations beyond 20 serve only

to increase run time with little return on investment. Finding an ideal generation size

which maximizes fitness improvement is key in reaching an optimal model. However,

reducing generation size by too much can result in species not having enough time to

evolve and refine their strategy. Figure 6 displays the fitness graph of a model with

generation size of 16.
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Figure 5: Fitness Graph for Vobfus and Zbot: Generation Size of 128

Here, the best fitness line behaves similarly to that in figure 5; it rapidly reaches

over 90% accuracy. However, the accuracy does not reach quite as high and may have

improved with more time. Also, had the generation size been lower, the model would

not have had enough time to improve.

All in all, NFFNN performs very similarly to SVMs when classifying between

Vobfus and Zbot. The major difference was that NFFNN required more time to

run in general, but in this case, lower population and generation size were viable

solutions. However, these are still relatively easy families to distinguish. Different

results may arise when dealing with more difficult families. To address this, we
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Figure 6: Fitness Graph for Vobfus and Zbot: Generation Size of 16

run the experiments again using the more challenging data set of Obfuscator and

OnlineGames.

Once again, NFFNN ran a population of 256 for 128 generations for the 5-fold

cross validation testing. For Obfuscator and OnlineGames, NFFNN managed to score

an average accuracy of 82.25%. Comparatively, SVM scored an average accuracy of

74%. Table 7 displays the confusion matrices for each model.

Surprisingly, in this case NFFNN performed decidedly better than SVMs, by

about 10%. This is the first time a NEAT model has performed so much better than

a base model. This suggests that the random evolution provided by NEAT can adapt
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Table 7: Confusion Matrices for Obfuscator and OnlineGames

Table 7.A Confusion Matrix for NFFNN

Predicted Obfuscator Predicted OnlineGames
True Obfuscator 177 46

True OnlineGames 25 152
Table 7.B Confusion Matrix for SVM

Predicted Obfuscator Predicted OnlineGames
True Obfuscator 174 35

True OnlineGames 45 146

to subtle differences in malware family better than standard SVMs. Of course, the

SVM implementation we use in our experiments is by no means fully optimized for

malware detection. However, this is a promising sign as our NFFNN can also benefit

from fine tuning and adjustment as well. However, as discussed before NFFNN falls

far behind in terms of run time. We conduct optimization experiments on population

and generation size like before. The results are displayed in Table 8.

In these experiments, the trade offs between run time and model performance

become much more apparent. On average, the accuracy stays around the 80% mark

throughout all testing. However, as we approach lower and lower population and

generation sizes, model performance becomes less consistent, occasionally dropping as

low as 73%. Though this is still comparable to the performance of SVMs, it is a large

drop from the peak performance of 84%.

This may be due to the issues brought up in the optimization experiments

performed on Vobfus and Zbot. With a lower population size, there is not enough

genetic diversity to explore solutions, and with a smaller number of generations, the

species present do not have enough time to evolve. This is can be seen in Figure 7

and Figure 8.
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Table 8: Population and Generation Size Experiments for Obfuscator and OnlineGames

Population Size Generation Size Accuracy Average Generation Time
256 128 0.8375 2.327
128 128 0.7925 1.084
64 128 0.8000 0.550
32 128 0.8425 0.253
256 64 0.8150 2.288
128 64 0.8175 1.096
64 64 0.8075 0.454
32 64 0.7900 0.254
256 32 0.8175 2.110
128 32 0.7975 1.169
64 32 0.7825 0.604
32 16 0.8050 0.298
256 16 0.8175 2.252
128 16 0.7975 1.008
64 16 0.7825 0.434
32 16 0.8050 0.203

Here, only 5 species were able to emerge with a population size of 32. Though all

managed to avoid extinction, there were not enough species to fully explore optimal

solutions. In the fitness graph the best fitness line made large jumps in progress, but

due to a short generation time, its progress was halted before it reached a maximum.

This is due to the strength of NEAT lying in large population and generation

sizes. If these are too small, there is not enough genetic diversity or time to evolve,

and the model suffers. Below are a few graphs displaying the fitness growth as the

model trains. Though we achieved the goal reducing run time, there were heavy

concessions made in terms of accuracy.

In conclusion, NFFNN was able to reach 84% accuracy when classifying between

the Obfuscator and OnlineGames families, compared to 74% scored by SVMs. This

is a significant improvement, but it was offset by the large increase in run time.

Experiments to reduce run time by lowering population and generation size resulted in
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Figure 7: NEAT Species Visualization for Obfuscator and OnlineGames: Population
Size of 32

noticeable decreases in performance. These results suggest that NFFNN has potential

to become a strong malware classifier with enough resources and fine tuning. Next, we

explore using a NEAT recurrent neural network model to classify based on malware

opcode sequences.

5.3 NEAT Recurrent Neural Network

In this section, we go over our final model, the NEAT Recurrent Neural Network

(NRNN). This model also utilizes the NEAT-Python library [31]. We again use

Scikit-Learn’s implementation of SVMs as a comparison model [29], and we utilize the

same malware family pairs as previously. NRNN utilizes a similar configuration file to
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Figure 8: Fitness Graph for Obfuscator and OnlineGames: Generation Size of 16

NFFNN with minor adjustments to the inputs to fit an RNN. In this experiment, the

first 2000 opcodes of each malware are stored as an array and passed in as input. This

is to test whether sequential information can help in detecting malware. The same

fitness function is used for NRNN. First, we run a standard 5-fold cross validation

on both data sets for both models and compare results. Then, we perform run time

optimization experiments on parameters of population and generation size.

For the 5-fold cross validation testing, NRNN ran a population of 128 for 64

generations. NRNN managed to score an average accuracy of 94.25% for the Vobfus

and Zbot pair. On the other hand, SVM scored an average accuracy of 98%. Table 9

displays the confusion matrices for each model.
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Both models score relatively well, with SVMs scoring 4% higher than NRNN.

This can be due to randomness and can be resolved through fine tuning. However,

NRNN takes much more time to run compared to SVMs, as the RNN has to process

2000 inputs. This led us to try optimization experiments in order to minimize run

time. The results are displayed in Table 10.

Table 9: Confusion Matrices for Vobfus and Zbot

Table 9.A Confusion Matrix for NRNN

Predicted Vobfus Predicted Zbot
True Vobfus 194 8
True Zbot 8 190

Table 9.B Confusion Matrix for SVM

Predicted Vobfus Predicted Zbot
True Vobfus 197 0
True Zbot 5 198

Table 10: Population and Generation Size Experiments for Vobfus and Zbot

Population Size Generation Size Accuracy Average Generation Time
128 64 0.9600 39.792
64 64 0.9600 27.810
32 64 0.9650 13.844
128 32 0.9700 46.921
64 32 0.9400 26.496
32 32 0.9400 17.158
128 16 0.9700 49.561
64 16 0.7825 27.089
32 16 0.7525 11.138

In these experiments, NRNN maintains its performance relatively well, but

experiences a large decrease in accuracy at the smallest generation and population

sizes. Figure 9 and Figure 10 show the fitness and speciation graphs for the experiment
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with population size 32 and generation size 16. Here we notice that the best fitness

starts out quite low, and gradually increases. However, as the generation time was

so short, it did not have enough time to fully optimize itself. As there were only a

total of 4 species overall, this could be due to all species initializing with sub optimal

weights, and struggling to improve with the genes present. Compared to Figure 11

and Figure 12, which has a population size of 128 and generation size of 32, the model

managed to quickly correct its low starting fitness, most likely due to larger genetic

diversity.

Figure 9: Fitness Graph for Vobfus and Zbot: Population Size of 32 and Generation
Size of 16
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Figure 10: NEAT Species Visualization for Vobfus and Zbot: Population Size of 32
and Generation Size of 16

All in all, these experiments show that population size may be the more important

parameter to keep high. In cases of low population, the initial species can start out

with poor weights that drastically slow improvement. Higher population models were

able to more quickly mutate away from the sub optimal weights and reach higher

accuracy. On the other hand, a longer generation size provides more opportunity for

a model to correct itself. However, higher populations evolve quickly enough that

lowering generation size to minimize run time may result in comparably high accuracy

scores.
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Figure 11: Fitness Graph for Vobfus and Zbot: Population Size of 128 and Generation
Size of 32

Finally, we perform the same 5-fold cross validation experiments on the more

challenging data set of Obfuscator and OnlineGames, with population size 128 and

generation size 64. NRNN scored an average of 70.65% while SVMs scored an average

of 82%. The confusion matrices are provided in Table 11.

In this case, NRNN performed about 10% worse than SVMs, while still maintaining

a higher run time cost. We perform population size and generation size optimization

experiments once more to observe its behavior. Table 12 displays the results.

Here, attempts to reduce run time heavily cut into the performance of NRNN,

dropping almost 20% at the lowest settings. This suggests that with families that are
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Figure 12: NEAT Species Visualization for Vobfus and Zbot: Population Size of 128
and Generation Size of 32

Table 11: Confusion Matrices for Obfuscator and OnlineGames

Table 11.A Confusion Matrix for NRNN

Predicted Obfuscator Predicted OnlineGames
True Obfuscator 148 44

True OnlineGames 68 140
Table 11.B Confusion Matrix for SVM

Predicted Obfuscator Predicted OnlineGames
True Obfuscator 173 24

True OnlineGames 25 178
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Table 12: Population and Generation Size Experiments for Obfuscator and On-
lineGames

Population Size Generation Size Accuracy Average Generation Time
128 64 0.7475 60.714
64 64 0.6700 21.506
32 64 0.7775 11.702
128 32 0.7350 40.211
64 32 0.6225 19.435
32 32 0.6275 9.584
128 16 0.6575 35.953
64 16 0.6775 18.305
32 16 0.5725 12.052

difficult to classify, high population and generation size is necessary to take advantage

of NEAT’s properties of evolution. Figure 13 and Figure 14 are the fitness and

speciation graphs for population size of 32 and generation size of 16.

Once again, there are only 4 distinct species, and the best fitness starts at about

3200, which translates to about 56% accuracy. The fitness slowly improves but does

not have enough time to optimize further.

All in all, NRNN performed comparatively to SVMs in the case of an easy data

set, but fell behind when presented with a more challenging data set. Perhaps with

more tuning, the performance can improve. However, the long run time of NRNN

continues to be the main drawback when compared to traditional malware detection

methods.
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Figure 13: Fitness Graph for Obfuscator and OnlineGames: Population Size of 32
and Generation Size of 16
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Figure 14: NEAT Species Visualization for Obfuscator and OnlineGames: Population
Size of 32 and Generation Size of 16
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CHAPTER 6

Conclusion and Future Work

In this paper, we have used opcode features to examine how genetic algorithms

can optimize machine learning models for malware detection. Specifically, we used

the NEAT algorithm to augment decision trees, feed forward neural networks, and

recurrent neural networks, and compared their performance against random forest

classifiers and support vector machines. We used two pairs of malware families, one

easy and one challenging, for our data sets and ran multiple experiments measuring

accuracy and run time.

NDT was able to perform relatively well when compared to RF; both scored

above 90% accuracy on the Vobfus and Zbot data set, but performed noticeably

worse on the Obfuscator and OnlineGames data set. The main difference with NDT

was its increased run time compared to RF. Through optimization experiments, we

determined that lowering population size and generation size massively reduced run

time at the cost of accuracy.

Similarly, NFFNN performed as well as SVMs on the Vobfus and Zbot families,

and managed to surpass SVMs on the more challenging Obfuscator and OnlineGames

families. This suggests that NEAT powered machine learning models have the

potential to outperform traditional models under the right circumstances. With

further fine tuning and optimization, NFFNN could maintain a high accuracy score

while minimizing run time.

NRNN maintained a high accuracy on the Vobfus and Zbot families, but struggled

on the more difficult Obfuscator and OnlineGames families when compared to SVMs;

NRNN scored almost 10% less accuracy than SVMs. Further experiments with lowered

population size and generation size revealed the necessity of genetic diversity for neural

network evolution; when the population size is too low, species can initialize with poor
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weights and stagnate with minimal improvement. Generation size, though it provides

more opportunities for species to mutate towards stronger solutions, can usually be

kept low in favor of a higher population size.

In conclusion, genetic algorithms have the potential to create effective machine

learning models under the right circumstances. NEAT powered malware detection

models tended to perform as well as more traditional models, and occasionally per-

formed better. The concept of evolution in machine learning may be the key when

dealing with malware that constantly changes to avoid detection.

6.1 Future Work

In this research we worked with a data set of malware files from known families.

To our knowledge, these files were not obfuscated, nor did they change over time.

If we had access to malware that had gone through stages of obfuscation at various

points in time, experiments could be run to test the robustness of a NEAT malware

classifier and its ability to evolve to detect newer versions of that malware family.

These experiments would fully test the potential of genetic algorithms. The challenge

in such a research is that metamorphic malware is quite rare in practice, and it may

be difficult to procure a large enough data set for experimentation.

The primary algorithm used in or research was NEAT, but in its most basic form.

Since its inception, other, more specialized versions of NEAT have been developed,

such as hyper NEAT [33], which is used to evolve large-scale neural networks. Testing

out these new NEAT implementations may uncover a more effective means of evolving

malware classification systems.

Our research focused on malware opcodes as the primary feature for our models.

There are numerous other features that can be used, such as byte data or n-grams ex-

tracted from malware [6]. Utilizing different features may result in better performance
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or require an entirely different implementation. The results of such experiments would

undoubtedly be useful in the research of malware detection.

Finally, while this research used decision trees and neural networks as the main

models being optimized by NEAT, many other valid models exist. It would be inter-

esting to see how NEAT interacts with different malware classifier implementations.

The challenge in such a research would be in modifying those models to be compatible

with genetic algorithms. For example, NEAT encodes neural networks in a special

way to more easily promote crossover between species. Finding ways of encoding

other model genomes will be difficult.
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