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Abstract

Hybrid density functionals have the best overall performance among standard density func-

tional approximations (DFA). According to their original design, hybrid DFAs are supposed

to use the exact exchange (EXX). However, when hybrid functionals were originally intro-

duced, there was no simple method to compute EXX, so all of their practical implementations

started using the Hartree–Fock exchange (HFX), which can be computed easily and is simi-

lar to but distinct from EXX. Recent development of an efficient method for computing EXX

made it possible to implement hybrid functionals in line with their original definition. We

implemented EXX in the PBE0 functional and compared its performance with that of HFX.

We found that using EXX in PBE0 improves the standard enthalpies of formation, and this

improvement increases with the size of the basis set and the size of the system. The max-

imum improvement in standard enthalpies of formation of the G3-3 test set is 0.4 kcal/mol

when using 6-311++G(3df,3pd) basis set. For a hybrid density functional, the difference in the

ground-state energies computed using EXX and HFX depends quadratically on the percentage

of EXX in the functional. We have also developed a method to generate the exact remainder

exchange-correlation potential of the generalized Kohn–Sham DFT.

Keywords: Kohn–Sham density functional theory, hybrid density functionals, Hartree–

Fock exchange, exact exchange, standard enthalpies of formation
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Summary for Lay Audience

Quantum chemistry enables one to predict physical and chemical properties of atoms and

molecules by solving mathematical equations. Unfortunately, only approximate solutions of

those equations can be obtained in practice and they are not always sufficiently accurate for

chemical applications. Approximate Kohn–Sham density functional theory (DFT) is the most

widely used technique for electronic structure calculations. The accuracy of a DFT calcu-

lation depends on the accuracy of the approximate density functional used. Among all such

approximations, hybrid density functionals, which combine elements of density-functional and

wave-function techniques, have the best overall performance. In most quantum-chemistry soft-

ware packages, hybrid density functionals are implemented using an approximation for their

key ingredient, the so-called exact exchange (EXX), because EXX was originally thought too

difficult to compute properly. Recently, an efficient method was invented for computing EXX,

which enables us to implement hybrid density functionals properly. In this thesis, we tested

the hypothesis that the use of proper EXX in hybrid density functionals improves their per-

formance. We found that it does, but the improvement is modest, which means that there

is no compelling reason to abandon the existing approach. We have also demonstrated how

the method for computing EXX can be extended to an entire new class of density-functional

approximations that go beyond hybrid DFT.
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Chapter 1

Introduction

Chemistry deals with the structure and properties of systems consisting of electrons and nu-

clei: atoms, molecules, solids, nanostructures, and molecular assemblies. Quantum chemistry

enables one to predict physical and chemical properties of these systems by solving mathemat-

ical equations. According to quantum mechanics, all the information about a many-electron

system can be extracted from the system’s wave function, which in turn can be obtained by

solving the corresponding Schrödinger equation. Unfortunately, solving Schrödinger equa-

tions exactly is impossible for systems of practical interest. As the famous physicist Paul Dirac

said in 1929 [1], “The underlying physical laws necessary for the mathematical theory of a

large part of physics and the whole of chemistry are thus completely known. The difficulty

is only that the exact application of these laws leads to equations much too complicated to be

soluble.” However, this does not preclude the possibility of solving the Schrödinger equation

approximately. The goal of quantum chemistry is to develop approximation techniques for

tackling the many-electron problems.

The ground state of a many-electron system is the state with the lowest energy. One way

to obtain the ground-state wave function is by searching for the wave function that minimizes

the energy. This approach is known as the variational method. Many wave-function meth-

ods, such as the Hartree–Fock theory and configuration interaction, are variational techniques.

1



2 CHAPTER 1. INTRODUCTION

Wave-function methods can achieve high accuracy; however, the trade-off is their high compu-

tational cost. Density functional theory (DFT) is an alternative to the wave-function methods.

Calculations using the electron density are generally faster than those involving wave func-

tions, because a wave function of N electrons depends on 3N spatial variables, whereas the

electron density depends on only 3 variables. In DFT, the ground-state electronic energy of a

system is a functional of the electron density of the system. The ground-state electron density

can be obtained variationally. However, since the exact energy functional is unknown, one

needs to approximate the energy functional in order to use DFT.

In the Kohn–Sham DFT [2], the energy functional is partitioned so that only one term,

called the exchange-correlation energy, remains unknown and needs to be approximated. In

practice, the exchange-correlation energy is separated into exchange and correlation energy,

and these two energies are approximated individually. The Kohn–Sham DFT was proposed

in 1965; however, in computational chemistry, functionals that can accurately describe the

exchange and correlation energy for chemical systems were not invented until 1990s.

Analytical models for the exchange-correlation energy functional are called density func-

tional approximations (DFA). Among the DFAs, hybrid density functionals have the best over-

all performance. However, even the results computed using the existing hybrid density func-

tionals are not always accurate enough for chemical purposes. The mean errors in the atomiza-

tion energies computed using hybrid density functionals are about 2.9–6.7 kcal/mol [3], while

the experimental error in atomization energy is usually about 1 kcal/mol. It is highly desir-

able to improve the hybrid density functional to achieve the experimental level of accuracy

is promising. This thesis describes an attempt to improve the performance of hybrid density

functionals.
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1.1 The fundamentals of quantum chemistry

The foundation of quantum chemistry is the non-relativistic time-independent Schrödinger

equation

ĤtotΨtot = EtotΨtot, (1.1)

where Ĥ is the Hamiltonian operator for the system of electrons and nuclei, Etot is the energy of

the system and Ψ is the wave function describing both the electrons and the nuclei. The nuclei

are much heavier than the electrons, so they move much more slowly. Therefore, we may

assume that the electrons are moving in the field of fixed nuclei. This is known as the Born–

Oppenheimer approximation. Under this simplification, we can separate the total Hamiltonian

Ĥtot into the electronic Hamiltonian Ĥ, which describes the motion of the electrons for a given

nuclear configuration, and the nuclear Hamiltonian. The solution of the Schrödinger equation

involving the electronic Hamiltonian,

ĤΨ = EΨ (1.2)

is the electronic wave function Ψ. If we have solved the electronic problem, then we can solve

the nuclei problem and obtain the approximate wave function for the nuclei. In this thesis, we

focus on the electronic problem.

The electronic Hamiltonian is

Ĥ = T̂ +V̂en +V̂ee (1.3)

= −1

2

N

∑
i=1

∇2
i −

N

∑
i=1

M

∑
A=1

ZA

|ri −RA|
+

N−1

∑
i=1

N

∑
j>i

1

|ri − r j|
, (1.4)

where ZA and RA are the atomic number and the position of nucleus A respectively and the

vectors ri describe the position of the electrons. In Eq. (1.4), the first term describes the kinetic
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energy of the electrons, the second term describes the electron-nucleus interaction energy, and

the third term describes the electron-electron interaction energy.

The Ψ in Eq. (1.2) is an N-electron wave function. For N > 1, solving Eq. (1.2) to obtain

Ψ is still too difficult. For N = 1, Ĥ becomes much simpler. Therefore, the electronic problem

can be simplified if we can express the N-electron wave function in terms of one-electron wave

functions.

1.2 Spin orbitals and spatial orbitals

A one-electron wave function is usually called an orbital. The term “atomic orbital” is

applied strictly to atoms, whereas the term “molecular orbital” is often used for both molecules

and atoms, particularly when the distinction is unimportant. A spatial orbital φ(r) describes

the spatial distribution of an electron, and |φ(r)|2 is the probability density of this electron.

To completely describe an electron, we also need to specify its spin. There are two spin

states for electrons, spin up and spin down. We use two orthonormal spin functions, α(σ) and

β (σ), to describe these states.

A wave function that describes both the spatial distribution and the spin of an electron is a

spin orbital. Each spatial orbital can form two spin orbitals, one for spin up and one for spin

down, i.e,

χ(x) =















φ(r)α(σ)

φ(r)β (σ)

(1.5)

Spin orbitals are often used as building blocks for many-electron wave functions.
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1.3 Systems of non-interacting electrons

Before discussing systems of interacting electrons, let us consider a simpler system of non-

interacting electrons. Such system is essential for understanding many models of quantum

chemistry including the Kohn–Sham DFT.

For non-interacting electrons, the Hamiltonian contains only the first and the second terms

in Eq. (1.4). The Hamiltonian for non-interacting electrons is separable

Ĥ0 =
N

∑
i

ĥ(i), (1.6)

where

ĥ(i) =−1

2
∇2

i −
M

∑
A=1

ZA

|ri −RA|
(1.7)

is a one-electron Hamiltonian that describes the kinetic energy and potential energy of electron

i. The operator ĥ(i) has a set of eigenfunctions {χ j(xi)},

ĥ(i)χ j(xi) = ε jχ j(xi). (1.8)

This set of eigenfunctions can be taken as a set of spin orbitals. We normalize the spin orbitals

so that

∫

|χ j(x)|2 dx = 1 (1.9)

Since Ĥ0 is a sum of the one-electron Hamiltonian, one can show that the product of spin

orbitals of each electron in the system,

Ψ0(x1,x2, . . . ,xN) = χ1(x1)χ2(x2) · · ·χN(xN) (1.10)

is an eigenfunction of Ĥ0,

ĤΨ0 = EΨ0 (1.11)
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with the corresponding eigenvalue being

E0 = ε1 + ε2 + · · ·+ εN . (1.12)

Eq. (1.10) is not sufficient to represent a system of N electrons properly. According to the

Pauli exclusion principle, the wave function of a many-electron system must be anti-symmetric

with respect to interchange of any two electrons, i.e.,

Ψ(x1,x2, . . . ,xi, . . . ,x j, . . . ,xN) =−Ψ(x1,x2, . . . ,x j, . . . ,xi, . . . ,xN). (1.13)

Eq. (1.10) does not satisfy this condition. Fortunately, we can construct an anti-symmetric

wave function as an appropriate linear combination of products of spin orbitals. The resulting

anti-symmetric wave function is called a Slater determinant

Φ(x1,x2, · · · ,xN) =
1√
N!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)

...
...

. . .
...

χ1(xN) χ2(xN) · · · χN(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (1.14)

where 1/
√

N! is the normalization factor which insures that Φ(x1,x2, · · · ,xN) is normalized

∫

|Φ(x1,x2, · · · ,xN)|2 dx1 dx2 · · · dxN = 1. (1.15)

One can show that a Slater determinant is also an eigenfunction of Ĥ0
elec Φ(x1,x2, · · · ,xN),

Ĥ0Φ(x1,x2, · · · ,xN) = E0Φ(x1,x2, · · · ,xN) (1.16)
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with the corresponding eigenvalue being

E0 = ε1 + ε2 + · · ·+ εN . (1.17)

According to the discussion above, we can conclude that a Slater determinant is an appropriate

wave function for N non-interacting electrons.

Since a single Slater determinant can describe a system of N electrons properly, we may use

it to approximate the wave function of N interacting electrons. This gives rise to the Hartree–

Fock theory, the simplest wave-function method.

1.4 The Hartree–Fock theory

The Hartree–Fock theory approximates the ground-state wave function of an N-electron

system by a single a Slater determinant, and provides a recipe for finding this Slater determi-

nant. Since the ground state has the lowest possible electronic energy, for any valid Ψ that

represents the electronic system, the corresponding energy satisfies the inequality

E = 〈Ψ|Ĥ|Ψ〉 ≥ E0, (1.18)

where E0 is the ground-state electronic energy. The equal sign holds only when Ψ is the

ground-state wave function, Ψ0. This leads to the variational method, where one can obtain

the ground-state wave function by systematically varying the wave function until the energy

reaches its minimum.

In the Hartree–Fock theory, we need to find the Slater determinant Φ that minimizes the

electronic energy

EHF
0 = 〈Φ|Ĥ|Φ〉. (1.19)

This is realized by systematically varying the spin orbitals χi, constraining them to be orthonor-
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mal, until EHF
0 reaches the minimum. For simplicity, we are going to consider a closed-shell

system, where each occupied spatial orbital contains two electrons: one spin-up, the other one

spin-down. By applying the variational method, one can obtain the equation for the spatial

orbitals that minimize EHF
0 . This equation is the Hartree–Fock integro-differential equation

f̂ (r1)ϕi(r1) = εiϕi(r1), (1.20)

where

f̂ (r1) = ĥ(r1)+ vH(r1)− K̂(r1) (1.21)

is the Fock operator, ϕi(r1) is the Hartree–Fock orbital with the corresponding eigenvalue εi.

The first term in the Fock operator is the one-electron Hamiltonian defined in Eq. (1.7). The

second term,

vH(r1) = 2

N/2

∑
j=1

∫ |ϕ j(r2)|2
|r1 − r2|

dr2, (1.22)

is the Hartree potential, and K̂ is the exchange operator defined as

K̂(r1)ϕi(r1) =
N/2

∑
j=1

[

∫ ϕ∗
j (r2)ϕi(r2)

|r1 − r2|
dr2

]

ϕ j(r1). (1.23)

From the equations above we can see that the Fock operator depends on its eigenfunctions.

Therefore, Eq. (1.20) has to be solved self-consistently:

1. Make an initial guess for the N/2 eigenfunctions φi(r) of the Fock operator, e.g., by

solving the Schrödinger equation for non-interacting electrons.

2. Construct the Fock operator using the current set of eigenfunctions.

3. Solve Eq. (1.20) using the Fock operator constructed in Step 2. Select N/2 eigenfunc-

tions with the lowest eigenvalues.

4. If the new eigenfunctions match the eigenfunctions used to construct the Fock operator
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within a given threshold, then Eq. (1.20) is self-consistent, and the resulting eigenfunc-

tions are the solutions. If the new eigenfunctions do not match the set of eigenfunctions

used to construct the Fock operator, then return to Step 2. The ground-state wave func-

tion is the Slater determinant constructed using the spin orbitals that correspond to the

N/2 spatial orbitals with the lowest eigenvalues.

Once the spatial orbitals ϕi used to construct the ground-state wave function is obtained, we

can compute the Hartree–Fock ground-state energy as

EHF
0 = T +V +Vee, (1.24)

where

T = 2

N/2

∑
i=1

〈

ϕi

∣

∣− 1

2
∇2

∣

∣ϕi

〉

(1.25)

is the kinetic energy,

V = 2

N/2

∑
i=1

M

∑
A=1

∫

|ϕi(r)|2
ZA

|r−RA|
dr (1.26)

is the potential energy. The last term, Vee, is the electron-electron interaction energy. It can be

separated into two parts. The first part is the Coulomb repulsion energy defined as

J = 2

N/2

∑
i=1

N/2

∑
j=1

∫ ∫ ϕ∗
i (r)ϕi(r)ϕ

∗
j (r

′)ϕ j(r
′)

|r− r′| dr dr′. (1.27)

The remaining part is the Hartree–Fock exchange (HFX) energy, defined as

EHFX =Vee − J =−
N/2

∑
i=1

N/2

∑
j=1

∫ ∫ ϕ∗
i (r)ϕ j(r)ϕ

∗
j (r

′)ϕi(r
′)

|r− r′| dr dr′. (1.28)

The Hartree–Fock theory yields useful, but not very accurate, predictions of molecular

properties. The ground-state electronic energy predicted by the Hartree–Fock theory has an

error of about 1% relative to the exact total ground-state electronic energy. 1% relative error

seems to be small; however, considering the fact that the absolute value of the exact total
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ground-state energy of a molecule is usually more than 100 Eh, where 1 Eh = 627.5 kcal/mol=

2625.5 kJ/mol, the magnitude of this error is too large compared to 1 kcal/mol, the typical

experimental error. Therefore we need methods that are more accurate.

Kohn–Sham DFT is an alternative to the Hartree–Fock theory that can achieve a decent

accuracy. Since Kohn–Sham DFT also uses single Slater determinant, the mathematical equa-

tions in the Kohn–Sham DFT are similar to the Hartree–Fock theory. In Kohn–Sham DFT, the

exact exchange (EXX) is equivalent to the HFX. It is more convenient to implement the HFX

than the EXX. Therefore, the EXX is approximated by the HFX in practice, with a trade-off

in the accuracy. This thesis studies the improvement one can gain by implementing the EXX

properly. We will introduce the Kohn–Sham DFT in the next chapter.



Chapter 2

Density functional theory

In 1964, Hohenberg and Kohn [4] proved two far-reaching theorems concerning the elec-

tron density. The first theorem states that the electronic energy of the ground state of a many-

electron system is a unique functional of the ground-state electron density. The second theorem

shows that the ground-state electron density can be obtained using the variational method; the

density that minimizes the electronic energy is the ground-state electron density. These theo-

rems gave rise to DFT, which has since become the most widely used method for electronic

structure calculations.

The electron density of an N-electron system is defined in terms of the electronic wave

function as

ρ(r1) = N

∫

· · ·
∫

|Ψ(x1,x2, ...,xN)|2 dσ1 dx2 · · ·dxN . (2.1)

In DFT, the electronic energy is expressed as a functional of the density. To obtain a formal

expression for this energy functional, we may first have a look at the wave-function theory.

If the DFT and wave-function theory describe the same system, they should give the same

electronic energy, i.e.

〈Ψ|Ĥ|Ψ〉= E[ρ], (2.2)

11
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where 〈Ψ|Ĥ|Ψ〉 is the electronic energy in wave function theory, and E[ρ] is the energy func-

tional in DFT.

The quantity 〈Ψ|Ĥ|Ψ〉 can be separated into three terms,

〈Ψ|Ĥ|Ψ〉= T +V +Vee, (2.3)

where

T = 〈Ψ|T̂ |Ψ〉 (2.4)

is the kinetic energy,

V = 〈Ψ|V̂en|Ψ〉 (2.5)

is the potential energy, and

Vee = 〈Ψ|V̂ee|Ψ〉 (2.6)

is the electron-electron interaction energy. Let us denote the nuclear potential acting on each

electron as

v(r) =
M

∑
A=1

ZA

|r−RA|
. (2.7)

Then we can rewrite Eq. (2.5) in terms of ρ(r)

V =
∫

· · ·
∫

Ψ∗(x1,x2, ...,xN)

[

N

∑
i=1

v(ri)

]

Ψ(x1,x2, ...,xN) dx1 dx2 · · ·dxN

=
N

∑
i=1

∫

dri v(ri)
∫

· · ·
∫

|Ψ(x1,x2, ...,xN)| dx1 dx2 · · ·dσi · · ·xN

=
N

∑
i=1

1

N

∫

dri v(ri)ρ(ri)

=
∫

v(r)ρ(r) dr. (2.8)

If we separate the ground-state energy functional E[ρ] as

E[ρ] = T [ρ]+V [ρ]+Vee[ρ], (2.9)
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where

V [ρ] =
∫

v(r)ρ(r) dr, (2.10)

we can have one term in the ground-state energy functional, V [ρ], expressed exactly. However,

the other two terms are still unknown, since we cannot rewrite Eq. (2.4) and (2.6) in terms of

ρ(r) explicitly. Therefore, we need to approximate T [ρ] and Vee[ρ].

2.1 The Kohn–Sham method

For a wave functional that is a single Slater determinant, the kinetic energy is

Ts = 2

N/2

∑
i=1

〈

φi

∣

∣− 1

2
∇2

∣

∣φi

〉

. (2.11)

Using this observation, Kohn and Sham [2] suggested to approximate T by Ts and absorb the

difference T −Ts into some other term in the energy functional. Specifically, they partitioned

the energy functional as

E[ρ] = T [ρ]+V [ρ]+Vee[ρ]

= Ts[ρ]+V [ρ]+ J[ρ]+ (Vee[ρ]− J[ρ]+T [ρ]−Ts[ρ]), (2.12)

where

J[ρ] =
1

2

∫ ∫

ρ(r)ρ(r′)
|r− r′| dr dr′. (2.13)

The term in the parentheses in Eq. (2.12) is called the exchange-correlation energy,

EXC[ρ] =Vee[ρ]− J[ρ]+T [ρ]−Ts[ρ]. (2.14)

Now we can write the energy functional as

E[ρ] = Ts[ρ]+V [ρ]+ J[ρ]+EXC[ρ]. (2.15)
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Eq. (2.15) is formally exact. To use Eq. (2.15) in practice, it is necessary to find the Slater

determinant (or orbitals) that computes Ts[ρ] as well as the electron density. Kohn and Sham

devised a procedure to obtain them at the same time. They introduced a system of N non-

interacting electrons, where the electrons are moving in an external potential veff(r). By assum-

ing that the ground-state density of the non-interacting system is the same as the ground-state

density of the real interacting system, Kohn and Sham showed that the ground-state density for

the real interacting system is

ρ(r) = 2

N/2

∑
i=1

|φ KS
i (r)|2, (2.16)

where φ KS
i (r) are the Kohn–Sham orbitals obtained by solving the Kohn–Sham eigenvalue

problem
[

− 1

2
∇2 + veff(r)

]

φ KS
i (r) = εiφ

KS
i (r). (2.17)

The effective potential veff(r) in Kohn–Sham equation is the external potential of the non-

interacting system. This effective potential is constructed as

veff(r) = v(r)+ vH(r)+ vXC(r), (2.18)

where v(r) is the potential of the nuclei,

vH(r) =
∫

ρ(r′)
|r− r′| dr′ (2.19)

is the Hartree potential, and

vXC(r) =
δEXC[ρ]

δρ(r)
(2.20)

is the exchange-correlation potential, the functional derivative of the exchange-correlation en-

ergy with respect to the density. Similarly to Eq. (1.20), Eq. (2.17) is solved self-consistently.

Note that the exchange-correlation functional in Eq. (2.15) is unknown nad has to be ap-

proximated. The exchange-correlation energy functional is usually separated into exchange
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and correlation parts

EXC[ρ] = EX[ρ]+EC[ρ]. (2.21)

The exchange is defined by

EEXX[ρ] =−
N/2

∑
i=1

N/2

∑
j=1

∫ ∫ φ KS∗
i (r)φ KS∗

j (r′)φ KS
j (r)φ KS

i (r′)

|r− r′| dr dr′, (2.22)

which is called the exact exchange (EXX). The exact exchange depends on the density im-

plicitly via equation Eq. (2.16). The expression defining the EXX has the same analytic form

as Eq. (1.28) defining the HFX. The only difference between EXX and HFX is that the for-

mer requires Kohn–Sham orbitals, whereas the latter employs Hartree–Fock orbitals, which

are solutions of different eigenvalue problems.

In principle, one can use the EXX for EX[ρ] and approximate only the correlation func-

tional EC[ρ]. Unfortunately, accurate correlation functionals compatible with the EXX are

very difficult to design, so in practice both EX[ρ] and EC[ρ] are approximated; their errors

largely cancel out each other. For convenience, exchange and correlation are often approxi-

mated independently of each other.

2.2 Density-functional approximations

Analytical models for the exchange-correlation energy functional are called density func-

tional approximations (DFA). Depending on which ingredients are involved, DFAs can be clas-

sified into various types [5]:

• Local density approximations (LDA): The exchange-correlation energy explicitly de-

pends only on the density ρ

EXC[ρ] =
∫

f (ρ) dr (2.23)

• Generalized gradient approximations (GGA): The exchange-correlation explicitly de-
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pends on ρ and the magnitude of the gradient of the density, |∇ρ|,

EXC[ρ] =
∫

f (ρ,∇ρ) dr (2.24)

• Meta-generalized gradient approximations (meta-GGA): The exchange-correlation de-

pends on ρ , |∇ρ|, and the kinetic energy density of the non-interacting electrons of the

Kohn–Sham system, τ ,

EXC[ρ] =
∫

f (ρ,∇ρ,τ) dr (2.25)

• Hybrid density functionals: The hybrid density functionals mix the EXX into LDA, GGA

or meta-GGA. A typical hybrid density functional have the form

EXC[ρ] = αEEXX[ρ]+ (1−α)EDFA
X [ρ]+EDFA

C [ρ], (2.26)

where 0 < α < 1 is a fitted or non-empirical parameter.

• Double hybrid functionals and other DFAs using both occupied and unoccupied Kohn–

Sham orbitals: These DFAs have better overall performance compared to hybrid density

functionals but are as expensive as wave-function methods and arguably go beyond the

originally intended scope of the Kohn–Sham DFT.

Hybrid density functionals have the best overall performance among DFAs that use only

occupied Kohn–Sham orbitals, and are the most commonly used DFAs in chemistry. Before

discussing hybrid functionals in more detail, we need to introduce the adiabatic connection

approach.
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2.3 The adiabatic connection

The adiabatic connection is a bridge between the Kohn–Sham non-interacting reference

system and the real interacting physical system. Consider an N-electron system where the

electron-electron interaction is scaled by a constant λ (0 ≤ λ ≤ 1). The Hamiltonian of this

system is

Ĥ = T̂ +V̂ee +λV̂ee. (2.27)

When λ = 0, there is no electron-electron interaction; when λ = 1, the electrons are fully

interacting. We are also interested in intermediate cases where λ is between 0 and 1.

In Levy’s constrained-search formulation [6], a universal functional of the density can be

defined for each value of λ

Fλ [ρ] = min
Ψ→ρ

〈Ψ|T̂ +λV̂ee|Ψ〉

= 〈Ψλ
ρ,min|T̂ +λV̂ee|Ψλ

ρ,min〉. (2.28)

Fλ [ρ] searches over all N-electron wave functions Ψ that yield the N-electron density ρ , and

delivers the minimum in the expectation value of T̂ + V̂ee. Ψλ
ρ,min denotes the particular Ψ

that minimizes the expectation value of T̂ + V̂ee and yields the density ρ . When λ = 0, this

minimizing wave function is a single Slater determinant (Eq. (1.14)), and we have

F0[ρ] = 〈Ψ0
ρ,min|T̂ |Ψ0

ρ,min〉

= 2

N/2

∑
i=1

〈

φ KS
i

∣

∣− 1

2
∇2

∣

∣φ KS
i

〉

= Ts[ρ].

When λ = 1, we have

F1[ρ] = T [ρ]+Vee[ρ]. (2.29)
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Substitution of Eq. (2.29) and (2.29) into Eq. (2.14) gives

EXC[ρ] = F1[ρ]−F0[ρ]− J[ρ]

=
∫ 1

0

∂Fλ [ρ]

∂λ
dλ − J[ρ] (2.30)

Applying the Hellmann–Feynman theorem [7], one can show that

∂Fλ [ρ]

∂λ
= 〈Ψλ

ρ,min|V̂ee|Ψλ
ρ,min〉. (2.31)

Hence

EXC[ρ] =
∫ 1

0
(〈Ψλ

ρ,min|V̂ee|Ψλ
ρ,min〉− J[ρ]) dλ (2.32)

Eq. (2.32) is usually written as

EXC[ρ] =
∫ 1

0
Eλ

XC[ρ] dλ , (2.33)

where

Eλ
XC[ρ] = 〈Ψλ

ρ,min|V̂ee|Ψλ
ρ,min〉− J[ρ]. (2.34)

Eq. (2.33) is known as the adiabatic connection formula.

2.4 Hybrid density functionals

The adiabatic connection expresses the exchange-correlation energy as an integral of Eq. (2.33).

We do not know how the integrand Eλ
XC[ρ] depends on λ . Observing this fact, Becke proposed

to approximate the adiabatic connection integral with the upper and lower limits of its integrand

using linear interpolation

EXC ≃ 1

2
E0

XC +
1

2
E1

XC. (2.35)
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The lower limit E0
XC[ρ] is precisely the EXX energy functional of Eq. (2.22)

E0
XC = 〈Ψ0

ρ,min|V̂ee|Ψ0
ρ,min〉− J[ρ] = EEXX[ρ], (2.36)

and the upper limit of the integrand Eq. (2.33) is the exchange-correlation energy functional

for the real interacting system, which was chosen to be an LDA functional. Eq. (2.35) is the

prototype of hybrid density functional. Later, Becke improved this model by reducing the

percentage of the EXX and replacing the LDA functional with a GGA functional [8]. He

proposed a general form (Eq. (2.26)) for hybrid density functionals. The PBE0 functional [9],

a popular GGA hybrid density functional, follows this form

EPBE0
XC [ρ] =

1

4
EEXX[ρ]+

3

4
EPBE

X [ρ]+EPBE
C [ρ], (2.37)

where EPBE
X [ρ] and EPBE

C [ρ] are PBE exchange and correlation energy functionals respectively

[10, 11]. In this thesis, we use the PBE0 functional as a stand-in representative of all hybrid

DFAs.

The hybrid density functionals are originated from the adiabatic connection; therefore, it

is supposed to use the EXX, i.e., we need to obtain δEEXX[ρ]/δρ in order to compute the

Kohn–Sham orbitals. Unfortunately, EEXX[ρ] depends on the density implicitly, which means

that the functional derivative δEEXX[ρ]/δρ cannot be evaluated analytically. Although there

are methods that can numerically compute δEEXX[ρ]/δρ , e.g., optimized effective potential

(OEP) method [12, 13], the cost of such numerical calculation is rather high. To solve these

problems, the HFX came into our sight.



Chapter 3

Hybrid density functionals with proper

exact exchange

The equation for exact exchange (Eq. (2.22)) and the HFX (Eq. (1.28)) have the same form.

However, they are not identical, since the exact exchange uses Kohn–Sham orbitals, where as

the HFX uses the Hartree–Fock orbitals, which are obtained from the Hartree–Fock integro-

differential equation (Eq. (1.20)). The Kohn–Sham orbitals and the Hartree–Fock orbitals are

obtained by solving different equations and therefore are different.

In principle, the numerical difference between the HFX and the EXX is relatively small.

Since using the HFX is a great convenience compare to using the EXX, in all practical im-

plementations including Gaussian 09 [14], hybrid density functionals rely on the HFX as a

compromise between adherence to the definition and computational cost. As Becke said in the

publication of the first hybrid density functional [15]: “The use of Hartree–Fock orbitals rather

than true Kohn–Sham orbitals is admittedly an approximation (a good one, we think) but a great

convenience.” Nevertheless, the difference between the EXX and HFX may be significant in

practice.

The Kohn–Sham DFT using the EXX-only density functional can be regarded as the Hartree–

Fock theory where the HFX is replaced with the EXX and the HFX integral operator with a

multiplicative exchange potential. Therefore, the difference in the results computed the Kohn–

Sham DFT with the EXX-only density functional and the Hartree–Fock theory reflects the

numerical difference between the HFX and the EXX. In 1999, Engel and Dreizler computed

20
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the ground-state energy of atoms using the Kohn–Sham DFT with the EXX-only density func-

tional,

EXC[ρ] = EEXX[ρ], (3.1)

and the Hartree–Fock theory [16]. The results reported by Engel and Dreizler show that the

numerical difference between the HFX and the EXX is significant. For Ne atom, the difference

in the ground-state energy computed using the EXX-only density functional and Hartree-Fock

theory is 1 kcal/mol. For atoms with more electrons, the differences are greater. Since the

mean absolute error of hybrid density functionals is already about 3–4 kcal/mol, an additional

improvement by 1 kcal/mol (small by itself) could be significant.

Hybrid density functionals typically contain a quarter of the EXX. Hence the numerical

difference between using the HFX and the EXX in hybrid density functionals will be much less

than 1 kcal/mol for Ne atom. However, for a molecule, this numerical difference should still be

significant, since the number of electrons in a molecule is usually several times that for the Ne

atom, and the numerical difference between using HFX and EXX in hybrid density functionals

increases with the number of electrons in the system. This suggests that implementing the

EXX properly in hybrid density functionals may substantially improve the performance of

hybrid density functionals.

Our objective is to implement the EXX in the PBE0 functional and compare its perfor-

mance to the conventional implementation of the PBE0 functional. We are going to denote the

EXX-implemented PBE0 functional as PBE0-EXX, and denote the Hartree–Fock-exchange-

implemented PBE0 functional as PBE0-HFX.

3.1 Generating exchange-correlation potentials from the wave

functions

The main challenge of implementing the EXX is the evaluation of the corresponding ex-

change potential. The most popular method to numerically compute the EXX potential is the
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OEP method [12, 13]. Unfortunately, the OEP method can be ambiguous and numerically un-

stable when using finite Gaussian basis sets [17]. For this reason, we employed another method

to compute the EXX potential. Recently, Ryabinkin et al. [18, 19] have developed a method

to compute the exact exchange-correlation potentials from electronic wave functions. We will

follow their approach to derive a working expression for the EXX potential in a hybrid density

functional.

In the following equations, we denote the PBE0-EXX and the PBE0-HFX as ’EXX’ and

’HFX’ respectively. The Kohn–Sham equation with the proper EXX potential is

[

− 1

2
∇2 + v(r)+ vH(r)+ v

hyb
XC (r)

]

φi(r) = εEXX
i φi(r). (3.2)

We multiply both sides of Eq. (3.2) by φ∗
i (r), sum over i, and divide through by ρEXX(r). The

result is the first local energy balance equation

τEXX
L (r)

ρEXX(r)
+ v(r)+ vH(r)+ v

hyb
XC (r) = ε̄KS(r), (3.3)

where

τEXX
L (r) =

N/2

∑
i=1

φ∗
i (r)(−

1

2
∇2)φi(r) (3.4)

is the Kohn–Sham kinetic energy density and

ε̄EXX(r) =
2

ρEXX(r)

N/2

∑
i=1

εEXX
i |φi(r)|2 (3.5)

is the average local Kohn–Sham orbital energy. The second local energy balance equation

originated from the Kohn–Sham equation that uses the HFX

[

− 1

2
∇2 + v(r)+ vH(r)+

1

4
K̂(r)+

3

4
vPBE

X (r)+ vPBE
C (r)

]

ϕi(r) = εHFX
i ϕi(r). (3.6)

We multiply both sides of Eq. (3.6) by ϕ∗
i (r), sum over i, and divide through by ρHFX(r). This
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gives

τHFX
L (r)

ρHFX(r)
+ v(r)+ vH(r)+

1

4
vS

X(r)+
3

4
vPBE

X (r)+ vPBE
C (r) = ε̄KS(r), (3.7)

where

vS
X(r) =

2

ρHFX(r)

N/2

∑
i=1

ϕ∗
i (r)K̂(r)ϕ(r) (3.8)

is the Slater potential [20], τHFX
L (r) and ε̄HFX(r) have the same expressions as τEXX

L (r) and

ε̄EXX(r), respectively. Since the two equations describe the same system, we have

ρEXX(r) = ρHFX(r). (3.9)

Subtracting Eq. (3.7) from Eq. (3.3) and rearranging the terms, we have

v
hyb
XC (r) =

1

4
vS

X(r)+
3

4
vPBE

X (r)+vPBE
C (r)+ ε̄EXX(r)− ε̄HFX(r)+

τHFX
L (r)

ρHFX(r)
− τEXX

L (r)

ρEXX(r)
. (3.10)

Eq. (3.10) can be simplified further following the idea of Ospadov et al. [18, 19]. First we

separate τEXX
L (r) as

τEXX
L (r) = τEXX

W (r)+ τEXX
P (r)− 1

4
∇2ρEXX(r), (3.11)

where

τEXX
W (r) =

|∇2ρEXX(r)|
8ρEXX(r)

(3.12)

is the von Weizsäcker noninteracting kinetic-energy density and

τEXX
P (r) =

2

ρEXX(r)

N/2

∑
i< j

|φi(r)∇φ j(r)−φ j(r)∇φi(r)|2 (3.13)
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is the Pauli kinetic-energy density. We also separate τHFX
L (r) as

τHFX
L (r) = τHFX

W (r)+ τHFX
P (r)− 1

4
∇2ρEXX(r), (3.14)

where τHFX
W (r) and τHFX

P (r) have the same expressions as τEXX
W (r) and τEXX

P (r), respectively.

Since ρEXX(r) = ρHFX(r), we have τHFX
W (r) = τEXX

W (r). Substituting Eqs. (3.11) and (3.14)

into Eq. (3.10), we have

v
hyb
XC (r) =

1

4
vS

X(r)+
3

4
vPBE

X (r)+ vPBE
C (r)+ ε̄EXX(r)− ε̄HFX(r)+

τHFX
P (r)

ρHFX(r)
− τEXX

P (r)

ρEXX(r)
.

(3.15)

Eq. (3.15) is our working formula for the proper PBE0 exchange-correlation potential. Here,

ϕi(r), εHFX
i and ρHFX(r) are obtained by a PBE0-HFX calculation. The quantities ε̄EXX(r),

τEXX
P (r) and ρEXX(r) depend on φi(r) and εEXX

i (r), which in turn depend on vPBE0
XC (r). There-

fore, Eq. (3.10) has to be solved with Eq. (2.17) simultaneously. The procedure in which

the multiplicative exchange-correlation potential corresponding to a hybrid functional is com-

puted via Eq. (3.15) will be referred to as the modified Ryabinkin–Kohut–Staroverov (mRKS)

method [18, 19].

We will now show that the mRKS method is as accurate as the OEP method. We list the

energies of several atoms computed using the EXX-only density functional with the potential

generated by the mRKS and the OEP methods in Table 3.1, where the mRKS values are com-

puted by us using the universal Gaussian basis set (UGBS), and the OEP values are obtained

from Ref. 16. For He, Ne, N and P atoms, the energies acquired by these two approaches

match each other (within 0.0001 Eh, considering the rounding error). For Ar and Kr atoms,

the two energies have a difference of 0.0001 Eh. This is because that the results in Ref. 16 are

computed on numerical grids, which effectively represent the basis-set limit; the large UGBS

is only close to the basis set limit. Therefore, the energies obtained using the mRKS method

with the UGBS are only close to the basis set limit as well. Since the differences in the energies
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are small, we can conclude that our method can reproduce the exchange-correlation potential

of the OEP method in the complete basis set limit.

Table 3.1: Atomic energies (in Eh) computed using the EXX-only density functional with the

potential generated by mRKS and OEP methods.

Atoms EmRKS EOEP

He −2.8617 −2.8617

Ne −128.5454 −128.5454

Ar −526.8123 −526.8122

Kr −2752.0430 −2752.0429

N −54.4034 −54.4034

P −340.7150 −340.7150

3.2 Comparison between PBE0-HFX and PBE0-EXX

3.2.1 Performance comparison for using different basis set

In computational chemistry, basis sets are used in practical implementations of ab initio

methods. For each calculation, all the unknown orbitals are represented by the linear com-

binations of the known basis functions. Only the coefficients of basis functions are varied

until these orbitals meet our requirement. The molecular orbitals can be expressed exactly if

the basis set is complete. However, a complete basis set contains infinitely many functions,

which is impossible to be realized. Hence introducing basis sets in practical calculations is an

approximation as we can only use finite basis set in practice.

The accuracy of a calculation depends on the basis set used. The smaller the basis set, the

poorer the representation of the orbitals. Using a larger basis set may help achieving higher

accuracy, with extra computational time being the price. Therefore, one needs to choose the

proper basis set based on the level of desired accuracy.

The mRKS method gives different results for different basis sets [18, 19]. Hence our results

for the standard enthalpies of formation computed using the PBE0-EXX will also depend on

the basis set we used to compute the ground-state electronic energies, and so does the difference

between the PBE0-EXX and the PEB0-HFX standard enthalpies of formation. Here, we used



26 CHAPTER 3. HYBRID DENSITY FUNCTIONALS WITH PROPER EXACT EXCHANGE

6-31G*, 6-311+G(2d,p) and 6-311++G(3df,3pd) basis sets as small, medium and large Pople

style basis set respectively.

The G3 test set [21] of enthalpies of formation is used to validate computational chemical

methods. It contains first-, second- and third-row non-hydrogen molecules, hydrocarbons,

substituted hydrocarbons, inorganic hydrides and radicals. The G3 test set has 3 subsets: G3-1,

G3-2 and G3-3. The average sizes of the molecules in G3-1, G3-2 and G3-3 subsets are 17.4,

32.5 and 50.5 electrons per molecule respectively. Here, we access the difference between the

PBE0-HFX and the PBE0-EXX for each subsets individually.

The standard enthalpy of formation of a molecule is calculated as

∆fH
◦
298(M) =E(M)−∑

A

E(A)+ZPE+H298(M)−H0(M)

−∑
A

[H298(A)−H0(A)−∆fH
◦
0 (A)], (3.16)

where the molecule and its constituent atoms are denoted as M and A respectively; ZPE is the

zero-point energy of the molecule; H298 and H0 are the enthalpies at 298K and 0K respectively,

and their difference is the thermal enthalpy correction; ∆fH
◦
0 is the enthalpy of formation at

0K. In this thesis, the energies of the molecules in G3 test set were calculated at the equilib-

rium B3LYP/6-31G(2df,p) geometries. For molecules, ZPE and thermal enthalpy correction

values were calculated at the B3LYP/6-31G(2df,p) Scale=0.9854 level using Opt=Tight and

Int(Grid=UltraFine). For atoms, enthalpies of formation at 0 K and thermal enthalpy correc-

tion values were taken from Ref. 22.

We computed the standard enthalpies of formation of the 55 G3-1 molecules, 93 G3-2

molecules and 75 G3-3 molecules [21] using the PBE0-HFX and the PBE0-EXX with the basis

sets mentioned above and compared them to the experimental results. The detailed results of

the standard enthalpies of formation are listed in Appendix A. The summary of these results is

shown in Table 3.2 to 3.5. For each basis set, the electronic energy computed using the PBE0-

EXX is greater than that computed using the PBE0-HFX for each molecule and atom. For each
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molecule, the standard enthalpy of formation calculated using the PBE0-EXX is greater than

that computed using the PBE0-HFX. Therefore, the value of mean error (ME) in the PBE0-

EXX standard enthalpies of formation is less negative than that in the PBE0-HFX standard

enthalpies of formation for each basis set.

For G3-1 test set, the difference between PBE0-EXX and PBE0-HFX is negligible. For

G3-2 and G3-3 test sets, the mean absolute error (MAE) in the PBE0-EXX standard enthalpies

of formation is less than that in the PBE0-HFX standard enthalpies of formation for each basis

set. This means that using the EXX in the PBE0 functional can improve its performance for

standard enthalpies of formation. The maximum improvement we obtained is 0.4 kcal/mol for

the G3-3 test set when using 6-311++G(3df,3pd) basis set.

Table 3.2: ME and MAE (in kcal/mol) in the standard enthalpies of formation of the G3-1 test

set computed by the PBE0-HFX and the PBE0-EXX methods using various Pople style basis

sets.

6-31G* 6-311+G(2d,p) 6-311++G(3df,3pd)

PBE0-HFX ME 6.09 3.27 1.28

MAE 6.66 3.88 2.86

PBE0-EXX ME 6.19 3.37 1.38

MAE 6.71 3.95 2.88

Difference ME 0.07 0.10 0.10

(EXX−HFX) MAE 0.05 0.07 0.02

Table 3.3: ME and MAE (in kcal/mol) in the standard enthalpies of formation of the G3-2 test

set computed by the PBE0-HFX and the PBE0-EXX methods using various Pople style basis

sets.

6-31G* 6-311+G(2d,p) 6-311++G(3df,3pd)

PBE0-HFX ME −1.88 0.06 −4.61

MAE 6.03 4.10 6.06

PBE0-EXX ME −1.65 0.34 −4.30

MAE 5.95 4.10 5.82

Difference ME 0.23 0.28 0.31

(EXX−HFX) MAE −0.08 0.00 −0.24

From Table 3.3, 3.4 we can find that the average difference between the PBE0-EXX and
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Table 3.4: ME and MAE (in kcal/mol) in the standard enthalpies of formation of the G3-3 test

set computed by the PBE0-HFX and the PBE0-EXX methods using various Pople style basis

sets.

6-31G* 6-311+G(2d,p) 6-311++G(3df,3pd)

PBE0-HFX ME −5.79 −1.67 −9.28

MAE 14.07 7.26 10.20

PBE0-EXX ME −5.41 −1.20 −8.76

MAE 13.83 7.15 9.78

Difference ME 0.38 0.47 0.52

(EXX−HFX) MAE −0.24 −0.11 −0.42

Table 3.5: ME and MAE (in kcal/mol) in the standard enthalpies of formation of the G3-3

test set computed by the PBE0-HFX and the PBE0-EXX methods using various Dunning’s

correlation-consistent basis sets.

cc-pVDZ cc-pVTZ cc-pVQZ

PBE0-HFX ME 7.35 −2.52 −3.85

MAE 7.90 4.96 5.41

PBE0-EXX ME 7.62 −2.23 −3.53

MAE 8.08 4.79 5.18

Difference ME 0.27 0.29 0.32

(EXX−HFX) MAE 0.18 −0.17 −0.23

the PBE0-HFX standard enthalpies of formation generally increases with the size of the basis

set. It is because that the magnitude of the difference in the PBE0-EXX and the PBE0-HFX

standard enthalpies of formation increases with the size of the basis set used in the calculation.

Besides using the Pople style basis sets, we computed the standard enthalpies of formation

for G3-2 subset using Dunning’s correlation-consistent basis sets cc-pVDZ, cc-pVTZ and cc-

pVQZ basis sets, which are listed in an ascending order according to their sizes. The summary

of the results is shown in Table 3.5, which matches our finding. The detailed results are listed

in Appendix B.

The best improvement we obtained is 0.4 kcal/mol, which is lower than out expectation

1kcal/mol. One of the reasons is that our hypothesis is based on the results computed using

the UGBS. To show this, we computed the energies of several atoms using the EXX-only

functional and the Hartree–Fock theory with the basis sets mentioned above as well as the
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Table 3.6: The difference in the energy (in kcal/mol) for several atoms computed using mRKS

method implemented EXX-only density functional and Hartree–Fock theory with several basis

sets

Atoms 6-31G* 6-311+G(2d,p) 6-311++G(3df,3pd) UGBS

Ne 0.33 0.34 0.34 1.05

Ar 0.89 1.47 1.47 3.27

Kr 3.34 4.91 4.98 7.44

N 0.30 0.30 0.30 0.72

P 0.80 1.55 1.55 2.66

UGBS. Their differences are listed in Table 3.6. For 6-311++G(3df,3pd), the differences in the

energies are approximately one half of that of UGBS. This suggests that the difference in the

PBE0-HFX and PBE0-EXX standard enthalpies of formation computed using UGBS can be

close to 1 kcal/mol. This means that our hypothesis is reasonable. However, considering the

computational cost, the UGBS is too large to be used in the daily calculations of medium-size

molecules.

3.2.2 Performance comparison for molecules of different size

Table 3.7: ME and MAE (in kcal/mol) in the standard enthalpies of formation of the G3-1,

G3-2 and G3-3 test set computed by the PBE0-HFX and the PBE0-EXX methods using the

6-311++G(3df,3pd) basis set.

G3-1 G3-2 G3-3

PBE0-HFX ME 1.28 −4.61 −9.28

MAE 2.86 6.06 10.20

PBE0-EXX ME 1.38 −4.30 −8.76

MAE 2.88 5.82 9.78

Difference ME 0.10 0.31 0.52

(EXX-HFX) MAE 0.02 −0.24 −0.42

As shown before, the numerical difference between the HFX and the EXX depends on

the number of electrons in the system. Hence the improvement by implementing the EXX

properly in the PBE0 should grow with the system size. We computed the standard enthalpies

of formation for G3-1, G3-2 and G3-3 test sets using the PBE0-EXX and the PBE0-HFX to

see how the improvement by implementing the EXX properly in the PBE0 functional varies
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with the number of electrons in the molecule. Since the 6-311++G(3df,3pd) basis set gives the

largest difference between the standard enthalpies of formation computed using the PBE0-EXX

and the PBE0-HFX, we used the 6-311++G(3df,3pd) basis set to compute standard enthalpies

of formations for the G3-1, G3-2 and G3-3 test sets.

The individual G3 standard enthalpies of formation are listed in Appendix A. The summary

appears in Table 3.7. For the G3-1 test set, we find that implementing the EXX in the PBE0

functional properly has a negligible effect on the results. For the G3-1 subset, use of the EXX

boosts the accuracy of the PBE0 functional by 0.24 kcal/mol. The improvement of the PBE0-

EXX over the PBE0-HFX further increases to 0.42 kcal/mol for the G3-3 subset containing the

largest molecules. Thus, the proper EXX does enhance the performance of hybrid functionals,

but the magnitude of the improvement is relatively small (∼ 4%), as anticipated by Becke [15].

3.3 Percentage of the EXX in hybrid density functionals

The numerical difference between PBE0-HFX and PBE0-EXX depends on the percentage

of the HFX (or EXX) in the functional. To study this dependence, we will introduce the PBEα

hybrid density functional

EPBEα
XC [ρ] = αEEXX[ρ]+ (1−α)EPBE

X [ρ]+EPBE
C [ρ]. (3.17)

where α is a constant between 0 and 1. We computed PBEα-EXX and PBEα-HFX energies

of C, Ne, Mg and Ar atoms and methanol (CH3OH), cyclobutene (C4H6) and PCl3 molecules

for α from 0 to 1 with the increment 0.1 using the UGBS for the atoms and the cc-pVTZ basis

set for the molecules. The differences in the energies, ∆EPBEα = EPBEα−EXX −EPBEα−HFX,

are plotted in Fig. 3.1. These points fit the parabola ∆EPBEα(α) = kα2 +bα . The constant in

this quadratic function is zero because EPBEα−EXX and EPBEα−HFX are identical when α = 0.

The only two parts in the calculation that depend on α are the energy functional and the

orbitals. The PBEα hybrid density functional (Eq. (3.17)) varies linearly with respect to α .



3.3. PERCENTAGE OF THE EXX IN HYBRID DENSITY FUNCTIONALS 31

Figure 3.1: ∆EPBEα vs α for Be, Mg and Ar atoms (top) and methanol (CH3OH), cyclobutene

(C4H6) and PCl3 molecules (bottom), where ∆EPBE−alpha = EPBEα−EXX −EPBEα−HFX and α
is the percentage of the EXX in the functional. The data points are fitted to ∆EPBEα(α) =
kα2 + bα . The fitted parameters are k = 0.619± 0.003, b = 0.016± 0.003 for C atom, k =
1.042±0.002, b = 0.012±0.002 for Ne atom, k = 1.83±0.01, b = 0.06±0.01 for Mg atom,

k = 3.21±0.01, b = 0.06±0.01 for Ar atom, k = 2.85±0.02, b = 0.17±0.02 for methanol,

k = 5.85±0.05, b = 0.30±0.03 for cyclobutene and k = 9.1±0.1,b = 0.8±0.1 for PCl3.
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Hence the quadratic behavior of ∆E(α) originates from the variation of orbitals. To verify this,

we will introduce the exchange-only mix functional

Emix
X [ρ] = αEEXX[ρ]+ (1−α)EHFX[ρ] (3.18)

with the corresponding exchange potential

vmix
X (r) = αvEXX(r)+(1−α)K̂(r), (3.19)

where

vEXX(r) =
δEEXX[ρ]

δρ(r)
. (3.20)

Here, both EEXX and EEXX uses the orbitals computed using vmix
X , i.e., EEXX and EEXX are

identical, hence Emix
X is independent from α . This functional is implemented using the method

introduced in Chapter 4.

We computed the exchange-only mix functional energies of Be, Mg and Ar atoms and

PCl3, methanol (CH3OH), cyclobutene (C4H6) and PCl3 molecules using exchange-only mix

functional for α from 0 to 1 with the increment 0.1 using the UGBS for the atoms and the

cc-pVTZ basis set for the molecules. The energy differences, ∆Emix = Emix−EHF, are plotted

in Fig. 3.2. The data points again fit the parabola ∆Emix(α) = kα2 +bα .

3.4 Summary

Using EXX in hybrid density functionals does improve their performance. The magnitude

of the improvement increases with the size of the basis set used in the calculation, and the

difference between using HFX and EXX in a hybrid density functional quadratically depends

on the amount of EXX (or HFX) it has. In practice, the improvement is modest since we do
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Figure 3.2: ∆Emix vs α for Be, Mg and Ar atoms (top) and methanol (CH3OH), cyclobutene

(C4H6) and PCl3 molecules (bottom), where ∆Emix = Emix−EHF. The data points are fitted to

∆Emix(α) = kα2+bα . The fitted parameters are k = 0.650±0.003, b =−0.019±0.002 for C

atom, k = 1.068±0.002, b =−0.016±0.002 for Ne atom, k = 1.97±0.01, b =−0.07±0.01

for Mg atom, k = 3.34±0.01, b=−0.07±0.01 for Ar atom, k = 3.22±0.04, b=−0.23±0.04

for methanol, k = 6.6±0.1, b =−0.54±0.09 for cyclobutene and k = 10.7±0.1, b =−1.1±
0.2 for PCl3
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not use very large basis sets in daily calculations of medium-size molecules due to efficiency,

and the typical amount of EXX (or HFX) in a hybrid density functional is 25%. Considering

the extra computational cost for implementing the EXX properly, it is not worthwhile for us to

modify the current implementations of hybrid density functionals to gain this improvement.



Chapter 4

The exact remainder exchange-correlation

potential in the generalized Kohn–Sham

DFT for hybrid density functional

In 1995, Seidl, Görling, Vogl and Majewski generalized Kohn–Sham DFT to describe inter-

acting electrons using a single Slater determinant [23]. In this generalized scheme, the energy

functional is partitioned as

E[ρ] = FS[ρ]+ER[ρ]+V [ρ], (4.1)

where FS[ρ] is an energy functional that depends on the density implicitly via a single Slater

determinant or its constituent orbitals. An example of FS[ρ] is the kinetic energy functional in

the Kohn–Sham DFT. V [ρ] is the same as the potential energy in Kohn–Sham DFT. ER[ρ] is

the remainder. We can reproduce the Kohn–Sham formalism if we choose the remainder to be

ER[ρ] = J[ρ]+EXC[ρ]. (4.2)

In the generalized Kohn–Sham DFT, using HFX in exact realizations of DFT is rationalized

[23]. Observing the success of hybrid density functionals with HFX in Kohn–Sham DFT,

Garrick et al. [24] implemented them into generalized Kohn–Sham DFT. Their idea is to

35
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connect the real interacting system to a partially interacting system. In this scheme,

FS[ρ] = 〈Φ|T̂ +αVee|Φ〉, (4.3)

where α is a constant between 0 and 1. If we minimize the energy with respect to the orbitals,

we obtain

[

− 1

2
∇2 + v(r)+αK̂(r)+α Ĵ(r)+ vR(r)

]

φi(r) = εiφi(r)., (4.4)

where v(r) is the electrostatic potential of the nuclei, Ĵ(r) is the Hartree potential, K̂(r) is the

Hartree–Fock exchange operator, and

vR(r) =
δER[ρ]

δρ(r)
(4.5)

is the remainder potential. We may separate ER(ρ) into two parts

ER(ρ) = (1−α)J[ρ]+Eα
R,XC, [ρ], (4.6)

where Eα
R,XC, [ρ] is the remainder exchange-correlation energy, and separate vR(r) accordingly

as

vR(r) = (1−α)Ĵ(r)+ vα
R,XC(r), (4.7)

where vα
R,XC(r) is the remainder exchange-correlation potential. Then Eq. (4.4) becomes

[

− 1

2
∇2 + v(r)+ Ĵ(r)+αK̂ + vα

R,XC(r)
]

φi(r) = εiφi(r). (4.8)

And the density is constructed as

ρGKS(r) = 2

N/2

∑
i=1

|φi(r)|2, (4.9)
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Eα
R,XC[ρ] is unknown and needs to be approximated. Fortunately, it is possible to numerically

generate vα
R,XC(r). By studying the properties of vα

R,XC(r), we can come up with accurate ap-

proximation to Eα
R,XC, [ρ]. Garrick et al. developed an inversion algorithm to generate vα

R,XC(r)

[24]. However, the resulting potentials have some unwanted noise. Here, we are going to in-

troduce a better algorithm, which follows the idea of Ryabinkin et al. [18].

4.1 The mRKS-GKS method

The idea of our method is to derive two local energy balanced equations, and subtract one

from the other. One of the local energy balanced equations is obtained from the generalized

Kohn–Sham equation (Eq. (4.8)). If we multiply φ∗
i (r) from the left on both sides of Eq. (4.8),

sum over all occupied orbitals for both sides of the equation, and then divide both sides by

ρGKS(r), we obtain

τGKS
L (r)

ρGKS(r)
+ v(r)+ vGKS

H (r)+αvS
X(r)+ vα

R,XC(r) = ε̄GKS(r) (4.10)

where

τGKS
L (r) =−1

2

N/2

∑
i=1

2φ∗
i (r)∇

2φi(r) (4.11)

is the generalized Kohn–Sham kinetic energy density,

vS
X(r) =

2

ρGKS(r)

N/2

∑
i=1

φ∗
i (r)K̂φi(r) (4.12)

is the Slater potential [20],

ε̄GKS(r) =
2

ρGKS(r)

N/2

∑
i=1

εi|φi(r)|2 (4.13)

is the average local generalized Kohn-Sham orbital energy [25].

The other local energy balanced equation is obtained from the N-electron Schrödinger
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equation. Here, we are going to use the local energy balanced equation derived by Ryabinkin

et al. [18]

τWF
L (r)

ρWF(r)
+ v(r)+ vWF

H (r)+ vhole
XC (r) = ε̄WF(r). (4.14)

Here, the ab initio density ρWF(r) is given by

ρWF(r) = ∑
j

ni|χ j(r)|2, (4.15)

where χ j(r) are the natural orbitals, n j are their corresponding occupation numbers,

τWF
L (r) = ∑

j

n jχ j(r)
∗1

2
∇2χ j(r) (4.16)

is the ab initio kinetic energy density, vhole
XC (r) is the exchange-correlation hole charge potential

and

ε̄WF(r) =
1

ρWF(r)∑
j

λ j| f j(r)|2 (4.17)

is the ab initio average local electron energy, where fi(r) are the eigenfunctions of the gener-

alized Fock operator and λi are their corresponding eigenvalues.

Before deriving the expression for vα
R,XC(r), we first rewrite τGKS

L (r) and τWF
L (r) as

τGKS
L (r) = τGKS

W (r)+ τGKS
P (r)− ∇2ρGKS(r)

4
(4.18)

and

τWF
L (r) = τWF

W (r)+ τWF
P (r)− ∇2ρGKS(r)

4
, (4.19)

where

τW(r) =
|∇ρ(r)|2

8ρ(r)
, (4.20)

τGKS
P (r) =

1

2ρGKS(r)

N

∑
i< j

|φi(r)∇φ j(r)−φ j(r)∇φi(r)|2, (4.21)
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τWF
P (r) =

1

2ρWF(r) ∑
i< j

nin j|χi(r)∇χ j(r)−χ j(r)∇χi(r)|2 (4.22)

Let us substitute Eq. (4.18) and (4.19) into Eq. (4.10) and (4.14) respectively, then sub-

tract Eq. (4.10) from Eq. (4.14). After applying the complete basis limit condition ρGKS(r) =

ρWF(r) and rearranging the terms, we have

vα
R,XC(r) = vhole

XC (r)−αvS
X(r)+ ε̄GKS(r)− ε̄WF(r)+

τWF
P (r)

ρWF(r)
− τGKS

P (r)

ρGKS(r)
, (4.23)

the key equation of our method. This equation depends on the generalized Kohn–Sham orbitals,

and hence will be solved self-consistently with Eq. (4.8). The procedure to generate the exact

remainder exchange-correlation potential will be referred to as mRKS-GKS method.

We can use the mRKS-GKS method to implement the exchange-only mix functional intro-

duced in Chapter 3 by taking the Hartree–Fock wave function as input. In this chapter, this

method is used to generate the exact remainder exchange-correlation potential from the wave

functions computed by highly accurate ab initio methods.

4.2 Results and discussion

We computed the exchange-correlation potentials of Be atom, Li−, F− and Li+. The results

are shown in Figures 4.1 to 4.4. For Li+, the remainder exchange-correlation potential we

obtained is zero when α = 1. This is because that in practice, the density is separated into spin-

up and spin-down parts, and each part is computed individually. Li+ has 2 electrons, hence each

spin density has only 1 electron, which means the electron-electron interaction should vanish in

the calculation of each spin density. When there is only 1 electron, the Hartree potential cancels

the Hartree–Fock exchange-correlation potential for α = 1, leaves the remainder exchange-

correlation potential being zero.

We compared our results with those computed using the inversion algorithm (Fig. 2 in

Ref. 24). For Be atom and Li+, the potentials generated using these two methods agree with
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each other. If we compare these potentials carefully, we can find that the potentials generated

by the inversion algorithm diverge at r = 0, while our potentials do not. Meanwhile, for Be

atom, the potential generated by the inversion algorithm has unwanted oscillation near r = 0

when α = 1, while ours does not have unwanted oscillations. Therefore, our method is better

than the existing inversion algorithm.

The agreement in the potentials of Be atom and Li+ suggest that these two methods should

yield the same result. However, for Li− and F−, there are discrepancies between the two

potentials. To figure out why these discrepancies arises, we are going to use the so called

scaled remainder exchange potentials [24]

ṽα
R,X(r)≡

vα
R,XC(r)− vα=1

R,XC(r)

1−α
. (4.24)

Garrick et al. [24] have shown that the scaled remainder exchange potential is independent

from α , and their results agree with this property. We computed the scaled remainder ex-

change potentials for Be atom, Li−, F− and Li+ using our method and the results are shown

in Figures 4.1 to 4.4. These figures shows that our ṽα
R,X(r) are also independent from α . In

addition, our scaled remainder exchange potentials match those computed using the inversion

algorithm (Fig. 3 in in Ref. 24). This means that the discrepancies between the exact remain-

der exchange-correlation potentials generated by these two methods are due to errors that are

independent from α , e.g., noise. There is no discrepancy in the remainder exchange potentials

since the errors cancelled out during the subtraction.

The spikes around r = 0.5 a0 in the exact remainder exchange-correlation potentials of

Li− and F− generated using the inversion algorithm suggest that these potentials are contami-

nated by noise; however, we cannot conclude that the potentials computed using the inversion

algorithm are incorrect as we are lack of convincing evidence. Nevertheless, Since the poten-

tials generated by the inversion algorithm contains noise for Li− and F−, our method again

outperforms the inversion algorithm.
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Figure 4.1: vα
R,XC(r) and ṽα

R,X(r) of Li+ computed from CISD wave function using mRKS-

GKS method with cc-pVQZ basis set.
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Figure 4.2: vα
R,XC(r) and ṽα

R,X(r) of Be atom computed from CASSCF(4,5) wave function

using mRKS-GKS method with cc-pVQZ basis set.
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Figure 4.3: vα
R,XC(r) and ṽα

R,X(r) of Li− computed from CASSCF(4,5) wave function using

mRKS-GKS method with cc-pVQZ basis set.
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Figure 4.4: vα
R,XC(r) and ṽα

R,X(r) of F− computed from CASSCF(10,8) wave function using

mRKS-GKS method with cc-pVQZ basis set.
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4.3 Summary

The mRKS-GKS method generates the exact remainder exchange-correlation potential

from the wave function. This method outperforms the current existing method. Following the

success of the conventional implementation hybrid density functionals, using HFX in DFT has

become a popular topic in the last few years. With the exact remainder exchange-correlation

potential generated correctly, studies based on these potentials can be carried on and eventually

lead to high performance functionals.
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Appendix A

Standard enthalpies of formation of G3

test set

Table A.1: Standard enthalpies of formation (in kcal/mol) for the G3

molecules computed using 6-31G* basis set. All values are in kcal/mol

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

G3-1 subset

LiH 33.3 40.2 6.9 40.2 6.9
BeH 81.7 75.5 −6.2 75.5 −6.2
CH 142.5 145.6 3.1 145.6 3.1
CH2 (3B1) 93.7 91.9 −1.8 91.9 −1.8
CH2 (1A1) 102.8 111.2 8.4 111.2 8.4
CH3 35.0 35.2 0.2 35.2 0.2
CH4 −17.9 −16.2 1.7 −16.3 1.6
NH 85.2 87.0 1.8 87.0 1.8
NH2 45.1 51.0 5.9 51.0 5.9
NH3 −11.0 2.0 13.0 2.0 13.0
OH 9.4 16.2 6.8 16.1 6.7
H2O −57.8 −40.1 17.7 −40.1 17.7
FH −65.1 −50.4 14.7 −50.4 14.7
SiH2 (1A1) 65.2 71.3 6.1 71.2 6.0
SiH2 (3B1) 86.2 86.1 −0.1 86.1 −0.1
SiH3 47.9 51.6 3.7 51.5 3.6
SiH4 8.2 16.6 8.4 16.5 8.3
PH2 33.1 37.3 4.2 37.3 4.2
PH3 1.3 10.7 9.4 10.6 9.3
H2S −4.9 4.1 9.0 4.0 8.9
HCl −22.1 −15.2 6.9 −15.2 6.9
Li2 51.6 57.4 5.8 57.4 5.8
LiF −80.1 −69.8 10.3 −69.8 10.3
HC≡CH 54.2 60.6 6.4 60.6 6.4
CH2=CH2 12.5 13.7 1.2 13.6 1.1
CH3CH3 −20.1 −22.2 −2.1 −22.3 −2.2
CN 104.9 110.7 5.8 110.5 5.6
HCN 31.5 37.6 6.1 37.5 6.0
CO −26.4 −20.0 6.4 −20.1 6.3

Continued on next page
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Table A.1 – continued from previous page

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

CHO 10.0 10.7 0.7 10.7 0.7
CH2O −26.0 −23.2 2.8 −23.3 2.7
CH3OH −48.0 −40.1 7.9 −40.2 7.8
N2 0.0 9.7 9.7 9.6 9.6
N2H4 22.8 35.8 13.0 35.7 12.9
NO 21.6 24.0 2.4 23.9 2.3
O2 0.0 −4.1 −4.1 −4.2 −4.2
H2O2 −32.5 −17.8 14.7 −17.9 14.6
F2 0.0 −0.5 −0.5 −0.7 −0.7
CO2 −94.1 −93.2 0.9 −93.4 0.7
Na2 34.0 35.1 1.1 35.1 1.1
Si2 139.9 142.0 2.1 141.9 2.0
P2 34.3 47.9 13.6 47.8 13.5
S2 30.7 34.3 3.6 34.2 3.5
Cl2 0.0 7.0 7.0 6.9 6.9
NaCl −43.6 −37.2 6.4 −37.2 6.4
SiO −24.6 −8.0 16.6 −8.0 16.6
CS 66.9 74.7 7.8 74.6 7.7
SO 1.2 9.6 8.4 9.5 8.3
ClO 24.2 28.8 4.6 28.6 4.4
ClF −13.2 −8.5 4.7 −8.7 4.5
Si2H6 19.1 29.6 10.5 29.5 10.4
CH3Cl −19.6 −20.0 −0.4 −20.0 −0.4
CH3SH −5.5 −1.5 4.0 −1.6 3.9
HOCl −17.8 −7.2 10.6 −7.3 10.5
SO2 −71.0 −39.7 31.3 −40.0 31.0
G3-2 subset

BF3 −271.4 −273.2 −1.8 −273.4 −2.0
BCl3 −96.3 −101.3 −5.0 −101.5 −5.2
AlF3 −289.0 −268.8 20.2 −268.9 20.1
AlCl3 −139.7 −130.2 9.5 −130.3 9.4
CF4 −223.0 −235.9 −12.9 −236.3 −13.3
CCl4 −22.9 −20.0 2.9 −20.4 2.5
COS −33.1 −32.8 0.3 −33.0 0.1
CS2 28.0 27.7 −0.3 27.5 −0.5
COF2 −149.1 −151.4 −2.3 −151.7 −2.6
SiF4 −386.0 −357.8 28.2 −358.0 28.0
SiCl4 −158.4 −140.6 17.8 −140.8 17.6
N2O 19.6 21.0 1.4 20.7 1.1
NOCl 12.4 14.6 2.2 14.3 1.9
NF3 −31.6 −39.4 −7.8 −39.9 −8.3
PF3 −229.1 −206.8 22.3 −207.2 21.9
O3 34.1 42.7 8.6 42.3 8.2
F2O 5.9 3.6 −2.3 3.1 −2.8
ClF3 −38.0 −26.5 11.5 −27.0 11.0
CF2=CF2 −157.4 −176.1 −18.7 −176.6 −19.2
CCl2=CCl2 −3.0 −8.2 −5.2 −8.7 −5.7
CF3CN −118.4 −128.6 −10.2 −129.1 −10.7
CH3C≡CH (propyne) 44.2 44.4 0.2 44.3 0.1
CH2=C=CH2 (allene) 45.5 41.8 −3.7 41.6 −3.9

Continued on next page
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Table A.1 – continued from previous page

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

C3H4 (cyclopropene) 66.2 61.5 −4.7 61.4 −4.8
CH3CH=CH2 (propylene) 4.8 2.0 −2.8 1.9 −2.9
C3H6 (cyclopropane) 12.7 5.2 −7.5 5.1 −7.6
C3H8 (propane) −25.0 −29.9 −4.9 −30.0 −5.0
C4H6 (1,3-butadiene) 26.3 22.3 −4.0 22.0 −4.3
C4H6 (2-butyne) 34.8 29.7 −5.1 29.5 −5.3
C4H6 (methylene cyclopropane) 47.9 35.3 −12.6 35.1 −12.8
C4H6 (bicyclobutane) 51.9 39.6 −12.3 39.5 −12.4
C4H6 (cyclobutene) 37.4 28.1 −9.3 27.9 −9.5
C4H8 (cyclobutane) 6.8 −5.2 −12.0 −5.3 −12.1
C4H8 (isobutene) −4.0 −9.7 −5.7 −9.9 −5.9
C4H10 (butane) −30.0 −37.5 −7.5 −37.7 −7.7
C4H10 (isobutane) −32.1 −38.6 −6.5 −38.7 −6.6
C5H8 (spiropentane) 44.3 26.1 −18.2 25.9 −18.4
C6H6 (benzene) 19.7 1.6 −18.1 1.4 −18.3
CH2F2 −107.7 −108.5 −0.8 −108.7 −1.0
CHF3 −166.6 −172.5 −5.9 −172.8 −6.2
CH2Cl2 −22.8 −23.1 −0.3 −23.2 −0.4
CHCl3 −24.7 −23.7 1.0 −24.0 0.7
CH3NH2 (methylamine) −5.5 0.9 6.4 0.8 6.3
CH3CN (acetonitrile) 18.0 18.4 0.4 18.2 0.2
CH3NO2 (nitromethane) −17.8 −19.8 −2.0 −20.1 −2.3
CH3ONO (methyl nitrite) −15.9 −16.8 −0.9 −17.3 −1.4
CH3SiH3 (methyl silane) −7.0 1.1 8.1 1.0 8.0
HCOOH (formic acid) −90.5 −85.1 5.4 −85.3 5.2
HCOOCH3 (methyl formate) −85.0 −87.0 −2.0 −87.3 −2.3
CH3CONH2 (acetamide) −57.0 −54.8 2.2 −55.1 1.9
C2H4NH (aziridine) 30.2 27.8 −2.4 27.7 −2.5
(CN)2 (cyanogen) 73.3 76.2 2.9 75.9 2.6
(CH3)2NH (dimethylamine) −4.4 −3.7 0.7 −3.9 0.5
CH3CH2NH2 (ethylamine) −11.3 −9.1 2.2 −9.3 2.0
CH2=C=O (ketene) −11.4 −13.5 −2.1 −13.6 −2.2
C2H4O (oxirane) −12.6 −16.0 −3.4 −16.1 −3.5
CH3CHO (acetaldehyde) −39.7 −40.8 −1.1 −41.0 −1.3
HCOCHO (glyoxal) −50.7 −51.4 −0.7 −51.7 −1.0
CH3CH2OH (ethanol) −56.2 −51.2 5.0 −51.4 4.8
CH3OCH3 (dimethyl ether) −44.0 −44.2 −0.2 −44.4 −0.4
C2H4S (thiirane) 19.6 15.0 −4.6 14.9 −4.7
(CH3)2SO (dimethyl sulfoxide) −36.2 −20.4 15.8 −20.8 15.4
C2H5SH (ethanethiol) −11.1 −9.6 1.5 −9.7 1.4
CH3SCH3 (dimethyl sulfide) −8.9 −9.4 −0.5 −9.6 −0.7
CH2=CHF (vinyl fluoride) −33.2 −36.0 −2.8 −36.2 −3.0
C2H5Cl (ethyl chloride) −26.8 −30.0 −3.2 −30.2 −3.4
CH2=CHCl (vinyl chloride) 8.9 3.9 −5.0 3.7 −5.2
CH2=CHCN (acrylonitrile) 43.2 43.8 0.6 43.5 0.3
CH3COCH3 (acetone) −51.9 −56.0 −4.1 −56.3 −4.4
CH3COOH (acetic acid) −103.4 −101.0 2.4 −101.2 2.2
CH3COF (acetyl fluoride) −105.7 −109.7 −4.0 −110.0 −4.3
CH3COCl (acetyl chloride) −58.0 −61.1 −3.1 −61.4 −3.4
CH3CH2CH2Cl (propyl chloride) −31.5 −37.7 −6.2 −37.9 −6.4

Continued on next page
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Table A.1 – continued from previous page

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

(CH3)2CHOH (isopropanol) −65.2 −62.9 2.3 −63.2 2.0
C2H5OCH3 (methyl ethyl ether) −51.7 −55.2 −3.5 −55.5 −3.8
(CH3)3N (trimethylamine) −5.7 −10.0 −4.3 −10.3 −4.6
C4H4O (furan) −8.3 −19.3 −11.0 −19.6 −11.3
C4H4S (thiophene) 27.5 20.2 −7.3 19.9 −7.6
C4H5N (pyrrole) 25.9 16.2 −9.7 16.0 −9.9
C5H5N (pyridine) 33.6 16.4 −17.2 16.1 −17.5
H2 0.0 5.6 5.6 5.6 5.6
SH 34.2 38.0 3.8 38.0 3.8
C≡CH (2A′,Cs) 135.1 138.1 3.0 138.0 2.9
CH=CH2 (2A′,Cs) 71.6 69.2 −2.4 69.1 −2.5
CH3CO (2A′,Cs) −2.4 −5.8 −3.4 −6.0 −3.6
CH2OH (2A,C1) −4.1 1.0 5.1 0.9 5.0
CH3O (2A′,Cs) 4.1 1.9 −2.2 1.7 −2.4
CH3CH2O (2A′′,Cs) −3.7 −10.4 −6.7 −10.7 −7.0
CH3S (2A′,Cs) 29.8 27.3 −2.5 27.1 −2.7
CH3CH2 (2A′,Cs) 28.9 24.6 −4.3 24.5 −4.4
(CH3)2CH (2A′,Cs) 21.5 13.0 −8.5 12.9 −8.6
(CH3)3C (t-butyl radical, C3v) 12.3 1.3 −11.0 1.1 −11.2
NO2 7.9 5.4 −2.5 5.1 −2.8
G3-3 subset

CH2=C=CHCH3 (1,2-butadiene) 38.8 31.6 −7.2 31.4 −7.4
CH2=CH–C(CH3)=CH2 (isoprene) 18.0 11.4 −6.6 11.1 −6.9
C5H10 (cyclopentane) −18.3 −32.3 −14.0 −32.5 −14.2
C5H12 (n-pentane) −35.1 −45.1 −10.0 −45.4 −10.3
C(CH3)4 (neopentane) −40.2 −47.5 −7.3 −47.7 −7.5
C6H8 (1,3-cyclohexadiene) 25.4 11.1 −14.3 10.8 −14.6
C6H8 (1,4-cyclohexadiene) 25.0 11.2 −13.8 10.8 −14.2
C6H12 (cyclohexane) −29.5 −45.4 −15.9 −45.8 −16.3
C6H14 (n-hexane) −39.9 −52.7 −12.8 −53.0 −13.1
C6H14 (3-methyl pentane) −41.1 −52.0 −10.9 −52.3 −11.2
C6H5CH3 (toluene) 12.0 −9.0 −21.0 −9.3 −21.3
C7H16 (n-heptane) −44.9 −60.3 −15.4 −60.7 −15.8
C8H8 (1,3,5,7-cyclooctatetraene) 70.7 53.8 −16.9 53.2 −17.5
C8H18 (n-octane) −49.9 −67.9 −18.0 −68.4 −18.5
C10H8 (naphthalene) 35.9 0.2 −35.7 −0.3 −36.2
C10H8 (azulene) 69.1 34.9 −34.2 34.4 −34.7
CH3COOCH3 (methyl acetate) −98.4 −102.4 −4.0 −102.8 −4.4
(CH3)3COH (t-butanol) −74.7 −73.9 0.8 −74.2 0.5
C6H5NH2 (aniline) 20.8 5.6 −15.2 5.3 −15.5
C6H5OH (phenol) −23.0 −36.5 −13.5 −36.9 −13.9
CH2=CH–O–CH=CH2 (divinyl ether) −3.3 −7.1 −3.8 −7.4 −4.1
C4H8O (tetrahydrofuran) −44.0 −53.3 −9.3 −53.7 −9.7
C5H8O (cyclopentanone) −45.9 −60.7 −14.8 −61.1 −15.2
C6H4O2 (1,4-benzoquinone) −29.4 −44.6 −15.2 −45.4 −16.0
C4H4N2 (pyrimidine) 46.8 29.4 −17.4 29.0 −17.8
(CH3)2SO2 (dimethyl sulfone) −89.2 −58.1 31.1 −58.5 30.7
C6H5Cl (chlorobenzene) 12.4 −7.4 −19.8 −7.8 −20.2
NC–CH2CH2–CN (succinonitrile) 50.1 47.9 −2.2 47.5 −2.6
C4H4N2 (pyrazine) 46.9 33.6 −13.3 33.3 −13.6

Continued on next page
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Table A.1 – continued from previous page

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

CH3COC≡CH (acetyl acetylene) 15.6 15.2 −0.4 14.9 −0.7
CH3–CH=CH–CHO (crotonaledehyde) −24.0 −31.7 −7.7 −32.1 −8.1
(CH3CO)2O (acetic anhydride) −136.8 −145.8 −9.0 −146.4 −9.6
C4H6S (2,5-dihydrothiophene) 20.8 11.7 −9.1 11.4 −9.4
CH3CH(CH3)CN (2-methyl propanenitrile) 5.6 2.8 −2.8 2.5 −3.1
CH3–CO–CH2CH3 (methyl ethyl ketone) −57.1 −64.4 −7.3 −64.7 −7.6
(CH3)2CH–CHO (isobutyraldehyde) −51.6 −56.4 −4.8 −56.7 −5.1
C4H8O2 (1,4-dioxane) −75.5 −84.2 −8.7 −84.7 −9.2
C4H8S (tetrahydrothiophene) −8.2 −17.2 −9.0 −17.5 −9.3
(CH3)3C–Cl (t-butyl chloride) −43.5 −50.4 −6.9 −50.6 −7.1
CH3CH2CH2CH2Cl (n-butyl chloride) −37.0 −45.3 −8.3 −45.5 −8.5
C4H8NH (pyrrolidine) −0.8 −9.3 −8.5 −9.6 −8.8
CH3CH2CH(NO2)CH3 (2-nitrobutane) −39.1 −48.2 −9.1 −48.7 −9.6
CH3CH2OCH2CH3 (diethyl ether) −60.3 −66.2 −5.9 −66.5 −6.2
CH3–CH(OCH3)2 (1,1-dimethoxy ethane) −93.1 −97.4 −4.3 −97.9 −4.8
(CH3)3C–SH (t-butanethiole) −26.2 −28.1 −1.9 −28.4 −2.2
(CH3CH2S)2 (diethyl disulfide) −17.9 −18.3 −0.4 −18.8 −0.9
(CH3)3C–NH2 (t-butylamine) −28.9 −29.0 −0.1 −29.3 −0.4
Si(CH3)4 (tetramethyl silane) −55.7 −46.2 9.5 −46.4 9.3
C5H6S (2-methyl thiopehene) 20.0 9.2 −10.8 8.9 −11.1
C5H7N (N-methyl pyrrole) 24.6 10.4 −14.2 10.1 −14.5
C5H10O (tetrahydropyran) −53.4 −65.6 −12.2 −66.1 −12.7
C2H5COC2H5 (diethyl ketone) −61.6 −72.5 −10.9 −72.9 −11.3
CH3COOCH(CH3)2 (isopropyl acetate) −115.1 −124.3 −9.2 −124.8 −9.7
C5H10S (tetrahydrothiopyran) −15.2 −26.8 −11.6 −27.2 −12.0
C5H10NH (piperidine) −11.3 −22.4 −11.1 −22.7 −11.4
(CH3)3COCH3 (t-butyl methyl ether) −67.8 −73.9 −6.1 −74.3 −6.5
C6H4F2 (1,3-difluorobenzene) −73.9 −99.7 −25.8 −100.2 −26.3
C6H4F2 (1,4-difluorobenzene) −73.3 −99.0 −25.7 −99.4 −26.1
C6H5F (fluorobenzene) −27.7 −49.3 −21.6 −49.7 −22.0
(CH3)2CHOCH(CH3)2 (diisopropyl ether) −76.3 −86.2 −9.9 −86.6 −10.3
PF5 −381.1 −351.2 29.9 −351.6 29.5
SF6 −291.7 −266.9 24.8 −267.6 24.1
P4 14.1 37.0 22.9 36.7 22.6
SO3 −94.6 −52.0 42.6 −52.5 42.1
SCl2 −4.2 7.8 12.0 7.6 11.8
POCl3 −133.8 −103.1 30.7 −103.4 30.4
PCl5 −86.1 −58.0 28.1 −58.5 27.6
SO2Cl2 −84.8 −41.6 43.2 −42.1 42.7
PCl3 −69.0 −52.1 16.9 −52.4 16.6
S2Cl2 −4.0 9.9 13.9 9.4 13.4
SiCl2 (

1A1) −40.3 −31.2 9.1 −31.3 9.0
CF3Cl −169.5 −178.8 −9.3 −179.2 −9.7
C2F6 −321.3 −343.0 −21.7 −343.7 −22.4
CF3 −111.3 −123.4 −12.1 −123.7 −12.4
C6H5 (phenyl radical) 81.2 58.7 −22.5 58.5 −22.7
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Table A.2: Standard enthalpies of formation (in kcal/mol) for the G3

molecules computed using 6-311+G(2d,p) basis set. All values are in

kcal/mol

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

G3-1 subset

LiH 33.3 38.7 5.4 38.7 5.4
BeH 81.7 75.9 −5.8 75.9 −5.8
CH 142.5 143.9 1.4 143.9 1.4
CH2 (3B1) 93.7 91.0 −2.7 91.0 −2.7
CH2 (1A1) 102.8 108.1 5.3 108.0 5.2
CH3 35.0 35.0 0.0 34.9 −0.1
CH4 −17.9 −14.5 3.4 −14.5 3.4
NH 85.2 84.3 −0.9 84.2 −1.0
NH2 45.1 45.3 0.2 45.2 0.1
NH3 −11.0 −6.2 4.8 −6.3 4.7
OH 9.4 11.1 1.7 11.0 1.6
H2O −57.8 −50.6 7.2 −50.6 7.2
FH −65.1 −60.0 5.1 −60.0 5.1
SiH2 (1A1) 65.2 70.1 4.9 70.1 4.9
SiH2 (3B1) 86.2 85.3 −0.9 85.3 −0.9
SiH3 47.9 50.7 2.8 50.6 2.7
SiH4 8.2 15.8 7.6 15.7 7.5
PH2 33.1 33.9 0.8 33.9 0.8
PH3 1.3 6.8 5.5 6.7 5.4
H2S −4.9 −1.1 3.8 −1.2 3.7
HCl −22.1 −20.0 2.1 −20.0 2.1
Li2 51.6 56.5 4.9 56.5 4.9
LiF −80.1 −74.6 5.5 −74.6 5.5
HC≡CH 54.2 57.5 3.3 57.4 3.2
CH2=CH2 12.5 14.0 1.5 13.9 1.4
CH3CH3 −20.1 −18.3 1.8 −18.4 1.7
CN 104.9 109.5 4.6 109.4 4.5
HCN 31.5 35.2 3.7 35.1 3.6
CO −26.4 −21.2 5.2 −21.3 5.1
CHO 10.0 9.7 −0.3 9.6 −0.4
CH2O −26.0 −23.1 2.9 −23.3 2.7
CH3OH −48.0 −43.3 4.7 −43.4 4.6
N2 0.0 5.6 5.6 5.5 5.5
N2H4 22.8 26.0 3.2 25.9 3.1
NO 21.6 23.4 1.8 23.3 1.7
O2 0.0 −2.3 −2.3 −2.4 −2.4
H2O2 −32.5 −24.9 7.6 −25.0 7.5
F2 0.0 5.2 5.2 5.1 5.1
CO2 −94.1 −93.5 0.6 −93.7 0.4
Na2 34.0 35.1 1.1 35.0 1.0
Si2 139.9 138.5 −1.4 138.4 −1.5
P2 34.3 42.1 7.8 42.0 7.7
S2 30.7 28.9 −1.8 28.8 −1.9
Cl2 0.0 1.0 1.0 0.9 0.9
NaCl −43.6 −40.1 3.5 −40.1 3.5
SiO −24.6 −12.5 12.1 −12.5 12.1
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Table A.2 – continued from previous page

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

CS 66.9 71.8 4.9 71.7 4.8
SO 1.2 4.6 3.4 4.5 3.3
ClO 24.2 26.1 1.9 25.9 1.7
ClF −13.2 −8.6 4.6 −8.8 4.4
Si2H6 19.1 28.8 9.7 28.6 9.5
CH3Cl −19.6 −19.4 0.2 −19.5 0.1
CH3SH −5.5 −2.8 2.7 −2.9 2.6
HOCl −17.8 −12.5 5.3 −12.7 5.1
SO2 −71.0 −52.2 18.8 −52.5 18.5
G3-2 subset

BF3 −271.4 −263.9 7.5 −264.1 7.3
BCl3 −96.3 −102.7 −6.4 −102.9 −6.6
AlF3 −289.0 −268.1 20.9 −268.2 20.8
AlCl3 −139.7 −136.4 3.3 −136.5 3.2
CF4 −223.0 −219.0 4.0 −219.4 3.6
CCl4 −22.9 −25.5 −2.6 −26.0 −3.1
COS −33.1 −34.5 −1.4 −34.7 −1.6
CS2 28.0 26.2 −1.8 26.0 −2.0
COF2 −149.1 −143.8 5.3 −144.1 5.0
SiF4 −386.0 −352.5 33.5 −352.7 33.3
SiCl4 −158.4 −150.9 7.5 −151.1 7.3
N2O 19.6 19.0 −0.6 18.7 −0.9
NOCl 12.4 13.1 0.7 12.7 0.3
NF3 −31.6 −31.0 0.6 −31.7 −0.1
PF3 −229.1 −205.8 23.3 −206.2 22.9
O3 34.1 44.0 9.9 43.6 9.5
F2O 5.9 10.1 4.2 9.6 3.7
ClF3 −38.0 −29.7 8.3 −30.2 7.8
CF2=CF2 −157.4 −164.2 −6.8 −164.7 −7.3
CCl2=CCl2 −3.0 −12.2 −9.2 −12.7 −9.7
CF3CN −118.4 −117.0 1.4 −117.5 0.9
CH3C≡CH (propyne) 44.2 44.0 −0.2 43.9 −0.3
CH2=C=CH2 (allene) 45.5 42.1 −3.4 41.9 −3.6
C3H4 (cyclopropene) 66.2 63.7 −2.5 63.6 −2.6
CH3CH=CH2 (propylene) 4.8 4.6 −0.2 4.4 −0.4
C3H6 (cyclopropane) 12.7 9.6 −3.1 9.5 −3.2
C3H8 (propane) −25.0 −24.0 1.0 −24.2 0.8
C4H6 (1,3-butadiene) 26.3 24.3 −2.0 24.0 −2.3
C4H6 (2-butyne) 34.8 32.3 −2.5 32.0 −2.8
C4H6 (methylene cyclopropane) 47.9 39.5 −8.4 39.2 −8.7
C4H6 (bicyclobutane) 51.9 45.5 −6.4 45.2 −6.7
C4H6 (cyclobutene) 37.4 32.8 −4.6 32.6 −4.8
C4H8 (cyclobutane) 6.8 2.3 −4.5 2.0 −4.8
C4H8 (isobutene) −4.0 −4.8 −0.8 −5.1 −1.1
C4H10 (butane) −30.0 −29.6 0.4 −29.9 0.1
C4H10 (isobutane) −32.1 −30.7 1.4 −31.0 1.1
C5H8 (spiropentane) 44.3 34.2 −10.1 33.9 −10.4
C6H6 (benzene) 19.7 6.9 −12.8 6.6 −13.1
CH2F2 −107.7 −104.8 2.9 −105.0 2.7
CHF3 −166.6 −163.0 3.6 −163.3 3.3
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

CH2Cl2 −22.8 −24.3 −1.5 −24.6 −1.8
CHCl3 −24.7 −27.0 −2.3 −27.4 −2.7
CH3NH2 (methylamine) −5.5 −2.4 3.1 −2.5 3.0
CH3CN (acetonitrile) 18.0 18.5 0.5 18.3 0.3
CH3NO2 (nitromethane) −17.8 −19.1 −1.3 −19.5 −1.7
CH3ONO (methyl nitrite) −15.9 −13.3 2.6 −13.8 2.1
CH3SiH3 (methyl silane) −7.0 1.5 8.5 1.3 8.3
HCOOH (formic acid) −90.5 −87.4 3.1 −87.7 2.8
HCOOCH3 (methyl formate) −85.0 −83.2 1.8 −83.6 1.4
CH3CONH2 (acetamide) −57.0 −57.0 0.0 −57.3 −0.3
C2H4NH (aziridine) 30.2 28.1 −2.1 27.9 −2.3
(CN)2 (cyanogen) 73.3 74.8 1.5 74.4 1.1
(CH3)2NH (dimethylamine) −4.4 −2.3 2.1 −2.5 1.9
CH3CH2NH2 (ethylamine) −11.3 −10.0 1.3 −10.2 1.1
CH2=C=O (ketene) −11.4 −14.1 −2.7 −14.3 −2.9
C2H4O (oxirane) −12.6 −12.9 −0.3 −13.1 −0.5
CH3CHO (acetaldehyde) −39.7 −38.8 0.9 −39.1 0.6
HCOCHO (glyoxal) −50.7 −49.9 0.8 −50.2 0.5
CH3CH2OH (ethanol) −56.2 −52.3 3.9 −52.6 3.6
CH3OCH3 (dimethyl ether) −44.0 −40.2 3.8 −40.5 3.5
C2H4S (thiirane) 19.6 17.0 −2.6 16.8 −2.8
(CH3)2SO (dimethyl sulfoxide) −36.2 −26.3 9.9 −26.7 9.5
C2H5SH (ethanethiol) −11.1 −8.8 2.3 −9.1 2.0
CH3SCH3 (dimethyl sulfide) −8.9 −6.9 2.0 −7.1 1.8
CH2=CHF (vinyl fluoride) −33.2 −33.8 −0.6 −34.0 −0.8
C2H5Cl (ethyl chloride) −26.8 −27.4 −0.6 −27.6 −0.8
CH2=CHCl (vinyl chloride) 8.9 3.6 −5.3 3.4 −5.5
CH2=CHCN (acrylonitrile) 43.2 43.8 0.6 43.5 0.3
CH3COCH3 (acetone) −51.9 −52.1 −0.2 −52.4 −0.5
CH3COOH (acetic acid) −103.4 −101.5 1.9 −101.8 1.6
CH3COF (acetyl fluoride) −105.7 −105.0 0.7 −105.4 0.3
CH3COCl (acetyl chloride) −58.0 −60.4 −2.4 −60.8 −2.8
CH3CH2CH2Cl (propyl chloride) −31.5 −33.0 −1.5 −33.3 −1.8
(CH3)2CHOH (isopropanol) −65.2 −61.7 3.5 −62.0 3.2
C2H5OCH3 (methyl ethyl ether) −51.7 −49.2 2.5 −49.6 2.1
(CH3)3N (trimethylamine) −5.7 −4.2 1.5 −4.5 1.2
C4H4O (furan) −8.3 −15.2 −6.9 −15.5 −7.2
C4H4S (thiophene) 27.5 20.5 −7.0 20.2 −7.3
C4H5N (pyrrole) 25.9 16.6 −9.3 16.3 −9.6
C5H5N (pyridine) 33.6 20.7 −12.9 20.3 −13.3
H2 0.0 5.4 5.4 5.4 5.4
SH 34.2 35.1 0.9 35.1 0.9
C≡CH (2A′,Cs) 135.1 136.0 0.9 135.9 0.8
CH=CH2 (2A′,Cs) 71.6 68.5 −3.1 68.4 −3.2
CH3CO (2A′,Cs) −2.4 −5.0 −2.6 −5.2 −2.8
CH2OH (2A,C1) −4.1 −3.2 0.9 −3.3 0.8
CH3O (2A′,Cs) 4.1 2.9 −1.2 2.6 −1.5
CH3CH2O (2A′′,Cs) −3.7 −7.1 −3.4 −7.4 −3.7
CH3S (2A′,Cs) 29.8 28.3 −1.5 28.2 −1.6
CH3CH2 (2A′,Cs) 28.9 26.6 −2.3 26.5 −2.4
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

(CH3)2CH (2A′,Cs) 21.5 17.4 −4.1 17.2 −4.3
(CH3)3C (t-butyl radical, C3v) 12.3 8.0 −4.3 7.7 −4.6
NO2 7.9 5.2 −2.7 4.9 −3.0
G3-3 subset

CH2=C=CHCH3 (1,2-butadiene) 38.8 34.4 −4.4 34.1 −4.7
CH2=CH–C(CH3)=CH2 (isoprene) 18.0 15.6 −2.4 15.2 −2.8
C5H10 (cyclopentane) −18.3 −22.9 −4.6 −23.3 −5.0
C5H12 (n-pentane) −35.1 −35.2 −0.1 −35.5 −0.4
C(CH3)4 (neopentane) −40.2 −37.6 2.6 −38.0 2.2
C6H8 (1,3-cyclohexadiene) 25.4 17.5 −7.9 17.0 −8.4
C6H8 (1,4-cyclohexadiene) 25.0 17.0 −8.0 16.6 −8.4
C6H12 (cyclohexane) −29.5 −33.4 −3.9 −33.9 −4.4
C6H14 (n-hexane) −39.9 −40.7 −0.8 −41.2 −1.3
C6H14 (3-methyl pentane) −41.1 −40.0 1.1 −40.5 0.6
C6H5CH3 (toluene) 12.0 −1.5 −13.5 −1.9 −13.9
C7H16 (n-heptane) −44.9 −46.3 −1.4 −46.8 −1.9
C8H8 (1,3,5,7-cyclooctatetraene) 70.7 59.4 −11.3 58.7 −12.0
C8H18 (n-octane) −49.9 −51.9 −2.0 −52.5 −2.6
C10H8 (naphthalene) 35.9 10.2 −25.7 9.7 −26.2
C10H8 (azulene) 69.1 44.6 −24.5 44.0 −25.1
CH3COOCH3 (methyl acetate) −98.4 −96.8 1.6 −97.2 1.2
(CH3)3COH (t-butanol) −74.7 −70.4 4.3 −70.8 3.9
C6H5NH2 (aniline) 20.8 6.7 −14.1 6.2 −14.6
C6H5OH (phenol) −23.0 −34.4 −11.4 −34.8 −11.8
CH2=CH–O–CH=CH2 (divinyl ether) −3.3 −4.4 −1.1 −4.8 −1.5
C4H8O (tetrahydrofuran) −44.0 −45.8 −1.8 −46.2 −2.2
C5H8O (cyclopentanone) −45.9 −52.8 −6.9 −53.3 −7.4
C6H4O2 (1,4-benzoquinone) −29.4 −39.0 −9.6 −39.8 −10.4
C4H4N2 (pyrimidine) 46.8 32.3 −14.5 31.9 −14.9
(CH3)2SO2 (dimethyl sulfone) −89.2 −69.1 20.1 −69.6 19.6
C6H5Cl (chlorobenzene) 12.4 −3.1 −15.5 −3.5 −15.9
NC–CH2CH2–CN (succinonitrile) 50.1 48.8 −1.3 48.3 −1.8
C4H4N2 (pyrazine) 46.9 36.6 −10.3 36.2 −10.7
CH3COC≡CH (acetyl acetylene) 15.6 16.5 0.9 16.1 0.5
CH3–CH=CH–CHO (crotonaledehyde) −24.0 −27.8 −3.8 −28.3 −4.3
(CH3CO)2O (acetic anhydride) −136.8 −138.4 −1.6 −139.0 −2.2
C4H6S (2,5-dihydrothiophene) 20.8 15.1 −5.7 14.7 −6.1
CH3CH(CH3)CN (2-methyl propanenitrile) 5.6 7.1 1.5 6.7 1.1
CH3–CO–CH2CH3 (methyl ethyl ketone) −57.1 −58.0 −0.9 −58.4 −1.3
(CH3)2CH–CHO (isobutyraldehyde) −51.6 −50.2 1.4 −50.7 0.9
C4H8O2 (1,4-dioxane) −75.5 −75.5 0.0 −76.1 −0.6
C4H8S (tetrahydrothiophene) −8.2 −10.9 −2.7 −11.3 −3.1
(CH3)3C–Cl (t-butyl chloride) −43.5 −43.7 −0.2 −44.0 −0.5
CH3CH2CH2CH2Cl (n-butyl chloride) −37.0 −38.5 −1.5 −38.9 −1.9
C4H8NH (pyrrolidine) −0.8 −4.7 −3.9 −5.1 −4.3
CH3CH2CH(NO2)CH3 (2-nitrobutane) −39.1 −40.6 −1.5 −41.3 −2.2
CH3CH2OCH2CH3 (diethyl ether) −60.3 −58.1 2.2 −58.5 1.8
CH3–CH(OCH3)2 (1,1-dimethoxy ethane) −93.1 −87.8 5.3 −88.4 4.7
(CH3)3C–SH (t-butanethiole) −26.2 −23.2 3.0 −23.6 2.6
(CH3CH2S)2 (diethyl disulfide) −17.9 −15.5 2.4 −16.1 1.8
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

(CH3)3C–NH2 (t-butylamine) −28.9 −25.9 3.0 −26.3 2.6
Si(CH3)4 (tetramethyl silane) −55.7 −43.2 12.5 −43.6 12.1
C5H6S (2-methyl thiopehene) 20.0 11.9 −8.1 11.5 −8.5
C5H7N (N-methyl pyrrole) 24.6 15.0 −9.6 14.6 −10.0
C5H10O (tetrahydropyran) −53.4 −55.2 −1.8 −55.7 −2.3
C2H5COC2H5 (diethyl ketone) −61.6 −63.7 −2.1 −64.2 −2.6
CH3COOCH(CH3)2 (isopropyl acetate) −115.1 −114.2 0.9 −114.8 0.3
C5H10S (tetrahydrothiopyran) −15.2 −18.1 −2.9 −18.6 −3.4
C5H10NH (piperidine) −11.3 −14.5 −3.2 −15.0 −3.7
(CH3)3COCH3 (t-butyl methyl ether) −67.8 −63.5 4.3 −64.0 3.8
C6H4F2 (1,3-difluorobenzene) −73.9 −89.4 −15.5 −89.9 −16.0
C6H4F2 (1,4-difluorobenzene) −73.3 −88.7 −15.4 −89.2 −15.9
C6H5F (fluorobenzene) −27.7 −41.6 −13.9 −42.0 −14.3
(CH3)2CHOCH(CH3)2 (diisopropyl ether) −76.3 −73.4 2.9 −74.0 2.3
PF5 −381.1 −341.9 39.2 −342.4 38.7
SF6 −291.7 −251.4 40.3 −252.2 39.5
P4 14.1 17.8 3.7 17.4 3.3
SO3 −94.6 −69.1 25.5 −69.6 25.0
SCl2 −4.2 −3.2 1.0 −3.5 0.7
POCl3 −133.8 −121.6 12.2 −122.0 11.8
PCl5 −86.1 −82.7 3.4 −83.3 2.8
SO2Cl2 −84.8 −66.1 18.7 −66.6 18.2
PCl3 −69.0 −66.1 2.9 −66.5 2.5
S2Cl2 −4.0 −6.6 −2.6 −7.1 −3.1
SiCl2 (

1A1) −40.3 −37.2 3.1 −37.4 2.9
CF3Cl −169.5 −168.8 0.7 −169.3 0.2
C2F6 −321.3 −318.6 2.7 −319.4 1.9
CF3 −111.3 −113.3 −2.0 −113.6 −2.3
C6H5 (phenyl radical) 81.2 63.1 −18.1 63.3 −17.9

Table A.3: Standard enthalpies of formation (in kcal/mol) for the G3

molecules computed using 6-311++G(3df,3pd) basis set. All values are

in kcal/mol

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

G3-1 subset

LiH 33.3 38.6 5.3 38.6 5.3
BeH 81.7 75.8 −5.9 75.8 −5.9
CH 142.5 143.4 0.9 143.3 0.8
CH2 (3B1) 93.7 90.3 −3.4 90.3 −3.4
CH2 (1A1) 102.8 107.2 4.4 107.1 4.3
CH3 35.0 34.1 −0.9 34.0 −1.0
CH4 −17.9 −15.4 2.5 −15.4 2.5
NH 85.2 83.4 −1.8 83.4 −1.8
NH2 45.1 43.6 −1.5 43.6 −1.5
NH3 −11.0 −8.1 2.9 −8.2 2.8
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

OH 9.4 9.8 0.4 9.8 0.4
H2O −57.8 −52.9 4.9 −52.9 4.9
FH −65.1 −61.7 3.4 −61.7 3.4
SiH2 (1A1) 65.2 69.6 4.4 69.5 4.3
SiH2 (3B1) 86.2 84.7 −1.5 84.7 −1.5
SiH3 47.9 49.9 2.0 49.8 1.9
SiH4 8.2 15.0 6.8 14.9 6.7
PH2 33.1 32.5 −0.6 32.4 −0.7
PH3 1.3 5.2 3.9 5.0 3.7
H2S −4.9 −2.7 2.2 −2.7 2.2
HCl −22.1 −21.2 0.9 −21.2 0.9
Li2 51.6 56.4 4.8 56.4 4.8
LiF −80.1 −74.7 5.4 −74.7 5.4
HC≡CH 54.2 55.2 1.0 55.2 1.0
CH2=CH2 12.5 12.0 −0.5 11.9 −0.6
CH3CH3 −20.1 −20.0 0.1 −20.1 0.0
CN 104.9 107.3 2.4 107.2 2.3
HCN 31.5 32.7 1.2 32.6 1.1
CO −26.4 −23.5 2.9 −23.6 2.8
CHO 10.0 7.2 −2.8 7.1 −2.9
CH2O −26.0 −25.7 0.3 −25.9 0.1
CH3OH −48.0 −46.3 1.7 −46.4 1.6
N2 0.0 3.2 3.2 3.1 3.1
N2H4 22.8 22.7 −0.1 22.5 −0.3
NO 21.6 20.5 −1.1 20.3 −1.3
O2 0.0 −4.2 −4.2 −4.3 −4.3
H2O2 −32.5 −27.6 4.9 −27.7 4.8
F2 0.0 4.5 4.5 4.4 4.4
CO2 −94.1 −98.3 −4.2 −98.6 −4.5
Na2 34.0 34.8 0.8 34.8 0.8
Si2 139.9 137.6 −2.3 137.5 −2.4
P2 34.3 39.4 5.1 39.3 5.0
S2 30.7 26.1 −4.6 26.0 −4.7
Cl2 0.0 −0.8 −0.8 −1.0 −1.0
NaCl −43.6 −40.1 3.5 −40.1 3.5
SiO −24.6 −14.7 9.9 −14.8 9.8
CS 66.9 70.1 3.2 70.0 3.1
SO 1.2 −0.2 −1.4 −0.3 −1.5
ClO 24.2 21.9 −2.3 21.7 −2.5
ClF −13.2 −12.4 0.8 −12.6 0.6
Si2H6 19.1 27.2 8.1 26.9 7.8
CH3Cl −19.6 −21.1 −1.5 −21.2 −1.6
CH3SH −5.5 −5.2 0.3 −5.4 0.1
HOCl −17.8 −16.3 1.5 −16.4 1.4
SO2 −71.0 −64.4 6.6 −64.7 6.3
G3-2 subset

BF3 −271.4 −269.4 2.0 −269.6 1.8
BCl3 −96.3 −105.4 −9.1 −105.6 −9.3
AlF3 −289.0 −273.3 15.7 −273.4 15.6
AlCl3 −139.7 −140.5 −0.8 −140.6 −0.9
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

CF4 −223.0 −229.2 −6.2 −229.6 −6.6
CCl4 −22.9 −31.1 −8.2 −31.6 −8.7
COS −33.1 −39.1 −6.0 −39.4 −6.3
CS2 28.0 21.5 −6.5 21.3 −6.7
COF2 −149.1 −150.8 −1.7 −151.2 −2.1
SiF4 −386.0 −364.4 21.6 −364.7 21.3
SiCl4 −158.4 −158.2 0.2 −158.5 −0.1
N2O 19.6 14.0 −5.6 13.7 −5.9
NOCl 12.4 9.9 −2.5 9.4 −3.0
NF3 −31.6 −37.5 −5.9 −38.2 −6.6
PF3 −229.1 −219.2 9.9 −219.5 9.6
O3 34.1 40.9 6.8 40.4 6.3
F2O 5.9 7.8 1.9 7.3 1.4
ClF3 −38.0 −41.1 −3.1 −41.7 −3.7
CF2=CF2 −157.4 −174.1 −16.7 −174.6 −17.2
CCl2=CCl2 −3.0 −19.1 −16.1 −19.6 −16.6
CF3CN −118.4 −127.0 −8.6 −127.6 −9.2
CH3C≡CH (propyne) 44.2 41.0 −3.2 40.9 −3.3
CH2=C=CH2 (allene) 45.5 39.0 −6.5 38.8 −6.7
C3H4 (cyclopropene) 66.2 59.9 −6.3 59.7 −6.5
CH3CH=CH2 (propylene) 4.8 1.8 −3.0 1.6 −3.2
C3H6 (cyclopropane) 12.7 6.0 −6.7 5.8 −6.9
C3H8 (propane) −25.0 −26.5 −1.5 −26.8 −1.8
C4H6 (1,3-butadiene) 26.3 20.4 −5.9 20.1 −6.2
C4H6 (2-butyne) 34.8 28.5 −6.3 28.2 −6.6
C4H6 (methylene cyclopropane) 47.9 34.9 −13.0 34.6 −13.3
C4H6 (bicyclobutane) 51.9 40.2 −11.7 39.9 −12.0
C4H6 (cyclobutene) 37.4 29.1 −8.3 28.8 −8.6
C4H8 (cyclobutane) 6.8 −1.4 −8.2 −1.7 −8.5
C4H8 (isobutene) −4.0 −8.4 −4.4 −8.7 −4.7
C4H10 (butane) −30.0 −33.0 −3.0 −33.4 −3.4
C4H10 (isobutane) −32.1 −34.2 −2.1 −34.5 −2.4
C5H8 (spiropentane) 44.3 28.0 −16.3 27.6 −16.7
C6H6 (benzene) 19.7 1.2 −18.5 0.9 −18.8
CH2F2 −107.7 −109.8 −2.1 −110.0 −2.3
CHF3 −166.6 −170.5 −3.9 −170.9 −4.3
CH2Cl2 −22.8 −27.2 −4.4 −27.4 −4.6
CHCl3 −24.7 −31.2 −6.5 −31.5 −6.8
CH3NH2 (methylamine) −5.5 −5.1 0.4 −5.3 0.2
CH3CN (acetonitrile) 18.0 15.1 −2.9 14.9 −3.1
CH3NO2 (nitromethane) −17.8 −24.5 −6.7 −25.0 −7.2
CH3ONO (methyl nitrite) −15.9 −19.3 −3.4 −19.9 −4.0
CH3SiH3 (methyl silane) −7.0 −0.7 6.3 −0.9 6.1
HCOOH (formic acid) −90.5 −92.0 −1.5 −92.3 −1.8
HCOOCH3 (methyl formate) −85.0 −89.0 −4.0 −89.4 −4.4
CH3CONH2 (acetamide) −57.0 −62.4 −5.4 −62.7 −5.7
C2H4NH (aziridine) 30.2 23.6 −6.6 23.3 −6.9
(CN)2 (cyanogen) 73.3 69.3 −4.0 68.9 −4.4
(CH3)2NH (dimethylamine) −4.4 −6.0 −1.6 −6.3 −1.9
CH3CH2NH2 (ethylamine) −11.3 −13.5 −2.2 −13.8 −2.5
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

CH2=C=O (ketene) −11.4 −18.2 −6.8 −18.4 −7.0
C2H4O (oxirane) −12.6 −17.6 −5.0 −17.8 −5.2
CH3CHO (acetaldehyde) −39.7 −42.2 −2.5 −42.4 −2.7
HCOCHO (glyoxal) −50.7 −54.8 −4.1 −55.2 −4.5
CH3CH2OH (ethanol) −56.2 −56.1 0.1 −56.3 −0.1
CH3OCH3 (dimethyl ether) −44.0 −44.3 −0.3 −44.6 −0.6
C2H4S (thiirane) 19.6 13.0 −6.6 12.8 −6.8
(CH3)2SO (dimethyl sulfoxide) −36.2 −35.9 0.3 −36.3 −0.1
C2H5SH (ethanethiol) −11.1 −12.1 −1.0 −12.4 −1.3
CH3SCH3 (dimethyl sulfide) −8.9 −10.4 −1.5 −10.7 −1.8
CH2=CHF (vinyl fluoride) −33.2 −37.8 −4.6 −38.0 −4.8
C2H5Cl (ethyl chloride) −26.8 −30.0 −3.2 −30.2 −3.4
CH2=CHCl (vinyl chloride) 8.9 0.6 −8.3 0.3 −8.6
CH2=CHCN (acrylonitrile) 43.2 39.3 −3.9 39.0 −4.2
CH3COCH3 (acetone) −51.9 −56.2 −4.3 −56.6 −4.7
CH3COOH (acetic acid) −103.4 −106.7 −3.3 −107.1 −3.7
CH3COF (acetyl fluoride) −105.7 −110.3 −4.6 −110.7 −5.0
CH3COCl (acetyl chloride) −58.0 −64.4 −6.4 −64.8 −6.8
CH3CH2CH2Cl (propyl chloride) −31.5 −36.5 −5.0 −36.8 −5.3
(CH3)2CHOH (isopropanol) −65.2 −66.2 −1.0 −66.6 −1.4
C2H5OCH3 (methyl ethyl ether) −51.7 −54.0 −2.3 −54.4 −2.7
(CH3)3N (trimethylamine) −5.7 −9.0 −3.3 −9.3 −3.6
C4H4O (furan) −8.3 −21.7 −13.4 −22.0 −13.7
C4H4S (thiophene) 27.5 14.1 −13.4 13.7 −13.8
C4H5N (pyrrole) 25.9 9.8 −16.1 9.5 −16.4
C5H5N (pyridine) 33.6 14.2 −19.4 13.8 −19.8
H2 0.0 5.3 5.3 5.3 5.3
SH 34.2 34.1 −0.1 34.1 −0.1
C≡CH (2A′,Cs) 135.1 134.2 −0.9 134.2 −0.9
CH=CH2 (2A′,Cs) 71.6 66.5 −5.1 66.4 −5.2
CH3CO (2A′,Cs) −2.4 −8.3 −5.9 −8.6 −6.2
CH2OH (2A,C1) −4.1 −6.4 −2.3 −6.6 −2.5
CH3O (2A′,Cs) 4.1 0.6 −3.5 0.4 −3.7
CH3CH2O (2A′′,Cs) −3.7 −10.1 −6.4 −10.5 −6.8
CH3S (2A′,Cs) 29.8 26.3 −3.5 26.1 −3.7
CH3CH2 (2A′,Cs) 28.9 24.9 −4.0 24.7 −4.2
(CH3)2CH (2A′,Cs) 21.5 14.8 −6.7 14.5 −7.0
(CH3)3C (t-butyl radical, C3v) 12.3 4.5 −7.8 4.2 −8.1
NO2 7.9 0.6 −7.3 0.3 −7.6
G3-3 subset

CH2=C=CHCH3 (1,2-butadiene) 38.8 30.5 −8.3 30.2 −8.6
CH2=CH–C(CH3)=CH2 (isoprene) 18.0 11.0 −7.0 10.5 −7.5
C5H12 (n-pentane) −35.1 −39.4 −4.3 −39.9 −4.8
C(CH3)4 (neopentane) −40.2 −42.0 −1.8 −42.5 −2.3
C6H8 (1,3-cyclohexadiene) 25.4 12.0 −13.4 11.5 −13.9
C6H8 (1,4-cyclohexadiene) 25.0 11.8 −13.2 11.3 −13.7
C6H12 (cyclohexane) −29.5 −38.5 −9.0 −39.0 −9.5
C6H14 (n-hexane) −39.9 −45.8 −5.9 −46.4 −6.5
C6H14 (3-methyl pentane) −41.1 −45.2 −4.1 −45.8 −4.7
C6H5CH3 (toluene) 12.0 −7.9 −19.9 −8.4 −20.4
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

C7H16 (n-heptane) −44.9 −52.3 −7.4 −52.9 −8.0
C8H8 (1,3,5,7-cyclooctatetraene) 70.7 52.0 −18.7 51.2 −19.5
C8H18 (n-octane) −49.9 −58.7 −8.8 −59.4 −9.5
C10H8 (naphthalene) 35.9 0.9 −35.0 0.3 −35.6
C10H8 (azulene) 69.1 35.1 −34.0 34.5 −34.6
CH3COOCH3 (methyl acetate) −98.4 −103.2 −4.8 −103.7 −5.3
(CH3)3COH (t-butanol) −74.7 −75.7 −1.0 −76.2 −1.5
C6H5NH2 (aniline) 20.8 −1.0 −21.8 −1.5 −22.3
C6H5OH (phenol) −23.0 −42.1 −19.1 −42.6 −19.6
CH2=CH–O–CH=CH2 (divinyl ether) −3.3 −10.9 −7.6 −11.4 −8.1
C4H8O (tetrahydrofuran) −44.0 −51.3 −7.3 −51.8 −7.8
C5H8O (cyclopentanone) −45.9 −58.7 −12.8 −59.3 −13.4
C6H4O2 (1,4-benzoquinone) −29.4 −47.0 −17.6 −47.9 −18.5
C4H4N2 (pyrimidine) 46.8 25.2 −21.6 24.8 −22.0
(CH3)2SO2 (dimethyl sulfone) −89.2 −86.6 2.6 −87.1 2.1
C6H5Cl (chlorobenzene) 12.4 −9.7 −22.1 −10.1 −22.5
NC–CH2CH2–CN (succinonitrile) 50.1 42.0 −8.1 41.5 −8.6
C4H4N2 (pyrazine) 46.9 29.5 −17.4 29.0 −17.9
CH3COC≡CH (acetyl acetylene) 15.6 11.2 −4.4 10.7 −4.9
CH3–CH=CH–CHO (crotonaledehyde) −24.0 −33.0 −9.0 −33.5 −9.5
(CH3CO)2O (acetic anhydride) −136.8 −147.3 −10.5 −148.0 −11.2
C4H6S (2,5-dihydrothiophene) 20.8 10.0 −10.8 9.6 −11.2
CH3CH(CH3)CN (2-methyl propanenitrile) 5.6 2.0 −3.6 1.6 −4.0
CH3–CO–CH2CH3 (methyl ethyl ketone) −57.1 −62.9 −5.8 −63.4 −6.3
(CH3)2CH–CHO (isobutyraldehyde) −51.6 −55.4 −3.8 −55.8 −4.2
C4H8O2 (1,4-dioxane) −75.5 −83.0 −7.5 −83.7 −8.2
C4H8S (tetrahydrothiophene) −8.2 −15.9 −7.7 −16.4 −8.2
(CH3)3C–Cl (t-butyl chloride) −43.5 −48.1 −4.6 −48.5 −5.0
CH3CH2CH2CH2Cl (n-butyl chloride) −37.0 −42.8 −5.8 −43.3 −6.3
C4H8NH (pyrrolidine) −0.8 −10.0 −9.2 −10.4 −9.6
CH3CH2CH(NO2)CH3 (2-nitrobutane) −39.1 −48.5 −9.4 −49.2 −10.1
CH3CH2OCH2CH3 (diethyl ether) −60.3 −63.7 −3.4 −64.1 −3.8
CH3–CH(OCH3)2 (1,1-dimethoxy ethane) −93.1 −95.6 −2.5 −96.2 −3.1
(CH3)3C–SH (t-butanethiole) −26.2 −28.2 −2.0 −28.7 −2.5
(CH3CH2S)2 (diethyl disulfide) −17.9 −22.5 −4.6 −23.1 −5.2
(CH3)3C–NH2 (t-butylamine) −28.9 −31.1 −2.2 −31.6 −2.7
Si(CH3)4 (tetramethyl silane) −55.7 −49.3 6.4 −49.7 6.0
C5H6S (2-methyl thiopehene) 20.0 4.9 −15.1 4.4 −15.6
C5H7N (N-methyl pyrrole) 24.6 7.4 −17.2 7.0 −17.6
C5H10O (tetrahydropyran) −53.4 −61.5 −8.1 −62.1 −8.7
C2H5COC2H5 (diethyl ketone) −61.6 −69.4 −7.8 −70.0 −8.4
CH3COOCH(CH3)2 (isopropyl acetate) −115.1 −122.2 −7.1 −122.9 −7.8
C5H10S (tetrahydrothiopyran) −15.2 −24.1 −8.9 −24.7 −9.5
C5H10NH (piperidine) −11.3 −20.6 −9.3 −21.2 −9.9
(CH3)3COCH3 (t-butyl methyl ether) −67.8 −70.0 −2.2 −70.6 −2.8
C6H4F2 (1,3-difluorobenzene) −73.9 −98.7 −24.8 −99.3 −25.4
C6H4F2 (1,4-difluorobenzene) −73.3 −97.9 −24.6 −98.4 −25.1
C6H5F (fluorobenzene) −27.7 −49.0 −21.3 −49.5 −21.8
(CH3)2CHOCH(CH3)2 (diisopropyl ether) −76.3 −80.6 −4.3 −81.3 −5.0
PF5 −381.1 −366.1 15.0 −366.6 14.5

Continued on next page



64 CHAPTER A. STANDARD ENTHALPIES OF FORMATION OF G3 TEST SET

Table A.3 – continued from previous page

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

SF6 −291.7 −285.6 6.1 −286.3 5.4
P4 14.1 10.0 −4.1 9.6 −4.5
SO3 −94.6 −89.0 5.6 −89.5 5.1
SCl2 −4.2 −6.9 −2.7 −7.3 −3.1
POCl3 −133.8 −133.0 0.8 −133.4 0.4
PCl5 −86.1 −93.3 −7.2 −93.8 −7.7
SO2Cl2 −84.8 −83.2 1.6 −83.7 1.1
PCl3 −69.0 −71.6 −2.6 −72.0 −3.0
S2Cl2 −4.0 −11.7 −7.7 −12.3 −8.3
SiCl2 (

1A1) −40.3 −40.0 0.3 −40.2 0.1
CF3Cl −169.5 −177.5 −8.0 −177.9 −8.4
C2F6 −321.3 −333.1 −11.8 −333.8 −12.5
CF3 −111.3 −121.0 −9.7 −121.3 −10.0
C5H10 (cyclopentane) −18.3 −27.2 −8.9 −27.6 −9.3
C6H5 (phenyl radical) 81.2 58.0 −23.2 57.6 −23.6



Appendix B

Standard enthalpies of formation of G3-2

test set using Dunning’s

correlation-consistent basis sets

Table B.1: Standard enthalpies of formation (in kcal/mol) for the G3-2

molecules computed using cc-pVDZ basis set. All values are in kcal/mol

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

BF3 −271.4 −257.7 13.7 −257.8 13.6
BCl3 −96.3 −98.3 −2.0 −98.5 −2.2
AlF3 −289.0 −246.7 42.3 −246.8 42.2
AlCl3 −139.7 −124.9 14.8 −125.0 14.7
CF4 −223.0 −222.8 0.2 −223.2 −0.2
CCl4 −22.9 −19.4 3.5 −19.9 3.0
COS −33.1 −31.2 1.9 −31.4 1.7
CS2 28.0 30.6 2.6 30.4 2.4
COF2 −149.1 −143.6 5.5 −144.0 5.1
SiF4 −386.0 −319.0 67.0 −319.2 66.8
SiCl4 −158.4 −137.7 20.7 −138.0 20.4
N2O 19.6 20.6 1.0 20.3 0.7
NOCl 12.4 13.8 1.4 13.5 1.1
NF3 −31.6 −29.6 2.0 −30.2 1.4
PF3 −229.1 −187.0 42.1 −187.3 41.8
O3 34.1 46.5 12.4 46.1 12.0
F2O 5.9 11.0 5.1 10.5 4.6
ClF3 −38.0 −13.9 24.1 −14.4 23.6
CF2=CF2 −157.4 −162.8 −5.4 −163.3 −5.9
CCl2=CCl2 −3.0 −3.5 −0.5 −4.0 −1.0
CF3CN −118.4 −116.2 2.2 −116.7 1.7
CH3C≡CH (propyne) 44.2 52.4 8.2 52.3 8.1
CH2=C=CH2 (allene) 45.5 49.7 4.2 49.5 4.0
C3H4 (cyclopropene) 66.2 69.9 3.7 69.8 3.6
CH3CH=CH2 (propylene) 4.8 12.3 7.5 12.1 7.3
C3H6 (cyclopropane) 12.7 16.5 3.8 16.3 3.6
C3H8 (propane) −25.0 −16.0 9.0 −16.2 8.8
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

C4H6 (1,3-butadiene) 26.3 33.2 6.9 32.9 6.6
C4H6 (2-butyne) 34.8 42.4 7.6 42.1 7.3
C4H6 (methylene cyclopropane) 47.9 47.6 −0.3 47.4 −0.5
C4H6 (bicyclobutane) 51.9 52.0 0.1 51.8 −0.1
C4H6 (cyclobutene) 37.4 40.1 2.7 39.8 2.4
C4H8 (cyclobutane) 6.8 10.1 3.3 9.9 3.1
C4H8 (isobutene) −4.0 4.8 8.8 4.5 8.5
C4H10 (butane) −30.0 −19.9 10.1 −20.2 9.8
C4H10 (isobutane) −32.1 −20.9 11.2 −21.2 10.9
C5H8 (spiropentane) 44.3 43.0 −1.3 42.7 −1.6
C6H6 (benzene) 19.7 15.9 −3.8 15.6 −4.1
CH2F2 −107.7 −100.5 7.2 −100.7 7.0
CHF3 −166.6 −162.1 4.5 −162.5 4.1
CH2Cl2 −22.8 −18.2 4.6 −18.4 4.4
CHCl3 −24.7 −20.5 4.2 −20.9 3.8
CH3NH2 (methylamine) −5.5 6.3 11.8 6.2 11.7
CH3CN (acetonitrile) 18.0 25.1 7.1 24.9 6.9
CH3NO2 (nitromethane) −17.8 −13.2 4.6 −13.6 4.2
CH3ONO (methyl nitrite) −15.9 −9.9 6.0 −10.4 5.5
CH3SiH3 (methyl silane) −7.0 10.1 17.1 9.9 16.9
HCOOH (formic acid) −90.5 −82.2 8.3 −82.4 8.1
HCOOCH3 (methyl formate) −85.0 −76.7 8.3 −77.0 8.0
CH3CONH2 (acetamide) −57.0 −47.0 10.0 −47.3 9.7
C2H4NH (aziridine) 30.2 35.8 5.6 35.6 5.4
(CN)2 (cyanogen) 73.3 80.2 6.9 79.8 6.5
(CH3)2NH (dimethylamine) −4.4 6.8 11.2 6.6 11.0
CH3CH2NH2 (ethylamine) −11.3 −0.1 11.2 −0.3 11.0
CH2=C=O (ketene) −11.4 −9.2 2.2 −9.4 2.0
C2H4O (oxirane) −12.6 −6.5 6.1 −6.7 5.9
CH3CHO (acetaldehyde) −39.7 −32.5 7.2 −32.7 7.0
HCOCHO (glyoxal) −50.7 −44.5 6.2 −44.8 5.9
CH3CH2OH (ethanol) −56.2 −42.9 13.3 −43.1 13.1
CH3OCH3 (dimethyl ether) −44.0 −32.7 11.3 −33.0 11.0
C2H4S (thiirane) 19.6 23.6 4.0 23.5 3.9
(CH3)2SO (dimethyl sulfoxide) −36.2 −2.1 34.1 −2.5 33.7
C2H5SH (ethanethiol) −11.1 −0.9 10.2 −1.1 10.0
CH3SCH3 (dimethyl sulfide) −8.9 2.0 10.9 1.8 10.7
CH2=CHF (vinyl fluoride) −33.2 −28.4 4.8 −28.6 4.6
C2H5Cl (ethyl chloride) −26.8 −20.3 6.5 −20.5 6.3
CH2=CHCl (vinyl chloride) 8.9 10.0 1.1 9.8 0.9
CH2=CHCN (acrylonitrile) 43.2 51.6 8.4 51.3 8.1
CH3COCH3 (acetone) −51.9 −43.8 8.1 −44.1 7.8
CH3COOH (acetic acid) −103.4 −94.1 9.3 −94.4 9.0
CH3COF (acetyl fluoride) −105.7 −99.9 5.8 −100.2 5.5
CH3COCl (acetyl chloride) −58.0 −54.0 4.0 −54.4 3.6
CH3CH2CH2Cl (propyl chloride) −31.5 −24.0 7.5 −24.3 7.2
(CH3)2CHOH (isopropanol) −65.2 −50.8 14.4 −51.1 14.1
C2H5OCH3 (methyl ethyl ether) −51.7 −39.9 11.8 −40.3 11.4
(CH3)3N (trimethylamine) −5.7 5.7 11.4 5.3 11.0
C4H4O (furan) −8.3 −9.1 −0.8 −9.4 −1.1
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

C4H4S (thiophene) 27.5 29.8 2.3 29.5 2.0
C4H5N (pyrrole) 25.9 24.5 −1.4 24.2 −1.7
C5H5N (pyridine) 33.6 29.4 −4.2 29.1 −4.5
H2 0.0 7.4 7.4 7.4 7.4
SH 34.2 36.8 2.6 36.8 2.6
C≡CH (2A′,Cs) 135.1 141.1 6.0 141.0 5.9
CH=CH2 (2A′,Cs) 71.6 73.9 2.3 73.8 2.2
CH3CO (2A′,Cs) −2.4 0.7 3.1 0.5 2.9
CH2OH (2A,C1) −4.1 3.1 7.2 3.0 7.1
CH3O (2A′,Cs) 4.1 7.9 3.8 7.7 3.6
CH3CH2O (2A′′,Cs) −3.7 −0.4 3.3 −0.7 3.0
CH3S (2A′,Cs) 29.8 32.9 3.1 32.8 3.0
CH3CH2 (2A′,Cs) 28.9 32.6 3.7 32.5 3.6
(CH3)2CH (2A′,Cs) 21.5 25.0 3.5 24.8 3.3
(CH3)3C (t-butyl radical, C3v) 12.3 17.3 5.0 17.0 4.7
NO2 7.9 5.9 −2.0 5.6 −2.3

Table B.2: Standard enthalpies of formation (in kcal/mol) for the G3-2

molecules computed using cc-pVTZ basis set. All values are in kcal/mol

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

BF3 −271.4 −269.2 2.2 −269.4 2.0
BCl3 −96.3 −100.8 −4.5 −101.0 −4.7
AlF3 −289.0 −268.2 20.8 −268.3 20.7
AlCl3 −139.7 −135.4 4.3 −135.5 4.2
CF4 −223.0 −227.7 −4.7 −228.1 −5.1
CCl4 −22.9 −24.9 −2.0 −25.4 −2.5
COS −33.1 −36.3 −3.2 −36.5 −3.4
CS2 28.0 25.2 −2.8 25.0 −3.0
COF2 −149.1 −149.1 0.0 −149.5 −0.4
SiF4 −386.0 −359.4 26.6 −359.6 26.4
SiCl4 −158.4 −151.7 6.7 −152.0 6.4
N2O 19.6 15.0 −4.6 14.7 −4.9
NOCl 12.4 11.2 −1.2 10.8 −1.6
NF3 −31.6 −36.1 −4.5 −36.8 −5.2
PF3 −229.1 −214.4 14.7 −214.7 14.4
O3 34.1 42.0 7.9 41.6 7.5
F2O 5.9 6.7 0.8 6.2 0.3
ClF3 −38.0 −34.6 3.4 −35.1 2.9
CF2=CF2 −157.4 −171.2 −13.8 −171.7 −14.3
CCl2=CCl2 −3.0 −12.2 −9.2 −12.7 −9.7
CF3CN −118.4 −124.5 −6.1 −125.0 −6.6
CH3C≡CH (propyne) 44.2 41.7 −2.5 41.5 −2.7
CH2=C=CH2 (allene) 45.5 39.8 −5.7 39.6 −5.9
C3H4 (cyclopropene) 66.2 60.8 −5.4 60.6 −5.6
CH3CH=CH2 (propylene) 4.8 2.4 −2.4 2.2 −2.6
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Table B.2 – continued from previous page

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

C3H6 (cyclopropane) 12.7 6.7 −6.0 6.5 −6.2
C3H8 (propane) −25.0 −26.2 −1.2 −26.5 −1.5
C4H6 (1,3-butadiene) 26.3 21.3 −5.0 21.0 −5.3
C4H6 (2-butyne) 34.8 29.3 −5.5 29.0 −5.8
C4H6 (methylene cyclopropane) 47.9 35.9 −12.0 35.7 −12.2
C4H6 (bicyclobutane) 51.9 41.5 −10.4 41.3 −10.6
C4H6 (cyclobutene) 37.4 30.0 −7.4 29.7 −7.7
C4H8 (cyclobutane) 6.8 −0.6 −7.4 −0.9 −7.7
C4H8 (isobutene) −4.0 −7.7 −3.7 −8.0 −4.0
C4H10 (butane) −30.0 −32.5 −2.5 −32.8 −2.8
C4H10 (isobutane) −32.1 −33.6 −1.5 −33.9 −1.8
C5H8 (spiropentane) 44.3 29.4 −14.9 29.0 −15.3
C6H6 (benzene) 19.7 2.4 −17.3 2.1 −17.6
CH2F2 −107.7 −107.7 0.0 −107.9 −0.2
CHF3 −166.6 −168.6 −2.0 −168.9 −2.3
CH2Cl2 −22.8 −24.2 −1.4 −24.4 −1.6
CHCl3 −24.7 −26.6 −1.9 −27.0 −2.3
CH3NH2 (methylamine) −5.5 −3.3 2.2 −3.5 2.0
CH3CN (acetonitrile) 18.0 16.4 −1.6 16.2 −1.8
CH3NO2 (nitromethane) −17.8 −21.7 −3.9 −22.2 −4.4
CH3ONO (methyl nitrite) −15.9 −17.1 −1.2 −17.6 −1.7
CH3SiH3 (methyl silane) −7.0 0.9 7.9 0.7 7.7
HCOOH (formic acid) −90.5 −89.4 1.1 −89.6 0.9
HCOOCH3 (methyl formate) −85.0 −86.2 −1.2 −86.6 −1.6
CH3CONH2 (acetamide) −57.0 −59.3 −2.3 −59.7 −2.7
C2H4NH (aziridine) 30.2 25.5 −4.7 25.3 −4.9
(CN)2 (cyanogen) 73.3 71.3 −2.0 71.0 −2.3
(CH3)2NH (dimethylamine) −4.4 −4.3 0.1 −4.5 −0.1
CH3CH2NH2 (ethylamine) −11.3 −11.8 −0.5 −12.0 −0.7
CH2=C=O (ketene) −11.4 −16.6 −5.2 −16.8 −5.4
C2H4O (oxirane) −12.6 −15.6 −3.0 −15.8 −3.2
CH3CHO (acetaldehyde) −39.7 −40.4 −0.7 −40.6 −0.9
HCOCHO (glyoxal) −50.7 −51.7 −1.0 −52.1 −1.4
CH3CH2OH (ethanol) −56.2 −53.9 2.3 −54.1 2.1
CH3OCH3 (dimethyl ether) −44.0 −42.5 1.5 −42.8 1.2
C2H4S (thiirane) 19.6 14.8 −4.8 14.6 −5.0
(CH3)2SO (dimethyl sulfoxide) −36.2 −28.3 7.9 −28.7 7.5
C2H5SH (ethanethiol) −11.1 −10.3 0.8 −10.5 0.6
CH3SCH3 (dimethyl sulfide) −8.9 −8.7 0.2 −9.0 −0.1
CH2=CHF (vinyl fluoride) −33.2 −36.4 −3.2 −36.6 −3.4
C2H5Cl (ethyl chloride) −26.8 −28.2 −1.4 −28.4 −1.6
CH2=CHCl (vinyl chloride) 8.9 2.4 −6.5 2.2 −6.7
CH2=CHCN (acrylonitrile) 43.2 40.8 −2.4 40.5 −2.7
CH3COCH3 (acetone) −51.9 −54.2 −2.3 −54.6 −2.7
CH3COOH (acetic acid) −103.4 −103.9 −0.5 −104.2 −0.8
CH3COF (acetyl fluoride) −105.7 −108.1 −2.4 −108.5 −2.8
CH3COCl (acetyl chloride) −58.0 −61.5 −3.5 −61.9 −3.9
CH3CH2CH2Cl (propyl chloride) −31.5 −34.4 −2.9 −34.7 −3.2
(CH3)2CHOH (isopropanol) −65.2 −63.9 1.3 −64.2 1.0
C2H5OCH3 (methyl ethyl ether) −51.7 −52.2 −0.5 −52.6 −0.9
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

(CH3)3N (trimethylamine) −5.7 −7.2 −1.5 −7.5 −1.8
C4H4O (furan) −8.3 −19.7 −11.4 −20.1 −11.8
C4H4S (thiophene) 27.5 17.0 −10.5 16.7 −10.8
C4H5N (pyrrole) 25.9 12.0 −13.9 11.7 −14.2
C5H5N (pyridine) 33.6 16.5 −17.1 16.1 −17.5
H2 0.0 5.2 5.2 5.2 5.2
SH 34.2 35.1 0.9 35.0 0.8
C≡CH (2A′,Cs) 135.1 134.7 −0.4 134.6 −0.5
CH=CH2 (2A′,Cs) 71.6 67.1 −4.5 67.0 −4.6
CH3CO (2A′,Cs) −2.4 −6.4 −4.0 −6.7 −4.3
CH2OH (2A,C1) −4.1 −4.4 −0.3 −4.5 −0.4
CH3O (2A′,Cs) 4.1 2.1 −2.0 1.8 −2.3
CH3CH2O (2A′′,Cs) −3.7 −8.6 −4.9 −8.9 −5.2
CH3S (2A′,Cs) 29.8 27.3 −2.5 27.1 −2.7
CH3CH2 (2A′,Cs) 28.9 25.2 −3.7 25.1 −3.8
(CH3)2CH (2A′,Cs) 21.5 15.3 −6.2 15.0 −6.5
(CH3)3C (t-butyl radical, C3v) 12.3 5.2 −7.1 4.8 −7.5
NO2 7.9 2.2 −5.7 1.9 −6.0

Table B.3: Standard enthalpies of formation (in kcal/mol) for the G3-2

molecules computed using cc-pVQZ basis set. All values are in kcal/mol

Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

BF3 −271.4 −268.9 2.5 −269.1 2.3
BCl3 −96.3 −101.6 −5.3 −101.8 −5.5
AlF3 −289.0 −275.1 13.9 −275.2 13.8
AlCl3 −139.7 −137.5 2.2 −137.6 2.1
CF4 −223.0 −226.8 −3.8 −227.3 −4.3
CCl4 −22.9 −26.8 −3.9 −27.3 −4.4
COS −33.1 −37.6 −4.5 −37.8 −4.7
CS2 28.0 23.5 −4.5 23.3 −4.7
COF2 −149.1 −149.2 −0.1 −149.6 −0.5
SiF4 −386.0 −367.2 18.8 −367.4 18.6
SiCl4 −158.4 −154.6 3.8 −154.8 3.6
N2O 19.6 14.1 −5.5 13.8 −5.8
NOCl 12.4 10.5 −1.9 10.1 −2.3
NF3 −31.6 −36.6 −5.0 −37.3 −5.7
PF3 −229.1 −219.2 9.9 −219.5 9.6
O3 34.1 41.1 7.0 40.6 6.5
F2O 5.9 6.8 0.9 6.3 0.4
ClF3 −38.0 −39.1 −1.1 −39.7 −1.7
CF2=CF2 −157.4 −171.2 −13.8 −171.8 −14.4
CCl2=CCl2 −3.0 −14.6 −11.6 −15.1 −12.1
CF3CN −118.4 −124.5 −6.1 −125.1 −6.7
CH3C≡CH (propyne) 44.2 40.8 −3.4 40.6 −3.6
CH2=C=CH2 (allene) 45.5 39.0 −6.5 38.7 −6.8
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

C3H4 (cyclopropene) 66.2 59.8 −6.4 59.6 −6.6
CH3CH=CH2 (propylene) 4.8 1.6 −3.2 1.4 −3.4
C3H6 (cyclopropane) 12.7 5.8 −6.9 5.6 −7.1
C3H8 (propane) −25.0 −26.9 −1.9 −27.2 −2.2
C4H6 (1,3-butadiene) 26.3 20.3 −6.0 19.9 −6.4
C4H6 (2-butyne) 34.8 28.2 −6.6 27.9 −6.9
C4H6 (methylene cyclopropane) 47.9 34.8 −13.1 34.5 −13.4
C4H6 (bicyclobutane) 51.9 40.2 −11.7 40.0 −11.9
C4H6 (cyclobutene) 37.4 28.9 −8.5 28.5 −8.9
C4H8 (cyclobutane) 6.8 −1.6 −8.4 −1.9 −8.7
C4H8 (isobutene) −4.0 −8.7 −4.7 −9.1 −5.1
C4H10 (butane) −30.0 −33.4 −3.4 −33.8 −3.8
C4H10 (isobutane) −32.1 −34.5 −2.4 −34.9 −2.8
C5H8 (spiropentane) 44.3 27.9 −16.4 27.6 −16.7
C6H6 (benzene) 19.7 0.8 −18.9 0.5 −19.2
CH2F2 −107.7 −108.2 −0.5 −108.5 −0.8
CHF3 −166.6 −168.5 −1.9 −168.9 −2.3
CH2Cl2 −22.8 −25.2 −2.4 −25.4 −2.6
CHCl3 −24.7 −28.0 −3.3 −28.4 −3.7
CH3NH2 (methylamine) −5.5 −4.7 0.8 −4.8 0.7
CH3CN (acetonitrile) 18.0 15.3 −2.7 15.1 −2.9
CH3NO2 (nitromethane) −17.8 −23.4 −5.6 −23.9 −6.1
CH3ONO (methyl nitrite) −15.9 −18.1 −2.2 −18.7 −2.8
CH3SiH3 (methyl silane) −7.0 −0.7 6.3 −0.9 6.1
HCOOH (formic acid) −90.5 −90.5 0.0 −90.8 −0.3
HCOOCH3 (methyl formate) −85.0 −87.4 −2.4 −87.8 −2.8
CH3CONH2 (acetamide) −57.0 −61.2 −4.2 −61.6 −4.6
C2H4NH (aziridine) 30.2 24.1 −6.1 23.8 −6.4
(CN)2 (cyanogen) 73.3 70.0 −3.3 69.6 −3.7
(CH3)2NH (dimethylamine) −4.4 −5.6 −1.2 −5.9 −1.5
CH3CH2NH2 (ethylamine) −11.3 −13.3 −2.0 −13.5 −2.2
CH2=C=O (ketene) −11.4 −17.5 −6.1 −17.7 −6.3
C2H4O (oxirane) −12.6 −16.6 −4.0 −16.9 −4.3
CH3CHO (acetaldehyde) −39.7 −41.4 −1.7 −41.7 −2.0
HCOCHO (glyoxal) −50.7 −53.1 −2.4 −53.5 −2.8
CH3CH2OH (ethanol) −56.2 −55.3 0.9 −55.5 0.7
CH3OCH3 (dimethyl ether) −44.0 −43.5 0.5 −43.8 0.2
C2H4S (thiirane) 19.6 13.6 −6.0 13.4 −6.2
(CH3)2SO (dimethyl sulfoxide) −36.2 −33.1 3.1 −33.6 2.6
C2H5SH (ethanethiol) −11.1 −11.4 −0.3 −11.7 −0.6
CH3SCH3 (dimethyl sulfide) −8.9 −9.9 −1.0 −10.2 −1.3
CH2=CHF (vinyl fluoride) −33.2 −37.0 −3.8 −37.2 −4.0
C2H5Cl (ethyl chloride) −26.8 −29.0 −2.2 −29.3 −2.5
CH2=CHCl (vinyl chloride) 8.9 1.5 −7.4 1.3 −7.6
CH2=CHCN (acrylonitrile) 43.2 39.5 −3.7 39.2 −4.0
CH3COCH3 (acetone) −51.9 −55.5 −3.6 −55.9 −4.0
CH3COOH (acetic acid) −103.4 −105.2 −1.8 −105.6 −2.2
CH3COF (acetyl fluoride) −105.7 −109.0 −3.3 −109.3 −3.6
CH3COCl (acetyl chloride) −58.0 −62.7 −4.7 −63.1 −5.1
CH3CH2CH2Cl (propyl chloride) −31.5 −35.5 −4.0 −35.8 −4.3
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Expt. PBE0-EXX PBE0-HFX

Molecule ∆fH
◦
298 ∆fH

◦
298 Deviation ∆fH

◦
298 Deviation

(CH3)2CHOH (isopropanol) −65.2 −65.4 −0.2 −65.8 −0.6
C2H5OCH3 (methyl ethyl ether) −51.7 −53.3 −1.6 −53.7 −2.0
(CH3)3N (trimethylamine) −5.7 −8.7 −3.0 −9.1 −3.4
C4H4O (furan) −8.3 −21.0 −12.7 −21.4 −13.1
C4H4S (thiophene) 27.5 14.8 −12.7 14.4 −13.1
C4H5N (pyrrole) 25.9 10.1 −15.8 9.8 −16.1
C5H5N (pyridine) 33.6 14.5 −19.1 14.1 −19.5
H2 0.0 5.2 5.2 5.2 5.2
SH 34.2 34.6 0.4 34.6 0.4
C≡CH (2A′,Cs) 135.1 134.0 −1.1 134.0 −1.1
CH=CH2 (2A′,Cs) 71.6 66.5 −5.1 66.3 −5.3
CH3CO (2A′,Cs) −2.4 −7.6 −5.2 −7.8 −5.4
CH2OH (2A,C1) −4.1 −5.5 −1.4 −5.6 −1.5
CH3O (2A′,Cs) 4.1 1.4 −2.7 1.1 −3.0
CH3CH2O (2A′′,Cs) −3.7 −9.5 −5.8 −9.9 −6.2
CH3S (2A′,Cs) 29.8 26.6 −3.2 26.4 −3.4
CH3CH2 (2A′,Cs) 28.9 24.7 −4.2 24.5 −4.4
(CH3)2CH (2A′,Cs) 21.5 14.5 −7.0 14.2 −7.3
(CH3)3C (t-butyl radical, C3v) 12.3 4.2 −8.1 3.8 −8.5
NO2 7.9 1.3 −6.6 0.9 −7.0
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