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Abstract
Cancer chemotherapy responses have been related to multiple pharmacoge-
netic biomarkers, often for the same drug. This study utilizes machine learn-
ing to derive multi-gene expression signatures that predict individual patient
responses to specific tyrosine kinase inhibitors, including erlotinib, gefitinib,
sorafenib, sunitinib, lapatinib and imatinib. Support vector machine (SVM)
learning was used to train mathematical models that distinguished sensitivity
from resistance to these drugs using a novel systems biology-based approach.
This began with expression of genes previously implicated in specific drug
responses, then expanded to evaluate geneswhose productswere related through
biochemical pathways and interactions. Optimal pathway-extended SVMs pre-
dicted responses in patients at accuracies of 70% (imatinib), 71% (lapatinib), 83%
(sunitinib), 83% (erlotinib), 88% (sorafenib) and 91% (gefitinib). These best per-
forming pathway-extended models demonstrated improved balance predicting
both sensitive and resistant patient categories, with many of these genes having
a known role in cancer aetiology. Ensemble machine learning-based averaging
of multiple pathway-extended models derived for an individual drug increased
accuracy to>70% for erlotinib, gefitinib, lapatinib and sorafenib. Through incor-
poration of novel cancer biomarkers, machine learning-based pathway-extended
signatures display strong efficacy predicting both sensitive and resistant patient
responses to chemotherapy.

KEYWORDS
biochemical pathways, gene signatures, machine learning, systems biology, tyrosine kinase
inhibitors
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1 INTRODUCTION

Selection of a chemotherapy regimen is largely determined
by efficacy of a drug in eligible subjects for a specific type
and stage of cancer, and considers duration, location
and magnitude of responses.1 Individuals progress to
second-line chemotherapeutic agents after demonstrating
or developing limited efficacy to or after relapse from
first-line chemotherapeutics.2,3 It is feasible to consider
personal differences in genomic responses as a means of
differentiating between acceptable chemotherapies with
otherwise similar response rates across populations of
eligible patients.4
Previously, we developed gene signatures that predict

patient responses to specific chemotherapies from gene
expression (GE) and copy number (CN) levels in a set of
distinct breast and/or bladder cancer cell lines,5 with each
line characterized by the drug concentration that inhibited
growth by half (GI50).6,7 Support vector machine (SVM)
and random forest machine learning (ML) models were
built for each drug using expression and/or CNvalues from
‘curated genes’ with evidence from published cancer liter-
ature of a contribution to the function or response to said
drug in cell lines or patients. This paper develops signa-
tures for tyrosine kinase inhibitors (TKIs),8 for which liter-
ature on genes associated with response is somewhatmore
limited.
We developed a novel technique for generating bio-

chemically inspired gene signature models by expanding
the pool of genes for ML to include genes both possess-
ing and lacking literature support. The premise for includ-
ing novel genes or gene products in these models is that
these candidates could be related to genes supported by
documented evidence through biochemical pathways or
interactions that also contribute to drug response. We then
compare conventional ML-based gene signatures to corre-
sponding pathway-extended (PE) versions for these TKIs.
Abnormal expression levels or mutations in tyrosine

kinases are often causally related to tumour angiogenesis9
andmetastasis10 in certain cancers.11,12 TKIs have emerged
as effective anti-cancer therapies, owing to their activity by
ATP-competitive inhibition of the catalytic binding site of
these kinases.13 Despite a conserved mechanism of action,
sorafenib, sunitinib, erlotinib, gefitinib, imatinib and
lapatinib preferentially inhibit different tyrosine kinase
targets and exhibit distinct pharmacokinetic profiles.13–15
Sorafenib and sunitinib both inhibit VEGFRs, PDGFRs,
FLT3R, RET and c-Kit.15,16 However, structural differences
produce different binding profiles. For example, in binding
VEGFR, sorafenib stabilizes the DFG-out inactive confor-
mation of the enzyme, which allows it to bind within an
allosteric pocket,17 whereas sunitinib binds in and around
the ATP-binding region, imparting lower kinase selectivity

and faster off-rates.18 Similarly, erlotinib and gefitinib are
both preferential inhibitors of EGFR, and share analogous
chemical structure19,20; but post-absorption, gefitinib is
localized to a greater extent in tumour tissue, whereas
erlotinib preferentially accumulates in plasma.21 Imatinib
is particularly selective for the ABL kinase,8,22,23 whereas
lapatinib binds to both EGFR and ERBB2.24 The specifici-
ties of TKIs for different tyrosine kinase targets and the
relative activities of those targets in different tumour types
largely determine which of these drugs are recommended
to treat individual clinical indications. These include
renal cell carcinoma (sunitinib, sorafenib), hepatocellular
carcinoma (sorafenib), pancreatic cancer (erlotinib), lung
cancer (erlotinib, gefitinib), breast cancer (lapatinib) and
chronic myelogenous leukaemia (imatinib).
Tumour cells can exhibit intrinsic or acquired resistance

to chemotherapy. Intrinsic responses refer to an inherent
capability to suppress the effects of treatment or render
treatment cytostatic to functional characteristics of these
cells. In acquired resistance, the tumourmutates or under-
goes epigenetic changes after an initial period of clini-
cal success that renders it impervious to treatment.25,26
Cytostasis is often achieved by inhibition of glycolytic
activity with signal transduction, with the largest group
of drugs targeting tyrosine kinases.27 On average, tumours
initially responsive to TKI treatments such as erlotinib and
gefitinib will progress again within a year of treatment.28,29
Intrinsic resistance to these TKI drugs tends to be uncom-
mon in EGFR-positive tumours.30
Recent studies have revealed novel pathways of resis-

tance and sensitivity to chemotherapeutic drugs.31,32 This
study aimed to generate models that comprehensively rep-
resent global drug responses by inclusion of novel genes
or gene products discoverable through their interactions
with gene products known to influence these responses.
We modify supervised ML-based models to systematically
identify novel biomarkers whose expression is related to
GI50. GE changes in cancer cell lines that expand con-
ventional gene signatures beyond an initial curated set of
genes are utilized, including or replacing the initial set
with other genes that interact with them. The resulting sig-
natures aim to improve accuracy of prediction of individ-
ual patient responses to chemotherapies targeted towards
tyrosine kinases.

2 METHODS

2.1 Data and pre-processing of cell line
and cancer patient data sets

Microarray GE, CN, and GI50 values of breast cancer cell
lines treated with erlotinib, gefitinib, imatinib, lapatinib,
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sorafenib and sunitinib (obtained from Daemen et al5)
were used to derive ML-based gene signatures that pre-
dict drug responses. The median GI50 values for these cell
lines were applied as the threshold distinguishing sensi-
tivity from resistance during ML. The median (range) of
GI50 values for erlotinib was 4.71 (4.18-6.54), gefitinib was
5.03 (4.48-6.45), imatinibwas 4.69 (3.82-5.81), sorafenibwas
4.27 (3.0-5.83) and sunitinib was 5.23 (4.70-5.98).5,6 For lap-
atinib, the thresholdwas set at theGI50 valuewith themax-
imumdifference relative to adjacent cell lines (4.94 [ranges
from 4.78 to 6.40]), because the GI50 of multiple cell lines
was equal to the median value.
Performance of these gene signatureswas assessed using

published studies of cancer patients treated with these
drugs. NCBI Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) sourced data sets contained
GE data and linked clinical outcomes of each patient
with non-small cell lung carcinoma (NSCLC; GSE61676,
N= 43)33 treatedwith erlotinib (in combinationwith beva-
cizumab), hepatocellular carcinoma (GSE109211, N= 67)34
treated with sorafenib, breast cancer (GSE66399, N = 31)35
treated with lapatinib (‘Arm B’ patient set only, which
received lapatinib in combination with paclitaxel, flu-
orouracil, epirubicin and cyclophosphamide), chronic
myelogenous leukaemia (GSE14671, N= 23)36 treated with
imatinib, breast cancer patients (GSE33658, N = 11)37
treated with gefitinib (in combination with anastrozole
and fulvestrant) and gliomas (GSE51305, N = 18)38 treated
with sunitinib. Each of these studies provided clinical
information that included a treatment outcome measure
that could then be utilized as a binary outcome mea-
sure for comparison with predictions made by various
models. These outcome measurements vary from study to
study. For patients treated with sorafenib or imatinib, a
chemotherapy response biomarker was used to distinguish
sensitive from resistant patients. For patients treated with
erlotinib or lapatinib, outcome (i.e. survival vs death) was
used as a surrogate for response. Cancer cellmigration data
distinguished patients sensitive versus resistant to suni-
tinib (where those with ‘moderate induction’ or ‘moder-
ate inhibition’ were defined as resistant, and those with
‘strong inhibition’ were considered sensitive to the drug).
Responses to gefitinib were classified based on Response
Evaluation Criteria In Solid Tumours (RECIST) guidelines
(where those with progressive disease are considered TKI
resistant).39
Patient selection criteria differed between studies.

In the GSE61676 study (erlotinib), patient data were
acquired from the SAKK 19/05 trial, where selection
criteria consisted of patients with newly diagnosed or
recurrent Stage IIIB or Stage IV NSCLC.33 In the sorafenib
study (GSE109211), tumour tissue was collected from the
STORM trial, which enrolled patients with hepatocellular

carcinoma with complete radiological response after
surgical resection or local ablation.34 The lapatinib study
(GSE66399) utilized data from the CHER-LOB study,
where female adults with HER2+ breast cancer were
selected.35 In the GSE33658 patient cohort, CD34+ cells
were isolated from peripheral blood collected from newly
diagnosed chronic-phase chronic myelogenous leukaemia
patients treated with imatinib.36 In the gefitinib study
(GSE33658), biopsies were taken from postmenopausal
womenwith newly diagnosed ER+ breast cancer receiving
anastrozole, fulvestrant and gefitinib.37 In the sunitinib
study (GSE51305), native glioma tissue samples were
collected from patients with a diagnosis of high-grade
glioma (WHO [World Health Organization] grade III or
IV) who underwent surgical resection.38
Different expression microarray platforms were used in

these GEO data sets, for example GSE66399, GSE61676 and
GSE51305 each measures GE values with distinct vendor
and gene sets. To minimize batch effects and apply the
cell line-based signatures to these patient data sets, the
data were first normalized on a common scale using quan-
tile normalization, according to our previously published
approach.40 If multiple microarray probes existed for the
same gene, themean of all probemeasurements was deter-
mined.

2.2 Multiple factor analysis and gene
set expansion

Genes associated with therapeutic response or function
were curated from previous peer-reviewed publications for
each TKI (refer to Additional References in the Support-
ing Information). Inclusion criteria were based on evi-
dence of the gene or protein contributing to pharmacoki-
netic or pharmacodynamic response, or were established
biomarkers of sensitivity or resistance. Multiple factor
analysis (MFA) was performed using cell line expression
and GI50 (concentration of drug inhibiting 50% growth)
data5 for each curated gene using theMFAPreselection soft-
ware we have developed (available in a Zenodo archive41).
The archive describes the algorithm used by MFAPrese-
lection to traverse pathway networks, dataflow within the
program, and software code. MFA determines the rela-
tionship between GI50 and GE and/or CN data for all
expressed genes as an angle that indicates the degree
to which expression or CN correlates either directly (∼0
degrees) or inversely (∼180 degrees) with the GI50 of the
set of cell lines.42,43 Circular plots, generated byMFAPres-
election, indicate this correlation angle (Figure 1).43MFAP-
reselection searches for known gene pseudonyms and
substitutes the correct alias (from www.genecards.org
[downloaded July 2016]). In the Daemen et al’s data

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.genecards.org
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F IGURE 1 Procedure for pathway gene selection. An initial set of genes with known associations to a particular TKI (here, we show
a subset of sorafenib-related genes) are selected and then evaluated by MFA, which was used to find a correlation between cell line drug
sensitivity (GI50) and the GE or CN of these genes in those cell lines (left). MFA correlation circles visualize these relationships (bottom). The
gene list is extended, using pathway and interaction databases (i.e. PathwayCommons) to find genes related to curated genes which showed
MFA correlation to GI50 (one-node distant genes;middle-left). The list is extended again from theMFA-correlating one-node distant genes (two-
node distant genes;middle-right). All curated and extended genes which showed an MFA correlation were then used as features to generate a
final predictive SVM gene signature for the evaluated TKI (right). Genes within the best performing sorafenib signature are indicated in thick
borders (black for curated genes; purple for pathway-extended genes)

set5 used for training in SVM learning (see below), the
microarray platform data were in some instances labelled
with conflicting gene names. During pathway extension,
associated genes were related to older gene aliases that
have been deprecated and reassigned by HUGO (Human
Genome Organization) Gene Nomenclature Committee to
other unrelated genes. This led to some spurious associa-
tions between genes during pathway extension. Examples
include PPYwhich was mismatched due to its former alias
‘PNP’ as well as DDR2 due to incorrect association with its
former alias ‘TKT’. For the sorafenib model PE-Sor, asso-
ciations of GC to CNN1 and CA3 were eliminated due to
its original designation as ‘DBP’; however, its associations
betweenHNF1A, CYP11B1, CYP27B1 and PIK3R3 remained
valid (Figure S1). This issuewas addressed using a program
script that removed these unsupported associations from
the output ofMFAPreselection.41
This script eliminated these spurious matches by

confirming relations reported by MFAPreselection
with the PathwayCommons Interaction SIF (Simple
Interaction Format) file (‘Parentage-MFA-Path-Source-
Program.Simple-Output-Version.pl’; provided in a Zenodo
archive41). If corrected labels were not found or a gene

was absent from a microarray platform, then this cell line
or gene is not included in the analysis.
ML signatures were expanded by MFAPreselection to

include genes associated with curated genes by exten-
sion using components of adjacent biochemical pathways
(pathway extension [PE]; Figure S2). To identify these
relationships, MFAPreselection relied on the Pathway-
Commons database (version 8 [downloaded April 2016]) to
assess expanded gene lists by inclusion of genes address-
able from the curated set (one node distant from a curated
gene), followed by a second iteration (two nodes distant
from a curated gene; illustrated in Figure 1). During this
process, genes that did not meet minimally defined levels
of MFA correlation to drug GI50 (either positive or nega-
tive) were discarded and additional gene expansion steps
also ignored these genes. These levels were determined
using six different conditions set for the MFAPreselection
software: maximum thresholds up to 10◦ and 20◦ from
either full direct or inverse correlation for curated genes
only (conditions #1 and 2, respectively); up to a 10◦ and 20◦
threshold for both curated genes and directly related genes
(one-node distant; conditions #3 and 4, respectively) and
up to a 10◦ and 20◦ threshold for curated genes and genes
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up to two nodes distant from the curated gene set (con-
ditions #5 and 6, respectively). Genes in which GI50 was
correlated with CN (Tables S1A-F) were not considered for
SVM analyses due to unavailability of CN data in patient
data sets.

2.3 SVM learning

Genes with expression levels correlated with GI50 were
qualified for SVM analysis. SVMs were used to train GE
data sets against GI50 data using the MATLAB statistics
toolbox (similar to the procedure described in Mucaki
et al44 using SVM software developed in Zhao et al40; soft-
ware available at https://doi.org/10.5281/zenodo.1170572).
Instead of using the ‘fitcsvm’ function (as in Mucaki
et al44), a multiclass-compatible ‘fitcecoc’ function was
used to generate SVM signatures, with both misclassifi-
cation rate44 and log loss40 value used as performance
metrics to derive optimal signature models. A forward
feature selection (FFS) algorithm was used to gener-
ate these gene signatures (program from Zhao et al40:
‘FFS_strat_kfold_gridsearch.m’). FFS tests each gene at
random from the qualified gene set by training a cross-
validated Gaussian kernel SVM on the training data to
determine the individual gene that produces the lowest
misclassification rate or log loss value. Subsequent genes
are then added to determine whether model performance
is improved, until the performance criterion converges to
a minimum value. Models were built using a range of C
and sigma values (from 1 to 100,000, in multiples of 10 for
each variable [where C ≥ sigma]; 21 total combinations).
Because the goal of pathway extension was to expand and
improve these models beyond curated signatures with
more than two genes, PE-derived gene signatures with
fewer than two genes were excluded from proceeding to
the validation step.

2.4 Validation of cell line-derived gene
signatures using patient data

All derived multi-gene SVMs were validated against clin-
ical patient data using traditional validation (MatLab
program ‘regularValidation_multiclassSVM.m’ from Zhao
et al40). Performance was indicated by both overall pre-
dictive accuracy and by Matthews Correlation Coefficient
(MCC; which assesses overall quality of a binary classifier
by considering the balance of true and false positives and
negatives). Overall, the best-performing gene signature for
each drugwas selected byMCC, as it is ametric not skewed
by imbalanced data. Once the best performing SVM for
each drug was established, leave-one-out cross-validation7
was used to determine the overall impact of each individ-

ual gene to the model itself (change in misclassification
or log loss), as well as its impact on the accuracy of the
model to predict chemotherapy response. Top-performing
PE TKI models can be accessed to predict responses based
on expression in individual patients with our web-based
SVM calculator (http://chemotherapy.cytognomix.com).6
Ensemble averaging of multiple SVM models involved

weighting patient predictions from highest performing
models derived for a particular TKI by the area under
the curve (AUC) of each corresponding model (computed
using the MATLAB function ‘perfcurve’). MCC itself was
also evaluated as a potential source of weights for ensem-
ble averaging; however, AUC-weighted predictions were
superior in overall performance. The number of models
included in the ensemble varied, as the number of highest
performancemodels for each TKI differed (4 for sorafenib;
2 for erlotinib, sorafenib, imatinib, sunitinib and gefitinib).
A patient was considered resistant to a drug if the sum of
all AUC-weighted predictions was > 0 and sensitive if this
sum was < 0.

3 RESULTS

3.1 Generating SVM signatures using
breast cancer cell line-training data

Genes associated with drug response or function were
curated for gefitinib (N= 113), sunitinib (N= 90), erlotinib
(N = 71), imatinib (N = 157), sorafenib (N = 73) and
lapatinib (N = 91) (curated genes are provided in Table S1
and labelled as ‘0’ node distant genes). In general, MFA
was performed using 48 breast cancer cell lines using GE,
CN and GI50 values for each gene.5 Biochemically inspired
ML-based signatures for each TKI, derived from curated
genes, were obtained according to our previously described
approach.6 MFA analysis was also performed on genes
encoding proteins related to these curated genes (through
interaction or as neighbours in the same biochemical path-
way) to identify those that also correlated, either directly
or inversely, with GI50 (all GI50-correlated PE genes are
provided in Table S1 [labelled as 1-node and 2-node distant
genes]). This expanded set of GI50-correlating genes were
then used to derive SVMs containing combinations of
curated and PE genes. The derived signatures for each TKI
minimized either misclassification or log loss to generate
the best performing models. The best performing curated
and PE SVM signatures for erlotinib (C-Erl, PE-Erl),
sorafenib (C-Sor, PE-Sor), gefitinib (C-Gef, PE-Gef), lap-
atinib (C-Lap, PE-Lap), imatinib (C-Ima, PE-Ima) and
sunitinib (C-Sun, PE-Sun) are summarized in Table 1,
whereas the performance of all models is indicated in
Table S2.

https://doi.org/10.5281/zenodo.1170572
http://chemotherapy.cytognomix.com
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3.2 Validation of cell line-based SVM
signatures using cancer patient data

Cell line-derived SVMs for TKIswere initially evaluated on
patient data sets where patients were treatedwith the same
agent.40 Erlotinib signatures were validated using patients
withNSCLC (GSE61676; N= 9 survived, 34 died), sorafenib
signatures were validated using patients with hepatocellu-
lar carcinoma (GSE109211; N = 21 sensitive, 46 resistant),
sunitinib signatures were validated using outcomes of
patients with high-grade gliomas (GSE51305; N = 6 sen-
sitive, 12 resistant), imatinib signatures were validated
using outcomes of patients with chronic myelogenous
leukaemia (GSE14671; N = 17 sensitive, 6 resistant) and
lapatinib and gefitinib signatures were validated based on
breast cancer outcomes (GSE66399 [N = 8 survived, 23
died] and GSE33658 [N = 10 sensitive, 2 with resistant],
respectively).
MCC (range: –1 to +1) was the primary determinant

of model performance, as it measures overall accuracy
(OA) while accounting for representation between binary
prediction categories.45 This was necessary, as patient
data sets available exhibited imbalances in the ratios of
responsive to non-responsive patients in terms of their
respective observed clinical outcomes. Models based on
features generated under relaxed constraints (condition
#6) generated the best performing SVM on patient data
for every TKI, except sorafenib. The best-performing PE
model was PE-Sor, which accurately predicted patient
responses with 0.72MCC (and 88%OA). The best perform-
ing curated model was Cur-Lap, with 0.31 MCC (and 77%
OA). In comparison to curated SVMs, PE SVMs predicted
patient response with 0.26 higher MCC and 33% higher
OA (13% increase in accuracy predicting sensitive patients;
13% increase in accurately predicting resistant patients).
Except for imatinib, the best-performing PE model
outperformed their curated counterpart. This difference in
performance is evident in Figure 2, as predictive accuracy
for PE models is consistently higher for both resistant and
sensitive patient outcomes.
The erlotinib (GSE61676) and gefitinib (GSE33658) stud-

ies utilized for model testing provide patient GE data
both pre- and post-treatment. This provided an opportu-
nity to determine whether to determine whether short-
term drug exposure altered GE and model accuracy. For
erlotinib, blood samples were obtained prior to and 24 h
post-treatment. For gefitinib, biopsies were taken prior
to and 3 weeks post-treatment. Both PE-Erl and PE-
Gef exhibited slightly lower performance for the pre-
treatment samples (Table S3), with five additional patients
misclassified with PE-Erl (73% OA with N = 43 total
patients) and two additional misclassified individuals with
PE-Gef (73% OA; N = 12 patients). MCC for PE-Gef is

F IGURE 2 Accuracy of curated and pathway-extended SVMs
on TKI sensitive and resistant patients. The predictive accuracy of
the best-performing curated (C-) and pathway-extended (PE-) mod-
els for eachTKIwas arranged based on their accuracy in classification
of drug-sensitive and drug-resistant tumour patients. This illustrates
how curatedmodels are often only accurate towards one patient class
(sensitive or resistant) but not both (red), which is an issue as the
patient data were often imbalanced (number of sensitive | resistant
patients in each study: lapatinib [‘Lap’; n = 8 | 23], imatinib [‘Ima’;
n= 17 | 6], sunitinib [‘Sun’; n= 6 | 12], erlotinib [‘Erl’; n= 9 | 34], gefi-
tinib [‘Gef’; n = 10 | 2] and sorafenib [‘Sor’; n = 21 | 46]). Conversely,
predictions by PE SVMs were often more balanced (blue), possessing
moderate to high accuracy for both sensitive and resistant patients,
and consequently greater accuracy as a whole

significantly lower (–0.15), because the model misclas-
sifies all untreated individuals as resistant. Treatment
with these drugs perturbs predictions, but to a limited
extent.

3.3 Composition of PE SVM signatures
and contributions of individual features

PE SVM signatures contain either genes from peer-
reviewed literature about the drug response (‘initial’ or
‘curated’ genes), those related to these genes through direct
interactions or as neighbours within the same pathways
(one-node distant genes), or genes associated with these
one-node distant genes (two-node distant genes). To better
comprehend the composition of and relationships between
genes in the best-performing PE SVM signatures, we anal-
ysed the connection networks for each model (see Table
S4 for connection network for all other top performing
PE models). For example, although PE-Sor consists of
one curated gene and eight two-node distant genes, there
are an additional 6 curated and 10 one-node genes that
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connect the genes in PE-Sor by pathway extension (Fig-
ure 3A shows a two-dimensional visualized connection
network for this drug; see Figure 3B-F for lapatinib,
gefitinib, sunitinib, imatinib and erlotinib, respectively).
Due to the complexity of the relationships between gene
products for erlotinib, it was not feasible to create an
unequivocal two-dimensional network diagram for this
drug response, and is instead presented in tabular form
(Figure 3F). Nevertheless, it is apparent from the major-
ity of these network diagrams that genes that were two-
nodes distant from the curated gene set were most com-
monly selected in the best performing PEmodels. Further-
more, the two-node distant genes selected interacted with
multiple curated or one-node distant genes.
To determine the degree to which each gene in a signa-

ture contributed to the accuracy of the overall model pre-
diction, we performed leave-one-out cross-validation for
each gene in the best-performing model for each drug. We
then reassessed the predictions of the resultant signature
for the observed responses in the cell lines used for model
training (Table S5) and for the patient data used for test-
ing (Figure 4). Based on patient data, the gene features
eliminated from models that had the highest impact on
performance were as follows: CDK6, BAG2, SULT1E1 and
IL1RN (PE-Erl);CNTN1,GCG andNTRK3 (PE-Gef);GRB7
and BCAT (PE-Lap); ELF5, TGFB1, PRKD2, RBP5 and GC
(PE-Sor);EPHA2 and SIAE (PE-Sun) andCACNA2D1 and
GRM3 (PE-Ima). Genes removed that improved predic-
tive performance on patient data included FBP1 (PE-Lap),
PLAT (PE-Sor) and LHX8 (PE-Sor).
PE-Gef consists of four pathway-extended genes

(CNTN1, CXCL2, NTRK3 and GCG) and one curated
gene, GCG. GCG encodes a hormone preprotein which is
cleaved into four peptides, including glucagon-like pep-
tide 2, which has been found to reduce gefitinib-induced
intestinal atrophy in mice.46 Removal of NTRK3 from
PE-Gef had the largest impact on model performance,
reducing MCC to 0. NTRK3 has a critical role in secre-
tory breast cancer gene, with the EVT6-NTRK3 fusion
oncogene being considered a primary initiating event.47,48
PE-Sun, which consists of three pathway-extended

genes, SIAE,NR4A1 andEPHA2, was evaluated in gliomas.
NR4A1 is essential for colony formation of glioblastoma
cells on soft agar.49 Of 14 glioblastoma specimens, 13 pos-
sessed elevated EPHA2 levels.50 Removal of NR4A1 from
PE-Sun did not alter overall accuracy or MCC of the
model, whereas removal of EPHA2 decreased overall accu-
racy by 55% and MCC by 0.94. Regarding SIAE, alterations
in cell surface sialylation by glucocorticosteroids have been
suggested to promote glioma formation.51
PE-Sor (COL25A1, TGFB1, DACT1, RBP5, PRKD2, GC,

ELF5, LHX8 and SCNN1A) was used to predict sorafenib
response in hepatocellular carcinoma (HCC) patients.

Removal of RBP5, PRKD2, GC and ELF5 significantly
reduced overall accuracy (>50%) and MCC (>0.7) (Fig-
ure 4A). RBP5 is linked to aggressive tumour features in
HCC,52 PRKD2 is upregulated in HCC and correlated with
metastasis,53 and decreased actin-free GC levels have been
found to relate with disease severity in HCC.54,55 Vitamin
D3, which is bound by GC, lowers the effective dose of
sorafenib required for its cytostatic effect in melanoma
and differentiated thyroid carcinoma.56 ELF5 has not been
direct connected to HCC, but has been associated with a
wide range of cancers.57,58 Genes in PE-Sor that have not
been as strongly linked to cancer (COL25A1 and LHX8)
did not change model accuracy to the same extent (<10%)
when removed (Figure 4A). Removal of the curated gene
TGFB1, which enhances the apoptotic activity and sensi-
tizes cells to sorafenib,59 decreased overall accuracy by 60%
in HCC patients. The respective contexts of the curated
Sorafenib-related genes juxtaposed with the PE genes in
PE-Sor are indicated in a cellular schematic of the roles
and functions of these genes (Figure 5).
PE-Ima (LIF,MRGPRF,GRM3, TNNI1 andCACNA2D1)

predicted imatinib response in chronic myelogenous
leukaemia patients. LIF encodes a protein which prevents
continued growth of myeloid leukaemia cells by inducing
terminal differentiation,60 although independent removal
ofLIF did not notably affectmodel performance.Downreg-
ulation ofCACNA2D1 fromPE-Ima is associated with ery-
throid differentiation of K562 and KCL-22 chronic myeloid
leukaemia cells.61 Removal of CACNA2D1 decreased both
classification accuracy and MCC (–44% and –0.18, respec-
tively; Figure 4E).
A second PE model (indicated in green in Figure 4E)

exhibited comparable performance to PE-Ima: TNNI1 and
WASF3 (C = 10,000, σ = 10,000), with an OA of 57% (47%
accurate with sensitive and 83% with resistant patients;
MCC = 0.27). WASF3 has been implicated in breast can-
cer metastasis.62 TNNI1, a gene that is shared by both this
model and PE-Ima, is one of the three inhibitory sub-
units of smoothmuscle troponin that are all overexpressed
in breast cancer.63 Interestingly, the kinase, TNNI3K, that
phosphorylates this protein is essential for proliferation of
mononuclear diploid cardiomyocytes during heart muscle
repair due to injury.64 Phosphorylation of troponin would
appear to have a previously uncharacterized moonlight-
ing function in tumour development.65 If imatinib inhibits
TNNI3K through an off-target effect, this may modulate
TNNI1 activation and possibly, an associated proliferative
phenotype.
PE-Lap (FBP1, ITGA11, TRIM68, BCAT1, ZNF780A,

UTP20 and GRB7) predicted outcomes of breast cancer
patients treated with lapatinib. Independent removal of
BCAT1 reduced accuracy in predicting sensitive patients.
Silencing or knockdown of BCAT1 has been associated
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F IGURE 3 Connection network for pathway-extendedTKI SVMs. Schematic relationships outlining the pathway connections for the best-
performing PEmodel for each drug in panels (A) sorafenib, (B) lapatinib, (C) gefitinib, (D) sunitinib, (E) imatinib and (F) erlotinib. All symbols
indicated are gene names. The erlotinib model was highly interconnected and is represented as a table. Genes in red are features selected for
the final PE-Sor gene signature, whereas genes coloured green were chosen in a separate PE gene signature with comparable performance.
Genes in black were not part of the final signature themselves but correlated with efficacy to the TKI of interest byMFA and expanded the gene
pool through biochemical connections they possessed to one-node or two-node distant genes
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F IGURE 4 Effect of removal of individual genes from signature on overall accuracy using patient tumour data. The patient classification
accuracy and MCC of the strongest performing PE models are altered upon the removal of each component gene listed. These PE TKI gene
signatures are (A) sorafenib [PE-Sor], (B) lapatinib [PE-Lap], (C) gefitinib [PE-Gef], (D) sunitinib [PE-Sun], (E) imatinib [PE-Ima] and (F)
erlotinib [PE-Erl]. Blue and red bars denote the overall accuracy and MCC of the model after gene removal, respectively

with reduced growth of triple negative breast cancer.66
Removal of ITGA11 or TRIM68 did not alter PE-Lap accu-
racy (Figure 4B).
PE-Erl consisted of NEK7, SLCO3A1, RELB, FRMD4A,

HSD17B2, CDK6, PALM, IL1RN, SMYD1, BAG2, GNG3 and
SULT1E1 and was used to predict chemotherapy response
in NSCLC patients. BAG2 and SULT1E1 are novel biomark-
ers of erlotinib efficacy, as removal of either gene led to
imbalanced predictions of sensitive patients by this sig-
nature. Overexpression of BAG2 has been associated with
poor disease-specific survival in lung cancer,67 whereas
the SULT1E1 polymorphism rs4149525 has been associated
with shortened overall survival in NSCLC.68 This model
originally contained PLAT, which when eliminated from
the erlotinib data set of 43 patients significantly increased
in overall accuracy (+10%) and MCC (+0.21) of the model
predictions (Figure 4F). PLAT was therefore considered
a false positive result from ML, and therefore eliminated
from gene signature. Our post hoc analysis demonstrated
that the majority of genes (75%) in PE-Erlwere associated
with the NSCLC phenotype.

3.4 Performance of PE SVM signatures
on sex-stratified patients

Previous studies have suggested that females may be more
sensitive to TKI treatment than males.69,70 We therefore

stratified TKI model performance by sex in the GSE61676
data set, which provided patient sex information along
with response (19 male [3 sensitive] and 24 female [6 sensi-
tive] patients). Considering all patients, PE-Erl predicted
patient response with an MCC of 0.41 and 83% overall
accuracy (42% and 93% accurate in patients sensitive and
resistant to this drug, respectively). In males alone, PE-
Erl’s overall accuracy was lower (76%), with MCC notably
decreased to 0.11, as PE-Erl did not predict individuals
who were sensitive or resistant to the drug as accurately
(27% and 85%, respectively). In females, PE-Erl performed
better than for the full data set, with 85%OA (MCC= 0.56),
of which resistance was predicted with 99% accuracy and
sensitivity was predicted with 42% accuracy (Table S6).
This indicates that the PE-Erl signature more precisely
captures factors that contribute to greater sensitivity in
females.
The predictive performance of erlotinib PE model PE-

Erl to the NSCLC data set GSE61676 was higher in female
patients than male patients (0.45 greater MCC; 9% greater
OA). This was consistent with the possibility that PE-Erl
contains gene(s) distinguishing sex-differentiated sensitiv-
ity to the drug. Of the 12 genes comprising PE-Erl, inde-
pendent removal of RELB and CDK6 features from the
model notably reduced accuracy of the predicted response
in female patients who were sensitive to the drug. RELB
has previously been identified as a sex-discriminatory can-
didate gene in trichostatin A-treated chronic lymphocytic
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F IGURE 5 Schematic of the pathway-extended genes in the sorafenib model PE-Sor. The best performing sorafenib model PE-Sor is a
nine-gene model consists of a single curated gene (TGFB1) and eight genes selected by pathway extension (ELF5, RBP5, GC, PRKD2, SCNN1A,
COL25A1, DACT1 and LHX8). This cell schematic provides context of the cellular mechanisms of action and/or known relationships between
genes with a documented impact on sorafenib activity (‘curated’ genes; black borders) and those genes selected by pathway extension (purple
borders). Genes with grey borders are neither curated nor pathway-extended genes and are simply present to give context between genes and
their known cellular functions. Thicker borders specify those genes in the PE-Sormodel, whereas gene colour coding indicates howGE and/or
CN correlated to sorafenib GI50 by MFA

leukaemia cells due to repressed expression in resistant
male cells, but upregulation in resistant female cells.71
RELB also possesses pro-survival functions across multi-
ple cancer types72–74 and has been identified as a prognos-
tic biomarker for NSCLC patients.75 Overall, RELB is a top
candidate gene to explain the improved accuracy ofPE-Erl
in female NSCLC patients.

3.5 AUC-weighted ensemble model
predictions

Ensemble learning consolidates hypotheses of multiple
models to potentially improve predictive performance.76
For ensemble learning, each model’s AUC was computed
and used to weigh predictions made for eachmodel within
the ensemble.77 There were four SVMs for sorafenib pos-
sessing strong predictive accuracy with patient-derived
expression data. Therefore, all were used for ensem-
ble averaging. For the other TKIs, ensemble learning
combined the top- and second-best performing SVMs
(Table 2). Ensemble averaging improved both OA and

MCC for erlotinib (OA: 84% [+1%]; MCC: 0.45 [+0.04])
and sorafenib (OA: 91% [+3%]; MCC: 0.79 [+0.07]). For
patients with the same predicted outcome in ≥75% of
cases after ensemble learning, overall accuracy exceeded
80% for all TKIs except lapatinib. Discordant consensus
predictions between multiple signatures for the same
drug (majority outcome occurred <75% for each patient)
exhibited lower overall accuracy.

4 DISCUSSION

Pathway-extended GE signatures generally improved
accuracy of predicted patient responses to specific
TKIs. Compared to signatures composed solely of liter-
ature curated genes, PE signatures revealed previously
unknown gene loci that contributed to drug response
and, on average, had consistently better predictive per-
formance. Aside from higher OA, the prediction accuracy
for both sensitive and resistant patient groups (measured
by MCC) was consistently more balanced. For example,
Cur-Lap was the sole curated model with higher OA than
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its PE counterpart; however, its predictions were more
skewed resulting in lower MCC. Furthermore, both MCC
and overall accuracy were increased by AUC-weighted
ensemble averaging of multiple PE models for sorafenib
and erlotinib. Except for lapatinib, the highest OAs were
evident in patients receiving a ‘consensus’ prediction
(where ≥75% of predictions made by the models in the
ensemble predicted the same outcome for a patient).
The improved predictive performance of PE SVMs, both
individual and as ensembles of models, suggests that the
genes within these signatures may refine the predominant
mechanisms of both sensitivity and resistance to TKI
therapy. PE gene models may be more useful in selecting
chemosensitivity regimens for patients compared to
models solely consisting of previously implicated genes
known to respond to a specific chemotherapy.
Pathway extension and the inclusion of pathway-related

genes allowed for a larger pool of genes involved in ML.
We avoided overfitting78 by pre-filtering these genes based
on correlation with GI50. Furthermore, independent
validation was determined by the identity and expression
level of these features in patients treated with these drugs.
Signatures containing pathway-related genes produced
higher performing SVM signatures, consistent with the
possibility that optimal molecular indicators of chemo-
response may identify genes upstream or downstream of,
or are interactors with, previously known cancer biomark-
ers. Generating SVMs from curated genes assures that
features selected do not arise from statistical association
alone. Generating PE SVMs required systematic selec-
tion of genes with established relationships to curated
genes. For the best-performing PE gene signatures,
most signature genes validated in the present study had
been independently associated with abnormalities of
expression, CN or mutation in these tumour types (see
Additional References, Supporting Materials). Expanded
signatures could potentially assist in the identification of
novel biomarkers of chemo-response in these tissues.
Primary and secondary genes in PE gene signatures can

offer context for drug responses without predicate litera-
ture support. The relationships between curated genes and
genes selected through pathway extension for sorafenib are
illustrated in Figure 5. The vitamin D transporter encoded
by GC is a major determinant of the response to this drug,
as overall prediction accuracy is decreased by 52% upon its
removal from PE-Sor (Figure 4A). In fact,GC is two nodes
distant from multiple curated genes (ABCB1, ABCC2
and HNF1A, among others [Figure 3A]). The ABCB1
transporter has been implicated in sorafenib-related toxic-
ities based on efflux efficiency.79,80 ABCB1 also carries out
efflux of Vitamin D3,81 and the 1,25-dihydroxy-vitamin D3
isoform (or 1.25D) activates ABCB1 expression.82 Vitamin
D is converted to this 1.25D isoform by CYP27B1, which

is one-node distant from ABCB1. Similarly, GC binds
specifically to 1.25D, which puts GC one-node distant from
ABCB1. The growth inhibitory effect of sorafenib has been
shown to be amplified by 1.25D.56 Together, these network
connections provide context that integrates functions
and roles of individual genes of the tumour response to
sorafenib. The PE signatures will be useful for understand-
ing drug toxicity, although it was not explicitly a goal of
this study. The importance of GC in PE-Sor may explain
why a lower sorafenib dose is effective for treatment.
Supplemental vitamin D3 reduces toxicity to sorafenib at
this lower dose in differentiated thyroid carcinoma that is
non-responsive to iodine therapy.56
The best performing SVMs for TKIs shared several

common genetic pathways. Multiple PE models con-
tained genes related to NOD-like receptor signalling
(erlotinib: NEK7, RELB), PI3K-AKT signalling path-
way (erlotinib: CDK6, GNG3; lapatinib: ITGA11; suni-
tinib: EPHA2, NR4A1) and Ras-Raf-MEK-ERK pathway
(erlotinib: CDK6, RELB; sorafenib: TGFB1; sunitinib:
EPHA2, NR4A1). Aberrant NOD-like receptor signalling
drives carcinogenesis,83 whereas numerous cancer thera-
pies target either or both of PI3K and AKT.84–86 The Ras-
Raf-MEK-ERK pathway involves several protein kinases
activated by tyrosine kinase receptors, with oncogenic
mutations most prominently affecting Ras and B-Raf
within the pathway.87 These pathways, which are dis-
rupted broadly among different cancers, are implicated
across numerous high-performing ML models predicting
TKI response.
Several pathway-extended (EPHA2, PRKD2 and

PDGFRB) and curated (CDK6 and ABL2) gene products
extrapolated from the highest performing signatures
were bound to kinases based on a proteomic analysis of
target selectivity for 243 kinase inhibitors on 259 distinct
tyrosine kinases.88 Few tyrosine kinase target genes from
this proteomic analysis for TKIs in the current study
exhibited correlations between GI50 and either GE or
CN (<20◦ threshold; Table S7). RET was the only SVM
gene implicated in the response to a TKI for both GE and
protein (sorafenib; Concentration- and Target-Dependent
Selectivity of 0.515; Klaeger et al.88). Therefore, expression
of genes that are either positively or inversely correlated
with drug response is generally unrelated to quantifica-
tion of proteins that directly interact with the kinases
themselves. If absence of signature genes from those
corresponding to proteomic analysis is not attributable
to either experimental or specific cell lines used, then
signature GE is more likely indirectly regulated by gene
products that are selective for most TKIs. Many genes
in the PE SVMs were two nodes distant from curated
biomarkers, which is consistent with the possibility that
these represent common control points in the regulation
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of drug responses. In this regard, such control points
exhibit behaviour similar to state-cycle attractors of
self-organizing systems.89 From a ML perspective, the
dimensionality of the SVM model is reduced, avoiding
overfitting, by substituting these control point genes for
curated genes. Improvement in the prediction accuracy
for both the sensitive and resistant patient categories
might also be a consequence of these biomarkers being
control points for multiple curated genes. Consider two
curated genes that are ‘controlled’ or regulated by the
same two node biomarker, where inclusion of one of these
improves accuracy for detecting drug sensitivity, and the
other improves detection of resistance. Substituting the
controlling gene for both curated genes in the PE signature
might improve accuracy of detection of both outcomes.
Transferability of these cell line-based models to other

independent cell line data sets was also evaluated.90 PE
TKI models were analysed using data from the Sanger
Genomics of Drug Sensitivity in Cancer Project (GDSC),
including RNA-seq-derived cancer cell line-derived GE
data (E-MTAB-3983; ArrayExpress) based on IC50 values
of cell lines in CancerRxGene.91 Using median IC50 to dis-
tinguish sensitivity from resistance, the top SVM that we
derived for each TKI could not significantly separate cell
lines sensitive and resistant to the same drug in GDSC
(MCC from 0 to 0.19; OA ranging from 50 to 58%). Alter-
ing the IC50 thresholds did not significantly change these
results. When applying this analysis to cell lines from spe-
cific tissues used in the derivation of the specific TKI sig-
natures, PE-Ima was more accurate for seven imatinib-
treated cell lines derived from intestinal tumours (OA of
69%;MCC of –0.41). The disparity in performance between
the training and testing data sets may be related to differ-
ences in the expression patterns in different tissue types,
or batch effects. IC50 measurements for the same cell line
and drug are known to vary significantly between studies,
especially when the cell line is drug insensitive,92 which
may contribute to the poor correlation between results of
both data sets.
Transferability of SVMs to different patient data sets

may also be confounded by several other limitations of
applying ML models derived from cell line expression to
predict responses to the same drugs using patient GE data.
By contrast with tumours, cancer cell lines tend to have a
stable genetic profile when grown under controlled cultur-
ing conditions. Consequently, they tend to lack the genetic
heterogeneity present in many tumour types,93 particu-
larly during progression, which often occurs concomitant
with evolution of acquired chemotherapy resistance.94
Cancer cell lines also lack extracellular matrix, which con-
tributes to tumour growth, migration and invasion in vivo.
These differences may challenge prediction accuracy of
cell line-based SVMs using patient GE and/or CN. Clinical

outcome measures within patient data sets were not con-
sistent between different studies of the same tumour type.
Finally, the cell line GE data used for training originated
in this study solely from breast cancer, whereas patient
tumour GE datawere also derived from other cancer types.

5 CONCLUSIONS

The enhanced performance of chemotherapy response
models developed using pathway extension (over curated-
only models) suggests that an interaction between a
drug and its target may not directly relate with drug
response; sensitivity could also be caused by a cellular
event downstream of the drug-target interaction. PE mod-
els derived in this study demonstrated strong efficacy
in selecting relevant genes, identifying novel molecular
biomarker candidates, and predicting patient responses
to TKIs. Strong-performing PE models appear to predict
chemotherapy response in a cancer type-specific fashion,
as many pathway-related genes selected by SVM software
as novel candidate biomarkers of TKI efficacywere already
prognostic biomarkers for the cancer type patients within
the testing set were afflicted with. Ensemble averaging of
multiple PE SVMs improved predictive accuracy in most
cases and was found to be most commonly correct when
predictions were highly consistent across each model con-
stituting the ensemble. PE-Erl was also shown to have
greater accuracy when considering solely female NSCLC
patients. Interestingly, RELB, a feature in this signature,
had previously demonstrated sexually dimorphic expres-
sion upon cancer treatment. The process of including
pathway-related genes in biochemically inspired gene sig-
natures can produce highly specific and accurate SVMs. PE
models may have practical value, both in identifying novel
biomarkers of chemosensitivity and in selecting effective
chemotherapeutic agents.
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