
Mixed Generative and Handcoded Development
of Adaptable Data-Centric Business Applications

Pedram Mir Seyed Nazari Alexander Roth Bernhard Rumpe
Software Engineering

RWTH Aachen University, Germany
{nazari,roth,rumpe}@se-rwth.de

Abstract
Consistent management of structured information is the goal
of data-centric business applications. Model-driven develop-
ment helps to automatically generate such applications. Cur-
rent approaches target full or one shot generation of busi-
ness applications and often neglect simplicity and adaptabil-
ity of the code generator and the generated code. Inspec-
tion of the generated code is required to add functionality.
Thus, here we discuss mechanisms for a code generator to
generate a lightweight and highly customizable data-centric
business application that is targeted for a variety of users
including generated application users, tool developers, and
product developers. We achieve simplicity by reducing the
mapping of the input model to the generated code to a mini-
mal core of easily understandable concepts. High customiz-
ability is achieved by providing a variety of mechanisms to
extend the generator and the generated code. These include
template overriding and hook points to extend the code gen-
erator; and hot spots and additional manual extensions to ex-
tend the generated code. It is even possible to fully control
the code generator and the entire generation process via a
scripting language.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques —Computer-aided
software engineering (CASE)

Keywords Data-Centric Business Application, Generative
Development

1. Introduction
Data-centric business applications provide management
functionality for structured and consistent information. They
offer CRUD (create, read, update, and delete), search, and
persistence functionality [11, 12]. Existing model-driven de-
velopment approaches allow nearly full code generation [9].
Such generators can be powerful tools when used by expe-
rienced users. However, developers not familiar with such
approaches hardly accept them, because of the complexity
and the loss of control [7, 10]. Consequently, adapting and
customizing the code generator or the generated output be-
comes a labor-intense and time-consuming task.

Even if nearly full code generation is achieved, simplic-
ity (the amount of languages needed to describe the business
application and the amount of approaches to integrate hand-
coded extensions), ease-of-use, and adaptability is not much
addressed by current research [1, 2, 4, 13]. Instead an in-
frastructure for generating enterprise applications has been
proposed [6, 8].

Generator

m = parse(model)

generateCore(m)

generateGui(m)

...

Groovy

handwritten adaptations
for generator and product configuration script

generated product

qualified_association

Class

Type attribute

Class

Type method()

«interface»

Interface

qualifier

1

*

composition

role

CDinput model

Figure 1. Overview of generation process.

We present a generator that aims at demonstrating the power
of the generative software development methodology using
the generator framework MontiCore [5]. Our main contribu-
tion is a demonstration of easy-to-use generation of almost
ready-to-use business applications from abstract models as
shown in Fig. 1. This approach is different to existing work
as it only requires one input language to describe the data
to be managed, provides clear customization approaches for
the code generator and the generated systems, and presents

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DSM’15, October 27, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3903-2/15/10...$15.00

http://dx.doi.org/10.1145/2846696.2846707

43

[MSNRR15b] P. Mir Seyed Nazari, A. Roth, B. Rumpe:
Mixed Generative and Handcoded Development of Adaptable Data-centric Business Applications.
In: Domain-Specific Modeling Workshop (DSM’15), pp. 43–44. ACM, 2015.
www.se-rwth.de/publications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36662851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a code generator that is designed to automatically integrate
handwritten and generated code. The generated applications
provide a graphical user interface to manage instances of
the modeled system. Furthermore, they allow to persist in-
stances in the cloud and share them among users, which may
have different roles and rights.

2. Generation of Application from UML
Class Diagrams

The input language for our code generator is a reduced vari-
ant of UML class diagrams provided in textual form. Cer-
tainly, it does not provide much application-specific func-
tionality. Therefore, various extension and adaption mecha-
nisms are introduced to extend the functionality of generated
products. Nevertheless, the input language is sufficient to de-
scribe the managed data and generate a working application.

The generated application is a typical 3-layered architec-
ture composed of the graphical user interface, the application
core, and the persistence management to structure its prod-
ucts. The application core realizes only business functional-
ity. The layers are independent and can easily be exchanged
by different implementations. Each layer has its own run-
time environment and standard components for accessing
predefined not generated functionality. The generated appli-
cations allow for creation of users, roles, and definition of
CRUD operations for each role. It is even possible to define
very fine grained rights on attribute and association level.

A code generator becomes helpful, when it effectively as-
sists developers to speed up their work. This is only possible,
when the generator actually takes some burden from the de-
veloper. For example, by making certain decisions and gen-
erating corresponding functionality. Our generator for exam-
ple targets desktop applications with a layered architecture.
Based on that choice, it embodies a variety of automatically
generated additional functionality.

It is an intrinsic property of a good generator to be able
to adapt either the generation process or the generated code.
In particular, for algorithms that usually cannot be described
in a more abstract form than the implementation of the al-
gorithm itself, manual implementation is necessary. We pro-
vide explicit hook points, which are dedicated spots in tem-
plates intended to be customized and extended. A more de-
tailed level of customization is provided by allowing to re-
place every template of the code generator with a custom
one. In order to give developers full control of the genera-
tion process, which includes parsing models, checking con-
text conditions, and generating code, we a scripting language
for generator control. Finally, for the generated applications,
we offer hot spots as a dedicated spot in the generated code,
which is usually known from frameworks as provided meth-
ods that have to be overridden, and concepts to extend the
generated classes [3]. We strictly separate handcoded arti-
facts from generated artifacts to allow complete regeneration
without loss of the customizations and adaptations.

References
[1] W. L. d. S. Carlos Eduardo Cirilo, Antonio Francisco do Prado and

L. A. M. Zaina. Interactive Multimedia, chapter Building Adaptive
Rich Interfaces for Interactive Ubiquitous Applications. 2012. ISBN
978-953-51-0224-3.

[2] A. Cicchetti, D. Di Ruscio, and A. Di Salle. Software customization
in model driven development of web applications. In Proceedings of
the 2007 ACM Symposium on Applied Computing, SAC ’07, pages
1025–1030, New York, NY, USA, 2007. ACM. ISBN 1-59593-480-4.

[3] T. Greifenberg, K. Hölldobler, C. Kolassa, M. Look, P. Mir
Seyed Nazari, K. Müller, A. Navarro Perez, D. Plotnikov, D. Reiss,
A. Roth, B. Rumpe, M. Schindler, and A. Wortmann. A Compari-
son of Mechanisms for Integrating Handwritten and Generated Code
for Object-Oriented Programming Languages. In S. Hammoudi, L. F.
Pires, P. Desfray, and J. F. Filipe, editors, Proceedings of the 3rd In-
ternational Conference on Model-Driven Engineering and Software
Development, pages 74–85, Angers, Loire Valley, France, February
2015. INSTICC and ESEO, SciTePress.

[4] S. Kelly and J. Tolvanen. Domain-Specific Modeling - Enabling Full
Code Generation. Wiley, 2008. ISBN 978-0-470-03666-2.

[5] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: Modular Develop-
ment of Textual Domain Specific Languages. In Proceedings of Tools
Europe, 2008.

[6] V. Kulkarni and S. Reddy. Model-driven development of enterprise
applications. In N. Jardim Nunes, B. Selic, A. Rodrigues da Silva,
and A. Toval Alvarez, editors, UML Modeling Languages and Appli-
cations, volume 3297 of LNCS, pages 118–128. Springer Berlin Hei-
delberg, 2005. ISBN 978-3-540-25081-4.

[7] V. Kulkarni and S. Reddy. A model-driven approach for developing
business applications: Experience, lessons learnt and a way forward.
In Proceedings of the 1st India Software Engineering Conference,
ISEC ’08, pages 21–28, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-917-3.

[8] V. Kulkarni and S. Reddy. A model-driven approach for developing
business applications: Experience, lessons learnt and a way forward.
In Proceedings of the 1st India Software Engineering Conference,
ISEC ’08, pages 21–28, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-917-3.

[9] V. Kulkarni, R. Venkatesh, and S. Reddy. Generating Enterprise
Applications from Models. In J.-M. Bruel and Z. Bellahsene, editors,
Advances in Object-Oriented Information Systems, volume 2426 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2002.
ISBN 978-3-540-44088-8.

[10] V. Kulkarni, S. Reddy, and A. Rajbhoj. Scaling up model driven
engineering experience and lessons learnt. In D. Petriu, N. Rouquette,
and y. Haugen, editors, Model Driven Engineering Languages and
Systems, volume 6395 of Lecture Notes in Computer Science, pages
331–345. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-16128-
5.

[11] R. Mohan and V. Kulkarni. Model driven development of graphical
user interfaces for enterprise business applications experience, lessons
learnt and a way forward. In A. Schrr and B. Selic, editors, Model
Driven Engineering Languages and Systems, volume 5795 of LNCS,
pages 307–321. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-
04424-3.

[12] A. Schramm, A. Preuner, M. Heinrich, and L. Vogel. Rapid ui develop-
ment for enterprise applications: Combining manual and model-driven
techniques. In D. Petriu, N. Rouquette, and y. Haugen, editors, Model
Driven Engineering Languages and Systems, volume 6394 of LNCS,
pages 271–285. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-
16144-5.

[13] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L.
Kats, E. Visser, and G. Wachsmuth. DSL Engineering - Designing,
Implementing and Using Domain-Specific Languages. dslbook.org,
2013.

44

	Introduction
	Generation of Application from UML Class Diagrams

