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Abstract
Consistent management of structured information is the goal
of data-centric business applications. Model-driven develop-
ment helps to automatically generate such applications. Cur-
rent approaches target full or one shot generation of busi-
ness applications and often neglect simplicity and adaptabil-
ity of the code generator and the generated code. Inspec-
tion of the generated code is required to add functionality.
Thus, here we discuss mechanisms for a code generator to
generate a lightweight and highly customizable data-centric
business application that is targeted for a variety of users
including generated application users, tool developers, and
product developers. We achieve simplicity by reducing the
mapping of the input model to the generated code to a mini-
mal core of easily understandable concepts. High customiz-
ability is achieved by providing a variety of mechanisms to
extend the generator and the generated code. These include
template overriding and hook points to extend the code gen-
erator; and hot spots and additional manual extensions to ex-
tend the generated code. It is even possible to fully control
the code generator and the entire generation process via a
scripting language.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques —Computer-aided
software engineering (CASE)

Keywords Data-Centric Business Application, Generative
Development

1. Introduction
Data-centric business applications provide management
functionality for structured and consistent information. They
offer CRUD (create, read, update, and delete), search, and
persistence functionality [11, 12]. Existing model-driven de-
velopment approaches allow nearly full code generation [9].
Such generators can be powerful tools when used by expe-
rienced users. However, developers not familiar with such
approaches hardly accept them, because of the complexity
and the loss of control [7, 10]. Consequently, adapting and
customizing the code generator or the generated output be-
comes a labor-intense and time-consuming task.

Even if nearly full code generation is achieved, simplic-
ity (the amount of languages needed to describe the business
application and the amount of approaches to integrate hand-
coded extensions), ease-of-use, and adaptability is not much
addressed by current research [1, 2, 4, 13]. Instead an in-
frastructure for generating enterprise applications has been
proposed [6, 8].
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Figure 1. Overview of generation process.

We present a generator that aims at demonstrating the power
of the generative software development methodology using
the generator framework MontiCore [5]. Our main contribu-
tion is a demonstration of easy-to-use generation of almost
ready-to-use business applications from abstract models as
shown in Fig. 1. This approach is different to existing work
as it only requires one input language to describe the data
to be managed, provides clear customization approaches for
the code generator and the generated systems, and presents
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a code generator that is designed to automatically integrate
handwritten and generated code. The generated applications
provide a graphical user interface to manage instances of
the modeled system. Furthermore, they allow to persist in-
stances in the cloud and share them among users, which may
have different roles and rights.

2. Generation of Application from UML
Class Diagrams

The input language for our code generator is a reduced vari-
ant of UML class diagrams provided in textual form. Cer-
tainly, it does not provide much application-specific func-
tionality. Therefore, various extension and adaption mecha-
nisms are introduced to extend the functionality of generated
products. Nevertheless, the input language is sufficient to de-
scribe the managed data and generate a working application.

The generated application is a typical 3-layered architec-
ture composed of the graphical user interface, the application
core, and the persistence management to structure its prod-
ucts. The application core realizes only business functional-
ity. The layers are independent and can easily be exchanged
by different implementations. Each layer has its own run-
time environment and standard components for accessing
predefined not generated functionality. The generated appli-
cations allow for creation of users, roles, and definition of
CRUD operations for each role. It is even possible to define
very fine grained rights on attribute and association level.

A code generator becomes helpful, when it effectively as-
sists developers to speed up their work. This is only possible,
when the generator actually takes some burden from the de-
veloper. For example, by making certain decisions and gen-
erating corresponding functionality. Our generator for exam-
ple targets desktop applications with a layered architecture.
Based on that choice, it embodies a variety of automatically
generated additional functionality.

It is an intrinsic property of a good generator to be able
to adapt either the generation process or the generated code.
In particular, for algorithms that usually cannot be described
in a more abstract form than the implementation of the al-
gorithm itself, manual implementation is necessary. We pro-
vide explicit hook points, which are dedicated spots in tem-
plates intended to be customized and extended. A more de-
tailed level of customization is provided by allowing to re-
place every template of the code generator with a custom
one. In order to give developers full control of the genera-
tion process, which includes parsing models, checking con-
text conditions, and generating code, we a scripting language
for generator control. Finally, for the generated applications,
we offer hot spots as a dedicated spot in the generated code,
which is usually known from frameworks as provided meth-
ods that have to be overridden, and concepts to extend the
generated classes [3]. We strictly separate handcoded arti-
facts from generated artifacts to allow complete regeneration
without loss of the customizations and adaptations.
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