
Adaptable Symbol Table Management by Meta Modeling
and Generation of Symbol Table Infrastructures

Katrin Hölldobler ∗ Pedram Mir Seyed Nazari Bernhard Rumpe
Software Engineering, RWTH Aachen University, Germany

{hoelldobler,nazari,rumpe}@se-rwth.de

Abstract
Many textual software languages share common concepts
such as defining and referencing elements, hierarchical
structures constraining the visibility of names, and allow-
ing for identical names for different element kinds. Symbol
tables are useful to handle those reference and visibility con-
cepts. However, developing a symbol table can be a tedious
task that leads to an additional effort for the language engi-
neer. This paper presents a symbol table meta model usable
to define language-specific symbol tables. Furthermore, we
integrate this symbol table meta model with a meta model of
a grammar-based language definition. This enables the lan-
guage engineer to switch between the model structure and
the symbol table as needed. Finally, based on a grammar
annotation mechanism, our approach is able to generate a
symbol table infrastructure that can be used as is or serve as
a basis for custom symbol tables.

Categories and Subject Descriptors D.2.11 [Software En-
gineering]: Software Architectures—Domain-specific archi-
tectures

Keywords Meta model, symbol table, code generation

1. Introduction
Developing a (domain-specific) modeling language or gen-
eral purpose language involves a multitude of design deci-
sions including the concrete concepts it should be capable of.
Textual languages are usually defined by a grammar which
results in a tree like structure of the models internal repre-
sentation, the abstract syntax tree (AST).

∗ K. Hölldobler is supported by the DFG GK/1298 AlgoSyn.

Most textual languages share some common concepts.
Typically, a language allows the user to define model ele-
ments (resp. program entities [15]) and refer to those from
the same model or from different models. For instance, a
type of a field in a Java class can refer to another Java class.
Furthermore, in many languages some kind of import mech-
anism provides access to elements of other models. More-
over, some languages provide hierarchical structured ele-
ments which enable shadowing names or using identical
names for different kinds of elements. For example, fields
and methods in Java may have the same name even within
the same class.

Handling references and visibilities requires some kind
of resolving mechanism that can either be realized by the
underlying AST or handled by an additional structure such
as a symbol table [1]. A symbol table can be a simple name-
information mapping or even a more elaborate data structure
that includes the semantic model [3] and can even be used for
black box integration of models [12]. However, developing
an additional structure can be a tedious task that leads to an
additional effort for the language engineer.

Thus, this paper presents an approach to ease the creation
of language-specific symbol tables. Therefor, we defined a
meta model for symbol tables containing first-level classes
for, among others, reference and visibility concepts. By de-
signing this at the M3 meta level, on the subjacent meta level
a concrete instance of this symbol table can be created and
is fully typed.

Furthermore, whether the AST or the symbol table is bet-
ter suitable depends on the task to be done, such as gen-
erating code, validation, and model integration. In order to
enable switching between these different data structures, we
integrate the meta models of the symbol table and grammar
at the M3 level.

Finally, we adapted the existing annotation mechanism of
the MontiCore grammar format [11] to be able to generate a
completely systematic symbol table as an instance (i.e., M2

model) of the symbol table M3 model. This can either be
used directly or serve as a basis for the creation of a custom
symbol table.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

DSM’15, October 27, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3903-2/15/10...$15.00
http://dx.doi.org/10.1145/2846696.2846700

23
[HMSNR15] K. Hölldobler, P. Mir Seyed Nazari, B. Rumpe:
Adaptable Symbol Table Management by Meta Modeling and Generation of Symbol Table Infrastructures.
In: Domain-Specific Modeling Workshop (DSM’15), pp. 23–30. ACM, 2015.
www.se-rwth.de/publications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36662822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In sum, this paper’s contribution is (1) a language-
independent meta model for symbol tables that allows defin-
ing language-specific symbol tables, (2) an integration of
this meta model and the grammar meta model, (3) a naming
convention for annotations of grammar elements using the
example of a MontiCore grammar and (4) based on it the
generation of a symbol table that can be used as is or serve
as a basis for custom symbol tables.

In the following we first explain the different meta levels
involved in this approach in Sect. 2 and examine the gram-
mar meta model in Sect. 3. Thereafter, the symbol table meta
model is described in Sect. 4, while in Sect. 5 the integration
of both meta models as well as the symbol table generation
is explained. Finally, related work is discussed in Sect. 6 and
the paper is concluded in Sect. 7.

2. Meta Modeling
Our approach of a meta model for symbol tables in conjunc-
tion with the generation of a completely systematic symbol
table acts on the different meta modeling levels, thus, in this
section we give a brief overview of meta modeling levels and
clarify which meta level is meant by M0, M1, M2 and M3.

model

grammar

grammar describing

grammars«M3» meta meta level

«M2» meta level

«M1» model level

system«M0» system level

«instance»

«instance»

«instance»

e.g., CRM-system

e.g., Java class

e.g., for Java

Figure 1. Overview of the Different Meta Levels
In meta modeling a distinction is made between different

levels/layers of meta modeling referred to as M0, M1, M2,
M3, etc., where every level Mn is considered as an instance
of the level Mn+1 [2, 14]. The lowest meta level is M0 which
is the real world system (cf. Fig. 1). As our approach tar-
gets language design the lowest instance level (M1, model
level) considered here is a concrete model, e.g., a Java class
according to a language, e.g., Java. In grammar-based ap-
proaches, a model is an instance of a language described by
a grammar which is the next meta level (M2, meta level)1.
Finally, the topmost meta level (M3, meta meta level) is a
grammar able to describe grammars. In sum, a meta model
of a model, is a grammar, and a meta model of a grammar is
a grammar of grammars.

3. Grammar Meta-Model
Using MontiCore [11] a modeling language is defined by an
EBNF-like grammar. A simplified meta model2 of a Monti-

1 Please note that the M2 model corresponds to the AST.
2 We deliberately omitted different production kinds and classes represent-
ing alternatives etc. to narrow the meta model to parts relevant for the pre-
sented approach.

Terminal Nonterminal

*

definedBy

Production CD

«M3»

Annotation

1

*
*

*

Figure 2. Grammar Meta Model (M3 Level)

Core grammar in form of a class diagram is shown in Fig. 2.
Thus, a grammar consists of a set of productions. Each of
which consists of an arbitrary number of terminals and non-
terminals. Similar to EBNF, every nonterminal is defined by
one production. Additionally, each grammar element (not
shown for Terminal) can be annotated with further infor-
mation, e.g., for documentation purposes.

An excerpt of a simplified meta model for the Java pro-
gramming language is shown in Fig. 3. This meta model
is an instance of the meta model of a grammar shown in
Fig. 2. However, for readability reasons we omitted all ter-
minals, chose different names for nonterminals and their
defining productions (J-prefix for nonterminals is omitted)
and denoted the instance relation in form of stereotypes,
e.g., <<Nonterminal>>. The JClass production in Fig. 2
represents a Java class. It consists of several Method and
Field nonterminals. Field is defined by the production
JField that represents a Java field or variable declaration,
while Method is defined by JMethod that represents a Java
method. A JField has a Type nonterminal defined by the
Name production. Furthermore, a JMethod consists of sev-
eral While nonterminals defined by JWhile. JWhile repre-
sents a while loop which, among others, consists of fields.

CD

«M2»

String name

«Nonterminal»

Method
*

«Production»

JClass

String name

«Production»

JMethod

«Nonterminal»

Field

*

String name

«Production»

JField

«Nonterminal»

Type

«Production»

Name

«Nonterminal»

While

*

d
e
fi
n
e
d
B
y

«Production»

JWhile

1*d
e
fi
n
e
d
B
y

d
e
fi
n
e
d
B
y

d
e
fi
n
e
d
B
y

Figure 3. Java Meta Model (M2 Level)

4. Symbol Table Meta-Model
Many software languages share same or similar concepts,
such as: a) The possibility to define and reference model
elements. b) References to elements of the same model as
well as of another model are allowed. The latter includes the
(re-)loading of models. c) The ability to shadow names that
are already defined. d) Import statements to enable the use
of simple names.

Often, these tasks are conducted by so-called symbol ta-
bles (see Sect. 4.1). In the following, we will present the
symbol table M3 model of MontiCore. For this, we intro-
duce some core concepts that are common in many lan-

24

Symbol SymbolKind CD

«M3»

«M2»

«instance»
«instance»

JClassSymbol JClassSymbolKind

JFieldSymbol JFieldSymbolKind
kind 1*

«instance»
«instance»

kind 1*

kind 1*

Figure 4. M2/M3 Classes for Symbols and Symbol Kinds

guages by taking the example of Java and present the cor-
responding Java symbol table M2 model.

Many of the presented concepts and mechanisms are
complex and must usually be fully understood by the lan-
guage engineer in order to apply them. Therefore, the aim
of the M3 model is to encapsulate the complexity within the
framework and enable the generation of reasonable defaults
for a concrete language on the M2 level (see Sect. 5).

4.1 Symbols and Symbol Tables
In general, languages have different kinds of model ele-
ments, e.g., classes, methods, and fields in Java, each of
which has its specific information. Java classes, for exam-
ple, can be abstract or final and may sub-class other classes.
A method can define, among others, a parameter list and a re-
turn type. The model elements are represented by a symbol.
A symbol contains all essential information about a named
model element and has a specific kind depending on the
model element it denotes. Additionally, a symbol can pro-
vide information that is not directly part of the model ele-
ment, but useful for the language engineer (resp. generator
engineer). For example, a symbol representing a Java class
could provide easy access to all non-private fields and meth-
ods of all its direct and indirect super types. A symbol table
(ST) is a data structure that maps names to symbols. It al-
lows to effectively organize and find declarations, types, sig-
natures, implementation details etc. associated with a sym-
bol (resp. model element). A ST consists of a scope-tree (see
4.2) with an associated collection of symbols at each scope.

The M3 model for symbols and symbol kinds is shown
in the top part of Fig. 4. The M3 class Symbol has exactly
one SymbolKind, whereas a SymbolKind can belong to sev-
eral Symbols.3 The corresponding (shortened) M2 model for
Java is presented in the bottom part of Fig. 4. The M2 class
JClassSymbol is an instance of the M3 class Symbol. Its
associated kind JClassSymbolKind is an instance of the
M3 class SymbolKind. Analogously, JFieldSymbol and
JFieldSymbolKind are instances of Symbol and Symbol-

Kind, respectively. Same applies to methods (not shown).

4.2 Scopes
A scope holds a collection of symbol definitions. In Java, for
example, methods and fields are defined in a class scope.
Scopes are structured hierarchically, i.e., they can have a

3 Representing a symbol kind by its own class simplifies the integration of
heterogeneous models [5]

*

CD

«M3»«interface»

Scope1

enclosingScope

subs

*

ArtifactScope

VisibilityScopeShadowingScope

enclosing

0..1Symbol

JArtifactScope

«instance» JClassScope

JMethodScope JWhileScope

«instance»

«M2»

«instance»

«instance»

Figure 5. M2/M3 Classes for Scopes

direct enclosing scope and several sub-scopes. The resulting
structure is a scope-tree (resp. scope-graph) modeled by the
enclosing-subs association of the M3 interface Scope in
Fig. 5.

Symbol Visibility Scopes limit the visibility of symbols,
i.e., the logical region where the symbol is accessible by its
name. For instance, a local variable in Java is only visible
within the method scope it is defined in. Outside the method,
the local variable is ”out-of-scope”.

The visibility of a symbol can be shadowed by other sym-
bols usually contained in sub-scopes. In Java, a local variable
v shadows a same-named field of the class scope. Thus, us-
ing the name v from within the method refers to the local
variable, but from outside the method (and in the same class)
it refers to the field. However, whether a symbol is shadowed
depends on the scope in which the symbol is defined. A Java
while-block, for instance, may not declare a new variable v,
if its enclosing method already does. Consequently, we can
distinguish between two types of scopes: Shadowing scopes
may shadow names that are already defined in their enclos-
ing scope(s) whereas visibility scopes may not. In Java, class
scopes, method scopes, and artifact scopes (see below) are
shadowing scopes. All other scopes are visibility scopes.

Fig. 5 shows the M3 classes for shadowing and visibil-
ity scopes and the corresponding Java M2 classes. Shad-
owingScope and VisibilityScope implement the M3 in-
terface Scope. Consequently, every scope in M2 is either a
shadowing scope or a visibility scope. Fig. 6 shows how the
enclosing-subs relation stated by the M3 interface Scope is
realized for Java on the M2 level. A JClassScope is the en-
closing scope of JMethodScopes and JClassScopes (of its
inner classes) which are its sub-scopes. The enclosing scope
of a JWhileScope (i.e., the scope of a while-block) is a
JMethodScope (or another block not shown here). Conse-
quently, a JMethodScope can have JWhileScopes as sub-
scopes.

Artifact Scopes Models of textual languages usually are
stored in an artifact, e.g., a file. Besides the top level ele-
ment(s), the artifact often contains information about pack-
ages (resp. name spaces) and import statements which are
important for name qualifying and inter-model references

25

(see Sect. 4.5). In Java, the package and import statements
are declared outside the class definition, inside the artifact
scope. The artifact scope represents the scope of the artifact
(resp. compilation unit). It is the top scope of all symbols
defined in an artifact and by default a shadowing scope.
Thus, ArtifactScope sub-classes ShadowingScope as
shown in Fig. 5. The artifact scope in Java is represented
by the M2 class JArtifactScope which is an instance of
ArtifactScope. JArtifactScope can only contain class
scopes (cf. Fig. 6). Usually, it contains exactly one class
scope, but it is also possible to define more than one class in
a Java file.

4.3 Scope Spanning Symbols
Symbols that span (i.e., define) a scope themselves are called
scope spanning symbols. A Java class symbol, for instance,
spans a scope to enable field and method definitions within
that scope. Fig. 7 shows that the JClassSymbol is not just
an instance of Symbol (as shown in Fig. 4) but strictly
speaking an instance of ScopeSpanningSymbol. It spans
a shadowing scope, namely a JClassScope. Analogously,
JMethodSymbol is a scope spanning symbol spanning a
JMethodScope.

Please note that on the M3 level the relation between
ScopeSpanningSymbol and Scope has the cardinality
0..1-to-1, which means a Scope may optionally be spanned
by a symbol. However, on the M2 level a scope is ei-
ther always spanned by a symbol or never. For example, a
JClassScope is always spanned by a JClassSymbol since
the cardinality is 1-to-1. In contrast, a JWhileScope is never
spanned by a symbol, as no association to a symbol exists
(i.e., 0-to-0).

4.4 Symbol References
Symbol references refer to symbols that are defined else-
where, e.g., in other scopes. A symbol definition exists ex-
actly once and is stored in a scope. In contrast, several sym-
bol references may exist, which are managed in the referenc-
ing symbol. In Java, for example, a class C refers to its super
class S, since S is defined elsewhere, e.g., in another file.
Fig. 8 shows the corresponding M3 classes. The defini-

tion association has the cardinality 0..1 instead of 1, since
a SymbolReference could refer to a non-existing symbol.
Also, it should be possible to load the corresponding symbol
definition lazily. The bottom part of Fig. 8 shows an example
of a symbol reference for a Java class.

JClassSymbol represents the definition and JClassSym-
bolReference its reference. By referring to JClassSym-

CD

«M2»
JArtifactScope JClassScope

JMethodScope JWhileScope
*1

subs

*0..1

subsenclosing

enclosing
*

1

subs

enclosing

subsinner classes
*

enclosing

0..1

Figure 6. Relation of Java Scopes

Symbol *

CD

«M3»

ScopeSpanningSymbol

s
p
a
n
s
 >

0..1

1spannedScope

«interface»

Scope

1enclosingScope

VisibilityScopeShadowingScope

«M2»«instance»

JClassSymbol

JMethodSymbol

JClassScope11 spans >

«instance»

JMethodScope11
spans >

JWhileScope

«instance»
«instance»

«instance»

Figure 7. M2/M3 Classes for Scope Spanning Symbols

CD

«M3»

«M2»«instance»

JClassSymbol

JFieldSymbol

JClassSymbolReference

*0..1

definition

«instance»

1

*

reference

«instance»

SymbolReferenceSymbol

*0..1

definition

resolved on demand only

** reference

Figure 8. M2/M3 Classes for Symbol References

bol, JClass-SymbolReference can delegate every re-
quest to the symbol definition. For that, the symbol ref-
erence contains all information needed to resolve the cor-
responding definition, usually, the name and kind of the
symbol definition. A field in Java always has a type, hence,
JFieldSymbol has a JClassSymbolReference. It is im-
portant to separate symbol definitions and references into
different classes since the references can contain additional
information that is specific to the reference. For example,
the field List<String> l has a reference to List with the
type argument String. Since other type arguments are pos-
sible, such as List<Integer>, List<Boolean>, etc., it is
important to store the information about the type arguments
in the symbol reference.

4.5 Symbol Resolution Mechanism
Finding the definition of a symbol and the information as-
sociated with it is called symbol resolution (cf. name resolu-
tion [13]). To resolve a symbol usually its name and kind are
needed [17]. The symbol kind is needed in the resolving pro-
cess since many languages allow to use the same name for
different elements, e.g., in many object-oriented languages
fields and methods may yield the same name.

Resolution algorithms often are very complex and rely
on several (language-specific) aspects, such as shadowing,
visibility and accessibility rules. Furthermore, these rules
can differ depending on the scope level, e.g., Java has dif-
ferent shadowing rules for method and while-blocks. How-
ever, many languages share some common resolving mech-
anisms: a) The starting point is the innermost scope [1]. The
resolution continues with the enclosing scope until the sym-
bol definition is found. b) Name occurrences in shadowing
scopes shadow the ones of same symbol kinds in enclosing

26

scopes. c) Same names may be used for different symbol
kinds, e.g., field and method. d) Some import mechanisms
are used —usually in the artifact scope— to resolve elements
from outside the model.

As described previously, we introduced those concepts
on the M3 level, such as ShadowingScope, Visibil-

ityScope, ArtifactScope, Symbol, SymbolKind, and
the corresponding enclosing-subs relations. This enables
us to define a resolution algorithm once on the M3 level
and apply it for every language on the M2 level, by using
language-specific elements, e.g., JClassScope, JMethod-
Scope, JArtifactScope, JClassSymbol, JMethodSym-
bol, JClassSymbolKind, etc. In order to match language
specific requirements that are not covered by the default be-
havior, MontiCore provides specific extension points (see
Sect. 5.2).

5. Integrating and Generating Symbol Tables
The language engineer usually needs both the M2 model of
the specific grammar and its corresponding symbol table M2

model. For this reason, we connect the respective M3 mod-
els, and hence, enable the composition of the M2 models
[7]. Moreover, the language engineer obtains all necessary
information about a model element. For example, JClass
contains syntactical information about a class production.
Since it is related to JClassSymbol, all further information
such as the super class and the members are available in a
moderate way. Furthermore, the language engineer need not
deal with (re-)loading of referenced models (e.g., the super
class). The whole mechanism is encapsulated in the under-
lying symbol table infrastructure. Thus, on M1 level every
processed model provides information about its AST nodes
and symbol table elements.

In the following we describe (1) how the two M3 models
and the corresponding M2 models are composed, (2) how
the composition is conducted syntactically, and (3) how parts
of the symbol table infrastructure can be generated by using
grammar annotations.

5.1 Composing the Grammar and Symbol Table Meta
Models

As described in Sect. 4.1, a symbol represents an essen-
tial model element. Since those model elements syntacti-
cally are defined by grammar productions, we connect the
M3 classes Production of the grammar and the Symbol

of the symbol table (see Fig. 9). Note that a symbol al-
ways ”knows” its kind and its spanned scope (if it is a scope
spanning symbol). Hence, it is sufficient to relate a produc-
tion to the symbol only and obtain the other dependencies
transitively. This simplifies the integrated meta models and
reduces potential inconsistencies, e.g., if a scope spanning
symbol is related to a production, but its spanned scope is
not. For the M2 models of the Java example this implies
that the productions JClass, JMethod, and JField are re-

lated to JClassSymbol, JMethodSymbol, and JFieldSym-
bol, respectively. We use a * cardinality for the relation be-
tween Production and Symbol for two reasons. First, not
every production has an associated symbol and vice versa.
The Name production, for example, is not represented by a
symbol. Secondly, a production can define several model
elements each represented by a dedicated symbol. For ex-
ample, a production JClassMember could define both, a
field and a method that have the corresponding symbols
JFieldSymbol and JMethodSymbol, respectively. Analo-
gously, a symbol JClassMemberSymbol can represent the
production JField as well as JMethod.

A Production can also be related to a Scope without a
corresponding symbol. The JWhile production, for exam-
ple, is associated with JWhileScope. Again, a * cardinality
between Production and Scope is needed, since, for ex-
ample, a production for an if-else block might be mapped to
two scopes.

Nonterminals are associated with SymbolReferences.
For example, the nonterminal Type is contained in the
JField production (see Fig. 3) which itself is associ-
ated with the symbol JFieldSymbol. Consequently, re-
lating Type and JClassSymbolReference entails that a
JFieldSymbol refers to a JClassSymbol using the class
JClassSymbolReference.

5.2 Generating the Symbol Table Meta Model
The composition of the two M2 models is affected by the
grammar design as well as the symbol table design, which
are both determined by the language engineer. The grammar
can be designed with just one production describing the
whole model right up to many small productions for every
model aspect. Similar, the symbol table can consist of only
one symbol or several symbols for each model element. As
a consequence, the composition of the grammar and the
symbol table at the M2 level must be conducted manually.

In our experience, there often exists a dedicated produc-
tion for each essential model element. Hence, a Production
is related to at most one Symbol and vice versa. The same
holds for Production and Scope as well as Nonterminal
and SymbolReference. In such cases, we can assist the lan-
guage engineer not only in composing the two M2 models,
but also in developing the symbol table using a generative
approach.

As described in Sect. 3, the meta model for the gram-
mar is the AST class diagram. MontiCore provides an ex-
tended grammar that enables to describe and systematical
derive both the concrete syntax and the abstract syntax of
a language. A comprehensive description of the MontiCore
grammar is given in [11].

We now go one step further and automatically derive be-
sides the concrete and the abstract syntax, the symbol table
from the grammar. As stated before, this is only possible to
a certain extent, since the language engineer determines the
abstraction level of the symbol table. Furthermore, the sym-

27

Symbol
*

CD

«M3»

ScopeSpanningSymbol

0..1

1spannedScope

«interface»

Scope

1enclosingScope

subs

*

VisibilityScopeShadowingScope

kind1

*

SymbolKind

enclosing

0..1

ArtifactScopeSymbolReference

*

*

*

0..1 def

ref

Production

Terminal Nonterminal Annotation
*

*

definedBy 1

*

*
*

* *

* *

Grammr M3-model Symbol Table M3-model

*

Figure 9. Composed M3 Models of Grammar and Symbol Table

bol table might contain information that is not directly con-
tained in the grammar (see Sect. 4.1), and hence, it cannot
be derived automatically from it. However, in many cases at
least the infrastructure of the symbol table can be derived au-
tomatically. In the following, we describe this approach and
show how the language engineer can make use of it.

We use the existing annotation mechanism of the Monti-
Core grammar in order to (1) automatically derive the lan-
guage specific (i.e., M2) symbol table infrastructure from
it and (2) simultaneously integrate it with the language-
specific grammar M2 model. Annotating a production with

1 JClass@! = "class" Name "{" (JField | JMethod)* "}";
2 JField@! = type:Name@JClass Name ";";

Listing 1. Simplified Java Grammar Excerpt with
Annotations

@! specifies that this production is related to a symbol. The
mapping is conducted by a naming convention: a produc-
tion Prod is mapped to a symbol ProdSymbol . In Lst. 1
both productions JClass and JField are annotated with
@!, hence, they are related to the symbols JClassSymbol

and JFieldSymbol, respectively.4

By solely marking the productions with an annotation,
the two points mentioned above are fulfilled for M2 symbol
classes. First, the symbols JClassSymbol and JFieldSym-

bol can be generated along with their kinds JClassKind

and JFieldKind, respectively. Second, the grammar ele-
ments and the symbol table elements are related to each
other, e.g., JClass and JClassSymbol.

Furthermore, the following aspects can be derived from
the grammar without being explicitly defined. JClass con-
tains the nonterminal JField which is defined by the same
named production that in turn is related to a symbol. Sim-
ply put, the JClassSymbol contains JFieldSymbols. Thus,
JClassSymbol is a scope spanning symbol. So, its scope
JClassScope is generated, too.

A Java field has a type that refers to a class defined else-
where. Syntactically, the type reference is just a name as
stated by the nonterminal type:Name used in the JField

4 Since a symbol represents a named model element (see Sect. 4) a context
condition check can ensure that only productions containing the Name

nonterminal are tagged with @!.

production (l. 2, Lst. 1). The nonterminal’s annotation
@JClass specifies that a JClass production is referenced.
Again, we choose a naming convention: if a nonterminal
is annotated with @Ann and Ann is the name of a produc-
tion, the nonterminal will be related to a symbol reference
AnnSymbolReference .

From this information we can infer that JFieldSymbol
refers to a JClassSymbol as its type.5 The M2 class Type
(see Fig. 3) is related to JClassSymbolReference, hence,
a JFieldSymbol has a JClassSymbolReference.

1 JWhile = "while" "(" ... ")" "{" JField* ... "}";

Listing 2. Simplified Production for a while-Block

Lst. 2 shows a (highly simplified) production of a Java
while-block. The JWhile production contains, among oth-
ers, the nonterminal JField, meaning that Java fields (or
rather variables) can be defined in it. Since the JField

production is related to a symbol (see Lst. 1, l. 2), we
can derive —following the convention-over-configuration
approach— that JWhile spans a scope. Consequently, a cor-
responding JWhileScope class is generated that can (only)
contain JFieldSymbols. By default, a scope not spanned
by a symbol is considered to be a VisibilityScope un-
less the corresponding production contains the Name (resp.
name:Name) nonterminal. For example, if no symbol was
created for JClass, it would be considered as a shadow-
ing scope, since it has a name and contains JFields. Fi-
nally, JArtifactScope is generated, too, since—as stated
in Sect. 4—models of textual languages typically are stored
in an artifact (resp. file). The symbols and scopes that may
be contained in JArtifactScope are determined from the
grammar as follows. Beginning from the start production,
find the first productions that are related to a corresponding
symbol or scope. Those symbols and scopes may be defined
in the artifact scope. In the simple example of Lst. 1, JClass
is the start production and is also related to a symbol. Conse-
quently, JArtifactScope may only contain JClassSym-

bols and their spanned scope. As an artifact scope corre-

5 Please note the difference, as a JClass contains a nonterminal defined by
JField, the JClassSymbol is a scope spanning symbol. Instead, JField
does not contain a JClass nonterminal, but only the Name nonterminal.

28

sponds to the file instead of a model element, there is no
class resp. production related to a generated artifact scope.

Using the above mentioned conventions for annotations
in the grammar and the derivation rules, a lot of the sym-
bol table’s language-specific infrastructure (i.e., M2 model)
is generated with the default behavior described in Sect. 4.1.
The language engineer has the following options: 1) Cus-
tomize and extend parts of the generated infrastructure us-
ing the different integration mechanisms as described in [4]
without changing the code directly (see next point). 2) Use
it or parts of it as one-shot generation, i.e., change the code
directly. Consequently, changes in the grammar do not af-
fect the code anymore. 3) Use it unchanged, if it fits all the
requirements. 4) Ignore it and develop the symbol table it
manually instead.

6. Related Work
Classical symbol tables typically are simple hash tables
where a key, the identifier, is mapped to the associated in-
formation. Using those symbol tables, some possible imple-
mentations of nested blocks are the use of (unique) qualified
identifiers or nesting symbol tables per block [1]. Further-
more, if two different kinds of model elements may have
the same name, e.g., a field and a method in Java, often one
symbol table is created per kind. In our approach, the symbol
table is rather conceptually a table. The underlying infras-
tructure is a scope-tree containing a collection of symbols
(similar to [15]). Each symbol encapsulates the identifier
and the associated information. Also, we use explicit sym-
bol kinds to distinguish different kinds of model elements.
This way, same-named symbols with different kinds may be
defined in the same scope.

The purpose of our symbol table approach goes further
than in classic compiler construction. It is rather a combina-
tion of a simple hash table and a meta model for the seman-
tic model as described in [3]: ”a semantic model is a repre-
sentation [...] of the same subject that the DSL describes.”.
Furthermore, it is ”based on what will be done with the in-
formation from a DSL script.”. Since the purpose of a DSL
is determined by the language engineer, the semantic (meta)
model cannot be created (resp. generated) automatically. For
this reason, we support the language engineer by generating
parts of the infrastructure and provide mechanisms for cus-
tomization.

The meta-DSL name binding language (NaBL) [10] al-
lows to specify name bindings (resp. name resolution) and
scoping rules declaratively. It provides concepts, such as
scoping, definition of imports and names, and referencing
rules (cf. [13]). The language workbench Spoofax [6] com-
bines NaBL with the syntax definition formalism (SDF) [16].
Since NaBL models are separated from the syntax defini-
tion, they can be easily exchanged and adjusted for different
compositions. Unlike our approach, Spoofax’s symbol ta-
ble is a global index with qualified identifiers. Also, we do

not provide an own DSL, but follow the convention-over-
configuration approach by deriving as much information
from the grammar as possible and useful.

Model transformation approaches, e.g., as in [8, 9] con-
duct transformations between a source and a target M3 mod-
els in order to make the corresponding M1 models inter-
changeable. The transformation is processed in three steps.
Firstly, the concepts of the M3 models are mapped to each
other. This mapping then enables the transformation of the
source M2 model to the target M2 model. Finally, with the
M3 mapping and the M2 level transformations the M1 level
transformations are derived automatically. Same as in our
approach, the mapping is conducted on the M3 level. How-
ever, since we need to use information of both M3 mod-
els on the M2 and M1 levels, we furthermore compose the
M3 models. Similarly, our grammar M2 model is the source
model from which the target symbol table M2 model is gen-
erated. In contrast to the model transformation approach, we
also integrate these two M2 models.

7. Conclusion
Textual software languages often share common concepts
such as defining and referencing model elements of the same
model or other models, shadowing already defined names,
and limiting variable visibility using some kind of scoping.
Those concepts can be realized by symbol tables which en-
able easy and efficient access to useful information associ-
ated with a model and its elements.

In this paper, we presented a M3 model for symbol tables
containing first-level classes for the above mentioned con-
cepts. Based on this meta model the language engineer can
develop a language-specific symbol table model at the M2

level. As the symbol table information and the grammar in-
formation are related and often required in conjunction, we
compose the M3 models, and hence, enable a corresponding
composition at the M2 and M1 levels.

Typically, the symbol table is handcrafted, since it highly
depends on the purpose of the DSL. Also, composing it with
the grammar is a manual task conducted by the language
engineer. However, in cases where the grammar matches
some criteria—such as containing a dedicated production
for each essential model element—it can serve as source
model for (1) generating a default symbol table M2 model
or parts of it and (2) for directly composing the grammar
and symbol table M2 models. For this, we use an exist-
ing annotation mechanism for grammar elements and follow
the convention-over-configuration approach when generat-
ing the symbol table. Different extension mechanisms enable
extending and customizing the generated symbol tables.

As a next step, we plan to extend the symbol table M3

model in order to match the requirements of a broader range
of software languages. Furthermore, we plan to run experi-
ments to determine whether the suggested defaults and their
configuration mechanisms are well understandable and help-

29

ful or can be optimized. Currently, the grammar design
widely influences the default generation of symbol tables.
Therefore, we will examine whether more complex deriving
patterns, e.g., the (transitive) dependency between produc-
tions, can improve the symbol table generation.

References
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, & Tools. Addison-Wesley series in
computer science. Pearson Addison-Wesley, 2007.

[2] C. Atkinson and T. Khne. The essence of multilevel meta-
modeling. In UML 2001 - The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, volume 2185 of
Lecture Notes in Computer Science, pages 19–33. Springer
Berlin Heidelberg, 2001.

[3] M. Fowler. Domain-Specific Languages. Addison-Wesley
Signature Series. Pearson Education, 2010.

[4] T. Greifenberg, K. Hölldobler, C. Kolassa, M. Look, P. Mir
Seyed Nazari, K. Müller, A. Navarro Perez, D. Plotnikov,
D. Reiss, A. Roth, B. Rumpe, M. Schindler, and A. Wortmann.
A Comparison of Mechanisms for Integrating Handwritten
and Generated Code for Object-Oriented Programming Lan-
guages. In Proceedings of the 3rd International Conference on
Model-Driven Engineering and Software Development, pages
74–85, Angers, Loire Valley, France, 2015. SciTePress.

[5] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez,
B. Rumpe, S. Völkel, and A. Wortmann. Integration of Het-
erogeneous Modeling Languages via Extensible and Com-
posable Language Components. In Proceedings of the 3rd
International Conference on Model-Driven Engineering and
Software Development, pages 19–31, Angers, Loire Valley,
France, 2015. SciTePress.

[6] L. C. Kats and E. Visser. The Spoofax Language Workbench:
Rules for Declarative Specification of Languages and IDEs.
SIGPLAN Not., 2010.

[7] S. Kelly and J.-P. Tolvanen. Domain-specific modeling: en-
abling full code generation. John Wiley & Sons, 2008.

[8] H. Kern. The Interchange of (Meta)Models between
MetaEdit+ and Eclipse EMF Using M3-Level-Based Bridges.
In 8th OOPSLA Workshop on Domain-Specific Modeling at
OOPSLA 2008, pages 14–19. University of Alabama at Birm-
ingham, 2008.

[9] H. Kern and S. Kühne. Integration of Microsoft Visio
and Eclipse Modeling Framework Using M3-Level-Based
Bridges. In 2nd ECMDA Workshop on Model-Driven Tool &
Process Integration, at Fifth European Conference on Model-
Driven Architecture Foundations and Applications, 2009.

[10] G. Konat, L. Kats, G. Wachsmuth, and E. Visser. Declara-
tive Name Binding and Scope Rules. In K. Czarnecki and
G. Hedin, editors, Software Language Engineering, volume
7745 of Lecture Notes in Computer Science, pages 311–331.
Springer Berlin Heidelberg, 2013.

[11] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: a Frame-
work for Compositional Development of Domain Specific
Languages. Software Tools for Technology Transfer (STTT),
2010.

[12] M. Look, A. Navarro Pérez, J. O. Ringert, B. Rumpe, and
A. Wortmann. Black-box Integration of Heterogeneous Mod-
eling Languages for Cyber-Physical Systems. In Proceed-
ings of the 1st Workshop on the Globalization of Modeling
Languages (GEMOC), volume 1102 of CEUR Workshop Pro-
ceedings, 2013.

[13] P. Neron, A. P. Tolmach, E. Visser, and G. Wachsmuth. A the-
ory of name resolution. In J. Vitek, editor, Programming Lan-
guages and Systems - 24th European Symposium on Program-
ming, ESOP 2015, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, volume 9032 of
Lecture Notes in Computer Science, pages 205–231. Springer,
2015.

[14] Object Management Group. Meta Object Facil-
ity (MOF) Version 2.5 (2015-06-05), June 2015.
http://www.omg.org/spec/MOF/2.5/PDF.

[15] T. Parr. Language Implementation Patterns: Create Your
Own Domain-specific and General Programming Languages.
Pragmatic Bookshelf Series. Pragmatic Bookshelf, 2010.

[16] E. Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, 1997.

[17] S. Völkel. Kompositionale Entwicklung domänenspezifischer
Sprachen. Number 9 in Aachener Informatik-Berichte, Soft-
ware Engineering. Shaker Verlag, 2011.

30

	Introduction
	Meta Modeling
	Grammar Meta-Model
	Symbol Table Meta-Model
	Symbols and Symbol Tables
	Scopes
	Scope Spanning Symbols
	Symbol References
	Symbol Resolution Mechanism

	Integrating and Generating Symbol Tables
	Composing the Grammar and Symbol Table Meta Models
	Generating the Symbol Table Meta Model

	Related Work
	Conclusion

