
Decidable Verification of Knowledge-Based Programs over
Description Logic Actions with Sensing ?

(Extended Abstract ??)

Benjamin Zarrieß1 and Jens Claßen2

1 Theoretical Computer Science, TU Dresden, Germany,
2 Knowledge-Based Systems Group, RWTH Aachen University, Germany

1 Introduction

Since the Golog [5, 10] family of action programming languages has become
a popular means for control of high-level agents, the verification of temporal
properties of Golog programs has received increasing attention [4,7]. Both the
Golog language itself and the underlying Situation Calculus [11,13] are of high
(first-order) expressivity, which renders the general problem undecidable. Identi-
fying non-trivial fragments where decidability is given is therefore a worthwhile
endeavour [6, 15].

In this extended abstract we consider the class of so-called knowledge-based
programs, which are suited for more realistic scenarios where the agent possesses
only incomplete information about its surroundings and has to use sensing in or-
der to acquire additional knowledge at run-time. As opposed to classical Golog,
knowledge-based programs contain explicit references to the agent’s knowledge,
thus enabling it to choose its course of action based on what it knows and
does not know. Formalizations of knowledge-based programs in the epistemic
Situation Calculus were proposed by Reiter [14] and later by Claßen and Lake-
meyer [3].

Here we review our work on a new epistemic action formalism based on
the basic Description Logic (DL) ALC obtained by combining and extending
earlier proposals for DL action formalisms [1] and epistemic DLs [8]. From the
latter we use a concept constructor for knowledge to formulate test conditions
within programs and desired properties thereof, while we extend the former
by not only including physical, but also sensing actions. More precisely, in our
setting a knowledge-based programs for the control of a single agent consists of
the following ingredients: 1. an (objective) ALC-TBox and ABox representing
the initial static knowledge of the agent about the world.; 2. a set of primitive
actions describing the basic abilities of an agent to change the world and to gain
new information from the environment and 3. a program expression defining
the possible courses of action by combining primitive actions and subjective
conditions formulated in the epistemic DL ALCOK (an extension of ALC with
nominals (O) and an epistemic constructor (K)) using programming constructs
? Supported by DFG Research Unit FOR 1513, (http://www.hybrid-reasoning.org)

?? See [2] for the long versions of the paper and [16] for the technical report.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36661439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for sequencing, iteration and nondeterministic choice. Desired properties of such
a program can be expressed in LTL over ALC-concept inclusions and ALCOK-
ABox assertions - a logic we call ALCOK-LTL. The verification problem asks
whether or not all runs of a given knowledge-based program satisfy a given
ALCOK-LTL formula.

Verifying knowledge-based programs with this language yields multiple ad-
vantages. First, under reasonable restrictions we obtain decidability of verifica-
tion for a formalism whose expressiveness goes far beyond propositional logic.
Moreover, it enables us to resort to powerful DL reasoning systems. Finally,
the new formalism also inherits many useful properties of the epistemic Situa-
tion Calculus and ES such as Reiter’s [12] solution to the frame problem and
a reasoning mechanism resembling Levesque and Lakemeyer’s [9] Representa-
tion Theorem where reasoning about knowledge is reduced to reasoning in the
standard DL ALCO.

2 Example

As an example consider a mobile robot in a factory whose task it is to detect
faulty gears and do the necessary repairs before turning them on. The agent is
equipped with the following KB K = (T ,A) representing its initial knowledge
about the world:

T = {Fault v CritFault t UncritFault,∃has-f.> v System,System v ∀has-f.Fault};
A = {System(gear),¬On(gear),Fault(blocked)}.

The first concept inclusion (CI) in T states that faults are critical faults or
uncritical ones, the last two CIs define the domain System and range Fault for
the role has-f. A describes a simple initial situation.

To represent conditional effects of primitive actions and axioms whose truth
can be sensed we use boolean combinations of atoms, i.e. ABox assertions where
in place of individuals also variables are allowed. An effect is of the form ϕ/γ,
where ϕ is a boolean combination of atoms and γ is a literal of the form
A(z),¬A(z), r(z, z′) and ¬r(z, z′). A primitive action is a pair of the finite sets
eff and sense, where eff is a set of effects and sense a finite set of boolean com-
binations of atoms. For example consider the following actions:

turn-on(x) : (eff = {(¬∃has-f.CritFault(x))/On(x)}, sense = ∅),
sense-on(x) : (eff = ∅, sense = {On(x)}).

turn-on(x) with variable x has a single conditional effect that causes x to be
On after the action is executed only if x previously has no critical fault. No
sensing result is provided. sense-on(x) is a pure sensing action that represents
the agent’s ability to perceive whether On(x) is true in the real world.

Semantically, a primitive ground action induces a binary relation on epistemic
interpretations (I,W) which allow us to explicitly distinguish changes affecting
the real world, represented by the interpretation I, and changes to the knowledge
state W, which is a set of interpretations (i.e., possible worlds) over a common
countably infinite domain. In our semantics we also assume that the agent knows



the physical effects of its primitive actions. For instance, assume K as given above
is all the agent knows initially about the world. Thus, it is initially known that
gear is not on, but the effect condition ¬∃has-f.CritFault(gear) of turn-on(gear)
is unknown, i.e. there is a least one possible world satisfying K where gear is an
instance of ∃has-f.CritFault and one where this is not the case. Consequently,
the actual outcome of executing turn-on(gear) in K is also unknown. This can
be expressed by the epistemic ABox assertion ¬KOn u ¬K¬On(gear), where
the K is used here as a concept constructor, intuitively denoting the known
instances. If the agent now in turn executes sense-on(gear), it will also come
to know whether gear has a critical fault or not, i.e. both epistemic ABox as-
sertions K∃has-f.CritFault t K¬∃has-f.CritFault(gear) and KOn t K¬On(gear)
come to hold. A knowledge-based program describing the behaviour of an agent
is then given as follows, where sense-f(gear, x) is an additional sensing action
for checking if gear has fault x and repair(gear, x) an action for removing fault
x of gear.

while ¬K(∀has-f.¬KFault)(gear)
pick(x) : KFault(x) ∧ ¬Khas-f(gear, x)? ∧ ¬K¬has-f(gear, x).sense-f(gear, x);
if Khas-f(gear, x) then repair(gear, x) else continue;

end; turn-on(gear); sense-on(gear)

As long as the agent does not know that gear has no known fault, a known fault
x is chosen non-deterministically for which it is unknown whether gear has it or
not. The agent then senses whether gear has this fault and repairs it if necessary.
After completing the loop the agent turns on the gear system and checks if this
was successful. An example for a property of this program to be verified is if a
gear initially has an unknown critical fault, then the agent will eventually come
to know it. This can be expressed by the following ALCOK-LTL formula:

∃has-f.(CritFault u ¬KFault)(gear) → 3K∃has-f.(CritFault u ¬KFault)(gear).

In our semantics of actions it is not guaranteed that the TBox given in the
initial KB always holds. However persistence of a TBox T in a program can be
verified by checking validity of the ALCOK-LTL formula 2

(∧
%∈T %

)
.

3 Results

Unfortunately, it turns out that the verification problem is undecidable for an
already quite small subset of our formalism. In our setting a state of the program
consists of an epistemic interpretation and a program expression representing
the program that remains to be executed. Thus, we end up with an infinite
state transition system. As the source of undecidability we have identified the
pick-operator for non-deterministic choice of argument, which may range over
the whole countably infinite domain. However, we also have the positive result
that decidability of the verification problem can be retained for a syntactically
restricted fragment of the formalism where pick operators are extended with
epistemic guards such that the agent is only allowed to choose an argument
among the known individuals. We have devised an algorithm with a 2ExpSpace
upper bound.



References

1. Baader, F., Lutz, C., Miličić, M., Sattler, U., Wolter, F.: Integrating description
logics and action formalisms: First results. In: Proc. of AAAI 2005

2. Zarrieß, B., Claßen, J.: Verification of knowledge-based programs over description
logic programs. In: Proc. of IJCAI-15 (2015)

3. Claßen, J., Lakemeyer, G.: Foundations for knowledge-based programs using ES.
In: Proc. of KR 2006

4. Claßen, J., Lakemeyer, G.: A logic for non-terminating Golog programs. In: Proc.
of KR 2008

5. De Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent program-
ming language based on the situation calculus. AIJ 121(1–2), 109–169 (2000)

6. De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded situation calculus action
theories and decidable verification. In: Proc. of KR 2012

7. De Giacomo, G., Lespérance, Y., Pearce, A.R.: Situation calculus based programs
for representing and reasoning about game structures. In: Proc. of KR 2010

8. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic oper-
ator for description logics. AIJ 100(1-2), 225–274 (1998)

9. Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. MIT Press (2001)
10. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic

programming language for dynamic domains. Journal of Logic Programming 31(1–
3), 59–83 (1997)

11. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of ar-
tificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp.
463–502. (1969)

12. Reiter, R.: The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy pp.
359–380 (1991)

13. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

14. Reiter, R.: On knowledge-based programming with sensing in the situation calcu-
lus. ACM Trans. Comput. Log. 2(4), 433–457 (2001)

15. Zarrieß, B., Claßen, J.: Verifying CTL∗ properties of Golog programs over local-
effect actions. In: Proc. of ECAI 2014

16. Zarrieß, B., Claßen, J.: Verification of knowledge-based programs over description
logic actions. LTCS-Report 15-10,
See http://lat.inf.tu-dresden.de/research/reports.html.


