
MODEL BASED RECONSTRUCTION OF THE BONY KNEE ANATOMY FROM 

3D ULTRASOUND IMAGES 

Christoph Hänisch, Juliana Hsu, Erik Noorman, Klaus Radermacher
 

Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aa-

chen University, Germany, haenisch@hia.rwth-aachen.de 

 

INTRODUCTION 

Nowadays, planning of image guided surgeries is often done using computed tomography 

(CT) and magnetic resonance imaging (MRI) (cf. Stiehl2005, Grimson1997). CT offers good 

image quality but due to its ionizing radiation it is invasive. Also, soft tissue is poorly visible 

in CT data. MRI is affected by distortions (Moro-oka2007) and quite expensive. 

Ultrasound might serve as an alternative imaging modality. It offers high resolution images in 

real-time while being non-invasive, cost-effective and broadly available. Its weaknesses, 

however, are a low signal to noise ratio (SNR), speckle, low contrast, acoustic shadowing and 

a small field of view (FOV) (cf. Noble2006).   

We developed an image processing chain as well as a related clinical workflow to reconstruct 

entire bone surfaces from 3D ultrasound volume data (see figure 1). A clinician acquires ul-

trasound images from relevant areas while scanning from various directions. The probe is 

tracked, the limb is equipped with non-invasive markers. The user is guided by a simple nav-

igation interface in order to follow a standardized scanning process. Having acquired the nec-

essary data, the volume images are segmented and registered to obtain a preliminary recon-

struction. Due to acoustic shadowing, the reconstruction might be incomplete. However, in-

corporating a priori knowledge, the reconstruction can be completed. The applicability of our 

approach is demonstrated on the surface reconstruction of the distal femur. 

 

Figure 1: Clinical workflow and image processing chain. 

 

MATERIALS AND METHODS 

Data Acquisition 

Various 3D ultrasound volume images of a solid foam bone phantom (SAWBONES) of the 

distal femur were acquired using the Ultrasonix SonixTOUCH Research system in combina-

tion with the linear array transducer 4DL14-5/38 (14 MHz). According to the protocol, the 

volume images were acquired from distinct directions with a slight overlap such that bone 

structures were located at the bottom side (see the segmentation section for more details). A 
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total of 19 images were recorded. The image data was stored as a series of 2D raw images 

which then were scan line converted to obtain volume images in Cartesian space. 

Segmentation 

The ultrasound volume images were segmented employing various level set methods 

(Osher1988). The basic idea behind this is that due to acoustic shadowing the inner region of 

the bone shows low intensity values. Thus, expanding an initial contour from inside yields the 

bone surface. Along the surface normal, the intensity profile is symmetric and the actual sur-

face is expected to be between the point of highest gradient and highest intensity (cf. 

Jain2004).  

The images were preprocessed by reverting the logarithmic compression and by applying an 

edge preserving median filter which reduces speckle and Gaussian noise. Assuming bone 

structures being located in the lower part of the image, initial level sets were estimated by 

traversing the image volumes column-wise and bottom up and searching for intensity values 

above a certain threshold level. 

The initial level sets were optimized using a constrained variant of the distance regularized 

level set evolution (DRLSE) approach described by (Li2005). The level set evolutions had to 

be restricted in the border areas to prevent a gradual enclosing of the intensity profile if the 

structures did not fill up the entire image. 

In a first optimization step, the evolution was carried out using a ridge detector based level 

set evolution as described in the original article by Li et al. In a second step, the edge indica-

tor function was changed to a ridge indicator function incorporating 3D local phase features 

(Hacihaliloglu2009) which made use of the fact that the bone responses were symmetric. 

The result of a level set evolution is a closed curve, thus, the final curves contained points 

that did not belong to the actual surfaces. These points were removed based on their locations 

and grey level values. Finally, triangle meshes were created from the level sets. The entire 

segmentation process is depicted in figure 2. 

  

Figure 2: Stages of the level set based segmentation process of 3D ultrasound images. The images in the top row show 

a slice of an original volume image, its preprocessed image, an initial level set on an original image slice, its edge 

indicator function and the result of the gradient based DRLSE (from left to right). The bottom row shows a slice of 

an original volume image, the response of the ridge detector, initial level sets (red) on their original images and their 

refinements (green) and the resulting surfaces before and after removing uncertain surface points (from left to right). 



Registration 

The surface patches obtained in the segmentation process were taken to construct the bone 

surface geometry. Since no tracking information was available in this experimental set-up, 

first, the patches were aligned manually. Then a fine registration was carried out by selecting 

an initial reference patch and gradually registering the remaining surface patches from left to 

right. Since there was only a small overlap in the border areas of the patches, a variant of the 

iterative closest point (ICP) algorithm was used (Chetverikov2005).  

 

Reconstruction 

Due to acoustic shadowing, an incomplete distal femur geometry was obtained from the reg-

istration procedure. Two approaches were investigated to reconstruct the entire surface ge-

ometry. First, an average bone model was non-rigidly fitted to the surface (Amberg2007) 

incorporating local stiffness constraints to avoid leakage in areas without any surface infor-

mation. Second, a statistical shape model (SSM) (cf. Heiman2009) was fitted to the incom-

plete surface geometry. The SSM is only allowed to deform within statistical limits based on 

some training data, thus always producing meaningful results. 

The average bone model was constructed from 158 data sets being triangle meshes (10,000 

vertices) of the distal femur surface obtained from CT data; the data was represented as point 

distribution models (PDM). First, an initial data set was selected randomly and fitted to the 

remaining data sets using the N-ICP-A algorithm (Amberg2007). Then, the resulting shape 

vectors were averaged. To avoid any bias from the selected initial data set, this scheme was 

repeated twice, each time using the previously computed mean shape as reference. 

The SSM was constructed from the same 158 data sets. The point correspondences were es-

tablished by fitting the mean shape to all data sets again employing the N-ICP-A. To fit the 

SSM to target geometries, an iterative procedure similar to that of active shape models (Coot-

es1995) was used. First, the mean shape was fitted to the target. Then, the resulting shape 

vector was projected into the parameter space and constrained to lie within three standard 

deviations. A new shape was constructed as a linear combination of the mean shape and the 

modes where the modes were weighted according to the parameter vector. Again, this new 

shape was fitted to the target. This procedure was repeated until convergence. We found, that 

three iterations were sufficient. 

 

Validation 

The segmentation process was validated by comparing the resulting bone surface patches 

individually with a ground truth obtained from a CT scan. The rough alignment was done 

manually and the fine registration was done by applying the iterative closest point algorithm. 

The validation was carried out in (CloudCompare2014). Similarly, the accuracy of the regis-

tration procedure was determined by comparing the entire registration result with the ground 

truth. Lastly, the reconstruction results were validated by comparing the bone morphing ap-

proach with the ground truth as well as the result obtained from the SSM approach. 

 

RESULTS 

All 19 ultrasound volume images could be successfully segmented. Fine details like small 

bumps and cavities were present. However, one of the patches exhibited a small extraneous 

segment in the border area which was removed. With this, the average distance error of all 

individually matched bone phantom patches was 0.30 mm ± 0.37 mm.  



Due to acoustic shadowing, only part of the distal femur geometry could be scanned resulting 

in an incomplete surface reconstruction from the registration procedure. The surface registra-

tion error (SRE) between the ground truth and the surface reconstruction was 0.66 mm ± 0.55 

mm. 

The distal femur bone geometry could be successfully reconstructed using a morphing ap-

proach as well as by fitting a statistical shape model. Compared to the ground truth, the SRE 

of the morphing approach was 1.07 mm (absolute distances) and the average signed distance 

error was 0.77 mm ± 1.07 mm. The SRE of the SSM approach was 0.74 mm and the average 

signed distance error was -0.20 mm ± 0.95 mm. The results of the reconstruction process are 

shown in figure 3. 

 

DISCUSSION 

We developed an image processing chain to reconstruct entire bone surfaces from 3D ultra-

sound volume images. The fact that due to acoustic shadowing only part of the entire geome-

try is seen was addressed by incorporating a priori knowledge. With this, the average recon-

struction error (SRE) was less than or equal to one millimeter compared to a ground truth 

obtained from CT data. 

Within the framework, a new segmentation method was presented exhibiting submillimeter 

accuracy. The segmentation method was primarily based on level set methods. Local phase 

based features (Hacihaliloglu2009) were incorporated exploiting the fact that bone responses 

are symmetric (Jain2004). A similar approach was presented by (Belaid2011). However, 

Cauchy kernels were used instead of Log-Gabor filters to compute the asymmetry measure 

since they shall have better properties. Furthermore, their framework operates on 2D images 

only even though their methods might be extended to 3D. 

In areas of low contrast, the curve evolution may be less controlled. This was especially ob-

served at the border areas of the intensity profiles. To make the curve evolution more robust, 

statistical shape models could be incorporated (cf. Cootes1995, Tsai2003). 

The surface patches obtained from the segmentation process were registered successively 

starting from an arbitrary initial data set. The disadvantage of this approach is that slight mis-

registrations may accumulate and finally lead to a drift. Multiview registration techniques 

may yield better registration results. 

A priori knowledge was incorporated in the form of a statistical mean shape (SSM) or simply 

by fitting average bone geometries. Compared to simple morphing, SSM have the desirable 

property of being specific, that is, their morphology changes only within statistical limits 

based on training samples. 

While constructing the SSM, point correspondences must be established. Referring to 

(Heiman2009), the minimum description length approach (MDL) yields the best results. The 

MDL algorithm estimates all correspondences at once, thus obeying a time complexity of 

O(n²). Using 158 training data sets with about 10.000 points, employing the MDL approach 

was not feasible. Instead, we fitted a reference shape (we used the mean shape) to all data sets 

one after another which is of O(n) using the ICP variant of (Amberg2007). The advantage of 

this new approach is not only the lower time complexity, but the possibility to add more 

training data sets at a later point in time. 

As discussed above, the SSM based approach yielded better results than the morphing based 

approach. However, this depends on the completeness of the underlying data. The more com-

plete the base data, the better performs the morphing approach since it can deform without 



any restrictions. But if only few base data is available, the SSM clearly outperforms the 

morphing approach since the missing information is inherent in the statistics. 

In conclusion, we developed a new method to reconstruct entire bone surfaces from ultra-

sound images with an average reconstruction error (SRE) less than or equal to one millimeter. 

Incorporating a priori knowledge (e.g. in the form of statistical shape models), we were able 

to reconstruct areas that were not present in the base data. Furthermore, we presented a new 

method for segmenting image patches with submillimeter accuracy. 
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Figure 3: Various views of a solid foam femur model are shown. Illustrated are: (1) the CT based reconstruction 

(ground truth), (2) the registration result from the segmented patches, (3)-(4) the SSM based reconstruction, (5)-(6) 

the result of the non-rigidly fitted mean shape. 


