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Abstract (en)

Current trends in architectural design require high-performance, low-power, flexible

architectures that can adapt quickly onto the ever shifting and evolving application

landscape. Finding the best architecture matching these stringent constraints is fur-

ther limited by a short time-to-market window, which severely limits design explo-

ration options. This work tackles these problems by proposing a different view on

architectural flexibility, which can be exploited to achieve high energy-efficiency and

performance instead of being traded off, by exploiting the advantages of reconfig-

urable architectures. Starting from a theoretical view, a methodology is produced for

exploration of two different approaches in achieving high energy efficiency with two

different architectural concepts: an architecture perfectly tuned to the application; and

a new reconfigurable layered architecture, which can adapt its structure to match the

application.

The design space of reconfigurable architectures spans a wide range, which al-

lows different number of processing elements with different options on granularity,

control structure, degree of specialization, scalability, regularity and programmability.

For the theoretical point of view, these features can be captured by defining architec-

tural flexibility, which quantifies how well a given architectural design point from the

design space is matching a given application. If there is a good match, the appli-

cation is efficiently executed and high performance and low power consumption is

gained. In the view proposed in this work, architectures can be separated into small

pieces of elementary hardware functions. These functions can be designed and re-

arranged such that the required function of the application is closely matched. The

rearrangement of these small functions into larger functions is called functional recon-

figuration. A categorization is also proposed into four functional domains: memory

access, computation, communication and control flow. Via this concept, exploration,

configuration and control of reconfigurable architectures becomes easier and allows

design of a wide range of efficient architectures.

To efficiently explore which configuration of elementary hardware components

produces a design point that respects necessary constraints, a methodology is de-

scribed based on High-Level Synthesis tools. Using this methodology, tens of ar-

chitectural variants could be explored and evaluated. The guidelines presented in

the methodology part of this work show how different types of architectures can be

described and proposes two exploration directions: 1) weakly flexible application-

specific architectures featuring elementary components specifically tailored for the
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architecture – targeted architectural flexibility –; and 2) architectures with a variable

degree of flexibility, featuring a richer set of elementary functional components by

which adaptation to changes in the application is possible – tunable architectural flex-

ibility –.

For the first direction, two WCDMA channel estimation algorithms, significantly

different in performance and complexity, are targeted with a barely flexible architec-

ture. The algorithms are analyzed carefully to expose common operations, parallelism

and data movement patterns. Then, elementary hardware functions are created and

an architecture is assembled which supports these two applications efficiently. High

energy-efficiency gains are achieved with the resulting architecture supporting both

algorithms, showing similar performance to architectural counterparts specialized to

a single algorithm. The study is extended by fine-tuning the elementary functions

with the addition of a reconfigurable fabric, yielding a closer application match and

higher energy savings.

For the second direction, a novel reconfigurable architecture called Layers is pro-

posed, featuring a layered design with elementary hardware components tailored

for different functional classes of an application: control flow, data movement, pro-

cessing and memory access. By providing a pool of elementary functions for each

class, a structure can be configured in each layer, that allows a close match to differ-

ent application requirements. To demonstrate the degree of tunable flexibility that

this solution achieves, an entire application domain is targeted. Multiple different

applications from numerical linear algebra domain are mapped and evaluated on the

architecture, achieving excellent scalability, performance and energy efficiency results.

Scaling parallelism and resources of Layers, a clean trade-off of area vs. performance

could be achieved for all tested applications while keeping energy constant, a result

achieved by the high flexibility that the proposed structure provides.

The work concludes by proposing enhancements to the Layers architecture: a

force-directed scheduler and mapper for the computation layer of the architecture,

which focuses on automating the application mapping process; and a new approach

on automatically deriving and generating the architectural components for the control

flow layer using a graph-theoretical approach contrasted by two manual designs.
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Energy-Efficient Mapping and Architectural Design; Scalable Architectures; Applica-

tion Mapping and Optimization; Application-architecture Mapping Tools; 3D Archi-

tecture;



Zusammenfassung (de)

Die gegenwärtige Entwicklungstendenz von Rechnerschaltkreisen und -architekturen

braucht anpassungsfähige Architekturen, mit hoher Rechenleistung und niedriger

Leistungsaufnahme, die flexibel auf variable und sich ständig entwickelnde Anwen-

dungsanforderungen angepasst werden können. Die architekturelle Erkundung der

Designoptionen um eine passende Architektur zu finden, wird nicht nur durch solchen

strengen Anforderungen erschwert, sondern auch durch kurze Entwicklungszyklen

in der Industrie limitiert. Diese Dissertation spricht diese zwiespältige Anforderun-

gen durch eine unterschiedliche Auffasung von architektureller Flexibilität an. Anstatt

die Flexibilität gegen hoher Rechenleistung und -effizienz einzutauschen, sollte man

diese mit Hilfe von rekonfigurierbaren Architekturen verwerten. Nach einer theo-

retischen Analyse der Flexibilität, eine effiziente Entwurfsmethodologie von solchen

rekonfigurierbaren Architekturen wird vorgeschlagen, wobei hohe Energieeffizienz

durch zwei verschiedene Konzepte abgezielt wird: direktes Entwurf von einer Ar-

chitektur die perfekt zu bestimmten Anwendungen angepasst ist; und das Entwurf

von einer mehrschichtigen Architektur, die sich an mehreren Anwendungen anpassen

kann.

Verschiedene Optionen beim Entwurf von rekonfigurierbaren Architekturen

ergeben sich vom hohen Freiheitsgrad was die Komponenten anbelangt: Anzahl und

Körnung der Prozessorkerne, deren Kontrollmechanismus, Grad von Anwendungs-

spezialisierung, Skalierbarkeit, Regularität und Programmabilität. Die daraus resul-

tierende Flexibilität kann man aus theoretischer Sicht als die arhitekturelle Flexibil-

ität definieren. Die architekturelle Flexibilität einer bestimmten Architektur wieder-

spiegelt den Anpassungsgrad der Architektur zu einer bestimmten Anwendung. Hohe

Anpassungsgrade bedeuten dass die Anwendung hocheffizient auf der Architektur

ausführbar ist, weshalb man dann hohe Rechenleistung und niedrige Leistungsauf-

nahme gewinnen kann. In Rahmen dieser Theorie, Architekturen werden auf eine

Sammlung von Elementarfunktionen in Hardware aufgeteilt, womit man dann höhere

Anwendungsfunktionen flexibel zusammensetzen kann, um einen hohen Anpassungs-

grad an die Anwendung zu erzielen. Die Zusammensetzung dieser elementaren

Hardwarefunktionen wird als funktionelle Rekonfiguration genannt. Vier Kategorien

solcher Funktionen werden auch abgeleitet: Speicherfunktionen, Rechenfunktionen,

Datenkommunikationsfunktionen und Kontrollfunktionen. Mit diesem Konzept wird

die Erkundung, Konfiguration und Lenkung von rekonfigurierbaren Architekturen
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erheblich erleichtert um eine vollständige Abdeckung der Designmöglichkeiten zu

erzielen.

Eine Entwurfsmethodologie mit Tools auf hoher Abstraktionsebene wird beschrieben,

um eine effiziente Ableitung von Elementarfunktionen und -kombinationen für bes-

timmte Anforderungen zu ermöglichen, womit man meherere Architekturvarianten

ausgewertet werden können. Die Leitsätze der beschriebenen Methodologie sind

in zwei Entwurfsrichtungen zusammengefasst: 1) anwendungsspezifische Architek-

turen mit geringer Flexibilität, die nur soche Elementarkomponenten aufweisen die

für die Anwendung relevant sind – gezielte architekturelle Flexibilität –; und 2) Ar-

chitekturen mit einen variablen Grad von architektureller Flexibilität, die eine Samm-

lung von elementaren Hardwarefunktionen aufweisen, womit man eine perfekte An-

passung an verschiedene Anwendungsanforderungen möglich ist – abstimmbare ar-

chitekturelle Flexibilität –.

Die erste Richtung wird durch die Entwicklung einer Architektur ausgewertet,

bei der zwei verschiedene WCDMA Algorithmen für Kanalschätzung flexibel unter-

stützt werden. Die Komplexität und Leisung dieser Algorithmen sind wesentlich ver-

schieden und die Architektur wird mit einer Sammlung spezifischer Elementarfunk-

tionen entworfen, die genau auf diese Algorithmen abgestimmt sind. Dadurch wird

ein hohes Maß an Energie-effizienz und Rechenleistung sichergestellt, das vergleich-

bar mit den anwendugsspezifischen Architekturvarianten der einzelnen Algorithmen

ist. Diese Richtung wird durch eine Feinabstimmung durch rekonfigurierbare Struk-

turen noch erweitert um zusätzliche Leistung zu entfesseln.

Die zweite Entwurfsrichtung wird durch eine rekonfigurierbare Architektur –

Layers – erforscht. Layers wird aus mehreren Schichten von Elementarfunktionen

zusammengesetzt. Jede Schicht wird einer funktionellen Kategorie aus der Theo-

rie zugewiesen. Mit einer reichen Sammlung von Elementarfunktionen wird die

Architektur auf verschiedene Anwendungen einer Domäne angepasst. Die Skalier-

barkeit, Effizienz und Leistung der Architektur wird mit verschiedenen Linearalge-

braalgorithmen untersucht und eine saubere Abstimmung zwischen Fläche und Leis-

tung unter konstanter Energieanforderungen wird erzielt, was nur durch den hohen

Grad an architektureller Flexibilität möglich ist.

Zuletzt werden noch zwei Erweiterungen zur Layers-architektur vorgestellt: eine

Heuristik und Werkzeug für eine automatisierte Anwendungsabbildung und ein paar

neue Ansätze um die Kontrolflusskomponenten von Layers automatisch zu gener-

ieren.
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Chapter 1

Introduction

In recent times there has been a stunning trend of integration of computers and au-

tomation in daily lives. People are still fascinated how their smart-phones are faster

than their huge multi-hundred-Watt desktop PCs from a few years ago. Computation

has become part of our lives evermore. Now it started invading our environment,

the so-called Internet-of-Things, where people dream to peak into their home refrig-

erator while out shopping, that the house comes to life, warms up and greets them

when they return in their fancy self-driving electric car. The revolution to include

computation in everything we touch already started and soon, the final frontier – our

selves – will be next on the list to be conquered by microchips. People find this trend

fascinating and excited to see what research can enable in the future.

1.1 Current Technology Background

For more than five decades, the number of transistors per chip in CMOS technology

is still increasing almost exponentially, according to Gordon Moore’s law [119]. More

Moore and More-than-Moore [21] has been on the lips of system designers, high per-

formance computing specialists and wireless experts. However, the scaling process

formulated by Dennard’s law [51] is starting to reach its upper bound [57]. The Inter-

national Technology Roadmap for Semiconductors [1] posted that scaling is slowing

down, from 2× per technology node to 1.6× per node. The frequency wall was al-

ready hit more than a decade ago: up to 41% increase before year 2001 (device speed),

17% in 2001 (platform power limit), 8% in 2007 (device scaling limit), finally hitting

only 4% per year in 2011. Power envelope limitations and foremost fabricability lim-

itations are stopping the trend. New transistor designs are compensating the ever

increasing difficulties, such as the tri-gate FinFET transistor [37], which are already in

the mainstream market. Radical new ideas, such as 3D stacking technology are con-

stantly explored to try compensate for this slowdown and prolong the life of Moore’s

law a little bit longer, until scientists find an alternative to CMOS technology, such as

quantum computing [80], memristors [167], carbon nanotubes [106], etc.

1.2 Need for Design and Energy Efficiency

One major problem rose in importance in the last few years: design complexity. Even

with the slowdown in process scaling, already in 2003, this was a major problem [78].

The massive availability of transistors caused not only a design gap – not being able

1



2 Chapter 1. Introduction

to make use of all those transistors in a design –, but also a power gap – not being

able to power all the transistors on the chip at the same time, dark silicon [57].

Designers are looking at ways to be able to design complex architectures, while

respecting the power constraints, with fast time-to-market. Electronic System Level

(ESL) design offers the refuge of high abstraction levels and automated code gener-

ation, simulation, testing and virtualization to designers, lowering complexity at the

expense of design flexibility and efficiency. This is contrasting with the requirements

of low-power design, for which highly optimized circuits are designed in long devel-

opment cycles manually.

1.3 What the Industry Wants – Directions

Given the fact that the market for small integrated circuits is rampantly increasing,

industry is hard-pressed to tackle complexity and constraints. On one hand, time-to-

market is so important in the design cycles, that products receive only incremental

optimizations and changes. For instance, Apple releases a new iPhone every two

years, with one version released in between having only minimal changes. Release

cycles are highly tuned to capitalize on major consumer events, like Christmas sales,

tracing hard deadlines in the production process. High design complexity forbids

designing systems from scratch. Virtualization and high abstraction level design help

evaluating the effects of design changes quickly, before too many resources and time

are invested into a design direction, that may not be feasible. High-level synthesis

and design of systems and architectures are playing a key role in quick evaluation.

On the other hand, for energy-efficiency, the industry is looking at an increasing

library of already designed components [45]. These off-the-shelf highly optimized

and tested products targeted at certain applications, often offer bleeding edge re-

sults in terms of performance and energy efficiency, ready to be integrated into larger

System-on-Chips. Intellectual Property (IP)-based design fills in the gap of compo-

nents missing in a vendors portfolio allowing quick integration.

1.4 Outline

This work looks closely at both sides of these needs. I pursue design of energy-

efficient domain-specific accelerators which can serve as IP blocks for higher order

designs. Finding the right design point in an overwhelmingly huge design space can

be very complex and requires a lot of time and effort. Considering this, I look also

into underlying theory and methodology on designing energy-efficient architectures,

exploiting high-level synthesis and high-level abstraction exploration tools. Broadly

scanning the design space and based on the theoretical concepts described here, I

present two directions of design at core of which flexibility plays a pivotal role. The

thesis is organized as illustrated in Fig. 1.1. After a brief landscape presentation,

functional reconfiguration theory is introduced. Next, a methodology to explore the

designs, that the theory suggests, is formulated. Two architectural directions are
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explored: taking an approach on tightly controlling architectural flexibility towards

optimizing for some applications; increasing flexibility to be able to support an entire

application domain while still keeping energy-efficiency with a layered design. Fi-

nally, some enhancements are proposed for the layered design, tackling two difficult

parts: automatic mapping and reconfigurable control flow.

Figure 1.1: Dissertation outline



4 Chapter 1. Introduction



Chapter 2

Technological Landscape, Problem
Definition and Objectives

Four motivational vectors are presented in the following, to properly place this work

in the computing landscape. Each vector has been considered in the conception of

this work, and solutions are proposed towards solving the problems.

2.1 A View From 4 Motivational Vectors

2.1.1 Technology Scaling, 3D Integration

Aside from the slowdown in technology scaling mentioned in the introduction, there

are two problems that gain importance with scaling. An increased number of tran-

sistor means also that more, larger designs can fit on a chip. The larger the designs,

the more data hungry they are, especially for data-centric applications. The problem

is that the input-output (I/O) bandwidth of these chips do not scale as well, since the

I/O pads are much larger and require much more power in addition to the physical

limitation on how many of them can be placed on a chip package. Moreover, as tran-

sistors are scaling, relative distance between a signal’s source and sink is increasing.

Also, the wires that link them have a limit on how thin they can be due to parasitic ef-

fects causing power loss for long wires and reliability issues such as electro-migration,

etc.

To alleviate this problem, 3D stacking and 3D integration is proposed, featuring

thinned die-to-die bonding and Through-Silicon-Via (TSV) interconnections. Here,

two silicon dies are placed one above another, and wires are connected vertically

through the top silicon die, to reach the metal layers. Not only this reduces wiring

in microprocessors [30, 31] but also enhanced performance due to shorter distances.

However, there is a trade-off: area is sacrificed for the TSVs, which are relatively large,

to gain inter-wafer bandwidth [65].

The challenge addressed in this work, is that, until now, there are no architec-

tures that exploit such kind of structures. Architecturally, either memory is stacked

onto a processing plane [30], or several identical chips are stacked to reduce the area

footprint (e.g. memory stacking [117]). So far, to the best of my knowledge, no archi-

tecture is reported so far, that inherently exploits 3D stacking in its internal structure.

5
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2.1.2 Applications: Energy Efficiency, Complexity

From the application point of view, today’s applications are gaining complexity, backed

by more powerful computation solutions. A detailed analysis on the constituents of

applications, revealed that all applications share one or more of 13 kernels, called

dwarfs [22]. Entire domains of applications can be efficiently executed, by just execut-

ing efficiently and optimizing for the constituent dwarf.

Application specific integrated circuits (ASICs) are the best solution when high

performance and low power is required. These have, however, the downside of having

little flexibility (not being able to adjust to application changes) and requiring long

development time and costs. ASICs can not be used to accelerate dwarf s, since dwarfs

alone do not make the application. A high degree of flexibility is required to adjust

to various applications within a domain, even if all members are based on the same

dwarf.

The architecture proposed in this work tackles domain-specific acceleration by

having enough flexibility to adjust to application member changes. The dense linear

algebra dwarf is chosen for this case study.

Furthermore, applications require high energy efficiency: in mobile devices bat-

tery life while in high-performance computing, the advent of big data demands en-

ergy efficient data centers. A well-tuned architecture for energy efficiency would play

a big role here.

2.1.3 Architectures

Architectures can be easily categorized into a few large categories, in terms of their

performance:

• General Purpose Processors - this class has a high degree of flexibility in execut-

ing applications at the expense of performance and power dissipation. Different

sub-categories can change the trade-off point in favor of one point. Highly par-

allel and top performance processors consume upwards of 100W even in the

latest technology, while low power processors have measly performance. An

emerging sub-category are General-purpose Graphics Processing Units, which

are highly parallel processors initially designed for video output processing in

desktop computers, which turned out to be great parallel platforms for scientific

computation and other parallel applications. They have a more limited flexibil-

ity, very high power consumption, but excellent performance.

• Digital Signal Processors - this class emphasizes on custom instructions to ac-

celerate certain applications. While this boosts performance in comparison with

the GPPs, some flexibility is sacrificed – non-target applications still can be exe-

cuted, but performance is poor.

• Application Specific Instruction-Set Processors [19, 43, 160] are taking the DSP

paradigm further and make use of hardware support for custom instructions,
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giving a great deal of performance boost while keeping processor-like flexi-

bility. Reconfigurable versions of such ASIPs, called rASIPs [40], allow these

hardware-supported custom instructions to be reconfigured in case the applica-

tion changes.

• Field Programmable Gate Arrays - this category makes use of highly regular,

fine-grained (bit-level) programmable cells connected by a network of bit-level

wires, to construct the circuit necessary for the application by only configur-

ing. This kind of programmable logic device started a new category, called

reconfigurable computing [46, 77], several decades ago. Initially designed for

prototyping integrating circuits, it quickly raised to a wide-spread platform for

applications benefiting for varying degrees of parallelism and hardware acceler-

ation [46].

• Coarse Grained Reconfigurable Architecture - this category employs word-size

interconnect and ALU-sized processing elements as an underlying platform to

implement applications. While this category combines some advantages of re-

configurable flexibility with the high performance of specialized processing ele-

ments, it has some disadvantages such as lack of design methodology and tool

flow.

• Application Specific Integrated Circuits - this category provides still the highest

performance for a given application and requires lowest energy. This category is

complex to design and it is completely inflexible to application changes. If fur-

ther effort is invested by going full-custom designing transistors and not relying

on standard cell libraries, the performance is unrivaled.

In [50] it is argued that from the point of view of computational density reconfig-

urable computing is superior to programmable platforms such as DSPs. This meant

that per feature size, an order of magnitude increase in computation could be executed

in the reconfigurable device. Although inferior to ASICs, reconfigurable computing

has the advantage of flexibility to adapt to another application.

CGRAs are especially interesting, striking a perfect balance between performance

and flexibility. The challenge is, however, to find a way to design and program them

easily, exploiting adaptability towards efficiency and performance, a subject currently

still under research [39]. Furthermore, scalability is also an important factor to con-

sider, providing an additional design dimension.

2.1.4 Design Methodology

Current design methodologies are heavily driven by two factors: quality-of-results

and time-to-market. These two requirements clash.

If quality is sought, ASIC design flow is the answer for reaching optimal effi-

ciency and performance. The cost is long development cycles and large initial invest-

ment. Furthermore ever increasing complexity of the design is forcing a block-based
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approach. Readily designed ASICs and other off-the-shelf components are slowly

becoming the transistors of the new complex system-on-chips.

When time-to-market is important for a design that cannot be build readily from

existing components, only high-level abstraction can provide the necessary leverage

to reach the target. By raising the abstraction level via high-level design and synthesis

tools, quick evaluation of architectural decisions on performance and constraints can

be conducted, without committing to a lengthy ASIC design process in the exploration

phase.

The challenge of exploring the huge design space offered by reconfigurable com-

puting via high-level abstraction tools has not yet been solved. A solution would

open the door to highly flexible new design which could hold the key in balancing

out flexibility and performance.

2.2 Problem Definition and Contribution Summary

To summarize, this work is focused on answering the following points:

• Architectural side: a low-power, efficient, high-performance flexible architecture

is required.

• Application side: flexible application support is necessary, domain-specific sup-

port is desired.

• Methodology side: a quick exploration flow is required for covering the design

space in search of the required architectural design point

• Technology side: if possible, the architecture should align to current technology

trends

To tackle these points, this work analyzes ways to eliminate inefficiencies in de-

sign, architecture and application mapping, by formulating a theory enriched by a

methodology. Two distinct exploration directions are researched to validate the pro-

posed theory and methodology, one of which exploits coarse-grained reconfigurable

platforms in a way that is easily implementable in 3D silicon capable technologies.

Furthermore, an automatic mapping tool and flexible control flow are proposed as

enhancements to these architectures. High energy-efficiency, scalability and flexibility

is kept as guiding constraints all over this work.



Chapter 3

Functional Reconfiguration Theory: A
New View on Programming
Reconfigurable Architectures

As the current landscape of domain-specific accelerators is struggling with conflicting

constraints of high performance, low energy and fast time to market, flexible solu-

tions based on reconfigurable architectures are an interesting alternative to IP-based

MPSoCs. Chapter 2 highlighted some design trends and gave a detailed view on why

architectural flexibility could be advantageous. The big gap between the GPPs (too

flexible, performance and energy is lost) and ASICs (not flexible, high performance

and low energy) can be effectively bridged by tuning the amount of flexibility and

thus adapting the architecture to the application. This has been done before – from

the GPP side, the DSPs and ASIPs removed flexibility by introducing custom instruc-

tions and reducing the size of the instruction set, while from the ASICs side, FPGAs

added flexibility by allowing different fixed application implementations on the same

physical device. rASIPs and CGRAs added more specific flexibility to the architec-

ture, allowing a great degree of adaptability [39] to changing applications, physical

degradation effects, tunable performance, thermal- and power-aware execution, etc.

Although CGRAs and rASIPs achieve a perfect balance between performance and

flexibility and have the advantage of better computational density compared to other

architectures [50], major drawbacks stopped wide-spread adoption: difficult pro-

grammability, high design effort and lack of proper development tools. Additional

complexity derives from the tremendous design space that can be covered with re-

configurable structures, exploration of which is not straightforward:

• granularity of the reconfigurable fabric: fine grained solutions provide great

amounts of flexibility, which can be better suited to the application at the ex-

pense of programming and configuration overhead; coarse-grained solutions re-

move some structural flexibility and configuration overhead, however tool pro-

gramming tool complexity increases dramatically

• control: the reconfigurable architecture can be a loosely or tightly coupled accel-

erator with a host processor, or can work stand-alone for the given application

domain

• specialization of the processing elements: e.g. fixed vs. floating point, application

specific PEs, custom bit-width data paths

9



10
Chapter 3. Functional Reconfiguration Theory: A New View on Programming

Reconfigurable Architectures

• scalability and regularity: how many PEs to use, how easily PEs can be added or

removed, what kind of interconnect topology, heterogeneous or homogeneous

structures

• programmability or configurability: control via either high-level (programming at

a high level language with compiler-support) or low-level (configuration bit-

stream)

Once an architectural instance from this design space is chosen, the question of

how to (efficiently) program or configure it, remains. A stored program GPP-like ar-

chitecture would require a custom compiler which can target the specific architectural

structures, while an architecture relying on multiple contexts of configuration bits to

control the data path switches needs a tool to derive these bits. None of these so-

lutions are trivial, especially for an architectural instance with novel features, picked

from the design space.

It is even more challenging to design and program a scalable architecture from this

design space that has tunable flexibility, i.e. the ability to change its internal structure,

programming interface and reconfigurability options to better suit an application.

In the following, a solution is proposed where this complexity can be abstracted to

a tractable level, unlocking a new view on programming such highly flexible and

scalable architectures.

3.1 Flexibility and the von Neumann Bottleneck

3.1.1 The von Neumann Bottleneck

From the earliest stored-program computers to modern day processors, the problem

called the von Neumann bottleneck is dominating flexible architectures. The com-

puting model proposed by and named after John von Neumann [162] described an

architecture consisting of a CPU with registers and an ALU, a memory for both in-

structions and data linked by a bus to the CPU and I/O interfaces. This model was

improved over the years and as technology advanced, it exposed the von-Neumann

bottleneck, identified by John Backus [24]. When a program instructs the processor to

modify the contents of the memory, data needs to travel back and forth from memory

to the processing unit via a bus or interconnect of limited bandwidth, thus contention

occurs and execution efficiency is lost. Quoting John Backus, the problem from the

architectural structure has also deeper ramifications:

„Surely there must be a less primitive way of making big changes in the store than by

pushing vast numbers of words back and forth through the von Neumann bottleneck. Not

only is this tube a literal bottleneck for the data traffic of a problem, but, more importantly,

it is an intellectual bottleneck that has kept us tied to word-at-a-time thinking instead of

encouraging us to think in terms of the larger conceptual units of the task at hand. Thus

programming is basically planning and detailing the enormous traffic of words through the

von Neumann bottleneck, and much of that traffic concerns not significant data itself, but

where to find it." [24]
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Due to ever-increasing application complexity and with it the massive increase of

data, this bottleneck will continue to dominate every architecture where computation

can not be done in the place where the data is located. As a solution to the intellec-

tual bottleneck, Backus proposed functional programming, in the sense of composi-

tionality, in contrast to traditional functional programming based on lambda calculus.

It is postulated, that a desired function can be composed by smaller functions, by

respecting a certain composition algebra, thus avoiding the imperative character of

programming, which partially causes the von Neumann bottleneck.

Several architectures were proposed to support such a paradigm [66,82,159]. Since

all these architectures tried to interpret and execute a functional language directly,

hardware resource availability and recursion problems impeded progress. When try-

ing to apply the theory directly to make a functional architecture, key elements of

functional programming theory like functional reduction ( f ( f ( f (...)))) clash with the

physical bounds of the hardware (e.g. stack size), even though there are successful

attempts to create large architectures which could handle this to some degree, like

the functional neurons of SyNAPSE architecture by IBM [2]. FPGA-based functional

architectures are also attempted, such as the Reduceron [120] and functional design

of reconfigurable architectures has been thoroughly explored [29]. Recombination

of complete kernels to compose more complex applications by chaining inputs and

outputs in a configurable fashion within a processor pipeline (Function Level Pro-

cessor) has been also attempted with great results, but it does not apply functional

programming theory [155].

Another approach to exploit the ideas from [24] is to create functional program-

ming languages to exploit the theory, which are gaining increasing popularity with

languages like Haskell [3] and the Wolfram Language [4]. Powerful compilers and

abstractions help translate the power of the theory into machine-executable code,

which in the end works in a non-functional (imperative) way, but gains are limited by

loss of abstraction and by the unsolved problem of the von Neumann bottleneck of the

underlying architecture.

A loss of abstraction happens also in traditional programming languages, when

mapping high level languages or functions (e.g. C) back to instructions. These are

then executed on data, which are stored inefficiently away from the processing units.

The mapping of the intended high-level function written by the programmer (e.g.

matrix multiplication) to a large set of instructions of the underlying machine causes

also a loss of meaning – it is not easily understandable from the resulting assembly

code of the compiler (or the binary code) what the machine is actually doing, or how

it is actually executing it.

There are different ways of representing an algorithm (e.g. flowchart, control-

data-flow graph (CDFG), pseudo-code, etc.) as there are many ways to represent their

function in terms of architectural functions via the mapping process. The ultimate

goal is to represent the algorithm/application function efficiently in terms of hard-

ware functions ( fa ≡ fhw), to achieve high performance and low energy consumption.

The degree of composability and flexibility of the available hardware functions for

a given architecture determines the complexity of the representation of fa in terms
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of fhw. Moreover, the complexity of the application itself (length, data/control flow

peculiarity, parallelism, etc.) can have a positive or negative effect on this represen-

tation. A highly parallel application on a highly parallel architecture with plenty of

bandwidth will be efficiently represented, while the same application on a sequential

processor will yield poor results. Furthermore, a well tailored set of fhw of the archi-

tecture could allow matching of fa on a high level of abstraction (by meaning), for a

more direct and efficient programming.

3.1.2 Definition of Flexibility

In the literature, the term flexibility is broadly used for a number of concepts regarding

an architecture: configurability of ASICs and FPGAs and programmability of CPUs,

GPUs, ASIPs and DSPs. One definition of the flexibility of an integrated circuit FIC

is regarded as the inverse of (re-)implementation time of a given/new application in

software and/or hardware [32, 33, 166], including design, test, fabrication and verifi-

cation.

In this sense, GPPs have the highest amount of flexibility, whereas full-custom

ASICs have the lowest. Once designed and fabricated, a new application can be im-

plemented on a GPP by just writing and compiling its high-level code, whence ASICs

require an entire design and fabrication process from algorithm analysis, design and

RTL description of the architecture, verification, layout, manufacturing and testing,

every time the application changes. These processes incur different amounts of non-

recurring engineering costs bounded by strict time-to-market or cost constraints.

A measure for such flexibility can be thus expressed in time, or just qualitatively

as a relative comparison. The definition of flexibility in [32, 33, 166] also captures

indirectly the idea that if an architecture is flexible enough, it can support multi-

ple applications, by having a reduced implementation time of the new application.

In [166] it is argued that flexibility is a resource that must be traded off to achieve ef-

ficiency based on an analysis for soft-input soft-output sphere-decoding architectures

for MIMO wireless. When viewing a highly flexible CPU compared to an ASIC for a

given application, this is true, as CPUs are more flexible but less efficient than ASICs.

Throughout this work however, flexibility is exploited to gain efficiency. The term

flexibility is broken down into a more fine-grained view, to reveal how flexibility can

influence efficiency. Henceforth, the term flexibility is used in the sense of architectural

flexibility F , defined as follows:

Definition 3.1.1. The architectural flexibility F is the degree of adaptability to (a
change in) application requirements by reconnecting, rearranging, or reconfiguring
internal architectural structures such that mapping, execution efficiency and/or per-
formance constraints of the applications can be met. It reflects how well a given
architecture with given processing capability is suited to execute a given application,
measured in mapping or execution efficiency relative to the theoretical optimum of
the application. 2

In the sense of the intellectual bottleneck mentioned by Backus [24], an architec-

ture must have enough flexibility F , such that an efficient and easy translation of the
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application functions fa to the pool of physical hardware functions fhw can be made.

F has a direct effect on how efficient the representation of the application function

is and thus a direct effect on overall mapping/execution efficiency, power/energy

consumption and performance. A deeper analysis follows.

3.2 Functional Reconfiguration Theory

3.2.1 Concept

Conceptually, when a target algorithm has to run on a given architecture, the mean-

ing or function fa of the algorithm itself has to be translated into physical hardware

functions (wires, processing elements) in space and time. The characteristics of the

architecture define what kind of spatial or temporal mapping is possible, while the

application characteristics define the requirements. This kind of mapping procedure

requires addressing the functional capabilities of the hardware fhw, for every unit of

time, such that the meaning (function) intended by fa is reflected in the meaning

(function) realized by using available hardware functions fhw. The set of physical

functions provided by the architecture constitutes the hardware function pool p of the

architecture.

Definition 3.2.1. An elementary hardware function fhw is an addressable (controllable)
physical hardware function of an architecture. The elementary function pool p is the set
of all possible hardware functions available in the architecture. 2

Available hardware functions are addressed (controlled) by the language that the

architecture provides, defined as follows:

Definition 3.2.2. Architectural Language L of an architecture represents the set of all
addressable operations or functions that can be created, combined and executed from
the pool of its physical resources. L = C( fhw) | fhw ∈ p. 2

The language L directly controls the existing resource pool p of available hardware

functions fhw. The recreation of the target algorithm using the language of this pool

is the representation r( fa), also known as the application mapping in hardware.

Now of course, the target application function may or may not perfectly match

the language of the architecture. When the target application function can not be

represented in a direct way using the given language elements, efficiency is lost when

trying to construct r( fa). The more flexible or abundant a language L is, the larger the

number of applications which can be represented is, translating into higher architec-

tural flexibility F . Since L is constructed from the available functions fhw of the pool

p, the abundance of available hardware functions fhw directly controls flexibility F ,
as it allows construction of more varied language elements. This, in turn, allows the

combination of available physical resources in various ways, providing adaptability to

a larger set of applications with different characteristics. Fig. 3.1 reflects this concept:

a given architecture features a language derived based on its physical properties,

such as number of processing elements and their operations, interconnect richness,
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local storage options and memory access, parallelism, etc. An application can be opti-

mized (compiled) to match the language, or the language can be configured to match

an optimized application. The area where the two pieces are interfacing is extremely

prone to the effects of the von Neumann bottleneck. A mismatching application/ar-

chitecture interface would trigger, for instance, data congestion in buses, sequential

execution due to insufficient memory or processing bandwidth, etc. A perfect match

alleviates this via a more direct data flow, parallelism, and less interfacing overhead.

Figure 3.1: The link between application and architecture via the architectural lan-
guage. An application can run on a given architecture only if the appli-
cation can be expressed with the architecture’s language.

In practice, besides the algorithmic data/control/loop dependencies of the ap-

plication which limit mapping options (application-specific properties), two factors

make the matching process complex:

• 1) a fine granularity of elementary hardware functions fhw and a large pool

p produce a complex language. This in turn makes it difficult to create the

representation and complex helper tools are needed for this translation (e.g.

synthesis of RTL code using a transistor library – the possibilities to construct

the application using the language of the architecture are rich, having multiple

options to implement the same RTL function).

• 2) a small pool of elementary hardware functions produce a well defined lan-

guage, but this small size produces contention on the available resources, forces

a sequential call of language elements, creating a large representation which is

inefficient. Due to the sheer size of the representation that would be required to

recreate fa, again, helper tools are needed (e.g. compiling a large application to

a RISC CPU core – every function has to be represented by the limited language

elements of the instruction set architecture).

It is also to be noted, that from the abundance or scarcity of L, the physical character-
istics of the underlying physical architectures such as size, number of PEs, memories,
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Figure 3.2: Recreating the function of an application data flow graph snippet from
the pool of hardware functions for each architectural class.

complexity can not be implied. The language, if poorly defined, can obscure elements

of the functional hardware pool, by not having enough flexibility to expose them di-

rectly in the language. For instance, an FPGA exposes bit-level interconnect hardware

functions whereas a CGRA only uses word-level interconnect functions, but both of

them need to have the physical wires of the interconnect.

3.2.1.1 Languages of different architectures

Diving deeper into this concept, for every architecture the mapping procedure is dif-

ferent, leading to different design, compilation and configuration flows. Basically,

mapping of an arbitrary application to an (existing) architecture can be done con-

ceptually as recreating the Control/Data Flow Graph (CDFG) of the application in

computational resources. This creates a time-space mapping problem of target graph

to the available computational resources, known to be NP hard. This mapping can

be viewed as an instantiation of existing hardware in time or space to recreate the

desired application in hardware. Taking the Control/Data Flow Graph (CDFG) of an

application as an example input fa on the left side of Fig.3.2, a different representation

r( fa) can be done in different architectures by (partial) instantiation of the language

L reserving (partially) the hardware pool p.

In case of Application-Specific Integrated Circuits (ASIC), the pool p is constituted

by one fixed hardware function made of wires and logic gates, which is the result of
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the direct synthesis process of the hardware for the application function fa. The

language L for this case is the pool itself, instancing its only fhw member, the physical

hardware itself. Every new application needs recreation of the instance and the pool

from scratch.

For FPGAs, a large number of small bit-level look-up tables (LUT) with bit-level

configurable interconnect make up the pool, hiding (abstracting away) the actual gates

and wires, which are physically fixed. The language L is composed of the configu-

ration inputs of the pool, and is used to construct elementary logic cells, which in

turn reconstruct the ASIC instance in space-time, using a subset of the pool. Every

new application requires a re-synthesis of the instance to derive the configuration bits

(=subset of the language), the instantiation of which recreates fa in terms of LUTs

configurations ( fhw).

General Purpose Processors (GPP) rely on the instruction set as the language,

which is bound to a pool of small hardware operations, such as reading or writing

a register, instructing the ALU to do an addition or subtraction. The application

instance fa is constructed from calling repeatedly language elements in order to rep-

resent small fa slices sequentially in time. Any new application can be represented by

just rearranging in time the language calls, no hardware modifications are required.

For more complex processors, the language L allows calling multiple pool elements

simultaneously, instancing larger parts of the fa control/data flow at a time cycle (par-

allelism). For DSPs or ASIPs, several language elements can be grouped together in

custom instructions, to accelerate certain parts of the application, otherwise sequential

language calls are executed, similarly to the GPP.

Coarse-Grained Reconfigurable Architectures (CGRA) take a middle ground be-

tween these architectures. The pool p is made of word-size processing elements and

configurable interconnect to represent large parts of the fa in space, reconfiguring

as required for the next CDFG time slice (choosing a different combination/subset

C( fhw)). The language L is a mix between instructions and configuration bits, both

of which can be static or dynamically changed with every cycle. Due to the coarse-

grained nature of the pool elements, it is more difficult to find a good match, which

makes the recreation of the complete application instance more difficult, especially

since the language is also more limited. Conversely, the inefficiencies of recreating

functions such as multiplication or division from small elements are avoided by using

optimized ASIC-like function instances implementing these functions, in contrast to

FPGAs.

Ideally, the instance of fhw elements from the pool p should perfectly match the

required function of the application fa, like in ASICs, to achieve optimal efficiency,

and additionally retain the option to change input application fa without efficiency

loss and without changing the fhw pool - the physical hardware. Flexibility can have

an important role in adapting fhw such that an efficient match to fa can be realized,

reducing the effects of the von Neumann bottleneck.
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Figure 3.3: Application-side language interface matching the hardware-side lan-
guage: each architecture type constructs the required language via dif-
ferent design flows. In case of CGRA, functional reconfiguration defines
a flow where a direct adaptation of the architectural language to the ap-
plication requirements is possible.
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3.2.1.2 Where functional reconfiguration fits in

The concept of functional reconfiguration is exploited to increase architectural flexi-

bility such that the architectural language can be customized, to gain a better and a

more direct match to the application requirements. Fig. 3.3 shows different mapping

flows for each architectural class, and highlights where functional reconfiguration fits

into the architectural landscape. A more direct representation of intended functions

is sought, using a (reconfigurable) function set (as opposed to instruction set) such that

a better application matching can be realized, at a high abstraction level.

For CPUs, ASICs and FPGAs, well defined design flows already make the transla-

tion of the application to the language relatively easy, albeit with loss of efficiency for

some. In CPUs, sequential execution limits efficiency and also the loss of abstraction

when translating the functional meaning of the application to a small set of instruc-

tions for the CPU is a contributing factor for inefficient mapping. ASICs design flows

make sure that the hardware perfectly matches the target application function, yield-

ing optimal efficiency, but this flow has other penalties, such as complexity and long

development cycles. FPGAs are emulating the ASIC flow, but fine granularity makes

FPGAs orders of magnitude inferior in terms of power and execution efficiency when

compared with ASICs.

As for CGRAs, there is no universally accepted design flow definition, CGRA

mapping of applications still being a hot research topic. The inherent coarse-grained

elementary functions allow reconfiguration and construction of language elements

with a graspable complexity, making CGRAs the ideal candidate to fully exploit the

concept of functional reconfiguration. Using functional reconfiguration, the ideal ar-

chitectural language for the target application could be constructed, such that a close-

to-optimal match can be realized.

Thesis 1. Every architecture has its architectural language L by which its physical hardware
functions fhw can be accessed, addressed and controlled. Implementation of an application
function fa to a target architecture is possible, only when the application function can be
expressed in terms of hardware functions fhw via the architectural language L. The richness
of the architectural language L influences directly the amount of architectural flexibility F ,
which can and should be exploited to fine tune, simplify and enhance functional translation of
fa to fhw. �

3.2.2 Elementary Functions, Mapping and Representation

Complexity

3.2.2.1 Elementary hardware functions

In order to construct efficiently the meaning of the target application function fa using

elements from the hardware pool, the architectural language L has to be formed. As

each architecture features a different pool p of elementary functions fhw, classification

and composition rules of fhw have to be defined. Ultimately, the functional meaning

of the application has to be reflected in the hardware physical structures.



3.2. Functional Reconfiguration Theory 19

For every architecture, different hardware functions are available, e.g. arithmetic

operations, storing a bit, selection of an input. In the following, the concepts defined

in the previous sections are detailed by using examples.

For instance in ASICs, the arranged and complete (static) set of logic gates, wires

with multiplexers and flip-flops create its single elementary function. As hardware

granularity of the architecture changes, the size, number and visibility of these func-

tions changes, creating elementary function classes which form the pool. E.g.: in the

FPGA, many look-up tables and configurable logic blocks are the elementary hard-

ware functions. How these logic blocks are formed physically is not architecturally

visible as hardware functions, since they are not addressable or controllable – the

wires and gates that construct the look-up tables.

pASIC = {α}

pFPGA = {β1, β2, ...,γ1,γ2, ...}

To be able to use the elementary hardware functions, they must be rearranged,

connected and called such that the desired target function fa can be realized. This

functional composition can be done in many ways based on hardware flexibility.

ASICs allow no ways of reassembling their elementary hardware function, as it made

of one element: the placed and wired set of transistors. FPGAs allow many degrees

of freedom in rearranging elementary functions due to the flexible nature of the el-

ementary functions themselves (architectural flexibility). CPUs on the other hand

have a reduced, fixed set of elementary functions, but with a high degree of inter-

operability. To make use of possible rearrangement options, elementary functions

are combined into a language. Thus, by instantiation of the language in space and

time, the functional meaning of the application can be captured and reproduced. This

is independent of the inputs of application function fa, as only the transformation

(meaning) of the function is captured. Of course, the language set has to provide the

hardware elements necessary for guaranteeing Turing completeness.

Example: A processor features elementary hardware functions such as select a regis-

ter (α1), execute an addition (α2) or forward an immediate value from the instruction

word (α3). These and many more such elements form the pool p. Taking specific com-

binations of pool members, architectural language elements (A1, A2) can be formed,

i.e. the way how these elementary functions can be addressed and controlled, defining

the language L of the processor.

α1 := sel_reg(reg); α2 := +; α3 := sel_imm(imm);

p = {α1, α2, α3, ...}

A1 = f (α1(reg) ◦ α2 ◦ α3(imm)) add register to immediate

A2 = f (α1(reg) ◦ α2 ◦ α1(reg)) add register to register

LCPU = {A1, A2, ...} instruction set
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For FPGAs, this would be the set of configuration bits to configure the look-up tables

and interconnect to implement an addition, or the complete set of configuration bits

which recreate the ASIC equivalent of the input fa. △

3.2.2.2 Representation (mapping)

Different architectures allow various ways to instantiate language elements sequen-

tially, in parallel or nested. The mapping of the target application is constructed by

instantiation of these language elements, step by step, until the functional meaning

of fa is completely recreated. Once this procedure is complete, input data can be fed

into the mapped function and the application is executed.

Definition 3.2.3. The hardware representation r( fa), or mapping of a desired input
algorithmic function fa is the ordered set of all instantiations λ of the architectural
language elements of the target architecture in space and time.

r( fa) = {λ1(A∗),λ2(A∗), . . . ,λn(A∗)} | A∗ ∈ L (3.1)

2

Example: The representation of an application in CPUs, is the sequential readout of

the binary instruction words (i.e. the program), which executes the target function,

language element by language element until it is halted. For FPGAs, the representa-

tion is the complete set of bits that configure the look-up tables to perform the desired

function. In CPUs, the representation is layed out temporally, while in the FPGA it is

a spatial layout. △

3.2.2.3 Representation complexity

A representation of a target function for a target architecture features a complexity,

which reflects how well the application matches the given architectural language.

Describing the complexity of a representation has its roots in the algorithmic infor-

mation theory proposed in [92, 93]. Here, of special interest is the the combinatorial

approach of describing representation complexity in [93], where the notion of lan-

guage entropy is linked with an estimate of its flexibility, which is an index of the

diversity of possibilities for developing a language with a given dictionary and given

rules for the construction of sentences.

The similarities are striking, when the concept is viewed from functional reconfig-

uration point of view: a low complexity of the representation (r( fa)) is sought, based
on a language (L), which has an entropy/flexibility (F ), stemming from the diversity

and composition rules of its dictionary (elementary hardware functions fhw of the

hardware pool p).

A fundamental concept of theoretical computer science can be captured by a a

simple definition of the algorithmic information, also known as the Kolmogorov com-

plexity as follows [147]:
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Definition 3.2.4. The algorithmic information or Kolmogorov complexity of a bit-
string x is the length of the shortest program that computes x and halts. 2

Similarly, the complexity of the representation of the target function r( fa) can be

defined via this complexity, in view of functional reconfiguration:

Definition 3.2.5. The complexity of the representation K of the desired target appli-
cation function fa can be formally captured by the Kolmogorov complexity, which is
the smallest length of the representation r( fa), given the set of language elements of
a given architectural language L.

K(r( fa)) = |λ1,λ2, ...,λn|, λ1..n ∈ L [bits] (3.2)

2

Thesis 2. The complexity K is controlled by the number of required instances of architectural
language elements from L. Therefore, an optimally matching language to the application,
allows a short and exact representation, which yields least complexity. Complexity K is de-
pendent on the combination possibilities and composition rules of the language elements of
language L, directly affecting the required length to describe a target function by needing a
varied number of language element instances. This means, that if a language is tuned such
that it yields the least complexity K, it can be said that the language has a good matching de-
gree w.r.t. the required target function fa. However, L is, in turn, dependent on the features of
the elementary hardware functions physically present in the architecture and the composition
rules, which define the language and the resulting architectural flexibility F . Thus, to achieve
an optimal match between architecture and application, either 1) design the language to exactly
match the application requirements; or 2) exhibit variable architectural flexibility to allow rich
combination possibilities of elementary functions to form a custom language perfectly tuned to
the application requirements. Both reduce mapping complexity K, thus increase efficiency. �

Moreover, even if the representation complexity is reduced and an efficient appli-

cation implementation is created, it is important to consider also the difficulty of the

process by which the representation was derived.

3.2.3 Elementary Function Classification

In order to enable a variable and flexible composition of language elements from

elementary functions, a classification is needed. This classification captures physical

properties of the hardware and creates the hooks by which higher order functions and

language elements can be created. Elementary functions are bound to the underlying

physical hardware and are clearly defined in function, space and time and the nature

of these properties is the base ingredient of architectural flexibility.

Thesis 3. To efficiently capture hardware properties and enable flexible elementary function
composition, it is necessary to characterize elementary functions not only by classical prop-
erties, such as latency, input/output, location and hardware operation, but also by functional
properties (the meaning). Four large classes are proposed, which attribute a main meaning to
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such functions: control, memory, communication and computation class. This classifica-
tion (with refined sub-classes) exposes hardware and software parallelism, data-flow features
and scheduling possibilities and enables functional composition on a high abstraction level for
the programmer and also allows class-specific hardware optimizations for increased architec-
tural efficiency. �

Control class

The control class of functions implements those hardware functions that are respon-

sible for the control flow part of the application. These can contain structures that im-

plement conditional and unconditional jumps, enable/disable signals, full or partial

predication and loops. Elementary functions of this class contain counters, registers

and comparators. Small arithmetic units are sometimes needed for execution of more

complex predication conditions.

Memory class

This class handles all the functions required to interact with physical memory and

mass storage modules. Members of this class execute address generation, memory

protocol handling, collision detection and multi-bank distribution functions.

Communication class

Elementary functions belonging to the communication class are specialized on copy-

ing, broadcasting, moving, delaying and local storing of data. These capture internal

data movement dynamic of the application and feature structures dedicated for such

tasks, like buses, register banks, rich multiplexing, etc. Functions in this class do not

compute any data, their main purpose is to prepare, shuffle and move data to the

correct space/time coordinates, as the application requires.

Computation class

This class is responsible for the elementary function dedicated to execution and calcu-

lus on application data. Members contain different arithmetic/logic units and specific

interconnect that enables composition of complex processing functions. Structures in

this class usually contain highly optimized ASIC pieces dedicated for a certain task.

Each of these classes are functionally independent and thus help expose paral-

lelism in the application, followed by an energy efficient execution due to the class-

optimized hardware implementation. Additional properties, such as number and size

of arguments, time delay and interface define the possibilities in constructing higher

order functions in the language.

Example: In Table 3.1 some elementary functions are shown for a 2×2 mesh-connected

array of processing elements featuring 8 local registers. For each elementary function,
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the definition is written for the hook (name), parameters are derived based on the

physical properties and hardware-bound location. The transfer function and its tim-

ing is characterized and a class assignment and a meaning description further classifies

the function. Although the structure is regular and processing elements are identi-

cal, several elementary functions can be created using the same hardware bind, for

instance a function that selects from the west input and another function that selects

from the north input still bind to the same physical input multiplexer of the process-

ing element. Architectural features, like exceptions to regularity (e.g. PE0 being at

the edge of the array and not having a west or a north I/O connection), are captured

within the elementary function definitions easily.

This information is required when composing rules are defined and language

instances are called. Calling one member that binds one hardware resource excludes

the possibility of calling another member which binds to the same resource, unless

the time-index differs.

Table 3.1: Example classification of the properties of 3 elementary functions in a 2×2
PE mesh with 8 local registers

Function def: addlocus(a, b) srca|bWestlocus() del2(r)

Interface: in:2 out:1 in:1 out:1 in:1 out:1

Class: comp comm comm

Function: f (a, b) = a+ b f (x) = x f (x) = x

Delay [cycles]: τ = 1 τ = 0 (instant) τ = 2

Location: locus ⋐ {0, 1, 2, 3} l ⋐ {1, 3} r ⋐ {0..8}

Hardware bind: PE(locus) MUXa(locus)|MUXb(locus) reg(r)

Meaning: add select source delay/store

△

Meta-functions

Meta-functions are functions that only serve functional composition, ease of descrip-

tion and representation complexity reduction and are an important enabler of ar-

chitectural flexibility. These functions provide extra flexibility in describing complex

compositions of functions, especially when large amounts of function arguments need

to be specified. Compared to elementary functions, meta-functions are not hardware

bound and take no functional part in actual application execution. Although they

do not bind computational resources themselves (which is done via their arguments),

they require hardware structures which do the physical interconnects needed for ar-

gument forwarding. These resources are however completely transparent to the ap-
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plication. Meta-functions enhance architectural flexibility by providing higher-order

hooks to a group of elementary functions without changing their actual function.

Example: Forwarding the same elementary call to all processing elements in an array

can be done conveniently with the forall(f(x)) meta-function. The arguments are

forwarded to all PE members of the array and represents a spatial meta-function.

Similarly, repeat(f(x),times) repeats a function call in time, avoiding extra calls

from assembly and reducing complexity K. This represents a temporal meta-function.

Clearly, combinations can also be created. △

Meta-functions are freely definable depending on what kind of support is required

for a given architecture and are physically implemented during the architecture de-

sign phase.

3.2.4 Composing the Language

Once all elementary functions and meta-functions are defined and characterized, the

pool is complete. When composing the language constructs, elementary functions

are selected and interconnected. Only a subset of the elementary functions can be

instantiated at a time due to exclusivity, since each are bound to physically existing

hardware and occupy time-slots when called.

In view of realistic physical hardware resources, also the amount of arguments

which functions can take is well defined and limited. For physical implementation

clear coding fields have to be assigned to arguments such that physical decoder gen-

eration is possible. This implies, that not every possible elementary function compo-

sition can be instanced ind the language, however, limitations are designer-controlled

at the time of architectural implementation.

When defining language elements, the significance and the location of every avail-

able argument-bit is defined. In the architectural implementation phase, the designer

can choose whether language elements are hard-coded – customizing the language to

the application with little flexibility, or implement configurable decoders which allow

the redefinition of language elements – creating language adaptability with tunable

flexibility. This is essential so that correct arguments are forwarded to elementary

functions.

Example: Consider a 2×2 mesh architecture and 8 shared registers. The elementary

functions available are defined in a similar way to Table 3.1:

• memory: load to reg ldr, store to reg str;

• communication: forall (meta), select reg R, select north N, south S, east E, west

W;

• computation: addition add, multiplication mul.
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Table 3.2: Example of creating broadcast and multiply-accumulate language elements
from pre-defined elementary functions

Func def: maclocus(a, b, c) bcst(r)

Interface: in:3 out:1 in:1 out:4

Class: comp comm

Function: f (a, b, c) = a ∗ b+ c
∨

f (x) = x

Delay: τ = 2 τ = 0(instant)

Location: locus ⋐ {{0τ0 , 1τ1} | {2τ0 , 3τ1}} all

Lang slot: 4’b0000 4’b0001

Elem calls: add{1|3}(W{1|3}(mul{0|2}(R(r),R(r))),R(r)) f orall(R(r))

Hardw bind: PE(locus), MUXa,b(locus), MUXa(locus)

Arg_len (32’b): 1+2+3+2+1+2+3+3+3+3+3+3=29’b 3+3+3=9’b

Meaning: (pipelined, horizontal) multi-accumulate bcast a reg to all loci

To uniquely identify composed language elements, a number of encoding bits are

assigned to them. Similarly, argument bits are needed for encoding the number of

argument combination possibilities allowed physically by the architecture and the el-

ementary functions. This is a tunable parameter for the hardware designer, restricting

or enriching possible language constructs.

In this example, communication class needs 3 bits to encode all argument options,

while computation and memory need 1 bit each. Encoding physical location infor-

mation of the processing elements requires 2 bits (4 PEs of the 2×2 mesh), just like in

Table 3.1. Load from register (R) argument requires 3 bits to specify which of the 8

local registers is accessed, while other source functions need 2 bits for location (north,

south, east, west), but do not require arguments. The meta-function (forall) can have

an arbitrary argument length, depending on called elementary functions, but it may

not exceed physically available argument length.

Let the target application require a broadcast function, and a multiply-accumulate

function. These two functions are defined by meaning, which needs to be recon-

structed in hardware in terms of language elements. Using the proposed functional

reconfiguration concept, these two new functions can be composed from existing ele-

mentary functions. Assuming designer-imposed architectural limitations of a) maxi-

mum 16 language constructs, and b) maximum argument length of 32bits, functional

words of 36 bits are possible.

In Table 3.2 to the semantics, properties and the actual elementary function calls

which compose these functions are summarized. The new functions occupy 2 of the 16

possible language construct codes and bind to certain hardware structures (inherited

from the elementary function calls). Latency of the two new language elements is
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based on the components and physical location of the elementary functions. The sum

of all argument bits of the new functions respect the limitation (here 32bits) of the

function word.

If the forall meta-function is used, one argument is forwarded to all locations

(simple bit-copy). Alternatively, repeated R source calls can be done at each location,

the bcst language construct would require then locus× (3+ 3) bits. Here it can be

immediately observed that K(bcst f orall) < locus× K(bcastR); fewer bits are required

to represent the functionality and the representation when calling the language con-

struct 0001 is easier and clearer. Syntax can be constructed arbitrarily and custom

to each language construct if desired, which enables great flexibility in defining the

assembler rules and programmability. △

All available language constructs define the function set of the architecture. These

can be called directly from assembly via a defined syntax, such custom assemblers can

be easily generated on the fly by high-level synthesis tools or manually designed. By

composing functions and simplifying the calls, a side-effect of encoding bit compres-

sion can also be observed. The assembly code is completely data-independent, as

it just calls the hardware functions and enables even larger (software) compositions.

The application can be coded by means of the function set directly.

3.2.4.1 Composing rules

It is to be noted that language constructs are space-time mapped. The programmer

has to follow two simple rules:

• input/output interfaces must match with the previous/next function in time

(concatenation) and space (nesting)

• hardware binds reserved for the function at the respective time index should be

free.

Basically a time-unrolled grid of the architecture is created, then filled up with the

puzzle-pieces of the constructs according to (time) size and location. Assembling

the application function is straightforward using the meaning-based high level of

abstraction. Composition correctness is guaranteed by the above two rules.

For instance, the mac function needs two cycles to complete (τ = 2) but not all

resources are bound during the duration of the function. In the second time-cycle,

mul0 is done, leaving PE0 available for something else while PE3 executes the addition

part of the function. Language constructs can be arbitrarily nested with the limitation

that it has to fit the available argument size. Functions can be arguments to other

functions. Different classes of constructs are using different pools of elements and

also combine in a different way. This enables a great degree of architectural flexibility.

3.2.4.2 Hyperfunctions

From the functional programming point of view, it is essential to be able to redefine

functions, i.e. redefine the language constructs to select elementary functions (already
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existing in hardware) in different compositions and configurations. Due to physical

hardware limitations, only a subset of the elementary functions are used at a time,

limited by the number of the language constructs and their composition rules. This

enhances architectural flexibility, by allowing a larger set of language constructs, albeit

not all of them can be called simultaneously.

Hyperfunctions enable a tunable degree of architectural flexibility, even during

execution, by internally modifying the hardware structure and composition rules via

reconfiguration. By means of a hyperfunction, dynamic reassignment of elementary

function selection rules and its coding rules (argument forwarding rules) is possible.

Hyperfunctions make use of special hardware structures that are above the func-

tional classification plane, and specialize on redefining language elements and exe-

cuting these modifications physically in the hardware. It adds an extra dimension

of flexibility to the architecture, by adding the necessary structures to remodel the

internal structure itself.

Example: Redefinition of the previous bcst example for language slot 4’b0001 to a

simple add(r,r) on PE0 would imply forwarding argument bits in different patterns,

activating different elementary functions and linking different wires. Three hyper-

functions execute this physically in hardware, as follows:

hf_delete(0001);

hf_redefine(0001:= {[31..29]:add, [28..27]:0,

[26..24]:R, [23..21]:R, [20..0]:nop} );

hf_activate(0001);

After hyperfunction execution, normal language calls of position 0001 will have dif-

ferent meaning and will activate different elementary functions. Whenever the handle

is executed, the respective pattern is set and arguments are redirected accordingly. △

Physical implementation of hyperfunctions is complex, but a solution is proposed

in Chapter 6.

3.3 Conclusions

A new theory on how to exploit architectural flexibility via functional reconfigura-

tion has been proposed, describing ways of constructing application-specific function

set architectures directly in hardware via functional selection and composition of ba-

sic hardware function-pools, creating the necessary ingredients for energy-efficient

designs. Moreover, the proposed framework allows full exposure of available hard-

ware resources and a direct translation of the programmer’s intention into these, and

proposes a different view on programming architectures with increased inherent flex-

ibility.

Two major objectives are presented to achieve:

• a direct exposure of hardware resources and an organized way of combining

these to an efficient architectural language. An architecture can be adapted using
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such a language to closely match the application requirements (by matching

optimal application scheduling, available parallelism, data flow patterns, etc.)

such that mapping and execution efficiency is increased.

• an increase of architectural flexibility such that the architectural language can be

redefined and modified whenever the application (or its requirements) change.

A tunable flexibility can additionally allow intra-application optimization, push-

ing further the efficiency envelope. This being done at a medium granularity,

the advantages of fine-grained flexibility (FPGAs) and fast execution (ASICs)

can be combined.

However, finding an architecture in the design space that allows a direct applica-

tion of such a theory is not trivial. The insights of the theory presented in this chapter

are focused on three theses, which will be explored and backed in the following chap-

ters. In the next chapter, a quick way of exploring the design space and evaluating a

selected design is presented first.



Chapter 4

Methodology for Exploring Functional
Reconfigurability

In order to explore which architectural paradigm provides the best flavor of architec-

tural flexibility, new ways of modeling and designing need to be explored, to cope

with the huge number of options from the design space. In addition, shortened time-

to-market and stringent quality constraints should also be respected by this method-

ology, if it is to be applied in industrial contexts. Clearly, one can not implement one

particular design point from the design space just to check whether the chosen archi-

tecture meets the requirements or not. Even with flexible architectures, it is not clear

whether a certain degree of flexibility is optimal to accommodate the application or

not, unless some kind of performance or efficiency tests can be conducted.

In the industry and academia, two main design directions are prevalent for de-

signing complex architectures, to compensate for the overwhelming complexity:

1. IP design and reuse – The system is constructed from off-shelf application-

specific accelerators from a great variety of specialized vendors [5–7]. The initial

development costs of the IP components are high and their reuse is only advan-

tageous until applications remain unchanged. Evolving standards and better

algorithms limit this advantage for cutting-edge applications because new com-

ponents would be required to adapt to change.

2. High-level modeling – Designers move to a higher abstraction level for designing

and evaluating SoC components [48]. High-level descriptions or libraries of

high-level modules provide the building blocks to generate lower-level RTL or

gate-level code automatically, short-circuiting large portions of implementation

and verification effort.

As the first direction requires ready-made components that employ the traditional

design chain of ASICs, it has the major disadvantage of long development cycles and

lack of system design space exploration, because such tightly optimized components

offer little flexibility, even when combined. Especially if multiple different applica-

tions need to be supported, it becomes less efficient to use dedicated components

for each. Hence, the language of the application is not necessarily matched perfectly

unless specific designs are created.

The second direction, looks more promising for exploring a large design space. In

this chapter, based on my work [41, 135, 142]1, a methodology is presented to trace

1 Parts of this chapter appear in these publications, reprinted with permission. ©2013, IEEE, ©2014,
CRC Press, ©2012, Hindawi Publishing Corp.
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the effects of flexibility and scalability in the sense of functional reconfiguration in

a large design space. High-Level Design (HLD) and High-Level Synthesis (HLS) are

two concepts that allow such an exploration at a high abstraction level. Several tool

suites exist that expose the effect of every design decision directly at high abstraction,

without having to actually fabricate or even simulate the architecture at gate-level. Of

course, HLD and HLS can be used to design the IPs with custom flexibility that can be

reused later, to align with the first design direction. Over 30 top semiconductor com-

panies were already adopting HLS tools in 2010 [63], relying heavily on automated

tool-chains to generate sythesizable hardware description code, in order to quickly

and efficiently conduct design space exploration. In the remainder of this chapter,

the options are discussed and a methodology, is proposed which fully exploits the

benefits of functional reconfiguration theory.

4.1 Why Flexibility Is Key

According to my theory presented in the previous chapter, performance and efficiency

is governed by how well the architecture suits the application. This can be controlled

in terms of how well the language of the application (application requirements and

characteristics) matches the language of the architecture (hardware-bound resources

and how they can be used). While applications can be optimized by an optimizing

compiler and other transformations to exhibit a certain language interface towards the

architecture (albeit sub-optimally), the architecture language is fixed by the physical

features present, or can be modified by a degree proportional to the architectural

flexibility F of the architecture. For instance, arbitrary C code can be compiled for

a target instruction set architecture (e.g. Intel X86), forcing the application to be

described in the architectural language of the instruction set (e.g. ADD, MOV, etc.),

thus changing its optimal application language interface (e.g. an ASAP-scheduled

data flow graph with a high degree of parallelism) into a binary program which

encodes instructions for the processor.

Therefore, to find an architecture that can match an application or a family of

applications, careful selection of features and components and their interplay must

be evaluated, along with the effects of inherent flexibility that the choice exposes.

Moreover, a well-designed architecture also must allow some degree of scalability,

such that the designer can leverage trade-offs in area, performance or efficiency, e.g.

the number of parallel processors, cache memory size, size of the register file, etc.

To tune an architecture’s flexibility to the needs of the application, one needs to

experiment with the architectural types, language constructs, parallelism and pipelin-

ing options to see the effects on performance and energy efficiency. Figure 4.1 shows

the architectural design space, an how it is spanned by flexibility, performance, area

and power metrics [32, 166] and how functional reconfiguration can help a reconfig-

urable architecture to span features of multiple architectural types, reaping perfor-

mance, power or flexibility benefits. Reconfigurable architectures have the ability to
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Figure 4.1: Perspective of the design space from power, flexibility and performance
[32,166] point of view, enhanced with the concept of functional reconfig-
uration: a reconfigurable architecture with high architectural flexibility
(F ) can tune its language (L) to match different application-side require-
ments.

change their architectural language (L) such that a perfect match to the application

requirements can be realized.

For applications with very well defined needs in parallelism and specific data

paths (APP1 in Fig. 4.1), only a very specific language set of the architecture re-

sembling ASIC-like structures is efficient. Other applications that contain complex

sequential code with little parallelism and occasional hot-spots (APP3 in Fig. 4.1), a

DSP-like processor with a few custom instructions in its language set can yield great

results.

A reconfigurable architecture, can perform such adaptation, via functional recon-

figuration, if it has enough architectural flexibility to reconfigure its language. Matters

become complex when different applications or entire domains have to be supported:

• Derivation of the right mix of architectural features extracted from the design

space spanning FPGAs, CGRAs, DSPs, ASICs, CPUs, etc
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• Quick construction and modeling of such an architecture

• Quick (coarse) evaluation and selection of different design points, refining

• Producing a synthesizable RTL or gate-level description of the resulting archi-

tecture

In the light of the points mentioned above, a methodology to easily support these

steps is required. Moreover, it should support easy derivation and exploration of dif-

ferent architectures, architectural language elements, and structures based on func-

tional reconfiguration.

An important side-effect of optimizing the architectural language is a significant

decrease of Kolmogorov complexity K for describing the application in terms of the

optimized language, formulated in Thesis 2 of Chapter 3. This enhances ease of

programming and reduces mapping complexity.

4.2 High-Level Abstraction and High-Level Design

Exploration

High Level Synthesis (HLS) and design is gaining traction in commercial and aca-

demic circles, as an answer to increasing design complexity and short time-to-market.

It provides the perfect vehicle to allow exploration of the sizable design space and

provides the power to quickly model complex architectures. In this section, a short

survey on the HLS landscape is presented and modeling concepts are proposed to

extract and exploit inherent flexibility for a commercially available high-level design

tool. Structural descriptions, representation, tool set flexibility and limitations of HLS

are discussed.

The HLS landscape is very fragmented, some targeting only a specific type of

components and limitations. Since functional reconfiguration is a new concept that

spans several architectural types, including CGRA, there is no off-shelf solution that

delivers high-level exploration, simulation, RTL generation including tools support.
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4.2.1 High-Level Synthesis Overview

The landscape of HLS provides a large collection of tools both commercially and in

academia, trying to tackle the design exploration problem and time-to-market con-

straints from different angles. Given the complexity of modern designs, various high

level synthesis methodologies for quick architectural exploration are employed in in-

dustry and academia. These can be categorized into:

• methodologies of direct translation of high-level C language to hardware description

like Mentor Catapult-C [8, 34], GAUT [47] and Bluespec [122], yielding custom

ASICs;

• customizable processor design such as Tensilica [5] and ARC [13], using highly

optimized blocks as components;

• Architecture Description Language (ADL)-based processor design, creating fully flex-

ible and custom processors, such as nML [58] and LISA [42] [7].

Generally, the problem is attacked from one of two sides: a) synthesizing high-quality

architectures from application description at the expense of flexibility [8–10], b) pro-

viding the means to freely design, evaluate and create architectures using high-level

description languages and generate tools for application support [5, 7, 58, 135]. A

summarized non-exhaustive list of HLS tools is shown in Table 4.1.

Application-specific hardware generation usually allows high-level description of

the application in popular code (e.g. C++), and after profiling, several optimizations

are performed to generate circuit descriptions mirroring the application functionality.

This limits architectural flexibility by synthesizing very specific circuits. In many

cases, the designer does not have control over the generation process or choice of the

generated architecture, limiting design space exploration. C-based HLS techniques

offer no easy way to specify flexibility and custom processor designs often bring a

lot of additional overhead in terms of fine-grained instruction execution. Quality

of results are driven directly by the required constraints and internal optimization

quality. Supported high-level input language set also plays an important role. Some

tools support only subsets of a high-level language. [135]

On the other hand, tools that allow Architecture Description Languages (ADL)

provide the designer with full flexibility over the design process, leaving it to the

designer to explore the design space. The usual tool-set provides some form of high-

level simulation environment, where early design decisions can be guided by iterative

design and simulation loops. Quality and ease of exploration directly depends on

ADL flexibility, generated simulator, helper tools and optimizations during RTL gen-

eration. Ideally, the environment should provide post-RTL-generation tools to allow

easy application input (e.g. compiler support). [135]

For supporting a large variety of architectures, application-specific synthesis tools

fall short of flexibility requirements. Languages like Bluespec [122], not targeted at

a particular architectural type, could provide enough flexibility to describe arbitrary

structures, however the tools support is limited. Solutions can be found for ASIP and
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ASIC synthesis support and good ASIP simulators exist [5, 7]. For CGRAs however,

most tools focus on either RTL generation [86] or simulation [123], breaking high-

level iterative exploration loop. [135]

In the proposed methodology, Processor Designer was chosen for the experiments,

because it provides a large tool set and easy simulation, coupled with ease of explo-

ration of different architectural variants in a short time. Another major advantage is

that high-level LISA models can be instantiated at system level, as System-C inter-

face wrappers of the high-level simulator can be generated with ease. Additionally

as of late, custom RTL blocks can be co-simulated and taken into account at RTL

generation, such as floating point units and in-house RTL code. Tool maturity, ease

of exploration, auto-generated tools, but especially the flexibility of LISA ADL itself

helped to experiment and push the boundaries beyond its intended purpose, reveal-

ing interesting results, which are detailed below. Experiments exist to extend LISA

with reconfigurable architecture support [86], generating RTL for CGRA structures,

however creation of mapping tools for these remains a big challenge. This tool is

extremely versatile for spanning several architectural types with the proposed meth-

ods. [135]

4.2.2 LISA Language Overview

The Language for Instruction-Set Architectures (LISA) is an Architecture Description

Language (ADL) which is used for modeling processors [7, 42]. This language is a

high-level language with C-like constructs and was part of the commercially available

Processor Designer tool-set from Synopsys. As shown in Fig. 4.2, the design flow

with LISA ADL allows generation of a synthesizable RTL description coupled with

automatic generation of a set of tools such as C/C++ compiler, architectural simulator,

assembler and linker. LISA has been developed to facilitate exploration, simulation

and RTL code generation of processors.

Figure 4.2: The standard LISA design flow [142]

The flow starts with an application described in C, which is profiled to expose

computational hot-spots and give insight about what kind of structures would be

needed in the architecture. Usually, starting from a skeleton template processor, the
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architecture is described using the LISA ADL, which represents the main input to Pro-

cessor Designer. This generates the tool-suite specially tailored to the architecture, like

the simulator (step-by-step debugger), the compiler, assembler and linker to run the

application on the simulator. This first exploration loop allows major design changes

easily, coupled with a quick performance evaluation in the generated instruction set

simulator. Iterative design based on the performance evaluation allows incremental

improvement on the LISA description. The second exploration loop finishes with the

synthesizable RTL generation once constraints are satisfied also with the generated

RTL code. If gate-level results are not satisfactory, the design exploration iterations

can continue in either of the two loops.

Figure 4.3: The mainstay of the LISA language: operations define how resources are
used. The language is segregated in well-defined code sections, which
can be easily parametrized and scripted with embedded scripting lan-
guages like Ruby.

The LISA language is built upon a C-like syntax, with special structures to model

instruction set, timing, op-code and behavior of the processor. It has two main roots,

as described in Fig. 4.3: RESOURCEs and OPERATIONs. The OPERATION is the key hierar-

chical construct to describe such structures. Several OPERATIONs can describe one or

part of an instruction, or create a tree of mutually exclusive instructions, called GROUPs

(e.g. ALU instructions). For example, OPERATION alu can contain child operations like

add or sub, which in turn can be parents to special cases like adding an immediate
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Figure 4.4: LISA language hierarchical tree: RESOURCEs, OPERATIONs, ACTIVA-
TIONs and BEHAVIORs. In each time cycle, main is called and an in-
struction is fetched, decoded and executed.

or a register. Parent OPERATIONs can activate their children via the ACTIVATION sec-

tion, which assures correct timing across pipeline stages. Each operation can be a

member of a pipeline stage. Within this construct, arbitrary assembler syntax can be

defined with SYNTAX, instruction encoding with CODING and instruction behavior with

BEHAVIOR. In the BEHAVIOR section, plain C code specifies the arbitrary functionality of

the instruction, and supports special data types such as bit[width] to allow close to

hardware specification. The RESOURCE section is where global processor resources are

defined such as memories, registers and signals, along with pipelines, and pipeline

registers. With these constructs, a processor can be fully described. [135]

Once described, the code is simulated according to the described hierarchical tree,

simulating each clock cycle by executing the main functions, as shown in Fig. 4.4. Cus-

tom instruction sets can be easily described, by adjusting mutually exclusive GROUPs,

creating ACTIVATION chains and adding different resources, for instance multiple arith-

metic units, custom sub-pipelines more memories. Complex architectures such as

VLIW with deep pipelines can be described. The language exposes tremendous flexi-

bility in defining how the resources can be used via high-level C code of the BEHAVIOR

sections.

For more details about LISA language and tools, a comprehensive description is

conducted in [38, 42].
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4.3 Proposed Methodology to Exploit LISA HLS Tools

4.3.1 Inherent Flexibility of the LISA Description and Design

Space Coverage

LISA is a powerful and flexible tool for modeling processors. If a broader design

space exploration is to be conducted for evaluating the coverage span of functional

reconfiguration, LISA needs to be exploited beyond its original purpose.

Processors are limited from the architectural language point of view (the appli-

cation must be described in terms of the instruction set). Thus a large number of

applications can be supported, because the language of the architecture is static, and

an optimizing compiler can be easily targeted to the instruction set. Due to the fine-

grained instruction-based execution there is, in the broad sense, far more flexibility

available in the design than required. This results in a performance decrease and

energy inefficiency, because the transformed application is no longer executed effi-

ciently.

Applying the theory from Chapter 3, the language of the architecture (in this

case the instruction set) should be customized towards the application. Modifying

architectural language to be more application specific, removes the flexibility (FIC)

to support a broader range of applications, while keeping architectural flexibility (F )
constant: basically the application specificity of the language slides from the CPU-side

towards the ASIC side:

• coarse-grained reconfigurable structures which employs an array of word-size gran-

ularity, parallel, reconfigurable execution units with configurable interconnects

for a greater amount of architectural language options

• weakly programmable structures, where processor data path is replaced by indi-

vidual custom paths representing the data flow of the application, mimicking

ASIC-like structures with an architectural language that tries to match optimal

application language as close as possible.

Although LISA was designed for describing processors, the two architectural fla-

vors described above require no modification of the traditional LISA-based design

flow. This is accomplished by a shift in how the data path is viewed, structured

and modeled in LISA only, enhanced by the inherent modeling power of the LISA

language itself.

Control flow operations can be modeled by use of State Machine charts and Single

Qualifier Double Address (SQDA) assembly. These are similar to finite state machines,

where state transitions can be encoded as unconditional jumps. SQDA handles call-

ing of states directly from assembly code. Data flow operations can be modeled by

entering very specific behavioral code into the BEHAVIOR sections of LISA operations.

These can be then attached to specific states of the state machine via ACTIVATIONs.

Modeling details follow in the next sub-sections.

LISA exhibits a few key features, which allows construction of these structures

[135]:
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1. Activation - automatic control of when to activate operations, in a specified or-

der, even when crossing pipeline boundaries. Any operation with an ACTIVATION

section can activate one or many other operations in the hierarchical tree. Com-

plex chains can be designed, and sub-chains can be shared.

2. Template operations - originally added to support VLIW processors, template

operations allow definition of several identical or quasi-identical operations.

These constructs are similar to C++ templates, with the restriction that template

variables have to be constant at compile time. For instance, when describing 8

identical ALUs, only one ALU needs to be described in a template form (e.g.

OPERATION alu<id> generates separate instances alu<0> to alu<7>). The identi-

fier id is static for an instance and can be used to differentiate it from another

one in certain cases, or used to encode topological information in complex de-

signs.

3. Automatic tools generation - besides the simulator, which helps evaluate the

architecture, assembler and linker generation helps to immediately test the ar-

chitecture partially or fully with the target application. This provides also means

for passing configuration data of configurable architectures.

In the remainder of this section, I propose modeling abstractions using simple exam-

ples, from which it is straightforward to generalize for complex designs.

4.3.2 Proposed Exploration Flow: Towards Application-Specific

Architectural Language

In order to target architectural language to a specific application, the architecture

must be stripped of unnecessary structures. Control and data flow execution must be

transformed as closely as possible to ASIC style of execution. The fetch and decode

logic that supports tens of instructions in a normal processor (i.e. architectural lan-

guage elements) needs to be reduced to only those that would be relevant to the target

application. Generic ALUs should be customized to accommodate frequent data oper-

ations within the application. A deep analysis of the target application is necessary, as

such algorithm-level analysis reveals the required operations, their parallelism, their

frequency and potential hot-spots which would benefit from custom-made data paths.

This creates an architectural language tailored for that specific application, with the

advantage of a better match with the optimal application language, i.e. best way to

execute the application. Of course, the downside of this that other applications can

not be executed anymore [41].

4.3.2.1 Control Flow: Modeling a State Machine in LISA

Fig. 4.5 illustrates how to represent a state machine, i.e. control flow of an appli-

cation using a minimal representation with a processor’s fetch/decode and (condi-

tional) jump structures. Such structures can be modeled very easily in LISA. The state
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Figure 4.5: A simple state machine with state transitions and executed data path
operations represented in program memory of a weakly programmable
processor with an application-specific architectural language [41].

machine is encoded into the processor’s program while the state transitions are the in-

struction wordswithin the programmemory. The program counter (PC) is the indicator

of the current state, kept in a register of minimal size (log2(nr_states)). The conditions
represent the state transition conditions, which can be considered as guarded (pred-

icated) execution, based on input and/or current execution state. Depending on the

outcome of the condition, a branch is issued to the next state transition (PC is updated)

or a call to the computation linked to the current state is executed. The processor fetch

logic will fetch the instructions for the new state. Unconditional jump or execution is

just as easily possible, by forcing a condition to always evaluate to true or false. To

further customize these architectural language hooks, application-specific conditional

evaluation is created in hardware, as LISA OPERATIONs with specific BEHAVIOR, and

encoded as an instruction in the decoder [41].

4.3.2.2 Data flow: Modeling a Custom Data Path with LISA

For the data path part of the application, a custom structure can be created for every

state. This encompasses custom memory reads, writes and execution grouped into

one complex operation, then encoded into a specific instruction. Basically, it creates a

collection of custom architectural language elements which encode relevant data path

processing parts of the application. If control flow conditions evaluate as true, these

elements are called at the right time, thus executed. To allow resource sharing of

large structures such as multipliers, data paths can be pipelined in order to separate

common execution from state-specific reads and writes from/to registers and mem-

ory [41]. A data-path can be linked via ACTIVATION to a state, which is activated every

cycle as long its corresponding state is active (pc has the required value), or the tran-

sition condition evaluates to true (conditional activation). Storage of partial results

or local data is distributed across the data path by introducing local variables and

REGISTER resources within the BEHAVIOR description. This avoids using large register

files with complex multiplexing access logic.

Using high-level design tools, these major architectural changes are easily sup-

ported by automatic generation of new assemblers, linkers and simulators for every
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tested change [41]. Architectural flexibility is achieved with in-depth customization

of each resource, yielding a better match to application language.

Separation between data path operations and the state machine allows clean par-

titioning into pipeline stages and resource sharing. This concept has been explored

in a collaboration paper [165], with automatic generation of a state machine from

application code, then using an architectural template to generate LISA code.

4.3.3 Proposed Exploration Flow: Variable Architectural Language

for Tunable Architectural Flexibility

As mentioned at the beginning of this chapter, tunable architectural flexibility is key

to be able to modify and adapt architectural language elements to application require-

ments. This is possible with a reconfigurable architecture by combining its elemen-

tary hardware functions in various ways. The level of granularity of these elementary

hardware functions defines the amount of flexibility, i.e. how many new language ele-

ments can be formed by combining them. In LISA, reconfigurability can be described,

controlled and simulated, using the following considerations [135]:

4.3.3.1 Structural considerations

LISA is efficient when describing linear data paths which are easy to pipeline. How-

ever, in 2D structures such as CGRAs, data flow is difficult to cleanly partition into

LISA pipeline stages. For CGRA structures with regular, shared resources, modeling

granularity in LISA must be reduced, to expose interconnect, topology, configuration

and data flow. Data can flow in any direction within the mesh, forcing to model the

complete data path into one LISA pipeline stage and creating an explicit 2D pipeline

between the units, by forcing all processing element outputs through a register. In-

terconnect and PEs must configurable and topologically well defined. For managing

and relaying configuration data, regular LISA pipelines can be used, which also al-

lows to add control flow processing to the CGRA, similar with those described in the

previous sub-section.

4.3.3.2 Modeling similar resources and topology

A powerful feature of LISA is the template OPERATION<id> used to topologically define

one instance. Interconnect can also be modeled with templates, since instance idmust

be constant at compile time. This excellent feature is less error-prone, because only

one template description is required, no matter how many times the operation is

instanced. Moreover, it permits great scalability by just parametrizing the template id

bounds. Addition of more interconnect lines or extending array size of a CGRA can

be done buy just increasing id.

For the 3× 3 mesh from Fig. 4.6, for each PE an id is assigned and all resources

which are incident to or used by that PE receive the same id. For uniquely linking

a resource to a PE automatically, template signals or (template) register arrays are

defined. Thus, pe<4>, will have input signals a<4>, b<4> and output register out[4].
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Figure 4.6: A basic CGRA structure to show architectural elements. Q is conditional
call, C is configuration, I is processing element instruction. A and B are
activation signals. [135]

Resources must be declared globally, since multiple OPERATIONs need access to

them, without a hierarchy (e.g. a<4> will be written by the resulting signal from

either N,S,E,W sources, described also as OPERATIONs). Based on topology, certain

id values will be invalid, controllable with either SWITCH()/CASE or IF()/ELSE LISA

keywords, e.g. pe<0> can not have a north input, so OPERATION north_src<0> has no

BEHAVIOR. The same constructs can be used to describe a heterogeneous array adding

conditional behaviors and local resources for certain id values, e.g. pe<4> can also

activate a divider. [135]

4.3.3.3 Configurable interconnect

A configurable wire from source to sink is modeled in LISA as an OPERATION with a

simple assignment in BEHAVIOR{sink=source;}. Conditional activation of this oper-

ation acts like a configuration bit and sink is written (Fig. 4.6, between PE0 and 3).

For multi-entry wires, sources are modeled as additional entry operations, activated

by mutually exclusive activation signals (B in Fig.4.6), multiplexing them. In turn,

the bus sink wire acts as PE source for the east link of PE2 and 8. Broadcast is pos-

sible, if other PEs are also reading the bus wire. Regular topological structures are

modeled by template operations using derived topological rules (e.g. in Fig. 4.6, all

north source links can be defined as n_src<id>=out<id-N>, excepting the first row

with SWITCH/CASE, where N=3 is the N × N array size). For correctness of simulation

only, proper activation order is required, so that sink is not read before being written,

using WRITES_BEFORE/_AFTER keywords, when defining the operations. [135]
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4.3.3.4 Configuration data can tune the language

LISA modeling offers several ways to pass configuration data to a reconfigurable

structure. Most straightforward is relaying the configuration via assembly, directly

specifying configuration bits which are then distributed without any decode logic to

configuration registers. A simple configuration root operation conditionally activates

those operations which have a 1 in their respective registers, called unconditionally

at every cycle. These registers are globally declared, or part of a pipeline register,

as shown in Fig. 4.6. For dynamic reconfiguration, a very large instruction word

can be fed every cycle, quasi-static configurations can be loaded once and read every

time from a register. An interesting feature is to conditionally generate or override

configurations, if control flow operations Q are added using concepts from ASIC-

like design (Fig. 4.6), effectively creating self-reconfigurable circuits depending on

execution state. ACTIVATION signals can be used as operand or clock gating enable.

This also can save power, if a resource (tree) is unused, it is not activated, hence

generates no switching activity.

Language constructs can be combined or destroyed via configuration patterns. If

the elementary hardware functions are coded as LISA operations at a small granular-

ity, configuration data can provide the necessary information to select and combine

them.

4.3.3.5 Exploiting assembler and scripting

The automatically generated assembler and linker has enough flexibility to allow def-

inition of an arbitrary syntax. A well designed syntax avoids cumbersome derivation

of configuration bits, but also allows direct control and access to the architectural lan-

guage. For instance, one can encode the activation of the north source link to fixed

symbol "N" instead of the multiplexer selection bit value. Coupled with a good PE

syntax, one can program a PE with simple directives, e.g. PE4: NS(+), for taking

north/south inputs and add them on PE4 or PE8: WE(-) for west/east inputs with

subtract. The assembler then replaces this with the respective binary configuration

bits. The instruction word can be further simplified and partitioned into regions, just

like a VLIW processor and lightly scripted with easy scripting languages such as em-

bedded Ruby or Perl, empowering the assembler to behave like a meta-compiler. A

very detailed long instruction word syntax can even encompass open/closing braces,

can be indented arbitrarily, exploiting the automatically generated parser of the as-

sembler to help easily write and configure such code. [135]

Since LISA code can be tedious to write for a large number of similar operations,

SWITCH/CASE exceptions, DECLARE sections, scripting can be employed to parametrize

and generate such code. Especially for regular interconnects, which can be generated

by a rule, it is easier to code the rule in the embedded script part, further increas-

ing description flexibility: e.g. a scalable N × N reconfigurable structure, exploring

and generating RTL for all N values of interest by just replacing a constant in script

headers. This works also for structures that are normally not parametrized, such

as large number of pipelines (e.g. each PE has its own pipe). For the architectures
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Figure 4.7: The proposed methodology flow.

implemented in this work, an average LISA code size reduction of 50-60% can be

achieved by scripted LISA. Moreover, scripting eliminates coding mistakes such as

copy-paste errors, avoiding tedious debugging (bad rule in the script is immediately

visible). [135]

4.3.3.6 Limitations

Due to the fact that LISA ADL was designed for sequential, pipelined data flow,

there are some limitations when describing CGRAs. Special care must be taken for

the ACTIVATION tree design, as LISA does not support circular dependencies. For

instance, the data source of one of the row and column broadcast pair must be

limited, to break a circular activation dependency (read_row→write_column→read_-

column9write_row). Another limitation is that LISA does not support multiple cod-

ing roots (CODING AT) statements, limiting decoding tree options. This is also present

in the assembler, not allowing multiple program memories (e.g. separate instruction

and configuration memories). Furthermore, for very large CGRA designs, the 32-bit

binary of the LISA tool-chain can hit memory limits. [135]

4.3.4 Resulting Methodology

To summarize, the top level view of the complete flow is illustrated in Fig. 4.7. In the

case of targeted flexibility, the elementary functions and the language elements can

be tailored to match the application as closely as possible. For the tunable flow, exist-
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ing architecture with existing elementary functions can be reused, only the language

elements which map well with the application have to be derived.

High level exploration is not limited to LISA only, other tool-chains can be em-

ployed as well, as long as quick evaluation of the options, language suitability and

constraints fulfillment can be done. Finally, after generating or manually coding the

RTL code, traditional post-RTL tool-flow can be used.

4.4 Summary

In this part, modeling concepts for architectures using functional reconfiguration are

proposed. Functional reconfiguration is applicable to a variety of architectural classes.

A quick and wide exploration and evaluation of design points of the large design

space is required, which is why the inherent power of a high level design language

and tools is integrated into a flow. Enhancements for going beyond the original design

purpose of such tools are also discussed for a commercial HLS tool:

• LISA ADL and the generated tool-suite can also be used to design ASIC-like or

• coarse-grained reconfigurable architectures additionally to ASIPs.

This enables tunable architectural flexibility to adapt exactly to the application’s require-

ments. Using this methodology it is possible to explore the effect of scalability and

flexibility from a high level abstraction view and opens new possibilities in adapting

and fine tuning architectural features to match the target application. In the following

chapters, such an exploration is conducted.
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Chapter 5

Targeted Flexibility: ASIC-like
Structures for Low Energy
Consumption

In the previous chapter, exploration methodologies for functional reconfiguration

were presented. This chapter delves into the first proposed direction: reducing ar-

chitectural flexibility to a bare minimum, such that the application(s) are supported

in a very efficient way. Reduction of architectural flexibility means a reduction in the

flexibility of supporting changes in the application or replacing support for new ap-

plications, however, it also focuses the architecture towards the target applications for

increased efficiency. The philosophy behind it is to get as close as possible to ASIC-

like structures and reduce unused elements and overhead, optimizing for the given

application and thus achieve higher performance and lower energy when compared

with generic solutions. The gains in performance and power are proportional with

how well the architecture matches the application. A fine trade-off between removed

flexibility and usability versus gained efficiency must be conducted to achieve the

optimal balance. In the following, this chapter treats a scenario in the wireless com-

munication domain, based on the results of my work published in [41, 141, 142]1 and

a collaboration work in [165].

5.1 Towards ASIC-like Architectures

As per the definition from Chapter 3, architectural flexibility F reflects the degree of

how well the language of the architecture L matches that of the application. A perfect

match translates into high performance and efficiency due to the architecture fulfill-

ing the application’s requirements in term of parallelism, data bandwidth and high

execution speed. Of course, a perfect match can be achieved also by an architecture

that is over-designed – an effective overkill of hardware resource availability with re-

spect to application requirements. While this also gives a high degree of architectural

flexibility to potentially support other applications, the overhead associated with un-

used resources chiefly causes high area and high (leakage) power usage, among other

disadvantages. Minimizing the excess of architectural flexibility and focusing it only

to match the target application leads to an ASIC-like design philosophy. If a sin-

gle application is targeted, pure ASIC design methodology yields the best results,

1 Parts of this chapter appear in these publications, reprinted with permission. ©2011-2012, IEEE,
©2014, CRC Press, ©2012, Hindawi Publishing Corp.
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however when several applications (and only those) need to be supported, using an

ASIC for each is very inefficient from area, power, resource sharing and design-effort

perspective. Important questions answered in this chapter are:

• how to reduce over-design such that architectural language can closely match

requirements

• how to share resources between target applications

• what are the potential benefits versus the ASIC approach

• how architectural language granularity affects architectural flexibility (and thus

efficiency)

5.1.1 Target Scenario: Minimal Flexibility to Support Two

Applications

For the case study, representatives of two complexity classes of Wide-band Code-

Division Multiple Access (WCDMA) channel estimation algorithms are selected. Aim-

ing to reduce excess architectural flexibility to perfectly match these two target appli-

cations, the effect of different design factors that influence final energy efficiency is

explored.

The background scenario was chosen from the wireless domain, because flexibil-

ity at architectural level would have major impact. Due fast changing standards and

process technologies, mobile devices increasingly rely on the Software Defined Ra-

dio (SDR) and Cognitive Radio [115] [116] concepts to achieve adaptability, flexibility,

spectral and energy efficiency. SDR is envisioned to possess enough flexibility to en-

able seamless upgrades and support for multiple standards clearing the way towards

cognitive radio, at the software level.

However, SDR implementation presents an interesting challenge for the architec-

ture designers, namely, to develop an underlying hardware platform for SDR with

fine balance of performance and flexibility. This demanding problem led to major

research activity in recent years [19, 35, 43, 52, 67, 99, 144, 157, 160, 166]. One of the key

ingredients in the SDR architecture design is to determine the algorithmic kernels

across various standards. While the kernel can be implemented in the most efficient

manner, it can be re-targeted to different standards by means of tunable parameters

or weak programmability. To that effect, the final architecture can be an ASIC, a re-

configurable platform or an application-specific processor. The complete system is

often built by combining such accelerators, targeted for different blocks of a wireless

standard [67]. In a scenario where the architecture has to switch from one application

to another, with SDR this can be done easily by just running another program. Appli-

cation changes are managed by software, therefore hardware acceleration is best-case

limited to isolated application-specific blocks.

In this part, flexibility is moved to the architecture, switching of applications is

done at hardware level via a software interface. Architectural flexibility is maximized
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to match both applications, to gain maximum efficiency in switch scenario detailed

next.

5.1.1.1 Case-study Scenario

A critical part of wireless communication is maintaining a good level of signal-to-

noise ratio (SNR) on the link. This is influenced negatively by multi-path fading,

mobile terminal speed relative to the base transmitter, scattering, shadowing, etc. To

counter this, channel estimation (CE) is performed so that corrections can be done

by considering dynamically altering channel conditions. CE constitutes an important

building block for SDR, as this is used across multiple wireless standards.

There are 3 large classes in which one can categorize CE algorithms:

• 1) low-complexity, low-performance algorithms;

• 2) high-complexity, good performance algorithms; and

• 3) extremely complex, iterative algorithms with near-optimal performance.

While 1) deals with simple (linear) interpolation algorithms and improvements on

those (typically O(n) complexity), 2) is the class where still tractable O(n2), O(n3)
complexity yields high gains in performance, typically in orders of magnitude. Class

3) employs iterative (data-aided) expectation-maximization algorithms with ≥ O(n3)
complexity, are typically unfeasible for implementation in software when considering

the performance improvements that they yield. Hardware acceleration of this class is

currently under heavy research. [141].

The selected target applications are two multi-user WCDMA pilot-aided CE algo-

rithms: polynomial interpolation (PI) (class 2)) proposed by Yue et al. in [168], and

weighted multi-slot averaging (WMSA) (class 1)) proposed by Abeta et al. in [15].

The rationale for this selection is the following: in the context of cognitive radio and

low-power mobile devices, wireless link state not always requires a class 2) algorithm

performance, hence selecting a lower complexity class 1) algorithm could yield sig-

nificant efficiency increase. This is due the fact that more complex algorithms require

more hardware resources and more processing to finish. Exposing and exploiting the

structural similarity, and adapting the architectural language accordingly, it is possible

to design an architecture which can adaptively switch among the two, without having

the area overhead of two separate dedicated circuits [141]. The architecture should be

able to adapt to weak input signals by using the high-performance, high-complexity

algorithm while switching to a low-performance and low-complexity algorithm when

the input signals are strong enough to maintain quality of service, saving energy. [41]

5.1.1.2 Architectural Background for the Target Algorithms

Over the years there have been several approaches to SDR architectures based on dif-

ferent architectural approaches. However, with the ever increasing complexity of new

wireless standards a migration from flexible solutions towards clusters of inflexible

ASICs can be observed.
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Processors are flexible enough to implement complete standards. Architectures

like SODA [99], EVP [157] and Imagine [84] tackle performance and power demands

by employing high-speed vector processing or stream processing. In these architec-

tures data parallelism is explicitly exploited. In SODA, a Single Instruction Multiple

Data (SIMD) architecture is employed, where one ARM processor is coupled with

4 parallel processing elements. Tight control of bit-width and bandwidth fulfilled

power and performance requirements of two wireless standards. EVP takes a Very

Long Instruction Word (VLIW) front-end to control several optimized SIMD units for

specific SDR tasks, capable of handling multiple standards. Imagine is a media stream

processor which has been re-targeted for base-band processing in works like [133], ex-

ploiting clusters of parallel processing elements controlled by a host processor.

Application Specific Instruction-set Processors (ASIPs) sacrifice flexibility in or-

der to gain enough performance to tackle the more demanding applications from

more recent algorithms. The FlexiChaP architecture [19, 160] customizes the pipeline,

execution units and data flow of a processor to accommodate convolutional, turbo

and LDPC decoding families, yielding an order of magnitude of speed-up compared

with fully flexible processors like SODA.

Coarse-grained Reconfigurable Architectures like ADRES [109], RaPID [56], Mor-

phoSys [151], RAW [156], Montium [144], IMEC coarse-grained accelerator [35] em-

ploy arrays of data word level reconfigurable processing elements linked by a re-

configurable network, which can be tailored to a wider family of applications. Such

coarse grained cores can cover a wide flexibility/performance range between ASIC

and ASIP, like the application-specific FlexDet [43] or an ASIP-coupled rASIP [86].

Although this class promises SDR implementation capability due to excellent compu-

tational density [50], the difficulty in programming and exploring the design space of

such architectures discourages wide-spread adoption.

System-on-Chip solutions like Sandbridge [67] are increasingly popular, espe-

cially when high-performance scalable ASIC cores [166] are employed to construct

SDR components. Even hybrid approaches using accelerators and reconfigurable

units are advocated [52, 62].

Field-programmable Gate Array (FPGA)-based designs for SDR, like the WARP

board, are extensively used for prototyping and research of new wireless standards

and optimizations [71] [153], but power requirements make it prohibitive for end-

products.

All these solutions except the ASIP/rASIP approach need “manual design” on

either the hardware or the programming side or both. In this work, adapting HLS

methodologies described in Chapter 4, architectural flexibility is adapted to support

these two algorithms. In this regard, the approach, the architecture and the concept

differentiate this work from existing solutions.

5.1.1.3 WCDMA Implementations

Extensive work has been conducted by Rajagopal et al. during the early stages of

WCDMA research to implement channel estimation and detection on stream proces-
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sors and compare it with traditional DSP implementations [131–133] and also a VLSI

implementation is conducted in [130], where area- and time-driven implementations

are explored.

In case of the implementation on DSP, it is shown that the time required for com-

puting channel estimation is 600ms in case of 32 users [131], which is far too slow

for real-time requirements. A dual-DSP and FPGA hybrid is shown to reach the

real-time requirements for up to 7 users, however the implementation also contains

detection [132].

The implementation on the Imagine stream processor simulator shows major im-

provement over the DSP, but only the number of cycles could be extracted [133] which

are at least an order of magnitude higher than the number of cycles reported in this

work. Also, it is worth noting, that the stream processor architecture uses 8 clusters

of 3 adders and 3 multipliers which not only implies large area but also great power

consumption. The computational hot-spots of matrix-matrix multiplication are imple-

mented as a series of matrix-vector iterations which requires a large number of cycles

in the stream processor also due to data load/stores and movement.

For the VLSI implementation [130], the algorithm was analyzed and redesigned

for efficiency, considering fixed/floating point representation trade-offs (up to 16 bits)

and their effect on bit error rate, however no direct comparison with this work could

be made for several reasons: the design has not been synthesized, operating frequency

is assumed and area is expressed in terms of full adders, with no mention of storage.

Additionally, no power consumption data has been reported.

Nowadays, such a small block of a WCDMA receiver is too deeply integrated into

high-performance SoC solutions, making an individual data extraction and direct

comparison impossible, especially since this standard has been obsoleted by newer,

even more complex MIMO OFDM algorithms. However, this case study is sufficient

for the purpose of demonstrating the proposed theory and methodology from the

previous chapters.

5.1.2 Identifying Options: Target Algorithm Analysis

5.1.2.1 Differences in Algorithmic Performance

A comparison between the two target algorithms is presented in [168], showing that

these two algorithms differ significantly in terms of performance, under multi-path

fading conditions. For single user single antenna systems, the Bit Error Rate (BER)

of PI is lower than that of WMSA over the whole bit energy to noise energy ratio Eb
N0

range and more than an order of magnitude less when Eb
N0

is greater than 6dB. In case

of multiple antenna, WMSA is outperformed by more than 2 orders of magnitude.

The algorithm performance of PI stays superior for normalized Doppler frequencies in

the range of 0.005 < fdT < 0.013 for both single and multiple antenna cases at an SNR

of 8dB. For multi-user systems, the performance of PI in rake receivers stays superior

over that of WMSA over the whole range with the difference reaching 2 orders of

magnitude when iterative interference cancellation is employed in medium to high
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SNR (>7dB). [141] On the other hand, as it is analytically shown later, WMSA involves

significantly less computation compared to the polynomial interpolation method.

5.1.2.2 Channel Estimation with WMSA

WMSA [15], is based on linear interpolation of known pilot symbols, and has low

computational complexity. For every k-th user’s l-th path several Np pilot symbols

of slot m of the slot window are averaged first from received signal rkl and initial

estimate bk:

η̂kl =
1

Np

Np
∑

n=1

rkl(mNs + n)bk(mNs + n); (5.1)

where l = {1, ..., L}; k = {1, ...,K}; n = {1, ...,Ns−Np}. The averaged values of several

pilot symbols in a slot are weighted with pre-computed coefficients α according to

(5.2), to generate the estimates ĝkl for each data symbol Nd, as Yue et al. summarized

it in [168]. The values of the coefficients α are thoroughly deduced and analyzed

in [15].

ĝkl(mNs + Np + n) =

J
∑

j=−J+1

αj(n)η̂kl(m+ j) (5.2)

Table 5.1: WMSA complexity: number of divisions, addition/subtractions and mul-
tiplications [41]

Tasks Complexity Storage Execution

calculate α div : 2Ns, add/sub : 6J 2J × Np × Ns once

average pilots div : 1, add/sub : Np Np every Ns

calculate estimate mul : J, add : J 1 every Nd

Figure 5.1: Weighted Multi-Slot Averaging: Pilot symbols Np are averaged, weighted
(×α) and summed for the channel estimate. [141]
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5.1.2.3 WMSA Analysis

In Fig. 5.1 WMSA concept and in Table. 5.1 the complexity of each of the sub-tasks of

the algorithm is shown. The task for computing the α coefficients is executed once.

The coefficient set can be changed based on WMSA algorithm parametrization and

partially depends on the estimated symbol position. Averaging has to be done once

per slot, in case there are several pilots in a slot. Then, for each data symbol, the

estimate is calculated by summing the products between the averaged pilot value and

the corresponding α coefficients of the symbol and slot. The dominant parameters of

this algorithm from the complexity point of view is the size of the slot window 2J

and the coefficients α. The larger the analyzed window, the greater the amount of

needed storage. For the same J, storage needed for WMSA does not exceed that of

polynomial estimation. [142]

From the application language point of view, WMSA needs following support

from the architecture:

• parallel add/sub and multiplier elements, according to slot size (execution class)

• loads/stores or streaming i/o for the new pilot symbols and the channel esti-

mate and the α-coefficients (memory class)

• one optional divider (execution class) – as window sizes are powers of 2, shifters

can be also employed

There are no special communication class requirements, as the data can be immedi-

ately calculated in a pipeline. An architecture that provides these elements, would

execute this algorithm efficiently.

5.1.2.4 Channel Estimation with Polynomial Interpolation

The second algorithm is based on polynomial interpolation (PI) (Fig. 5.2) of the pilot

symbols’ channel values to calculate an approximation on channel fading.

As described in [168], the channel values are fit with a polynomial model of order

q over 2J slots (5.3). Approximation is done by minimizing the mean-square error

α based on the pilot symbols Np in (5.4); Ns being the sum of Np pilot and Nd data

symbols. This translates to a Lagrangian interpolation problem, solved with (5.5) in

(5.6), where ηkl represents the transpose of the pilot symbol vector constructed from

2J slots.

ĝkl((m+ j)Ns) =

q
∑

i=0

αiψi(jNs) (5.3)

j = − J + 1, ..., 0, ..., J

ψi(n)
△
= ni; i = 0, 1, ...q
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Figure 5.2: Polynomial Interpolation concept: several data points are interpolated
via a polynomial of order q.

α = argmin
α

J
∑

j=−J+1

[η̂kl(m+ j)− ĝkl((m+ j)Ns +
Np

2
)]2

where α = [α0, α1, ..., αq]
T (5.4)

Ψ
△
=


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...
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
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






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

2J×(q+1)

(5.5)

α = (ΨT
Ψ)−1Ψ

Tη̂kl(m) (5.6)

Finally, the channel coefficients for data symbol n are calculated by using (5.7), the

part of α not depending on slot index m staying constant over the slot.

ĝkl(mNs + n) = ψ(n)Tα (5.7)

n = Np + 1, ...,Ns

ψ(n)
△
= [ψ0(n), ...,ψ2J−1(n)]

T

5.1.2.5 PI Analysis

The complexity and performance of this algorithm completely eclipses the one of

WMSA. It is highly tunable with the polynomial order q and the size of analyzed slots

2J. Table 5.2 illustrates the sub-tasks of this algorithm, their complexity and storage
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requirements. The computational hot-spot contains matrix inversion and multipli-

cation, therefore the complexity rises steeply with the two main tunable parameters

of the algorithm, q and J. Other parameters such as number of pilots in a slot Np,

number of total symbols Ns add additional flexibility to the algorithm. Most of the

sub-tasks need to be recalculated for each slot and some simpler tasks (e.g. multiply-

accumulates) are recalculated for every symbol. Computationally it is dominated by

matrix operations, especially matrix inversion of (ΨT
Ψ)−1, which grows in complex-

ity with higher q and J, due to its iterative calculus. Additional complexity can come

from tuning Ns and Np. Several divisions, multiplications combined with additions

and subtractions in different ways make this a very demanding application, sum-

marized in Table 5.2. The trade-off range of parameters for the polynomial order is

between 1 to 3, while the analyzed slot window 2J ranges from J equal to 1 to 4.

Data dependency within the algorithm allows some of the storage to be reused, thus

decreasing the demand on memory. [41, 142]

From the application language point of view, PI needs following support from the

architecture:

• parallel add/sub and multiplier elements, according to slot size (execution class)

• one divider (execution class) – for inversion of the Ψ-matrix

• as the Ψ-matrix has to be constructed and used, special data forwarding chan-

nels (e.g. transpose) have to be supported (communication class)

• local storage of the Ψ-matrix is desirable, but minimally the results of the on-

ce/slot calculus should be stored locally to calculate the estimates for every data

symbol (communication class)

• beside the standard loads/stores or streaming i/o for the new pilot symbols and

the channel estimate, special matrix load-stores would be optimal when working

on rows/columns of the Ψ-matrix (memory class)

Clearly, the complexity of PI is reflected in the desirable application language. De-

tailed requirements can be deduced from the control/data-flow graphs, when algo-

rithmic parameters are fixed. Additional flexibility would be required to support a

wider range of parameters, mainly in the matrix operations part. An architecture that

optimizes matrix multiplication and provides the language items listed above would

be efficient for the PI case.

5.2 Application Specific Architectural Language

This section explores the steps towards achieving best architectural flexibility to sup-

port the case-study scenario from Section 5.1.1.1 by closely customizing architectural

language to the application.
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Table 5.2: PI complexity: partitioning of the algorithm, number of divisions, addi-
tion/subtractions and multiplications [41]

Tasks Complexity Storage Execution

Ψ mul : q× 2J, add : 2J 2J × (q+ 1) once/slot

ΨTΨ matmul : (q+ 1)× 2J 2J × (q+ 1) once/slot

inversion part1 div : 2J, muladd : (q+ 1)× 2J (q+ 1)× 2J once/slot

inversion part2 div : 1, divsub : (q+ 1) +2J 2J×/slot

inversion part3 matmul : (q+ 1)× 2J +2J 2J×/slot

(ΨT
Ψ)−1Ψ

T matmul : (q+ 1)× 2J (q+ 1)× 2J once/slot

calculate Ψ(n) mul : (q+ 1)× 2J q+ 1 every Nd

calculate α mat/vecmul : (q+ 1)× 2J q+ 1 every Nd

calculate estimate vecmul : q+ 1 1 every Nd

5.2.1 Structuring and Partitioning Architectural Language Elements

In order to create an architecture that features a language that matches the require-

ments of both applications, fine-grained elementary functions have to be defined, for

each function class: memory, communication, execution and control. For instance,

add/sub operations in the DFG imply creation of an add/sub elementary function.

To create a higher order language element, surrounding nodes in the DFG of each

elementary functions are analyzed. Frequently occurring clusters of nodes suggest a

good language element candidate, frequently occurring stand-alone elementary func-

tions suggest creation of a language element on its own. The key idea is to match

the application language/structure as closely as possible with architectural language

elements.

Once the complete algorithms are processed individually using the DFGs, iden-

tification of common elements and paths can be done. The aim is to reuse as many

resources as possible across the two algorithms. An example partitioning is shown in

Fig.5.3, on a piece of the flow charts of both algorithms. Nodes are partitioned and

common points are identified. [142] This step is essential for sharing resources and

creating parametrized custom language elements which can support both algorithms.

Finer analysis points follow, such as whether to use fixed point or floating point

arithmetic. Looking at the algorithm and profiling details, coupled with the fact that

for battery-powered devices floating point implementation is usually not necessary

nor feasible, implementation using fixed point arithmetic is the obvious choice. In

this case-study the Q-format fixed-point representation is employed. A maximum

bit-width Q is divided into two fields of width M and N, such that Q = 1+ M+ N.

The most significant bit is the sign bit, bit field M represents the integer part while

the bit field N represents the fractional part. In these implementations Q33.30 for

Q = 64-bit precision and Q16.15 for Q = 32-bit precision is used, respectively. All

calculus has to respect Q format arithmetic, detailed in Fig. 5.4.
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Figure 5.3: Construction of the application-specific language for two applications:
identification of elementary hardware functions for each task class from
application CDFGs, partitioning to common language elements for re-
source sharing and construction of the final architectural language.
(Adapted after [141])

Figure 5.4: Q-format MUL and DIV arithmetic for Q(M.N) case. [142]

From the architectural point of view, implementing the target algorithms is chal-

lenging because of the mixed internal computational components: matrix inversion

is a sequential process where control flow dominates (partial pivoting and backward

substitution), while matrix multiplication is a task where much parallelism is avail-

able. Architectural language elements that execute both very efficiently must be se-

lected and constructed. Here, the granularity of the chosen language elements plays

an important role. It is the trade-off point of how close the language has to match the

requirements of one application, without sacrificing support or induce inefficiencies

in the other application.
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5.2.1.1 Control Flow Structures

The control flow essentially requires support for if-else statement and loop statements.

From the CDFG chart description, the control statements are identified which require

independent tuning. Otherwise, the if-else statements are merged within a larger

data path. Various step sizes for the loop iterators are supported, allowing shared

structures across different loops. In the control-flow implementation via SQDA, the

program counter always jumps to the new instruction address for both true and

false outcomes of the conditional checks as illustrated in the methodology chapter,

Fig. 4.5. Program counter jumps should not incur delay penalties, therefore the con-

dition check and instruction fetch are part of the same pipeline stage. [142] When

the architectural language is highly customized, the complexity K of the application

representation (mapping) is significantly reduced. Hence a limited number of assem-

bly instructions required to program the architecture, the program memory is quite

small in size (640 bits). Therefore, the instructions can be conveniently stored in regis-

ter files constructed out of standard cell memories offering fast asynchronous access.

This was also one of the advantages of using the proposed methodology.

5.2.1.2 Data Flow: Specific Language Patterns

Analyzing the amounts of data needed by the sub-tasks and usage patterns, optimal

load operations become coarse-grained operations composed of multiple memory ac-

cesses, shuffling and selection of data. This is problematic for an efficient imple-

mentation with SRAMs with limited number of ports. Standard cell memory-based

implementation was considered, which offers asynchronous read and synchronous

writes. This takes a heavy toll on area but reveals the maximum possible run-time

performance. Therefore, data access addresses can be hard-coded for each load/store

pattern of an execution node in to a language call, bundling the complete load/store

processes in sets of patterns tuned for the respective data path. [142] This not only ren-

ders data fetch address computation unnecessary, but also avoids memory operations

like matrix transpose, which are hard-coded into that specific language element.

Looking closer at the flexibility requirements, i.e. what kind of parameters the

applications have and how they influence the amount of processing, the complexity

can be linked to the required execution resources. For PI, the width of the matrix

depends on the polynomial order + 1, while the height depends on 2J slots consid-

ered as observation window. A typical value for the polynomial order is 3 and for

the slot window J is 2 and can change by factors of 2, yielding matrix operations of

matrix size of 4× 2, 4× 4, 4× 8. A variable number of Multiply-Accumulate (MAC)

elementary functions, allows trading off area for parallelism, so the design is easily

adaptable to energy, area and timing needs. Thus, when using 4 MACs, a 4× 4 ma-

trix multiplication can be done in 16 cycles. Parameter changes result in a different

number of iterations, which translates in different counter increments in the control

path. These elementary functions can be shared among multiple language elements

specific to tasks which use matrix multiplication, and can accommodate other multi-

plications and additions as needed. In matrix inversion, division is also needed, so
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Figure 5.5: Architecture A1 for the two channel estimation algorithms with custom-
made language elements and shared resources to fit both target algo-
rithms. [41]

one divider completes the minimum elementary function set of execution units. It

must be noted that these MAC units and the divider are executing all operations in

Q-format calculus, meaning that each multiplication or division is a concatenation of

operations packed into one unit (coarser-grained elementary functions). While sim-

plifying architectural description and programming, this causes a very long critical

path in the design. [142]

5.2.1.3 The Resulting Architecture (A1)

After application partitioning and language construction, the physical implementa-

tion became straightforward: control (state machine), load, execute and store parts

suggested a pipeline of 4 stages, shown in Fig. 5.5. Pipelines are inherently supported

by LISA, generating control and pipeline registers automatically. This architecture is

denoted with A1 in later sections during evaluation.

The state-machine stage takes care of instruction fetch, qualifier evaluation and

activates the respective data-path in the next cycle. The start of the data path associ-

ated with this state is activated in the next pipeline stage (next cycle). The load/store

stages contain memory access pattern language sets, activated by the state-machine

stage and properly timed, thus loading/storing relevant operands to/from execution

unit input/output registers. Some load/store patterns are parametrized, yielding dif-

ferent data for qualifiers in different states. These language elements receive extra

parameters from the assembly call function. Compared with the control logic and

LD/ST pattern sets, execution units are physically much larger, even for fixed point

arithmetic. To reduce the area impact, these units are shared across the applica-
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tion, statically linking the units to the input and output pipeline registers. By that,

area consumption is increased in form of multiplexing the data from register files

to the input/output points of MAC/DIV units (communication class specific links,

aiding data movement). Data dependency is avoided by performing data forward-

ing between the pipeline stages. With most language elements shared among the

algorithms, few algorithm-specific elements remain in the form of specific load/store

operations, which translate in little area overhead.

5.3 Increasing Architectural Flexibility: What Are the

Gains

The architectural language elements of A1 closely follow the requirements of the ap-

plications, except for the execution units, which are large, shared MAC units. This

creates coarse-grained language elements in the architecture, since the underlying el-

ementary functions are also coarse-grained. However, for a closer match and resource

share, these large, easy to share units have to be reduced in granularity. More varied

language elements can be created to accommodate application needs if the elemen-

tary functions are more fine-grained. The reason for exploring such a solution is the

fact that the Q-format MAC units and DIV unit are extremely large and have long

critical path. Some operations, especially in WMSA, use the large MAC unit although

only plain addition or subtraction is needed. Also, in the load/store patterns, some

fine-grained addition and shifting is required. A reconfigurable core with an array of

elementary functions extended with a regular mesh interconnect for the communica-

tion class, would provide a sufficiently large pool of elementary hardware functions

to construct more complex, well-matched language elements. Thus, the critical path

of the MAC units is reduced, while making pre- and post-processing tasks more ef-

ficient by using structures more suited for the tasks of each application. Also, the

language elements in the execution class are tailored to execute Q-format arithmetic

more efficiently. This increases the design effort, leading to a trade-off of granularity

versus architectural flexibility.

5.3.1 CGRA Block Extension, Partitioning Effects and Remodeling

the Language

Except for the execution part, the considerations for partitioning, control-flow and

load/store processing from the previous subsection apply also for such an architec-

ture, denoted in the following with A2. The configurable core is defined and imple-

mented in LISA using the key enablers for reconfigurable structures mentioned in

Chapter 4.
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Figure 5.6: Architecture A2 with enhanced architectural flexibility due to the recon-
figurable fabric: finer language elements can be created for each applica-
tion. [41]

5.3.1.1 The Resulting Architecture (A2)

The resulting architecture A2 is shown in Fig. 5.6. The pipeline structure is heavily

modified, now only 2 pipeline stages remain, one for control and one for execution.

The structure of the core, an mesh-array of 4×4 processing elements, is based on

expanding the large Q-format MAC units from the previous architecture giving a

heterogeneous structure (Fig. 5.6): the first column (PE0,4,8,12) contains elementary

hardware functions for multiplication, addition and shifting, the second and third

columns contain only adders and shifters of double bit-width (2×Q, Q=32,64) while

the last column contains Q bit-width adders and shifters. This customization of the

pool of elementary functions reduces granularity and opens new language combina-

tion options by combining them. A divider is added in the middle of the array, with

a direct connection to the outputs of element 5 and 9, to be physically close to the

elements used when computing the shifting and adding operation within Q-format

division. A mesh structure is sufficient to link these structures together and link to

the load/store patterns from/to memory, providing elementary functions for data for-

warding within the array. It must be noted that, due to the way Q-format arithmetic

works, intermediate results within a multiplication or division are of double bit-width

(2×Q), hence when forwarding results from columns 0 to 1, 1 to 2, the communication

functions must accommodate double bit-width 2×Q. [142]

One processing element can take input data from 12 sources, 6 for each input.

Besides the 4 neighboring PEs (north, south, east, west), one PE can also take its own

output register as the source, or connect to the load/store patterns. By combining the

elementary communication pieces, the wires can be concatenated to directly connect

to the output registers of the respective neighboring nodes (essentially creating a 2D

pipeline within the array), or a certain load pattern in case of the memory links. PEs
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on the border of the array take the load pattern as a source, when a neighbor in that

direction doesn’t exist (e.g., PE0 north and west links are the same with the memory

link). The output registers are also directly connected to certain store patterns. De-

pending on the application, the load/store patterns may or may not connect to each

PE, as the data can be processed by a PE chain before being ready for storage. [142]

5.3.1.2 Configuration and Control

To control language element construction, there are 3 configuration bits for each

source multiplexer, and 3 bit for the op-code selector. In LISA this is described as

a template OPERATION<> for each element, which takes the data on input wires in_A

and in_B and outputs to the output register, considering the op-code for the exe-

cution. The 6 interconnect links for each source are modeled also with template

OPERATION<>s which are activated based on the configuration bits of the respective

language element. Thus, to completely configure one element, 9 configuration bits

are needed, resulting in 144 configuration bits for the entire reconfigurable core of

4×4 elements. [142] These bits, defined by the pattern for the respective language el-

ement, are stored directly in the pipeline register after the state-machine stage, right

after reading and activating the language element from program memory.

The instruction word contains also the decoding bits of the load/store language el-

ements, 6 bits for each, enabling a maximum of 128 load and store language elements

(communication class). The control flow elements use five timers as elementary func-

tions, essentially configurable counters which decide for how many cycles one SQDA

instruction word holds true. This allows creation of sub-states, in which language

elements can be configured from assembly. The complete SQDA instruction word

holds thus control-class language element encoding (4 bits) immediate true and false

addresses (2×8 bits) ad parameters, the memory access class language elements (2×6
bits) and the communication and execution language elements (144 bits) resulting in

a 176 bit function word. [142]

Creating the representation of the application (mapping) using these architectural

language elements is straightforward. Necessary parameters of language calls are de-

rived by meaning, i.e. the path traced by the application DFG is recreated in hardware

via the correct parameter. Larger DFG portions may require several subsequent lan-

guage function calls, spanning several time cycles. This will create SQDA instruction

words with only some language calls of a specific task class, e.g. some function words

not having control-flow calls, or some control flow calls (like nested loops) not having

any of the 3 data-class calls. Some can control state machine status (e.g. reset/set the

timers, initialize registers, etc).

5.4 Evaluation and Comparison

In order to highlight the range of flexibility and the advantages of the proposed de-

sign, the generated RTL descriptions of 18 different design points for Architecture 1

(A1), 9 design points for Architecture 2 (A2) were synthesized using Synopsys DC
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D-2010-SP3. For all designs, Faraday 90nm standard cell technology library was tar-

geted. Extra clock-gating and operand isolation power optimizations were enabled

and RTL switching activity was annotated from simulations to give a more exact

power evaluation in Synopsys Power Compiler. Since synthesizable RTL code is gen-

erated by LISA tool flow, FPGA-based implementations may also be targeted, however

standard cell library was chosen to provide a clearer comparison for area and power.

For the evaluation, design points across an architectural class is compared, then

cross-class comparisons are presented with the following convention for the graphs

[142]:

arch. class ":" algorithm "_" design point specialty

For instance, A1:wmsa_1mac means first architecture class (“just-enough” flexibil-

ity), supporting only WMSA and having only one MAC unit, while A2:both_25means

second architecture class (coarse-grained core) supporting both algorithms, running

at 25MHz.

All results are for a complete algorithm execution for a slot of 10 symbols for the

respective application. Slot structure was comprised of 2 pilot symbols and 8 data

symbols, while J = 2 for both algorithms, q = 3 for polynomial.

5.4.1 Complexity

A1 template required 2k lines of code in LISA for 61 operations, and has 40k lines of

generated Verilog code. A2 has a larger LISA description of 4.4k lines for a total of 98

operation instances (expanding the templates), which generates 51k lines of Verilog

code.

In A1, partitioning of PI with J = 2 and q = 3 yielded 12 control-flow language

elements and 34 data-flow language elements. PI had a representation complexity (K)
of 39 function words. WMSA partitioning with Np = 2 and J = 2 resulted in 1 extra

control-flow element and 17 data language elements, requiring K = 13 words for a

complete representation.

In the case of A2, with the same algorithmic parameters, polynomial mapping

yielded 36 data, 7 control language elements. Complexity of the representation (K)
required 102 words. WMSA yielded 16 data language elements with the same control

flow elements (reconfigured) requiring K = 50 words.

In terms of complexity K, A2 with a fine-grained elementary function pool and

more architectural language options requires a higher representation complexity for

PI and WMSA by 2.61× and 3.84×, respectively, although language elements fit the

applications better. This is due to the fact that A2 has no physical structures for com-

bining fine-grained elementary functions, this functionality had to be compensated in

software via splitting larger states into sub-states in time. The smallest representation

length could not be achieved due to technical reasons. In the next chapters, this flaw

is addressed, significantly reducing complexity.
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5.4.2 Intra-Architectural Comparison Across Design Points

5.4.2.1 Architecture 1

A1 design points resulted from combining 1, 2 or 4 MAC units, and 32/64-bit versions

for dedicated structures for one algorithm, then for the hybrid architecture to explore

the design for low power or low energy, while maintaining minimum flexibility. Com-

paring the dedicated design points for one algorithm with the ones supporting both,

it can be noted that for A1, when running PI, the combined flexible architecture sup-

porting both algorithms comes close (≤ 5%) to the energy per symbol of the respective

dedicated architecture as shown in Fig. 5.7, 5.8. When the combined architecture is

running WMSA, it uses comparable or less energy (−5 ∼ 8%) compared the dedi-

cated WMSA architecture, explained by the fact that with some partitioning, WMSA

may be executed more efficiently on the structures for PI, leading to energy saving

without much overhead. For all design points, the Q-format divider was the timing

bottleneck, limiting frequency to 25MHz. It must be noted that in the implementa-

tion, one can easily switch between these design points in order to seamlessly trade

off performance against energy, power or run-time, supported by the high level design

methodology. [142]

The architectural flexibility can be utilized within one algorithm or across algo-

rithms depending on performance constraints. Varying execution unit count yields up

to 20% energy and up to 50% power savings for PI, while for WMSA up to 14% energy

and up to 38% power can be saved. Fig. 5.7, 5.8 show the relative energy per symbol

difference across design points for one application. For WMSA the values are within

12%, however the dedicated 2 MAC architecture is most efficient. For polynomial

interpolation, both the dedicated and the combined one have similar values. [142]

The execution time per slot ranges between 31-78µsec for PI and 7-11µsec for

WMSA, while WCDMA hard deadline is 670µsec, allowing extra savings by frequency

scaling, etc. Fig. 5.9 illustrates how much energy is saved when adapting to better

signal conditions by switching between the two algorithms: 10-41% power and 81-

88% energy. The savings stay consistent across design points. For switching between

the algorithms, one only needs to load the respective instructions from the program

memory. On top of this, the algorithms can be adapted further internally by fine-

tuning the points typical of WMSA and PI. [142]

For area critical situations, the architecture template can be easily re-targeted, e.g.

the 1 MAC unit design executes in double number of execution cycles of the 4 MAC

design, but saves 36% area. The area difference between the dedicated PI architecture

and the combined one over the design points is between 5.69% and 12.8%, which is

negligible when compared with the joint area overhead of two dedicated structures

(205%-212%), even more so when considering the energy savings. [142] Unfortunately,

the results could not be compared with the existing implementation in [130] due to

the reasons stated in Section 5.1.1.3. Detailed data can be found in the Appendix A

into two tables, one for 32-bit architectures (Table A.1) and one for 64-bit architectures

(Table A.2).



5.4. Evaluation and Comparison 65

Figure 5.7: 32bit: Dedicated A1 vs. hybrid A1 energy consumption normalized to
worst case. WMSA (left) and PI (right) [142]

Figure 5.8: 64bit: Dedicated A1 vs. hybrid A1 energy consumption normalized to
worst case. WMSA (left) and PI (right) [142]

Figure 5.9: Energy savings in percent for hybrid A1, during adaptive switching. (32-
bit left, 64-bit right) [142]
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Figure 5.10: 32bit: Dedicated A2 vs. hybrid A2 energy consumption normalized to
worst case. WMSA (left) and PI (right) [142]

Figure 5.11: 64bit: Dedicated A2 vs. hybrid A2 energy consumption normalized to
worst case. WMSA (left) and PI (right) [142]

5.4.2.2 Architecture 2

A2 design points have been constructed from 32/64-bit versions of the architecture tai-

lored for each algorithm and the hybrid version. To further analyze how the coarse-

grained core effects energy, different frequencies were targeted, to reveal how fre-

quency affects energy per symbol value. When the frequency is low, the algorithms

take longer time to finish, even if they have lower total power, consequently, the re-

sulting energy value is high. Near critical-path operation severely impacts power

consumption and area. This is especially the case in the 64-bit design (Fig. 5.11) [142].

Different mapping choices did not affect the power values, since the employed

mapping strategy was to use the closest language element which matches the needed

operation. During mapping, no congestion was observed, for two reasons: 1) good

partitioning of the application requirements which separates the execution in inde-

pendent, parallel threads. Not many threads are competing for the same processing

element (except the divider in WMSA for the filter coefficient calculus); And 2), the

matrix inversion processing is sequential, the data dependencies of the inner loops

limits parallelization in a natural way, while matrix multiplication exploits 100% ar-
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Figure 5.12: Energy save in percent for A2, during adaptive switching at different
operating frequencies. (32-bit left, 64-bit right) [142]

ray usage in a well defined manner due to the perfect fit of the architectural language

with the application requirements. [142]

The results were gathered in a similar way as for A1, shown in Fig. 5.10, 5.11, as

follows [142]:

• 32-bit WMSA (Fig. 5.10 left): as frequency increases, the energy reductions scale

linearly with throughput, however the combined architecture has around 10%

lower energy savings compared with the dedicated structure

• 32-bit PI (Fig. 5.10 right): energy reductions are similar, the difference is only

around 5%

• 64-bit WMSA (Fig. 5.11 left): due to the high power consumption as frequency

increases, the increased throughput cannot compensate enough, and the energy

saving hits a limit as maximum frequency is reached. Also the combined archi-

tecture fares 10% worse when compared with the dedicated architecture when

it comes to energy savings

• 64-bit PI (Fig. 5.11 right): when scaling frequency there is an inflexion point,

where best energy savings are attained and for which similar savings of the

dedicated structure can be reached (within 5%). Similarly to WMSA, near max-

imum operating frequency the savings diminish (10% difference).

For the scenario that A2 adapts to better signal conditions, 20-44% power reduc-

tion and more than 93-97%energy reduction can be attained, as shown in Fig. 5.12.

Detailed results data is summarized in the Appendix A Table A.1 and Table A.2.

Adaptation is similar to A1: only the respective assembly program needs to be exe-

cuted for a switch from PI to WMSA. However, a higher flexibility allows for a finer

control and usage of the structures, improving energy save. [142]
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Figure 5.13: 32bit: A1 vs. A2 percent energy saved normalized to worst case.
WMSA(left), PI(right) [142]

Figure 5.14: 64bit WMSA: A1 vs. A2 percent energy saved normalized to worst
case. [142]

5.4.3 Inter-Architectural Comparison

When comparing across architectures the first point to note is the significant difference

in area (Fig. 5.16, 5.17). Due to the use of the coarse-grained core, A2 has almost

always a larger area than A1 at comparable design points. This can be explained by

the fact that due to the Q-format arithmetic, the coarse-grained core is forced to use

interconnect structures of double bit-width, incurring not only a greater area use, but

Figure 5.15: 64bit PI: A1 vs. A2 percent energy saved normalized to worst case. [142]
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Figure 5.16: Area across all A1 and A2 design points for 32-bit designs [142]

Figure 5.17: Area across all A1 and A2 design points for 64-bit designs [142]

also limiting operating frequency. Additionally, the bloated interconnect incurs extra

power consumption, which can not be neglected at higher bit-widths. This is the price

of the additional elementary functions to enable fine-grained architectural language

elements. Architectural flexibility increases by trading off area. [142]

The second observation to note is the large difference between the energy values

for WMSA, A2 having a far better efficiency (Fig. 5.13(left),Fig. 5.14). This is due to

having WMSA processing done on the smallest processing elements in A2, and not

using the big MAC unit for plain additions, as is the case in A1. Again, since now the

architectural language better matches WMSA application requirements, significant

efficiency can be gained. [142]

5.4.3.1 Energy per Symbol

Comparison of the two classes is as follows [142]:
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• for 32-bit WMSA (Fig. 5.13 left): A2 running at 100MHz has much better energy

values (≥3× less) than all design points of A1

• for 32-bit PI (Fig. 5.13 right): A2 performance is comparable with that of A1

(≤ 3% difference).

• for 64-bit WMSA (Fig. 5.14): A2 has much better energy (up to 4× less) than A1.

• for 64-bit PI (Fig. 5.15): A2 has much worse energy values (80% increase over

A1). In this case, the power overhead of the large bit-widths of the interconnect

structure and the elements itself cannot be covered by an increase in throughput

any more.

For small bit-widths, A2 would be best for implementation, as the energy saves

for the adaptive switching are much greater than in the case of A1. A1 must be chosen

when predominantly bad signal conditions are expected and high precision hardware

is needed. [142]

5.4.3.2 Area

Evaluation is shown in Fig. 5.16 and 5.17, discussed as follows [142]:

• due to area values spiking at higher frequencies, considering the energy values,

the best frequency for A2 32-bit is 100MHz, and A2 64-bit is 35MHz.

• 32-bit, 64-bit WMSA, PI: A1 has much less area than A2 for dedicated structures.

• 32-bit, 64-bit combined structures: area becomes comparable, with a difference

of only 18.07kGE for 32-bit and a smaller area (by 0.02kGE) for 64-bit. At very

low operating frequencies A2 area values are getting below the ones for A1 in

case of PI, but energy efficiency is much worse than that of A1 at those points.

5.4.3.3 Architectural Flexibility

Both A1 and A2 offer the necessary adaptiveness to accommodate the useful range of

parameters of both algorithms. Both architectures can be directly tuned from assem-

bly program level (configuring control flow, size of the sliding window, polynomial

order, number of pilots, etc), by calling the high-level language elements.

A2 however, due to its coarse grained core, has more architectural flexibility and

resources than strictly needed for the two algorithms, hence, it can allow a more ef-

ficient execution by better tailoring the hardware language to that of the application.

Also, A2 has enough flexibility to enable programming of other external computa-

tions, on the idle elements during channel estimation processing. Given the fact that

only a fraction of the hard deadline imposed by the WCDMA standard is needed to

complete processing, it may be even possible to use the same structure for processing

other blocks in the WCDMA receiver chain with some extensions to the load/store

language patterns from a new CDFG chart of the new block. This would just result
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in a new assembly program for the new block with the individual language calls,

which can be loaded after channel estimation processing is done, or a new hybrid

architecture can be created.

Such flexibility can be a great advantage when aiming more complex blocks for

software defined radio

5.5 Conclusions and Summary

5.5.1 Summary: Energy Optimization via High Architectural

Flexibility

In the context of software defined radio, an analysis on how flexibility can influ-

ence area and power consumption has been conducted, using two WCDMA channel

estimation algorithms with sufficient performance and complexity difference. A sce-

nario of saving energy when switching from a complex high-performance algorithm

to an inferior less complex algorithm during operation in favorable wireless channel

conditions is thoroughly evaluated. Two designs have been explored with different

approaches for maximizing architectural flexibility. It is shown that a higher degree

of flexibility can yield significant energy savings (up to 97%). Considerable savings

(of up to 88%) can still be attained when carefully designing for the exact amount of

flexibility required to support both target algorithms. The evaluation across 25 design

points and two architectural classes of different flexibility experimentally supports the

findings.

5.5.2 Tunable Architectural Flexibility?

A very interesting fact can be discovered from the case study in this chapter. Ar-

chitectural flexibility increases when the granularity of the language is decreased. A

fine-grained architectural language can better adapt to the application’s needs, but

requires extending the pool of elementary functions, incurring extra representation

complexity and extra area and power. For two target applications, many common

language elements could be found, however, adding language elements specific to a

certain application improved energy results. Now, if the architecture could support

a tunable set of language elements, it could have the capability to adapt easily and

efficiently to more than one application. The question is, what kind of underlying

elementary function pool would be required to support this? How many applications

can be supported and how different can they be?

Furthermore, the question of smooth scalability remains: the architecture should

be able to adjust to different demands easily at design time. It is easy to scale an

architecture from high level, if HLS tools are used to generate new RTL with new

architectural parameters. Another approach would be to have a modular architec-

ture, which can adapt the size of the elementary function pool easily, additionally

to tunable language support. Thus scalability and architectural flexibility could be

gained.
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Chapter 6

Tunable Flexibility: The Layers
Approach and Architecture

In this chapter, the second exploration flow of the methodology proposed in Chap-

ter 4 is discussed. The idea of designing an architecture that can maintain a high

level of architectural flexibility (F ), even when the target application changes, is ex-

plored in detail. The previous chapter demonstrated that a well-defined architectural

language produces an excellent match with the application, thus good architectural

flexibility. Since with the first flow the architectural language is highly specialized

towards a given application, a new application would force a complete re-design of

the architecture (and its language) in order to be efficient for the new target.

This chapter proposes a new coarse-grained reconfigurable architecture, based

on the theoretical concepts from Chapter 3, where functional separation is exploited

to better form, fine-tune and control the architectural language such that high effi-

ciency can be attained. Case studies are conducted from the application domain of

Numerical Linear Algebra (NLA) and an exploration of a 3D-silicon physical imple-

mentation is attempted. Focus is kept on efficiency and scalability during the case

studies, covering a wide range of possible requirements, highlighting the flexibility of

this approach. The chapter is based on my work from several publications [135–140]1,

treating different aspects of this exploration.

6.1 Adaptability Via Tunable Flexibility

While previously, in Chapter 5, architectural flexibility was maximized by designing

the language to fit the target application, in this approach abstraction is decreased

by a level. The question is, what kind of elementary hardware functions should be

present in an architecture, such that it provides various options when forming a lan-

guage? Can application requirements fulfilled by reconfiguration, without requiring

an architectural redesign?

Application requirements cover a wide range, even within an application domain.

Some require fast sequential processing with good control-flow predication, some

require a high degree of parallelism or high memory access bandwidth. For the

exploration presented here, the application domain is restricted to numerical linear

algebra (NLA) kernels, to explore formation of a basic pool of elementary hardware

1 Parts of this chapter appear in these publications, reprinted with permission. ©2012-2015 IEEE, ©2014,
CRC Press, ©2012, Hindawi Publishing Corp., ©2015, Springer
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functions and to verify the degree of architectural flexibility when forming different

architectural language elements for each kernel.

6.1.1 Domain-Specific Approach

6.1.1.1 Domain-Specific Patterns and Domain Classes

In the Berkeley View on Parallel Computing Research, computationally intensive appli-

cations can be classified into large categories, called computational dwarfs, based on

which modern parallel applications are constructed [22]. Initially there were 7 dwarfs

defined, which each of them representing a class applications with commonalities

in their data structure, processing requirements and execution patterns. Later, these

were extended to 13 to include other computation classes. According to Berkeley

researchers, the 13 most important classes of applications viewed from a high ab-

straction level are: dense linear algebra, sparse linear algebra, spectral methods, n-

body methods, structured grids, unstructured grids, MapReduce, combinational logic,

graph traversal, dynamic programming, backtrack and branch-and-bound, graphical

models, and finally finite state machines.

This classification allows a reasoning about most commonly occurring operations

at a high abstraction level, giving insight on what kind of architectures each class

would require for efficient execution. In the view of my work, this classification gives

insight on how an application language might look like such that the required archi-

tectural language can be deduced for maximum efficiency. The high-level Berkeley

view has some resonance with the theory proposed in Chapter 3, as it also tried find

answers to important questions, such as:

• what are the applications and what are their common kernels?

• what are the hardware building blocks and how to connect them?

• how to describe applications and their kernels and how to program the hard-

ware?

• how to evaluate success

Since each of these dwarfs are quite different, the exploration conducted in this chapter

is limited to the first dwarf. The implementation of multiple applications from a dwarf

category, using the theoretical concepts proposed, would give insight on application

and hardware design problems and solutions, at least for one domain, a procedure

that can then be repeated for the other dwarfs.

6.1.1.2 Target Domain Analysis - Dense Linear Algebra

The choice of the first dwarf, dense linear algebra, has been made due to the com-

plex balance between memory access patterns, complex computation requirements

(≈ O(n3) for some routines) and a high demand on data movement patterns. The

kernels of this category play an important role in several application domains, such as
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support vector machines/machine learning, principal component analysis, quantum

computer simulation, image and video processing, latest wireless communications

standards, linear programming, etc. Another reason for choosing this category is that

it exhibits quite regular (but various) patterns across kernels, with a high degree of

parallelism. This enables also an exploration on scalability as well, limited only by

the cost one invests in the underlying architectural resources.

Although the kernels are part of the same class and domain, each of them have

peculiarities in memory access patterns, available parallelism and internal execution

dependencies. Therefore, this is a perfect case study domain to evaluate the degree

of architectural flexibility F that can be attained by adapting to the various require-

ments within a domain, without having too large differences which would require

DSP/CPU level of flexibility. Supporting various kernels from the same domain via

reconfiguration aligns perfectly with the concept of tunable architectural flexibility.

6.1.2 Domain-Specific Acceleration, Accelerating NLA Kernels

In the literature there is a multitude of soft- and hardware approaches to tackle the

complexity of NLA algorithms.

6.1.2.1 Software/CPU

Software optimizations are delivered in the form of a highly optimized, architecture-

targeted library of functions, by which higher order applications can be constructed

and optimized. Software and a general purpose architectural platform are perfect for

supporting entire domains, every application within a domain and every flavor and

configuration of the application.

For CPUs, perhaps the most well known collection is BLAS – Basic Linear Alge-

bra Subroutines [94], a general collection of kernels which have optimization hooks

for certain architectural features, e.g. SIMD (Single Instruction Multiple Data) in-

structions. BLAS is one of the first collections, with bindings in C and FORTRAN

languages and has defined the standard interface of such acceleration libraries for

linear algebra.

Other libraries build upon BLAS, such as Intel’s Math Kernel Library (targeted at

Intel CPUs), AMD Core Math Library (targeted at AMD processors), ATLAS (Auto-

matically Tuned Linear Algebra Software) pack of re-targetable optimizations, cuBLAS

(targeted at GPGPUs), and many other derivatives of these. Since these software li-

braries imply an architectural flexibility close to CPUs, they provide limited gains,

usually bounded by hardware and/or memory bandwidth. Targeted optimizations,

such as the FLAME library [27, 158] are one of more recent efforts into bringing

efficiency to NLA execution on processors by dissecting the algorithms for parallel

execution and efficient memory access.

GPGPUs also are increasingly popular as an architectural platform for accelerating

linear algebra, especially with cuBLAS [25] and CULA [81] software libraries yielding
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excellent acceleration performance at the cost of high energy consumption [17,161] A

comparison shows the superiority of GPGPU-based approach in [146].

DSP-based implementations are also popular, especially in the embedded domain.

Such implementations exploit software optimization and special instructions to gain

performance, e.g. the Gauss elimination-based Squared Givens rotation [60], which

is a variant of squared Givens rotation [54] targeted at a TMS320C6670 DSP for high-

speed MIMO applications, or Level-3 BLAS optimizations on multi-core DSPs [16].

Although this approach provides flexible domain-specific support, decreased per-

formance (in some cases) and high power consumption limit their applicability, espe-

cially in the embedded space.

6.1.2.2 FPGA

FPGAs are also common in attempting to extract maximum performance with lit-

tle energy, with many possible examples, this paragraph being limited to a few ap-

proaches. A comparison between FPGA, CPU and GPU is conducted in [88] conclud-

ing that the FPGA implementation is more energy-efficient. The study in [170] high-

lights that FPGA-based execution units specifically designed for kernels, can be more

efficient than GPU implementations, although GPUs outperform. High-performance

designs for scalability are explored in [171], where kernels are partitioned across sev-

eral Cray XD1 blades. LAPACKrc [69] is another approach on FPGA-based solvers

yielding 150× the performance of Intel Woodcrest processors.

Example of kernel-specific solutions, such as a 2D systolic array implementation

of Givens rotation [164] on an FPGA platform targeting Virtex-5 XC5VLX220 out-

performs one-dimensional systolic implementations and commercially available QRD

implementations like QinetiQ and Altera’s QRD prior to that.

Other examples of FPGA-based solution are the FPGA-based architecture imple-

menting matrix inversion [85], exploiting a systolic array design well-suited for FPGA

platforms; the variable-precision floating point arithmetic implementation described

in [97]; or the portable and scalable direct linear system solver presented in [169].

The disadvantage of using FPGAs for domain-specific acceleration lies withing the

fact that for each application, a suitable low-level (RTL) implementation has to be con-

ducted, requiring high design costs. However, these platforms are perfect for single

application prototyping and system integration, towards a later ASIC implementation

of the tested RTL source code.

6.1.2.3 ASIC

ASIC implementations usually are incorporated into higher-order designs, few target-

ing specific kernel variants due to a lack of flexibility in configuring them. Such a lack

of configurability limits the use-case of such ASICs which need to be closely targeted

at the application. Supporting entire domains with all the variance for each applica-

tion member not only poses a very difficult design problem but also would come with

serious resource overheads, minimizing the advantages of the ASIC paradigm (as the

name says).
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Example single-application ASICs, such as for the Givens rotation kernel, algorith-

mic optimizations are conducted and implemented directly: the Tournament-based

Complex GR targeting MIMO receivers presented in [96] is similar to the scheme pre-

sented in [79] where multiple elements of a column of a matrix are annihilated simul-

taneously by operating on the pairs of rows simultaneously. In Modified Squared

GR [101], a conventional mathematical operator based approach is adopted over

CORDIC-based approach due to area advantage. Although both implementations

handle Givens rotation, none covers all the options and configurations possible for

this particular application, complete application domain support would be out of the

question.

6.1.2.4 CGRAs

REDEFINE CGRA implementation of QR factorization is presented in [28] where the

performance is achieved by Custom Functional Unit (CFU) inside Compute Elements

(CEs). The focus of [28] is on emulation of systolic schedule for GR on REDEFINE

and hence synthesis of systolic array on REDEFINE. Other optimizations on REDE-

FINE CGRAs are also attempted in [111, 112], firstly targeting algorithmic optimiza-

tion which is then exploited for CGRA-based acceleration.

LAC [125–129] CGRA is another prominent example of CGRAs attempting ac-

celeration of NLA. Here too, specific transformations and optimizations are exposed

and custom CGRA structures are adapted and extended to efficiently execute com-

plex kernels. Here a wider range of algorithms is tackled, proving that CGRAs are

suitable for domain-specific acceleration.

The disadvantages of the CGRA approach are two-fold: 1) architecturally CGRAs

are severely limited in memory bandwidth, forcing many available processing ele-

ments to idle due to data starvation; and 2) programming of CGRAs is very complex,

due to lack of tools support, methodology and due to the complexity of the applica-

tion mapping problem.

In the following, these two problems are tackled via a new architectural concept

based on functional reconfiguration theory, since CGRAs are the most promising plat-

form to support domain-specific acceleration.

6.2 The Layers Concept and Architecture

6.2.1 Variable Flexibility via Task-Class Specific Structure and

Language

The Layers architectural concept is centered around the philosophy formulated in

Chapter 3, Thesis 3: functional separation into the four classes of control flow, mem-

ory access, communication and computation allows a finer control over architectural

design points, scalability and the application mapping process. The fundamental dif-

ference in how the architecture executes the application lies in the fact that instead of

instructing the hardware to execute the application directly, functional reconfiguration is
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employed to instruct the hardware to modify its functional structure in the data and

the control path, such that the application function is reflected in the architecture.

By specializing parts of the architecture for these tasks, higher efficiency and lower

energy can be achieved, since the architecture is a reconstruction of an optimized

application image. Moreover, programmability is greatly enhanced by the program-

ming view and functional separation, allowing to exploit data locality, memory access

optimization and control flow predication.

This is achieved chiefly by providing a generous pool of elementary functions, that

can combine into higher order language elements targeted at an application domain.

Here, customization of the underlying elementary function pool to the respective

functional class is key. For instance, incrementing a loop counter should not be done

by a floating point adder unit, neither should ALU units execute data forwarding and

movement operations, as is the case in many CGRA-style architectures. Executing the

required function with specialized hardware for that function boosts efficiency and

cuts the energy and time losses when compared to traditional approaches. Elementary

hardware functions are custom-made for basic tasks of the functional class and allow

formation of a wider range of higher order architectural language elements, which are

used to reconstruct the application language. Thus, a close match to the application

requirements can be created. As it was demonstrated in the previous chapter, a close

match yields high efficiency, however with this architecture a finer-grained design and

architecture is proposed to enable matching multiple applications to cover an entire

domain.

The architecture proposed in the following, called Layers, fully exploits the advan-

tages of exploration methodology from Chapter 4. The goal is to provide a modular

and scalable architecture, which covers the features of a large portion of the archi-

tectural design space. The proposed architecture does not make assumptions about

memory bandwidth nor is it restricted by a fixed number of processing elements,

yielding full configurable scalability by design. It has 4 layers for each function class,

3 layers handling the data path while the control layer executes application control

flow.

In a top level view, data is streamed to the layers in a cascade-like manner, in two

orthogonal pipelines, as Fig.6.1 illustrates. In each layer, the flow of data is directed

by reconfiguration of the path, guiding the data in ways that resemble the applica-

tion DFG and transforming it towards the final result. The layers are connected via

register interfaces, for a clean hand-off between them. During application execution,

the processing elements in the lowest layer need a mix of new input data and par-

tial results at well-determined time points for an efficient execution. To provide this

data, the communication layer above it shuffles, delays, stores and moves data to the

correct processing element at the right time. As input data and resulting output data

is stored in memories, the memory access layer provides the necessary functions for

loading and storing data, and links the memory banks with the communication layer

and execution layer. The control layer loads the application control flow, predicates

tasks in the 3 layers and forwards the language calls from program memory. Thus a
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complete flow can be created from memory to memory, streaming the data through a

series of transformations according to the application.

Figure 6.1: The Layers concept separates control and data flow of the application
into 4 parts: control, memory access, communication and computation,
each with dedicated hardware elementary functions to realize a cascaded
flow.

An additional advantage of the proposed layered approach is that it is naturally

mappable to 3D silicon technologies, providing a clean cut between these logical layers

to be transformed into separate physical layers for Through Silicon Via (TSV) 3D

process integration.

In the following, after an architectural overview, each component is discussed in

detail, pointing out flexibility and scalability elements.

6.2.2 Architectural Overview of Layers

An overview of the architecture is shown in Fig. 6.2, divided into 4 pipeline stages:

pre-fetch (PFE), fetch (FE), state machine or state automation (SA) and layers core

(EX). Data flows from left→right (control and configuration, main pipeline) and top↔bottom

(layered data flow). The pre-fetch and fetch stage serve only to forward the instruction

word to the state machine stage, where the reconfigurable control path is implemented.

In state machine, the current execution state is stored and updated, also data path con-

figurations are decoded and forwarded.

The layers core stage implements a reconfigurable data path in a waterfall-like

manner and is divided into three layers dedicated to each operation class: memory,

communication and execution. Each layer can be configured to work at different

speed ratios r(L0:L1:L2) = r0 : r1 : r2|r0, r1, r2 ∈ 2n, to maximize efficiency for each layer

for a given application: e.g. r(L0:L1:L2) = 1 : 8 : 4 is tuned for slow execution, fast

communication and medium memory access speed. The control layer speed is always

max(r0, r1, r2). In the architecture targeting NLA kernels, r(L0:L1:L2) = 1 : 8 : 8 is used,

a ratio that matched application requirements well.



80 Chapter 6. Tunable Flexibility: The Layers Approach and Architecture

Figure 6.2: The Layers architecture: scalable and modular layers dedicated for mem-
ory access, communication and computation are managed by a reconfig-
urable control flow stage. Control stage calls language elements at the
right timing, which in turn activate elementary hardware functions in
each layer. Hyperfunctions allow reconfiguration of language elements
(adapted after [137]

The topmost layer (SoC) implements an interface which allows system level inte-

gration and control.

Timing in the architecture is driven by the 4 main pipeline stages (horizontal),

which control simultaneously the explicit vertical pipeline stages created by the data

layers and their intra-layer interface registers, shown in in Fig. 6.3. The complex tim-

ing model is efficient because it splits up the long data path operations in small parts,

executed by the elementary functions on each layer, forcefully exposing parallelism

and concurrency. Thus memory loading, data movement and data processing op-

erations are fully parallelized. Moreover, due to the internal register structure, this

timing model allows a recirculation of data within the architecture without creating
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combinational timing loops. A high rate of data reuse and sharing via the communi-

cation layer avoids contention on the memory interface.

Figure 6.3: The timing model of the architecture: two orthogonal pipelines create a
complex timing schedule for streamlined parallelism. [138]

6.2.3 Computation Layer, Structural Details

L0 is comprised of a scalable and customizable square array of size N × N of pro-

cessing elements (PE) interconnected with a mesh network of configurable bit-width.

Other interconnect topologies can be adopted, but in this case nearest neighbor mesh

provided the best trade-off between cost and performance. Each PE has its own

pipeline, is replaceable and modular in design, allowing the designer to plug in cus-

tom RTL components. In this implementation, 32-bit floating point add/sub units and

multiplication units for all units and one multi-cycle configurable floating point di-

vider for PE0 is used. PE capability is captured in elementary functions for arithmetic

and operations. The mesh interconnect with the interface towards the communication

layer provide the elementary functions for source selection and result output forward-

ing. Each array member PE defines the locus coordinates in the array. For maximum

efficiency, the upper layers act as slave data source and sink for this layer to keep all

units in this layer busy.

op(PEn) = {+,−, ∗, . . . } ;

src(PE
ports
n ) = {North, South, East,West,Up, Sel f , . . . } ;

n ∈ 1..N2;
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DesignWare floating point (fp) modules provided by Synopsys are employed,

op(PEn) = {+,−, ∗}. One pipelined multi-cycle fp divider is added to PE0 for the

architecture targeted at the CSF algorithm, providing one 32-bit fp division result in

4 cycles. Each PE reads input data from 6 sources for each input port src(PEa,b
n ) =

{N, S, E,W,U,X} and outputs results into a register.

Thus, the elementary function pool for each location in the N2 L0 mesh is:

• input select (a|b):

North, South, East, West, Xself, Up;

• execute for locus 0:

add, sub, mul, div, rcp;

• execute for locus 1..N2 − 1:

add, sub, mul;

L0 language constructs for each location can be composed based on these, but for

the case study domain, two language functions sufficed:

• nop

• do(op(),src(),src())

6.2.4 Communication Layer, Structural Details

The main role of L1 is to serve as a staging area and preparation network for the input

data of L0 coupled with transporting results from the L0 result registers upstream. It

is organized in register clusters of parameterizable size for each of the N2 elements,

which are interconnected by two bus-like structures topologically on row and column.

Additionally, the upstream interface to L2 and the downstream interface to L0 are

buffered and act like a pipeline register between the layers. Formally, in every cycle,

each L1 cluster can perform a combination of core elementary functions, with the

condition that it does not violate architectural laws (e.g. creating loops, double write

to same target, etc).

For the communication layer, 21 elementary functions have been identified, cate-

gorized by target, supported in each N2 location:

• column bus:

wCbus(),

rDownstreamToCbus(), rUpstreamToCbus(), rRbusToCbus(), rRegToCbus(r)
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• row bus:

wRbus(),

rDownstreamToRbus(), rUpstreamToRbus(), rCbusToRbus(), rRegToRbus(r)

• downstream a, b and upstream interface lines:

wRegToDownstreamA(), wRegToDownstreamB(), wRegToUpstream(),

rRegToDownstreamA(r), rRegToDownstreamB(r), rRegToUpstream(r)

• registers:

wDownstreamToReg(r), wUpstreamToReg(r),

wCbusToReg(r), wRbusToReg(r)

• special:

nop

Using these core elementary functions, useful language constructs can be grouped

and made available at assembly level, for instance:

• parallel save to registers from multiple sources:

save(wDownstreamToReg(r), wUpstreamToReg(r), wRbusToReg(r), wCbusToReg(r))

where each reg can/must be a different register from the cluster allowing sev-

eral simultaneous reg-writes from downstream, upstream and buses;

• row broadcast and save a value into local register:

Φ()=[wDownstreamToRbus(r) | wUpstreamToRbus(r) | wCbusToRbus(r)]

rowbcsave(w[Φ()]ToRbus(), w[Φ()]ToReg(r)))
where one of downstream, upstream or column bus are selected exclusively

as a source by getting a non-zero reg parameter, then broadcast onto the row

bus, while simultaneously taking the parameter as the register index where the

source is to be saved at the call locus. The exclusivity arbitration and the result

of the winner elementary source function Φ are automatic and embedded in the

hardware implementation of the each elementary function, sufficing to call the

top language construct with arguments from assembly.

Such compound operations can be application-tailored at run-time via hyperfunc-

tions, or one can use a default static set, hooks of which are provided at assembly

front-end. The buses are access-guarded wires with variable cluster span, and a pri-

ority and conflict resolution occurs in hardware to solve any violating function calls.

In case of large arrays, long-distance and short-distance bus structures can be added

as necessary (additional elementary functions).

Any pattern that is useful for the application can be constructed, and if neces-

sary, the underlying elementary pool can be extended. Currently up to 32 language

constructs are supported, fully sufficient for the target application. Alternatively, 8

hyperfunctions can be used instead with the flexibility of redefining the elementary

composition of each at run-time. The more language elements are supported, the

higher the cost in hardware resources.
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6.2.5 Memory-Access Layer, Structural Details

This layer provides access structures to a variable number of memory ports P and

is used to distribute these ports to N2 L1 structures downstream. Distributing data

across a number of memory ports allows for higher load/store bandwidth. To avoid

the necessity of a full crossbar, scalability and for access conflict resolution from N2

elements to P ports, P hubs are introduced in-between. Each hub has access to each

port, needing only a P× P crossbar, which is reasonable since usually memory ports

are scarce (N2 ≥ P). From the hubs, a static modulo N2%P distribution is employed,

uniformly distributing hubs across downstream elements, e.g. if PE(n)%P = 0, the

n-th PE is connected to hub 0, each hub having ⌈N
2

P ⌉ connections. Another role of the

hub is to use the memory’s protocol to forward access requests and select the correct

port based on the desired data address.

The elementary set for each P location is:

• memory access (memory protocol):

setAddr(addr), setData(d), getData(locus), mask(m)

• hub selection:

sel_rHub(locus), sel_wHub(addr),

• memory port selection:

sel_rPort_{locus}, sel_wPort(addr)

• interface/reg:

wDownstream(locus), rUpstream(locus), rAddrreg(r)

The implementation of the elementary functions embeds conflict resolution and

priorities, such that memory and hub access conflicts are resolved in hardware.

The assembly language constructs for every P port are formed, such as

• LSET(setAddr(sel_wPort(rAddreg(r)), sel_wHub(rAddreg(r))))

sets the address contained in a given address register to a certain memory hub

which is to access a given memory port

• LGET(sel_rHub(loc), getData(loc), wDownstream(loc))

gets the return data from a LSET request as synchronous memory modules have

at least one cycle of latency, on a given hub and forwards to the downstream

interface

• LGET+SET(LSET, LGET) - pipelined load

executes simultaneous getting of previous data with a new set address request
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• STOR(LSET, mask(m), setData(sel_rHub(rUpstream(loc))))

stores data incoming on a given hub from a given upstream line, with a given

mask to a given address.

It is worth mentioning that all locus specifications can be avoided by fixing a

predetermined order of the argument calls. For instance, second function call always

goes to the second port, without specifying loc=2, nested functions inherit location

information, easing syntax and selection complexity. This is true for all other layers as

well. With hyperfunction support, the ordering of arguments becomes reconfigurable,

which is the required ingredient for redefinition of language elements at run-time.

6.2.6 Control Flow Layer, Structural Details

The state machine (SA) pipeline stage incorporates program control, language calls, ex-

ecution state supervision and predication. Pre-fetch and fetch stages aid in loading the

functional word from program memory and together with the state machine stage they

form the control layer of the architecture. The elements of the control class assem-

ble a finite state machine coded via several control functions, called qualifiers (Q) for

next state decision. These elementary functions of the qualifiers are constructed from

registers, counters (up/down), comparators and enable/disable signal collections. A

combination of these can encode control states, such as incrementing and checking

matrix height index, comparison (and branch decision) with the limit, or generate ad-

dress seeds and increments according to required access strides, partially disabling,

modifying and assembling language calls of any layer, etc. The control elements can,

for instance, override one routing segment or one PE function by just overwriting

or modifying arguments of the respective function calls from the program memory

during forwarding, based on execution state. Also, qualifiers implement control flow

components such as for loops, if-else branches and update the current execution

state stored q_registers.

Non-exhaustive elementary pool for the control layer:

• update state:

writeAddreg(r), writeStatereg(r)

• read state:

readAddreg(r), readStatereg(r)

• predication for each layer, at element level granularity

override(structure_id), forward_if(Statereg(r))

• calculate/update state or address registers:

cntUp(step), cntDwn(step), cmp(a,b), geq(a,b), etc.
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• branching – conditional or unconditional:

jmp(Statereg(r)), jmp()

The flexibility of assembling control language elements at run time is more lim-

ited than in the case of data flow layers, because control flow is highly application

specific – it requires complex evaluations of state variables under certain application-

specific conditions. Creating an elementary function pool with flexibility of handling

all combinations is a very daunting task, if not extremely resource costly. For exam-

ple, q_checkrow_jmp_if_neg is the final construct which is composed by many smaller

constructs chaining functions from the elementary pool. To be able to create this con-

struct at run time, the physical possibility of interconnecting elementary functions in

this specific combination has to be available in hardware. Therefore, in the following

case studies for the NLA domain, such language elements have been hard-coded for

each kernel (i.e. elementary function relationships are static for each language ele-

ment). Deep exploration, including a graph-theoretic approach on derivation of more

flexible structures in explored in Section 7.1.

6.2.7 Hyperfunction Support

Although with static architectural language assemblies it is possible to implement a

multitude of applications from the same domain, hyperfunctions provide the ability

to reconfigure language elements at run-time. Hyperfunctions (hf) are functions that

are outside the architectural control/data path, and provide the means for higher

functional reconfiguration flexibility, as it is defined in Chapter 3.

Ideally, from the functional programming view, arguments of function calls can

contain other functions, each with its own arguments, which in turn can be func-

tions again (nesting). In functional reconfiguration, the architectural language is con-

structed from elementary functions (ef), each needing arguments. Technically, how-

ever, it is not straightforward to realize a circuit that can forward parts of the func-

tional argument space to other functions. For instance, given an argument space of x

bits, an elementary function of argument size 3, can be physically located anywhere

between [(x− 1)..(x− 3)] → [(x− 2)..(0)] range. Allowing such flexibility requires

the presence of physical wires and multiplexers to realize the connection physically

from the incoming function word argument space to each elementary function argu-

ment space. Furthermore, an efficient way of controlling such structures is needed.

Fig. 6.4 illustrates how the function word of a layer is constructed. Besides NOP

and the RECONF reserved functions, reconfigurable hyperfunction calls can be used to

form arbitrary language elements. The free argument space of each hyperfunction

can be filled with function calls to different elementary functions, in any order. Each

elementary function can have an arbitrary argument size, depending on its function.

Defining a hf is implemented by using two sets of configuration registers: one

for indicating how full the argument space of the respective hf is, the other to save

to physical location within the hf argument space of each added ef. Therefore,
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Figure 6.4: How the function word is structured when using hyperfunctions. The
architectural language hooks are replaced by hyperfunction call IDs and
the arguments are forwarded to the elementary functions.

each hf has one usemask register of size log2(h f_argspace_bits), and each ef has

#h f s × log2(h f_argspace_bits) sized registers, pointing to the currently assigned lo-

cation within the hf argspace. Fig. 6.5 shows how ef-s are added to a hf, filling up

the hf argspace. Each position is saved in the ef_conn registers of the respective ef,

reserving the hf argspace portion from which it will receive its arguments.

Of course, different hf_id-s can have a different mix of ef-s, in a different ordering,

which allows construction of various architectural language elements. In the current

implementation of Layers, the hf definitions are valid globally for each element in

the respective layer, however, support can be added for heterogeneous sets of hf for

each element (heterogeneous array). This requires adding a dimension to the usemask

register, saving the hf argspace usage separately for each element.

Execution of a hf call is shown in Fig. 6.6. A function word with a HF_CALL on

a hf_id, activates the ef_connectors for those elementary functions that are config-

ured for the respective call. The ef_connectors are a reconfigurable set of physical

wires, connecting the respective ef argspace to the hf argspace. The location, which

was previously saved at hf definition in ef_conn registers, is read out, and the respec-

tive bits from the hf argspace are connected. Forwarding of the arguments happens

only to those ef-s which have a valid connector and a non-zero argument value. All

elementary functions in Layers are inactive by default, if their arguments are all zero.

Thus, architectural language elements can be constructed from ef-s in arbitrary

ways. Scalability is available in modifying the number of hf slots, size of hf argspace,

number of available ef-s or the choice of homogeneous or heterogeneous array ele-

ments, additionally to the standard scalability due to array size and memory ports

presented previously. Supporting hyperfunctions comes with an overhead in physi-

cal structures, which are orthogonal to the application data path. Initial experiments

show however, that the cost in area and power compared with a Layers version with

static language elements is negligible. Advantages of hf support are manifested in an

increased degree of tunability of architectural flexibility F , by allowing more varied
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Figure 6.5: Hyperfunction assignments can be reset and reconfigured with new ele-
mentary function combinations to form the language that is efficient for
application execution.

Figure 6.6: Hyperfunction execution forwards parts of its argument space to the
configured elementary functions. Variable connectors for each elemen-
tary function lock on to the hyperfunction argument space and forwards
the arguments. Configured EFs with non-zero arguments get activated
and executed.

and finely tuned language elements. Also, Layers with hf support has a great domain

retargetability, due to the ability of adapting its architectural language with hfs.
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In the following, applications are mapped on Layers without hf support, using

only static language functions, tailored for the linear algebra domain, however an

implementation with hf support has also been produced.

6.3 Mapping Linear Algebra on Layers

6.3.1 Importance of Efficient Mapping, Adapting the Language

6.3.1.1 Bird’s Eye View of the Optimization Flow

The key idea is to derive an efficient and scalable scheduling with coarse mapping el-

ements, based on available algorithmic features (parallelism, dependencies) and then

reconstruct this mapping in the architecture by reconfiguring the data path. The prob-

lem is attacked from two sides: optimizing the application scheduling to expose a

language that coarsely respects cost bounds and tuning the architectural language to

match application language, while exploiting architectural scalability to also respect

the cost bounds.

First, this can be done by optimizing on the application side for the best pos-

sible scheduling, such as the optimal ASAP/ALAP. Lax architectural resource con-

straints can be considered here, such as projected number of parallel execution units

and maximum amount of memory bandwidth. Algorithmic parameters, such as re-

quired bandwidth per cycle, dependencies, commonly used data and partial results

and progress tracking during execution are analyzed. The ASAP/ALAP optimal

scheduling is modified then to fit into the coarse architectural bounds (e.g. mem-

ory bandwidth per cycle). The modifications are done in a way that minimizes any

forced extensions of scheduling time, by using modulo scheduling, heavy pipelining

and data flow optimizations (e.g. caching a partial result instead of storing, duplicat-

ing data, broadcasting, etc.). The resulting CDFG represents the application language,

basically the interface that the architecture should match. This procedure needs to be

repeated for every target application.

It should be noted, that the derivation of the application language is valid for

any mesh-connected architecture of processing elements, as this optimization of the

application is largely architecture-agnostic. It is only constrained by dominant cost re-

quirements, such as howmany processing elements on architecture may have. Here, it

is also important to note, that during these optimizations, scalability is also identified.

For instance, if the application optimally can support 10 parallel execution kernels, it

also provides the scalability range of 1-10 physical execution units. If the cost is lim-

ited to 5 execution units, it will mean no special change in the application language

elements, as it will only force a sequential execution of available parallelism.

Next, the architecture is scaled to respect cost bounds, followed by deriving the

optimal architectural language for the derived scheduling. Elementary hardware

functions are selected from the pool on each of the functional layers and new lan-

guage elements are formed to match the most common structures of the application

language. These language elements will form the function calls (e.g. broadcast, copy,
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add, store, etc.) which can be called during programming the architecture, like in

assembly code. There are two approaches here:

• optimize the architectural language to be a super-set of all target applications,

such that the architecture can adapt well to each

• add hyperfunction support – allowing to reconfigure language elements at run-

time, such that the architecture exposes the perfect language w.r.t. each applica-

tion change.

6.3.1.2 Architectural Factors

Generally, when mapping in a scalable way on a scalable architecture, the execution

window size has to match the size of the array for efficiency and respect available

memory bandwidth. Especially for architectures with many processing elements,

such as CGRAs, memory access contention is one of the main hurdles for adopting op-

timal application mapping. Additionally for CGRAs, internal resource (interconnect)

contention can also occur, limiting efficiency. For CGRAs with banked memories, as

is the case with Layers, all mappings must additionally respect the constraint of not

executing more than one operation on a bank per cycle. Especially for matrix-matrix

operations, accessing column and rows of values from either matrix makes scalable

mapping difficult. While, internal contention is a question of forming a richer pool

of elementary functions (a question of extra area and power cost), major constraints

such as number of memory ports and execution units need to be respected. Block-

based approaches which work best for CPUs, are not scalable when modifying CGRA

size N or memory port amount P and produce complex addressing problems. These

constraints guide all optimization approaches discussed in this chapter.

6.3.1.3 Evaluation Flow

Evaluation is conducted in two steps:

• algorithmic mapping optimization targeting efficiency (deriving optimal appli-

cation language), for each kernel (Sections 6.3.3-6.3.7)

• architectural performance, area, power evaluation and comparisons with related

work (Section 6.4).

The case study2 focuses on the following kernels k from numerical linear algebra

domain:

• DOT product

• GEMV – General Matrix-Vector Multiplication

2 It is my pleasure to acknowledge the contributions of D. Stengele and A. Acosta-Aponte towards
the mapping effort for some of these kernels, during their M.Sc. degree preparation time under my
supervision. Some thesis parts are reprinted here or belong to the publications we made based on
these contributions, mentioned in the introduction of this chapter.
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• GEMM – General Matrix-Matrix Multiplication

• TRSV – Triangular Solve Vector

• TRSM – Triangular Solve Matrix

• LU - lower/upper factorization

• Givens – QR factorization via Givens rotation, especially column-based version,

without square-root operations and with/without division variants

Efficiency evaluation is performed by taking the ratio between the theoretically

required number of execution cycles ckmin and the number of actual cycles executed

by the architecture ck for each design point. Kernel-specific input parameters such as

input data size is denoted with {·}. ckmin represents the optimal execution time of

the derived CDFG after application language optimization. ck represents the actual

execution cycles on Layers, and it perfectly reflects not only execution efficiency of

the architecture, but also gives a graspable value of architectural flexibility – shows

how well the architectural language is matching that of the application. Evaluation

is scaled with main architectural parameter N, which is the square array size of pro-

cessing elements in Layer 0.

ηk({·},N) :=
ckmin({·},N)

ck({·},N)
. (6.1)

The calculus of ck comprises of the actual cycle times, location and latency of the

operations required and is more complex to derive. It contains also necessary tasks

like register initialization, memory access times, data distribution, predication and

other overheads. ckmin, on the other hand, contains only the coarse constraints set

during the derivation of the application language and the mapping, accessible via the

scalability parameters array size N, memory ports P or speed ratio r between the lay-

ers. Since the processing elements in Layer 0 can have different latencies and certain

capabilities limited to certain units, the evaluation takes these facts into consideration

when exploring parallelism and scalability: opk({·}) for the arithmetic operations ADD,

SUB and MUL and opkdiv({·}) for the arithmetic operations RCP (reciprocal) and DIV

(division). RCP and DIV need 4 L0-cycles each to finish execution, while all others

finish in 1 cycle, which has to be considered when calculating minimum cycle com-

plexity.

ckmin({·},N) := 8

(

1

N2
opk({·}) + 4 opkdiv({·})

)

. (6.2)

opk is scaled by N2 processing elements, which can work in parallel and opdiv,k is

multiplied by 4, since in this architectural configuration, only one processing element

(PE0) is augmented with a divider ( 4 L0-cycles latency time). Finally the result is

multiplied by the speed ratio inverse 1
rL0

, here rL0 = 1
8rL1,L2,SM to get cycles instead

of L0-cycles. Due to implementation overheads, the actual executed cycles are higher

than the theoretical ones and ck({·},N) ≥ ckmin({·},N) holds. From ck({·},N) ≥ ckmin({·},N)
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follows ηk({·},N) ∈ [0, 1], an efficiency of 100% would also reflect a perfect degree of

architectural flexibility F for the given constraints.

In the following, each kernel is analyzed in detail and the efficiency is calculated.

In Section 6.4 the evaluation of architectural performance is conducted.

6.3.2 Scalable Accumulation Folding in a Mesh

6.3.2.1 Mapping

This is not a kernel per se, but most kernels make use of this, especially in the epilog

portion of hot-spot loops. It concerns the situation when partial results are distributed

across a mesh array of processing elements, all of which need to be added to a single

end result value. Theoretically, be fastest way is to create an adder-tree. The maximum

parallelism comes from adding pairs of elements, number of which decrease with

every iteration, by adding one pair of new partial results until there is only one pair

left, generating the result.

When the number of processing elements is limited, only as many pairs can be

added as many elements there are in one time cycle, generating the same number of

partial results every cycle. At the end however, these must be added as well. From the

scalability perspective, scheduling regularity is broken when the tree width becomes

smaller than the number of processing elements. Therefore, a folding of such partial

results algorithm is proposed in Fig. 6.7, tailored for processing element arrays, the

underlying structure of the execution layer L0. The case of folding partial sums into

the final value for a 6 × 6 architecture is illustrated, following a generic algorithm

valid for any square array size.

To preserve simplicity and scalability, the algorithm starts from the edge of the

array, with all elements containing data that needs to be summed. Two addition

fronts, horizontally and vertically are created, which alternate. Since every iteration

there is less input data, in the example from Fig.6.7, only a 66% efficiency is reached

in the first wave, diminishing with each iteration. Although it is theoretically possible

to use the two available middle rows to perform also one row of additions, it breaks

symmetry for a scalable progress towards the final merge.

Symmetry needs to be preserved, especially for data load/store operations and

partial result forwarding. A data gap in row 3, in the 6×6 example, would be com-

plex to compensate and capture in a simple iterative algorithm (requiring 2-hop data

forwarding in one cycle, unsupported by a mesh network. Moreover, iteration control,

data load and movement becomes too complex to be compensated by an eventual exe-

cution speed-up. The larger the underlying physical array, the less efficient the folding

procedure is, as the middle units remain unused until later iterations. A maximum

of only 4 rows or columns of PEs being active in one cycle, regardless of array size,

diminishing until the final merge.

It is important to note however, that for large input data sizes, in most kernels,

this folding procedure is a small, but important part of the entire operation backlog.
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N′ ← N
while N′ > 3 do

// 1st cycle
for each element in the second row of the current

square do
ADD(self, north)

end for
for each element in the second last row of the

current square do
ADD(self, south)

end for
// 2nd cycle
for each element in the second column of the cur-

rent square do
ADD(self, west)

end for
for each element in the second last column of the

current square do
ADD(self, east)

end for
// Update N′

N′ ← N′ − 2
end while

Figure 6.7: The accumulation procedure (folding) used in many NLA kernels. (a)
shows initial state, (b) and (c) show the iteration transition, which re-
duces to the same problem of smaller size. Repeating such iterations
will reduce to a 2× 2 or 3× 3 special case, which finally yield the final
result in one element. [139]

The procedure is repeated until the folding front reaches a 2× 2 or a 3× 3 data

square, shown in Fig. 6.7. N′ = 2 and N′ = 3 have to be treated differently, because it

is not possible anymore to reduce the square from top/bottom or left/right simulta-

neously. For these cases, only ADD(self, south) and ADD(self, east) are inserted,

reducing N′ = 2 to a single element, or, if N is odd, N′ = 3 to N′ = 2 and to a single

element after-wards.

There are no special requirements from the language side of the architecture, as

addition and mesh source specification are layer 0 elementary functions, allowing

easy construction of language elements such as ADD(self,south).

6.3.2.2 Complexity

Operation complexity is opacc(N) = N2 − 1 because always i − 1 additions are re-
quired to add up i values, only depending on the architecture size N. When N is
even, the square will be reduced to a single element in N/2 iterations of the accumu-
lation procedure. Every iteration consists of 2 L0-cycles, hence it will take 8N cycles.
When N is odd, a square with N′ = 3 can not be reduced to a single element in
just one iteration. Hence, (N + 1)/2 iterations are needed, which results in 8(N + 1)
cycles. Thus cycle complexity is

cacc(N) =

{

8N if N is even

8(N + 1) otherwise.
(6.3)
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6.3.3 The DOT Product

6.3.3.1 Algorithm

The input to the DOT-product kernel consists of two vectors a, b ∈ Rn and the output

is c ∈ R.
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]

c

c := a1 · b1 + a2 · b2 + . . .+ an · bn =
n
∑

i=1

ai · bi

Directly from the algorithmic structure, it is obvious that all the multiplication

operations are parallel. The accumulation of the sum can be folded also in parallel,

in an addition tree. Since the accumulation procedure does not yield an constant

parallelism rate, it needs special optimization, discussed in the following.

6.3.3.2 DOT Mapping

To create an efficient application interface for a scalable number of processing el-

ements, the language must expose scalable parallelism and regularity. This helps

create a matching scheduling and mapping window compliant with the architecture

size, with operations (language elements) ready to be adopted by the architecture.

Fig. 6.8 shows how each element of a N2 = 4 element array is assigned an opera-

tion within the execution window, which partitions the two vertical data columns. If

N2 changes, the execution window scales accordingly. After an initial multiplication

on all elements, the execution window slides downwards through the data, multiply-

ing and accumulating the results for each processing element. Partial accumulation

results are sent to L1 registers for the duration of one L0-cycle and used again in sub-

sequent accumulation cycles, avoiding storing back to memory. When the N2%n does

not cleanly match the array at the end of the data, predication signals (overrides)

are set by the control core, disabling the extra execution units which have no data.

This is a source of efficiency loss, however for very large matrices, the amount of full

execution windows is dominating. After moving the execution window in N2 steps,

every element holds one partial result and the final result c is the sum of all of those,

hence by calling the accumulation folding procedure the kernel is completed.
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Figure 6.8: DOT mapping with N=2, yielding an execution window of 4 elements,
which slides downwards on the two data columns a, b, executing multi-
ply and accumulate instructions alternately, until end of data is reached.
If data size does not match N2, predication deactivates extra instruc-
tions. X denotes taking previous output (self). [139]

From the language perspective, there are no special requirements: multiplication

and addition are alternating, which is basic elementary function of the layer 0. Com-

bined with the source functions, data can be received and sent to layer 1 easily.

6.3.3.3 Complexity

For vectors of length n, n multiplications and n− 1 additions are required, hence the
operation complexity is opdot({n}) = 2n− 1. Minimum cycle complexity is

cdotmin({n},N) = 8
1

N2
opdot({n}) =

8

N2
(2n− 1). (6.4)

6.3.3.4 Efficiency

Mapping efficiency is shown in Fig. 6.9 for different architecture sizes and input vec-

tor lengths, where inefficiencies of the accumulation procedure are dominating large

architectures on small data sets. The expected speedup from this mapping when scal-

ing N, is shown on the right side of Fig. 6.9, closing within < 4% to the expected

theoretical speed-up value for large data sets on large arrays.

When there is enough data to feed the array, efficiency is very close to 100%,

yielding a great degree of architectural flexibility and efficiency. Detailed data are

added to Appendix B, Fig. B.1-B.2.
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Figure 6.9: DOT mapping efficiency and mapping-based speed-up for various ar-
chitectures (N=2..8) and data sizes (64..16384). Due to the accumulation
procedure, efficiency receives a heavy penalty, especially for large arrays
with small input data sizes. When enough data is used, the penalty
is much smaller. Worst penalty for large data sets on large arrays is
< 4%. [139]

6.3.4 Matrix-Vector Multiplication (GEMV)

6.3.4.1 Algorithm

For every 1 ≤ i ≤ n, GEMV is defined as follows:

ci =
m
∑

j=1

aij · bj (6.5)

This algorithm has also a high degree of parallelism, not requiring any special lan-

guage elements.

6.3.4.2 Mapping

It is immediately visible from the formula that every multiplication can be done in

parallel, but in the end every product has to be added together for every row i. This

breaks the symmetry of the algorithmic progress through the data. It would be benefi-

cial if the computation of c1, c2, . . . , cN2 can be assigned to L0-elements e0, e1, . . . , eN2−1.

This would yield N2 elements of c after m multiplications and m− 1 additions. How-

ever, while any L0-element ei−1 would operate exclusively on row i of A, the input

data aij in every step would make loading values of a column of A necessary, breaking

scalability and efficiency for large N.

To operate on rows only due to the memory access conflict limitations, at any

given point in time, a less optimal but scalable scheduling was implemented shown

in Fig. 6.10, thus N2 L0-elements can work in parallel to calculate every ci. The

execution window moves in N2 steps horizontally in the matrix and vertically on the

vector, but forces an accumulation procedure at the row boundary of each row.
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Figure 6.10: GEMV scalable execution window progress (here, N2 = 4 elements),
denoted in dark blue, yielding the result in yellow. The progression
of this window through the data ensures no more than one load per
memory port per cycle. [139]

6.3.4.3 Complexity

Operation complexity of GEMV, with input size n and m, is equivalent to n times DOT
complexity for input size m, hence opgemv({n,m}) = n · opdot({m}) = n(2m− 1). Minimum
cycle complexity is

cgemvmin({n,m},N) = 8
1

N2
opgemv({n,m}) =

8

N2
n(2m− 1). (6.6)

6.3.4.4 Efficiency

Mapping efficiency is shown in Fig. 6.11, similar to the DOT product described pre-

viously, due to the extra accumulation procedures for every row. Expected speedup

from mapping when scaling N, is shown on the right side of Fig. 6.11, which for

large arrays and large data sets is < 3% close to the expected theoretical maximum.

Detailed data are added to Appendix B, Fig. B.3-B.4.

6.3.5 General Matrix-Matrix Multiplication (GEMM)

6.3.5.1 Algorithm

Matrix Multiplication is defined as follows: For every cij (1 ≤ i ≤ n, 1 ≤ j ≤ m):

cij =
k
∑

l=1

ail · bl j (6.7)
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Figure 6.11: GEMV mapping efficiency and mapping-based speed-up for various
architectures and data sizes. The penalty for performing accumulation
every row can be observed, but stays negligible for large data sizes.

It is well known that an efficient mapping of this highly parallel kernel can be of

paramount importance for many applications. It is not trivial however to exploit

available parallelism due to memory access, dependency and computation complex-

ity, which is why it represents one of the most revealing benchmarks in the high-

performance community.

Figure 6.12: GEMM scalable execution window progress (here, N2 = 4 elements),
denoted in dark blue, yielding the result in yellow. The progression
of this window through the data ensures no more than one load per
memory port per cycle. [139]

6.3.5.2 Mapping

Respecting the same constraint of not loading data on the column (keeping one access

per memory port), for GEMM the data dependencies turn out to be problematic. Most
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obvious mapping solutions would require to load a column of values from either A

or B and multiply it with a row from the other. Rectangular or square windows with

a height of more than 1 were not possible either since this would require to work on

columns in either matrix. Block-based approaches are not scalable when modifying

N or memory port amount P and produce complex addressing problems.

To bypass this, the following mapping is proposed, allowing a scalable execution

window without column loads, as shown in Fig. 6.12.

1. Load a11

2. Multiply a11 with b11, . . . , b1N2

3. Continue with a12 and b21, . . . , b2N2 and accumulate the partial results

4. When finishing with the last row, store the resulting c11, . . . , c1N2 and continue

with the next window.

This implies more memory loads due to reiterating through the data several times,

but scales perfectly since a window of height 1 and width N2 can be used, without

causing memory port conflict or exceeding available bandwidth. The window iterates

matrix B and C column-wise and only in the last column of windows there may be

overrides necessary, making the override logic efficient. There are no special needs

for the language point of view for this kernel, except a clean distribution of loaded

data to the L0 elements.

6.3.5.3 Complexity

GEMM, with input size n, m and k, is equivalent to m times GEMV for input size n
and k, hence opgemm({n,m, k}) = m · opgemv({n, k}) = mn(2k− 1). Minimum cycle complexity
is

cgemmmin({n,m, k},N) = 8
1

N2
opgemm({n,m, k}) =

8

N2
mn(2k− 1). (6.8)

6.3.5.4 Efficiency

Even with the constraints considered, the implementation of GEMM is very efficient

because the actual core of the implementation consists of 2 L0-cycles only, in which all

processing elements are always occupied – a multiplication/accumulation procedure.

Fig. 6.13 shows that even for corner cases the efficiency penalties are minimal. The

speedup from mapping perspective when scaling N, is very close to the expected

theoretical value, shown on the right side of Fig. 6.13. For scaling by x amount of

elements a speedup of close to x is achieved. Please note how the efficiency reaches

optimality when the data set is a multiple of N2 for large arrays. Detailed data are

added to Appendix B, Fig. B.5-B.6.
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Figure 6.13: GEMM mapping efficiency and mapping-based speed-up for various
architectures and data sizes. When the data size matches a 2n multiple
of the array size, optimal efficiency can be achieved. Otherwise, at the
final execution window which does not perfectly match the PE array
causes overrides, which is a source of minimal efficiency penalty.

6.3.6 Triangular Solve Vector (TRSV)

6.3.6.1 Algorithm

The input to TRSV consists of a lower triangular matrix A ∈ Rn×n and a vector b ∈ Rn.

The output is a vector x ∈ Rn, such that
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Solving for x results in
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or generally

xi =

(

bi −
i−1
∑

j=1
aij · xj

)

· aii
−1. This algorithm is much more complex, although

parallel: while the dot product part is parallel, the subtraction is depending on the

result, which needs to be scaled by the reciprocal. This implies that a divider (or a

reciprocal) unit has to be present in the array, which is bound to a processing element.

Furthermore dependencies in calculating terms x1..xi make scaling of this algorithm

complex.



6.3. Mapping Linear Algebra on Layers 101

6.3.6.2 Mapping

Since all xi (1 ≤ i < k) are needed to compute xk, the computation of all xi must finish

before xk can be computed.

Theoretically, computing xi and then computing the partial results aji · xi for all

rows i < j ≤ n using vertical windows of width 1 and height N2 is possible, however,

this would not scale due to the limit on column access on banked memory modules.

Therefore, all computations necessary for xi have to be completed before starting to

compute xi+1. To do that, while maintaining scalability, a similar approach as with

the DOT product is employed for calculating the sum si :=
i−1
∑

j=1

aij · xj

using all N2 L0-elements in parallel, partial sums are kept in each processing element,

finally followed by the accumulation procedure to sum up the result in one single L0-

element. Finally, bi − si is performed on that single element and scaling with aii
−1 to

compute xi occurs.

Figure 6.14: TRSV scalable execution window progress (here, N2 = 4 elements),
the progression of this window through the data ensures no more than
one load per memory port per cycle. Every row there is an accumula-
tion procedure and one incomplete execution window, unless perfectly
matching array size (input data size divisible by N2).

Row 1 — The computation of x1 is a special case because s1 does not exist. This

case has to be treated differently in the scheduling because instead of (bi− si) · aii
−1

just b1 · a11
−1 has to be computed.

Rows 2 . . .N2 — The computation of x2, . . . , xN2 theoretically works the same way

as for all following xk (N2
< k ≤ n). However, in practice, accumulation procedure

has to be performed, to add up the values of the output registers of every L0-element.

For these partial results it does not matter whether they are just the result of one

single multiplication or already an accumulated result of many operations. It is also
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not relevant if, due to a smaller window size in the last iteration of operations on

a given row, the partial result saved in ei is a result of fewer operations than of an

element ej with j > i. In the end, all data has to be accumulated.

However, if the first window size is already smaller than N2, then there are N2

minus window-width L0-elements with values in their output registers that belong to

previous operations or kernels, having nothing to do with the value currently being

computed. For the other algorithms using the accumulation procedure, this situation

was avoided by requiring an input size n ≥ N2. This is no notable limitation, because

n≫ N2 is very usual. For TRSV, however, such constraints are not possible due to the

triangular form of A, which results in i− 1 values to be added up for si (1 ≤ i ≤ n).

One possible solution would have been to reset all L0-output-registers before start-

ing computations on a row. While this is not possible from a control flow function,

it would be possible to implement an language element, alongside the existing arith-

metic functions, to output 0 regardless of the A- and B-registers, which would require

an elementary function extension.

Another solution is to compute x2, . . . , xN2 differently from the others in a serial

fashion. In fact, only a single L0-element is used, multiplying and accumulating all

aij · xj (1 ≤ j < i), necessary for row i (2 ≤ i ≤ N2), one after another to si. Then,

similar to the parallel computations for rows i with N2
< i ≤ n, bi− si is performed on

that single element and, finally, multiplication with aii
−1 to compute xi. The number

of cycles this serial execution takes, can be considered small compared to the total

number of cycles for performing the TRSV algorithm, because it is used only for

N2 − 1 rows with a total number of

1+ 2+ . . .+ (N2 − 1) = (N2−1)·N2

2

multiplications and

0+ 1+ . . .+ (N2 − 2) = (N2−2)·(N2−1)
2

additions which can be performed in

(N2−1)·N2

2 + (N2−2)·(N2−1)
2 = (N2 − 1)2

L0-cycles. Also note that the number of rows is usually significantly larger than the

number of L0-elements, i.e. n≫ N2.

From the architectural language perspective, data forwarding to the elements and

horizontal communication elements for folding and storing partial results are needed.

These are however in the initial set of Layers, requiring no special elements.

6.3.6.3 Complexity

For each xi, i− 1 subtractions and multiplications are needed

2
n
∑

i=1
(i− 1) = n(n− 1)

Additionally, one multiplication and reciprocal per row is required which results in
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optrsv({n}) = n2

optrsvdiv({n}) = n

The minimum cycle complexity is

ctrsvmin({n},N) = 8
(

1
N2 optrsv({n}) + 4 optrsvdiv({n})

)

= 8n
(

n
N2 + 4

)

Figure 6.15: TRSV mapping efficiency and mapping-based speed-up for various ar-
chitectures and data sizes. Inefficiencies occur when the accumulation
procedure is executed, signifying a lower degree of architectural flexi-
bility.

6.3.6.4 Efficiency

Due to the special sequential calculus on every row, which needs an accumulation

folding procedure at the end, TRSV is one of the most inefficient kernels implemented

in the case study, shown in Fig. 6.15. Not only it has sequential dependencies which

stop parallel execution, but complex memory load/store patterns force a less parallel

execution. Furthermore, calculation of the reciprocal is also required, but due to

efficient pipelining the latency could be hidden from the critical path.

Overall, there is a less degree of architectural flexibility due to these limitations,

however for large arrays this becomes negligible. A more flexible memory access

would enhance this, but not by much, as the main limitation comes from intra-

algorithmic dependence. Detailed data are added to Appendix B, Fig. B.7-B.8.

6.3.7 Triangular Solve Matrix (TRSM)

6.3.7.1 Algorithm

The input to TRSM consists of a lower triangular matrix A ∈ Rn×n and a matrix

B ∈ Rn×m. The output is a matrix X ∈ Rn×m, such that
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Solving for xji results in

x1i = b1i · a11
−1

for any element x1i (1 ≤ i ≤ m) in row 1,

x2i = (b2i − a21 · x1i) · a22
−1

for row 2,

x3i = (b3i − a31 · x1i − a32 · x2i) · a33
−1

for row 3 and, generally,

xji = (bji − aj1 · x1i − aj2 · x2i − . . .− aj,j−1 · xj−1,i) · ajj
−1

= (bji −
j−1
∑

k=1

ajk · xki) · ajj
−1

for any row j (1 ≤ j ≤ n).

Figure 6.16: TRSM scalable execution window progress (here, N2 = 4 elements), the
progression of this window through the data ensures no more than one
load per memory port per cycle. Execution runs on full efficiency until
the last columns, where a partial array fill is possible every row.

6.3.7.2 Mapping

For TRSM, operation on rows only is possible. A scalable execution window of height

1 and width N2 is created (Fig. 6.16) which iterates X row-wise. In every window, all

necessary computations for xji, . . . , xj,i+N2 are completed, before proceeding with the

next window. This implies loading a single value ajk, distributing it to all L0-elements.
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N2 values of xki are loaded and multiplied in parallel. Then, the next set of values

from A and X are loaded, accumulating the result. After adding up all partial results

to

sji :=
j−1
∑

k=1

ajk · xki,

subtracting this value from bji and multiplying it with ajj
−1 for the scaling, this value

is broadcast to the local store in the communication layer of every element.

Regarding the override logic, there is one window of width

m mod N2

in every row, which might ideally be 0, which makes predication in the control flow

side easy to implement.

Language-wise this kernel requires however 1-to-all broadcast capability, which

can be easily assembled from the elementary function pool of the communication

layer.

As with TRSV, Row 1 has to be considered as a special case because s1 does not

exist. For that purpose, only the multiplication b1i · a11
−1 is executed.

6.3.7.3 Complexity

For each x1i, there are i − 1 subtractions and multiplications necessary, hence for all

xmi:

2m
n
∑

i=1
(i− 1) = mn(n− 1)

Additionally, one reciprocal per row and one multiplication per element is computed,

which results in

optrsm({n,m}) = mn(n− 1) +mn

= mn2

optrsmdiv({n,m}) = n

The minimum cycle complexity is

ctrsmmin({n,m},N) = 8
(

1
N2 optrsm({n,m}) + 4 optrsmdiv({n,m})

)

= 8n
(

mn
N2 + 4

)

6.3.7.4 Efficiency

As TRSM has less execution dependencies and more data-streaming-friendly algo-

rithm, the optimizations from the algorithm side are easily scalable. The special re-

quirement of broadcasting can be accommodated by Layer 1, therefore each iteration

can be pipelined efficiently. This kernel exhibits similar efficiency levels to the GEMM

kernel, despite the complexity. A high degree of architectural flexibility could be

attained, as shown in Fig. 6.17. Detailed data are added to Appendix B, Fig. B.9-B.10.
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Figure 6.17: TRSM mapping efficiency and mapping-based speed-up for various ar-
chitectures and data sizes. Since it uses a similar mapping scheme to
the efficient GEMM kernel, very high efficiencies can be attained.

6.3.8 Lower-Upper Factorization (LU)

6.3.8.1 Algorithm

The input to the LU-factorization is a square matrix A ∈ ℜn×n with |A| 6= 0. The

output for our implementation3 consists of two matrices, L ∈ ℜn×n and U ∈ ℜn×n,

such that values above and below the diagonal are zero, respectively [140]:
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3 It should be mentioned here, that there are other implementations of the LU-factorization, which
do not require the diagonal elements of L to be 1. Furthermore, our implementation does not deal
with the fact that not every input matrix A can be processed using this algorithm. An advanced
implementation of LU, possibly using techniques like Pivoting, is subject to future work.
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6.3.8.2 Mapping

Since LU factorization dependencies and algorithm are complex, additionally to the

general mapping considerations from Section 6.3.1.2, a mapping procedure was con-

ceived to respect the constraints, while being scalable and efficient. The most impor-

tant restriction is that rectangular or square windows with a height of more than 1 are

not possible either since this would require to work on columns in either matrix. An

efficient block-based scheduling and mapping solution has been discussed in [138] for

an earlier version of Layers, however only for a fixed 4× 4 PEs and 8 memory ports

configuration, yielding a fixed mapping. This mapping is focused on scalability and

shows superior results due to improved design, programmability and architectural

flexibility.

For clarity, the proposed mapping is illustrated for the LU-algorithm using an

example with n = 3, hence A3 = L3 ·U3, however the mapping holds for any n > 3

[140]:
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where L3 and U3 can be computed as
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For more efficient memory usage, the matrices L3 and U3 are combined to matrix Q3,

superposing the matrices such that [140]:

Q3 :=









u11 u12 u13

l21 u22 u23

l31 l32 u33









=









a11 a12 a13

a21u11
−1 a22 − l21u12 a23 − l21u13

a31u11
−1 (a32 − l31u12)u22

−1 a33 − l31u13 − l32u23











108 Chapter 6. Tunable Flexibility: The Layers Approach and Architecture

which is computed as follows. First, l11 := 1 implies u1n = a1n, which results in [140]:
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Then, l21 is computed, which is used to calculate u22 . . . u2n, where the multipli-

cations and subtractions are parallel. This gives a flexible execution window of size

N2 × 1, sliding to the right on the row until the end, where possible size mismatches

are truncated by predication in the Q-layer [140]:
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For the next row, l31 is computed yielding the partial results l32
′ . . . u3n

′, using again

all execution units.

The procedure is repeated until ln1 is reached [140]:
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Please note the dependencies on the row on lmn and on the column for umn. The

higher m and n are, the longer the string of dependencies, which are rank-nested

within the matrix. In the proposed mapping, the sub-matrices of decreasing rank are

iterated repeatedly, as shown in Fig. 6.18, until the complete Qn matrix is computed,

as shown in Fig. 6.18. In the above example, only the last row remains, after which

the final form of Q3 is reached. [140]

In general, while the the first row of Q, i.e. u11, . . . , u1n, needs no computation,

there are n− 1 values which can be computed in parallel in any other row within the

first iteration, n − 2 in the second iteration and so on until the computation of unn
is a single value. Because only one single lij-value has to be computed to perform

computations in all the following values in row i in parallel, which might result in

final uik or partial results lik
′... respectively uik

′..., the scaling performs well on large

matrix sizes. Having a window of height 1 makes the window fit efficiently regardless

of the input matrix size, because there can only be a maximum of one window in any

row which needs truncation. [140]
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Figure 6.18: LU execution window progress over the input matrix. Rank of the
matrix is iteratively decreased (red square) while simultaneously com-
puting l and u values on each row (blue), in window sizes of N2

(shaded blue). Once a rank is complete (green), next lower rank is
executed. [140]

From the architectural language perspective, the algorithm makes heavy use of

1-to-many broadcasts, as the pre-computed lik-term must be stored and broadcast to

all execution windows during the execution of a row. Otherwise, the standard set

perfectly satisfies data flow requirements.

6.3.8.3 Complexity

Complexity can be divided in 3 parts: division complexity opludiv, complexity for

lower oplul and upper factorization opluu, then summed up to oplu. In order to

compute L, one multiplication per element in the lower diagonal part, excluding the

diagonal itself, is needed, i.e. n
2 (n − 1). Additionally, 0 pairs of subtractions/multi-

plications are needed in the first column, 1 pair in the second column and so on,

hence [140]:

oplul({n}) =
n

2
(3n− 7) + 2. (6.9)

Similarly, in order to compute U, 0 pairs of subtractions/multiplications in row 1 are

needed, 1 pair in row 2 and so on, resulting in

opluu({n}) = 2
n−1
∑

i=1

(n− i)i =
n

3
(n2 − 1). (6.10)
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Figure 6.19: LU mapping efficiency and expected mapping speedup for various ar-
chitectures (N=2..10) and data sizes (64..16384). [140]

Finally, adding these to opludiv({n}) = n− 1 the minimum cycle complexity on Layers

with rL0:L1:L2 = 1 : 8 : 8 and 4 cycles for a division:

clumin({n},N) = 8

(

1

N2
(
n3

3
+

3n2

2
−

23n

6
+ 2) + 4 (n− 1)

)

6.3.8.4 Efficiency

Mapping efficiency is shown in Fig. 6.19. With enough data to fill up the execution

layer of array size N, the efficiency is approaching maximum, however, it can be noted

that it comparison with simpler kernels, it is less efficient. Main contributor to inef-

ficiency is execution at low matrix ranks, where the ratio of full execution windows

w.r.t. partial execution windows decreases. Expected speedup from mapping when

scaling N, is shown on the right side of Fig. 6.19, very close to the expected theoret-

ical value i.e. scaling by x amount of elements a speedup of close to x is achieved.

Detailed data are added to Appendix B, Fig. B.11-B.12.

6.3.9 Givens Rotation (GR)

6.3.9.1 Derivation of Parallel CSFG and CSDFG Algorithms

In classical GR [68], zeroing out one element is done by applying a rotation locally

i.e. multiplying with a constructed Givens matrix of size 2× 2, such that the chosen

element – part of a local 2× 2 sub-matrix – becomes zero, then updating the rest of

the matrix to compensate for this multiplication and conserve the information of the

annihilated element. [137] This is one of the more complex NLA kernels used for QR

factorization, employed in many applications.

The construction of this Givens matrix involves square-root and division opera-

tions and its execution contains heavy sequential parts. Since especially square root is

a complex operation to implement in hardware and even ASIC implementations are
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resource-intensive, attention was focused on simplified versions of the algorithm. In

Square-root Free Givens rotation (SFG) [68] and Square-root and Division-Free Givens

rotation (SDFG) [70], these architecturally complex operations are omitted by increas-

ing computational complexity by using more additions, subtractions and multipli-

cations at the expense of numerical precision and stability. Although this simplifies

hardware implementation, it still does not allow a parallel implementation, because a

new Givens matrix generation for zeroing out a new element requires completion of

the updates of the matrix elements of the affected rows. [137]

In [111] it is shown that by merging the effect of several Givens matrices in a

large set of operations, several elements can be zeroed out at once, affecting several

rows. The column-wise versions of the algorithms (CSF and CSDF) are also pro-

posed in [136], derivation of which is reproduced here for clarity. The significant

advantage of this approach is that this larger set of operations for completing a large

rotation is highly parallel, especially the updates on several rows. When mapped onto

highly parallel architectures, such as Layers, significant efficiency is gained although

the amount of computation is increased. [137]

In either case (SFG or SDFG), it takes n(n−1)
2 sequences to upper triangularize the

matrix of size n× n, as shown in Fig. 6.20.

The Givens matrix (for SFG and SDFG) G is defined by:

Gi,j = diag(Ii−2, G̃i,j, Im−i) (6.11)

A repeated application of the Givens matrix for each sub-diagonal element yields:

(Gn,1Gn−1,1.....G2,1)(Gn,1Gn−1,1.....G2,1)
T = In×n (6.12)

Each step creates an execution dependency on the (partial) updates for the affected

rows which limits parallelism and scalability.

Figure 6.20: Annihilation regime in classical SFG and SDFG algorithms [136]
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Figure 6.21: Annihilation Regime in Column-wise GR Algorithms (CSF GR and
CSDF GR) [136]

The main idea for the CSF and CSDF algorithms is to merge the effect of several

Givens matrix applications, such that several elements can be zeroed out at once,

affecting several rows. Thus Eq. 6.12 can be extended for multiple columns of the

matrix to annihilate n(n−1)
2 elements simultaneously. [136] If Q1 = Gn,1Gn−1,1....G2,1,

Q2 = Gn,2Gn−1,2....G3,2 are defined so and Qn−1 = Gn,n−1 then

Q1Q2....Qn−1X = QX =

[

R

0

]

(6.13)

where R is an upper triangular matrix of size n× n. This creates a large set of highly

parallel operations for calculating the large Givens matrix and also yields a signif-

icantly larger parallel update field encompassing several rows. The number of de-

pendent steps is reduced, as shown in Fig. 6.21, allowing flexible mapping of the

computations to available resources. [136]

Without delving into mathematical details, the following example illustrates how

the Column-wise versions of the SFG and SDFG work. An interested reader can

check the mathematical background in [68] [70] and [111]. The updated matrix Q1X

is shown for SFG and SDFG in (6.14) and (6.15) respectively, after applying cumulative

Givens matrix Q1 zeroing out the sub-diagonal elements of the first column of a 4× 4

input matrix and the necessary updates for each affected row. [137]
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Example: Taking input matrix X =













x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44













and applying one iteration

of CSFG yields

Q1X =















p3
x41

x11x12+s11
x41

x11x13+s21
x41

x11x14+s31
x41

0 x12 −
x11
p2
s11 x13 −

x11
p2
s21 x14 −

x11
p2
s31

0 x22 −
x21
p1
s12 x23 −

x21
p1
s22 x24 −

x21
p1
s32

0 x32 −
x31
x41

x42 x33 −
x31
x41

x43 x34 −
x31
x41

x44















(6.14)

Similarly, applying one iteration of CSDFG on X yields

Q1X =













p3 x11x12 + s11 x11x13 + s21 x11x14 + s31

0 x11s11 − x12p2 x11s21 − x13p2 x11s31 − x14p2

0 x21s12 − x22p1 x21s22 − x23p1 x21s32 − x24p1

0 x42x31 − x41x32 x43x31 − x41x33 x44x31 − x41x34













(6.15)

where

p1 = x241 + x231; p2 = p1 + x221; p3 = p2 + x211
s12 = x31x32 + x41x42; s11 = x21x22 + s12

s22 = x31x33 + x41x43; s21 = x21x23 + s22

s32 = x31x34 + x41x44; s31 = x21x24 + s32

It is interesting to note how the p and s terms accumulate over the rows and how

these are shared in the rows and columns, creating parallelism and also input data

locality. [137] △

6.3.9.2 Mapping the Algorithms

Carefully analyzing CSDFG and CSFG, terms with special properties can be identi-

fied: “p”, “common”, “rest” and “s”-terms. For each zeroed element, its row must

be updated with effect of current previous zeroed elements, accumulated in the “p”

and “s” terms, which required addition of squared terms for “p” and accumulation of

one multiplication for “s”. During the calculation of partial “p” and “s” terms, data

is broadcast on the row, which represents the “common”, and is consumed together

with the local term for each column, representing the “rests”. [136]

Fig. 6.22 shows how the algorithm progresses through the input matrix and the

mapping of the kernels of each algorithm. Modulo-scheduling concepts were used to

unroll the bottom→top kernel progress over one column to extract the common data

points and pipelined the computation such that all PEs are busy, independently. Each

PE is responsible for one column vector, allowing scalability with the window size



114 Chapter 6. Tunable Flexibility: The Layers Approach and Architecture

Figure 6.22: Mapping CSDFG and CSFG: algorithm execution over input data, with
the two kernel mappings. [137]

N2 − 1, reserving one PE to execute computation for “p” and division in case of CSF.

The downside of this kernel scheduling is that this element’s efficiency was sacrificed

to keep regularity and scalability in the algorithm progression. In the kernel for both

algorithms, the “common” and “rests” terms are used twice, once for “s” calculation

and once for the updates, in subsequent rows, allowing us to temporarily save these

terms in L1 and distributing them as needed. This saves on one hand memory load

bandwidth, but also the memory read latency on the other hand. Both algorithms use

no more than 4 registers per PE in L1, the current architecture being configured for

up to 7 L1 registers. [137]

From the architectural language perspective, to exploit data locality, local storage

functions were required, coupled with broadcast functions for the “p” coefficients.

6.3.9.3 Complexity

For an n × n input matrix, the complexity of the column-wise version in terms of

additions and multiplications is as follows, including divisions for CSFG.

MCSFG =
2n3 + 3n2 + n

3
; ACSFG =

4n3 − 3n2 − n

6

DCSFG =
n(n− 1)

2

MCSDFG =
2n3 + n

3
; ACSDFG =

2n3 + 3n3

6
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Figure 6.23: Mapping efficiency and speed-up for the two column-wise GR kernels.
[137]

where MCSFG, ACSFG and DCSFG represent multiplications, additions and divisions in

CSFG while MCSDFG and ACSDFG represent multiplications and additions in CSDFG,

which has lesser multiplications than the non-column version in [70], while of CSFG

the complexity does not change. [136]

6.3.9.4 Efficiency

The scheduling was optimized for L0 PEs in 5 macro-cycles for CSDFG and 4 macro-

cycles for CSFG, taking the array size as a parameter achieving > 99% mapping

efficiency for array sizes N > 5, and > 90% for N = 2..4, excepting the 2×2 CSDFG

for which only 85% could be achieved, as shown in Fig. 6.23. Optimal usage could

not be achieved without breaking regularity and scalability. The first PE recalculates

the “p” terms for each update window shift, since storing input matrix column size

number of “p” terms would be infeasible for large matrix sizes. In case of CSFG

the divider latency (4 cycles) could be pipelined with the calculation of “p” terms.

Detailed data are added to Appendix B, Fig. B.13.
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6.4 Architectural Performance Evaluation with the NLA

Kernels

6.4.1 General Considerations

For this exploration, Layers has been coded completely in the LISA ADL of Synopsys

Processor Designer, completely parametrized for easy scalability. Simulations have

been conducted for random square input matrices of size 4..16384, for different com-

binations of P = 2..32 and N = 2..10. The functional assembly program for each

of the case study kernels have been coded in a scalable way by means of embedded

ruby scripting. Additionally some LISA code parts have also been parametrized with

ruby, allowing a parameter-based scalable generation of RTL code. Result values are

for single-precision floating point (32-bit), as the execution layer is based on 32-bit

floating point library modules from Synopsys DesignWare. For these configurations

RTL code has been generated and synthesized with DesignCompiler I-2013-SP5 for

Faraday 65nm standard-cell ASIC technology library.

A high-level power estimation is conducted with PowerCompiler with back-annotated

switching activity files from RTL simulations. For lower size designs, clock-gating has

been enabled at synthesis, marked with _cg in the results. For larger designs the ad-

ditional clock-gating circuitry used more power than it actually saved, hence those

results are removed for clarity.

Dual port memory banks were employed, however towards the Layers L2 only one

port of each bank was visible, the second one remaining reserved for System-on-Chip

integration. Also, while scaling the kernels and Layers array, using more memory

banks (ports) than the minimal amount for sustaining data transfer for the optimized

kernel blocks yielded greater power and area usage with no advantages, as the power

gained from more relaxed L1/L2 data handling did not compensate for the power

and area used for additional structures.

6.4.1.1 Programmability

These assembly programs are completely parametrized using embedded Ruby code,

allowing generation of required variants for the architectures considered (different

P and N). This occurs by modifying a defines.h header file, and generating the

required assembly code via Ruby for each kernel and architecture size. As the lan-

guage of the architecture does not change when the architecture scales coupled with

the scalable mapping of the kernels, scripting the appropriate scaling factors was

straightforward. For instance, the assembly program contained

• 5 L0-cycles (– 5 L0 functional words) for GEMM,

• 13 L0-cycles for GEMV,

• 11 L0-cycles for DOT including addition folding,

• 12 L0-cycles for LU,
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Figure 6.24: Timing results for GEMM. More than an order of magnitude speedup
can be observed. Other kernels show similar results. [139]

• 17 L0-cycles for CSDFG and 28 macro-cycles for CSFG, etc.

, including prolog and epilog of the kernels. As the array was scaled, the number of

required assembly functional words did not change, but it contained more functional

calls (automatically scaled) according to architecture size. The ease of such scaling

is one of the main strengths of functional reconfiguration-based programming and

scalable mapping optimizations presented in previous sections. Moreover, such short

programs can be produced manually without significant effort.

6.4.2 Time, Energy and Scalability

After performing synthesis, the timing of the architecture and thus that of kernel’s

execution could be extracted, coupled with power estimation data. Detailed timing

results for the GEMM kernel are provided in Fig. 6.24 for each configuration and in-

put matrix size, highlighting the scalability of our approach. Execution time spreads

over several orders of magnitude with varying input data size, while an order of mag-

nitude speed-up can be maintained between the smallest and largest array for large

input data sizes. Except for the largest architectures, where the critical path of the L1

structures severely affected frequency and thus energy, the architecture and mapping

scale with almost constant energy (<10% variance), translating into a clean trade-off

between area and speed, without affecting energy. Other kernels show similar perfor-

mance, detailed data is summarized in Appendix C.

The trend is slightly broken for the largest designs. The sudden increase in area

and critical path is due to the upgrade from 3-bit multiplexers sufficient for N ≤ 8

interconnects to 4-bit ones and the longer wire length. Reducing the interconnect

length in L1 would cancel out the penalty for large arrays by shortening the critical

path, if large designs are necessary. Clock-gating optimization has been enabled dur-

ing synthesis exploiting the switching activity information from simulations, which

for smaller designs (marked with _cg) improved results by roughly 20-40% compared
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to non-clock-gated counterparts. (Fig. 6.27). For large designs the overhead in power

and area of inserting clock-gating logic was higher than the actual saved power, those

results are omitted for clarity. [140]

Fig. 6.25, shows the energy results for the GEMM kernel. Except for the largest

architectures (N=9,10), where the critical path of the L1 structures severely affected

frequency and thus energy, the architecture and mapping scale with almost constant

energy (<10% variance), translating into a clean trade-off between area and speed,

without affecting energy. [140]

Thus, designs that need to respect certain requirements in the amount of memory

ports or a certain amount of performance or area, can be easily picked from the

scalable set, without needing to consider the energy impact of the choice, as energy

stays constant for a given workload. In terms of energy, it is very important to note

how the overall energy remains comparable for a given input matrix size, letting

designers to directly trade off execution speed with area, without worrying about

energy. The loss of frequency with increasing size, power scaling and speed-up scaling

balance out to a constant energy requirement. [140]

Fig.6.26 reflects this trade-off capability for the Givens rotation kernel. For given

architectural parameters, such as the ratio r, ports P and array size N2, upper bounds

on the available memory bandwidth and processing capability can be traced. Simi-

larly, a given kernel mapping, certain requirements on memory, data movement and

processing can be deduced from the optimized kernel and the application language.

Lower rwould require more than 2× Pworth of bandwidth. On the other hand if both

PE and port number is constraint, mapping efficiency must be sacrificed by execution

parallel code sequentially, to accommodate the bottle-neck. Either of these parame-

ters can be used as the optimization target when mapping: e.g. if the architecture

is limited to 4 memory ports, the chart in Fig.6.26 shows up to how many process-

Figure 6.25: Energy results for GEMM. Except the largest arrays energy stays con-
stant when scaling N. Clock-gated designs *_cg perform better. Con-
stant energy is required for the same problem size across variants, giv-
ing a clean area:performance trade-off. [139]
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Figure 6.26: Architectural memory bandwidth limits, mapping-based limits vs. ac-
tual algorithmic bandwidth requirements with varying N2 and P. [137]

ing elements these memory ports can accommodate, using which kernel mapping.

Vice-versa, if a certain performance of the kernel is desired, the timing performance

shows all architecture that respect the performance constraint, therefore necessary

memory bandwidth can be determined for a given kernel. Since energy is quasi-

constant whichever architectural variant is picked for a given kernel input data size,

it can be taken out of the equation. Layers allows smooth scaling for exploring the

optimal point for a given application, trading off mapping optimality and parallelism

for resources.

Thus, any of the variables can be used as a constraint, from which others can be

derived, allowing a truly scalable mapping and resource trade-off.

The area and power results are illustrated for the GEMM kernel in Fig. 6.27 and

Fig.6.28. Other kernels have very close values, due to small differences in switching

activity, for the power. Area increases steeply with an increase of array size, as does

power. For energy, this is then compensated however by the architectural flexibility

to match the application closely and the resulting speed-up in time.

6.4.3 Comparisons

6.4.3.1 Options with Layers

Fig. 6.28 provides some area, frequency and performance density data. The frequency

of each architecture is limited by the control flow complexity in the state machine

stage for small N, and by L1 critical path for larger N at r = 1 : 8 : 8. Choosing

lower inter-layer speed ratio r, the fp PEs limit overall frequency, while sacrificing
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Figure 6.27: Power results for GEMM and GFLOPs/W for Layers. Clock gated de-
signs perform much better. [139]

Figure 6.28: Area, frequency and performance density for the Layers architecture.
Clock-gated designs (*_cg) have worse performance density and lower
frequency but have slightly better area values than their counterparts.
Largest designs have significant area increase due to bigger multiplexer
and decode logic structures (3-bit → 4-bit) and significant frequency
penalty due to long L1 wires. [139]

memory bandwidth, especially when requiring a divider. When comparing to the

clean version of Layers, it is interesting to note that the reconfigurable control path

slows the architecture down, although by not operating near maximum frequency

has great advantages in power consumption (Table 6.1).

The clean version does not contain the control flow language elements required

for kernels, which are kernel specific and sometimes have a long critical path. An

automated derivation of these is attempted and described in Chapter 7.

Comparing with other architectures is difficult for a variety of reasons, mainly

because of different algorithms and platforms, making comparisons often unfair.
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6.4.3.2 LAC

Most recent results on LAC [126], a CGRA targeting linear algebra, show comparable

numbers for LU with partial pivoting. A fixed block-based mapping is used and ar-

chitectural enhancements for pivoting are employed to reach excellent performance.

Although LAC is considering a more complex algorithm, it lacks the seamless scal-

ability provided by our architecture and mapping solution. While performance in

terms of aggregate energy efficiency is similar (Table 6.1), the estimated area of LAC

is 6.2× larger than a similar-sized Layers core. An exact comparison is not possible

due to the different process libraries and the estimated nature of the results reported

in [126]. It would be interesting to compare actual post-synthesis and post-physical

design results in the same technology node. [140]

6.4.3.3 REDEFINE

A recently enhanced REDEFINE CGRA for NLA [112] shows comparable values for

65nm, and shows better performance density if scaled to 45nm with custom DOT

product units, however no execution times for large matrices could be found. Based

on the reported latencies for 60×60 and 120×120 data size running matrix multiplica-

tion in [112], the slowest variant of Layers performs 4.2× and 2.8× faster on a 64×64
and 128×128 data set.

It is also interesting to note, how the REDEFINE architecture executes kernels,

which conceptually uses a kind of hyperfunctions to reconfigure its fabric. While it

doesn’t rely on functional configuration, the fabric tries to represent patterns from

the application DFG, such that an accelerated execution is possible. This approach is

however different from the layered approach proposed here. [140]

6.4.3.4 DSP, GPGPU and FPGA aggregated results

Table 6.1 aggregates the results over several architectures that target NLA kernels. As

the variance on architectural styles, technology, application kernel widely vary, it is

difficult to do a clean comparison. Global values that give a hint on the positioning of

Layers in the architectural landscape can be provided via power density or computa-

tion per Watt numbers. Due to a lack of clear absolute timing or energy details, more

fine-grained comparison was not directly possible.

In [60], details about a 64×64 inversion with GSGR on a modern DSP platform

are discussed, requiring 2.2ms, which is two orders of magnitude slower than the

respective triangularization on the slowest variant of our architecture for GR, however

the former handles inversion. Comparing with Tournament-GR [96] for a 8×8 matrix

the execution time of its FPGA implementation at 51.9MHz yielded 0.000365ms which

is 5.8× slower than the slowest CSFG version. In the 2D-systolic design [164] a 12×12
matrix is processed in 0.0101ms on an FPGA implementation at 139MHz, which is

25× slower than execution of a 16×16 matrix in the slowest of our designs. [137]

In [69], authors presented a novel FPGA-based fine-grained reconfigurable ar-

chitecture to map several numerical linear algebra kernels and compared with Intel



122 Chapter 6. Tunable Flexibility: The Layers Approach and Architecture

Xeon Woodcrest processor to report 10-150× speed-up/energy-efficiency improve-

ment. However, no absolute results in time or energy for any particular technology

node is reported making it extremely difficult to compare with our proposed ap-

proach. A more detailed implementation for our target kernels are reported in [97],

where the total performance results include the communication bandwidth with a PC.

Considering the overall performance, our implementation is clearly superior by sev-

eral orders of magnitude, though, the comparison is not accurate as the performance

measured for Layers is for a stand-alone core without considering complete system

integration and communication latency with a host CPU. [139]

6.4.3.5 Scaled aggregate results

To make the comparisons fair, the power and area values have been scaled to 65nm

technology node using the following relations from [23,83, 100]:

NormalizedArea =
Area

(process/0.065)2
(6.16)

NormalizedPower =
Power

(process/0.065)× (VDD/1.2)2
(6.17)

The scaled values are noted in Table 6.1 with the † symbol. Even if the scaling is

approximate, it gives a good idea of the performance ballpark of Layers. Layers shows

superior values compared to GPU, CPU and other platforms, however, it has 3×
worse area and 8× worse power than an ASIC (although, the ASIC can only run one

kernel, whereas Layers can run multiple).
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6.4.4 Complexity Evaluation

Layers is a complex architecture, shown to be better than standard CGRA, however

this complexity translates also into a lot of options when programming it. Early ver-

sions used direct extraction of coding bits for multiplexers and encoding bits for the

processing elements to create the bit-stream for the application, which is the estab-

lished way of configuring CGRAs.

Using the theoretical concepts of functional reconfiguration, the architecture has

been transformed to expose elementary functions, and a domain-specific set of lan-

guage constructs were derived, to target the numerical linear algebra domain. The

high-level architectural description and exploration, from which automatic RTL code

generation is possible, coupled with generated assembler, linker and simulator helped

in fine-tuning the structure. The immediate effect of tuning elementary functions or

language elements was visible. Derivation of the final architecture leaves open the op-

tion of targeting 3D silicon technologies or FPGAs, as the RTL code can be reproduced

at little cost, if the target structure is defined.

After deriving the scheduling of the application kernel, programming of the ar-

chitecture via functional reconfiguration is easy. Identifying and calling the required

functions from assembly is straightforward. Even reconfiguration of language ele-

ments can be easily done from assembly.

The scalability of the architecture was greatly enhanced by the functional assembly

constructs, since scaling size did not change the core functionality of the elementary

functions, their language constructs, not requiring a re-write of the assembly for every

modification. Moreover, simple scripting can extend the validity of one target appli-

cation assembly code, such that it stays valid for any size of the architecture. Just by

using the language constructs, several kernels could be seamlessly accommodated in

the data path for the targeted domain, e.g. DOT, GEMV, GEMM, LU, GivensRot, etc.,

however the architecture can be adapted to different application domains by adapt-

ing the function set to the respective domain: either change elementary functions to

optimize for the target application, or reconfigure the language elements using the

existing pool to tune architectural flexibility.

Regarding the Kolmogorov complexity K, for instance, a relative comparison

against earlier versions of the architecture from which the program size can be done.

Assembly code and programming difficulty have been reduced significantly. The ease

of programming and representation of the target algorithm via the language con-

structs led to reduced programs: e.g. general matrix multiplication (GEMM) requires

5 execution cycles in L0, out of which 2 are the hot-spot (mul+acc). The largest of

the kernels, triangular vector solve (TRSV) takes 17 execution cycles in L0, which in-

cludes a lot of exception handling and complex scheduling initiation intervals. For

instance, the LU factorization kernel on a 4× 4 earlier Layers version programmed

with configuration bits, took almost 2 months to code, including debugging, with 246

configuration words, giving a complexity K(LU) = 246words× 381 bits
word = 93726bits.

Each of these bits had to be derived manually. Programming via functional assembly

of 4 × 4 Layers, took 64 function words (8 L0 cycles), giving K(LU) = 64words ×
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330 bits
word = 21120bits, which is a 4.43× complexity reduction besides the produc-

tivity gain of using high-order functions in a scripted ruby assembly code. Since

no direct configuration bits were used, the function calls helped avoid coding er-

rors, reducing debug time. Many potential optimizations such as meta-functions (e.g.

forall, foreach, leftof, etc.) and hyperfunctions were not fully exploited in the

LISA implementation due to a limitation of the tools. However, in the RTL version

targeted for the 3D silicon implementation, higher-order function support is imple-

mented.

Exploiting functional reconfigurability, the scaled Layers architecture from 2×2
to 10×10 is programmed with the same scalable assembly code for each kernel via

scripting. Basically once the architectural parameters were entered, the script mod-

ified the assembly code to accommodate the architecture. Trying to program and

debug this with traditional bit-streams would have been near impossible, especially

since few compilers exist, even for CGRAs less complex than Layers.

6.5 Conclusions and Summary

In this chapter, a thorough exploration for one application domain has been con-

ducted, via a novel 3D coarse-grained reconfigurable architecture, called Layers. This

architecture follows the second proposed methodology for exploiting architectural

flexibility to match application requirements: tunable flexibility. The key idea of tun-

able flexibility is for the architecture to have the ability to modify its architectural

language according to application language requirements, to produce a very good

match, which leads to energy-efficiency and high performance.

The architecture uses a layered approach, separating functionally and physically

the four functional classes of memory access, data movement, data processing and

control flow processing. By means of a complex pipeline and tunable language via

hyperfunctions, the architecture can adapt to the application language interface via

reconfiguration, yielding a close match.

An deep evaluation is performed using 8 linear algebra kernels, with sufficient

differences in scheduling and processing patterns to demonstrate the architecture’s

adaptability. A performance evaluation and comparison completes this chapter.
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Chapter 7

Enhancements for Layers

In the previous chapters, the effect of architectural flexibility and high-level explo-

ration and design on energy efficiency was presented and discussed. This chapter

mirrors the research achievements of two papers, coupled with a proposal for an

integration solution, which enhance the Layers architecture:

• Automatic derivation of control flow structures in LayerQ – additional flexibility

for changing applications, without using static structures, can be achieved [134]1.

• Automatic derivation of an efficient Layer0 schedule – an important contributor

to energy efficiency [59]2.

• Integration into a host System-on-Chip architecture – a proposal on how such

an efficient architecture can be used

These enhancements permit re-targeting the architecture to other domains more eas-

ily.

Additionally, a study whether CGRAs with application specific processing el-

ements are feasible is also shortly presented, based on a collaboration paper [89].

Here, an entire family of cryptographic algorithms is implemented by using custom

processing elements optimized for Addition-Rotation-eXclusiveOR (ARX) operations.

The design is based on the high-level design concepts presented in Chapter 4. Sim-

ilar adaptations are easily applicable also to the Layers architecture, which can be

advantageous when changing the application domain.

7.1 Flexible Control Flow Via Reconfigurable Structures

In Layers, control flow is governed by the algorithmic state-machine within the Q-

stage. This is implemented in hardware as static, ASIC-like set of small q-operations,

specific to each application and split based on the function that is being performed.

However, if Layers is to be employed in other domains as well, a method for deriving

flexible control flow structures would be necessary, giving post-silicon flexibility. In

the following this research avenue is explored aiming to:

1 Parts of this chapter appear in this publication, reprinted with permission. ©2015, IEEE.
It is my pleasure to acknowledge the contributions of A. Acosta-Aponte to this section, during his
M.Sc. Thesis preparation under my supervision.

2 Parts of this chapter appear in this publication, reprinted with permission. ©2014, IEEE.
It is my pleasure to acknowledge the contributions of A. Fell to this section, during our research
collaboration.
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• find a methodology by which control flow structures can be generated automat-

ically

• explore some early architectural solutions and compare them with the existing

ASIC-like Q-layer implementation, to provide an idea of the potential of recon-

figurable control flow structures

7.1.1 Importance of Flexible Control Flow

Generally, efficient manual mapping of the data-centric kernels of applications onto

reconfigurable structures yields great results on regular multi-processor structures,

such as CGRAs. Due to this regularity, applications that have an irregular execution

pattern or include sequential control-flow code, require extra efforts to derive an ef-

ficient mapping. Specifically, these irregularities come from introduction of control

flow processing into the data flow, such as loop header updates, jumps and address

generation. It was clear from Chapter. 3, that a functional separation of application

processing tasks could be very efficient with the positive side-effect of clean, control-

lable hardware implementation. A separation between control flow and data flow

could be beneficial. This point is underlined in Chapters 5-6, where such flexibility

could be exploited. The control flow structures in the q-stages of these architectures

were implemented in a fixed way in hardware, for maximum efficiency. Also, such im-

plementation limits post-silicon flexibility, if the application domain is to be changed.

Therefore, there is a need to explore and analyze design and synthesis of reconfig-

urable structures for efficient application-specific control-flow processing, aiming to

develop a methodology to design reconfigurable control-flow acceleration modules.

Such modules can be coupled with any reconfigurable data-flow tailored structure,

like CGRAs, off-loading execution of irregular and ill-suited sequential control-flow

subroutines, which then enables a clean, regular data-flow centric mapping on the

data-side reconfigurable fabric. Such reconfigurable control-flow specific accelerators

are a first step towards automating CGRA-based accelerator design and application

mapping from high-level descriptions and could perfectly match the Layers design

philosophy.

In the following exploration, methodology and early experimental results are pre-

sented, also published in [134].

7.1.2 Background on Control-Flow Processing in CGRAs

To make CGRAs tackle larger applications, several solutions for the addition of control

flow processing have been proposed in the past, discussed in the following [134].

7.1.2.1 Centralized Control

REMARC [118] is composed by a global control unit and a fixed 8× 8 array of nano

processors. These nano processors have their own RAM and registers. The global

controller generates one nano Program Counter (PC) each cycle and is valid for all
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nano processors. Every nano processor may have different instructions stored at the

same nano PC value.

7.1.2.2 Distributed Control

RAW [156,163] uses the definition of recurrent interconnected cells. These cells incor-

porate a small fully functional RISC processor with its own program counter, program

memory, data memory and a configurable switch. It also incorporates distributed

SRAM components for memory share between the cells.

7.1.2.3 CPU Coupling

Coupling a processor to the accelerator CGRA is a commonly employed solution,

offering flexible options. With a tight coupling of the CGRA to the CPU, the CGRA

is introduced inside of the pipeline of the CPU. A loose coupling employs shared

registers or a special bus to connect the CPU to the CGRA.

The rASIP [40] is an example of tightly coupling the reconfigurable fabric to an

application-specific instruction-set processor model by allowing the CGRA to imple-

ment special custom instructions. Not only this exploits extra efficiency of executing

complex custom instruction on-demand in the reconfigurable fabric, but also adds

post-silicon flexibility to the system: a new application domain can also benefit from

efficient execution, since new custom instructions can be accommodated in the recon-

figurable side.

Loose coupling is employed in MorphoSys [151], where a Tiny_RISC processor,

a fixed 8 × 8 16bit PE array, a data cache and DMA controller are linked together.

The RISC processor handles control flow code, while the PE array accelerates data

processing. The operation of the PE array follows the Single Instruction Multiple Data

(SIMD) principle, which limits the efficiency of acceleration for some applications.

ADRES [110] defines a template which can be molded for application optimiza-

tion, using two modes of operation. A VLIW mode, where the top row of the PE array

is used as a sequential VLIW structure and an array mode, where the entire array is

used as a standard CGRA. The VLIW mode allows ADRES to address control flow

segments of code, while the data processing is done in the CGRA mode. The modes

of ADRES are mutually exclusive, which means it is not possible to run both at the

same time. ADRES implements predicated operations for inner loop control flow.

The communication between the RISC processor and the array in FloRA [95] is

done through memory centric operations. The rows of PEs in FloRA share the instruc-

tion in a pipelined fashion. This means that the first PE of a row fetches an instruction

and forwards it through a pipeline register to its neighbor and so on. In an effort to

improve control flow performance, Han et al. [76] include Dual Issue Single Execution

(DISE) to the PEs, while in [75] it is extended with predication techniques and power

efficiency impact is evaluated.
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7.1.2.4 Heterogeneous Processing Elements with Control Functionality

The eXtreme Processing Platform [26] has three different PEs. One for memory, one

for arithmetic and logic operations and another for functional operations. PE for

functional operations implement a full sequential VLIW processor. This integrates

more than one VLIW to the CGRA and allows for higher control flexibility.

In [91], different reconfigurable tiles are used, that can be dynamically connected

to implement RISC and VLIW instruction set architectures. There is also a mix be-

tween fine and coarse grain reconfigurable structures for data path implementation,

determined by each application.

Mapping complex ASIC-like finite state machines (FSM) and data path based on a

heterogeneous CGRAs is done in [148–150], where special PEs were defined to map

FSM functionality with multilevel control hierarchy. The data processing is mapped

to PEs supporting data path implementations and memory storage.

A CGRA with capabilities of implementing expression level operators [20] is com-

posed of a control unit and reconfigurable array cell, strictly designed for applications

described as software pipelines with modulo scheduling.

7.1.2.5 Dedicated Control Flow Structures

The Layers accelerator, as described in Chapter 6, features a design where a func-

tional separation of memory access, data movement, processing and control flow is

employed, each class using dedicated hardware structures for execution. This sepa-

ration enables implementation of dedicated control flow structures, using algorithmic

state machines, which are small segregated control-flow pieces, are combined to de-

fine complete control-flow parts of application kernels targeting the linear algebra

domain. Each piece is implemented as a static ASIC piece, while the data-flow plane

is completely reconfigurable.

Due to this clean separation between control and data-flow planes, it is an excel-

lent starting point to conduct a design space exploration for a reconfigurable control-

flow accelerator, able to replace the dedicated ASIC structures.

7.1.3 Control Flow Analysis of the Candidate Kernels Running on

Layers

Taking 9 linear algebra kernels from Chapter 6 as the target application domain, 119

control-flow pieces of the Q-stage of Layers is analyzed, in order to extract how exactly

control flow is processed and what kind of hardware resources, processing element

types and interconnects may be needed to construct a reconfigurable control flow

structure, presented in the following [134].

7.1.3.1 Control Flow Representation

A graph-based intermediate representation, a control-flow graph (CFG) is employed,

starting from the single static assignment forms of the high-level code. To construct
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this representation, several techniques can be used, as follows. Predication, a tech-

nique derived from [18,53] has been used in CGRAs as an efficient way to incorporate

control flow capabilities to the PEs [75, 110]. Advanced predication using Dual-Issue

Single Execution technique [76] executes both outcomes of a control flow branch, at

the expense of doubling the instruction code word. Predication transforms the CFG,

where branching is needed due to control divergence, into a clean data-flow code

allowing a straightforward hardware implementation [103] (Fig. 7.1).

Figure 7.1: Partial (left) and full (right) predication code and corresponding hard-
ware structure. [134]

One essential issue when considering control flow implementation is that the in-

formation necessary to decide a control flow divergence must usually happen in one

execution cycle of the CGRA array block. The most important reason would be effi-

ciency, as the PEs should be always busy with meaningful computation. If the control

flow decision processing takes several cycles like in classic CPUs, the entire array

needs to wait for the result, as is the case in ADRES [110].

Figure 7.2: Partial (black) and full (red+black) predicated CFG and corresponding
hardware structure. [134]

In Fig. 7.2 partial/full predicated source code, CFG and a naïve hardware imple-

mentation is presented. Partial predication disables the write-back operation for the

invalid branch, while full predication can disable any node if on the invalid branch.

For a configurable control flow, however, it is not known when and how a node will

be predicated, nor whether or from where a predication line needs to connect, as

this is application-dependent information. Moreover, predication results need to be

instantly forwarded, if a one-cycle decision is to be made.
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7.1.3.2 Full Combinatorial Predication

A new technique is proposed to realize CFGs and its hardware implementation, called

combinatorial full predication, which allows all the above elements to be configurable.

With similarity to Petri nets, this technique incorporates a token flow to distribute

predication information, without requiring the high fan-out of full predication, nei-

ther the reduced energy efficiency of partial predication. Each conditional statement

generates a token, which can be compared by child nodes with a pre-defined Boolean

value stored in the child node. The token is forwarded towards child nodes, requiring

only a parent-child connection. If the local comparison is true, a new true token will

be generated and forwarded to the new children; a false token otherwise.

Configurable flexibility is enabled by the set of configurable Boolean values of

each node in the CFG, which may be set to true or false predication expectancy,

according to application control flow information. These bits can be reset to other

values when the application changes and the CFG nodes are relinked and re-used in

the hardware implementation to reflect the application CFG.

Figure 7.3: Full combinatorial predication: a token-flow based predication which
allows configurability in hardware. [134]

Fig. 7.3 illustrates this for a full-predicated source code. When a Φ-function needs

to be calculated, only the source line which has a true token is forwarded. If both are

true, a false token or an error signal is generated (indication of a cyclic graph or other

control-flow anomaly unacceptable for a single-cycle combinatorial operation).

A naïve hardware implementation requires an additional token bit-line added to

the data lines, a configurable 1-bit register and a 1-bit comparator for every node. The

pre-determined values for the registers are application dependent and can be filled

at programming time (configuration). Of course, to be able to implement any CFG,

the interconnects between the nodes need to be configurable also (details in the next

section).

For the case-study domain, all 119 CFGs are generated and analyzed, such that a

hint of possible hardware requirements may be deduced. Results show that 76% of

the operators were integer arithmetic (ADD, SUB, MUL), 13% comparisons (>,<,6,>

,=, 6=) and 11% logic (AND,NAND,NOR,OR,INV). Fig. 7.4 shows size distribution, height

and width of the considered sub-graphs.
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Interesting to note that only a few CFGs are very tall (high critical path), very wide

(high parallelism and fan-out) or very large (high number of nodes), hinting that the

implementation requires high flexibility while size can be reduced if the largest graphs

can be split by trading off the 1-cycle execution constraint. Furthermore, regular node

structures with certain operation support suggest a limited control flow architectural

language, which can be exploited to generate such structures automatically.

7.1.4 Control Flow with a Homogeneous Array of Functional Units

Based on the CFG analysis, first an architecture based on regularity and modularity is

considered, as discussed in the following [134]. Starting from a Functional Units (FU)

that can execute all operators encountered and feature a token register, an array is

built where via configuration options parent-to-child node connections can be realized

between PEs. This allows a high grade of flexibility to accommodate different number

of control-flow operations, by adding rows and columns to the array. Every created

path needs to start and end in a register file to avoid creating timing loops. The

more FUs are chained, the more complex CFGs can be mapped. The interconnect is

modeled as Row- and Column Broadcast Lines (RBL, CBL), with multiple word-sized

lanes, similar to FPGA bit-level interconnect. It is segmented at every FU access point

via a configuration multiplexer, allowing to create shorter or longer point-to-point

circuit-switched network, but also easily allows one-to-many broadcasts. To avoid

bus congestion, nearest neighbor and nearest diagonal connection on the column is

added. Fig. 7.5 illustrates a PE with corresponding input/output lines, which can be

tiled to any size.

Figure 7.5: A tile-able structure featuring a functional unit with row and column
broadcast lines. [134]

To construct the architecture for the 119 CFGs, Alg. 1 is employed. Lines 6 and 7

are not trivial to automate, but a human-guided mapping made this process simple,

exploiting the regular structure. The resulting architecture required 11×3 FU array

with 2 RBLs and 1 CBL. Top and bottom rows do not have preceding RBL and fol-
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lowing CBLs, respectively. The weakness of this approach is 1) large FU replication,

2) long critical path and 3) manual mapping.

Algorithm 1 Homogeneous Array with CBLs and RBLs Architecture Generation [134]

Input: CDFG with predication of a Q_Op
Output: Homogeneous n×m array of FUs, r RBLs and c CBLs Architecture
1: Select one critical path
2: Place in a 1-D FU array arrangement of length equal to critical path length
3: Delete nodes and edges in the selected path of the CDFG
4: while nodes left without placement do
5: Select next longest path
6: Place nodes with direct connection to other placed nodes with the current

available hardware resources
7: Place the rest of nodes with the current available hardware resources
8: if previous placement attempts fail then
9: if no more FUs available for node placement then

10: Add 1xN FUs and corresponding RBLs and CBLs
11: continue ⊲ jump to start of while loop
12: end if
13: if not enough CBLs for data movement then
14: Add one CBL for each FU column
15: continue ⊲ jump to start of while loop
16: end if
17: if not enough RBLs for data movement then
18: Add one RBL for each FU row
19: continue ⊲ jump to start of while loop
20: end if
21: end if
22: Delete nodes and edges in the selected path from CDFG
23: end while

Figure 7.6: A VLIW architecture with different FUs can execute a split CFG effi-
ciently and transparently due to higher execution rate. [134]
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Figure 7.7: The resulting control-flow specific VLIW architecture. Functional units
are tailored for configurable cascaded execution. [134]

7.1.5 A VLIW-like Control Flow Processor

If the constraint of single cycle execution of all CFGs is lifted, a VLIW-like architectural

solution which takes multiple cycles for processing can be considered. This, of course,

implies that this module has to run at higher clock frequency (tics) than the Layer 0

array (tocs), such that data plane scheduling remains intact.

By splitting a longer CFG into several tics, it is mapped to the VLIW architecture

and executed transparently w.r.t. the data plane execution of the array, which is bound

to tocs, shown in Fig. 7.6.

It is important to note that a split CFG may not execute any intra-toc jumps,

as all jumps have to be synchronized with the CGRA execution. For the mapping,

ASAP/ALAP scheduling can be employed such that the CFG nodes can be distributed

into a FU×clk_factor grid, taking care to save any intermediate results in the register

file, according to token status (values with invalid tokens need not be stored).

The VLIW architecture can be seen in Fig.7.7. The architecture deviates from the

standard VLIW (Fig. 7.6) in that there is a Pre-Functional Unit (PFU) and that each FU

contains two comparators (COMP) and an ALU in a combinational chain. The PFU

can execute a varied range of control divergence processing, which can then use full

combinatorial predication for FUs. All FUs have the same input source ability and all
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can write back to the register file one value. The vertical multiplexers represent the

possible input sources for the predicate value.

7.1.6 Graph-Theoretic Approach to Control Flow Architectural

Derivation

Having explored some classical avenues for control flow structures, a methodology

for automatic optimization and generation of control flow architecture is presented in

the following [134].

7.1.6.1 Theoretical Background

Starting from the requirement that all 119 CFGs have to be supported in one ar-

chitecture, a direct optimization approach is attempted. CFGs are, property-wise,

graphs, therefore a graph-theory based solution should be possible. The concepts of

Maximum Common Subgraph [98] and Minimum Common Supergraph [36] can be

applied to generate the common architecture. This involves two steps (Fig. 7.8):

• determining the graph that encloses most common subgraphs

• adding the remaining parts with a minimum number of additions such that the

resulting supergraph contains all members

Figure 7.8: Illustration of relevant graph theory definitions. The subgraph isomor-
phism is f : 1→ a and 3→ b. [134]

Some definitions from graph theory will aid in understanding the concept in more

detail:

Definition 7.1.1. A labeled graph is a 4-tuple G = (V, E, α, β), where V is a set of
vertices or nodes, E ⊆ V × V is a set of edges, α : V → LV , β : E → LE are functions
assigning each node and edge a set of labels, LV and LE are finite sets of node and
edge labels. �

Definition 7.1.2. Let G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) be graphs. G2 is
said to be a subgraph of G1 (notation G2 ⊆ G1), if V2 ⊆ V1; α2(v) = α1(v)|∀v ∈ V2;
E2 ⊆ E1 ∩V2 ×V2; β2(e) = β1(e)|∀e ∈ E2. �
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Definition 7.1.3. Let G1 and G2 be graphs, furthermore let G2 ⊆ G1. Then G1 is a
supergraph of G2. �

Definition 7.1.4. Let G1 and G2 be graphs. A graph isomorphism between G1 and
G2 is a bijection f : V1 → V2 (between the vertices of G1 and G2), such that: α1(v) =
α2( f (v))|∀v ∈ V1; any two vertices u, v ∈ V1 are adjacent in G1 ⇐⇒ f (u) and f (v)
are adjacent in V2 and β1((u, v)) = β2(( f (u), f (v))) If such a bijection exists, G1 and
G2 are isomorphic (notation G1 ≃ G2). �

Definition 7.1.5. Let G1, G2 and G3 be graphs, furthermore let G3 ≃ G2 and G2 ⊆ G1.
In this case, f is called a subgraph isomorphism from G3 to G1 and G3 is said to be
subgraph isomorphic to G1. �

Definition 7.1.6. Let G1 and G2 and g be graphs. It is said that g is a common sub-
graph of G1 and G2 if there exists a subgraph isomorphism from g to G1 and from g
to G2. �

Definition 7.1.7. Let g fulfill Def. 7.1.6. g is said to be the maximum common sub-
graph if there exists no other common subgraph with more nodes than g (notation
MaxComSub(G1,G2)). �

Definition 7.1.8. Let G1 and G2 and G be graphs. It is said that G is a common
supergraph of G1 and G2 if there exists a subgraph isomorphism from G1 to G and
from G2 to G. �

Definition 7.1.9. Let G fulfill Def. 7.1.8. G is said to be the minimum common super-
graph if there exists no other common supergraph with fewer nodes than G (notation
MinComSup(G1,G2)). �

The first known algorithm for calculating the MaxComSub of two graphs was

proposed by Levi [98]. In that work there is a subtle, yet important, difference to

Def. 7.1.2. In [98], the definition of the subset of edges is defined as E2 = E1 ∩V2×V2.

As stated in [107], this is a more restrictive definition of subgraphs. In Raymond

et al. [145], the term Maximum Common Induced Subgraph (MCIS) is used when

referring to those resulting from the definition of subgraph in [98]. In the same work,

the term Maximum Common Edge Subgraph (MCES) is used with the definition of

subgraph in [107]. The definition from [107] is adopted here. Replacement of the

MCIS by the MCES has no effect on the validity on Def. 7.1.9, as it will become clear

in Theorem 7.1.13. The following definitions are taken from [36] and adapted to the

MCES definition, which conclude with the relationship between MinComSup and

MaxComSub.

Definition 7.1.10. Let G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) be graphs, with
G1 ⊆ G2. The difference of G2 and G1 (notation G2 − G1), is a graph G = (V, E, α, β);
V = V2−V1 (the set of nodes V2 without those in common with V1); E ⊆ E2∩ (V×V);
α(v) = α2(v) for any v ∈ V; β(e) = β2(e) for any e ∈ E. �

The difference between two graphs can be understood as the resulting graph after

all common nodes and edges have been removed.
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Algorithm 2 Modified McGregor MaxComSub [134]

Input: Two CDFGs G1, G2 with their corresponding node label lists
Output: Optimal MaxComSub of G1 and G2 as node pairing list and edge pairing list
1: Determine ASAP and ALAP labels of G1 and G2 and insert to the node label list
2: Adjust the ASAP and ALAP labels of the graph with shortest critical path
3: Sort topologically the nodes in G1 and G2 based on ASAP
4: Set MARCS to contain all 1’s, arcsle f t = |V1| and bestarcsle f t = 0
5: i = 1 and mark all nodes of G2 as untried for node 1 of G1

6: while i 6= 0 do
7: if there are any untried nodes in G2 to which node i of G1 may correspond

then
8: xi = one of these nodes and mark node xi for node i
9: Refine MARCS based on the tentative correspondence of node i and com-

pute arcsle f t
10: if (arcsle f t > bestarcsle f t) OR MARCS = ∅ then
11: if i > |V1| then
12: Store x1,x2,. . .,x|V1|

, MARCS, bestarcsle f t = arcsle f t
13: else
14: Recompute ASAP and ALAP labels based on tentative correspon-

dence
15: Store a copy of MARCS, arcsle f t and the new node label list in the

workspace associated with node i
16: i = i+ 1
17: Mark all nodes of G2 as untried for node i
18: end if
19: end if
20: else
21: i = i− 1
22: restore MARCS, arcsle f t and the node label list from the workspace asso-

ciated with node i
23: end if
24: end while
25: Transform the resulting MARCS into an edge pairing list

Definition 7.1.11. Let G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) be graphs, with
G1 ⊆ G2. The embedding of G1 in G2 (notation emb(G1,G2)), is defined as emb(G1,G2) =
E2 ∪ [V1 × (V2 −V1)) ∩ ((V2 −V1)×V1)]. In other words, the edges which connect
G2 and G2 − G1. �

Definition 7.1.12. Let G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) be graphs, with
V1 ∩ V2 = ∅. Furthermore let E3 ⊆ (V1 × V2) ∩ (V2 × V1) be a set of edges with
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a labeling function β3 : E3 → LE. The union of G1 and G2 including E3 (notation
G1 ∪E3 G2), is a graph G = (V, E, α, β), where V = V2 ∪V1; E = E1 ∪ E2 ∪ E3 and

α(v) =

{

α1(v) if v ∈ V1

α2(v) if v ∈ V2
β(e) =











β1(e) if e ∈ E1

β2(e) if e ∈ E2

β3(e) if e ∈ E3

�

Using the above definitions, Bunke et al. [36] postulates the following theorem.

Theorem 7.1.13. Let G1 and G2 be graphs. Then

MinComSup(G1,G2) = MaxComSub(G1,G2) ∪E1
(G1 −MaxComSub(G1,G2)) ∪E2
(G2 −MaxComSub(G1,G2))

where E1 = emb(MaxComSub(G1,G2),G1) and E2 = emb(MaxComSub(G1,G2),G2).

The MinComSup is defined as the MaxComSub of two graphs, with the addition

of those nodes and edges of each graph which are not part of their MaxComSub.

7.1.6.2 Architectural Derivation

If all domain CFGs are merged into one MinComSup, the resulting graph can map any

CFG by construction. Some important points are still needed in order to realize this:

CFGs are directed graphs, therefore all edges are duplicated into a directed pair; there

is no direct algorithm to compute MinComSup; graphs need to by acyclic such that

single-cycle requirement is respected; an elongation of the CFG critical path should be

avoided. The first problem is trivial. For the second problem, a new algorithm needs

to be constructed. The MCES algorithm [107] is used to generate the MaxComSub, but

first a topological sort and a depth-first traversal have to be conducted on the graph

to eliminate cycles and have a measure to compute critical path length. Using As-

Soon-As-Possible (ASAP) and As-Late-As-Possible (ALAP) scheduling, the nodes are

labeled to be able to differentiate common edges and nodes of the resulting graphs

and retain construction information used later in CFG execution in the hardware.

Additionally, scheduling mobility is exploited to determine node/edge traversal order

in the graph as an additional constraint (Fig. 7.9). In the common use, mobility allows

a node to be moved between its ASAP and ALAP time slots without impacting the

length of the scheduling.

Again, in combinational circuits, this definition requires another interpretation.

Definition 7.1.14. sched_mobility(v) = ALAP(v)− ASAP(v), ∀v ∈ V the set of nodes.
�

Definition 7.1.15. comb_mobility(v) = [ASAP(v), ALAP(v)], ∀v ∈ V the set of nodes.
�
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(a) Two CDFGs with their ASAP ALAP information

(b) Adjustment of the ASAP ALAP information

(c) Three resulting MinComSups. Only the leftmost respects Def. 7.1.16

Figure 7.9: Illustration showing the validity of Def. 7.1.16 in terms of not elongating
the longest path and not creating cycles. [134]

Definition 7.1.16. Two nodes v,w with v ∈ V1 and w ∈ V2 and V1 ∩ V2 = ∅ are
pairable with respect to their mobility, without extending the longest path or creating
a cycle in the resulting MinComSup, if comb_mobility(v) ∩ comb_mobility(w) 6= ∅. �

Using the considerations above and the optimal McGregor algorithm [107], the

MaxComSub is constructed using Alg. 2, with the specification that MARCS is a

E1 × E2 array data structure which is refined by iteratively zeroing edge correspon-

dences, based on the tentative pairing of nodes (line 9, the backtrack condition –

suboptimal solutions arcsleft < bestarcsleft are discarded). The variable arcsleft rep-

resents how many of the total edges in G1 have a nonzero row in MARCS. Line 14

avoids creation of cycles. It is important to add an empty_node to the G2 list, to enable
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Algorithm 3 MinComSup Construction [134]

Input: Two CDFGs G1, G2 with their corresponding node label lists and the node and
edge pairing lists of the MaxComSub

Output: CDFG representing the MinComSup
1: Create an empty CDFG Gmcs
2: for all nodes v1 in G1 do
3: Add a node vmcs to Gmcs with the same node label list as v1
4: end for
5: for all nodes v2 in G2 do
6: if node v2 is paired with a node from G1 in the node pairing list then
7: Add a node vmcs to Gmcs with the same node label list as v2
8: end if
9: end for

10: for all edges e1 in G1 do
11: Add an edge emcs to Gmcs with the same adjacency relation from G1

12: end for
13: for all edges e2 in G2 do
14: if edge e2 is paired with an edge from G1 in the edge pairing list then
15: Add an edge emcs to Gmcs with the same adjacency relation from G2

16: end if
17: end for

Algorithm 4 MinComSup Architecture Design Top-Level [134]

Input: File containing the CDFG of each graph to be implemented
Output: One CDFG representing the MinComSup of the entire graph space in DOT

file format
1: read all CDFGs from the input file and store them in a local list of graphs
2: sort the local list of graphs in ascending number of nodes
3: while number of graphs in list > 1 do
4: pop the two graphs at the front of the list
5: find the MaxComSub of the two graphs
6: construct the MinComSub given the MaxComSub and both graphs
7: add the resulting graph in its sorted place in the list
8: end while
9: output the remaining graph

creating MaxComSubs excluding certain nodes if better results can be attained; these

will be merged later with MinComSup.

The results are then fed into the MinComSup, described in Alg. 3, which basically

adds missing nodes and edges, implementing Eq. 7.1.

Finally Alg. 4 is employed to generate the architecture graph, which is straight-

forward to implement in high-level code or RTL code. Using this methodology, pro-

cessing nodes capable of executing all operations result in a smaller graph, using
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Figure 7.10: A representation of the FUs’ interconnect structure of the Unlabeled
MinComSup structure. (All nodes are full processing elements capable
of processing all operations defined in Section 7.1.3.) [134]

unlabeled nodes (Fig. 7.10), whereas labeling the nodes as having specific processing

capability yields more refined results (Fig. 7.11).

7.1.6.3 Limitation

Although theoretically sound, execution of the proposed algorithm over entire CFG

space could not be completed. Due to the optimal nature of the MCES algorithm,

the larger single CFGs are, the more time it takes to search the design space when

including a small CFG, as more solutions and greater mobility increases number of

possibilities exponentially. Therefore, the 3 largest CFGs out of the 119 could not

be added to the supergraph within a reasonable (several hours) execution time of the

C++ implementation, however creation of either an ASIC version of the largest graphs

or creating a separate supergraph of the 3 largest ones as a separate module solved

the issue.

7.1.7 Evaluation

Also in this part, the high-level architecture description language LISA was used for

all architectures, part of the Synopsys Processor Designer tool-chain. HDL generation

is done with automatic timing optimizations. For power estimation, RTL simulation

is done with VCS_MX version I-2014.03-SP1-1 generating SAIF files which are then

fed to the synthesis tool. Synthesis is done with Synopsys DC version J-2014.09-SP1
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Figure 7.11: A representation of the FUs’ interconnect structure of the Labeled Min-
ComSup structure. Fine grained definition of processing element capa-
bilities. [134]

65nm technology library. The proposed solutions are compared versus a cluster of

ASIC implementations of each CFG.

7.1.7.1 Area Comparison

As it can be seen from Fig. 7.12, the homogeneous array reaches the largest area value.

It is almost three times larger than all other methodologies proposed in this work. This

architecture generated 33 FUs with the functionality to implement all operations in

the CFG space. Especially, this meant it generated 33 integer multipliers, which were

not needed or used in parallel. Added to this, the architecture was also the slowest

achieving only 40MHz which is a 73% decrease with respect to the fastest architecture

proposed. The Unlabeled MinComSup, if it had been used to process the entire CFG
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Figure 7.12: Area and power comparison between proposed methodologies and the
base. Values are only reported until the highest common frequency.
[134]

space, would have generated at least 33 multipliers. This would have made its area

requirements comparable to the Homogeneous Array. Because the Labeled MinCom-

Sup generates FUs with varied and custom functionality, it derived an architecture

with more FUs than the Unlabeled MinComSup version, however the area value is

better due to a more fine-grained optimization. The VLIW variant is the most area

efficient implementation of the three. Lifting some of the CFG distribution limitations

would yield more chances of area reduction and frequency increase, bringing it closer

to the ASIC solution, which uses less area.

7.1.7.2 Power Dissipation Comparison

The results for the power dissipation comparison for the GEneral Matrix-Matrix mul-

tiplication are shown in Fig. 7.12. Although it was easy to design and program,

Fig. 7.12 shows that the homogeneous array is the most power inefficient architec-

ture. The MinComSup variants show small power differences between them at lower

frequencies. At higher frequencies, the power dissipation of the Unlabeled version

increases considerably compared to its value at lower frequencies. The power dissi-

pation of the Labeled version remains stable throughout the frequencies. The VLIW

is the most power efficient variant reaching power reduction of at most 50% with re-

spect to the Homogeneous Array and 26% with respect to the most power efficient

MinComSup variant at their highest frequencies. However, this reconfigurable solu-

tion is still much slower than the ASIC solution, which also achieves 700MHz with a

lower power consumption.

7.1.7.3 Other Possible Avenues

As the three proposed hardware solutions are domain specific, based on pre-defined

constraints and requirements, it would be interesting to see what other kind of control-
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flow processors could be explored. For instance, starting from the full combinatorial

predication CFG, a node can be designed that can handle more complex token for-

warding (not limited to 1-bit) coupled with the exploration of control-flow specific

interconnect topologies. Even for the proposed solutions, optimizations are possible,

such as using MinComSup to design the VLIW FUs, etc.

7.1.8 Conclusions

This sub-chapter explores the concept of reconfigurable control flow, based on the

published work from [134]. A new token-based predication method is proposed,

based on an in-depth analysis of control flow processing from the linear algebra

domain. Three avenues of architectural design have been explored and compared,

each having the flexibility of supporting control flow in a reconfigurable manner. Al-

though the architectures derived here exhibit opportunities for further optimization,

it is shown that reconfigurable control flow could be a viable option to outsource

control-flow operations to dedicated structures in CGRA-like accelerators, which re-

quire clean and regular mapping of data-plane processing in order to be efficient.

7.2 Automated Mapping and Scheduling with

Force-Directed Heuristics

While a very efficient schedule for the execution layer can be deduced manually, it is a

slow, error-prone process. In an effort towards automation of this process, automated

mapping and scheduling of Layer0 was attempted. A clean and efficient schedule for

the processing elements, not only increases efficiency but also shortens the complexity

of mapping the application. Transforming an input algorithm in the form of a Data

Flow Graph (DFG) into a CGRA schedule and mapping configuration is, however,

very challenging. The necessity to consider architectural details such as memory

bandwidth requirements, communication patterns, pipelining and heterogeneity to

optimally extract maximum performance is paramount for an efficient mapping.

In the paper on which this section is based on [59], an algorithm is proposed that

employs Force-Directed Scheduling concepts to solve such scheduling and resource

minimization problems. The heuristic extensions proposed are flexible enough for

generic heterogeneous CGRAs as well, allowing to estimate the execution time of an

algorithm with different configurations, while maximizing the utilization of available

hardware. The experiments, compare also given CGRA configurations introduced

by state-of-the-art mapping algorithms such as EPIMap, achieving optimal resource

utilization by our schedule with a reduced overall DFG execution time by 39% on

average.
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7.2.1 Mapping Concept

In order to automate mapping an application to Layer0 or any generic CGRA, basically

the equivalence of the application needs to be mirrored in terms of the hardware

execution units, as described and discussed in detail in Chapter 3. This means that

matching options between the two language interfaces – the application on one side,

and the architecture on the other side – have to be explored and the best-matching

solution extracted.

Describing the architectural and application language interface can be done under

the form of a Control/Data Flow Graph (CDFG), which is an efficient representation

to build automated tools on. For instance, when translating the target application

into an intermediate representation of a DFG, vertices represent the operations which

need to be mapped onto the PEs, while edges represent the dependencies and data

movement among the operations which are translated into communication links of

the interconnect. On a CDFG, graph-theoretic optimization algorithms and tools can

be employed to find the match. In essence, it is a graph-to-graph matching problem,

where the target application DFG is to be converted automatically to the graph model

of the CGRA fabric, for each time index, as efficiently as possible. Here it is to be

noted that this is a known NP-complete problem [64].

An efficient graph conversion (i.e. a good match) in this context means:

• Reduction of execution time of the algorithm as much as possible by placing ver-

tices in such a way that dependencies are preserved, communication overhead

is avoided and hardware utilization is maximized.

• Minimizing the initiation interval of the algorithmic kernel (typically loops),

such that the next iteration can start as early as possible considering hardware

resources and intra-loop dependencies.

• A valid mapping (refer to definition 7.2.2) can be generated in polynomial time.

This represents the optimization of the language interface from the application side

to a quasi-fixed language of the architectural side. As described in Chapter 3 a similar

optimization can be attempted to optimize the language from the architectural side as

well, using a meet-in-the-middle strategy; automation of this attempt is strongly sug-

gested but not yet explored. Naturally, a human component can attempt to optimize

both sides, as shown in the previous chapters, but here the possibility of automation

of the process is explored, limited to a single side.

To draw the framework of the automation problem, the following points are fixed

on the architectural side, to provide an optimization target for the application side:

Definition 7.2.1. A fabric is a graph in which each vertex represents one PE and the
edges all possible physical connections among the PEs that can be established by the
interconnect including time delay (in the form of local storage), i.e. the set of all
possible architectural language calls.

In a time extended fabric the fabric is replicated for each time index t. One time
index is a time unit representing the greatest common divisor of required clock cycles
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Figure 7.13: An example of a time extended fabric consisting of 4 PEs, connected to
an NoC router mounting a mesh topology. This allows capturing the
architectural language in a fashion that can be employed by automated
graph-based optimization tools. [59]

for all operations supported by the fabric. Further unidirectional edges are introduced
connecting the same PE across the time indexes ti and ti+1 (refer to the example
given in Fig. 7.13). When edges hop across one or more time indexes, it is a delayed
interconnect, possibly requiring local storage.

�

Definition 7.2.2. A valid mapping is a successful graph conversion from a DFG into an
acyclic graph that represents the time extended fabric (refer to definition 7.2.1). Each
vertex of the DFG is assigned to one or multiple PEs allowing an instruction to be
stretched over several time indexes and the dependencies among the vertices can be
established by the interconnect of the fabric. Further vertices which depend on results
produced by other vertices scheduled at time index t1, have to be placed at least at
t2 > t1. �

Basically, the language of the architecture is fixed to a graph representing the

time-extended version of the language elements that may be called in a time cycle.

Targeting this graph, optimizations of the application-side language are conducted.

Even if the problem is reduced to a single-side matching of the graphs, the com-

plexity of such a graph matching is in NP-complete. Heuristics are applied to derive

valid, but sub-optimal mappings. The heuristic proposed method does not only con-

sider a minimum execution time of the algorithm, but also keeps track of architectural

features, such as memory constraints and inter-PE communication, using concepts

from Force Directed Scheduling, proposed in [124]. The method has been further

extended to support arbitrary fabric sizes and heterogeneous fabrics in which dif-

ferently specialized PEs coexist, e.g. providing hardware support for floating point

division, square root or FFT to name a few. In addition, pipelined and non-pipelined

execution paradigms and operations requiring multiple cycles, are supported. This

covers a rather large set of possible architectural languages.
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7.2.2 State of the Art

7.2.2.1 EPIMap

A state-of-the-art scheduling and mapping algorithm is EPIMap [73], in which the

instructions of the innermost loop of the algorithm is mapped in such as way that the

initiation interval of the loop is minimized allowing to start the next iteration as early

as possible on a time extended fabric. In other words, the instructions of the inner loop

are spatially and temporally assigned to PEs so that the DFG of an iteration can be

interleaved with the DFG of the preceding one. By considering only the instructions

of the inner loop, the number of DFG vertices to be mapped, are reduced drastically

and independent replicas of the DFG are interleaved.

To generate better mappings, EPIMap employs recomputation and routing. Re-

computation is a method in which the same instruction is executed multiple times to

increase the set of destination PEs for a result. In the original time extended fabric

of EPIMap, the PEs can only communicate to their direct neighbors in a mesh and a

result cannot be sent to PEs with a distance of more than one hop. Thus, if the result

of an instruction i is consumed by more PEs than the fabric is able to provide, then i

is duplicated to increase the number of possible destination PEs.

Routing can be considered as a NOP operand for a PE to delay the consumption

of the result. It artificially induces gaps into the time extended fabric, rendering PEs

idle to reduce the density of the DFG, so that the next iteration can be scheduled

at an earlier time index. Induced NOP operands and recomputation increases the

overall execution time of the inner loop which can be partially compensated by the

better interleaving of the loop iterations. However, if the inner loop body contains

a sufficiently large amount of operations or if the algorithm does not have an inner

loop at all, EPIMap generates a schedule, which takes longer to execute due to the

under-utilization of available hardware and replication of operations.

7.2.2.2 SPR

Another mapping algorithm is called SPR (Schedule, Place, Route) [61], which can

be adapted to the specifications of the architecture. SPR is a collection of tools com-

prising of a scheduler [143], ordering the operations based on their dependencies, a

placer [90] allotting PEs to operations, and a routing mechanism [108] for the data

movement. Instead of encapsulating each of these algorithms, the placer influences

the scheduler in case the data is transmitted to a distant destination and hence the

depending operation cannot be scheduled immediately due to the communication

delay.

7.2.2.3 eFPGA Mapping

In [44] an architecture is introduced in which the computation capability is provided

by embedded FPGAs (eFPGAs) [121]. A high level modeling language is used to de-

scribe the functionality and dependencies among the operations of the DFG. With this
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information an affinity graph is created allowing to place operations with high band-

width requirements, in close proximity to each other. Once all required functionality

for a particular DFG is known and the affinity graph is calculated, the DFG is placed

onto the hardware and the eFPGAs are programmed accordingly. A reprogramming

of eFPGAs during the execution of the algorithm is not feasible, since it is a costly

and time consuming process. This is in contrast to CGRAs in which one PE can be

reused to perform different instructions on other data. Hence not only the PE needs

to be identified to perform a particular instruction, but also a time index is required,

when to execute this instruction.

7.2.2.4 rASIP Mapping

An interesting approach is introduced in [38] in which the authors not only consider

the DFG of the algorithm, but also adapt the CGRA for this particular algorithm using

a commercial high level description framework called LISA [42]. While this method

ensures the best possible execution time for the algorithm, it also reduces the grade of

flexibility that is inherent to CGRAs. Hence this tool might become only interesting, if

a design choice between an CGRA and ASIC (Application Specific Integrated Circuit)

needs to be taken.

7.2.2.5 Other Considerations

A common problem of current scheduling and mapping algorithms is the lack of

support for operations that require multiple clock cycles. For instance in today’s

scenarios it is unlikely that a 32 bit multiplier returns the result within the same clock

cycle [154]. Complex operations consist of pipelines of different depths to achieve

reasonable clock frequencies. This implies that language elements of the architecture

can span several cycles. These operation need to be handled as atomic operations by

the scheduler, but it can allow superposition of different pipeline stages.

In addition, modification of the architectural language, can add to complexity.

Heterogeneous fabrics in which the PEs can execute only a subset of all required

operations, are not considered in the mapping tools. Nevertheless, specialized hard-

ware accelerators play an important role in algorithm acceleration and the regular

structures of CGRAs certainly invite hardware developers to perform experiments by

replacing a few or all PEs, thus creating heterogeneous fabrics in which all PEs could

differ as it could be the case in Embedded FPGAs [44].

Lastly while most scheduling algorithms are geared towards an optimal usage of

the available computing resources, many do not consider memory constraints. As-

sume an operation produces a result that is an operand to a successive operation. If

the result is not consumed timely by the next operation, it needs to be stored inter-

mediately. This important issue needs to be addressed, since if this situation occurs

too often, the buffer overflows and the algorithm cannot be executed on the CGRA

without modification. In [74], the authors describe an algorithm named REGIMap,

which optimizes the mapping depending on the usage of registers.
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7.2.2.6 Motivation to Upgrade Existing Approaches

(a) The instructions and their dependency of
the inner loop of the Sobel operator for edge
detection in an image.

(b) The DFG for a 4× m matrix multi-
plication after unrolling the 2 inner-
most loops.

Figure 7.14: Example DFG for the Sobel operator used in edge detection and a DFG
performing a matrix multiplication. [59]

Limited Scope – The available schedule algorithms and the proposed ideas are scat-

tered. If e.g. REGIMap is used, it cannot consider pipelined instructions. If SPR is

used, the initiation intervals are not examined. We believe that a schedule algorithm

is required, which takes into account recent developments in CGRAs such as hete-

rogeneous fabrics and pipelined instructions and which can generate a schedule that

not only considers memory requirements, but also the hardware and interconnect uti-

lization.

Efficient Usage – The input to our algorithm is an acyclic DFG representing the part

that is designated to be executed on the fabric. Like in EPIMap, the DFG could be

restricted to the inner loop only. This is efficient only, if the DFG of the loop is large

enough so that the fabric is fully utilized. An example for such an algorithm is the

edge detection using the Sobel operator [152], which has a large inner loop consisting

of 13 instructions out of which four can be executed in parallel at maximum (refer

to Fig. 7.14a). However as it can be observed in the figure the parallelism is reduced

to two and later to only one operation. Hence instead of trying to minimize the ini-

tiation interval, the hardware utilization can be increased by allowing a sufficiently

large number of iterations of that inner loop to be considered for scheduling, even if

it results in a longer execution time for a single iteration.

Scalability – An example is multiplication of two matrices A and B of sizes n×m and

p× n respectively. The resulting DFG for the inner loop consists of one addition and

multiplication only. Unrolling this loop results in a DFG consisting of n − 1 addi-
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tions and n multiplications and two operations can be executed in parallel (refer to

Fig. 7.14b). If the fabric is scaled and more PEs are added, the second nested loop of

the matrix multiplication can be unrolled as well, resulting in a DFG consisting of m

independent subgraphs with a parallelism of 2m.

Hardware Awareness – In many algorithms variables need to be initialized, before the

inner loop is entered. They require complex operations on special PEs, but further cal-

culus depends on the result. E.g. in the Givens Rotation algorithm, the rotation matrix

needs to be calculated before it can be applied, for which a floating point square root

and division are required. Hence it is desirable to perform these operations on dedi-

cated processing elements optimized for this operation, limiting execution to a certain

PE of the fabric.

7.2.3 Proposed Approach

In this sub-section the proposed algorithm is presented, with emphasis on each mod-

ule, with examples. In summary, the algorithm proceeds in several stages, as follows:

• Capturing and classification of architectural language elements (hardware re-

sources), such as processing elements and interconnect followed by constructing

the architectural language graph model.

• Creating the time-extended DFG by adding language-dependent information to

the vertexes such as pipeline depths, latencies for a particular operation.

• Mapping and scheduling the application DFG onto the architectural pattern,

applying optimization heuristics to minimize resource requirements.

• Applying architectural resource constraints and finalizing schedule and map-

ping assignments, applying inter-PE communication minimization.

7.2.3.1 Capturing Architectural Properties

To allow capturing of generic CGRA architectures, the hardware resources are classi-

fied as flexibly as possible. Language elements containing interconnect is not modeled

at this stage, in order to achieve best possible schedule and operation mapping un-

der ideal interconnect conditions. The tool aims to deliver the temporal, spatial and

topological coordinates for each operation in the DFG with minimized inter-PE com-

munication. This allows designers to freely consider the interconnect architecture best

suited for the resulting inter-PE communication pattern (e.g. NoC, bus, etc), then ap-

plying this result to the interconnect constraints set, yielding the final schedule and

making the configuration derivable.

Let P = {pe1, pe2, . . . , pen} be the set of all PEs in a fabric. We define a pool of

operations Ops = {op1, op2, . . . , opm} and ∀pe ∈ P : pe ⊆ Ops. Further it is stated: if

two PEs support the exact same set of instructions, they belong to the same set T.

∀pe ∈ P : pex = pey with x 6= y⇒ T = {pex, pey}
and there are no two different types of PEs which can execute the same instruction:
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∀pex ∈ Ti, pey ∈ Tj with i 6= j : pex ∩ pey = ∅.

Let S be a set containing all sets T: S = {T1, T2, . . . , Tn}.

Example: A 2×2 PE array consisting of 3 adders/subtracters and pe1 having a mul-

tiplier, then P = {pe1, pe2, pe3, pe4} with pe1 = {∗} and pe2,3,4 = {+,−}. T1 =
{pe2, pe3, pe4}, T2 = {pe1}, S = {T1, T2}. The sets in S are replicated during mapping,

for each time index t (time-extending). △

7.2.3.2 Resource-Aware Scheduling and Optimization

For the input DFG, the As-Soon-As-Possible (ASAP) and As-Late-As-Possible (ALAP)

hardware-independent operation schedules are created [114]. This gives the initial

time bound tmax in which the DFG is executable, but also the maximum number of

required PEs per time index for every operation. Within the time tmax, several schedul-

ing variants may exist formed between the ASAP and ALAP schedules. Consider

Fig. 7.15a-c which depict a few scheduling variants. In the table shown in Fig. 7.15e,

the maximum required resources for each of the schedules, are listed.

(a) Schedule 1 (b) Schedule 2 (c) Schedule 3

(d) Distribution Graph (DG) for the
addition operation

(e) Maximum required resources
(language instances) for the
scheduled operations

Figure 7.15: Scheduling variants for a given DFG and the distribution graph for the
addition operation. Missing edges are load/store operations. [59]

For a given CGRA, the hardware constraints of the language constructs will deter-

mine, if at all, one of the variants can be realized in the fabric and for what values of
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t f inal ≥ tASAP. In the ideal case, all available units are used (optimizing parallelism,

efficiency) and t f inal of the final schedule stays at tASAP (optimizing speed).

The proposed algorithm exploits Force-Directed Scheduling (FDS) [124] heuristics

to search for the scheduling variant which respects or gets close to these constraints,

details follow:

7.2.3.3 Calculation of Mobility

In the ASAP schedule the time index tASAP is determined in which an operation

can be executed as early as possible, whereas the ALAP schedule calculates the latest

possible time index tALAP for the same operation. The mobility m = tALAP− tASAP+ 1

reflects the ability of a vertex to be scheduled at other time indexes between tASAP and

tALAP. For vertexes located on the critical path, m = 1. This is used for creating the

scheduling variants.

7.2.3.4 Distribution Graphs

FDS employs distribution graphs (DG), where DGTn(t) quantifies the number of occur-

rences of an operation (scheduling congestion), for a PE in set Tn ∈ S at time index t.

For each of such an operation DGTn(t) is incremented by 1
m .

Example: Let Ops = {∗,+}, P = {pe1, pe2, pe3, pe4}, pe1 = pe2 = {+} and pe3 =
pe4 = {∗}. Thus T1 = {pe1, pe2} and T2 = {pe3, pe4}.

With referral to Fig. 7.15d, the distribution graph equals to DGT1(0) = DGT1(2) =
11
4 and DGT1(1) = DGT1(3) = 1

4 . The additions marked 1 and 2 are on the critical

path and hence cannot be moved, whereas addition 3 can be scheduled to all four

available time slots, since it does not have any dependencies.

Similarly for the multiplication: DGT2(0) = DGT2(1) = 11
3 , DGT2(2) = 1

3 and

DGT2(3) = 1 respectively. △

7.2.3.5 Scheduling

For each vertex with m > 1, the effects on DGTn(t) of allocations of the operations

to all possible time indexes is calculated. The effects are comparable with the expan-

sion or contraction of springs that are attached to a fixed wall on one side and to the

vertexes on the other side for each time index and Tn ∈ S (Fig. 7.15d). The more op-

erations are scheduled in a time index, the more the spring is compressed. Removing

a vertex from a time index leads to a spring extension whereas the adding it to a new

time index causes the respective spring to be compressed. The sum of elongations

and compressions are a force which is equivalent to the overall scheduling congestion

of a DFG variant. Each movement of vertexes to a new time index results in an update

of DGTn(t), since the mobility is fixed to m = 1 for each placed vertex. Minimizing

the overall force is equivalent to the minimized resource requirement (for the given

example, Fig. 7.15c) Please note, the vertices are only referred within 0 ≤ t ≤ tmax.
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This schedule however, does not guarantee a valid schedule. If e.g. |Tn| = 1 and

one time index t has a DGTn(t) > 1, more PEs are required for this particular time

index, since the one PE is overbooked. Hence FDS is not constrained by the physical

availability of PEs and could acquire nonexistent (imaginary) PEs, as necessary, for

each overbooked operation for the respective t. For each time index and assuming

infinite hardware resources, imaginary PEs are assigned to each operation in the DFG

naïvely. In the next step these imaginary PEs are replaced by physical ones in due

consideration of the hardware constraints.

7.2.3.6 Applying Constraints

While the FDS algorithm reduces hardware’s requirements at execution time by equally

distributing the operations based on PE capabilities, the resulting DFG might still re-

quire more resources than the fabric is able to provide. Mapping the FDS schedule

to the time-extended graph of the architecture may not be possible without extending

tmax. In order to provide a valid mapping, the proposed algorithm needs to defer op-

erations beyond the current tmax. This increases execution time under consideration

of inter-PE communication, memory constraints and topological PE information, as

described in Alg. 5.

Algorithm 5 Applying hardware constraints to the schedule constructed by FDS. [59]

1: function considerHardware(DFG)
2: DG← getDG(DFG)
3: tmax ← getHeight(DFG)
4: for 0 ≤ tcurr < tmax do
5: for all Tn ∈ S do
6: resched(DFG,DG, Tn, tcurr, tmax)
7: end for
8: end for
9: end function

10: function resched(DFG, DG, Tn, tcurr, tmax)
11: while |PE f ree(tcurr)| < DGTn(tcurr) do
12: v← getVertexSubGraph(DFG, tcurr)
13: if |v| > 1 then
14: Interleave(v,DFG)
15: else
16: Defer(v,DFG, tmax)
17: end if
18: DG ← getDG(DFG)
19: tmax ← getHeight(DFG)
20: end while
21: end function

First, the availability of a PE is defined, such that overbooking of the PE is pre-

vented. In case of pipelined PEs, the latency is also taken into account, including
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result generation conflict avoidance (two operations of different pipeline depth of the

same PE should not produce two results at the same time).

Definition 7.2.3. PE f ree(t) ⊆ Tn is defined as a set in which each element is a PE that is
ready to start a particular operation at time index t. In case of pipelined PEs, the time
this new operation will take, is equal to the duration of currently executed operations
by the same PE (latency). If the pipeline depth of the new operation differs from the
depths of currently executed operations, the PE is marked as unavailable (clashing
pipeline depths). �

Definition 7.2.3 ensures that a PE cannot produce multiple results within the same

time index due to different depths of the pipeline. Next, for every set in Tn ∈ S and

every time index tcurr ≤ tmax, vertexes are assigned to the actual PEs by compar-

ing DGTn(tcurr) with the number of available PEs in PE f ree(tcurr) in the fabric. If

|PE f ree(tcurr)| ≥ DGTn(tcurr) an assignment has been completed successfully and the

next time index is examined by incrementing tcurr. Otherwise, the overbooking of PEs

needs to be reduced by moving vertexes to later time indexes using two functions

called interleave and defer, by which conflicts between the FDS schedule represented

by the distribution graphs for each time index (DGTn(tcurr)) and the architectural map

of available PEs for the same tcurr can be solved.

7.2.3.7 Interleave

This function determines, if vertices exist at tcurr, which belong to the same subgraph.

Assuming undirected edges in the time extended DFG, if a path exists between vertex

vi and vj with i 6= j, then vi and vj belong to the same subgraph. As long as the

algorithm finds such vertexes belonging to the same subgraph, the size of the sub-

branches is calculated. The vertex of the smaller branch is then interleaved into the

larger branch by deferring the vertices of the larger branch to a later time index.

Example: The DFG depicted in Fig. 7.15, consists of two subgraphs. In Fig. 7.15c the

multiplication at tcurr = 2 belongs to a different subbranch than the addition at the

same time index. However both operations belong to the same subgraph.

The multiplication would be interleaved by deferring it to t = 3 and assigning

the PE of the larger branch to it. Since at t = 3 the PE has already assigned a mul-

tiplication to it, room must be created so that definition 7.2.3 is not violated and de-

pendencies are preserved (definition 7.2.2). Hence, the vertexes of the longer branch

currently scheduled at t ≥ tcurr + 1, need to be deferred sufficiently to a later time

index t ≥ tcurr + 2, depending on the required pipeline depth of the interleaved op-

eration. This operation decrements DGTn(tcurr) by one, possibly elongating the time

extended DFG. Further, since dependent operations are placed as closely as possible

by the FDS algorithm described in Subsection 7.2.3.2, an interleaving of operations not

belonging to the same branch causes the necessity to intermediately store the result

of the preceding operation at t = tcurr. △

There is no restriction on the amount of available intermediate storage, because

the scheduling algorithm is kept generic allowing us to use it on various different
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CGRAs. Currently the algorithm only informs the user of how much storage capacity

is required at maximum.

Another observation of the interleave is a reduction of inter-PE communication,

because even the interleaved operation precedes a depending one in the larger branch.

Since inter-PE communication is considered a bottleneck and the latency of inter-

connects tends to increase exponentially while approaching saturation levels [49], a

reduction of the load on the interconnect will have a positive effect on the overall

execution time of the algorithm represented by the DFG.

Example: Consider the subgraph given in Fig. 7.16. In the first step the vertexes of

the larger branch are deferred. This deferral allows the vertex that was originally

scheduled on PE1 to be executed on PE0 instead reducing inter-PE communication.

However the result that is produced by the addition placed at t2, needs to be stored

intermediately in a buffer represented by the box. △

Figure 7.16: The effects of interleaving the multiplication into the larger branch. In
this example the pipeline depth all operations is one time index. [59]

7.2.3.8 Defer

If interdependent vertexes cannot be interleaved any further, i.e. no vertex belong-

ing to the same subgraph is found at tcurr, and |PE f ree(tcurr)| < DGTn(tcurr), a more

aggressive method is required to create a valid schedule that can be executed on the

fabric. The method moves one of the independent subgraphs to a time index t with

t > tcurr in which DGTn(t) < |PE f ree(tcurr)|. If no such time index is found, the

time extended DFG is prolonged allowing the subgraph to be rescheduled at the end.

Subgraph selection is done by the proximity of the root vertex to tcurr. If multiple sub-

graphs are found, whose root is scheduled at the same time index, their heights and

orders are considered next. While this deferral seems to be crude, it serves multiple

purposes:
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Figure 7.17: A DFG needs to be executed on a fabric consisting of only one PE able
to perform an addition. [59]

1. It minimizes the impact to the optimally laid out FDS schedule described in

Subsection 7.2.3.2.

2. Compared to deferring the subgraphs to the end of the DFG by default, it poten-

tially prevents a prolongation of the time extended DFG beyond tmax, impacting

performance.

3. It reduces the complexity of the scheduler, since the subgraph deferral is con-

trolled and situational, preventing a tcurr + 1 scheduling “avalanche", severely

elongating the schedule beyond tmax and destroying the FDS schedule.

Example: Consider the time extended DFG given in Fig. 7.17a and a fabric that con-

sists of only two PEs able to perform an addition: T0 = {pe0, pe1} with pe0 = pe1 =
{+}. Despite the mobility m = 2 of the vertexes 1, 3, 4 and 6, the FDS algorithm could

not generate a valid schedule, because it requires more hardware resources than the

fabric is able to provide. Further all vertexes belong to different subgraphs at tcurr = 1

and hence they cannot be interleaved. However excluding the subgraph consisting of

vertexes 4 and 6, at time index t = 2, DGT0(2) < |PE f ree(2)|. Thus the root of the

subgraph containing vertex 4 is going to be deferred to time index 2 prolonging the

DFG by one time index. △

7.2.3.9 Minimizing Inter-PE Traffic

The repeated application of interleave and defer leads to a valid schedule, however

it lacks topological information of the PEs and vertex dependencies when assigning

the vertex to a PE. As a result, a schedule which is shown in Fig. 7.17b, could be

the consequence. To reduce inter-PE traffic, it would have been beneficial, if vertex 6

would have been assigned to the same physical PE as vertex 4 without any penalty.

The proposed schedule algorithm also minimizes the load on the interconnect, by

considering the dependencies to the predecessors and successors of every vertex and
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performing the necessary rearrangement such that it does not impact the validity of

the optimized schedule, i.e. the operations are temporarily mapped to other possible

PEs of the same time index. The composition that causes the least amount of inter-PE

traffic, is chosen and the PE is finally assigned to a vertex of the DFG.

7.2.3.10 Mapping

Finally, physical PEs need to be assigned to the vertexes of the DFG, hence the DFG

needs to be converted into a graph representing the time extended fabric. Due to the

interleaving of vertexes and rescheduling of subgraphs, it can be observed that the

time extended DFG enriched with spatial information stating which PE is required to

execute which operation at a specific time index, is sparse with respect to the inter-

PE communication. This finding reduces the complexity of the mapping algorithm

tremendously, since only a few edges need to be considered.

A graph is generated representing the affinities among all PEs, i.e. the number of

instances a PE communicates with any other PE. PEs with a highest communication

demand, need to be placed closely together in the fabric.

The problem of embedding an affinity graph onto a target graph which represents

the CGRA interconnect, is well understood and different methods exist such as the

spring method proposed by [55] or a force directed one used in [44].

7.2.4 Evaluation and Results

The evaluation of the proposed scheduler has been done in two stages: 1) scheduling

of DFGs of various real-life applications of different sizes and complexities; and 2)

comparing with existing state-of-the-art.

Table 7.1 summarizes the results of some of the experiments. Different algorithms

on different fabric configurations and different PEs have been tested, while noting

inter-PE communication, maximum memory requirements (local storage) in words,

overall execution time and fabric utilization.

7.2.4.1 Matrix Multiplication

For executing a matrix multiplication on homogeneous (HM) fabrics of various sizes

a full fabric utilization is achieved. Utilization rate decreases significantly, if a more

realistic heterogeneous (HT) fabric is used, in which 50% of the hardware resources

are capable of performing the addition and multiplication, respectively. Different

pipeline depths (e.g. 3) of the multiplication logic were considered versus adder

pipeline depth (e.g. 1), yielding lower utilization and longer execution time due to

the slow multiplier, but also a significant inter-PE communication overhead.

7.2.4.2 Edge Detection

For edge detection using the Sobel operator, a homogeneous 2× 2 fabric is fully uti-

lized. While a larger fabric with 16 PEs in total results in a significantly shorter
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execution time, it cannot fully utilized. The reason is that at the end of the execution

more hardware resources are available to calculate the edges for the last 4 pixels of

the image. Hence for these pixels the algorithm uses the parallelism offered by the

CGRA, causing inter-PE communication and a reduced hardware utilization to 65%.

However compared to the overall execution time, this reduction is negligible.

7.2.4.3 Givens Rotation

To obtain the results for the Givens rotation, the two innermost loops for a matrix of

size 5× 5 have been unrolled to create the DFG. Since all operations are in floating

point arithmetic, the required pipeline depths have been increased to realistic values

and one dedicated PE is able to perform the square root and division. As it can be

observed, the larger 4× 4 fabric does not speed up the execution significantly despite

the fact that the number of available PEs which are able to perform the multiplications

and additions, have been quintupled (from 3 in the 2× 2 fabric to 15 in the 4× 4 one).

Due to the pipeline in the MUL/ADD PEs, the instructions of the inner most loop

can be interleaved efficiently. Increasing the number of MUL/ADD PEs spreads the

instructions spatially, leading to a reduced memory footprint, but a denser inter-PE

communication pattern, with a negligible impact on the execution time.

The problem in the Givens rotation is that costly operations such as square root

and division are on the critical path without the possibility to parallelize those. While

the PE performs the square root followed by the division all other PEs are idle leading

to a low fabric utilization of 53.49% and 15.47%.

7.2.4.4 LU Decomposition

Similar problems can be observed for a LU decomposition of an exemplary 3 × 3

matrix. The divisions are executed first and no other operation can proceed till the

quotients are available. This nullifies the parallelism which leads to a comparatively

low fabric utilization of 65% for realistic ALU configurations.

7.2.4.5 JPEG Downsample

The JPEG Downsample algorithm is a crucial part of the compression algorithm, but it

exhibits only a limited level of instruction parallelism. Although several instructions

are executed in parallel, the limiting factor is the height of the critical path requiring 14

time indexes. Increasing the number of resources does not lead to a higher parallelism

and faster execution time.

7.2.4.6 Smoothing Triangle

The smoothing triangle and interpolating subroutines of [14] show a high level of

instruction parallelism and consist of four independent subgraphs. In homogeneous

fabrics of 2× 2 PEs, a high utilization can be achieved. For larger fabrics this utiliza-
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tion decreases due to dependencies among the vertexes of the DFG. While the overall

execution time reduces, a denser communication pattern is observed.

7.2.4.7 FIR Filter

Finite Input Response (FIR) filters are often observed in the signal processing domain.

Although several instructions can be executed in parallel, the filter suffers from the

same problem as the JPEG down-sample algorithm: along the critical path are not

enough instructions available which can be executed in parallel. In fact, only 3 PEs

are used at any point in time during the execution resulting in a low fabric utilization.
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7.2.4.8 Comparing with EPIMap

The EPIMap algorithm which is required to reliably compare between the published

results and the proposed algorithm, is not available. Hence details about DFG sched-

ules calculated by EPIMap, are unknown. However in [73] the authors show the

scheduled vertices of three exemplary DFGs (refer to Fig. 7.18a) by using EPIMap. As

EPIMap is considered as an algorithm aiming to minimize the initiation interval of

the innermost loop of a kernel, the DFGs are multiplied so that 16 subgraphs need

to be scheduled for each example. Further PEs in the time extended fabric, which

are used for recomputing or routing only, are considered to be idle. We have repli-

cated the examples, and a homogeneous fabric has been arranged to a mesh of size of

2× 2 with each PE executing any instruction within one time index. The results are

depicted in Fig. 7.18.

While EPIMap achieves only 75% average fabric utilization (Fig. 7.18b), the pro-

posed algorithm achieves full fabric utilization. In Fig. 7.18c the overall execution time

is 39% longer compared to the proposed algorithm due to significant resource utiliza-

tion for recomputing, recalculation or simply unused PEs. Furthermore, EPIMap does

not need to consider inter-PE communication (Fig. 7.18d), since the fabric in [73] can

only communicate to its direct neighbors in a mesh topology, a restriction which this

algorithm does not consider. This however, could need solving routing congestion

(e.g. NoC congestion) later in the mapping phase.

While in EPIMap the initiation interval and the iteration latency is equal to two

and four respectively for all presented examples, using the proposed algorithm leads

to initiation intervals and iteration latencies of 6.33 time indexes in average. This

increase however does not impact the efficiency of the algorithm, since after each

iteration all PEs produce a result, i.e. 4 results in the exemplary 2× 2 fabric, leading

to shorter overall execution times and perfect fabric utilization.

7.2.5 Conclusions and Outlook

7.2.5.1 Summary

An algorithm was proposed, which exploits Force-Directed Scheduling with careful

consideration of architectural features, interconnect and processing element proper-

ties to schedule input DFGs efficiently. Some of the details applicable to a wide range

of CGRAs such as inter-PE traffic, memory constraints and fabric utilization, as im-

portant metrics and factors which influence a good schedule were pointed out. Using

examples, each of the proposed transformations is discussed, finally evaluating the

scheduler with a set of real-life benchmark DFGs and comparing the proposed solu-

tion with the state of the art.

7.2.5.2 Future Work

The proposed algorithm can tackle a variety of applications efficiently even for large

DFGs or for algorithms with little parallelism.
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(a) Example graphs from EPIMap [73] (b) Fabric utilization

(c) Overall execution time (d) Inter-PE traffic

Figure 7.18: Comparison of EPIMap to the proposed algorithm, with the graphs of
the examples. [59]

Adding preliminary temporal information by the FDS algorithm ensures that the

required hardware resources are minimized without increasing tmax. In DFGs such

as the 8× 8 matrix multiplication, which consists of 64 subgraphs and 960 vertices in

total, the FDS algorithm returns the result in 0.25 seconds on an Intel Core i5-3470

CPU operating at 3.2GHz. However, if the dependencies among the vertices increases

or the DFG does not consist of independent subgraphs, the time taken by the FDS

algorithm escalates to minutes or even hours. After placing a vertex v at a specific

time index t1, the impact on the DG needs to be evaluated by recursively calculating

the forces for all other placement options for all vertices in the DFG. For the effects of

placing v to t2 6= t1 (given that mobility m > 1), all forces need to be recalculated.

To reduce the computation time, the recursion depth can be restricted as suggested

by the authors of [124]. However in our experiments this resulted in situations in

which dependent vertices were placed earlier in time than preceding operations. The

succeeding stages following the FDS algorithm, consequently failed to compute a

valid mapping, since they require a valid DFG.

Another approach would be to utilize the cores of a processor and to parallelize

the FDS algorithm. Currently the algorithm runs only as a single thread on one core.

Although the complexity of the FDS algorithm is not reduced, it would speed up the

preliminary temporal time index assignments.
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For future work, a more desirable approach will be to optimize the FDS algorithm

so that it can place the vertices efficiently. The optimization would not only include

improvements regarding the programming, but should also include more language-

related architectural peculiarities distinct to CGRAs. One idea would be to consider

segments of a DFG and optimize them individually. However determination of the

sizes of these segments and its impact on the proposed algorithm needs to be investi-

gated further.

7.3 Other Domain Applicability: Example for

Cryptography

In this work, Layers was focused on the dwarf [22] of dense linear algebra, the flexibil-

ity of the design does not limit this architecture to one domain only. The processing

elements can be easily exchanged to ones suitable for the target domain. Communi-

cation requirements, number of layers can also be adjusted.

A study on accelerating a family of cryptographich applications by using their

common trait of Addition-Rotation-eXclusiveOr processing is conducted in [89]. While

significantly different from Layers itself, this study was designed on the methodology

concepts proposed in this work.

Similarly re-targeting of Layers to other domains is possible, some early experi-

ments have been done for language processing and support vector machines.

7.4 Proposed SoC Integration

As for higher-level integration of the Layers accelerator as an SoC component, the

proposed flow is illustrated in Fig. 7.19.

The flow starts from the SoC-level application, which is profiled and partitioned

by a meta-compiler – one that can identify the kernels and mark them via pragmas to

be executed on the accelerator. The precompiled code is then executed on the host

CPU of the SoC system. Layers is connected to the system bus and external memory

and receives stop/go commands via the respective pragmas from the host CPU. Once

the instruction is received, the kernel part of the application is executed internally by

Layers, returning control to the host CPU when execution completes.

As the internal processing remains intransparent to the host CPU, the users of

such an kernel library-based accelerator do not require special effort in using its ad-

vantages.
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Figure 7.19: The proposed system-level integration of Layers, as a black-box library
of accelerated kernels.



Chapter 8

Conclusions and outlook

This dissertation explores a new paradigm in designing highly efficient reconfigurable

architectures proposing a new paradigm: functional reconfiguration. The key idea be-

hind the proposed theory is that, flexibility can be exploited instead of being traded

off to achieve efficiency, by creating a good match between the target application and

the architecture. Several experiments across two design flow avenues are exploring

the effectiveness of the proposed theory, proving that the proposed view, methodol-

ogy and architectures can satisfy requirements of high energy-efficiency, quick design

exploration and good performance. A more detailed summary follows.

8.1 Summary

Chapter 1 and 2 dive into the landscape of efficient computing and current industrial

trends, offering a high level overview of the background. Several motivational vectors

are identified and discussed and the problem is formulated. The necessity of highly

efficient, low-energy and high-performance architectures is highlighted, coupled with

the need of outlining a design methodology in line with current time-to-market con-

straints.

Chapter 3 invites the reader to experience a new view on designing and program-

ming reconfigurable architectures. Especially for the coarse-grained reconfigurable

architectures, the lack of a clean design and programming methodology makes the

proposed theory appealing. In this view, the concept of functional programming is

exploited to create functional reconfiguration, a view that enables architectures to adapt

and closely match application requirements. Using functional reconfiguration, it is

possible to achieve a high degree of architectural reconfigurability, especially when

using the functional separation of 4 functional classes: memory access, data commu-

nication, data processing and control flow processing. This enables architectures to

use hardware structures that can adapt and match application requirements to a high

degree, achieving energy efficiency and high performance.

Chapter 4 explores a design methodology suggested by the theory, exploiting high

level synthesis and design to quickly and efficiently cover the huge design space of

reconfigurable computing. The methodology proposes design techniques and formu-

lates guidelines which allow a quick design and evaluation of various structures at

high abstraction level. Two different flows are proposed to exploit the theory: targeted

and tunable architectural flexibility. With targeted architectural flexibility, the archi-

tecture is designed such that its language matches the target application’s language as

closely as possible, while minimizing overhead. This design direction uses hardware

167



168 Chapter 8. Conclusions and outlook

functions that reconstruct the application without any overheads, but sacrifices adapt-

ability to other applications, resembling ASIC design philosophy. The second flow,

exploits a well tailored pool of elementary hardware functions, to provide various

ways of defining one architecture’s language by reconfiguration and combinations of

these functions. A well tailored language can then be formed for every new applica-

tion, just be rearranging the way the elementary functions are called.

Chapter 5 dives deeply into the first proposed flow, exploring how well a lan-

guage can be matched to a pair of WCDMA channel estimation algorithms. The two

target algorithms are different from structural, complexity and computational point

of view and an architecture is sought that can execute both efficiently. This is achieved

by focusing architectural language and the underlying pool of elementary hardware

functions to closely match common computation and structures required by the two

algorithms. A hybrid architecture is the result, which maintains the performance

when compared with two separate designs, without the overhead. Moreover, the

hybrid architecture can save more than 88% of energy by dynamically switching be-

tween the algorithms, in a scenario where good and bad WCDMA signal conditions

alternate.

Chapter 6 explores the second design flow: tunable flexibility. An architecture is

proposed that follows closely the functional separation paradigm and creates elemen-

tary function pools for each class of computation, memory access, data movement

and control flow in a 3D layered structure. By having a flexible pool of elementary

functions, varied language constructs can be formed to adapt to 8 kernels from the

linear algebra domain, making the new architecture an excellent and efficient domain-

specific accelerator. A high degree of architectural flexibility permits thus to change

applications on the fly just be re-adapting architectural language to fit exactly the

application’s required language patterns. A thorough evaluation is performed for

each kernel and a performance evaluation is conducted, for comparison with other

architectural platforms for this application domain.

Chapter 7 improves on the design of the 3D architecture by introducing two com-

ponents. The first concerns automatic scheduling and mapping derivation for the

computation layer via a force-directed scheduling heuristic approach. This enables

a quicker adaptation of the architecture to new applications, by providing key ap-

plication language requirements which then can be reproduced in the architecture.

This approach is also valid for any other coarse-grained reconfigurable architecture.

The second component automatically derives reconfigurable control flow structures

using 3 different approaches: VLIW-like architecture, a reconfigurable array tailored

for control flow and a graph theoretic approach, which generates the architecture

automatically. Each solution is explored and evaluated in detail.

8.2 Conclusions

This dissertation proposes a novel view on designing and programming reconfig-

urable architectures. From the theory, two main design paradigms are derived and
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with a supporting methodology, these are deeply explored via various architectures.

Furthermore, several enhancements are added to make this exploration a complete

work, with a new view on reconfigurable computing.
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Appendix A

Detailed Results Data for A1/A2 from
Chapter 5

Detailed results for various design points of the architectures with targeted architec-

tural flexibility.
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Table A.1: Results for 32-bit architectures [142]
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Table A.2: Results for 64-bit architectures [142]
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Glossary

p the set of physical functions fhw that the architecture can perform

fhw an addressable physical operation or function of an architecture

Acronyms

ADL Architecture Description Language, a type of high level language spe-

cific for quick description of hardware

ALU arithmetic-logic unit, performs arithmetic and logical operations on

data

ASIC application-specific integrated circuit

ASIP application-specific instruction-set processor, some instructions can be

customized to accelerate a given application

BER Bit-Error Rate

CDFG Control-Data Flow Graph, an intermediate representation of applica-

tion or architectural features

CE Channel Estimation

CISC Complex Instruction-Set Computer

CPU central processing unit of a GPP, usually featuring one or more ALUs

and registers

CSDF Column-wise Square-root and Division Free Givens rotation (algorithm)

CSF Column-wise Square-root Free Givens rotation (algorithm)

DISE Dual-Issue Single Execution, a predication method for control flow ex-

ecution

DOT Matrix dot product

DSP digital signal processor, a customized processor with special instruc-

tions for signal processing

FDS Force-Directed Scheduling, a heuristic algorithm

FU functional units or processing elements in the reconfigurable architec-

ture

GEMM GEneral Matrix-Matrix multiplication

GEMV GEneral Matrix-Vector multiplication

GPP general purpose processor, with a generic instruction set, not optimized

for any particular application
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GR Givens Rotation

HLD High-Level Design, design from a high abstraction level

HLS High-Level Synthesis, automatic generation of lower abstraction de-

signs and components from a high abstraction description

I/O input-output

ICE Institute for Communication Technologies and Embedded Systems at

the RWTH Aachen University

LISA Language for Instruction-Set Architectures, a high-level architecture

description language

LU Lower-Upper matrix factorization

MAC Multiply-ACcumulate (units)

MIMO multiple input multiple output

MPSoC multi-processor system-on-chip, a complex processing platform often

integrating GPPs, DSPs, ASICs using buses or NoCs

NoC network-on-chip, a scalable and flexible chip-level interconnect, often

with higher level routing capability

OFDM Orthogonal Frequency-Division Multiplexing

PE processing elements or functional units in the reconfigurable architec-

ture

PI Polynomial Interpolation

fa the target function of an algorithm or application which is to be imple-

mented in an architecture

rASIP reconfigurable application-specific instruction-set processor, an ASIP

extended with a reconfigurable fabric to accomodate post-fabrication

changes of custom instructions

F how well an architecture can adapt to (a change in) the application

L represents the sum of all higher order functions that the architecture

can perform by combining fhw elements of the p

RISC Reduced Instruction-Set Computer

RTL Register Transfer Level (hardware description)

SDR Software-Defined Radio, an adaptability and flexibility concept for the

wireless domain

SFDG Square-root and Division Free Givens rotation

SFG Square-root Free Givens rotation

SQDA Single Qualifier Double Address, a flavour of assembly code, that se-

lects one of the two unconditional jump addresses, depending whether

the qualifying condition is true or false

TRSM TRiangular Solve Matrix

TRSV TRiangular Solve Vector
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TSV Through Silicon Via, cross-die vertical interconnects in 3D process tech-

nologies

VLSI Very Large-scale System Integration

WCDMA Wide-band Code-Division Multiple Access, a wireless transmission air

interface standard

WMSA Weighted Multi-Slot Averaging

FIC flexibility given by 1/re-implementation time
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Notation (Integrated Circuits)

A silicon area in mm2

A(1GE) silicon area of a two-input drive-one NAND gate for the used standard

cell library

AGE equivalent gate count in units of two-input drive-one NAND gates with

size A(1GE)

γ cycles required by an architecture/software implementation to examine

one node

E electrical energy in J

fmax maximum clock frequency of a synchronous IC design

P electrical power in W

Pd dynamic CMOS power in W

Ps static CMOS leakage power in W

T task execution time in s

tp intrinsic CMOS inverter propagation delay

Vdd supply voltage
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