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In many industrial units (e.g. packing columns, falling film reactors), the liq-
uid phase is designed as a falling film, since it is well known that the mass and
heat transfer in laminar-wavy film flows is significantly enhanced. Computational
design models which account for these enhanced transport mechanisms are nec-
essary. The numerical simulation of the coupled momentum and mass transport
equations is computationally infeasible due to its multiphase nature and the dy-
namic, unstable interface. To overcome this problem, we propose a transport
model based on effective diffusion coefficients and suggest an incremental approach
for its identification. This incremental approach is computationally feasible while
still accounting for the wave-induced transport intensification. The model identi-
fication is based on high-resolution concentration measurements of oxygen being
physically absorbed into an aqueous film applying a planar laser-induced lumines-
cence (pLIL) measurement technique. Preliminary measurement and estimation
results are presented.

Keywords. Falling film, mass transport, effective diffusion coefficient, incremental identi-
fication, concentration measurements, numerical simulation.

1 Introduction

In industrial applications such as CO2 scrubbers, falling film evaporators, absorption heat
pumps as well as many others, falling films are widely used. In these devices the liquid phase
occurs as a gravity driven thin film. The heat and mass transport properties in these films
are significantly intensified by their waviness [4]. The dynamic and complex structure of the
film complicate its detailed experimental and numerical analysis. Therefore, falling films are
subject to ongoing research efforts (see [9, 17, 22, 23, 27] and the references therein). Despite
these efforts, the understanding of the transport phenomena is still limited and comprehensive
transport models are not available.

The direct numerical treatment of first principle models for mass transport inside the
film require the simultaneous solution of the two-phase Navier-Stokes equations of the gas
and liquid phase. In available simulations, unphysical effects are often observed, leading
to the conclusion that today’s numerical tools are not mature enough to be relied upon.
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These observations show that there is a need for reduced design models, which are capable of
modeling the defining properties of the transport phenomena in falling films while keeping
the computational demand down to a minimum.

In this work, a transport model for liquid falling films based on effective diffusion coeffi-
cients is proposed. The model will be identified using incremental model-based identification.
This approach calls for a close collaboration between experiments, numerics and modeling.
Examples for this collaboration are the development of stabilization methods in the inverse
problems of the identification and the application of model-based image processing to the
experimental data.

By combining these complementary expertises, a versatile systematic toolbox is created. In
this paper we describe the main ideas underlying our interdisciplinary approach fo deriving
an effective mass transport model in falling film flows.

The paper is organized as follows. First, the modeling approach is described in detail,
focusing on the derivation of the reduced model. This is followed by an explanation of the
numerical methods employed, focusing on stabilization for convection-dominated problems,
as well as the solution of PDEs on wavy computational domains. The pLIL measurement
technique, as well as the experimental setup is introduced in the third part. First results of
the joint work are presented.

2 Incremental Modeling and Identification

In this section, a transport model for liquid falling films based on effective diffusion coeffi-
cients is proposed. First, the reduced flow model used for the convection-diffusion equations
emerging in these problems is described. Then, the model structure is derived using the
incremental method. For the subsequent model identification, the incremental method is em-
ployed. Finally, the solution of the inverse problems appearing in the model identification is
outlined.

2.1 One-phase wavy film model

As described above, the direct numerical simulation of the Navier-Stokes equations for the
two-phase flow model of the liquid and gas phase is currently infeasible and even in the longer
run impractical in an industrial environment. Therefore, the detailed two-phase flow model is
replaced by a reduced one-phase flow model of the liquid phase. The film height δ(x, z, t) of
the wavy film is computed from an evolution equation based on the Long-Wave theory. We
employ a two-equation expansion of the film thickness δ and the volume flow rate V̇ in the
film. These expansions have been shown to accurately describe the film for a wide range of
flow regimes [21].

The velocity profile u inside the film is computed from V̇ , by assuming a parabolic velocity
profile. The three parameters of this parabolic profile are determined by the mass balance,
no-slip condition at the wall, and vanishing shear-stress at the free boundary. Note that as
opposed to the flat-film solution (Nusselt solution) of the film profile used in previous studies
[14], the flow conditions defined by δ and u do not necessarily satisfy the Navier-Stokes
equations. However, they are an easily obtainable, reasonable approximation and yield a
more accurate description of the state of the film.
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Using the film height δ, the time-dependent computational domain Ωf (t) is defined as

Ωf (t) = { (x, y, z) ∈ R3 | 0 < y < δ(x, z, t), x ∈ (0, Lx), z ∈ (0, Lz) }. (1)

All PDEs introduced in the following sections will be defined on the set Ωf (t).

2.2 Incremental Modeling

In order to achieve transparency in the modeling procedure, the incremental method as de-
scribed by [19, 20] is applied. Starting point for the incremental procedure is the generic
transient balance equation

ct +∇ · J = 0, (2)

where J is the overall molecular flux and ct is the derivative of the concentration w.r.t. time.
J can be separated into a convective term induced by the velocity field u and a diffusive term
JD,

J = cu + JD. (3)

Using (2) and the fact that ∇ · u = 0 for incompressible fluids, this leads to

ct + u · ∇c+∇ · JD = 0. (4)

Note that in this modeling step the diffusion term JD is not yet specified. The decision on a
model for JD follows in the next step. We assume a flux according to Fick’s law

JD = −Deff∇c, (5)

where Deff is the unknown, state dependent diffusion coefficient. This diffusion coefficient is
further divided into the contribution of the molecular diffusion Dmol and effects due to the
waviness of the film Dw,

Deff = Dmol +Dw. (6)

The molecular diffusion Dmol is constant and known from the literature. The wavy diffusion
coefficient Dw is unknown, and is introduced to describe the enhancement of mass transport
due to the waviness in the film. On the final level of detail in the modeling process, a model
for Dw is specified. As nothing is known a priori of the wavy diffusion coefficient, we postulate
a general model

Dw(x, y) = fw (c, x, t, θ) (7)

with model parameters θ ∈ Rn.
The procedure outlined above for the incremental modeling of mass transfer can be applied

in the same way to the problem of heat transfer in the falling film [14]. The boundary
conditions, however, are different for every experimental setup. The conditions used in our
study of transport of oxygen from the gas into the liquid phase are as follows. In our setup
(cf. Figure 3), we set a Dirichlet condition for the concentration at the inlet boundary Γin.
The value of this concentration is taken from measurements of the inlet chamber. The surface
boundary Γsurf is modeled as a Dirichlet boundary, as well. We assume that the limiting
process is the transport within the liquid phase. Therefore, the concentration at the boundary
is set to the equilibrium concentration corresponding to the concentration in the gas phase.
The remaining boundaries are modeled using zero-flux Neumann conditions. The location of
the boundaries is illustrated in Figure 3.
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2.3 Incremental Identification

The structure and parameters of the function fw introduced in (7) are identified using the
method of incremental identification. The identification closely follows the steps of the in-
cremental modeling procedure. In a first step, the generic diffusive flux JD is identified. To
make this problem numerically more tractable, we introduce a source term Feff = −∇ · JD =
∇ · (Dmol∇c) + Fw, yielding

ct + u · ∇c = Feff . (8)

For reasons of numerical stability, the molecular diffusion is included into the left-hand side
of the equation,

ct + u · ∇c−∇ · (Dmol∇c) = Fw, (9)

with Fw representing the divergence of the wavy part of JD. Given the high resolution
distributed concentration measurements cm obtained in the experiments, the source term Fw

is identified. In a second step, the wavy diffusion coefficient is inferred from the definition of
the source term

−∇ · (Dw∇c) = −Fw. (10)

Note that the source term only accounts for the enhanced diffusion induced by Dw, as the
molecular diffusion was included to convert (8) into a parabolic PDE. An important feature of
this equation is the fact that the time does not appear explicitly. After Dw and thus Deff has
been identified from (10), the model structure fw can be identified using finite-dimensional
nonlinear optimization methods.

The full modeling and identification procedure is illustrated in Figure 1. The model identifi-
cation approach described here has several advantages over the method of direct identification
of the parameters θ from the full model

ct + u · ∇c−∇ · ((Dmol + fw(θ))∇c) = 0. (11)

One of the main challenges of this full model identification problem is that the structure
of the model fw is completely unknown. To identify the correct structure, the full-scale
nonlinear instationary problem (11) would have to be solved for each model candidate. In
the incremental approach presented above, the parameters of the model are only identified in
the final step. This means that the time consuming step of discriminating among a large set
of candidate models does not have to be done in the context of an inverse PDE problem, but
instead in the much simpler framework of function approximation.

2.4 Solution of the inverse problems

In the incremental method described above, a series of consecutive inverse problems has to
be solved. As the balance equations for heat and mass transfer are very similar, we use the
same methods here as in previous studies on the identification of heat transfer in wavy films
[15, 16].
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Figure 1: Incremental modeling and identification of mass transport

2.4.1 The source inverse problem

The first inverse problem in this sequence is the estimation of the source term Fw from
measurements cm. This problem is framed as an optimization problem. Let

K1 : L2 → L2, Fw 7→ c(Fw)

denote the operator that maps a source term Fw to the corresponding concentration profile
c. In this case, K1 is implicitly defined by (9). The inverse problem can be written as the
optimization problem

(IA1) min
Fw

‖K1(Fw)− cm‖2L2 , (12)

where cm is a set of measurement data for the concentration c. Since K1 is linear, this
problem can be solved reliably using the CGNE algorithm. The regularization in this context
is achieved by a suitable choice of the number of iterations of the CGNE algorithm [8, 11].

In the spirit of the theory of inverse problems, we call the application of K1 to an element
Fw - in other words the solution of the PDE (9) - the direct problem. The CGNE algorithm
needs the evaluation of the sensitivity and adjoint operators corresponding to K1 in every
iteration. These operators are given by PDEs of the form (9) only with different coefficient
functions and boundary conditions [13].

2.4.2 The coefficient inverse problem

The second inverse problem of the identification procedure is the estimation of the wavy
diffusion coefficient Dw given the source term Fw. Let

K2 : L2 → L2, Dw 7→ c(Dw)

denote the operator implicitly defined by (10), where the solution F ∗w of (12) is used as
the right-hand side. Note that the corresponding PDE is time-independent. Therefore, the
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solutions to different time steps can be decoupled and the problem is solved for each time
step independently.

After the decoupling of the time steps, nt problems of the type

(IA2) min
Dtw
‖K2(Dt

w)− ctm‖2L2 (13)

need to be solved, where nt is the number of time steps, ctm denotes the concentration mea-
surement data at time t and the superscript t indicates the value of a function at time t. For
these nonlinear inverse problems, we use the truncated Newton CG algorithm described in
[11].

2.4.3 Correction step and parametric model identification

One drawback of the incremental method is that errors introduced in one identification step
propagate directly into all following steps. In (IA2), Dw is estimated using the solution F ∗w
of the previous source-inverse problem. Any error introduced in F ∗w will therefore influence
the solution D∗w as well. To damp this propagation of error, a so-called correction step
is performed to reconcile the solution with the measurements. The correction step is the
solution of the inverse problem

(IA12) min
Dw

‖K12(Dw)− cm‖2L2 (14)

where K12 is implicitly defined by the PDE

ct + u · ∇c−∇ · ((Dmol +Dw)∇c) = 0 (15)

with the usual boundary conditions. It is important to note that this is much easier after
having solved (IA2), since the uncorrected solutions Dw of (IA2) serve as good initial values
for the Newton-CG algorithm.

After the wavy coefficient has been found, a parametric model Dw = fw(θ) is identified.
This is again done through an optimization problem minimizing the mismatch between the
model fw and data Dw. This problem can be framed in the form of a nonlinear optimization
problem

min
θ
‖Di

w − f(ci, xi, ti, θ)‖2. (16)

by regarding the value Di
w each grid point i at which Dw is available as a data point.

3 Numerical Simulation

Concerning the numerical simulation tool used in this project we distinguish two classes
of methods. Firstly, for the identification steps described in Section 2, sufficiently accurate
solutions to the PDEs representing the direct, sensitivity, and adjoint sensitivity operators are
needed. Secondly, as a long-term goal the simulation of the fully three-dimensional two-phase
flow model can be used as input (simulated, artificial data) for the identification procedure.
If the full-scale simulation can achieve a good agreement with the experimental data, these
simulations could serve as an valuable source of high resolution measurements. This second
goal, however, is beyond the scope of this paper and will not be further addressed here.
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All direct, sensitivity, and adjoint problems are of either elliptic or parabolic (convection-
diffusion) type. Hence, similar numerical techniques can be employed for their solution. To
this end, we employed the FEM code DROPS [7, 10]. DROPS is based on multilevel nested
grids and conforming finite element discretization methods (FEM). For time discretization,
a standard one-step θ-method is used. For the space discretization, piecewise linear finite
elements on a tetrahedral grid are employed. The resulting discrete systems of linear equa-
tions are solved by suitable Krylov subspace methods. In case of the convection-diffusion
equations, we use a preconditioned generalized minimal residuals (GMRES) method [24]. For
the diffusion problems, a preconditioned CG method is applied.

In the following, we will address two specific issues that are important for an efficient
incremental identification algorithm.

3.1 Stabilization of convection-dominated problems

Consider the convection-diffusion equation (9) with the source term Fw(x, t) which is the
direct problem in (IA1) above. The molecular diffusion parameter Dmol = O(10−9)m2/s is

relatively small in our applications. For falling film problems, the ratio
‖u‖2
Dmol

is of the order

O(107 v 108). Even if we use very fine grids, with mesh size denoted by h, the Péclet number

Pe =
h‖u‖2
2Dmol

is still much larger than 1. It is well-known that for standard FEM in convection-
dominated problems oscillations may appear at boundary layers due to the lack of upwinding
in standard FEM. The outflow boundary condition at Γout does not cause a boundary layer in
the solution, but a boundary layer may appear at the wavy free surface. Besides that, in the
adjoint problem for (IA1) the flow direction is reversed which means that we have Dirichlet
boundary conditions at the outflow Γin. In this case numerical oscillations are observed if
suitable stabilization techniques are not employed.

Furthermore, in a strongly convection-dominated problem iterative solvers are often slow,
because the resulting linear systems have matrices with large condition numbers and eigen-
values with large imaginary parts. Introducing a stabilization in the discretization helps to
reduce numerical oscillations and to improve relevant matrix properties.

Among the various stabilization techniques for FEM, we choose the streamline upwind
Petrov-Galerkin (SUPG) method [5], which has been implemented in DROPS. This led to a
significant decrease in computation times for convection dominated problems. In addition, a
reduction of oscillations for the adjoint problem was observed.

3.2 Arbitrary Lagrangian-Eulerian techniques for free surface

To handle the time-dependent domain Ωf (t) defined in (1) we use an Arbitrary Lagrangian-
Eulerian approach (ALE) [3, 6, 18]. We assume that the local time-dependent film thickness
δ(x, z, t) is a known quantity which has been calculated based on the Long-Wave Theory,
cf. Section 2.1. Let Ω̂ be a fixed reference domain and Φ : Ω̂ × (0, T ) → Rd a deformation
function such that (cf. Fig. 2)

Ωf (t) = {x = Φt(x̂) := Φ(x̂, t) : x̂ ∈ Ω̂} for all t ∈ (0, T ). (17)

Due to the fact that the height of the free surface is an a-priori known function δ(x, z, t), the
deformation of grids can therefore be achieved by a simple transformation of the y-coordinate.
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Φt

T̂h Th(t)

Figure 2: Transformation from the triangulation T̂h(t) on the reference domain Ω̂ to the tri-
angulation Th(t) on the moving domian Ωf (t) through the transformation Φt

The partial differential equation to be solved is given by

ct,Ω̂ + (u− uΩ) · ∇c−∇ · (Dmol∇c) = Fw in Ωf (t), t ∈ [t0, tf ], (18)

where ct,Ω̂(x, t) := lim∆t→0
ĉ(x̂,t+∆t)−ĉ(x̂,t)

∆t with x = Φt(x̂) means the time derivative w.r.t.

the fixed reference domain Ω̂ and

uΩ(x, t) = ẋ(t) = (0,
y

δ

∂δ(x, z, t)

∂t
, 0) (19)

is the grid velocity of the moving grid Th(t). Note that (18) is of the same structure as (9),
and can therefore be treated with the same numerical methods.

4 Experimental Investigation

The highly resolved experimental data are obtained using the planar laser induced lumi-
nescence measuring technique (pLIL), which is a further development of the laser induced
luminescence technique (LIL) introduced in [25], and enables simultaneous 2D concentration
or temperature and film thickness measurements.

4.1 Measuring Method

The pLIL measuring method uses diacetyl (2,3-butanedione) as an optical indicator. In
aqueous solutions diacetyl emits fluorescence and phosphorescence upon excitation with UV-
light. The intensities of these emissions depend on incident laser energy, temperature and
indicator concentration. In addition to that, the phosphorescence is quenched by dissolved
oxygen, while the fluorescence emission is not affected by it. Based on these interrelations, it is
possible to either determine the concentration distribution of absorbed oxygen in isothermal,
laminar wavy films [25], or a temperature distribution within oxygen free films [26]. After a
pulsed excitation with UV-light, the phosphorescence emission I decays according to

I(c, ϑ, t) = I0(c, ϑ)e−t/τ(c,ϑ), (20)

where I0 denotes the initial phosphorescence intensity after turning off the laser and τ is
the mean lifetime of the phosphorescence. In this work only isothermal films (ϑ = const)
are considered. Therefore, the phosphorescence emission is a function of only the oxygen
concentration c.
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The dissolved oxygen acts as a physical quencher and reduces not only the lifetime, but
also the initial intensity of the phosphoresence. This correlation is given by the Stern-Volmer
equation

τ

τ0
=
I0

I∗0
=

1

1 + c/ch
. (21)

In this equation I∗0 and τ0 are the initial intensity and the mean lifetime of the phosphorescence
in an oxygen-free solution. I0 and τ relate to the same quantities according to the oxygen
concentration in the system. The parameter ch is the half-value concentration.

Combination of (20) and (21) yields a formulation of the phosphorescence decay as a
function of the local oxygen concentration,

I

I∗0
=

τ

τ0
e−

t
τ . (22)

In order to measure a 2D concentration distribution, an area of interest needs to be excited
by a thin laser sheet. After the laser is turned off, the resulting phosphorescence emissions are
recorded by a perpendicularly positioned intensified CCD camera, cf. Figure 3. Since only
the liquid phase emits phosphorescence, the gas phase appears black in the intensity image.
This fact is used for the detection of the gas-liquid interface and allows for the determination
of the local film thickness. The integration of the phosphorescence emissions on the CCD
chip starts at time t0 and ends after the gating time ∆t. Figure 4 illustrates the fact that
the intensity of the recorded phosphorescence signal P equals the area under the decay curve.
Therefore, P is given by integrating (22) from t0 to t0 + ∆t:

P =

∫ t0+∆t

t0

I∗0
τ

τ0
e−t/τ dt = I∗0

τ2

τ0
e−t0/τ [1− e−∆t/τ ]. (23)

glas reactory

x

r

N , O  2 2

lens system

ICCD-camera

Laser
Γsurf

Γin

Figure 3: Scheme of Measurement technique.
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For quantitative measurements, the recorded images need to be corrected by a calibration
image. The local incident laser energy and the influence of the optical pathway on the resulting
intensity images need to be accounted for. These drawbacks can be avoided by taking two
successive images (P1 and P2) within one phosphorescence decay curve, cf. Figure 4. This
so-called ratiometric method was introduced in [12].

If the integrating time ∆t is the same for both pictures, the intensity ratio of P1 and P2

P1

P2
= e

t1−t0
τ (24)

depends only on the camera settings t0 und t1, which mark the beginning of the integration
time for picture one and picture two respectively.

Therefore, the phosphorescence lifetime can be directly calculated using

τ =
t1 − t0

ln (P1/P2)
. (25)

By applying (25) pixel-wise on the captured double image and converting the measured life-
times into concentrations, a 2D concentration distribution within the film can be determined
using (21).

4.2 Experimental Setup

A scheme of the experimental setup of the falling film absorber is shown in Figure 5. A main
reservoir contains demineralized water which was degassed with purified nitrogen 5.0. The
concentration of diacetyl in the water is set to 11.4 mol/m3.
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Figure 5: Scheme of the experimental setup.

The prepared liquid flows out of the main reservoir into the inlet chamber of the falling film
absorber. The falling film absorber is a glass tube 1 m in length with an inner diameter of 50
mm and a wall thickness of 5 mm. The gas stream is added separately to the system through
a stainless steel pipe with an outer diameter of 49 mm. By means of the inlet chamber the two
tubes are mechanically connected in such a way that the gas tube is inserted concentrically
into the falling film absorber. The overlapping distance of the two tubes is approximately
50 mm. This setup creates a gap of 0.5 mm between the glass and the stainless steel tube.
The falling film is generated by an overflow technique (cf. Figure 5). The liquid rises in the
inlet chamber just high enough to overcome the pressure loss in the small gap that creates
the film. An annular film flow is created on the inside wall of the glass absorber, while the
gas phase flows co-currently in the core of the glass tube.

In order to minimize optical effects due to the different refracting indices and the curvature
of the glass tube, an axially movable optical correction box is applied [2]. The laser sheet
optics and the camera system are positioned perpendicular to each other on a vertically
adjustable platform. The ICCD system (LaVision) consists of an image intensifier (IRO,
Phosphor P46, 25mm diameter, 2:1) and a CCD camera (Imager Intense, 1376 x 1040 Pixel,
20 Hz, PIV enabled). The camera lens (Micro-NIKKOR f105 mm 1:2.8) is mounted on an
extension tube, with a length of 102.5 mm. The lens is equipped with a longpass filter (Schott
GG 495) in order to block the exciting laser light. This setup yields an observable area of
12.7 x 8.8 mm with a spatial resolution of 8 µm per pixel. The controlling and setting of the
ICCD system parameters, as well as the image acquisition is done with the DAVIS software
package (LaVision). Further image processing is performed in MATLAB.

11



Parameter Symbol Value Unit

kinematic viscosity ν 1.0 mm2/s
molecular diffusion coefficient Dmol 0.002 mm2/s
initial concentration c0 10 kmol/mm3

liquid volume flow V̇ 8 l/h

Table 1: Fluid properties used in the simulation

A nitrogen pumped laser is used as an excitation light source (LTB Berlin). At a pulse
width of 700 ps each pulse has an energy of 116 µJ. The maximum repetition rate is 50
Hz. By using a 4,4 - diphenylstilbene dye (Radiant Laser Dyes) in a laser cuevette, the
original nitrogen laser wavelength is shifted from 337 nm to 405 nm, at which diacetyl has an
absorption maximum.

Currently, flow regimes in the range of Re = 5 - 50 can be investigated. The waviness of
the falling film is induced by external vibrations. The mixing and setting of the volume flux
of the gas phase is performed using two mass flow controller (ANALYT-MTC) and allows for
an accurate adjustment of the gas phase composition.

5 Results

In this section, results on the model identification (with simulated data) and the experimental
method are presented.

5.1 Model identification

We present first results for the source inverse problem (12). To illustrate the suitability of
the proposed numerical method, it is applied to a simulated data set.

For the computational domain Ωf defined by the film surface δ, the Nusselt flat film solution
was used. For the fluid properties, we assumed water with the properties defined in Table 1.

The length lx of the computational domain in flow direction is set to 100mm. Since the
flow properties of the film are constant in z-direction, the choice of the width lz = 1mm is
arbitrary. The film height δ is set to the Nusselt height of the film, given by

δ =

(
3 V̇l ν

g

)1/3

. (26)

The velocity field is zero in all but the x-direction. For the x-direction, it takes on the
parabolic form

u(y) = uN

(
2
y

ly
−
(
y

ly

)2
)

(27)

with the Nusselt velocity uN defined as

uN =
g δ2

2 ν
. (28)
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Figure 6: Quality of approximation for the first identification step of the incremental method.
Left: Illustration of the resulting source distribution in the x−y plane for time step
t = 0.5s. Right: Comparison of the simulated source term Fsim and the solution
Fsol after 15 CG iterations. The plot shows the values along a cut along the x axis
for y = δ/2, t = 0.5s.

The time step of the θ-method was set to ∆t = 0.1s, with θ = 1.0 (corresponding to implicit
Euler).

A simulated source term of the form

Fw,sim(x, y, z, t) = 10−3 sin (2π (x− t)) sin (2π y)
mol

m3s

was generated. Using the PDE (9), the corresponding concentration profile csim was com-
puted. To simulate noise in measurements, perturbed measurements ĉsim were obtained by
adding Gaussian noise with zero mean and standard deviation of 10−3 to csim.

The source inverse problem (12) was solved using the CGNE algorithm. The stopping
criterion for regularization was set to 15 iterations, which turned out to be sufficient here.
All PDEs in this setup were solved using 50x20x3 grid points in x, y and z direction, and
ten time steps, using the FEM solver DROPS. SUPG stabilization was used for all problems,
which considerably sped up the solution of the subproblems.

In Figure 6, two plots illustrate the quality of the solution of the inverse problem. The left
plot shows the solution Fsol in the x − y-plane at z = 0.5mm and t = 0.5s. Note that due
to the symmetry of the flow properties in z-direction, the solution is independent of z. The
right plot shows a comparison of the solution Fsol (continuous line) with the true solution
Fsim (dashed line) for the x-plane at z = 0.5mm, t = 0.5s, with y = δ

2 .
The solution of the inverse problem shows excellent agreement with the original simulated

data for the region inside the computational domain. Significant errors only appear at the
Dirichlet boundaries. This is due to the fact that the gradient is computed from the solution
of the adjoint equation of the operator K1. By definition of the boundary conditions of the
adjoint problem, the gradient at the Dirichlet boundaries of the original problem is always
zero. Therefore, no progress in fitting the model to the data can be achieved. This must be
taken into consideration when fitting the model candidates in later stages of the incremental
method.
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Table 2: Parameters of the experimental setup

Parameter Name Value

Liquid flow Reynolds number / - Rel 16
Gas flow Reynolds number / - Reg 82

Liquid flow rate / l h−1 V̇l 8

Gas flow rate / l h−1 V̇g 180
Environmental temperature / ◦C ϑ 25.7
Phosphorescence lifetime / µs τ0 214
Intensifier gain / % Gain 90
Intensifier gating time / µs ∆t 200
Time between laser pulse and and start of image acquisition / µs t0 8
Time delay between start of each image acquisition / µs t1 - t0 230

5.2 Experimental results

The experimental settings are summarized in Table 2. The images were taken 150 mm
after the inlet. Prior to the actual experiments, reference images were taken to correct the
distortions caused by the curvature of the glass tube. For the recording of these correction
images, the falling film absorber was flooded with the water-diacetyl solution. A reference
plate with a regular pattern on it was submerged into it, placed at the position of interest,
and photographed. In a pre-editing image processing step, the built-in calibration routine of
the camera software used these reference recordings to correct the images. Simultaneously,
this correction procedure provided the required scale.

The low intensity of the phosphorescence emission requires a high gain setting for the im-
age intensifier. This reduces the obtainable signal to noise ratio and therefore the spatial
resolution. At the current development stage of the experimental setup, the images do show
quantitatively if oxygen is present in the gas phase. Nevertheless, it is not possible to de-
termine concentration distributions accurately within the film. However, with the current
experimental setup, film thickness measurements are feasible. In the following only oxygen-
free falling films are taken into account.

In Figure 5.2, a double image is shown as an example. Both images show the same wave,
recorded successively during one decay curve within 430 µs. The red lines depict the gas/liquid
interface and the position of the wall. While the position of the glass wall can be easily
detected automatically, the gas/liquid interface needs to be marked manually. The halo,
which can be seen above the film surface, hinders an automated surface detection. This effect
is caused by scattered light originating from the excited volume. Since the excited diacetyl
molecules emit light in all directions, and the light rays travel from an optical denser into a an
optical thinner material, they are diffracted at the film surface away from the axis of incidence.
This results in a phantom image of the wave, which appears as a halo [1]. In addition to that,
the physical phenomenon of total reflection accounts for a second optical effect, which can
be seen in the images. Within the wave, a non-constant intensity distribution is observed,
even though no oxygen is present in the film and diacetyl is homogeneously distributed in the
liquid. At the gas/liquid interface the intensity distribution reaches its maximum and the film
surface is identifiable. Nevertheless, if for each pixel of this double image the phosphorescence
lifetime τ is calculated with (24), these effects are cancelled out. This can be explained by
the fact, that the recorded light is solely the diacetyl phosphorescence, which originates from
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Figure 7: Two successive intensity images of an oxygen-free falling film are shown. The cap-

tured pictures were taken within one phosphorescence decay curve. The correspond-
ing experimental setup is given in Table 2. Red lines: Position of the Wall and the
film surface; green line: calculated Nusselt film thickness (δNuMean

= 163µm). All
lines were added manually.

within the excited volume element.
In the presented image, the measured maximum, minimum and mean film thicknesses are

δmax = ..., δmin = ... and δmean = ... . The average lifetime τ within the wave was .... .

6 Conclusions

This collaborative research effort focuses on the development of a powerful but computation-
ally manageable model for mass transfer in liquid falling films. The first step of the systematic
derivation of a model structure by means of the incremental model identification method has
been completed. To achieve this, suitable efficient techniques have been implemented in the
software package DROPS. The introduced experimental method was used to measure film
thickness.

Current work in our group focuses on the further development of the modeling, numerical
simulation and experimental methods. The modeling efforts continue along the path of the
incremental method. For the solution of the PDEs on wavy computational domains, defined
by long wave evolution equations, the ALE method will be implemented in DROPS. Further
improvements are incorporated into the experimental measuring method to overcome the
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limitations due to the low phosphorescence intensity.

Symbol Description

Deff Effective diffusion coefficient
Dmol Molecular diffusion coefficient
Dw Diffusion due to waves
Fw Wavy source term
c concentration
cm Measured concentration
u velocity profile
J generalized molecular flux
JD molecular flux due to diffusion
fw model for Dw

θ parameters
K1,K2 Operators
L2 Lebesgue space of square-integrable functions
Ωf Time-dependent computational domain

Ω̂ Fixed reference computational domain
δ film height
x coordinate in direction of film flow
y coordinate in direction of film height
z coordinate in direction of film width
t time

V̇l liquid volume flow
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