
AN EMPIRICAL EXPLORATION OF PYTHON MACHINE LEARNING API

USAGE

by

Aleksei Vilkomir

December, 2020

Director of Thesis: Mark Hills, PhD

Major Department: Computer Science

Machine learning is becoming an increasingly important part of many domains, both

inside and outside of computer science. With this has come an increase in develop-

ers learning to write machine learning applications in languages like Python, using

application programming interfaces (APIs) such as pandas and scikit-learn. How-

ever, given the complexity of these APIs, they can be challenging to learn, especially

for new programmers. To create better tools for assisting developers with machine

learning APIs, we need to understand how these APIs are currently used. In this

thesis, we present a study of machine learning API usage in Python code in a corpus

of machine learning projects hosted on Kaggle, a machine learning education and

competition community site. We analyzed the most frequently used machine learning

related libraries and the sub-modules of those libraries. Next, we studied the usage of

different calls used by the developers to solve machine learning tasks. We also found

information about which libraries are used in combination and discovered a number

of cases where the libraries were imported but never used. We end by discussing

potential next steps for further research and developments based on our work results.

AN EMPIRICAL EXPLORATION OF PYTHON MACHINE LEARNING API

USAGE

A Thesis

Presented to The Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

by

Aleksei Vilkomir

December, 2020

Copyright Aleksei Vilkomir, 2020

AN EMPIRICAL EXPLORATION OF PYTHON MACHINE LEARNING API

USAGE

by

Aleksei Vilkomir

APPROVED BY:

DIRECTOR OF THESIS:

Mark Hills, PhD

COMMITTEE MEMBER:

Nasseh Tabrizi, PhD

COMMITTEE MEMBER:

Rui Wu, PhD

CHAIR OF THE DEPARTMENT

OF COMPUTER SCIENCE: Venkat Gudivada, PhD

DEAN OF THE

GRADUATE SCHOOL: Paul J. Gemperline, PhD

DEDICATION

This work is dedicated to the memory of my father, Dr. Sergiy Vilkomir.

ACKNOWLEDGEMENTS

Sincere thanks to Dr. Mark Hills. I was very fortunate to have you as my supervisor.

Your supervision, patience, readiness to listen, and constant encouragement meant a

great deal to me.

I thank my wife Ekaterina, and my daughter Sonia, who believed in me and

supported me. Without their support, this journey would never had started.

My mother, Dr. Tetyana Vilkomir, who has endless patience and is always ready

to listen and support.

Table of Contents

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 INTRODUCTION . 1

1.1 Background . 1

1.2 Motivations for this study . 3

1.3 The purpose of this study . 3

1.4 Research Questions . 3

1.5 The structure of the thesis . 4

1.6 Contribution . 5

2 RELATED WORK . 6

2.1 APIs usage and learning approaches 6

2.2 Code completion systems . 9

3 CORPUS . 12

3.1 Kernels extraction . 13

3.2 Competitions extraction . 16

3.3 Summary . 17

4 RESEARCH METHOD AND DATA EXTRACTION 19

4.1 Modules usage . 20

4.2 Methods usage . 21

5 DATA ANALYSIS . 24

5.1 RQ1: Programming language usage 24

5.2 RQ2: Top 5 libraries description . 25

5.3 RQ3: Modules usage analysis . 27

5.4 RQ4: Calls usage analysis . 32

5.5 Similarity analysis . 33

5.6 Threats to Validity . 36

6 CONCLUSIONS AND FUTURE WORK 37

6.1 Conclusions . 37

6.2 Future work . 39

BIBLIOGRAPHY . 41

LIST OF TABLES

3.1 Top 10 used competitions . 18

5.1 Top 5 used modules . 28

5.2 Example of excessive imports files . 29

5.3 Excessive imports of modules . 30

5.4 Sub-modules imports per top module 31

5.5 Sub-modules count . 31

5.6 Methods count per modules . 32

5.7 Top-10 calls count per library . 33

5.8 Files used for similarity analysis . 34

5.9 Excessive imports comparison . 34

5.10 Calls usage per library . 35

LIST OF FIGURES

3.1 Batch generation . 14

3.2 Source-code - competitions extraction 17

4.1 AST visitor imports . 20

4.2 AST walk-through imports . 20

4.3 Updated AST visitor imports . 21

4.4 Different ways of method calls . 22

4.5 AST visitor code example . 22

4.6 pandas dictionary example . 23

5.1 Programming languages used by data scientist, based on Kaggle survey 25

5.2 Quantity of projects per programming language in Kaggle competitions 26

5.3 Excessive usage of the imports (from sklearn-logisticregression-enhanced) 28

Chapter 1

Introduction

1.1 Background

The question of how to improve students’ preparation has been discussed for decades.

There are a lot of techniques on how to help students to enhance their learning skills

and practices to encourage active learning. However, the situation in Application

Programming Interfaces (APIs) learning has additional problems due to the variety

of APIs. Even more, there are not many resources available to learn APIs. There

are a lot of APIs that are used in order to improve the development process without

huge effort. Nevertheless, it takes a lot of time and effort to study how APIs could

be used.

An exploratory survey [33] indicates that APIs learning resources are the main

issue in the API learning experience. Reading the provided documentation could be

a critical element even for experienced developers but could be a stumbling block

for the students. One of the well-known approaches to simplify the usage of APIs is

code completion. This approach is implemented in different Integrated Development

Environments (IDEs) and often is the reason why the IDEs are used. Bruch, in

his study [6], compares code completion functionality with the specific browser that

allows developers to see possible APIs methods even without knowing the names

of the methods. He even named code completion as one of the milestones in the

transition from old to modern IDEs.

In general, we could distinguish two types of code completion approaches that are

used by most IDEs. In the first, the alphabetic list approach, the IDE provides an

alphabetic list of all possible completions. In the second, ”smart” auto-completion, a

context-based completion is provided.

The first type is no longer commonly used; it is not helpful because useful rec-

ommendations may be quite far down the list, so order does not say anything about

usefulness. The second type is successfully used in different IDEs for different lan-

guages. As a general-purpose language, Python is now one of the fastest-growing

programming languages [38]. Despite the simplicity, Python provides a lot of options

for the users. Because of its dynamic nature, it is not possible to apply the same code

completion approaches as are used for static languages. That is why there is room

for applying a new methodology.

Machine learning approaches, such as maximum entropy, genetic algorithms, ran-

dom forest, and neural network, have been used in different application areas with

great success. Machine learning is one of the areas where Python proved itself as a very

simple but powerful tool. According to GitHub, based on GitHub activity in 2018,

Python is the most commonly-used language for machine learning projects [12]. Pop-

ular Python libraries for machine learning and data science include matplotlib [22],

numpy [28], pandas [29], scikit-learn [36], and scipy [37]. That is why it is widely

used not only by software developers but by scientists and students. That is why

it is important to provide an ”intelligent” completion method that would provide

auto-completion based on the context of the code, not a traditional sequential list

of functions. It is important because some users are less sophisticated or bring less

programming knowledge.

2

1.2 Motivations for this study

I have studied several programming languages and techniques during the two last

decades. That is why I clearly understand that it is very hard to start developing

software without any help. Even more, existing code completion tools are not effective

for this work’s research area due to the following facts:

1. General API recommendation tools would provide a general recommendation,

not machine learning-oriented.

2. Alphabetic recommendation lists are too long and would not help if a user is

not skilled enough.

3. Existing ”intelligent” systems are mainly using code source from different ap-

plication areas, not specific for machine learning.

1.3 The purpose of this study

This empirical study aims to understand how Machine Learning APIs are used by data

scientists to solve various machine learning tasks. The study also sought information

that could provide additional support for the future development of a recommender

system dedicated to helping students and other novice developers to learn the usage

of ML APIs.

1.4 Research Questions

In order to get an understanding of the APIs typically used to solve machine learning

tasks, we defined the following questions to be answered:

• RQ1: What are the main programming languages used for data science appli-
cations?

3

• RQ2: What are the main machine learning libraries used in Python machine
learning code?

• RQ3: In each of these libraries, what are the most used modules?

• RQ4: For each of the libraries and modules, what are the most common API
calls?

Answering these questions gives us insight into how machine learning APIs are used

in practice. It is important to know what are the main languages applied to data

science problems in order to know where to focus further research and for which

language recommender system could be useful. This also helps to ensure the focus of

this thesis, which is on API usage in Python, actually targets a common platform.

The APIs libraries could have different structures and could have different mod-

ules, and knowing those modules could help us to find the patterns of their usage.

Finally, empirical data about calls to machine learning APIs, including call frequency,

could serve as the basis for future recommender system.

1.5 The structure of the thesis

The rest of the thesis is structured as follows. First, related work is described in Chap-

ter 2. Next, we describe the current works in the area of APIs and code completion

systems. Then, in Chapter 3, we introduce a corpus of Python code and describe the

source of the data and ways of its extraction. Further, in Chapter 4, we describe the

methods and processes used for extracting data from the corpus. Chapter 5 presents

the results of our work together with the answers to the research questions. Finally,

in Chapter 6, we conclude our work and propose future work.

4

1.6 Contribution

There have been a number of studies of how APIs are used by developers, which

we discuss in Chapter 2. However, to the best of our knowledge, none of these

studies focus on the usage of machine learning APIs for Python. We plan to use the

results of this empirical study as a foundation for the future development of an API

recommender system that would help students and other novice developers learn how

to properly use machine learning APIs in Python.

5

Chapter 2

Related Work

In this chapter, we first present the information about the existing work related to

APIs usage in Section 2.1. Next, we discuss existing approaches and works in the

field of code completion systems in Section 2.2.

2.1 APIs usage and learning approaches

The Application Programming Interface term was introduced in 1975 by Date [8].

However, active modern APIs usage started in the early 2000s. emThe largest APIs

directory [1] had reached the size of more than 23,000 APIs in September 2020.

Almost every day, a new API is introduced for public usage [2]. Sylos and Myers

[24] states that almost every line of the code written by the developer could contain

a reference to one of the APIs. Due to continuous changes in the APIs’ tasks and

improvement, it becomes very complicated to use APIs effectively. That is why APIs

usage becomes not a useful interface between them and the code but an additional

learning task.

Robillard [34] conducted different series of studies, including surveys and inter-

views, to find out existing issues faced by the programmers while learning and ap-

plying APIs. This study found out that the developers are not only challenged with

finding some patterns or scenarios of APIs usage but have some complications with

the understanding of background processes of APIs usage. Due to these issues, de-

velopers could have problems choosing the correct methods and classes from APIs.

Even more, they could have an additional problem when trying to combine different

methods and classes from different parts of APIs. Despite the fact that APIs’ names

could be self-explaining, it might be too complicated to choose the correct ones.

There were several studies done in the area of improving APIs learnability[11, 39,

40]. During this studies some of the obstacles were outlined: awareness about the

structure of the APIs, picking out the classes and methods that are suitable for the

tasks that are solved, finding the correct approach to use the classes, and combining

the usage of different objects, especially from different APIs. One of the approaches

to improve the usage of APIs was a design improvement. Stylos [24] proposed to

improve the design of the APIs in order to include usability as one of the significant

optimization parameters for all APIs, and they anticipated that this approach would

be used by most of the developers. However, it is hard to believe that all developers

would follow this strategy during API creation; at least it is still not the case.

Xia et al. [49] conducted a survey in which they asked 235 software engineers

to rate a set of search tasks. They noted that almost 10% of all analyzed search

queries were related to reusable code snippets. Participated software engineers stated

that they do such searches as they do not always remember the API usage’s correct

structure. They do not want to redo some tasks that were already implemented by

somebody else. However, the developers also highlighted that it is not easy to find

the exact snippet. The search engines often skip special symbols that could be an

essential part of the snippet. That is why the results of the search could lead to the

wrong examples. They also complained about the snippets’ quality and correctness

that could be found using a simple Web search. In the earlier study [4], that tracking

system was used to evaluate the activities of the developers. The results demonstrated

7

that a software engineer could make more than 20 API related searches per day.

There were several pieces of research made on the APIs usage based on the Java

APIs. Zhong and Mei [51] presented a study about APIs usage based on the seven

projects that were extracted from SourceForge1 and Apache2. All those projects were

written using Java. The authors noticed that the different types of API libraries can

have different usage and needed to be studied separately. Nguyen et al. [25] introduce

the idea that it is possible to distill preconditions of the APIs usage from a large

data corpus. They tested this idea by mining preconditions for Java Development

Kit from more than 100 million SLOC. Sawant and Bacchelli [35] developed fine-

GRAPE, a method that extracts exact API usage information taking into account

type information. However, those researches do not answer the question of how

developers use the APIs from a machine learning point of view. Even more, not all

approaches used for static languages could be applied to the dynamic ones.

Hora [16] presented various limitations of existing websites that provide examples

of APIs usage. First of all, the author refers to the examples’ quality — often,

it is hard to get a full understanding of the example and reuse it. Next, those

websites contain duplicated and irrelevant examples. This fact makes it harder to

find the information that is needed to solve a problem. Finally, some examples are

created manually, and it makes it impossible to cover a wide range of existing APIs.

To overcome those limitations, the author presents the APISonar approach, which

extracts API usage examples from a set of projects and creates a ranked representation

of those examples.

1http://sourcefourge.net/
2http://www.apache.org/

8

2.2 Code completion systems

From the beginning, code completion was presented as an alphabetically sorted list of

all possible methods. Robbes in [32] presented an approach to improve code comple-

tion with program history. The authors demonstrated that usage of different types of

program changes could be successfully used to improve code recommendations. Bruch

et al. [7] introduces best matching neighbors algorithm to improve the k-nearest

neighbor algorithm for discovering applicable recommendations for target objects.

Hindle [15] used the n-gram model to prove that code could be modeled by statistical

language models and that those models could be used in order to support Java soft-

ware developers. The authors presented their auto-completion plug-in for the Eclipse.

Tu and Su [48] introduced a cache language model that extends the n-gram model

with the cache to exploit localness – local patterns in the code. Hellendoorn [14]

suggests that a scope-based model with an unlimited vocabulary could significantly

outperform existing k-gram models, as well as RNN and LSTM deep-learning lan-

guage models. Nguyen and Nguyen in [26] introduce the statistical semantic language

model (SLAMC). This model proposes relying on the lexical analysis to capture the

patterns in the code and take into account the semantic, which is well defined in the

programming languages. D’Souza et al. [10] proposed an approach that extends the

BMN algorithm with additional code usage frequency. They assume that the BMN

algorithm outperforms methods used by association-rule mining. This work was ap-

plied to the Python language and showed promising results recommending code. The

proposed methodology is used in our work as a starting point.

There is another group of approaches that are used for code recommendation. This

group is based on neural networks and deep learning. Bhoopchand [5] introduced a

model that analyzes the introduction of identifiers based on the AST examination.

9

This model is a pointer network that allows us to study long-range dependencies in

the Python code. Li and Wang [21] present an approach based on the same model but

target a prediction of out-of-vocabulary words. The pointer network in this approach

could either generate the word in vocabulary using the Recurrent Neural Network

component or regenerate an out-of-vocabulary word using the pointer component.

Karampatsis [20] presents a corpus of 13,000 projects that are used for studying

different modeling approaches. The authors introduce an open vocabulary source code

natural language model and apply it to the Java, C, and Python code. Svyatkovskiy

et al. [42] presented Artificial Intelligent assisted code completion system for Python

code. This system is designed to be a part of Microsoft Visual Studio IDE. Pythia

uses Long Short Term Memory networks. The networks are trained on snippets that

are extracted from the open-source code dataset. In his next [43] work, he uses a

similar approach, introducing a ranking mechanism. The authors patented [41] their

system in 2020. Asaduzzaman et al. [3] presented a CSCC (context-sensitive code

completion) that is an example-based completion tool. The system was used for Java

language and is not in the scope of our work.

Finally, several research pieces were presented based on the mining of API usage

from open source Java projects. Zhong [52] developed Mining API usage Pattern from

Open source repositories (MAPO) tool. This tool mines frequent sub-sequences from

the code snippets and make automated recommendations. The tool was integrated

as a recommender for Eclipse IDE. Xu et al. [50] introduced their Method usage and

Location for API (MULAPI) approach that uses feature location together with the

historical feature repository to provide features related recommendations. Niu et al.

[27] described the approach of mining API usage patterns for the recommendations.

They targeted the mobile application development domain in their work. The set of

more than 11,000 Android programs was used to make an empirical study to confirm

10

that their approach can effectively mine API patterns.

11

Chapter 3

Corpus

To investigate the use of machine learning APIs in Python code, we first needed to

identify a corpus of Python code focused on machine learning that could be analyzed.

Many similar studies use repositories hosted on GitHub. For this study, we decided

this would not be feasible: we would first need to identify repositories that use Python,

then determine if the code in each repository was focused on machine learning. It

could be possible to do this, e.g., by filtering repositories by the libraries used, but

this also risks mixing code for machine learning with code focused on other program

concerns.

Because of this, we opted to use Kaggle [18]. Kaggle is a community site for

machine learning researchers and practitioners, providing courses, datasets, and dis-

cussion boards. Kaggle also hosts machine learning competitions, where different

Kaggle members can submit their solutions to solving posted problems. Kaggle sup-

ports multiple languages, including Python. Details on existing competitions, and

publicly-posted solutions, can be found on the Kaggle website and in the Meta Kag-

gle dataset [23]. Here, we use Meta Kaggle to identify posted solutions written in

Python, which are then downloaded using the Kaggle API.

3.1 Kernels extraction

The Meta Kaggle set does not have the source code in it. The data set contains 29 CSV

files; the total size is 8.66 GB. There are seven main entities, each of them presented

by their own file: Competitions, Kernels, Forums, Tags, Teams, Users, and Kernels.

All other CSVs presents relationship tables between the entities. For our research,

the only important tables are the following: Kernels, Users, KernelLanguages, and

KernelVersions. Kernels table contains attributes of the kernels - source code files.

Users table, obviously, includes information on users - authors of the source code

files. KernelLanguages contains the list of programming languages that are used in

the kernels. Finally, KernelVersions provides us with the possibility to find out which

kernel uses which programming language. Even more, this table allows us to have an

understanding of used programming languages without having to download the code

files first.

In order to get the public source code, it was necessary to use Kaggle API. Kaggle

API is accessible using a command-line tool written using Python 3 and provided by

Kaggle. This means that the only way to download source code files is to do it one

by one from the command prompt. That is why we decided to create a script (.cmd)

file with a command for each file we want to download.

In order to create such a command file, the Python script (Figure 3.1) extracts all

kernels that are written using the selected languages. The values 2,8 in line 7 presents

Python and Jupyter Notebooks correspondingly. The kernels are sorted by the total

amount of votes each of those received (line 8). Finally, the results are truncated

after 100,000 kernels in order to get a representative sample but have a reasonable

processing time.

The user names for the selected kernels are extracted from the Users table using

13

the authors’ IDs provided in the Kernels table (line 15). Those names are combined

with the URLs of the corresponding kernel files and add to the script file (line 17).

1 import pandas as pd

2

3 kernels = pd.read_csv("Kernels.csv")

4 kernelsversions = pd.read_csv("KernelVersions.csv")

5 selectedkernels = kernels[kernels.Id.isin(

6 kernelsversions[kernelsversions.

7 ScriptLanguageId.isin({2, 8})]. ScriptId)].\

8 sort_values(’TotalVotes ’, ascending=False)\

9 .head (100000)

10

11 users = pd.read_csv("Users.csv")

12 with open("get_kernels.cmd", "w+", encoding="utf -8") as file:

13 for i,j in selectedkernels.iterrows ():

14 commandstrings="kaggle kernels pull " +\

15 users[users.Id==j.AuthorUserId]. UserName +\

16 "/" +j.CurrentUrlSlug +"\n"

17 file.writelines(commandstrings)

18 file.close ()

Figure 3.1: Batch generation

This script applies Kaggle API methods (”kaggle kernels pull”) for downloading

of the source code files. This approach is highly time-consuming. It required 3.5 days

to execute all script commands and download selected sources. However, this is the

only available way to download Kaggle source files.

In some cases, projects that were in the top 100000 were not downloaded. This

happened in the following cases:

• Some of the projects were set up as private. This means that during our down-
load process, those files were skipped.

• Some of the files that were referenced by Meta Kaggle were removed.

• Some of the projects have more than one vote despite the fact that they were
empty. We have to drop those files as well.

• Some projects were processed by Kaggle API with an error, and those files were
not downloaded.

14

Our approach requires source files to be pure Python files. However, 93% of the

projects are done using the Jupyter Notebooks [17]. From the file structure point of

view, Jupyter Notebooks are JSON documents, which contain not only source code,

but also formatting, metadata, and media output produced by the code execution.

This means that we had to convert IPython Notebooks to the plain Python code.

We decided to use the standard Jupyter mechanism to convert the files - nbconvert.

While applying this mechanism, another unexpected issue was found. The Kaggle

competition was done by data scientists from all around the world. Some of the

scientists decided to use their native languages in the source code. The Jupyter

method was not able to convert the files that contained special characters (e.g., ä, ü).

That is why we had to apply Microsoft PowerShell 7.0 script to convert all notebooks

files to the UTF-8 encoding standard. This script iterates through files in the folder,

extracts the content of each file, and overwrites the content with the same content

converted to UTF8 encoding.

However, this convertion did not help to eliminate all possible errors produced by

nbconvert. That is why this mechanism was not able to process all files and crashed

before completing the task. We had to use the same brute-force approach we used

before and create a command file with the nbconvert call for each notebook file.

As a result of all described above, the collection of 69,376 source files (9,487,108

lines of code, ignoring more than five million lines of comments and more than eight

millions blank lines) was used for further processing. The average size of the file is

138 LOC. The maximum file size is 808 LOC; the minimum size is 5 LOC.

15

3.2 Competitions extraction

The Meta-Kaggle does not contain a complete database of all competitions that took

place. The description of this data set specifically states that this set is not a complete

dump of the Kaggle database. The data in the tables is filtered out, and some rows

and columns are transformed.

That is why it was not possible to extract all connections between source-code

and competitions. In order to do this, we have to create an approach (Figure 3.2)

to extract as many competitions as possible. Most of the source-code files have a

web-page that could be open using the name of the kernel. Most of the web-pages

contain information from which competition the data was used. However, there is no

straight-forward way to get this information from the page.

Following our approach, the URL of the target page was generated (Figure 3.2,

line 6). The web page is open, and its content is extracted (line 8). We used a

Python HTML parser to parse the content to the XML (line 9). The target name of

the competition is extracted from the XML using the HTML tag name (lines 10 - 12).

In case there is no information (line 15) or encoding error (line 17) - ”No competition”

is used as a competition name. Finally, a pair (source code name, competition) is

stored in the CSV file.

As a result, we extracted 8,485 different names of the competitions. However, four

of the top ten (3.1) used competitions are ”multiple data source”, ”no data source”,

and ”no competition”. That is why the number of competitions presented above is

the minimum quantity. More than 50% of the competitions (4,907) are presented by

only one project.

From the project count point of view, top 10 competitions are connected with

more than 40% of the projects (41,167). Almost 40% of the projects are using either

16

multiple or unavailable for us to reveal competitions.

1 with open("kernels_competitions.csv", "w+", encoding="utf -8") as

file:

2 for i, j in selectedkernels.iterrows ():

3 competition_count += 1

4 uid = users[users.Id == j.AuthorUserId]

5 if uid.size > 0:

6 url = ’https ://www.kaggle.com/’ + uid[’UserName ’].iloc

[0] + ’/’ + j.CurrentUrlSlug

7 try:

8 webpage = urlopen(url)

9 soup = BeautifulSoup(webpage , "lxml")

10 description = (soup.find("meta" ,\

11 property="og:description")).\

12 encode(’utf -8’, errors=’ignore ’).strip()

13 competition = description.split("Using data from "\

14 .encode(’utf -8’).strip (), 1)[1][: -29]\

15 if description else "No competition"

16 competition = competition.decode(’utf -8’)

17 except (URLError , UnicodeEncodeError) as e:

18 competition = "No competition"

19 file.writelines(j.CurrentUrlSlug+","+competition+"\n")

20 print(competition_count)

21 file.close ()

Figure 3.2: Source-code - competitions extraction

As a result of all data manipulations, we got a set of Python (*.py) files that

contains a source code written by data scientists or data enthusiasts. Furthermore,

we have a list of the file names and corresponding competition names. Due to the fact

that the Kaggle Meta-Data is a live data set and it could be modified on a daily base,

and there are no daily versions available, we decided to provide the source files (as a

zip archive) and the list of kernel-competition (as CSV file) in the GitHub repository1.

3.3 Summary

We have collected 69,376 Python script files dedicated to the data science tasks solving

from the Kaggle competitions. The overall SLOC is 9,487,108. We have distilled 8,485

1https://github.com/ecu-plse-lab/Python-MLAPI-expl

17

Competition name Projects count
multiple data sources 15975

Titanic: Machine Learning from Disaster 6058
no data sources 5466

Private Datasource 4880
Digit Recognizer 2511

House Prices: Advanced Regression Techniques 2346
No competition 1205

Housing Prices Competition for Kaggle Learn Users 1188
Iris Species 815

Credit Card Fraud Detection 723

Table 3.1: Top 10 used competitions

of different competitions names.

18

Chapter 4

Research Method and Data Extraction

The usage of APIs could be a challenging task for software engineers. That is why it

is important to support API usage studying process for the student. However, before

creating a system that would support students it is necessary to understand how the

data scientists are using Machine Learning APIs.

This chapter is focused on the methods we are using to extract the data from the

Python sources. The data is extracted from the corpus described in the Chapter 3

and is analyzed in the Chapter 5. In order to extract the list of modules it was decided

to use Abstract Syntax Tree (AST) visitor approach. An abstract syntax tree is a

finite, labeled, oriented tree in which internal nodes are associated with programming

language operators, and leaves with corresponding operands. A visitor goes through

nodes and if the visitor method is specified for the node - it is executed.

The list of modules used in import and import from statements are mined from

each source code. The total number of usages per module is analyzed and sum-

marized afterwards. Such a walk-through mechanism could be implemented with

not very complex code (Figure 4.1). We implemented visit Import method (lines 1-

4) that would be called for each import libraryname and import libraryname as

alias statement in the Python code found by visitor. Additionally, we implemented

visit ImportFrom (lines 6-9) method that would be executed for each statement from

libraryname import submodule. Each method stores the name of the library (lines

3,8) in the dictionary that could be used for the further processing. In case of multiple

libraries are imported (e.g., from sklearn.pipeline import Pipeline, FeatureUnion) the

iteration mechanism is implemented (lines 2,7).

1 def visit_Import(self , node):

2 for alias in node.names:

3 self.stats.append(alias.name)

4 self.generic_visit(node)

5

6 def visit_ImportFrom(self , node):

7 for alias in node.names:

8 self.stats.append(alias.name)

9 self.generic_visit(node)

Figure 4.1: AST visitor imports

During our work we did not change any code in the original source file. The only

alteration that was produced was change of the encoding of the Jupyter Notebooks

as described in Chapter 3. All script files, that were used for the data extraction and

analyses could be found in the repository of our work, under the Scripts folder.

4.1 Modules usage

The main disadvantage of the standard AST visitor method is the fact that modules

could be used (imported) in different, not necessary straight forward ways. There are

five ways[30] to implement import in a Python code (Figure 4.2). This fact means

that we could lose a lot of modules calls with the described above approach. Taking

1 import foo #Direct import of the foo liblrary

2 import foo.bar.baz #Sub -library foo.bar.baz is imported

3 import foo.bar.baz as fbb #foo.bar.baz imported and bound as fbb

4 from foo.bar import baz #foo.bar.baz imported and bound as baz

5 from foo import attr #foo imported and foo.attr bound as attr

Figure 4.2: AST walk-through imports

20

this into the account, the new approach was used. For each import statement in the

source code the root module is extracted and saved regardless the way an import was

implemented (Figure 4.3). This information was used for the further modules usage

1 def visit_Import(self , node):

2 for alias in node.names:

3 self.stats.append(alias.name.split(".", 1)[0])

4 self.generic_visit(node)

5

6 def visit_ImportFrom(self , node):

7 for alias in node.names:

8 module_name = node.module.split(".", 1)[0]

9 self.stats.append(module_name)

10 self.generic_visit(node)

Figure 4.3: Updated AST visitor imports

analysis. Additionally, we decided to extract and store an information if the module

was used in the project or not. This information will be used to analyse a number of

useless imports.

4.2 Methods usage

For each project source code file, the list of imported libraries was used. The actual

libraries’ names were associated with the aliases those are bounded. When a method

was analyzed, a root library was found to which this method belongs to. The method

was added to a list corresponding with the root library(Figure 4.6). All libraries’

lists were appended to the dictionary. Each file’s dictionary was appended to the

global dictionary set. The main issue was to create a mechanism to extract the root

modules of the methods. The methods could be called in different ways. One of the

possibilities - the method is called from the alias (Figure 4.4, line 2). Another way

would be to call the method using the name of the sub-library (Figure 4.4, line 5). A

third way of the usage is importing the library itself and calling methods using the

21

1 #Call from alias (example from 0-29-public -lb-score -beginner -nlp -

tutorial.py)

2 pd.set_option(’display.float_format ’, lambda x: ’%.6f’ % x)

3

4 #Call from sub -library (example from 0-29-public -lb-score -beginner -

nlp -tutorial.py)

5 Y_train = LabelEncoder ().fit_transform(X_train[’author ’])

6

7 #Call from module (example from kernel576babdf33.py)

8 battles = pandas.read_csv(’/kaggle/input/final -fantasy -tactics -

battles/fft_red -battles.csv’)

Figure 4.4: Different ways of method calls

library’s name (Figure 4.4, line 8).

For the research on the methods used we continued to use the approach based

on the AST visitor (Figure 4.5). This code example demonstrates how the methods

1 def visit_Attribute(self , node: ast.Attribute):

2 if None != node.value and isinstance(node.value , ast.

Attribute):

3 self.maintain_Attribute(node , node.value)

4 elif node.value is not None and isinstance(node.value , ast.

Name):

5 if node.value.id in self.module:

6 self.results[node.value.id]. append(node.attr)

7 else:

8 for keyAs , valueAs in self.importsAs.items():

9 if node.value.id in valueAs:

10 self.results[keyAs]. append(node.attr)

11 elif node.value is not None and isinstance(node.value , ast.

Call):

12 self.maintain_Attribute(node , node.value)

13

Figure 4.5: AST visitor code example

are checked and extracted. The visitor method for the Attribute node is defined.

Visitor will enter this method for each Attribute node. First, it checks is the value

of the visited node is a Name (line 4) (pd.read csv()) or also an Attribute (line 2)

(keras.utils.to categorical(y train, num classes)). If it is and Attribute - the main-

22

1 { ’pandas ’: [

2 ’read_csv ’,

3 ’read_csv ’,

4 ’read_csv ’,

5 ’DataFrame ’,

6 ’DataFrame ’

7 ’isna ’

8]

9 }

Figure 4.6: pandas dictionary example

tainAttribute method is called. This method is used to process Attribute nodes and

to take care of the nested attribute calls. In case it is a Name - it’s id that represents

the name of the library, is compared with the Top 5 libraries names (line 5-10). The

both cases of the import approaches are taking into the account - import (line 5) and

from import (line 8). In case it is one of the Top 5 modules - the method is stored in

corresponding dictionary. The maintainAttribute method iterates attribute calls up

to it comes to the root name and follows the same logic we described for the Name.

23

Chapter 5

Data Analysis

In this chapter, we answer the questions posed in Chapter 1, based on the data ex-

tracted from the corpus described in Chapter 3. We also present a similarity analysis

based on the sample of source code files dedicated to solve the same Kaggle com-

petition. Finally, we presents the threats to validity and describe how those are

mitigated.

5.1 RQ1: Programming language usage

There was a questionnaire [19] presented by Kaggle in 2018. One of the questions

was ”What programming language do you use on regular basis?”. This questionnaire

was used to confirm that the python should be used as the target for our study. This

questionnaire was answered by 23,859 data science professionals. The percentage of

the answers on this question are presented on Figure 5.1. The respondent were able

to choose several languages in their answers.

As we can see, Python is the most used language with a wide margin comparing

to the others. Even more, the analyses of the data from KernelLanguages table

(described in Chapter 3) presented us that only two language families are used by

the Kaggle users. Those languages are Python and R. The results of the query on

the Meta Kaggle provides us with the quantities of the projects that are fulfilled

Figure 5.1: Programming languages used by data scientist, based on Kaggle survey

using those two language families (Figure 5.2). The Python languages were applied

in 539,018 projects; R languages were used in 59,155 projects.

5.2 RQ2: Top 5 libraries description

NumPy allows for very efficient handling of multidimensional arrays. Many other

libraries are built on NumPy, and without it, it would be impossible to use pandas,

Matplotlib, or scikit-learn - which is why it ranks first on the list. It also has some

well-implemented methods, such as the random function, which is much better than

the standard library’s random number module. NumPy is used 72,299 times in our

corpus.

Data analysts typically use flat spreadsheets such as those found in SQL and

Excel. Initially, this was not possible in Python. The pandas library allows us to

work with 2D tables in Python. This high-level library allows us to build pivot tables,

highlight columns, use filters by parameters, group by parameters, run functions

25

Figure 5.2: Quantity of projects per programming language in Kaggle competitions

(addition, median, average, minimum, maximum values), merge tables, and much

more. Multidimensional tables can also be created in pandas. Our research shows

that pandas is used 73,032 times.

Data visualization allows us to present it in a visual form, study it in more detail

than can be done in a conventional format, and present it to other people. Matplotlib

is the most popular Python library for this purpose. The best description of the library

is it’s motto : “Matplotlib tries to make easy things easy and hard things possible”1.

It’s not that easy to use if we want to do it in the full capacity, but with the 4-5 most

common code blocks for simple line charts and scatter plots, data scientists can learn

how to create them very quickly [47]. Matplotlib was used 60,775 times.

Some authors [31] consider machine learning and predictive analytic to be the

most interesting features of Python, and scikit-learn is the most suitable library for

1https://matplotlib.org/3.1.0/index.html

26

this. It contains a range of techniques that cover everything you need for the first few

years of your data analyst career: classification and regression algorithms, clustering,

validation, and model selection. It can also be used to reduce the dimension of data

and highlight features. Machine learning in scikit-learn is all about importing the

correct modules and running a model-fitting method. It is more difficult to clean out,

format, and prepare the data and to find the optimal input values and models. This

module was used 102,108 times.

Finally, Keras is a Deep Learning API that allows developers to use backend from

two more complex libraries, Theano[45] and TensorFlow[44]. It is modular based and

provide simple way to switch between those two libraries or even use both together.

The Keras library is most used framework that is used by the winning teams on

Kaggle. In our research, Keras was used 102,108 times.

5.3 RQ3: Modules usage analysis

Based on our first approach, the initial analysis was made. We analyzed the usage

of modules by direct imports. As a result, the NumPy module was the most used

one, with a result of 60,091. The second most used module is pandas, with 69,706

counts. The next analysis was based on the second approach. We analyze all libraries

imported in all possible ways. The top 5 used libraries and their counts are presented

in Table 5.1. The complete list of the libraries used in the source files could be found

in our repository.

We have analyzed all projects by the modules that are imported in those. We

found out that almost 79% of projects use pandas module. 53% of the projects use

Matplotlib. NumPy is used by 56% and scikit-learn is used by 46% of projects. The

”worst” result was demonstrated by Keras - it is used by 13% of the projects. To

27

Module name Module count
scikit-learn 230,633

Keras 102,108
pandas 73,032
NumPy 72,299

Matplotlib 60,775

Table 5.1: Top 5 used modules

1 # machine learning

2 from sklearn.linear_model import LogisticRegression

3 from sklearn.svm import SVC , LinearSVC

4 from sklearn.ensemble import RandomForestClassifier

5 from sklearn.neighbors import KNeighborsClassifier

6 from sklearn.naive_bayes import GaussianNB

7 from sklearn.cross_validation import cross_val_score

8 from sklearn import cross_validation

9 from sklearn.metrics import accuracy_score

10 from sklearn.cross_validation import train_test_split

11 from sklearn.feature_selection import SelectFromModel

12 from sklearn.grid_search import GridSearchCV

13 from sklearn.preprocessing import LabelEncoder

14 from sklearn.pipeline import make_pipeline

15 from sklearn.feature_selection import SelectKBest

16 from sklearn.cross_validation import StratifiedKFold

17 from sklearn.ensemble.gradient_boosting import

GradientBoostingClassifier

18 from sklearn.ensemble import ExtraTreesClassifier

19

Figure 5.3: Excessive usage of the imports (from sklearn-logisticregression-enhanced)

get a better understanding of the possible ways to combine libraries, we analyzed the

usage of different combinations of the libraries.

The quantity of the projects that use all five top libraries is 2,987 (4.5%). 35,201

(52%) of the projects are using both Numpy and pandas. 23,175 (35%) projects are

using Numpy, pandas, and Matplotlib libraries. 22,113 projects use Numpy, pandas,

and scikit.

The most contradiction for us was the fact that one of the libraries has almost

the same quantity of usages, as the quantity of the imports. However, after double-

28

checking the analysis approach, it was decided to check the source-code files that

are analyzed. We found out that some data scientists just copies the block of codes

without even considering if it would be used in the program. The example of such a

block is presented in Figure 5.3. There are 17 sub-libraries imported from the sklearn

module. Nevertheless, only four imported libraries are used in the program code.

This analysis suggested to us that some of the modules could be over-imported -

imported but never used. Based on the modules, we have updated our code in order

to track such cases. The AST visitor was extended to record all from * import * and

import * as * imports in each file. Those are checked during walk-through and are

recorded if no usage was found. The total count of the excessive imports is recorded

as well as the fact if each of the Top-5 modules was imported without any reason

(Table 5.2).

File name Excessive count total NumPy pandas scikit keras plot

0-0431-validation-rmse.py 3 1 0 1 0 0
0-1-data-science-introduction-heart-diseases.py 1 1 0 0 0 0

0-1-house-prices.py 6 0 0 1 0 1
0-11701-top-10-57-with-only-one-entry.py 0 0 0 0 0 0

0-16372-predict-the-weather.py 8 0 0 1 0 0
0-18-loss-simple-feature-extractors.py 13 0 0 0 1 1

0-2-data-science-tool-box.py 2 1 0 0 0 1
0-285-lb-average-of-3xgboost-lightgbm-nn.py 0 0 0 0 0 0
0-29-public-lb-score-beginner-nlp-tutorial.py 22 0 0 1 1 1

0-3-data-science-cleaning-data.py 2 1 0 0 0 1
0-31611-private-leader-board.py 2 0 0 1 0 1
0-335-log-loss-in-a-dozen-lines.py 0 0 0 0 0 0

0-49-publiclb-simple-blend-private-lb-rank-126th.py 0 0 0 0 0 0
0-573-lb-score-in-10-lines-of-code.py 0 0 0 0 0 0

0-6-lb.py 0 0 0 0 0 0
0-60-on-lb-w-max-mean-time-plus-trick.py 0 0 0 0 0 0

Table 5.2: Example of excessive imports files

The results of the track are shown in Table 5.3. The total count of the imports

that were presented but never used is 157,394. Taking into account the total number

of imports of 26,320 we see that more than 30% of the imports are used without any

necessity.

NumPy library has the biggest count of excessive usage from the project’s point

29

of view. This fact corresponds to the initial modules count, where we mentioned

NumPy as the most used module. However, the result of scikit-learn shows that this

module is often used without the required experience, and data scientists are just

copying a block of code without considering if it is required. The maximum number

of excessive imports per project is 90 (the project file is densenetimaug.py).

From the projects point of view, 94% of projects has at least one excessive import.

The median of the excessive imports per project is 3.

Module name Excessive count (projects)
scikit-learn 20,748

Keras 6,568
pandas 5,957
NumPy 23,938

Matplotlib 12,870

Table 5.3: Excessive imports of modules

In order to get a deeper understanding of the usage of the libraries, we decided

to do further analysis on the usage of sub-modules. For each of the top modules we

analysed counts of the sub-modules in import and from import statements. For each of

the modules corresponding CSV file was created with the sub-modules imports counts.

Table 5.4 presents the counts of the sub-modules imports per top module. From those

results, we could see that Scikit library has most of the sub-modules imports. Even

more, we could see that only 7.4% of total Scikit imports are direct imports. We see

a similar situation with Matplotlib library, which has 10% of direct imports. Almost

the same situation we could see with Keras library - 11%. However, we could see a

completely different situation with NumPy and pandas modules. NumPy has 99%

of direct imports, pandas - 98%. This means that data scientists typically import

the library itself, not part of the library. To answer the question of why we have

such a situation, we should check the library’s structures. NumPy and pandas are

30

the libraries dedicated to data manipulation. Those libraries do not have a complex

structure of sub-libraries. Those mainly contain classes that represent data structures

and methods that are used for data manipulation. On the other hand, Matplotlib

has more than 60 sub-libraries, and most of the common-used methods are in the

sub-libraries.

Module name Sub-modules imports count
scikit-learn 213,749

Keras 92,695
pandas 1,645
NumPy 530

Matplotlib 54,649

Table 5.4: Sub-modules imports per top module

As the result, we decided to extend modules usage analysis to cover sub-modules

in Scikit, Keras, and Matplotlib. Based on the extract data, we discover that for

Scikit and Keras we could specify Top-5 sub-modules that are mostly used. However,

analysis of the Matplotlib sub-modules showed that only 90% of the sub-modules

calls refers to one sub-module - matplotlib.pyplot. The results are presented in the

Table 5.5.

Scikit Keras Matplotlib

sub-module count sub-module count sub-module count
metrics 51,201 layers 45,448 pyplot 48,916

model selection 45,478 models 11,019 image 958
preprocessing 23,745 callbacks 7,817 patches 762

ensemble 19,360 optimezers 5,144 pylab 694
linear-model 19,048 preprocessing.image 3,946 colors 680

Table 5.5: Sub-modules count

31

5.4 RQ4: Calls usage analysis

The first conclusion that was made after the initial analysis - not all the calls we

extracted are methods. The extracted data contains counts of the method calls and

Python class calls. The quantitative results of the calls usage per module are presented

in the Table 5.6.

Module name Methods & classes count
scikit-learn 232,350

Keras 138,418
pandas 288,219
NumPy 437,391

Matplotlib 636,168
Total 1,732,546

Table 5.6: Methods count per modules

During the further analyses, we faced the situation that, similarly to the situation

with the sub-modules, the usage of the calls is not homogeneous. For the pandas

module, read csv takes 40% of all calls. Another 25% was used by the DataFrame

class. The total number of calls variations for pandas is 162. Nevertheless, 10 of the

call variations are responsible for 93% of all calls.

For the Matplotlib and NumPy, the modules with the most amount of calls, we

have from small to no amount of classes in the calls. Matplotlib has 99% of the

methods in the calls.NumPy has only 0.4% of classes in the calls. For the Keras

module, the situation is completely different. From the first (by usage frequency)

twenty calls, only two are the methods; all others are classes.

Following the observations described earlier we could define two types of the li-

braries - method-oriented and class-oriented. Method-oriented library provides de-

velopers with the wide set of methods that could be used for any purpose. From

the other hand, class-oriented library provides wide set of classes that developer can

32

instantiate. The methods provided by the class-oriented library usually are applied

to the classes.

Table 5.7 presents top 10 calls per library together with the count for each call.

NumPy pandas Scikit keras Matplot

Call count Call count Call count Call count Call count
tanh 40460 read csv 106445 train test split 24436 Dense 22682 show 94414
array 37718 DataFrame 69762 accuracy score 14936 Conv2D 14628 figure 74041
where 28517 concat 24737 confusion matrix 12327 Dropout 12239 title 72842
zeros 18655 get dummies 13888 RandomForestClassifier 9622 BatchNormalization 7630 ylabel 48300

arange 18403 merge 11771 LogisticRegression 8382 Sequential 7011 xlabel 48050
mean 17392 to datetime 10541 mean squared error 8009 MaxPooling2D 5249 plot 47029
sqrt 10840 Series 10190 classification report 7788 Activation 5101 subplots 39755
sum 9101 set option 5107 cross val score 6898 Input 4191 subplot 25832
nan 8749 to numeric 4075 GridSearchCV 6278 Flatten 4065 legend 24728
sin 8420 crosstab 3695 StandardScaler 6198 Model 3814 xticks 19818

Table 5.7: Top-10 calls count per library

5.5 Similarity analysis

As we found out and described in chapter 3.2, more than 40% of the projects are

solving the top ten competition. That is why we assume that it would be using full to

investigate how similar the code is. In order to find this out, we decided to choose one

competition and select five projects that are solving the problem in this competition.

Our natural hypothesis was that the projects dedicated to the same project would

have similar code. We took five projects (Table 5.8) that are using the data for the

same competition - Titanic: Machine Learning from Disaster [46]. This competition

assumes that in addition to luck influence, some of the people that were on the sinking

Titanic ship had more chances to survive than others. The task of the competition is

to produce a predictive model that would help to answer what type of people would

likely survive. The data set of the task contains passenger data. This competition

has the highest amount (6,058) of projects, dedicated only to one competition.

During similarity analysis we compared following:Libraries usage, Libraries exces-

sive imports and Calls per library per project.

33

File name File size (bytes) LOC
titanic-catboost.py 34,119 442

titanic-challenge-survivability-prediction.py 28,021 416
titanic-classification-comprehensive-modeling.py 25,051 337

titanic-challenge-crisp-dm.py 52,132 290
titanic-classification-problem-beginner.py 25,960 279

Table 5.8: Files used for similarity analysis

The first comparison was done straightforward by comparing the list of libraries

that were imported in each project. This comparison showed that four out of five

projects used the same set of libraries - NumPy, pandas, scikit-learn, and Matplotlib.

The fifth project (titanic-challenge-survivability-prediction) did not use 2 libraries -

Keras and Matplotlib. However, the picture was not complete as we were not sure if

the libraries were imported and used.

We analyzed how many libraries were excessively imported. The results are pre-

sented in the Table 5.9. Four of the projects have almost the same count of excessive

imports. Even more, all projects have excessive imports in the scikit library. This

is the expected result, as we described earlier that scikit has the most amount of

excessive imports comparing with other libraries. We checked excessive imports for

each project in detail, and all projects have a high amount of scikit imports; some of

those imports are excessive, but the library is used.

File name Excessive count total NumPy pandas scikit keras plot

titanic-catboost.py 6 0 1 1 0 0
titanic-challenge-crisp-dm.py 2 0 0 1 0 0

titanic-challenge-survivability-prediction.py 3 0 0 1 0 1
titanic-classification-comprehensive-modeling.py 1 0 0 1 0 0

titanic-classification-problem-beginner.py 2 0 0 1 0 0

Table 5.9: Excessive imports comparison

Next, the files were compared by the calls they were using in each library. The

data is presented in Table 5.10. It shows that none of the methods is presented in all

projects. However, we could clearly see that some set of methods is commonly used.

34

For example, we see that read csv and DataFrame from pandas library is used in four

out of five projects. Even more, the table clearly demonstrates the difference between

the libraries. NumPy, pandas and Matplotlib are method-based, scikit is class based

library.

File name Calls
NumPy pandas scikit Matplot

titanic-catboost.py log DataFrame accuracy score title
sqrt read pickle PowerTransformer figure
where concat StandardScaler subplots
seed train test split xlabel

rcParams
ylabel
use

titanic-challenge-survivability-prediction.py bool get dummies DecisionTree, Classifier, SVC
triu indices from read csv ExtraTreesClassifier, ElasticNet
zeros like cut Pipeline,BaggingClassifier,VotingClassifier
filterwarnings merge MinMaxScaler,AdaBoostClassifier

concat MLPClassifier,RobustScaler
DataFrame RandomForestClassifier,Normalizer

StratifiedKFold,GradientBoostingClassifier
LogisticRegression,GaussianProcessClassifier
cross val score,LinearDiscriminantAnalysis
KNeighborsClassifier,StandardScaler

titanic-classification-comprehensive-modeling.py round DataFrame cross val score,DecisionTreeClassifier figure
logspace concat KNeighborsClassifier, LogisticRegression title

cut RandomForestClassifier SVC show
read csv BaggingClassifier GridSearchCV
get dummies LabelEncoder

titanic-challenge-crisp-dm.p where Series roc auc score subplot
float cut MinMaxScaler figure
nan concat RandomForestClassifier

read csv LogisticRegression
qcut AdaBoostClassifier
get dummies train test split

titanic-classification-problem-beginner.py round get dummies accuracy score,classification report subplots
arange read csv confusion matrix,LogisticRegression tight layout
mean concat RandomForestClassifier,KNeighborsClassifier title

DataFrane VotingClassifier,GridSearchCV figure
isnull StandardScaler,train test split xlabel

plot
ylabel

Table 5.10: Calls usage per library

The similarity analysis proves to us that despite the fact that the projects are

dedicated to the same problem solving, we cannot state that the set of methods is

the same for all projects. However, some patterns could be seen and could possibly

be used for further research.

35

5.6 Threats to Validity

There are several threats to the validity of the results discussed in this section. The

first is that the code analyzed in this study may not be representative of the code

used as part of Kaggle competitions (internal validity), while the second is that the

code analyzed in this study may not be representative of the machine learning code

that developers write in general (external validity).

As mitigation against the first concern, code has been selected based on the data

released as part of the Meta Kaggle dataset, with no additional filtering applied.

Assuming that the data provided as part of Meta Kaggle is itself representative of the

code submitted to Kaggle, the analysis will have examined a representative collection

of Python machine learning code submitted to Kaggle.

As mitigation against the second concern, as discussed in Section 3, code has been

selected across a wide variety of different Kaggle challenges and data sets, from a wide

variety of authors. This should ensure the analysis is not just identifying libraries

that are appropriate for a specific challenge or a specific data domain, or identifying

patterns of use from a limited collection of authors.

36

Chapter 6

Conclusions and Future Work

In this chapter, we first summarize the results of our study in Section 6.1. We then

describe extensions to this work in Section 6.2.

6.1 Conclusions

The complexity of the ML APIs learning process is due to variety of the libraries,

classes and methods that could be used to solve different data scientific tasks. a rec-

ommender system, that would advise students which libraries and methods they could

use in different situations could be the great help. In order to create a recommender

system it is necessary to understand how the ML APIs are used.

To understand more about how ML APIs are used in Python, we set out to answer

the following questions:

• RQ1: What are the main programming languages used for data science appli-
cations?

• RQ2: What are the main machine learning libraries used in Python machine
learning code?

• RQ3: In each of these libraries, what are the most used modules?

• RQ4: For each of the libraries and modules, what are the most common API
calls?

To answer the research questions we produced the data corpus based on the

Python source code files. Those files were extracted from the Kaggle competition

platform. The files were written by different independent data scientists and were

downloaded and processed during our research. All answers for the research ques-

tions are based on this corpus.

In order to answer the RQ1 we studied the questionnaire made by Kaggle and

analyzed the PL used in the source code files. Our results demonstrates, that Python

should be the target language for the recommender system, dedicated to the ML API.

Even more, we see that there are different types of the approaches to the writing of

the Python code: Python code and Jupyter notebooks. Jupyter notebooks are used

by data scientists and are more and more involved in the educational process [13, 9].

In our research we had more than 90% of explored source code written using Jupyter.

The block execution approach used in Jupyter Notebooks together with possibility

include comments, graphs, video etc. make this type of Python programming very

attractive. That is why it could be reasonable to focus the future recommender system

on Jupyter notebooks.

While answering the RQ2, we have extracted the libraries that were imported in

each file. We have defined the list with Top 5 used Machine Learning related libraries:

NumPy, pandas, Scikit-learn, Keras and Matplotlib. Even more, we have found out

that more than 30% imports of the libraries are stated but never used.

Next, we have distilled the modules and calculated the frequency of their usage.

Our research shows that the libraries are not homogeneous from the modules point of

view. NumPy and pandas are not module-oriented libraries. The usage of modules

is strong for Scikit-learn, Keras and Matplotlib libraries. The top modules for those

libraries are: metrics for Scikit, layers for Keras, and pyplot for Matplotlib. The list

with top 5 used module per those 3 libraries is presented in Chapter 5.

38

Finally, we have answered the RQ4 and received the list of calls that are mostly

used per each library. The top calls for the top 5 libraries are: tahn for NumPy,

read csv for pandas, train test split for Scikit-learn, Dense class for Keras and show

for Matplotlib. Thetop 10 calls per library could be found in Table 5.7.We have

extracted 1,732,546 calls for the top modules. We have found that not all calls are

methods. That is why we separate libraries to class-oriented and methods-oriented

groups. We also stated that the usage of the calls is not even and some methods (e.g.,

read csv in pandas) could be in almost half of the calls.

During the data analysis, we have compared the sample of five projects that were

dedicated to the same competition. As a result, we found out that it is not possible to

state that the projects targeted the same problem use the same set of calls. However,

we see that it should possible to find some patterns of the ML API usage in those

projects.

6.2 Future work

Based on the results presented above, we believe the following would be interesting

questions for future research.

• Try to improve corpus. Search for the possibility to get the complete database
with competitions and kernels.

• Find the patterns approach. Our research demonstrates that some patterns
could be found while analyzing the calls usage. We suppose that it should be
possible to look for a larger usage patterns, involving larger parts of code. Those
patterns could involve other expressions as well as multiple calls.

• Implement recommender system. Our current work together with the patterns
approach mentioned above that could be used to provide API and code snippet
recommendations.

• Study the possibility to integrate the system in the Jupyter Notebook editor. It
would be a good idea take into the account the check for excessive imports.

39

• Quality of ML APIs usage study. During our research, we noticed that, from
our point of view, there are some issues with the code quality, especially in
the source code written with Jupyter Notebooks. It could be useful to compare
programming skills and experience of the developers who uses Jupyter Notebook
versus developers who directly creates Python files. Even more, it would be
useful to look for difference in patterns between those two approaches. Finally,
it would be useful to find a way to refactor a code to improve the quality of ML
APIs usage in notebooks.

• Expand existing approach to support additional corpuses. In our research, we
focused on a Kaggle-based corpus of data. It could be interesting to extend
the approach to analyze not only solutions presented by one file but also the
ones presented by projects consisting of potentially complex directory structures
with multiple files. It may also be useful to look beyond Kaggle to find potential
projects for an enriched corpus. This could include projects referenced in web
pages and academic publications related to machine learning.

40

BIBLIOGRAPHY

[1] API Directory. https://www.programmableweb.com/apis/directory.

[2] APIs Growth Rate. https://www.programmableweb.com/news/apis-show-

faster-growth-rate-2019-previous-years/research/2019/07/17.

[3] Asaduzzaman, M., Roy, C. K., Schneider, K. A., and Hou, D. Context-
Sensitive Code Completion Tool for Better API Usability. In 2014 IEEE In-
ternational Conference on Software Maintenance and Evolution (2014), IEEE,
pp. 621–624.

[4] Bao, L., Xing, Z., Wang, X., and Zhou, B. Tracking and Analyzing Cross-
Cutting Activities in Developers’ Daily Work (N). In 2015 30th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE) (2015), IEEE,
pp. 277–282.

[5] Bhoopchand, A., Rocktäschel, T., Barr, E., and Riedel, S. Learn-
ing Python Code Suggestion with a Sparse Pointer Network. arXiv preprint
arXiv:1611.08307 (2016).

[6] Bruch, M., Bodden, E., Monperrus, M., and Mezini, M. IDE 2.0:
collective intelligence in software development. In Proceedings of the FSE/SDP
workshop on Future of software engineering research (2010), pp. 53–58.

[7] Bruch, M., Monperrus, M., and Mezini, M. Learning from examples to
improve code completion systems. In Proceedings of the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium
on the foundations of software engineering (2009), pp. 213–222.

[8] Date, C. J., and Codd, E. F. The relational and network approaches: Com-
parison of the application programming interfaces. In Proceedings of the 1974
ACM SIGFIDET (now SIGMOD) workshop on Data description, access and
control: Data models: Data-structure-set versus relational (1975), pp. 83–113.

[9] DePratti, R. Using Jupyter notebooks in a big data programming course.
Journal of Computing Sciences in Colleges 34, 6 (2019), 157–159.

[10] D’Souza, A. R., Yang, D., and Lopes, C. V. Collective intelligence for
smarter API recommendations in Python. In 2016 IEEE 16th International
Working Conference on Source Code Analysis and Manipulation (SCAM) (2016),
IEEE, pp. 51–60.

[11] Ellis, B., Stylos, J., and Myers, B. The factory pattern in API design: A
usability evaluation. In 29th International Conference on Software Engineering
(ICSE’07) (2007), IEEE, pp. 302–312.

[12] The state of the octoverse: Machine learning. https://github.blog/2019-01-
24-the-state-of-the-octoverse-machine-learning/.

[13] Glick, B., and Mache, J. Using Jupyter notebooks to learn high-performance
computing. Journal of Computing Sciences in Colleges 34, 1 (2018), 180–188.

[14] Hellendoorn, V. J., and Devanbu, P. Are deep neural networks the best
choice for modeling source code? In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (2017), pp. 763–773.

[15] Hindle, A., Barr, E. T., Su, Z., Gabel, M., and Devanbu, P. On
the naturalness of software. In 2012 34th International Conference on Software
Engineering (ICSE) (2012), IEEE, pp. 837–847.

[16] Hora, A. APISonar: Mining API usage examples. Software: Practice and
Experience (2020).

[17] Project Jupyter. https://jupyter.org/.

[18] Kaggle. https://www.kaggle.com/.

[19] 2018 Kaggle ML & DS Survey. https://www.kaggle.com/kaggle/kaggle-

survey-2018.

[20] Karampatsis, R.-M., Babii, H., Robbes, R., Sutton, C., and Janes, A.
Big Code!= Big Vocabulary: Open-Vocabulary Models for Source Code. arXiv
preprint arXiv:2003.07914 (2020).

[21] Li, J., Wang, Y., Lyu, M. R., and King, I. Code completion with neural
attention and pointer networks. arXiv preprint arXiv:1711.09573 (2017).

[22] Matplotlib homepage. https://matplotlib.org/.

[23] Meta Kaggle. https://www.kaggle.com/kaggle/meta-kaggle.

[24] Myers, B. A., and Stylos, J. Improving API usability. Communications of
the ACM 59, 6 (2016), 62–69.

42

[25] Nguyen, H. A., Dyer, R., Nguyen, T. N., and Rajan, H. Mining precon-
ditions of APIs in large-scale code corpus. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (2014),
pp. 166–177.

[26] Nguyen, T. T., Nguyen, A. T., Nguyen, H. A., and Nguyen, T. N. A
statistical semantic language model for source code. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering (2013), pp. 532–542.

[27] Niu, H., Keivanloo, I., and Zou, Y. API usage pattern recommendation for
software development. Journal of Systems and Software 129 (2017), 127–139.

[28] Numpy homepage. https://numpy.org/.

[29] pandas homepage. https://pandas.pydata.org/.

[30] Python 3.8.6rc1 documentation - Import. https://docs.python.org/3/

reference/simple_stmts.html#import.

[31] Raschka, S., Patterson, J., and Nolet, C. Machine Learning in Python:
Main developments and technology trends in data science, machine learning, and
artificial intelligence. Information 11, 4 (2020), 193.

[32] Robbes, R., and Lanza, M. How program history can improve code comple-
tion. In 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering (2008), IEEE, pp. 317–326.

[33] Robillard, M. P. What makes APIs hard to learn? Answers from developers.
IEEE software 26, 6 (2009), 27–34.

[34] Robillard, M. P., and Deline, R. A field study of API learning obstacles.
Empirical Software Engineering 16, 6 (2011), 703–732.

[35] Sawant, A. A., and Bacchelli, A. fine-GRAPE: fine-grained APi usage
extractor–an approach and dataset to investigate API usage. Empirical Software
Engineering 22, 3 (2017), 1348–1371.

[36] scikit-learn homepage. https://scikit-learn.org/stable/.

[37] Scipy homepage. https://www.scipy.org/.

[38] Srinath, K. Python–The Fastest Growing Programming Language. Interna-
tional Research Journal of Engineering and Technology (IRJET) 4, 12 (2017),
354–357.

[39] Stylos, J., and Clarke, S. Usability implications of requiring parameters in
objects’ constructors. In 29th International Conference on Software Engineering
(ICSE’07) (2007), IEEE, pp. 529–539.

43

[40] Stylos, J., and Myers, B. A. Mica: A Web-search tool for finding API
components and examples. In Visual Languages and Human-Centric Computing
(VL/HCC’06) (2006), IEEE, pp. 195–202.

[41] Svyatkovskiy, A., FU, S., Sundaresan, N., and Zhao, Y. Deep Learning
Enhanced Code Completion System, Aug. 6 2020. US Patent App. 16/377,789.

[42] Svyatkovskiy, A., Zhao, Y., Fu, S., and Sundaresan, N. Pythia: AI-
assisted code completion system. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining (2019), pp. 2727–
2735.

[43] Svyatkovskoy, A., Lee, S., Hadjitofi, A., Riechert, M., Franco, J.,
and Allamanis, M. Fast and Memory-Efficient Neural Code Completion.
arXiv preprint arXiv:2004.13651 (2020).

[44] TensorFlow. https://www.tensorflow.org/.

[45] Theano Web site. http://deeplearning.net/software/theano/.

[46] Titanic: Machine Learning from Disaster — Kaggle. https://www.kaggle.com/
c/titanic.

[47] Tosi, S. Matplotlib for Python developers. Packt Publishing Ltd, 2009.

[48] Tu, Z., Su, Z., and Devanbu, P. On the localness of software. In Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (2014), pp. 269–280.

[49] Xia, X., Bao, L., Lo, D., Kochhar, P. S., Hassan, A. E., and Xing, Z.
What do developers search for on the web? Empirical Software Engineering 22,
6 (2017), 3149–3185.

[50] Xu, C., Sun, X., Li, B., Lu, X., and Guo, H. MULAPI: Improving API
method recommendation with API usage location. Journal of Systems and Soft-
ware 142 (2018), 195–205.

[51] Zhong, H., and Mei, H. An empirical study on API usages. IEEE Transac-
tions on Software Engineering 45, 4 (2017), 319–334.

[52] Zhong, H., Xie, T., Zhang, L., Pei, J., and Mei, H. MAPO: Mining and
recommending API usage patterns. In European Conference on Object-Oriented
Programming (2009), Springer, pp. 318–343.

44

