
Architectural Consistency Checking in Plugin-Based
Software Systems

Timo Greifenberg
Software Engineering

RWTH Aachen University
http://www.se-rwth.de

greifenberg@se-rwth.de

Klaus Müller
Software Engineering

RWTH Aachen University
http://www.se-rwth.de

mueller@se-rwth.de

Bernhard Rumpe
Software Engineering

RWTH Aachen University
http://www.se-rwth.de

rumpe@se-rwth.de

ABSTRACT
Manually ensuring that the implementation of a software
system is consistent with the software architecture is a la-
borious and error-prone task. Thus, a variety of approaches
towards automated consistency checking have been devel-
oped to counteract architecture erosion. However, these ap-
proaches lack means to define and check architectural re-
strictions concerning plugin dependencies, which is required
for plugin-based software systems.

In this paper, we propose a domain-specific language called
Dependency Constraint Language (DepCoL) to facilitate the
definition of constraints concerning plugin dependencies. Us-
ing DepCoL, it is possible to define constraints affecting
groups of plugins, reducing the required specification effort,
to formulate constraints for specific plugins only and to re-
fine constraints. Moreover, we provide an Eclipse plugin,
which checks whether the software system under develop-
ment is consistent with the modeled constraints. This en-
ables a seamless integration into the development process to
effortless check consistency during development of the soft-
ware system. In this way, developers are informed about
dependency violations immediately and this supports devel-
opers in counteracting architecture erosion.

Categories and Subject Descriptors
D.2 [Software Engineering]: Software Architectures

Keywords
Architectural consistency, dependency constraint language

1. INTRODUCTION
The software architecture of a software system defines the

structuring of a software system into components and how
these components are expected to interact [12, 7]. Further-
more, the software architecture defines design decisions that
are crucial for understanding a software system [15]. How-
ever, if the architecture of a software system is documented

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ECSAW ’15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3393-1/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2797433.2797493

at all, the architectural descriptions are seldom maintained
[9]. This stems from the fact that manually ensuring that the
software architecture stays consistent with the implemen-
tation of a software system is a laborious and error-prone
task. This deviation of architecture and implementation,
known as architecture erosion [12], negatively impacts soft-
ware quality, maintainability and evolvability [9, 16, 8].

To cope with this problem, a variety of approaches have
been developed, allowing to check this consistency automat-
ically [9, 11, 2]. These approaches do, for instance, provide
means to define architectural rules that have to be fulfilled
or that must not be violated by the implementation. Other
approaches are based on a definition of the expected archi-
tecture and an extraction of the existing architecture [10,
3]. If a deviation is detected, developers are informed about
these. However, these approaches mainly focus on (fine-
grained) dependencies between source code entities such as
classes and do not allow to easily define more abstract con-
straints concerning dependencies between plugins. Express-
ing comparable constraints with the existing approaches is
possible to a certain extent, but more laborious and less con-
venient for a system architect having to define constraints
for plugin dependencies. In particular, this paper assumes
that the plugin-based software system whose consistency is
checked was developed with Eclipse [6] and, thus, consists
of Eclipse plugins and Eclipse features. Despite this, our
approach is transferable to plugin-based systems developed
with another tooling infrastructure as long as dependencies
between plugins and groups of plugins can be identified.

This paper proposes a domain-specific language (DSL),
called Dependency Constraint Language (DepCoL), for defin-
ing constraints concerning plugin and feature dependencies
in a plugin-based software system. By providing an easy to
use and convenient DSL for software architects of plugin-
based software systems, we assume that there is a higher
chance that the approach is accepted and permanently in-
tegrated into the development process. Using DepCoL, it is
possible to define constraints for single elements as well as
groups of elements, to reduce the specification effort. To pro-
cess constraints modeled in DepCoL, an Eclipse plugin was
developed which can be integrated into the development en-
vironment of the plugin-based software system. This plugin
is capable to check the consistency between the implemen-
tation of the system under development and the modeled
constraints automatically. These checks can be performed
accompanying the development of the software system. If
a developer introduces a dependency which is forbidden ac-
cording to the constraint specifications, this violation is di-

[GMR15] T. Greifenberg, K. Müller, B. Rumpe:
Architectural Consistency Checking in Plugin-Based Software Systems.
In: European Conference on Software Architecture Workshops (ECSAW), pp. 58:1-58:7, Cavtat, Croatia, ACM New York, 2015.
www.se-rwth.de/publications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36634821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rectly reported to the developer so that the violation can be
fixed instantly.

The paper is structured as follows: in Section 2, we elab-
orate on the background of our work in which we introduce
important terms and the application context of DepCoL. Af-
ter that, we give an overview on our approach in Section 3.
DepCoL is then presented in detail in Section 4. Section 5
then describes related work before we summarize the paper
in Section 6.

2. BACKGROUND
To avoid misunderstandings, relevant term definitions are

introduced first. As DepCoL was developed in a cooperation
project with an industrial partner, the application context
of this work is briefly described afterwards.

2.1 Term definitions
This paper focuses on plugin-based software systems de-

veloped in Eclipse. Due to this, it is concerned about de-
pendencies between Eclipse plugins and Eclipse features. In
the further course of this paper Eclipse plugin will be ab-
breviated as plugin and Eclipse feature as feature.

The smallest component of a plugin-based system that is
considered in this work is a plugin. In simple terms, a plu-
gin is a collection of classes and libraries required by these
classes. Multiple plugins can be grouped in a feature. In
Eclipse, a feature can also contain other features but to sim-
plify the description, it is assumed in the following that fea-
tures merely contain plugins. In addition, this approach uses
the term feature group to refer to a logical group of features.
The user is free to define which features should be contained
in such a feature group. Analogous to that, a plugin group
represents a logical group of plugins.

Based on these definitions, both features and plugin groups
are composed of plugins. The difference between both terms
is that a feature is an essential part of the plugin-based soft-
ware system itself, whereas a plugin group is only defined in
the dependency model to group selected plugins. To be able
to distinguish between these two kinds of plugin groups on
the level of the dependency model, different terms are used
in this work.

Each plugin might depend on a multitude of other plugins
in order to work properly. This means that the plugin can
only be executed, if these plugins are also available. Conse-
quently, there are (indirect) dependencies between plugins
and features, between features and features and so forth.
The term dependency is concretized in the following.

A plugin ”m” depends on a plugin ”n” if ”n” is listed as
a required bundle in the Eclipse manifest file of ”m”. All
other dependencies referred to in this work are based on
this dependency definition. Before this is explained in more
detail, please note that, in the end, a plugin, a feature, a
plugin group and a feature group can all be represented as
a group of plugins. For a feature and a plugin group this
is obvious. A single plugin can be represented by a plugin
group containing only the single plugin. For a feature group,
the resulting group of plugins can be derived by collecting
the plugins of all features contained in the feature group.

Let X and Y represent a plugin, a feature, a plugin group
or a feature group and let PG be a function which returns
the group of plugins for the passed argument. Then, X
depends on Y if there is a plugin m ∈ PG(X) and a plugin
n ∈ PG(Y) such that plugin ”m” depends on plugin ”n”.

2.2 Application context
The dependency constraint language DepCoL was devel-

oped in a cooperation project with an industrial partner.
This cooperation project concerned complex Eclipse rich
client applications which are together composed of roughly
800 plugins and 100 features and which share several fea-
tures and plugins.

In order to support the evolution of these plugin-based
software systems, the goal of the cooperation project was to
develop a DSL which is capable to define constraints con-
cerning the dependencies between features and plugins of
these software systems. One special requirement was that
it should be possible to define constraints on differing levels
of granularity. Not only should the language be capable to
express restrictions for groups of elements but also specific
restrictions for specific elements. Another requirement was
that developers should be informed about violations against
defined constraints as soon as possible. Section 4 introduces
the resulting dependency constraint language DepCoL.

3. OVERVIEW
The key idea that underlies the presented approach is that

there is an explicit dependency model which contains con-
straints concerning dependencies between plugins and fea-
tures of a plugin-based software system. The consistency
between the implementation of a software system and the
dependency model can be checked automatically. Figure 1
gives an overview of the basic workflow which is established
through the presented approach.

System architect

Developer

Dependency model

define

changes/creates

Manifest file

Dependency

checker

waits for changes

checks

informs about violations

analyze all 1 2

Figure 1: Overview of architecture consistency
checking process

At the beginning, the system architects have to define a
dependency model using DepCoL. This dependency model
encapsulates the architectural rules that must not be vio-
lated by the analyzed plugin-based software system.

The dependency checker that is responsible for automat-
ically checking the architectural consistency needs to be in-
tegrated into the development environment in which the
plugin-based software system to be checked is developed.
Then, the dependency checker can automatically check for
violations of that software system against the given depen-
dency model. For this purpose, at first the existing depen-
dencies between the plugins of the plugin-based software sys-
tem are extracted. As this work focuses on plugin-based
systems which are developed with Eclipse, the extraction of
the existing dependencies is carried out by analyzing Eclipse
manifest files. The dependency checker either extracts all

Figure 2: Eclipse view showing results of dependency checker

dependencies from the Eclipse manifest files belonging to
the corresponding plugin-based software system or it is trig-
gered to extract the dependencies of one specific plugin (and
the associated feature) only. The latter case is performed
in case the dependency checker was informed that the de-
pendencies of one particular plugin have been changed. In
this situation, the dependency checker only needs to check
whether the changed plugin violates the dependency model
and, hence, only the dependencies of this changed plugin
need to be obtained.

No matter in which way the invocation of the dependency
checker is initiated, the developers are informed immediately
about violations against the dependency model through an
Eclipse view as shown in Figure 2. In this view, the violation
messages are grouped by the severity of the violation. If a
dependency to a feature is detected as forbidden or tolerated,
the view also indicates the dependencies to which plugins of
that feature cause the violation. In addition to that, the
manifest files of the plugins violating the dependency model
are annotated with an error marker. This instant feedback
allows for directly resolving the undesired dependencies and
thus directly counteracts architecture erosion.

4. THE DEPENDENCY CONSTRAINT LAN-
GUAGE DEPCOL

In this section, the dependency constraint language Dep-
CoL is presented. DepCoL provides two kinds of language
constructs in order to define a dependency model: those al-
lowing to define structures that refer to plugins or features
and those that make it possible to formulate constraints con-
cerning dependencies between plugins, features and the pre-
viously defined structures. An example for the definition
of a structure referring to features is a feature group. In
its definition, the user has to state which features belong
to the feature group. Listing 2 on the next page shows a
concrete example for feature group definitions. As soon as
the user introduced a structure such as a feature group, con-
crete constraints can be declared for the elements contained
in the structure. For instance, it could be formulated that
all features from one feature group must not depend on all
features from an other feature group.

In the following, at first the different language constructs
of DepCoL are presented in more detail. A self-contained
but fictive example for a dependency model can be found
at [5]. After that, the semantics of a dependency model is
briefly described. Finally, the implementation of the depen-
dency checker is sketched.

1 declare featurebase {
2 f1;
3 f2;
4 f3;
5 }

Listing 1: Feature base example

4.1 Definition of structures referring to fea-
tures and plugins

4.1.1 Feature and plugin base
A dependency model usually refers to a variety of feature

and plugin names. To avoid that feature or plugin names
are written in different ways in the dependency model, the
concept of a feature base and plugin base was introduced.

A feature base contains the names of all features which can
be directly referenced in the dependency model. A context
condition ensures that only feature names which are listed
in the feature base can be named in the dependency model.
Listing 1 shows an example for a feature base specification,
through which it is declared that the features ”f1”, ”f2” and
”f3” can be used in the dependency model.

Analogous to that, all plugin names which can be refer-
enced have to be declared in a plugin base. Once again, this
is ensured by a context condition. In order to support the
developers, the provided Eclipse tooling can generate fea-
ture and plugin bases which contain all feature and plugin
names from a particular workspace.

4.1.2 Feature and plugin group
To simplify the specification of constraints for multiple

features and plugins, DepCoL supports feature and plugin
groups. A feature group can contain a list of feature names
that are defined in the feature base. In addition to that,
a feature group can contain regular expressions for feature
names. Within a regular expression, it is possible to make
use of the wildcard ”*” which represents an arbitrary string.
Finally, a feature group can contain other feature groups. In
summary, this means that a feature ”f” is contained in a fea-
ture group ”fg” if one of the following conditions is fulfilled:

• feature ”f” is explicitly listed in the feature group ”fg”.

• feature ”f” matches a regular expression contained in
the feature group ”fg”.

• feature ”f” is contained in a feature group ”subfg” that
is contained in ”fg”.

1 declare featuregroup fgListFeatures {
2 f1;
3 f2;
4 }
5 declare featuregroup fgRegExp {
6 fs.ui.*;
7 fs.core .*;
8 }
9 declare featuregroup fgCombined {

10 f3;
11 fs.ext.*;
12 featuregroup fgListFeatures;
13 featuregroup fgRegExp;
14 }

Listing 2: Different variants for feature group
specifications

Please note that, as each feature name listed explicitly in
a feature group can be regarded as a simple regular expres-
sion and a feature group can contain further regular expres-
sions, each feature group can in the end be represented as
one regular expression which potentially consists of multi-
ple alternatives and which represents a subset of features.
Analogous to that, each plugin group can be represented as
one regular expression.

Examples for feature group specifications are given in List-
ing 2. In this example, the feature group ”fgListFeatures”
only contains the features ”f1” and ”f2”. The feature group
”fgRegExp” refers to all features with names that start with
”fs.ui.” or with ”fs.core.”. Finally, feature group ”fgCom-
bined” illustrates how different notations can be combined.
The feature group contains the features from the previously
described feature groups and in addition, feature ”f3” as well
as all features with names that start with ”fs.ext.”.

Analogous to the feature group specification, a plugin
group can comprise multiple explicitly stated plugin names,
regular expressions for plugins and other plugin groups. Fea-
ture and plugin groups do not have to be disjunct, i.e., a
feature can be contained in multiple feature groups and a
plugin can be contained in multiple plugin groups.

Amongst others, feature and plugin groups can be used to
represent layered software architectures [1]. For each layer,
a feature or plugin group can be created which comprises the
features or plugins which are contained in the corresponding
layer. Moreover, constraints can be defined for each feature
or plugin group to restrict the dependencies between the
layers. The definition of constraints will be explained in the
next subsection.

4.2 Definition of dependency constraints
Constraints can be formulated for all features included in

the feature base and all plugins named in the plugin base.
Furthermore, constraints can be stated for all feature groups
and plugin groups. For each of these elements, it can be
defined whether dependencies to specific features, plugins,
feature groups or plugin groups are forbidden, tolerated or
allowed. By default, dependencies between all elements are
allowed. Due to this, it is necessary to define forbidden and
tolerated dependencies explicitly. Nevertheless, it can be
required to explicitly allow a dependency, which is explained
in more detail later in this subsection. This default behavior
can also be adapted if desired.

Tolerated dependencies can be used to indicate that a de-

1 plugin p1 {
2 [critical] forbid dependency to feature f2;
3 [warning] forbid dependency to featuregroup
4 fg2;
5 }
6 featuregroup fgListFeatures {
7 tolerate dependency to featuregroup
8 fgRegExp;
9 }

Listing 3: Examples for forbidding/tolerating
dependencies

pendency is not desired but also not (yet) forbidden, tem-
porarily allowed but potentially forbidden in future or in
case a dependency modeler is unsure about whether the de-
pendency should be allowed or forbidden. By default, the
user receives a warning message if a dependency is detected
by the dependency checker that is defined as tolerated. In
contrast to this, an error message is reported if a forbid-
den dependency is detected. For forbidden dependencies, it
is possible to denote a severity on how critical a violation
against the specification is. This severity embodies how im-
portant it is to fix a violation. Possible severity types are:
critical, error and warning. In the reporting of the violation
messages, the messages are differentiated according to their
severity type, as shown in Figure 2.

Please note that, for the dependency checker, forbidden
dependencies with severity warning and tolerated dependen-
cies are treated equally, as both result in warning messages.
However, for a dependency modeler, there is a difference be-
tween both. A forbidden dependency with severity warning
is really forbidden, but a violation is not critical and it is suf-
ficient to report a warning. A tolerated dependency instead
usually expresses, that the dependency is not desired and
that it needs to be clarified how to handle the dependency.

Listing 3 shows examples for concrete dependency con-
straints. These indicate that dependencies from plugin ”p1”
to feature ”f2” and to all features contained in feature group
”fg2” are forbidden. Violations against the first constraint
are regarded as critical, whereas violations against the sec-
ond constraint are regarded as warnings. Moreover, List-
ing 3 indicates that dependencies from features contained
in feature group ”fgListFeatures” to features contained in
feature group ”fgRegExp” are only tolerated.

An important property of DepCoL is that constraints can
refine previously defined constraints for specific features,
plugins, feature groups and plugin groups. In this way, it
can, e.g., be expressed that all plugins in a plugin group
must not depend on specific plugins and after that, it can
be refined that selected plugins are allowed to depend on
specific other plugins. The refinement concept is explained
in more detail in the next subsections.

4.3 Semantics of a dependency model
As explained in Subsection 2.1, a plugin, a feature, a plu-

gin group and a feature group can all be represented as a
group of plugins in the end. Let X and Y refer to a plu-
gin, a feature, a plugin group or a feature group and let
the function PG return the group of plugins represented by
the passed argument. Then, a constraint between X and
Y can be represented as a set of pairs of plugins (xi, yi) for
all xi ∈ PG(X) and yi ∈ PG(Y). Each constraint in the
dependency model can be described by such pairs of plugins.

Moreover, each plugin pair is assigned a property, that
indicates whether the plugin pair represents a dependency
which is regarded as critical, an error, a warning or allowed.
By default, all dependencies are allowed. Thus, the allowed
property is initially assigned to all possible plugin pairs. For
each constraint, this property is changed according to the
constraint type. For instance, for a forbidden dependency
with severity error, the according plugin pairs are assigned
the property error.

Let c1 and c2 be two constraints in the dependency model
and let PP denote the function which returns the plugin
pairs for each constraint. A constraint c2 refines another
constraint c1 if and only if PP (c1) ∩ PP (c2) 6= ∅ and if
c1 is defined before c2. The intersection between PP (c1)
and PP (c2) contains exactly the refining plugin pairs. If
one constraint refines another constraint, the refining con-
straint determines the property associated to the refining
plugin pairs. If, e.g., a constraint c1 describes pairs of plug-
ins between which dependencies are regarded as errors and
a constraint c2 describes pairs of plugins between which de-
pendencies are regarded as critical and c2 refines c1, then all
refining pairs of plugins are assigned the property critical.

To sum it up, a dependency model describes a mapping
from pairs of plugins to a property which indicates whether
a dependency between the plugins is regarded as allowed,
critical, as an error or as a warning.

4.4 Dependency constraint checker implemen-
tation

In this section, the implementation of the dependency
checker is outlined and illustrated by a concrete example.
It is assumed that it is checked whether the dependencies
of a particular plugin and the feature containing that plugin
violate a given dependency model. The case that the depen-
dencies of all plugins are validated is handled by performing
these steps for each plugin.

4.4.1 Implementation
As a first step in the dependency checking phase, the

dependency checker extracts the existing dependencies be-
tween the plugins that are part of the analyzed software
system. This extraction is only performed if the plugin de-
pendencies have not been extracted before or the plugin de-
pendencies have changed since the last extraction.

The most important aspect that has to be considered in
the dependency checker is that constraints can be refined by
constraints that are defined later in the dependency model.
To cope with this, the dependency model is processed from
end to beginning and each structure in which constraints
are defined is traversed from end to beginning too. In this
traversal of the dependency model, a dependency is only
considered, if it has not been addressed by a previously pro-
cessed constraint, as will be explained in more detail subse-
quently. Moreover, only those constraints are treated that
concern the validated plugin or the feature containing the
validated plugin.

While processing the relevant constraints, the dependency
checker builds up relations for the pairs of plugins between
which dependencies are allowed or between which depen-
dencies are regarded as critical, as errors or as warnings
according to the dependency model. These four relations
are named Rallowed, Rcritical, Rerror and Rwarning in the
following and realize the mapping from the pairs of plug-

ins which are created for each constraint to the dependency
type property, as described in the previous subsection. To
simplify the description, the relation R refers to the union
of all four relation variants subsequently.

One speciality of the implementation is that for each con-
straint only pairs (xi, yi) are considered in which yi is a
plugin required by xi. Consequently, R only contains in-
formation concerning the plugins which are required by the
analyzed plugin. A further important aspect of the imple-
mentation is that R only stores pairs of plugins which were
created for the explicitly defined constraints. If there is no
constraint concerning a dependency between two plugins xi

and yi, the pair (xi, yi) is not contained in R and it is im-
plicitly treated as allowed.

Due to the fact that the dependency model is traversed
from end to beginning and constraints can refine other con-
straints, a pair (xi, yi) is only added to R, if R does not
already contain the pair (xi, yi). Otherwise a constraint has
been processed before, which has refined the currently pro-
cessed constraint. As a consequence of this, all R relations
are disjoint by construction.

At the end, the dependency checker traverses the rela-
tions Rcritical, Rerror and Rwarning and creates violation
messages for the contained entries.

Besides managing the pairs of plugins in R, it is stored
which concrete constraint led to the addition of the corre-
sponding plugin pair. One use case for this is that it fa-
cilitates the creation of violation messages. The relation
Rwarning contains pairs of plugins between which depen-
dencies are regarded as warnings. However, on this level, it
cannot be differentiated between pairs which were created
due to a tolerated or a forbidden dependency with severity
warning. By managing the constraints which led to the ad-
dition of the pair, it is possible to differentiate both cases.
Consequently, the resulting violation message can specify
whether the dependency is forbidden or tolerated. More-
over, it helps to construct better violation messages. If, e.g.,
the dependency model contains a constraint which expresses
that a feature is forbidden to depend on another feature, a
violation message can be created which expresses exactly
this, instead of only reporting that the dependency between
two plugins is forbidden. The resulting violation messages,
thus, reflect the specifications in the dependency model.

One further use case for managing which constraint led to
the addition of which plugin pair is that this allows for in-
forming the users about which constraint refines which other
constraint. Each time, a pair (pi, pj) should be added to R,
but R already contains that pair, it can be logged that the
constraint which is mapped to that stored pair has refined
the currently processed constraint. By reporting this log to
the users, the dependency modeler can verify if the refining
is done on purpose or not. The motivation for this is that
especially in large dependency models a dependency mod-
eler might not always be aware of the fact that a constraint
refines previous constraints.

4.4.2 Example
The processing of the dependency model given in List-

ing 4 is sketched in the following. In this example, it is
assumed that the plugin base, denoted in the following by
PB, contains the plugins ”p1”, ”p2”, ”p3”, ”p4.ui”, ”p5.ui”
and ”p6.i18n”. Moreover, it is assumed that plugin group
”pg1” contains at least the plugin ”p1”, that plugin group

1 plugingroup pg1 {
2 forbid dependency to plugingroup ALL;
3 tolerate dependency to plugingroup pgUi;
4 }
5 plugin p1 {
6 allow dependency to plugin p4.ui;
7 }

Listing 4: Example for plugin refining plugin group
constraints

”pgUi” contains all plugins with names ending with ”.ui” and
that plugin group ”ALL” contains all plugins. Finally, it is
assumed that plugin ”p1” is validated and that ”p1” requires
the plugins ”p4.ui”, ”p5.ui” and ”p6.i18n”.

As plugin ”p1” is validated, only constraints for this plu-
gin are processed. Due to the constraint in line 6, the pair
(p1, p4.ui) is added to Rallowed. In the next step, the con-
straints for plugin group ”pg1” would be processed, starting
with the constraint in line 3. Based on this constraint, it
would be checked whether the pairs (p1, p4.ui) and (p1, p5.ui)
can be added to Rwarning. As Rallowed already contains
(p1, p4.ui), only (p1, p5.ui) is added to Rwarning. Finally,
the pairs (p1, px) with px ∈ PB are added to Rerror, pro-
vided that px represents a required plugin and R does not
already contain the corresponding pair. Therefore, only
(p1, p6.i18n) is added. As a result, a warning message would
be reported for the tolerated dependency from ”p1”to ”p5.ui”
and an error message would be reported for the dependency
between ”p1” and ”p6.i18n”.

5. RELATED WORK
In this section, we discuss related work in the context

of static architecture consistency checking. The most im-
portant difference between our work and the existing ap-
proaches is that our work focuses on plugin-based software
systems. In contrast to this, most existing approaches ad-
dress dependencies on the source code level.

In [14, 15], dependencies within a software system are re-
stricted using the static, declarative language DCL. DCL
provides means to define constraints between modules, which
represent sets of classes. In order to specify which classes
belong to a module, the classes can either be listed by de-
noting their fully qualified names or by using regular ex-
pressions which can match multiple classes. Based on these
models, several constraints can be defined, e.g., that only
classes from module A can access classes from module B.
The definition of modules in [14, 15] is comparable to the
definition of feature and plugin groups.

In [10], the software reflexion model technique is intro-
duced. In this technique, developers have to define a high
level model which contains entities and relations between
these entities. Moreover, developers have to extract a source
model such as a call graph from the source code and at the
end, a mapping between the high-level model and the source
model has to be performed. In the mapping phase, entities
from the high-level model have to be assigned to elements of
the source model, typically using regular expressions. Based
on these models and the mapping, a software reflexion model
is computed to determine where the high-level model does
(not) comply with the source model. In contrast to reflex-
ion models, in our work developers do not have to provide
a high-level model and a mapping to the source model. In-

stead, constraints are defined that express allowed, tolerated
or forbidden dependencies. Furthermore, it is easily possible
to refine other constraints.

In [13], dependencies are extracted from the source code
by means of static code analysis. The resulting dependen-
cies are shown in a dependency structure matrix (DSM). To
define what kinds of dependencies in the DSM are allowed or
forbidden, design rules can be defined. These are applied to
a DSM to identify which dependencies violate the intended
software architecture. By default, design rules are inherited,
i.e., if restrictions are defined for a certain subsystem, all
elements of that subsystem inherit these restrictions. More-
over, design rules can be refined for specific elements of the
DSM. The idea of refining constraints in our work was mo-
tivated by the possibility to refine design rules. Moreover,
constraints are also inherited, e.g, if constraints are defined
for a feature group, by default, all plugins of the contained
features inherit these constraints. However, developers can
also express tolerated dependencies in DCL.

One further strategy to cope with architecture erosion is
to use query languages [18]. Queries can be executed on the
source code or other relevant artifacts to, e.g., identify all
classes that depend on particular other classes or packages
[17]. Thus, to assess the architectural consistency, queries
need to be written that identify forbidden dependencies.

For example, [4] applies a rule-based approach for archi-
tecture compliance checking. This approach is based on for-
mal notations to represent the intended software architec-
ture, the design or implementation of the system and map-
pings between both. Each of these parts is represented as a
logical knowledge base which contains facts that represent
the elements of the descriptions. By executing the architec-
tural rules on the union of the knowledge bases, the architec-
tural compliance is checked. In particular, constraint rules
can not only report a violation against a rule but also iden-
tify the violating elements. In [8], this idea is refined. Archi-
tectural rules are defined as logical formulas on a common
extensible ontology and models are mapped to instances of
this ontology. To represent models in this form, transfor-
mations have to be defined that state how model elements
can be represented. This makes it possible to use models
to define architecture rules. Thus, knowledge about logical
programming is mainly required by the developers defining
the transformations. In contrast to these works, our work
does not require any knowledge about logic programming at
any level, on the other hand, it is less flexible. However,
this flexibility is not required in our use case as we focus on
plugin-based systems on purpose. In this way, we can fo-
cus on aspects known by developers and architects who are
familiar with Eclipse.

Further approaches and tools concerning static architec-
ture compliance checking are presented in [11, 9]. A detailed
survey on architecture erosion and approaches to minimize,
prevent and repair architecture erosion is given in [2].

As dependencies between plugins are usually rooted in the
fact that classes of the plugins somehow depend on each
other, an alternative to using our implementation of the
dependency checker would be to transform a dependency
model into a model that is suitable for a class-based ap-
proach. The advantage of this would be that the resulting
model could be checked with the existing class-based tool-
ing. One problem in this scenario would be that an Eclipse
manifest file can contain unused dependencies, which can-

not be traced back to class dependencies. Hence, a class-
based approach cannot detect these dependencies. To cir-
cumvent this problem, it must be ensured that no manifest
file contains unused dependencies. A further potential prob-
lem would be that multiple plugins can contain a class with
the same name - even though this would be bad practice. A
class-based approach could not differentiate between these
classes. Moreover, it would be required to transform the de-
pendency model to the class-based model after every mani-
fest file change. These reasons and the requirements for sup-
porting tolerated dependencies, constraint refinements and
the integration in Eclipse resulted in the decision to imple-
ment our own dependency checker tailored to our DSL.

6. CONCLUSION
In this paper, we have proposed the DSL DepCoL to define

constraints concerning plugin and feature dependencies in a
plugin-based software system. With DepCoL, constraints
can be specified on different levels of granularity, e.g., for
feature and plugin groups but also for specific features and
plugins. One speciality of DepCoL is that it supports the
refining of constraints. This facilitates defining some gen-
eral constraints first which can then be refined for specific
elements, if required.

By integrating a dependency checker into the development
environment in which the plugin-based software system is
implemented, developers can be informed immediately in
case the changes they performed violate the previously de-
fined constraints. In this way, DepCoL and the according
tooling counteract architectural erosion in plugin-based soft-
ware systems. This approach is mainly feasible for complex
plugin-based software systems with a multitude of plugins.
In such systems it is not possible to keep track of the depen-
dencies between plugins and features manually.

For future work, we plan to conduct a long-term case
study in the industrial cooperation project. In the course of
this, we particularly plan to investigate whether the refine-
ment interpretation we are using so far is suited for complex
plugin-based software systems or whether other information
should be used, e.g., the hierarchy of elements. Moreover,
we plan to analyze whether it would be advantageous to
consider transitive dependencies which are not considered
so far.

7. REFERENCES
[1] F. Buschmann, R. Meunier, H. Rohnert,

P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley &
Sons, Inc., New York, NY, USA, 1996.

[2] L. de Silva and D. Balasubramaniam. Controlling
software architecture erosion: A survey. Journal of
Systems and Software, 85(1):132–151, Jan. 2012.

[3] F. Deissenboeck, L. Heinemann, B. Hummel, and
E. Juergens. Flexible Architecture Conformance
Assessment with ConQAT. In Proceedings of the
International Conference on Software Engineering,
ICSE ’10, pages 247–250, 2010.

[4] C. Deiters, P. Dohrmann, S. Herold, and A. Rausch.
Rule-Based Architectural Compliance Checks for
Enterprise Architecture Management. In Proceedings
of the International Enterprise Distributed Object

Computing Conference, EDOC ’09, pages 183–192,
2009.

[5] Dependency model example. http://se-rwth.de/
materials/saerocon/depModelExample.txt. Last
visited on 24/06/2015.

[6] Eclipse website. http://www.eclipse.org/. Last visited
on 24/06/2015.

[7] D. Garlan and M. Shaw. An Introduction to Software
Architecture. Technical Report CMU-CS-94-166,
Carnegie Mellon University, Pittsburgh, PA, USA,
1994.

[8] S. Herold and A. Rausch. Complementing
Model-Driven Development for the Detection of
Software Architecture Erosion. In Proceedings of the
International Workshop on Modeling in Software
Engineering, MiSE ’13, pages 24–30, 2013.

[9] J. Knodel and D. Popescu. A Comparison of Static
Architecture Compliance Checking Approaches. In
Proceedings of the Working IEEE/IFIP Conference on
Software Architecture, WICSA ’07, pages 12–12, 2007.

[10] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software
Reflexion Models: Bridging the Gap between Design
and Implementation. IEEE Transactions on Software
Engineering, 27(4):364–380, Apr. 2001.

[11] L. Passos, R. Terra, M. T. Valente, R. Diniz, and
N. Mendonca. Static Architecture Conformance
Checking: An Illustrative Overview. IEEE Software,
27(5):82–89, Sept 2010.

[12] D. E. Perry and A. L. Wolf. Foundations for the Study
of Software Architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40–52, Oct. 1992.

[13] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
Dependency Models to Manage Complex Software
Architecture. In Proceedings of the Annual ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’05, pages 167–176, 2005.

[14] R. Terra and M. T. Oliveira Valente. Towards a
Dependency Constraint Language to Manage Software
Architectures. In Proceedings of the European
Conference on Software Architecture, ECSA ’08, pages
256–263, 2008.

[15] R. Terra and M. T. Valente. A dependency constraint
language to manage object-oriented software
architectures. Software – Practice & Experience,
39(12):1073–1094, Aug. 2009.

[16] R. Terra, M. T. Valente, K. Czarnecki, and R. S.
Bigonha. Recommending Refactorings to Reverse
Software Architecture Erosion. In Proceedings of the
European Conference on Software Maintenance and
Reengineering, CSMR ’12, pages 335–340, 2012.

[17] J. Van Eyck, N. Boucké, A. Helleboogh, and
T. Holvoet. Using Code Analysis Tools for
Architectural Conformance Checking. In Proceedings
of the International Workshop on SHAring and
Reusing Architectural Knowledge, SHARK ’11, pages
53–54, 2011.

[18] M. Verbaere, M. Godfrey, and T. Girba. Query
Technologies and Applications for Program
Comprehension. In International Conference on
Program Comprehension, ICPC ’08, pages 285–288,
2008.

