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A Robust Algorithm for Microscopic Simulation of
Avalanche Breakdown in Semiconductor Devices

Dominic Jabs, Christoph Jungemann, Senior Member, IEEE, and Karl Heinz Bach

Abstract— Avalanche breakdown can occur during switching
of power devices and is difficult to simulate due to its abrupt
onset and strong nonlinear behavior. In addition, it severely
degrades the numerical robustness of deterministic solvers for
the Boltzmann equation (BE), on which the transport simulations
are based. A continuation method is therefore introduced, with
which robust and efficient simulation of avalanche breakdown
is possible. To this end, the generation rate of the secondary
electron/hole pairs due to impact ionization is multiplied with
a parameter α. Due to this new degree of freedom in the
transport equation, voltage as well as current can be specified
simultaneously. The final solution is obtained by modifying the
voltage or current in such a way that this parameter α becomes
one. This approach stabilizes the simulation, improves the
numerical robustness of the discrete BE, and avoids divergent
solutions. Furthermore, efficient frozen-field simulations of
avalanche breakdown become possible. The results are presented
for a 1-D p-n junction and a 2-D vertical power MOSFET.

Index Terms— Avalanche breakdown, Boltzmann equa-
tion (BE), impact ionization (II), power transistor, spherical
harmonic expansion (SHE).

I. INTRODUCTION

IN POWER CIRCUITS, the energy stored in the magnetic
field often drives the switching device into avalanche

breakdown, when it is turned off [1]. During the transient
avalanche breakdown, a large current flows through the power
transistor, while a large bias is applied. This leads to the degra-
dation of the semiconductor device by hot carriers, which are
either injected into the oxide or generate traps at the Si/SiO2
interface [2]. A more substantial understanding of these
processes might help to design better power devices. In order
to approach this subject by device simulation, TCAD tools
are required, which can simulate avalanche breakdown and the
corresponding hot-carrier processes. Unfortunately, simulation
of avalanche breakdown in semiconductor devices is one of
the numerically most challenging problems in TCAD.
In addition, microscopic modeling of degradation requires
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Fig. 1. Transient current of a silicon p-n diode abruptly biased with a reverse
bias of 39 V at room temperature by the drift–diffusion model.

the distribution functions of the hot electrons and holes,
which can be calculated by the semiclassical Boltzmann
equation (BE) [3]. The usual approach to solve the BE is
the stochastic Monte Carlo method, which is inherently
transient [4]. While this method has many advantages, it is too
slow to simulate avalanche breakdown in power transistors.
The self-consistent solution to the BE and Poisson equa-
tion (PE) requires time steps of a femtosecond or less due to
the high carrier densities in the contact regions of the silicon
power devices [5], whereas avalanche breakdown in silicon
devices needs more than 100 ps to develop for a breakdown
voltage of about 40 V. In Fig. 1, the transient solution
to a drift–diffusion model [6] is shown for a 1-D abrupt
p-n junction with a breakdown voltage of about 37 V for
Nacc = Ndon = 3.2 · 1016/cm3 at room temperature. In the
first 20 ps after switching the bias from 0 to −39 V, the
space-charge region grows and electrons and holes are
removed from the p-n junction. Afterwards, the avalanche
breakdown starts and it takes more than 200 ps to reach a
stationary state. Such time scales are unattainable by
Monte Carlo simulations of 2-D power devices, and
consequently, different methods, which allow the direct
calculation of the stationary state, are required. Another
problem is the extreme steepness of the stationary
current–voltage (I–V ) relation in the case of avalanche break-
down (Fig. 2). Due to the steepness, it is difficult to adjust the
bias such that the correct current is achieved.

Deterministic solvers for the BE based on a spherical
harmonic expansion (SHE), which is a deterministic alternative
to the Monte Carlo method, have been developed in the past,
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Fig. 2. Current of the silicon p-n diode at room temperature by the
drift–diffusion model.

and they directly yield stationary solutions [7], [8]. The
necessary effects for the simulation of avalanche breakdown
have been included in the approach over time. In [9] and [10],
it is described how to model full-band effects, and in [11],
self-consistent simulations of electrons and holes were
presented. In [12], the first SHE simulations of the avalanche
breakdown of a p-n junction occurred, which are still
CPU intensive. Resolving the I–V relation in these simu-
lations is difficult, because of its steepness and a lack of
the control of the current. In this paper, a new approach
is presented, where a current can be predefined, which is
much more CPU efficient and leads to a numerically stable
discretization of the BE. Section II details this method, and
in Section III, the results are shown for the 1-D p-n junction
and a 2-D vertical power MOSFET.

II. SIMULATION APPROACH

The details of the transport model, the derivation of the
discrete BE, and its stabilization can be found in [13]. The
model for impact ionization (II) reproduces the experimental
results for the II coefficient and quantum yield [14].

This paper focuses on the problems regarding the
simulation of avalanche breakdown, which is due to the
secondary electrons and holes generated by II. If the potential
drop in a p-n junction is large enough to cause an avalanche
breakdown, a large current occurs, which leads to a potential
drop in the quasi-neutral regions, which in turn reduces the
potential drop in the p-n junction limiting the avalanche
generation. This is a self-stabilizing process, which requires
the self-consistent solution to the BE and the PE. Frozen-field
simulations, where the electrostatic potential is fixed and the
BE is solved independently from the PE, are therefore instable
and can lead to erroneous or divergent solutions. On the other
hand, a simultaneous Newton approach of the BE and the PE,
which is stable close to the solution, does not converge far
from the solution. These problems are due to the divergent
behavior of avalanche breakdown, which must be controlled
in order to obtain a stable solution to the BE independently
from the PE.

Avalanche breakdown is due to the term for the generation
of the secondary electron/hole pairs by II, which is therefore

split off from the rest of the discrete BE [12]

(B̂ − Q̂) �f = �b (1)

where �f is the combined discrete distribution function
of electrons and holes, B̂ is the discrete BE without
the II generation term, where the electron and hole parts are
no longer coupled by II, and Q̂ is the discrete term for the
generation of the secondary electron/hole pairs by II. The
vector �b is due to the boundary conditions at the contacts [13].
The BE is linear, because the Pauli principle is neglected.
Numerical experiments show that direct solution to this
ill-conditioned linear system of equations is difficult not only
above, but also somewhat below the breakdown voltage.
On the other hand, the linear system without the II generation
term (B̂ �f = �b) is stable and can be solved directly [13].
Since the matrix Q̂ is nonnegative [15], a stable solution can
be obtained by an iterative approach [12]

B̂ �fk = Q̂ �fk−1 + �b (2)

with the initial condition B̂ �f0 = �b. Within an iteration step,
the generation of secondary particles is fixed to Q̂ �fk−1 and no
unchecked avalanche breakdown can occur. The solution �fk

at each iteration step results in a new space-charge
distribution. Only if the PE is solved with this new
space-charge distribution and the matrices B̂ and Q̂ are rebuilt
due to the new potential resulting from the PE, divergent
solutions are avoided. As building the matrices and solving
the linear system might take hours, a large number of iteration
steps are not feasible. Furthermore, it is very difficult to
simulate a specific current due to the steep slope of the
I–V characteristics at breakdown (Fig. 2).

These problems can be circumvented by a new approach,
in which not only the bias but also the current is predefined.
A new degree of freedom is introduced in the BE to permit
the choice of the current. The generation term is multiplied
with a factor α

(B̂ − αQ̂) �f = �b (3)

and an equation for the current is added to determine α

�c T �f = IBD. (4)

The terminal current is calculated with the linear operator �c,
where the terminal is the one for which the current should
be equal to the breakdown current IBD. For the given bias
conditions and a given breakdown current, this modified BE
is solved for the distribution function �f and the factor α. Thus,
α is a result of this system of equations and is calculated in
such a way that the current is limited to IBD and can no longer
diverge.

Equation (3) is nonlinear due to the product of α and
�f in the generation term, and after the elimination of α, it is

given by

�f = �h( �f ) = IBD − �c T �f0

�c T B̂−1 Q̂ �f B̂−1 Q̂ �f + �f0 (5)
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with B̂ �f0 = �b. This equation can be solved by a fixed-point
iteration (k = 1, 2, . . . )

B̂ �gk = Q̂ �fk−1 (6)

αk = IBD − �c T �f0

�c T �gk
(7)

�fk = αk �gk + �f0. (8)

The linear system in (6) is numerically stable due to the
favorable properties of the matrix B̂ similar to (2).

For the solution �f∞ = �h( �f∞), the Jacobian matrix
[ Ĵ ]i j = ∂hi/∂ f j is given by

Ĵ = α∞

[
Î − ( �f∞ − �f0)�c T

�c T ( �f∞ − �f0)

]
B̂−1 Q̂ (9)

with IBD = �c T �f∞ and α∞ = α( �f∞). Î is the identity matrix.
�c is a left eigenvector, and �f∞ is a right eigenvector of this
Jacobian matrix for the eigenvalue zero

�c T Ĵ = 0, Ĵ �f∞ = 0. (10)

Close to the solution, the fixed-point iteration is given up to
the first order in δ �f = �f − �f∞ by

δ �fk = Ĵδ �fk−1. (11)

Since Ĵ �f∞ = 0 holds, δ �fk will be orthogonal to �f∞ close
to the solution. The excellent convergence behavior of this
fixed-point iteration will be demonstrated in the next section.

The fixed-point iteration (6)–(8) can be performed CPU effi-
ciently with a sparse matrix solver. An incomplete LU decom-
position is obtained for B̂ by the software package ILU-
PACK [16]. This calculation and the setup of B̂ , which are
both very CPU intensive, are performed only once for a
given potential. The linear system in the fixed-point iteration
(6)–(8) is solved by a generalized minimal residual method
(GMRES [17]), where the ILU of B̂ is reused. Solving the
linear system with the GMRES takes only a small fraction of
the time needed to build B̂ and to calculate its incomplete LU
decomposition. Thus, the fixed-point iteration does not take
much more time than a single step of the iteration in (2).

The fixed-point iteration is embedded in a Gummel loop
together with the PE to achieve a self-consistent solution to
both equations [18]. The result of this iteration is in general
a factor α, which deviates from one. To obtain a physically
meaningful solution, α = 1 is required. This can be achieved
either by varying the corresponding bias or current. Since
in degradation experiments, often a current compliance is
used, the bias is varied and the current is kept constant. It is
empirically found that the pairs of V and α agree well with
the relation

V = VBD αβ (12)

where VBD and β are the fixed parameters. This relation (12)
can be used to formulate a simple iteration. For a fixed IBD
and two different voltages V1 and V2 the factors α1 and α2
are calculated with the iteration scheme (6)–(8). From these
results, the parameter VBD is obtained and a new α is
calculated for V = VBD. The resultant α should be already

Fig. 3. Convergence of the factor α toward one and the RMS error of
the electron II generation rate during the fixed-point iteration for a current
of 10 pA/μm2 and a reverse bias of 37.172 V.

close to one. This procedure is repeated, until α is sufficiently
close to one. This approach is a numerical continuation method
for the additional factor α [19], where the factor α is implicitly
determined by the applied voltage and current. The improved
numerical stability is due to the current compliance.

If the whole I–V curve is required and the relationship
between current I and bias V is complicated (e.g., snapback),
instead of using (12), a different numerical continuation
method could be used [19]. The fixed-point iteration with
the parameter α is also well suited for piecewise linear
continuation. The solution is then the contour line in the
current-bias space, for which α(I, V ) = 1 holds.

Hot-carrier simulations are often performed in the
nonself-consistent mode for a frozen electric field because
the few hot electrons or holes have a negligible impact on
the space charge and, thus, on the potential [20]–[22]. This
reduces the CPU time a lot. In the case of avalanche
breakdown, this requires the independent solution of the BE,
which is possible with the new approach. Thus, nonself-
consistent simulations can be utilized also in the case of
avalanche breakdown and the described Gummel loop for the
BE and PE can be avoided. Instead, the potential is calculated
by solving a CPU-efficient transport model without II
(e.g., drift–diffusion model), and the BE is solved only once
for the given potential.

III. RESULTS

A. p-n Diode

The p-n diode of 5-μm length with the abrupt doping profile
of Fig. 6 is simulated with the SHE solver. For a reverse
bias of 37.172 V and a current of 10 pA/μm2, the factor
alpha is equal to one. The convergence of the corresponding
fixed-point iteration (6)–(8) is shown in Fig. 3. The
first value α1 is very large, because the initial distribution
function �f0 is calculated without II generation of secondary
carriers and the saturation current of the diode is many orders
of magnitude smaller than the current compliance. In the
second step, the error drops by eight orders of magnitude
and the factor is already close to one (α2 = 0.9828). This
is remarkable, because the solution to the BE changes within
one step of the iteration from the one without avalanche
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Fig. 4. Maximum change in the potential of the Gummel loop for the
BE and PE for three currents and a reverse bias of 37.172 V.

Fig. 5. Reverse bias for the p-n diode as a function of the factor α for a
current of 10 pA/μm2 evaluated by solving the BE (symbols) and (12) with
VBD = 37.172 V and β = −0.335 (dashed line).

breakdown to an already very accurate solution including
avalanche breakdown. After seven iterations, the error is less
than 10−6. In addition, in Fig. 3, the convergence of the
II generation rate of electrons is shown, which demonstrates
that not only α shows good convergence. Hence, the
fixed-point iteration shows robust and fast convergence.

The nonlinear BE with current compliance is solved
self-consistently with the PE by a Gummel loop, which shows
excellent convergence for small and medium currents (Fig. 4).
The convergence problems associated with the avalanche
breakdown do not occur, because the current is fixed. This
demonstrates the robustness of the new algorithm. In the
case of the smallest current, the potential changes less than
a microvolt in the first iteration, and a self-consistent solution
to the BE and PE is not necessary. In the case of the largest
current, the convergence is slow, but this is similar to the
case of the Gummel loop for a forwardly biased p-n junction
and the convergence can be improved with standard
TCAD methods for this case [23]. As the vertical power
nMOSFET in Section III-B is usually not driven into such
large currents, because it would be thermally destroyed within
a short time, the treatment of such large currents shall not be
discussed here.

In Fig. 5, the voltage required for a current of 10 pA/μm2

is shown as a function of the factor α. The dashed line is

TABLE I

FACTOR α AS A FUNCTION OF THE REVERSE BIAS FOR THE

p-n DIODE FOR A CURRENT OF 10 pA/μm2

TABLE II

BREAKDOWN VOLTAGE VBD AS A FUNCTION OF THE CURRENT

the result of (12), and the symbols are the results of the BE.
The good agreement implies that the empirical relation in (12)
describes the relation between α and the voltage well.
With (12), the bias for α = 1 is calculated by iteration.
The results of this iteration are shown in Table I. The first
two voltages are used to initialize the iteration. Although
these two values are far away from the final result, the
third value is already close to the final result, and after five
evaluations, an accurate result is obtained. Thus, starting far
away from the final solution does not cause problems, and this
result demonstrates how fast convergence can be obtained for
avalanche breakdown with this approach.

Table II reveals that due to the steepness of the
I–V relation (Fig. 2), this iteration yields a very small change
in the breakdown voltages of just 23 μV/decade change in the
current.

In the top graph of Fig. 6, the electron and hole densities
are shown for the same bias and two different currents,
which differ by three orders of magnitude (10 pA/μm2 and
10 nA/μm2). The simulations are self-consistent with the PE.
Significant differences in the densities are found only in the
space-charge region, whereas the majority electron and hole
densities in the quasi-neutral regions are (almost) the same
and equal to the corresponding doping concentrations. In the
bottom graph of Fig. 6, the corresponding II generation rates
of holes and electrons are shown, where the results are divided
by the current. In the space-charge region, the results for the
two currents agree very well, demonstrating that the hot-carrier
effects are proportional to the current for these small currents.
The deviations in the quasi-neutral regions are due to the
fact that the distribution function of the majority carriers in
those regions is almost the equilibrium one, which depends
only on the particle density and not on the current level.
Since the corresponding II generation rates are many orders of
magnitude smaller than those in the space-charge region, their
impact is negligible. This linear behavior of the hot-carrier
effects is not only found for the II generation rate but also
in the case of the distribution function itself. In Fig. 7, the
energy distribution functions of electrons and holes divided
by the corresponding current are shown in the center of the
p-n junction; the agreement is so good that the difference is
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Fig. 6. Electron (red, top graph) and hole (black, top graph) density,
and II generation due to electrons (red, bottom graph) and holes (black, bot-
tom graph) at 37.172 V and room temperature for 10 pA/μm2 (dashed lines)
and 10 nA/μm2 (solid lines). Doping profiles (dashed dotted, top graph).

Fig. 7. Energy distribution function for electrons (red) and holes (black) in the
middle of the p-n junction (x = 2.5 μm) at 37.172 V and room temperature
for 10 pA/μm2 (dashed lines) and for 10 nA/μm2 (solid lines) scaled with
the corresponding current density.

not visible in Fig. 7. This linear behavior in the technically
relevant current range allows us to use current levels, which are
so low that nonself-consistent simulations can be performed,
which are much more CPU efficient.

B. Vertical Power MOSFET

In order to demonstrate that this approach works not only
in the case of a rather ideal 1-D p-n diode, we have simulated
a vertical power nMOSFET. The 2-D process and device

Fig. 8. Potential, electron, and hole II rates in the space-charge region of
the vertical power MOSFET for a drain bias of 35.83 and 0 V at all other
contacts for a current of 10 pA/μm2.

Fig. 9. Density of electrons (red) and holes (black) with energies higher
than 1, 2, and 3 eV at a drain bias of 35.83 V and room temperature along
the Si/SiO2 interface. The value one of the x-ordinate corresponds to the
lower right end of the interface in Fig. 8.

simulations for this device were performed with the Sentaurus
TCAD suite [24]. The device structure, grid, doping profile,
and electrostatic potential of the drift–diffusion simulation
without II were transferred to our code.

The current density was set to 10 pA/μm2, a value
low enough for nonself-consistent simulations, and for a
drain/source bias of 35.83 and 0 V at all other contacts,
α = 1 is obtained. The number of unknown variables of
the linear system is 45 million (about 4700 nodes in the real
space), and the total CPU time is less than 11 h on a current
computer.

The potential and II rates of electrons and holes are shown
in Fig. 8 for the space-charge region of the power transistor.
The II generation rate of the holes peaks at the Si/SiO2
interface near the bottom of the trench oxide (the brown
region in Fig. 8), whereas the peak of the electron II rate is
found in the bulk of the device due to the electric field, which
repels electrons from the trench. The electron II distribution
is therefore more spread out than the hole one, which is
concentrated close to the trench interface. Nevertheless, it is
possible to calculate the rather low electron and hole distrib-
ution functions along the trench interface by our approach, as
shown in Fig. 9. Based on these results, device degradation
due to the injection of hot electrons and holes into the oxide
and generation of traps at the interface could be calculated.
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IV. CONCLUSION

We have demonstrated a new approach based on numerical
continuation for the simulation of avalanche breakdown,
where the voltage and breakdown current can be specified by
introducing a multiplier for the II generation rate of
the secondary electron/hole pairs. The new approach is
robust and efficient, and the problem of divergent solutions is
avoided. It works even in the region of the I–V characteristics,
where its slope is steepest, and we have demonstrated for the
first time a solution to the BE for avalanche breakdown in a
power transistor with a current compliance. In addition, the
new approach improves the stability of the BE to such an
extent that CPU-efficient frozen-field simulations of avalanche
breakdown are possible.

Since in this new approach, voltage and current can be
specified, it might also work in the case where the relationship
between current and voltage is not invertible and piecewise
linear continuation methods could be used. Furthermore, the
approach is not limited to the BE, but can also be used, for
example, in the case of the drift–diffusion model.
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