
VALIDATION OF CONTACT SIMULATION FOR ROBOTIC MANIPULATION IN SPACE

Arthur Wahl, Georgij Grinshpun, and Juergen Rossmann

Institute for Man-Machine Interaction, RWTH Aachen University
Ahornstr. 55, D-52074 Aachen, Germany

{wahl, grinshpun, rossmann}@mmi.rwth-aachen.de

ABSTRACT

The detachment as well as reattachment of satellite com-
ponents during a reconfiguration or repair process repre-
sents a challenging task, since the establishment of a sta-
ble contact between the connection interfaces of the satel-
lite’s components and the robot manipulators of a servicer
satellite is required. To asses such scenarios, we propose
the application of a simulation driven approach. Our ap-
proach builds upon a Virtual Testbed for space environ-
ments and presents a novel collision detection algorithm
tailored to connection interfaces composed of centering
pins and holes. The algorithm performs contact manifold
and penetration depth computation in real-time. To vali-
date our approach, docking scenarios between a centering
pin and an interface’s hole were performed within a ded-
icated setup in a series of reference experiments with real
hardware and robots.

Key words: Collision Detection; Contact Manifold &
Penetration Depth Computation; Peg-In-Hole; Hardware
Experiments; Virtual Testbeds; Simulation Frameworks.

1. INTRODUCTION

Today’s satellites are monolithic systems, whose lifetime
is often determined by the lifetime of their critical com-
ponents. Without any feasible way of maintenance or
repair, malfunctioning components can lead to an early
termination of a satellite’s mission period. At the end of
its lifetime, a satellite becomes space debris that may en-
danger other satellites. The concept of modular satellites
as presented in the project iBOSS (intelligent Building
Blocks for On-Orbit Satellite Servicing, [11]) is aiming to
contribute to the reduction of space debris by extending
the lifespan of satellites through easier maintainability of
their components. A modular design simplifies access
to malfunctioning components and enables their replace-
ment through servicer satellites during on-orbit-satellite
servicing missions [2], see Figure 1.
Detachment as well as reattachment of components dur-
ing reconfiguration or repair processes represent a chal-
lenging task, since the establishment of a stable contact
between the connection interfaces of a satellite’s compo-
nent and the robot manipulators of a servicer satellite is
required. Therefore, we propose the application of Vir-
tual Testbeds [7], [9] to assess such scenarios. Virtual

Figure 1. Simulation of an on-orbit satellite servicing
mission in Virtual Robotic Testbed for space environ-
ments [7]: A servicer satellite (l.h.s.) is docked to a
modular satellite (r.h.s.) and replaces a malfunctioning
component (iBOSS concept [11]).

Testbeds enable analysis, as well as verification of al-
gorithms regarding reconfiguration, handling, and place-
ment of a satellites components by means of simulation.
Establishing a stable contact is essential for the success-
ful completion of any reconfiguration or repair task. The
first contact between a servicer’s robot manipulator and a
target component should establish a stable contact and is
usually implemented by multiple centering pins [2]), see
Figure 2. These pins enter in contact with the target’s me-
chanical interface and assure the self-centering of the ma-
nipulator. A robot manipulator detects occurring impacts
between the centering pins and the interface. The manip-
ulator’s controller reacts according to the arising forces
and allows the centering pins to slide into the interfaces
docking holes. In general, the process can be modeled as
a Peg-In-Hole situation, which is a well-studied but still
challenging task in robotic applications [12], [10], [6].
Therefore we focused on Peg-In-Hole scenarios with re-
spect to the goal of docking a servicer’s robot manipulator
to a mechanical interface of a modular satellite’s compo-
nent by developing a simulation environment that cap-
tures the dynamic behavior between centering pins and
docking holes during contact. Our approach builds upon



Figure 2. Centering pins of a component’s mechanical
interface.

a Virtual Robotic Testbed for space environments [7], [9],
see Figure 3, and is based on a multi-body dynamics sim-
ulation [4]. One of the main contributions of this work
is the development of a discrete collision detection al-
gorithm to simulate interactions between centering pins
and docking holes. The algorithm identifies intersections,
determines the contact manifold and the corresponding
penetration depths for capped cylinders and fitting hole
geometries in real-time. By utilizing the Virtual Testbed
and integrating the novel collision detection as well by
employing simulated robots with endowed compliance
control [5], we were able to simulate multiple interface
docking scenarios in space environments like e.g. earth’s
geostationary orbit, as depicted in Figure 1.
The second main contribution of this work is the valida-
tion of data generated by our simulation environment dur-
ing contact-handling. Virtual Testbeds make it possible
to validate simulation data by facilitating control options
for real robot manipulators as well as access to the data
generated by such manipulators [8]. Therefore a physical
testbed in form of a robotic cell (initially being used for
experimental landing verification [9]) has been extended
to perform contact experiments.

2. VIRTUAL ROBOTIC TESTBED FOR SPACE
ENVIRONMENTS

Virtual Testbeds are advanced 3D simulation environ-
ments which model all important aspects of an applica-
tion and enable a development engineer to systematically
examine complex systems, including all relevant compo-
nents of such systems and their interdependencies. Meth-
ods for verification and validation of such systems are
provided. For this purpose Virtual Testbeds integrate 3D
models, simulation algorithms, and real hardware devices
for a holistic view of the dynamic overall system [7].
The Virtual Space Robotics Testbed [9] serves as a deci-
sion support system for engineers during the design phase
of space mission scenarios like e.g. on-orbit-satellite ser-
vicing, rendezvous and docking, planetary landing or ex-
ploration and offers a comprehensive set of simulation
methods to model robotic applications in space environ-
ments e.g. multi-body dynamics, kinematics, orbital me-
chanics, structural mechanics, pose control and control-

Figure 3. Virtual Robotic Testbed for space environments
[7] (iBOSS concept [11]) (satellite model c©TU Berlin).

ling algorithms for robotic manipulation. The modu-
lar approach of the Virtual Space Robotics Testbed al-
lows for on-the-fly adaption of various space scenario se-
tups and provides the tools to simulate multiple interface
docking scenarios in different space environments by uti-
lizing the aforementioned simulation methods and inte-
grating our novel collision detection algorithm as an ex-
tension of the underlying multi-body dynamics simula-
tion.
Furthermore interfaces and control mechanisms for real
hardware devices such as robotic manipulators, are an in-
tegral part of the Virtual Space Robotics Testbed. They
provide the possibility to verify and validate simulated
results with real data generated by a physical mockup of
the simulated scenario.

3. CONTACT SIMULATION

We introduce a novel collision detection algorithm that
uses a case by case analysis to determine collisions be-
tween an interface’s centering pins and the docking hole
of an opposed interface, modeled as a Peg-In-Hole sce-
nario. The algorithm uses an analytical approach to
compute the resulting contact manifold and penetration
depths in real-time. Contact handling is done by a rigid
multi-body dynamics simulation [4] that employs gener-
alized tools of contact graph analysis for fast and robust
simulations of joint connected multi-body system such as
robotic manipulator and provides a collision detection li-
brary for multiple primitive geometries like e.g. spheres,
boxes or capped cylinders. For fast collision detection
and contact manifold determination, further elements of
an interface are simulated by combinations of primitive
geometries as a simplified physical substitute model of
the original geometry.

3.1. Specialized Peg-In-Hole Collision Detection

Capsule shaped spheres (CylSpheres) or capped cylin-
ders, depicted on the right side of Figure 4, are basic
elements of the underlying dynamics simulation of the
Virtual Robotic Testbed and were the most appropriate
choice for the physical representation of an interfaces
centering pins, regarding the performance of the follow-



Figure 4. CylSphere (l.h.s.) and the new geometric type
“CylSphereHole” (r.h.s.).

ing intersection computation and the physical substitute
model of a centering pin’s geometry. In addition to this,
a new geometry had to be designed that models the in-
terfaces docking hole and the corresponding rigid body’s
physical behavior had to be determined for the dynamic
simulation. Therefore the “CylSphereHole” geometry
was generated by inserting a negative “CylSphere” with
one open end into a box shaped geometry. The open end
of the “CylSphere” acts as an opening at the top surface
of the box geometry, depicted on the left side of 4.

To model the geometry’s physical behavior we had to
compute its inertia tensor, Θcsh. This can be done by first
computing the inertia tensor of the box shaped geome-
try, Θbox, and subtracting the inertia tensor of the hole
shaped geometry Θhole from it afterwards. The latter is
composed of a cylinder and a cap (half sphere). Our ap-
proach starts by computing the “CylSphereHole’s” cen-
ter of mass as well as the mass moment of inertia for
the aforementioned shapes (box, cyl, cap) with respect to
their centers of mass. The orientation of the local coordi-
nate systems of the shapes is identical to the orientation
of the “CylSphereHole”, as depicted on the left side of
Figure 4:

Θbox
x = 1

12m
box(b2 + c2)

Θbox
y = 1

12m
box(a2 + c2)

Θbox
z = 1

12m
box(a2 + b2)

(1)

Θcyl
x,y = 1

4m
cyl · r2 + 1

12m
cyl · h2

Θcyl
z = 1

2m
cyl · r2 (2)

Θcap
x,y =

(
2
5m

sph · r2
)
∗ 1

2 −
(
1
2 ·

9
64m

sph · r2
)

Θcap
z =

(
2
5m

sph · r2
)
∗ 1

2

(3)

where a, b, c are the side lengths of the box along x, y,
and z-axis, mbox is the mass of the box shape, mcyl is the
mass of the cylinder shape, msph is the mass of the sphere
shape that can be generated by duplicating the cap, r is
the radius of the hole and h is the height of the cylinder.
The height of the box is chosen as c = h + r to simplify
calculations. The resulting mass moments of inertia are
expressed with respect to the axes through the center of
mass of each shape. These moments of inertia have to be
expressed with respect to the “CylSphereHole’s” center
of mass. This is done by applying the Huygens–Steiner
theorem that delivers the mass moment of inertia of the
three shapes for axes through the “CylSphereHole’s” cen-

ter of gravity:

Θbox
x

′

= Θbox
x + mboxdboxcog

2

Θbox
y

′

= Θbox
y + mboxdboxcog

2

Θbox
z

′

= Θbox
z

(4)

Θcyl
x,y

′

= Θcyl
x,y + mcyldcylcog

2

Θcyl
z

′

= Θcyl
z

(5)

Θcap
x,y

′
= Θcap

x,y + mcapdcapcog
2

Θcap
z

′
= Θcap

z

(6)

where dboxcog = ccshz −cboxz , dcylcog = ccshz −ccylz as well as dcapcog

= ccshz − ccapz are the distances of the shape’s centers of
mass locations (cbox,cyl,cap) from the center of mass loca-
tion of the “CylSphereHole” (ccsh) along the z-coordinate
(height). Since the orientation of all local coordinate sys-
tems is identical to the orientation of the coordinate sys-
tem of the “CylSphereHole” and all centers of mass lie on
the y-axis of that coordinate system, the distance between
the centers of mass can be computed by subtracting their
z-coordinates (heights). As stated in the beginning of the
section, we get the x-, y- and z component of the “Cyl-
SphereHole’s” inertia tensor, Θcsh

x,y,z , by subtracting the
transformed moments of inertia of the cylinder and cap
from the moment of inertia of the box.

Θcsh
x = Θ

box

x

′

−Θcyl
x

′

−Θcap
x

′
(7)

Θcsh
y = Θ

box

y

′

−Θcyl
y

′

−Θcap
y

′
(8)

Θcsh
z = Θ

box

z

′

−Θcyl
z

′

−Θcap
z

′
(9)

This delivers the following inertia tensor for the “Cyl-
SphereHole” shape:

Θcsh =

 Θcsh
x 0 0
0 Θcsh

y 0
0 0 Θcsh

z

 (10)

Our collision detection algorithm subdivides possible
collisions between the peg and the hole into several in-
tersection categories and uses a case by case analysis to
determine the intersection points as well as the penetra-
tion depths. Generally, collisions occur inside the hole,
on the rim of the hole or the surfaces of the box.
We use an analytical approach to compute collisions that
occur inside the hole. The approach is based on orthog-
onal projections of the cylindrical body and cap of “Cyl-

Sphere” onto the major axis, acsh =
−−−−−−→
P csh
0 P csh

1 , of the
hole, see Figure 5. We distinguish between collisions of
the peg with the spherical bottom cap of the hole and the
walls of the cylindrical body of the hole. The algorithm
starts by verifying if a “cap contact” has occurred. The
endpoints, P cs

0 , P cs
1 , of the major axis, acs, of the “Cyl-

Sphere” are used to determine if the peg has entered that
region of the hole. Therefore, the scalar products between



Figure 5. Intersection point computation on the inside of
the hole.

the endpoints of the peg and the major axis of the hole are
computed and the following two conditions are checked:〈−−−−−→

P csh
0 P cs

0 , acsh
〉
≤ 0 or

〈−−−−−→
P csh
0 P cs

1 , acsh
〉
≤ 0 (11)

where P csh
0 is the bottom point of the major axis of the

hole, see Figure 5. One or both endpoints can be located
within the cap of the hole, depending on the size of the
“Cylsphere”. An intersection has occurred if the distance
between the endpoint P csh

0 of the hole and an endpoint
of the “CylSphere” is greater than the difference between
the radius of the hole rcsh and the radius of the peg rcs:∥∥∥−−−−−→P csh

0 P cs
0

∥∥∥ >
(
rcsh − rcs

)
→ intersection∥∥∥−−−−−→P csh

0 P cs
1

∥∥∥ >
(
rcsh − rcs

)
→ intersection

(12)

The intersection point Ccsh
cap is obtained by:

Ccsh
cap = P

csh

0
+

−−−−−→
P csh
0 P cs

0,1∥∥P csh
0 P cs

0,1

∥∥ · rcsh (13)

The algorithm continues to check for contacts if at least
one of the endpoints of the peg is not located within the
cap of the hole. The next test case checks for contacts of
one of the caps with the cylindrical body of the hole. As
before, two conditions are formulated to verify if the peg
is located within the body of the hole by computing the
corresponding scalar products between the endpoints of
the peg and the end point P csh

1 at the top of the major
axis of the hole:〈−−−−−→

P csh
1 P cs

0 , acsh
〉

< 0 or

〈−−−−−→
P csh
1 P cs

1 acsh
〉

< 0 (14)

The intersection test for this case is done by computing
the orthogonal distance between the peg and the major
axis of the hole, as depicted in Figure 5. This delivers

the minimal distance between both shapes. Comparing
the resulting value with the difference between the radii
of the hole and the peg, determines if an intersection has
occurred. Depending on which of the endpoints is con-
tained within the body of the hole, we project one or both
onto the major axis of the hole, in orthogonal direction to
that major axis:

P cs
0,1

′
=

〈−−−−−→
P csh
0 P cs

0,1, a
csh
〉

‖acsh‖2
· acsh (15)

Afterwards we check, if the length of the vector v⊥0,1

acsh =
−−−−−→
P csh
0 P cs

0,1 − P cs
0,1

′
between the projected endpoint, P cs

0,1

′
,

and the original endpoint, P cs
0,1, is longer than the differ-

ence between the radii of the peg and the hole. Hence the
following intersection test is executed:∥∥∥v⊥0,1

acsh

∥∥∥ >
(
rcsh − rcs

)
→ intersection (16)

The intersection point Cc??h
body is obtained by:

Ccsh
body = P cs

0,1

′
+

v
⊥0,1

acsh∥∥∥v⊥0,1

acsh

∥∥∥ · rcsh (17)

The last test case of our algorithm checks for contacts
between the peg and the rim of the hole, as depicted in
Figure 6. We use a numerical approach that parametrizes
the ring shape of the rim and iteratively searches for the
minimal distance between the peg and the rim while sub-
dividing the search interval with each iteration as de-
picted in Figure 7. Collisions between the rim and the
peg can occur depending on the size of the “Cylsphere”
with one of the caps, the body of the peg and – at the
same time – one of the caps and the body or with both
caps. Therefore, our algorithm searches for minimal dis-
tances between the rim and both caps as well as the body
of the peg until a chosen iteration level is reached. Af-
terwards, the results are used to determine if an intersec-
tion has occurred. The algorithm continues to check for
such contacts if the former formulated conditions have
shown that one or both endpoints of the peg are not lo-
cated within the body of the hole. The minimal cap dis-
tance for one of the caps of the peg is determined by com-
paring the distances between the corresponding endpoint
of the peg and all rim positions on the search interval of
an iteration. A search interval consists of eight equidis-
tant positions on the rim. The search interval on the rim
is sub-divided in each iteration step in correspondence
to the current minima. The rim position Rj that yields

the minimal distance
∥∥∥−−−−→RjP

cs
0,1

∥∥∥ on an interval is used to
choose the next search interval in-between the previous
Rj−1 and the following rim position Rj+1 on the current
interval, as depicted in Figure 7. Afterwards, eight new
equidistant positions are computed in-between the next
search interval whose distances to the endpoint of the peg
have to be compared. The procedure is repeated until the
chosen iteration level is reached. An intersection has oc-
curred if the resulting minimum

∥∥∥−−−−−−→RminP
cs
0,1

∥∥∥ is smaller



Figure 6. Intersection point computation for the rim of
the hole.

than the radius of the peg:∥∥∥−−−−−−→RminP
cs
0,1

∥∥∥ < rcs → intersection (18)

In that case, the rim position Rmin is chosen as an inter-
section point Ccsh

rim,cap:

Ccsh
rim,cap = Rmin (19)

The distance of the body of the peg to the rim is deter-
mined by projecting the rim positions of a search interval
orthogonal to the major axis of the peg:

R
′

j =

〈−−−−→
P cs
0 Rj , a

cs
〉

‖acs‖2
· acsv⊥j

acs =
−−−−→
P cs
0 Rj −

−→
R

′

j (20)

where v
⊥j

acs is the vector between the projected rim po-
sition, R

′

j , and the original rim position, Rj . As be-
fore, the search procedure is repeated until the chosen
iteration level is reached and the last minimal distance,∥∥v⊥acsmin

∥∥ , between the body of the peg and the rim has
been determined. The intersection test is given by:∥∥v⊥acsmin

∥∥ < rcs → intersection (21)

If an intersection has occurred, the rim position Rmin

that yielded the last minimum is chosen as an intersec-
tion point Ccsh

rim,body for a rim contact.
The set of all intersection points that have been deter-
mined throughout the different contact cases are defining
the resulting contact manifold between a peg and a hole
for all intersections that have occurred during a simula-
tion step. The penetration depths and corresponding pen-
etration directions are used for contact handling. Model-
ing an interfaces docking holes and centering pins as in-
dividual rigid body extensions of the underlying dynamic
simulation, facilitates the possibility to influence the con-
tact behavior of both components. Thereby material and

Figure 7. Sub-division of the search interval along the
rim of the hole.

control parameters in the simulation can be iteratively ad-
justed during the subsequent validation steps, until the
behavior of the virtual interface and robot manipulators
is as close as required to their behavior in the physical
testbed.

3.2. Performance

Opposed to mesh based collision detection approaches,
the precision of the contact manifold computation as well
as the performance of our approach is not dependent on
the complexity of the polygonal models of the interface’s
components, thereby our algorithm presents a more ro-
bust and fast approach for the contact simulation of in-
terface docking scenarios. Real-time rates for config-
urations of up to 20 centering pins and docking holes
could be realized (including contact manifold, penetra-
tion depth computation and contact handling) on a 6-core
4.13 GHz Intel i7 with 16 GB of RAM for a simulation
time step of 10ms, see Figure 8. The average computation
time of the collision detection routine for one simulation
step of a peg and a hole took about 0.02ms, so the ma-
jority of the time is spent within the contact handling and
rendering.

Figure 8. Specialized Peg-In-Hole Simulation.

4. ROBOTIC VALIDATION

The contact simulation has been validated by conduct-
ing reference experiments within a physical testbed setup



composed of a robotic cell and by comparing the simu-
lated results with data generated by the robotic manipu-
lator of that cell, in our case a KUKA-LWR robot. The
Virtual Robotic Testbed has been used to simulate differ-
ent test case contact scenarios between a centering pin
and an interfaces docking hole as well as to control the
KUKA-LWR robot.

4.1. Experimental Setup

The experimental setup should perform reproducible mo-
tion sequences in simulation as well reality to obtain
comparable results. In addition it should provide the abil-
ity to measure the occurring forces, torques, as well as
positions of the components during contact of the cen-
tering peg and docking hole. Therefore a robotic cell,
being initially used for experimental landing verification
[9], has been adapted to fit our scenario. The cell in-
cludes two KUKA-LWR robots. Both are mounted on
a linear axis. Here, the robot manipulators act as mea-
suring instruments. The exact position, as well as ex-
erted forces can be measured with the internal position
and torque sensors of the manipulators, while conducting
the contact experiments. Subsequently the data is used
to identify and quantify the characteristic effects of the
contact behavior. Furthermore an experimental table has
been installed in range of the robot. The table is attached
to the rigid frame structure of the cell and caries the ex-
perimental hardware. The setup is considered to be fixed
in relation to the robot’s base.
The KUKA-LWR offers a control interface called fast
research interface (FRI), which enables communication
between physical robots and third-party applications.
Among other inputs, it accepts target positions in form
of joint angles, which is the main input of the robot in
our case. Furthermore the FRI provides several control
modes e.g. programmable compliance in Cartesian or
axis-specific mode [1]. These control modes are suitable
to carry out experiments with rigid environments [3].
In accordance with the contact simulation, we chose a
capped cylinders (peg) and a round hole formed from the
negative of a capped cylinder (both with diameters of 3.5
cm) as experimental shapes.
Due to the flexible testbed structure it was possible to
separate the control and evaluation modules from the
physical devices. The link to the KUKA-LWR robots
can be switched off and replaced on-the-fly by a sim-
ulated robot including the rigid body simulation of the
Virtual Robotic Testbed, torque controlled motors and the
stiffness controller as implemented in the real robot [5].
Hence the controller running the experiment and the eval-
uation logic was used for both the simulated and the real
setup.

4.2. Experimental Results

The first experiment was conducted to examine a simple
contact of the peg with a flat surface, similar to the dock-
ing hole’s upper surface. The generated data was used as
a reference to verify the data generated by more complex
contact scenarios in combination with the hole shape. In
that scenario the robot was commanded to move the TCP

Figure 9. Robot pushing a peg towards a flat surface.

downwards while the trajectory was constrained by the
surface on the experiment table (target of the trajectory
was 5cm below the table). Due to the impact, the robot
was not able to follow the command. Figure 9 depicts the
resulting configuration of the robot as the target reaches
the lowest point. Since the robot’s controller was con-
figured in joint stiffness mode the robot slid along the
surface on the table instead of stopping at the moment of
impact. The gray contour overlay in Figure 9 depicts the
robot at the moment of impact.

Figure 10. Measured values of the first joint while con-
tacting the table. Top: The position of the joint, Center:
Position difference between simulated and real task, Bot-
tom: the measured joint torque.

Figure 10 shows the measured data of joint 1 during three
repetitions of the aforementioned sliding task. Due to
the impact the joint is not able to reach the target posi-
tion neither in the real nor in the simulated experiment.
The deviation between the simulated and real experiment
stayed within 0.1 radians for all angles, and the overall
standard deviation was measured to be 0.04 radians. Fur-
thermore the shape of the graph of the simulated joint
torque matches the shape of the graph of the real joint
torque.
A second task was performed to examine the behavior
of the peg during contacts with the rim of the hole. The
robot conducted two rim-contacts with the peg through-
out that task. Therefore the peg was initially positioned
vertically above the hole. Furthermore the centers of the
peg and the hole were slightly displaced in horizontal di-
rection, so that the planned movement sequence of the
robot would cause a rim-contact and the peg would slide
over the rim during that movement. The movement se-



Figure 11. The peg is sliding over the rim of the hole.

quence of the robot was composed of the following ac-
tions. At the beginning of the sequence the peg was
moved downwards to conduct the first contact. Then the
peg was moved back to its initial position. Afterwards
it was moved to the opposite side of the rim, to conduct
the second contact. Figure 11 depicts this scenario. The
hereby measured positions and Torques are shown in Fig-
ure 12.

Figure 12. Measured values of joint 6 during contact of
the peg with the rim of the hole. Diagram as in Figure 10.

The first rim-contact occurred between second 23 and 26
of the experiment, as depicted in the graphs of Figure
12. The second contact occurred between second 36 and
39. The robot configuration was chosen in such a way
that the effect of the impact appeared mostly at the joint
6. However the impact is also compensated by the other
joints, which leads to small deviations compared to the
commanded joint positions. The deviation between the
simulated and real experiment was measured to be below
0.05 radians for all joints.
Both test cases indicate that our contact simulation real-
izes realistic dynamic interactions between the peg and
the hole shape.

5. CONCLUSION

We introduced a robust and fast collision detection algo-
rithm that uses a case by case analysis to determine col-
lisions between an interfaces centering pins and docking
holes, modeled as a Peg-In-Hole scenario. The algorithm
uses an analytical approach to compute the contact man-
ifold as well as penetration depths in real-time. There-

fore performance is not determined by the discretization
level of the underlying polygonal models of the inter-
face’s components, as opposed to mesh based collision
detection approaches.
We validated the contact simulation using a robot manip-
ulator as measuring instrument. The exact position, as
well as exerted torques have been measured with the in-
ternal position and torque sensors of the manipulators,
while conducting the contact experiments. The data was
used to analyze the behavior of the contact simulation in
comparison to the behavior of the components in real-
ity. The overall standard deviation of the positions of the
robot’s joint angles is very small. Furthermore the resem-
blance of the torques graphs is substantial. Both results
indicate, that the behavior of our contact simulations is
considerably close to the ideal behavior in reality.
As a next step we will add an additional force-torque sen-
sor to the robot’s tool. An additional force-torque sen-
sor will provide the possibility to measure the occurring
forces directly at the tool of the robot instead of the joints.
Thereby the measurements will not be influenced by the
robot’s mechanic. Furthermore we are planning to add an
automatic tool changer to the setup, that will enable us
to perform automated experiment procedures on a larger
scale. Based on the generated data we will calibrate the
simulation algorithms and identify the hardware behavior
in detail.

ACKNOWLEDGMENTS

Parts of this work were developed in the context of the
research project iBOSS-2. Supported by the German
Aerospace Center (DLR) with funds of the German Fed-
eral Ministry of Economics and Technology (BMWi),
support codes 50 RA 1203.

REFERENCES

[1] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe,
A. Albu-Schaeffer, A. Beyer, O. Eiberger, S. Had-
dadin, A. Stemmer, G. Grunwald, and G. Hirzinger.
The kuka-dlr lightweight robot arm - a new ref-
erence platform for robotics research and manu-
facturing. In Proc. Robotics (ISR), 41st Interna-
tional Symposium on and 6th German Conference
on Robotics (ROBOTIK), pages 1–8, 2010.

[2] M. Goeller, J. Oberlaender, K. Uhl, A. Roennau,
and R. Dillmann. Modular robots for on-orbit satel-
lite servicing. In Proc. IEEE International Confer-
ence on Robotics and Biomimetics (ROBIO), pages
2018–2023, 2012.

[3] N. Hogan. Stable execution of contact tasks us-
ing impedance control. In Proc. IEEE International
Conference on Robotics and Automation, pages
1047–1054, 1987.

[4] T. Jung. Methoden der Mehrkrperdynamiksimula-
tion als Grundlage realittsnaher Virtueller Welten.
PhD thesis, RWTH Aachen University, 2011.

[5] E. G. Kaigom and J. Rossmann. Developing vir-
tual testbeds for intelligent robot manipulators-an



erobotics approach. In Proc. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 1589–1594, 2014.

[6] M. Mandiak and T. Kesavadas. Development of
virtual assembly application with haptics, assem-
bly modification and statistical output measures. In
Proc. ASME International Mechanical Engineering
Congress and Exposition, pages 1475–1481, 2005.

[7] J. Rossmann and M. Schluse. Virtual robotic
testbeds: A foundation for e-robotics in space, in
industry-and in the woods. In Proc. IEEE Devel-
opments in E-systems Engineering (DeSE), pages
496–501, 2011.

[8] J. Rossmann, M. Schluse, C. Schlette, and
R. Waspe. Control by 3d simulation–a new er-
obotics approach to control design in automation. In
Intelligent Robotics and Applications, pages 186–
197. Springer, 2012.

[9] J. Rossmann, T. Steil, and M. Springer. Validat-
ing the camera and light simulation of a virtual
space robotics testbed by means of physical mockup
data. In Proc. International symposium on artificial
intelligence, robotics and automation in space (i-
SAIRAS), pages 1–6, 2012.

[10] T. Tsuruoka, H. Fujioka, T. Moriyama, and
H. Mayeda. 3d analysis of contact in peg-hole in-
sertion. In Proc. IEEE International Symposium on
Assembly and Task Planning (ISATP), pages 84–89,
1997.

[11] J. Weise, K. Briess, Adomeit, A., H.-G. Reimerdes,
M. Gller, and R. Dillmann. An intelligent build-
ing blocks concept for on-orbit-satellite servic-
ing. In Proc. International Symposium on Artifi-
cial Intelligence Robotics and Automation in Space
(iSAIRAS), Turin, Italy, 2012.

[12] J. Zhou, N. Georganas, E. Petriu, X. Shen, and
F. Marlic. Modelling contact forces for 3d in-
teractive peg-in-hole virtual reality operations. In
Proc. Instrumentation and Measurement Technol-
ogy Conference Proceedings (IMTC), pages 1397–
1402, 2008.


	Introduction
	Virtual Robotic Testbed for space environments
	Contact Simulation
	Specialized Peg-In-Hole Collision Detection
	Performance

	Robotic Validation
	Experimental Setup
	Experimental Results

	Conclusion

