
Molecular Phenomena in Dynamic Wetting:
Superspreading and Precursors

Von der Fakultät für Maschinenwesen der
Rheinisch-Westfälischen Technischen Hochschule Aachen zur

Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Rolf Erwin Isele-Holder

Berichter: Juniorprofessor Ahmed E. Ismail, Ph. D.
Juniorprofessor Dr.-Ing. Martin Thomas Horsch

Tag der mündlichen Prüfung: 17.04.2015

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek
online verfügbar.





Abstract

Wetting is a multiscale process that can be controlled simultaneously by complex flow
patterns on the macroscale and contact line phenomena at the Ångstrom scale. While
resolving the latter scale is often circumvented by usage of boundary conditions, there
are molecular wetting phenomena in which this approach is infeasible. The focus of this
study is to use molecular dynamics simulations to examine two of these phenomena:
superspreading, the ultra-rapid wetting of aqueous solutions facilitated by trisiloxane
surfactants, and molecular precursors, the development of films of molecular thickness
that precede droplets.
Molecular simulation resolves the atomistic scale and provides information that is

inaccessible from experiment. A challenge in the context of wetting, however, is that
dispersion interactions are typically considered short-ranged in molecular simulations,
whereas they have long-ranged effects in wetting. To capture these interactions in
wetting simulations, the particle-particle particle-mesh algorithm, a long-range solver
that is well-established for Coulomb interactions, is extended to dispersion. It is shown
that the correct use of this algorithm leads to accurate and efficient simulations.
Despite intensive studies on superspreading in the last 20 years, the underlying

molecular mechanisms of the process are not understood. That the process is sensitive
to various parameters in experiment, and also that previous attempts to model this
phenomenon using molecular dynamics simulations failed, motivated the development
of a force field dedicated to superspreading. Application in large-scale spreading sim-
ulations provides a smooth contact line transition at superspreading conditions. It is
shown that this observation offers plausible explanations for experimental findings and
a coherent description of the superspreading mechanism.
While the dynamics and mass transport mechanisms of molecular precursors are well

understood, conditions that lead to precursor formation or different types of precursors
are subject to debate. Large-scale spreading simulations, new analysis methods, and
excessive free energy computations shed light on these issues and resolve the conflict
about the role of the spreading coefficient for precursor formation.
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Zusammenfassung

Benetzung ist ein vielskaliger Prozess der simultan von komplexen Strömungsbewegun-
gen auf der makroskopischen Skala und Kontaklinienphänomenen auf der Ångstrom-
Skala kontrolliert werden kann. Obwohl die Modellierung der letzgenannten Skalen oft
durch geeignete Randbedingungen umgangen wird, gibt es molekulare Benetzungsphä-
nomene, in denen diese Herangehensweise nicht möglich ist. Der Fokus dieser Studie
ist die Untersuchung zwei dieser Phänomene mit molekulardynamischen Simulationen:
Superspreading, das durch Trisiloxantenside ermöglichte ultra-schnelle Benetzen von
hydrophoben Substraten durch wässrige Lösungen, und molekulare Präkursoren, die
Entwicklung von Filmen molekularer Dicke, die Tropfen voraus fließen.
Molekulare Simulation löst atomistische Skalen auf und liefert Informationen, die ex-

perimentell nicht zugänglich sind. Eine Herausvorderung im Kontext von Benetzung ist
jedoch, dass Dispersionswechselwirkungen in molekularen Simulationen typischerweise
als kurzreichweitig angesehen werden, wohingegen sie in Benetzung langreichweitige
Effekte haben. Um diese Wechselwirkungen in Simulationen von Benetzung zu be-
rücksichtigen, wurde der particle-particle particle-mesh Algorithmus, ein für Coulomb
Wechselwirkungen weit verbreiteter langreichweitiger Löser, für Dispersionswechselwir-
kungen erweitert. Es wird gezeigt, dass die korrekte Verwendung dieses Algorithmus
genaue und effiziente Berechnungen ermöglicht.
Trotz intensiven Studien zu Superspreading in den vergangenen 20 Jahren sind die zu

Grunde liegenden molekularen Mechanismen nicht verstanden. Dass der Prozess emp-
findlich gegenüber experimentellen Bedingungen ist, und auch dass frühere Versuche
zur Modellierung des Phänomens mit molekulardynamischen Simulationen gescheitert
sind, motiviert die Entwicklung eines dem Superspreading gewidmeten Kraftfeldes. An-
wendungen in groß-skaligen Simulationen von Tropfenausbreitung weisen einen glatten
Übergang an der Kontaklinie bei Superspreadingbedingungen auf. Es wird gezeigt,
dass diese Beobachtung plausible Erklärungen für experimentelle Ergebnisse und eine
stimmige Beschreibung des Superspreadingmechanismus liefert.
Während die dynamischen Eigenschaften und Mechanismen des Massetransports von

molekularen Präkursoren verstanden sind, sind die Bedingungen, die zur Bildung von
Präkursoren oder verschiedenartig geformter Präkursoren führen, umstritten. Groß-
skalige Simulationen von Tropfenausbreitung, neue Analysemethoden, und umfassende
Freie Energie Berechnungen werfen Licht auf diese Fragestellungen und lösen den Kon-
flikt über die Rolle des Spreitparameters bei der Bildung von Präkursoren.
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2.4.3 The optimized Green’s function Ĝopt . . . . . . . . . . . . . . . 22
2.4.4 Interlacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.5 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Numerical tests: accuracy and single-core performance . . . . . . . . . 27
2.5.1 Accuracy of variants of the PPPM method . . . . . . . . . . . . 28
2.5.2 Accuracy of error estimates . . . . . . . . . . . . . . . . . . . . 31
2.5.3 Performance comparison of variants of the PPPM method . . . 31
2.5.4 Scaling behavior compared to Ewald summation . . . . . . . . . 35

2.6 Impact of the real- and reciprocal-space errors on physical behavior . . 36
2.6.1 Parameter study with hexane . . . . . . . . . . . . . . . . . . . 36
2.6.2 Analysis of the errors . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Influence of the PPPM method on physical properties . . . . . . . . . . 44
2.7.1 Lennard-Jones particles . . . . . . . . . . . . . . . . . . . . . . 44
2.7.2 SPC/E water . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7.3 Hexane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Increased performance by using long-range dispersion solvers . . . . . . 49
2.8.1 Performance tuning with flexible choice of cutoffs . . . . . . . . 50
2.8.2 Performance simulations . . . . . . . . . . . . . . . . . . . . . . 56



Contents

2.8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.9 Interlacing vs. non-interlacing for dispersion in practice . . . . . . . . . 63
2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 The molecular mechanism of superspreading 68
3.1 Literature review and motivation . . . . . . . . . . . . . . . . . . . . . 68
3.2 Molecular modeling of surfactant mixtures . . . . . . . . . . . . . . . . 72

3.2.1 Modeling depth and initial potentials . . . . . . . . . . . . . . . 72
3.2.2 Functional form . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.3 Fitting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.4 Force field validation with model molecules . . . . . . . . . . . . 79
3.2.5 Discussion of the fitting strategies . . . . . . . . . . . . . . . . . 88
3.2.6 Model validation with surfactant simulations . . . . . . . . . . . 89
3.2.7 Assessment of the developed force field . . . . . . . . . . . . . . 95

3.3 Simulations of surfactant enhanced spreading . . . . . . . . . . . . . . . 96
3.3.1 Simulation setup and analysis methods . . . . . . . . . . . . . . 96
3.3.2 Wetting dynamics and droplet shape . . . . . . . . . . . . . . . 104
3.3.3 Relevance for superspreading . . . . . . . . . . . . . . . . . . . 113

3.4 Summary and concluding remarks . . . . . . . . . . . . . . . . . . . . . 116

4 Molecular precursors 119
4.1 Previous studies and open questions . . . . . . . . . . . . . . . . . . . . 119

4.1.1 Experimental observations . . . . . . . . . . . . . . . . . . . . . 119
4.1.2 Theoretical models . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.1.3 Findings from molecular dynamics simulations . . . . . . . . . . 122
4.1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2 Simulations of molecular precursors . . . . . . . . . . . . . . . . . . . . 126
4.2.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.2.2 Analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.3 Precursor types, transition regimes, and wetting dynamics . . . 135
4.2.4 Effects of correct and incorrect precursor analysis . . . . . . . . 146

4.3 Requirements for precursor formation . . . . . . . . . . . . . . . . . . . 148
4.3.1 The spreading coefficient . . . . . . . . . . . . . . . . . . . . . . 148
4.3.2 Free energy of depositing fluid on substrates . . . . . . . . . . . 150

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5 Summary and future research 158

viii



Contents

A Surface tensions and liquid densities from slab simulations 162

B Force field parameters 164
B.1 Nonbonded interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.2 Bonded interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Bibliography 172

ix



List of Figures

1.1 A droplet on a solid substrate . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Principal idea of the Ewald method . . . . . . . . . . . . . . . . . . . . 10
2.2 Physical interpretation of the Ewald sum . . . . . . . . . . . . . . . . . 11
2.3 Accuracy of the different versions of PPPM for dispersion . . . . . . . . 29
2.4 Accuracy of PPPM for random particle positions and equilibrated systems 30
2.5 Comparison of the accuracy obtained with normal and interlaced PPPM 30
2.6 Comparison of the real-space error estimate with measured force errors 32
2.7 Comparison of the reciprocal-space error estimate with measured force

errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Reciprocal-space error estimate in interfacial systems . . . . . . . . . . 33
2.9 Single-core timing of PPPM variants at varying force accuracy . . . . . 34
2.10 Scaling of Ewald summation and PPPM on a single-core . . . . . . . . 35
2.11 Influence of the PPPM parameters on simulated surface tensions and

liquid densities I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.12 Influence of the PPPM parameters on simulate surface tensions and

liquid densities II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.13 Hexane surface and abstraction that highlights the importance of the

real-space error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.14 Measured local force errors in an interfacial system . . . . . . . . . . . 43
2.15 Density profiles of an interfacial LJ system . . . . . . . . . . . . . . . . 46
2.16 Surface tensions of hexane over the cutoff . . . . . . . . . . . . . . . . . 49
2.17 Adjustment of the real-space error with the Ewald parameter and the

cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.18 Simulated liquid densities when using small cutoffs . . . . . . . . . . . 53
2.19 Splitting of pair potentials with and without rRESPA . . . . . . . . . . 54
2.20 PPPM performance on a BG/Q architecture . . . . . . . . . . . . . . . 59
2.21 PPPM performance on the Sandy Bridge architecture at SuperMUC . . 60

3.1 Alkyl ethoxylate, trisiloxane, and perfluoroalkane surfactants . . . . . . 77
3.2 Conformers of the trisiloxane surfactant . . . . . . . . . . . . . . . . . . 78

x



List of Figures

3.3 Excess quantities of mixtures of perfluorohexane and hexane . . . . . . 83
3.4 Experimental and simulated densities of DME–water mixtures . . . . . 85
3.5 Radial distribution functions of DME–water mixtures . . . . . . . . . . 86
3.6 Viscosities and diffusion coefficients of DME–water mixtures . . . . . . 87
3.7 Histograms of the z position of central surfactant atoms . . . . . . . . . 91
3.8 Local densities in simulations of surfactants at the water surface . . . . 92
3.9 Surface tensions of the surfactant-laden water surface . . . . . . . . . . 94
3.10 Starting configuration of simulations of surfactant assisted wetting . . . 99
3.11 Analysis steps of simulations of surfactant assisted spreading . . . . . . 100
3.12 Classification of the local droplet shape . . . . . . . . . . . . . . . . . . 102
3.13 Example of moment-based surface analysis . . . . . . . . . . . . . . . . 104
3.14 Base radii r in simulations of surfactant enhanced spreading . . . . . . 106
3.15 Snapshots from different spreading regimes . . . . . . . . . . . . . . . . 107
3.16 Surfactant density at the solid–liquid interface in surfactant assisted

spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.17 Surfactant density close to the three-phase contact line . . . . . . . . . 109
3.18 Droplet snapshots in the viscous regime . . . . . . . . . . . . . . . . . . 110
3.19 Droplet shapes in the viscous regime color-coded with the classifier C(x) 111
3.20 Maximum droplet classifier Cmax over the entire viscous spreading regime112
3.21 Proposed mechanisms for superspreading and usual surfactant enhanced

wetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.22 Snapshot of the contact line region for the superspreading and non-

superspreading simulations . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.1 Sketches of different precursor types . . . . . . . . . . . . . . . . . . . . 120
4.2 Definition of the precursor length . . . . . . . . . . . . . . . . . . . . . 125
4.3 LJ and modified Buckingham potential . . . . . . . . . . . . . . . . . . 129
4.4 Equilibrated slab system of the atomistic fluid . . . . . . . . . . . . . . 129
4.5 Spreading process of chain molecules . . . . . . . . . . . . . . . . . . . 130
4.6 Number counts of liquid particles over the z direction . . . . . . . . . . 131
4.7 Definition of the precursor length . . . . . . . . . . . . . . . . . . . . . 132
4.8 Sketch of a continuously growing precursor and a single layer precursor

with markers for the length of the layers l1 and l2 . . . . . . . . . . . . 133
4.9 Measurement of the droplet profile to mimic ellipsometric experiments . 134
4.10 Evolution of the fist four layers of the chain molecules . . . . . . . . . . 136
4.11 Effective thickness of the droplet of chain molecules . . . . . . . . . . . 137
4.12 Evolution of the first layers of ri of the chain molecules . . . . . . . . . 138

xi



List of Figures

4.13 Evolution of the first four layers of the atomistic fluid . . . . . . . . . . 140
4.14 Effective thickness of droplets of the atomistic fluid . . . . . . . . . . . 141
4.15 Detection of the crossover point for the atomistic fluid at low substrate

energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.16 Measured values of r1 and fitted functions . . . . . . . . . . . . . . . . 143
4.17 Spreading exponent obtained from the fit to r1 for the chain molecules 144
4.18 Analysis of the spreading exponent from l1 . . . . . . . . . . . . . . . . 145
4.19 Simulation setup for the computation of the spreading coefficient . . . . 149
4.20 Spreading coefficients as a function of the substrate energy . . . . . . . 150
4.21 Solid substrates covered with thin layers of liquid . . . . . . . . . . . . 152
4.22 Change in free energy of depositing layers of the atomistic fluid on a

bare substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.23 Change in free energy of depositing layers of the chain molecule on a

bare substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.24 Changes in free energy of depositing layers of the chain molecule on a

bare substrate with corrected free energy of the bulk . . . . . . . . . . 155
4.25 Schematic explanation of the role of the spreading coefficient . . . . . . 156

B.1 Surfactants with labels to identify force field parameters . . . . . . . . 165

xii



List of Tables

2.1 Comparison of simple truncation and PPPM for a LJ system . . . . . . 45
2.2 Comparison of simple truncation and PPPM for water . . . . . . . . . 47
2.3 Comparison of simple truncation and PPPM for hexane . . . . . . . . . 48
2.4 PPPM parameters in simulations to find the lower bound for the cutoff 52
2.5 PPPM settings in simulations to validate methods to improve computa-

tional efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.6 Surface tensions and liquid densities of hexane obtained with accelera-

tion settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.7 Surface tensions and liquid densities of water obtained with acceleration

settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.8 Comparison of the interlaced and non-interlaced algorithm in practical

applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 Experimental and simulated quantities of model compounds . . . . . . 81
3.2 Interfacial tensions of model compounds and water . . . . . . . . . . . 88
3.3 Surface area per surfactant molecule at the interfaces at maximum packing 95
3.4 Setup for surfactant enhanced spreading simulations . . . . . . . . . . . 98
3.5 Spreading exponents and duration of different spreading regimes . . . . 105

B.1 Partial charges and dispersion coefficients . . . . . . . . . . . . . . . . . 166
B.2 vdW coefficients for the repulsive terms . . . . . . . . . . . . . . . . . . 167
B.3 Parameters for bond potentials . . . . . . . . . . . . . . . . . . . . . . 169
B.4 Parameters for angle potentials . . . . . . . . . . . . . . . . . . . . . . 170
B.5 Parameters for dihedral potentials . . . . . . . . . . . . . . . . . . . . . 171

xiii



List of Tables

xiv



1 Introduction

As vividly demonstrated in the preface of “Capillarity and Wetting Phenomena” [1],
wetting and spreading phenomena are ubiquitous in daily life and nature, but also in
numerous industrial applications, such as lubrication [2], herbicides and pesticides [3],
printing [4], oil recovery [5], self-cleaning surfaces [6], and coatings [7]. Because of its
importance in various disciplines, wetting of liquids on solids has been an intense field
of study ever since the groundbreaking work of Young more than 200 years ago [8].
From a macroscopic, equilibrium point of view, the wetting behavior of droplets can

be well characterized as droplets having spherical caps whose contact angles θ can be
described by Young’s equation1

0 = γsl − γs + γl cos θ, (1.1)

which can be understood as a force balance of the solid–gas, solid–liquid, and liquid–
gas surface free energies or surface tensions γs, γsl, and γl as depicted in Figure 1.1.
If γsl − γs < γl, the droplet is in the partial, incomplete, or non-wetting regime and
Young’s equation predicts a finite value for the contact angle θ. Otherwise, the droplet
completely wets out to a thin film making neither the definition of θ sensible nor the
computation with Young’s equation possible. This regime is the so-called (complete)
wetting regime. The different regimes can easily be distinguished by their spreading
coefficient,

S = γs − γsl − γl, (1.2)

that changes sign from negative to positive upon transition from partial to complete
wetting.
In contrast to the macroscopic equilibrium picture, even droplets of the simplest

liquids can show a wealth of phenomena when considering the microscopic scale or
non-equilibrium situations, i.e. wetting or dewetting processes [10, 11], which renders
a proper description of all details of spreading challenging with purely macroscopic
approaches. In fact, even the seemingly simple case of the spreading of a non-volatile
liquid on a macroscopically smooth substrate strains continuum theories to their limits:

1Despite the controversial discussion on the terminology [9], the term Young’s equation is used for
Equation (1.1) because it is the commonly used expression.
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Figure 1.1: A droplet on a solid substrate. The contact angle θ is determined from a
force balance of the solid–liquid, liquid, and solid surface energies γsl, γl,
and γs.

Applying no-slip boundary condition and lubrication theory to the spreading of droplets
with a sharp leading edge predicts logarithmically diverging viscous dissipation at the
contact line. In other words, continuum theory predicts that droplets cannot spread
on solid substrates, which disagrees with everyday observations and is therefore known
as the Huh-Scriven paradox [10, 12]. A loophole to this quandary is to impose other
boundary conditions, such as slip conditions, and in this way obtain stable numerical
behavior.
Although imposing boundary conditions motivated not by physical requirements but

by numerics is not necessarily a good idea, as discussed in [13], this procedure has been
used successfully to describe many wetting phenomena that have microscopic aspects
with macroscopic approaches and continuum theories. There are, however, wetting
phenomena in which the continuum view is indefensible and molecular details have to
be considered for a proper description and understanding. Because virtually all studies
on wetting phenomena have been performed using experimental techniques or modeling
from the macroscopic point of view, insight into these phenomena is very limited,
because the relevant length scales cannot be resolved appropriately. The study at
hand focuses on these phenomena with clear molecular character. The used technique
is the molecular dynamics (MD) simulation method, which resolves the molecular scales
and provides information inaccessible to experimental approaches.

1.1 Long-ranged interactions in molecular

simulation and interface science

Because MD simulations are at the heart of this work, this section provides a brief
description of the foundations of this simulation method. It will also be outlined
how the viewpoint on long-ranged interactions in the molecular simulation community

2



1.1 Long-ranged interactions in molecular simulation and interface science

conflicts with the viewpoint from the interfacial science community, which will be the
motivation for a major part of the work described in this study.

Classical MD simulates the trajectories of atoms or coarse-grained beads. Trajec-
tories are generated by computing the interactions between the atoms and forward
integrating their positions over time using Newtonian mechanics or modifications, for
example to sample desired temperatures or pressures [14].

The physically correct, but often unaffordable way to describe molecular interac-
tions in an ensemble of atoms is to solve Schrödinger’s equation. Instead, interactions
between molecules are typically modeled with potentials that contain several contri-
butions, such as bonded potentials for nearest neighbors in molecules, and nonbonded
potentials for interactions between atoms of different molecules or atoms within the
same molecule separated by multiple bonds. This approach still leaves a lot of free-
dom for modeling, including the functional forms used for the interactions and whether
polarization or multi-body effects should be considered.

Here we examine a simple, but successful and therefore also common approach, in
which nonbonded interactions are modeled as pairwise potentials by a combination of
Coulomb interactions to model electrostatics,

ucoul = − 1

4πε0

qiqj
r
, (1.3)

where ε0 is the vacuum permittivity, qi and qj are the partial charges of the atoms i
and j, and r is their distance, a dispersion term

udisp = −Cij
r6
, (1.4)

where Cij is the dispersion coefficient that describes the strength of the interactions,
and a repulsive term urep that models the interactions related to the Pauli principle
and decays very quickly. The success of this approach stems from that although many
physical effects are neglected, the three most important contributions are included.
Moreover, both the usage of the r−1 and the r−6 functionals for the Coulomb and the
dispersion interactions have a strong physical foundation [15].

The number of pairs of atoms scales quadratically with the number of particles in a
system, which makes evaluation of all of these pair potentials computationally infeasible
even for moderately large systems. The issue is overcome by a treatment of the potential
according to whether it is short- or long-ranged. From a mathematical point of view, a
pair potential up is considered short-ranged if the sum of the potential interactions of
an atom with all other atoms in an infinite system is absolutely convergent; otherwise,
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the potential is considered long-ranged. According to this definition, electrostatics are
long-ranged and dispersion interactions short-ranged. As a consequence, the common
approach in MD nowadays is to simply truncate dispersion interactions at a cutoff
distance and using long-range solvers to treat electrostatics [14].

The classification of long-ranged and short-ranged forces changes dramatically when
changing the point of view: Because electrostatics involve attractive and repulsive
interactions, shielding effects and formation of double layers can lower the effective
interactions. As a consequence, the interactions between charge neutral mesoscopic
objects caused by electrostatic interactions decay exponentially. In contrast to that,
dispersion interactions are always attractive and therefore add up. The interactions
between surfaces caused by dispersion interactions can therefore scale as strongly as
1/D, where D is the distance between the surfaces, depending on the surface geometry
and therefore can have effects on the range of tens of nanometers [15]. In interfacial
science, in particular in the context of wetting, the classification from the molecular
simulation community is therefore inverted: electrostatics are considered short-ranged,
whereas dispersion is considered long-ranged.

1.2 Thesis objectives and overview

That dispersion interactions in interfacial systems are long-ranged, at least over a dis-
tance that is much larger than typically used cutoff values, makes their incorporation in
MD simulations essential for accurate modeling. Because MD has historically mainly
been developed for systems without interfaces, methods for this purpose are underde-
veloped compared to the treatment of electrostatics. In Chapter 2 it will be shown
that the currently available tools for incorporating long-range dispersion interactions
are not sufficient for the targeted wetting studies and an improved algorithm for their
incorporation, the PPPM method for dispersion, will be presented. Both theoretical
features of the algorithm as well as information relevant to its application in prac-
tice will be described. Because the applicability of this algorithm is not restricted to
molecular wetting phenomena but can be beneficial in all kinds of molecular simula-
tions, the algorithm is presented in greater detail than strictly necessary to understand
the subsequent chapters on wetting phenomena.

The developed algorithm is then applied to study selected wetting phenomena with
clear molecular aspects, which is the primary objective of this study. In particular,
the phenomenon of superspreading, the ultra-rapid wetting of aqueous solutions fa-
cilitated by trisiloxane surfactants [3], and the formation of molecular precursors, the

4



1.2 Thesis objectives and overview

development of films of molecular thickness that can precede spreading droplets [16],
are studied.
The phenomenon of superspreading is not only characterized by contact angles that

are too small to be measured in experiment, but also by the violation of “Tanner’s law”
[17], a power law that relates the spreading radius to the spreading time that is almost
universally valid for spreading droplets. There is a general consensus that this process is
facilitated by a molecular mechanism of the involved surfactants. Because the relevant
length scales at which this mechanism occurs cannot be observed in experiment, the
nature of this mechanism is still under debate [18]. In contrast to experiment, the
relevant length scales are resolved in MD simulations and molecular mechanisms can
be observed directly from the simulation output. Work that aims to capture this
mechanism in MD and to identify it is presented in Chapter 3.
The phenomenon of molecular precursors is not fully understood despite the contin-

uous effort in the 25 years since the discovery of the phenomenon [19,20]. In particular,
theoretical models that can capture all features known from experiment are not yet
available. Moreover, the fundamental questions of under which conditions precursors
form and what drives the development of precursors of different shapes is not even
understood rudimentary. The objective of the work on precursors is to identify the
requirements for the formation of molecular precursors. As a byproduct, conflicting
findings from the literature and several misleading statements caused by inaccurate
analysis of previous experiments and simulations are identified. This work is presented
in Chapter 4
The highlights of the work presented in Chapters 2 to 4 are briefly summarized in

Chapter 5. Further areas of research are proposed based on these findings.
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2 The PPPM for dispersion in theory and
practice

2.1 Long-range dispersion solvers for molecular

simulation

Although dispersion interactions are formally short-ranged according to the mathemat-
ical definition, they can still have effects on the scale of tens of nanometers [15]. For
reasons briefly discussed in Section 1.1, however, dispersion interactions have typically
been truncated for distances beyond a cutoff of around 1 to 2 nm in MD simulations.
For homogeneous systems, the error introduced by this truncation is usually acceptable
because dispersion interactions decay quickly, errors in neglected forces partially cancel,
and errors in energies and pressures can be corrected efficiently and accurately during
the simulation [14]. For inhomogeneous systems, however, especially those involving
interfaces, the conditions that justify the simple truncation of dispersion interactions
are no longer met, which has led to the development of various correction methods that
are briefly described in the following.

The need for inclusion of long-range dispersion forces in molecular simulations in
interfacial systems was already recognized by Chapela et al. [21] more than 35 years
ago and has motivated the a posteriori correction method developed by them and
later corrected by Blokhuis et al. [22]. Specifically, they performed simulations at
the liquid–vapor interface and introduced a correction term for the surface tension in
which missing contributions of the truncated part of the dispersion interactions are
added based on the density distribution of the particles. The disadvantage of this
method is that it does not correct the dynamics of a simulated system, but rather only
provides corrections for observables. Because simulated density profiles are sensitive
to truncated dispersion forces, the accuracy of this correction method is limited by
the accuracy with which the density profile can be computed. Moreover, this method
averages out instantaneous fluctuations at the interface that can arise because of cap-
illary waves. As a consequence, the results obtained with this correction method are
different from what would be obtained with full incorporation of long-range dispersion
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2.1 Long-range dispersion solvers for molecular simulation

forces in the limit of very large cutoffs or more elaborate long-range solvers [23].
The logical continuation of this method, an on-line correction based on density pro-

files was introduced almost 30 years later by Janeček [24] and extended by Werth et
al. [25] to multi-site Lennard-Jones (LJ) models. This method estimates truncated dis-
persion forces based on the current density. Compared to the a posteriori correction
method, it was shown that these correction methods provide accurate results for rela-
tively simple liquids and can result in fast computations for planar interfaces [24, 25].
The major drawback of this method is that while an on-line correction based on the
density distribution can in principle be applied to arbitrarily shaped systems, efficient
implementations require an a priori knowledge about the shape of the interface and
have hitherto only been developed for planar interfaces. Moreover, the accuracy of this
method for complex mixtures, systems with surfactants, or systems close to the critical
point, where stronger fluctuations at the interface are expected, is questionable.
An alternative to the correction methods based on local densities are methods based

on modifications of the cutoff in simulations of interfacial or inhomogeneous systems.
The conceptually simplest idea is to use a sufficiently large cutoff such that truncation
effects become negligible. Zubillaga et al. [26] showed that when the cutoff is increased
above a certain threshold, errors because of truncating the dispersion interactions have
a negligible influence on simulated quantities. In their study with the atomistic OPLS-
AA force field [27] this threshold was at approximately 23Å. Using extremely large
cutoffs is simple and applicable with almost no restrictions, ensures highly accurate
results, and requires little overhead in terms of code development. However, as the
computing time needed to evaluate all pair interactions scales with O(r3

c ), where rc is
the cutoff, this approach is extremely unattractive computationally. Other methods
based on modifications of the cutoff are based on twin-ranged cutoffs [28] in which
simulations are executed with a small and a large cutoff. Interactions between particles
farther apart than the inner cutoff but closer than the outer cutoff are computed less
frequently. A final approach based on cutoffs is the usage of adaptive cutoffs proposed
by Wang et al. [29], which uses larger cutoffs in regions of strong inhomogeneity. As
shown by Springer [30], this method provides highly scalable computations. The fully
automated detection of regions where increased cutoffs are required, however, is difficult
and requires further development for applicability of this method to arbitrary systems.
The third class of methods are based on the separation or expansion of pair potentials

in multiple terms. Members of this third class of method are the fast mutlipole method
(FMM) [31], the multilevel summation method (MSM) [32], Ewald summation [33],
and grid-based methods that are based on Ewald summation, namely the particle-
particle particle-mesh (PPPM) [34] and particle-mesh-Ewald (PME) methods [35,36].
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2 The PPPM for dispersion in theory and practice

In contrast to the previously described methods, each of these was originally developed
for Coulomb interactions. A common feature of these methods is that one of the
splitted terms is computed in the traditional way over a pairwise sum of closely spaced
particles, while the other terms are treated with approaches that are different for each
of these methods. The gain in accuracy results from that the part computed via
direct pairwise summation within a given cutoff decays quickly to zero such that the
truncation part becomes negligible with an appropriate choice of parameters, or even
identically zero as for the MSM. A strong upside of the FMM and the MSM is that the
scaling of the computational costs is O(N) [37], where N is the number of particles,
and both methods require mainly local communication. The MSM has recently been
extended to dispersion interactions by Tameling et al. [38]. An extension of the FMM
to dispersion interactions is presented in [39]. The extension of Ewald summation to
dispersion interactions was developed for dispersion by Williams [40], Perram [41], and
Karasawa and Goddard [42], and later applied to surface simulations for example by
Mecke et al. [43], López-Lemus et al. [44], in’t Veld et al. [23, 45], Ou-Yang et al. [46],
and Alejandre and Chapela [47].
The wetting phenomena studied in this thesis include spreading simulations in which

no information on the shape of the droplets is available beforehand. Given the dis-
cussion above, the application of the methods based on corrections of the density is
therefore not promising to obtain accurate and fast computations, while using large
cutoffs or twin range-cutoffs will impose an unacceptable performance burden. The
dynamic cutoff method might be promising, yet, it is still not sufficiently developed
to allow application to arbitrary systems. Moreover, in some systems, e.g., systems
with a molecular precursor, the interfacial area will be large. The spatial region in
which large cutoffs will have to be employed will then be a substantial fraction of the
total domain which causes a considerable performance penalty. Consequently, one of
the more elaborate methods that were originally developed for Coulomb interactions
will be required. Because among these algorithms the PPPM method provides fast
computations in many applications [37], is more easy to implement than the other
methods, and is also very widespread for Coulomb interactions, this is the method of
choice applied for long-range dispersion interactions in this study.
Grid-based Ewald methods have already been applied to dispersion interactions by

Essmann et al. [36] and Wennberg et al. [48] for the PME, and by Shi et al. [49] for
PPPM. The study of Essmann et al. focused mainly on Coulomb interactions; the dis-
persion part played a subordinate role in their work. The study of Wennberg et al. was
mainly application-oriented. The study of Shi et al. places a stronger focus on PPPM
and dispersion interactions. The description of the algorithm, however, is incomplete.
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2.2 Ewald summation for dispersion

For example, the equations for the virial in their work is complicated and involves un-
necessary computations for which simpler equations are provided here. Moreover, they
implemented and used the algorithm, but did not study how this algorithm should be
applied in practice. As a consequence of this, their simulation were technically flawed,
as shown below, and disagreed with other work.
The remainder of this chapter is divided into two parts. The first part will provide

a theoretical description of the PPPM method for dispersion. A brief description of
the Ewald method for dispersion, which is the approach that is underlying the PPPM
algorithm, will be given in Section 2.2. After discussing the role of the mixing rule in
application of Ewald solvers in Section 2.3, the PPPM algorithm will be presented in
Section 2.4 and numerical tests that describe its theoretical properties are presented in
Section 2.5.
The second part will provide information on how the PPPM method for dispersion

should be used in practice and what its practical benefits are. Section 2.6 describes how
the two main errors of the method influence physical results. It will also be pointed
out that their influence is very different compared to PPPM for Coulomb interactions.
It will be shown that this is crucial in application of the solver to obtain efficient and
accurate simulations. Afterwards, we address how important the inclusion of long-
range dispersion interactions is to get an accurate description of different systems in
Section 2.7. In Section 2.8 it will be demonstrated that in contrast to the common
belief that PPPM for dispersion imposes a performance penalty, simulations with this
algorithm can be faster that those using a simple truncation. Finally, we briefly com-
pare two variants of PPPM in Section 2.9 in practical applications before providing a
summary of the main findings in Section 2.10.

2.2 Ewald summation for dispersion

From a mathematical point of view, the principal idea behind Ewald methods (cf.
Figure 2.1) is to split up a potential

up(r) =
1

rp
=
fp(βp, r)

rp
+

1− fp(βp, r)
rp

, (2.1)

where p is a positive integer, βp is the Ewald coefficient, and f(βp, r) is a splitting
function. The first term on the right-hand side of Equation (2.1), which is also referred
to as the real-space term, is solved by direct evaluation of the pair potential inside a
chosen cutoff radius. The second term is called the reciprocal-space or Fourier term
and is solved using a Fourier transform.
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Figure 2.1: Schematic comparison of truncation and Ewald treatment of pair poten-
tials. Left: truncation of a pair potential up at the cutoff. The red area
under the curve beyond the cutoff is related to the error in the computa-
tions that arises from the truncation. Right: treatment with the Ewald
method. The potential is split into two terms. The real-space error caused
by truncating the real-space term is strongly decreased versus pure trunca-
tion of the potential. For completeness it is mentioned that there is also a
reciprocal-space error that cannot be visualized easily and is therefore not
depicted.

The splitting function fp(βp, r) is in principle arbitrary. As outlined in [50], however,
desirable qualities are: (i) that the function decays sufficiently rapidly for increasing
r such that the contribution of the real-space term beyond a cutoff can be neglected
and (ii) that (1− fp(βp, r))/rp is a slowly varying function of r, such that the Fourier
transform converges for a small number of included reciprocal-space vectors. These
requirements in principle leave an infinite number of reasonable choices for the splitting
function, of which a few are discussed by Heyes [51]. The most common choice is to
derive the splitting function from the Euler gamma function [36,40,52],

fp(βp, r) =
1

Γ(p/2)

∫ ∞
(rβp)2

tp/2−1e−tdt, (2.2)

where Γ(p/2) is the Euler gamma function

Γ(p/2) =

∫ ∞
0

tp/2−1e−tdt. (2.3)

This choice of the splitting function fulfills the requirements above. Moreover, it has
the advantage that the mathematics works well for any value of p.
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In addition to the mathematical interpretation given above, there is a physical in-
terpretation of the Ewald summation [14]: as depicted in Figure 2.2, the physical
interpretation is to superposition a set of given discrete interaction sites with a set of
counterbalancing smeared sites. The real-space term then contains the discrete inter-
action sites and the counterbalancing smeared sites that shield the interactions of the
discrete sites and therefore render them much more short-ranged. The reciprocal-space
term contains minus the smeared interaction sites whose contributions have been added
to the real-space term. The exact form of the splitting function and the resulting equa-
tions is then a product of the choice of the function that is used to smear the discrete
interaction sites [51]. For the case of Coulomb interactions with p = 1, the typically
used ansatz for the splitting function described above corresponds to smear the charges
with a Gaussian bell curve [50].

0 2 4 6 8 10
1.5

1.0

0.5

0.0

0.5

1.0

1.5

= +

Figure 2.2: Physical interpretation of Ewald summation: A set of discrete interaction
sites is superpositioned with a set of smeared interaction sites.

The hitherto more general discussion on the Ewald sum will in the following be
strongly narrowed down: because of the utilization of the Fourier transform, Ewald
summation is restricted to systems with periodic boundary conditions, which is why a
three-dimensional periodic box will be assumed in the following. Moreover, the box is
assumed to be rectangular with volume V and lengths L = (Lx, Ly, Lz), where x, y, and
z specify the Cartesian coordinates. In addition, the pairwise r−6 dispersion potential
given in Section 1.1 is assumed. Finally, the conventional choice of the splitting function
derived from the Euler gamma function described above is made. Because the method
is only presented for dispersion interactions with p = 6, the p indices will be dropped
in the following when it is clear that dispersion is meant from the context. Moreover,
we restrict the general description of the method to the case where the dispersion
coefficients Cij in Equation (1.4) follow a geometric mixing rule:

Cij =
√
CiiCjj = cicj, (2.4)
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where ci and cj are atom-specific constants. A generalization will be provided in
Section 2.3.

Taking these assumptions, the dispersion energy E of the particles within the unit
cell can be obtained by taking a sum over the pair interactions of all atoms in the cell
with all other atoms in the same cell and periodic neighbors to obtain

E =
1

2

N∑
i=1

N∑
j′=1

∑
n∈Z3

Cij
r6
ijn

, (2.5)

with
rijn = ‖ri − rj + n ◦ L‖, (2.6)

where the first two sums are over all particles in the system and the third sum is
over all periodic boxes, and ri and rj are the coordinates of particles i and j. The
prime in the middle sum indicates that the self-interaction i = j for n = 0 is omitted.
The ◦ indicates element-wise multiplication; the result of the multiplication is thus a
vector of size 3. When expanding Equation (2.5) with the splitting function above and
transforming the second part of the sum to Fourier space as described in detail in [36],
one obtains for the dispersion energy of the system

E = E(r) + E(k) + E(0) + E(s), (2.7)

with

E(r) =
β6

2

N∑
i=1

N∑
j′=1

∑
n∈Z3

Cij

(
1 + β2r2

ijn +
β4r4

ijn

2

)
exp

(
−r2

ijnβ
2
)

β6r6
ijn

, (2.8)

E(k) =
1

2V

∑
h6=0

G̃(h)S̃2(h), (2.9)

E(0) =
π3/2β3

6V

N∑
i=1

N∑
j=1

Cij, (2.10)

E(s) = −β
6

12

N∑
i=1

Cii, (2.11)

where

G̃(h) =
π2/3

12
h3

(
π1/2erfc(b) +

(
1

2b3
− 1

b

)
e−b

2

)
(2.12)

is the influence function or Green’s function, the h-vectors are the reciprocal space
vectors that are in the set h ∈ {2πn� L : n ∈ Z3} and h = ‖h‖ and b = h/(2β). The
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� indicates element wise division.

The first term E(r) in Equation (2.7) is the real-space term. Its contribution is
solved in real space with the conventional approach of a sum over pairs of particles.
As for usual pair potentials, the sum in Equation (2.8) is infinite and would have to be
computed over all pairs of particles to get a mathematically exact result. Because this
is prohibitively expensive, the conventional method of only considering contributions
of particles that are closer than a chosen cutoff is applied. The upside compared to the
original, non-split potential is that the real-space potential decays much more rapidly
with increasing particle distance. The error introduced by truncating the potential is
therefore much more tolerable — and, for a good choice of the Ewald parameter and
the cutoff, even negligible, as will be shown later.

The second term E(k) is the Fourier space term. S̃ is a function that is dependent
on the position of the particles and their interaction energies and is computed using
the Fourier transform. As with Equation (2.8), the sum in this equation, which is
over all reciprocal-space vectors h except h = 0, is infinite and has to be truncated
in application. To obtain accurate results, the truncation of the reciprocal-space vec-
tors has to be performed such that a sufficient number of reciprocal-space vectors is
maintained and that the truncation of the vectors is performed along the surface of a
sphere. Further details on S̃ in Equation (2.9) will be provided in Section 2.3.

The third term E(0) contains the contributions that arise from the contribution of
the reciprocal space term for h = 0. In contrast to the Ewald sum for Coulomb
interactions, for which this term is dependent on the boundary conditions that are
assumed outside the truncated part of the reciprocal-space vectors, this term does not
depend on the environment for the dispersion case. The fourth term E(s) corrects for
the self-energy that arises from the smeared dispersion coefficients interacting with
themselves in Fourier space.

Aside from the energies, the computation of the virial and, especially for MD, the
forces are also relevant. The equation for the virial is

VΠαβ = VΠ
(r)
αβ + VΠ

(k)
αβ + VΠ

(0)
αβ , (2.13)

with

VΠ
(r)
αβ =

1

2

N∑
i=1

N∑
j′=1

∑
n∈Z3

Cij

(
6

r8
ijn

+
6β2

r6
ijn

+
3β4

r4
ijn

+
β6

r2
ijn

)
×

exp
(
−r2

ijnβ
2
)
rijn,αrijn,β, (2.14)
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VΠ
(k)
αβ =

1

2V

∑
h6=0

G̃(h)S2(h)×(
δαβ −

3

h2

2b3
√
πerfc(b)− 2b2e−b

2

2b3
√
πerfc(b) + (1− 2b2)e−b2

hαhβ

)
, (2.15)

VΠ
(0)
αβ =

π2/3β3

6β3V

∑
i,j

Cijδαβ, (2.16)

where α and β are Cartesian indices and δαβ is the Dirac delta function. The expression
for the force on particle i is

Fi = F
(r)
i + F

(k)
i , (2.17)

with

F
(r)
i =

N∑
j′=1

∑
n∈Z3

Cij

(
6

r8
ijn

+
6β2

r6
ijn

+
3β4

r4
ijn

+
β6

r2
ijn

)
exp

(
−r2

ijnβ
2
)

rijn, (2.18)

F
(k)
i = ci

1

V
Im

(∑
h6=0

ibi exp (−ih · ri) G̃(h)S̃(h)h

)
, (2.19)

where S̃(h) is the structure factor and will be addressed in more detail in Section 2.3.
The superscripts in the expressions for the forces and the virial have the same meaning
as for the energy above, and the truncation of the infinite sums works equivalently.
Note that the self-interactions of the smeared particles have neither virial nor force
contributions and that there is no force contribution from the reciprocal space term
for h = 0. To understand the benefits of the different variants of the PPPM method
described later it is important to emphasize that the sum in Equation (2.19) is a reverse
Fourier transform required to obtain the forces on the particles.

2.3 The structure factor and mixing rules

A requirement for the direct application of the Ewald sum is that the dispersion co-
efficients obey the geometric mixing rule in Equation (2.4). When this requirement is
fulfilled, S̃2(h) can be expressed as

S̃2(h) = S̃(h)S̃∗(h), (2.20)

where S̃∗(h) is the complex conjugate of the structure factor S̃(h), which is the con-
tinuous Fourier transform of the discrete dispersion coefficient distribution c of all
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particles

S̃(h) =
N∑
j=1

cj exp (−ih · rj) . (2.21)

When the condition in Equation (2.4) is not met, S̃2(h) has to be computed alter-
natively. When using a LJ potential, dispersion coefficients of unlike sites are often
determined via the Lorentz-Berthelot (LB) mixing rule as

Cij = 4
√
εiεj

(
σi + σj

2

)6

, (2.22)

where ε and σ are the LJ parameters. One approach to compute S̃2(h) for this case is
to expand the power in Equation (2.22) to arrive at [23]

Cij =
6∑

k=0

ai,kai,6−k, (2.23)

with

ai,k =
1

4
σki

√(
6

k

)
εi. (2.24)

With this splitting, S̃2(h) can be calculated as

S̃2(h) =
6∑

k=0

S̃k(h)S̃∗6−k(h). (2.25)

Because of their symmetry only four of the seven addends in Equation (2.25) have to
be calculated. However, the explicit computation of each of the structure factors S̃k(h)

via

S̃k(h) =
N∑
j

aj,k exp (−ih · rj) . (2.26)

is required. On top of that, the reverse Fourier transform in Equation (2.19) has
to performed for each structure factor separately when computing the forces. The
usage of the LB mixing rule with the expansion of the dispersion coefficients with
Equation (2.23) therefore imposes a considerable computational overhead.

In the following, we will derive an alternative approach to split the dispersion coef-
ficients. The splitting in Equation (2.23) can be more generally written as a matrix
equation:

C = ADPAT , (2.27)
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where C is an n × n matrix of the dispersion coefficients, A is a n × k matrix with
transpose AT that contains the ai, D is a diagonal k × k matrix and P is a k × k

permutation matrix. Reciprocal-space computations are performed k times for this
splitting. Equation (2.27) is generally applicable for splitting the dispersion coefficients
in the framework of Ewald summation and is not restricted to the LB rule. When the
LB mixing rule is used and dispersion coefficients are split with Equation (2.23), k = 7,
the diagonal matrix D is the identity matrix, and P is anti-diagonal.
The computation time can be optimized by performing the matrix factorization in

Equation (2.27) so that k is minimized; however, we are unaware of a general solution
to this optimization problem. Thus, instead of solving Equation (2.27), we propose to
split the dispersion coefficients with

Ci,j = d0ai,0aj,0 + d1ai,1aj,1 + ...+ dkai,kaj,k, (2.28)

which can be written in a matrix form

C = ADAT, (2.29)

which is Equation (2.27) when P is the identity matrix. Because C is symmetric, the
matrix factorization in Equation (2.29), which is equivalent to an eigenvalue decompo-
sition, is always possible such that k = n. Moreover, if rank C < n, the decomposition
can be performed such that k = rank C.
The functional form of Equation (2.28) was chosen such that it can easily be used in

Ewald solvers. The a coefficients are assigned to the particles, whereas the d coefficients
are simply multiplied by the Green’s function G̃. An advantage of this splitting method
is that if the LB mixing rule is used, the dispersion potential is split into fewer terms if
rank C < 7. This is equivalent to requiring that the number of different LJ diameters
be less than 7, which is true in many simulations. In such cases, the overhead for the
reciprocal-space computations is reduced. This splitting technique becomes unfavor-
able, though, if the number of different LJ diameters is greater than 7. This splitting
method can also be applied to systems in which dispersion coefficients deviate from or
do not follow any standard mixing rule, such as in the models in [53–56].

2.4 The particle-particle particle-mesh algorithm

A strong disadvantage of the Ewald method is that it requires a continuous Fourier
transform to compute the structure factor: The scaling of the continuous Fourier trans-
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form is related to the amount of data that has to be transformed squared. For the case
considered here, the input data is proportional to the number of atoms. The scaling
of the Ewald summation with respect to the particle numbers is thus O(N2), or, when
exploiting symmetry, O(N3/2) [41]. As a result, this method is restricted to systems
with only a few thousands of particles.
This severe restriction can be overcome by replacing the continuous Fourier transform

with the discrete Fourier transform, or fast Fourier transform (FFT), which scales with
O(N logN) [57]. A prerequisite for the application of FFTs is that the transformed data
is discretized on a regular grid, which in turn means that the particle system, in which
the positions of the particles are continuous, has to be transformed to a discrete state
before performing the FFT. Similarly, the results that are obtained when transforming
results back to real space with the inverse FFT exist only in discrete space and have to
be backinterpolated on the particles to obtain the forces. The transformation from the
continuous set to a discrete set is achieved by spanning a mesh in the simulation box,
onto which the dispersion coefficients are distributed. Overall, the resulting additional
steps compared to Ewald summation are:

1. anterpolate the dispersion coefficients of the particles onto the grid

2. use the FFT to compute the structure factors

3. compute the interaction energies in reciprocal space

4. use the inverse FFT to transform the results back to real space

5. backinterpolate results onto the particles to obtain the forces.

The name of the grid based modification is particle-particle particle-mesh Ewald
method. Expressed in equations, the only difference compared to Ewald summation
method is that the reciprocal space contributions for the energy, virial, and force are
computed with

E(k) =
1

2V

∑
kn∈M̂,kn 6=0

Ĝopt(kn)Ŝ2(kn), (2.30)

VΠαβ =
1

2V

∑
kn∈M̂,kn 6=0

Ĝopt(kn)Ŝ2
6 (kn)×

(
δαβ −

3

kn
2

2b3
√
πerfc(b)− 2b2e−b

2

2b3
√
πerfc(b) + (1− 2b2)e−b2

knαknβ

)
, (2.31)

F
(k)
i = ciD

(k)(ri) (2.32)
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instead of Equations (2.9), (2.15), and (2.19). The modifications are (i) that the sum
is only over reciprocal-space vectors kn ∈ M on the grid M̂, (ii) that an optimized
version of the Green’s function Ĝopt(h) is used in the computation and (iii) that Ŝ2(k)

is computed from the anterpolated set of dispersion coefficients. D(k) is the dispersion
field caused by the reciprocal space interactions and depends on the details of the
method. Its computation will be described in Section 2.4.2 when these details are
presented. The definition of Ĝopt(h) depends on these details in is therefore presented
afterwards in Section 2.4.3.

In real space, the grid points onto which the dispersion coefficients are anterpolated
have the coordinates rM and form a rectangular grid M. The number of grid points in
each direction is Nx, Ny, and Nz. In each direction, the grid points are evenly spaced.
The spacing between the grid points is hx = Nx/Lx, hy = Ny/Ly, and hz = Nz/Lz,
the grid can thus be expressed as

rn ∈M = {(nx/Nx)Lxex + (ny/Ny)Lyey + (nz/Nz)Lzez :

nα = 0, 1, . . . , Nα − 1, α = x, y, z}, (2.33)

where ex, ey, and ez are unit vectors in x, y, and z direction. Similarly, the reciprocal-
space vectors are defined by

kn = 2π((nx/Lx)ex + (ny/Ly)ey + (nz/Lz)ez; (2.34)

the set M̂ is defined as

M̂ = {2π((nx/Lx)ex + (ny/Ly)ey + (nz/Lz)ez) :

nα ∈ Z,−Nα/2 ≤ nα < (Nα)/2, α = x, y, z}. (2.35)

With this definition, kn = 0 is located close to the center of the grid, which is favorable
when truncation sums over kn that run beyond the extend of M̂.

A more detailed description of the different steps, as well as a description of the
interlaced PPPM algorithm, a modification of PPPM targeted to obtain faster com-
putations, is given below. Because excellent reviews for this material can already be
found in the literature [34,36,50,58,59] for Coulomb interactions and because for most
of the operations described above, the procedure for the dispersion case is very similar
to procedures for Coulomb interactions, the method will only be presented briefly to
have a self-contained description.

Before proceeding with the description of the method, a quick guide to the notation
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2.4 The particle-particle particle-mesh algorithm

is given here: all quantities defined in continuous reciprocal space are labeled with a
tilde, e.g., G̃ for the Green’s function; quantities defined only on the grid in reciprocal
space are labeled with a hat, e.g., Ĝopt for the optimized Green’s function. Real-space
quantities, e.g. G for the real-space version of the Green’s function, do not have a
special label. This notation was adopted from [50].

2.4.1 Discretization of dispersion coefficients and

transformation to reciprocal space

The anterpolation of the dispersion function onto the grid points is given by

cM(rn) =
N∑
i=1

ciW (rn − ri), (2.36)

where W (x) is the anterpolation function. Dispersion coefficients of particles close
to the boundary of the box are wrapped around periodically when anterpolated. As
with the splitting function, the choice ofW (x) is in principle arbitrary but should fulfill
certain requirements, such as conservation of the dispersion coefficients, that dispersion
coefficients should only be transferred to nearby grid points for computational efficiency,
that the discretization error should be small, and that the function is smooth. The
desirable properties of the function are discussed in more detail in [50]. The usual choice
of the interpolation function by Hockney and Eastwood [34] is to obtain W (x) from a
P -fold convolution of the characteristic function χ[−1/2,1/2], which is one in the interval
[−1/2, 1/2] and zero elsewhere, with itself. The resulting interpolation function is a
polynomial of degree P − 1; the dispersion coefficients are anterpolated on the nearest
P grid points in each cell dimension with this choice of the interpolation function.
P is therefore also called the interpolation order. Explicit expressions for W (x) are
given in [50] (with the difference that W in the notation used there corresponds to
W/(hxhyhz) in the notation used here).

The dispersion coefficient density on the grid cM(rp) can then be used to compute
the structure factor using the FFT:

Ŝ6(kn) =
1

hxhyhz

∑
rn∈M

cM(rn) exp (−ikn · rn) . (2.37)

The relation between Ŝ6(kn) and S̃6(kn) can be expressed as [60]

Ŝ6(kn) = Û(kn)S̃6(kn), (2.38)
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where

Û(kn) =
1

hxhyhz
Ŵ (kn) =

(
sin(knxhx/2)

knxhx/2

sin(knyhy/2)

knyhy/2

sin(knzhz/2)

knzhz/2

)P
(2.39)

The computation of Ŝ2(kn) from the structure factor Ŝ6(kn) works similar to the
computation of S̃2(h) from S̃6(h) described in Section 2.3. The influence of the mixing
rules is not affected.

2.4.2 Differentiation and backinterpolation

Once the dispersion potential on the grid points is available, two additional steps are
required to compute the forces that act on the particles. First, since the force is the
negative gradient of the energy, a differentiation of the potential is required to obtain
the dispersion field D(k). Second, the results have to be backinterpolated from the grid
onto the particle positions, such that the forces can be computed with Equation (2.32).
As discussed in [50], there are three different approaches to perform these operations.

The first approach is to perform the differentiation of the dispersion potential in
Fourier space, which corresponds to a simple multiplication with the three-dimensional
ik-vector in reciprocal space. The obtained dispersion field is then backtransformed
to real space. The forces on each particle are obtained from backinterpolating the
dispersion field from the grid onto the particles. As pointed out by Hockney and
Eastwood [34], to conserve momentum in the system, the backinterpolation function
should be equal to the anterpolation function that was used to distribute the dispersion
coefficients onto the grid. The resulting expression for the dispersion field at position
ri is: [61]

D(k)(ri) =
∑
rn′∈M

W (ri − rn
′)

1

V

∑
kn∈M̂,kn 6=0

eikn·rn′×

(−ikn)Ĝopt(kn)
∑
rn

eikn·rn
N∑
j=1

W (rn − rj). (2.40)

When read from right to left, the different steps are in order as they appear when
executing the algorithm. The last sum is over all particles j and is the anterpolation
function. The second-to-last sum is over all grid points and is the FFT to obtain the
structure factor. The second sum from the left is over all grid points in reciprocal
space and is the reverse FFT of the dispersion field that has been obtained by mul-
tiplication with (−ikn)Ĝopt(kn). The first sum is over all grid points and performs
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2.4 The particle-particle particle-mesh algorithm

the backinterpolation onto the particles. The ik differentiation has the advantage of
conserving momentum and providing high accuracy in the computations, but has the
disadvantage of not conserving the energy of the system [34, 50]. Moreover, because
of the multiplication with the three dimensional ik-vector, three inverse FFTs have
to be performed per structure factor (cf. Section 2.3) which imposes a computational
burden.

The second approach is to perform the differentiation of the dispersion potential and
the backinterpolation onto the particles as a single operation. This step is performed
by first doing a reverse FFT of the potential to real space and then using the derivative
of the interpolation function W to compute the forces acting on each particle. The
resulting expression for the dispersion field at ri is [61]

D(k)(ri) =
∑
rn′∈M

−∇W (ri − rn
′)

1

V

∑
kn∈M̂,kn 6=0

eikn·rn′×

Ĝopt(kn)
∑
rn

eikn·rn
N∑
j=1

W (rn − rj). (2.41)

This approach is called analytic differentiation (ad). The terms in the last two sums are
identical to those of the ik scheme. The second sum is over all reciprocal space vectors
and is the reverse Fourier transform of the dispersion potential. The first sum is over all
grid points and performs the backinterpolation onto the particles. This interpolation
scheme uses only one reverse Fourier transform and is therefore, for a given grid size,
computationally less demanding. Moreover, it has the advantage of conserving the
energy of the system. The disadvantage is that momentum is not conserved because
the function for the backinterpolation is not the same as that used for the anterpolation
and that for a given grid size the results are less accurate than those obtained with the
ik differentiation.

That the anterpolation and interpolation functions for the ad scheme are not identical
leads to the additional disadvantage of particles having a spurious self-interaction that
leads to a self-force. This self-force can be corrected by adding the self-force correction
term, which for the (simplified) decoupled approximation is [62]

Fself
i,α = c2

i

∞∑
n=1

a(n)
α sin(n2πri,α/hα), (2.42)
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with

a(n)
α =

2πmα

hα

1

V

∑
kn∈M̂,kn 6=0

Ĝopt(kn)
∑

m′∈Z3

Û(kn+Nm′)Û(kn+N(m′+m)), (2.43)

to the results obtained with Equations. (2.32) and (2.41). In Equations (2.42) and
(2.43), α is a Cartesian index, m is set to m = neα, N is a vector that contains the
number of grid points Nx, Ny, and Nz in each dimension. Because the aα coefficients
decay rapidly [62], only the first 2 values of n are evaluated in the sum in Equation (2.42)
in this study. m′ is allowed to run from −2 to 2 in each dimension in the sum of
Equation (2.43). A more elaborate version of this self-force correction, in which the
decoupling approximation is not employed, is described in [62].

The third approach, which was not studied in this thesis, is to transform the potential
field back to real space and then perform a numerical differentiation to obtain the forces.
Because of the non-local character of this approach resulting from that interpolation
has to be performed over a large number of grid points to obtain accurate results, which
is considered a major disadvantage, this approach was not developed further.

2.4.3 The optimized Green’s function Ĝopt

The ad hoc approach to choose the Green’s function for the computations on the grid
Ĝopt would be to set it equal to the continuum Green’s function G̃ in Equation (2.12).
However, as shown by Deserno and Holm [50], this approach will result in low-accuracy
computations compared to optimized versions of the Green’s function. To minimize
the error in the computed forces, the correct approach is to minimize the difference
between the dispersion field obtained from an exact computation and the results that
are obtained from the PPPM algorithm such that [34, 61,63]

Q =

∫
V

∫
V

[
D

(k)
PPPM(r1, r2)−D(k)(r1, r2)

]2

d3r1d
3r2 (2.44)

is minimized, where D
(k)
PPPM(r1, r2) and D

(k)
exact(r1, r2) are the dispersion fields at position

r1 caused by a smeared unit dispersion coefficient at location r2 that are obtained from
the PPPM method and from exact reciprocal space computations, respectively.

As described in detail in [61,63], Equation (2.44) can be transformed to

Q =
∑

kn∈M̂,kn 6=0

[
A(kn)Ĝ2

opt(kn)− 2B(kn)Ĝopt(kn)
]

+H, (2.45)
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with
H =

∑
kn∈M̂,kn 6=0

∑
m∈Z3

[
G̃(kn+Nm)kn+Nm

]2

. (2.46)

Minimizing Equation (2.45) with respect to Ĝopt yields

Ĝopt(kn) =
B(kn)

A(kn)
(2.47)

for the optimal influence function Ĝopt.

The different expressions for the dispersion fields D(k) for the ad and ik differentia-
tion scheme in Section 2.4.2 result in different expressions for A(kn) and B(kn). The
resulting expressions are [61,63]

B(ik)(kn) =
∑
m∈Z3

Û2(kn+Nm)G̃(kn+Nm)knkn+Nm, (2.48)

A(ik)(kn) =

∑
m∈Z3

Û2(kn+Nm)

2

kn
2 (2.49)

for the ik differentiation scheme and

B(ad)(kn) =
∑
m∈Z3

Û2(kn+Nm)G̃(kn+Nm)kn+Nm
2, (2.50)

A(ad)(kn) =

∑
m∈Z3

Û2(kn+Nm)

∑
m∈Z3

Û2(kn+Nm)kn+Nm
2

 (2.51)

for the ad scheme.

An alternative approach is not to minimize the errors in the dispersion field, but in
the dispersion potential [64], which results in

B(eng,acc)(kn) =
∑
m∈Z3

Û2(kn+Nm)G̃(kn+Nm), (2.52)

A(eng,acc)(kn) =

∑
m∈Z3

Û2(kn+Nm)

2

, (2.53)

(2.54)

which can be approximated with

B(eng)(kn) = Û2(kn)G̃(kn), (2.55)
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A(eng)(kn) =

∑
m∈Z3

Û2(kn+Nm)

2

. (2.56)

As discussed in [64], there is only a negligible difference between the different versions of
the optimal influence functions computed with Equations (2.48) and (2.49) compared
to Equations (2.55) and (2.56).

2.4.4 Interlacing

As shown in [63], the total error of the reciprocal space computations can be subdivided
into an nonfluctuating part Qnon that is insensitive to the grid position, and a fluctu-
ating part Qfluc that is sensitive to shifting the position of the grid. It was furthermore
shown that the second contribution can be largely decreased if the reciprocal-space
computations are performed on two different grids that are shifted by half the grid
spacing in each direction. The resulting force F

(k)
int is then obtained from averaging the

forces obtained from the computations on the shifted grids F
(k)
grid1 and F

(k)
grid2

F
(k)
int =

F
(k)
grid1 + F

(k)
grid2

2
. (2.57)

The disadvantage of this so-called interlaced or staggered method is obviously that
the reciprocal-space computations have to be performed twice, which for a given grid
dimension and interpolation order P strongly increases the computation cost. When
the fluctuating error Qfluc dominates the overall error in the computations, however, an
increase in accuracy up to two orders of magnitude has been observed. This increase
in accuracy is a promising approach to perform reciprocal space computations on a
coarser grid and in this way save computation time.

Aside from having to perform the computations on the reciprocal grid twice, the main
difference between interlaced and noninterlaced PPPM is that the optimal influence
function changes. The expressions for the optimal influence functions of the interlaced
algorithm can also be expressed with Equation (2.47). The numerators B(kn) remain
unchanged for interlacing, whereas the denominators A(kn) change. The resulting
expressions for the denominator are [63]

A(ik,int)(kn) = (A
(ik)
1 (kn) + A

(ik)
2 (kn))/2, (2.58)

A
(ik)
1 (kn) =

∑
m∈Z3

Û2(kn+Nm)

2

kn
2, (2.59)
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A
(ik)
2 (kn) =

∑
m∈Z3

Û2(kn+Nm)(−1)mx+my+mz

2

kn
2, (2.60)

for ik differentiation,

A(ad,int)(kn) = (A
(ad)
1 (kn) + A

(ad)
2 (kn))/2, (2.61)

A
(ad)
1 (kn) =

∑
m∈Z3

Û2(kn+Nm)

∑
m∈Z3

Û2(kn+Nm)kn+Nm
2

 , (2.62)

A
(ad)
2 (kn) =

∑
m∈Z3

Û2(kn+Nm)(−1)mx+my+mz

× (2.63)

∑
m∈Z3

Û2(kn+Nm)kn+Nm
2(−1)mx+my+mz

 , (2.64)

for the ad scheme, and

A(eng,int)(kn) = (A
(eng)
1 (kn) + A

(eng)
2 (kn))/2, (2.65)

A
(eng)
1 (kn) =

∑
m∈Z3

Û2(kn+Nm)

2

, (2.66)

A
(eng)
2 (kn) =

∑
m∈Z3

Û2(kn+Nm)(−1)mx+my+mz

2

, (2.67)

for the energy-optimized Green’s function.
The spurious self-force for the ad scheme arises for each of the grids. Consequently,

the self-force correction has to be applied for each of the grids separately and then
averaged, similar to what is done with the forces

Fself
int =

Fself
grid1 + Fself

grid2

2
. (2.68)

2.4.5 Error estimates

Several parameters can be tuned to influence the accuracy of the dispersion PPPM
method: the chosen cutoff radius rc for the sum in real space, the Ewald parameter
β, the grid size, and the order of the interpolation function for distributing the dis-
persion coefficient onto a grid. The qualitative influence of the parameters can be
understood easily. The real-space error arises from truncating the pair potential. In-
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creasing the cutoff radius or the Ewald parameter, which leads to a faster decaying
real-space potential, increases the accuracy in real space. The precision in reciprocal
space depends on the Ewald parameter, the grid spacing, and the interpolation order.
Decreasing either of the first two or increasing the latter will lead to higher accuracy
in the reciprocal-space contribution.

To choose the tunable parameters effectively, a more quantitative understanding of
the parameters’ influence on the force error is required. This section presents estimates
for the error of real- and reciprocal-space forces that can be used to set the parameters
for the algorithm. The error estimates provide expressions for the root mean square
(RMS) error

∆F =

√√√√ 1

N

N∑
i=1

(FPPPM
i − Fexact

i )2, (2.69)

where FPPPM
i is the force calculated with the PPPM algorithm and Fexact

i is the exact
result.

2.4.5.1 Real-space error estimate

The real-space error estimate is an extension of the estimate of Kolafa and Perram [65]
for Coulomb interactions to r−6 potentials. The sum of the square of the real-space
contribution of the dispersion interaction of the particles beyond the cutoff rc on a
single particle can be expressed as

∆F 2
i = c2

i

∑
j:rij>rc

c2
j

(
6

r8
ij

+
6β2

r6
ij

+
3β4

r4
ij

+
β6

r2
ij

)2

exp
(
−2r2

ijβ
2
)
r2
ij. (2.70)

Assuming that the particles are randomly distributed beyond the cutoff, the sum can
be replaced by an integral to arrive at

∆F 2
i = c2

i

∑
j

c2
j

1

V

∫ ∞
rc

(
6

r6
ij

+
6β2

r4
ij

+
3β4

r2
ij

+ β6

)2

×

exp
(
−2r2

ijβ
2
)

4πdr. (2.71)

Using [65] ∫ ∞
A

exp(−Bx2)f(x)dx ≈ exp(−BA2)
f(A)

2BA
, (2.72)
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we arrive at

∆F 2
i = c2

i

∑
j

c2
j

πβ10

V rc

(
6

r6
cβ

6
+

6

r4
cβ

4
+

3

r2
cβ

2
+ 1

)2

exp
(
−2r2

cβ
2
)
, (2.73)

which leads to the averaged error in the force

∆Freal =

√
1

N

∑
i

∆F 2
i

=
C√πβ5

√
NV rc

(
6

r6
cβ

6
+

6

r4
cβ

4
+

3

r2
cβ

2
+ 1

)
exp

(
−r2

cβ
2
)
, (2.74)

where N is the number of particles and

C =
∑
i

c2
i . (2.75)

2.4.5.2 Reciprocal-space error estimate

The error in the forces in reciprocal space can be expressed by [66]

∆Freciprocal = C
√

Q

NV
, (2.76)

where Q is defined in Equation (2.44). Equation (2.76) is based on the assumption
that the error on a specific particle arises from the interactions with all other particles,
that the error is proportional to the interaction strength between the particles, and
that the error contributions arising from different sites are uncorrelated.

2.5 Numerical tests: accuracy and single-core

performance

In this section we perform numerical tests of the algorithm presented above. In partic-
ular, we will examine the accuracy that can be obtained with the different variants of
PPPM and how well the error estimates perform. Furthermore, the single-core perfor-
mance of the different variants will be compared. Finally, as the expected main benefit
of the PPPM algorithm over the plain Ewald method is the improved scaling behavior
with respect to the number of particles, we perform a comparison of the timing of these
methods.
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2.5.1 Accuracy of variants of the PPPM method

We performed test runs to examine the accuracy of the different versions of PPPM
for dispersion and the error estimates presented in Section 2.4.5. We randomly placed
2000 LJ particles with energy ε and diameter σ in a box of length 15σ in each direction
to create a bulk system. To test the error estimates for surface systems, we placed 5200
LJ particles randomly in a 30σ×30σ×10σ box and extended the length of the shortest
box edge to 30σ afterwards without changing the particle coordinates. In addition to
the systems in which the particles have random positions, we equilibrate the systems
above for 10 000 timesteps in the NVT ensemble at T = 1.2ε/kB, where kB is the
Boltzmann constant; the surface system is equilibrated before the box is extended.
In this way the particle distributions have a stronger connection to a real system in
which particles will be more structured than in a random state. States with strong
particle overlaps, which can occur for systems where the particles are simply positioned
randomly, are avoided in these equilibrated states.

We calculated the real and reciprocal space forces on the particles for these config-
urations separately using different values for the Ewald parameter, the grid size, the
interpolation order, and the real space cutoff. k = 2, . . . , 6 mesh points were used in
each direction. Interpolation orders P = 3, . . . , 6 were examined but results are re-
ported for P = 5 only because no additional qualitative insight can be obtained from
other interpolation orders. Real-space cutoffs of 2.0, 2.5, 3.0, 3.5 and 4.0σ were used.
The RMS error in the forces is calculated with Equation (2.69) for the real-space and
the reciprocal-space separately. The “exact” reference force Fexact

i is computed with an
Ewald summation [23] in which we used a large cutoff and a large number of reciprocal
vectors to ensure proper convergence.

Figure 2.3 shows the reciprocal space accuracy that is obtained by using the ik or ad
schemes and different influence functions. For each PPPM variant, we used the optimal
influence function that is force-optimized for the given scheme, i.e. Equations (2.48)
to (2.51) and (2.58) to (2.64), or the energy-optimized function, i.e. Equations. (2.55)
to (2.56) and (2.65) to (2.67). There are two main findings from this figure. First, the
well-known fact that the ik differentiation usually provides more accurate results than
the ad scheme [50] is reproduced. Exceptions to this trend are observed in regions of low
accuracy. Second, the energy-optimized version of the influence function Ĝopt provides
accuracy that is practically indistinguishable from what is observed with the influence
functions that are optimized with respect to the differentiation scheme. The only excep-
tion to this behavior is the staggered ad scheme. The bump that is obtained with the
ad-optimized influence function is not reproduced with the energy-optimized version of

28



2.5 Numerical tests: accuracy and single-core performance

0.3 0.7 1.1 1.5

β [σ−1]

10−12

10−10

10−8

10−6

10−4

10−2

100

102

∆
F

re
ci

p
ro

ca
l

[ε
/σ

]

opt

eng

ad scheme

ik scheme

0.3 0.7 1.1 1.5

β [σ−1]

10−12

10−10

10−8

10−6

10−4

10−2

100

102

∆
F

re
ci

p
ro

ca
l

[ε
/σ

]
Figure 2.3: Force errors of the different versions of PPPM for dispersion. Left: normal

PPPM; right: interlaced version. From top to bottom the number of grid
points in each direction increases as 4, 16, 64. Dotted lines are for versions
of Ĝopt optimized for ik or ad differentiation. Dashed lines are for energy
optimized Green’s functions. The line color represents the differentiation
scheme.

the influence function. As a result, computations with the ad-optimized influence func-
tion will provide better results when the simulations are run at the conditions where
the bump is located. The bump is where the different contributions Qnon and Qfluc have
similar contributions to the error [63] and can best be seen in the computations with a
grid size of 16 points in each dimension. Because the energy-optimized influence func-
tion provides comparable accuracy as the differentiation-specific optimized functions,
because Equation (2.55) can be computed with less computational effort, and because
analytic expressions are available for Equations (2.56) and (2.65) [67], this version of
the Green’s functions is preferred. The only exception is the interlaced ad scheme, in
which using the ad optimized Green’s function can be favorable in terms of accuracy.

Differences in the accuracy that are obtained when applying the algorithm to ran-
domly distributed particles or equilibrated systems are shown in Figure 2.4. Although
the image shows results obtained with the non-interlaced ik scheme, conclusions are
transferable to all other test cases. Force errors are always smaller in the equilibrated
system. The difference is especially pronounced in regions of low accuracy. The reason
is that strongest errors arise from particles that are closely spaced: extremely closely
spaced particles cannot occur in equilibrated systems, whereas they can if the particles
are randomly distributed.
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Figure 2.4: Accuracy of PPPM for random particle positions and equilibrated systems
for ik differentiation. The number of grid points in each direction increases
as 4, 16, 64 from top to bottom. The accuracy is higher for equilibrated
systems at high force errors.
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Figure 2.5: Comparison of the accuracy obtained with normal and interlaced PPPM.
Left: ik differentiation; right: ad scheme, each with specific optimized influ-
ence functions. The number of grid points in each direction increases as 4,
8, 16, 32, 64 from top to bottom. For large force errors, the interlaced ver-
sion of the algorithm provides almost identical accuracy as non-interlaced
PPPM. For small force errors, the interlaced version can be as accurate as
the non-interlaced version with halved grid spacing. (The uppermost of the
blue lines approximately matches the uppermost of the red lines, whereas
the lowermost of the blue lines matches the second-lowest of the red lines.)
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Differences between the interlaced and non-interlaced version of the algorithm are
depicted in Figure 2.5. As expected, the interlaced version of the algorithm always
provides increased accuracy for a given grid size. It is important to note, however,
that the increase in accuracy is strongly dependent on the state of the simulations. In
regions of low accuracy, the results obtained with the interlaced algorithm are almost
indistinguishable from the non-interlaced version for a given grid size. Using interlacing
in this case will not provide any benefit in the accuracy but will only yield a penalty
in computation times. In regions of high accuracy, the interlaced version of the PPPM
algorithm can provide accuracy that is almost identical to the accuracy obtained with
the non-interlaced version of the code with a halved grid spacing, i.e., 8 times more
grid points. This gain in accuracy is promising for increasing the performance when a
specific accuracy is required. These issues are further addressed in Sections 2.5.3 and
2.9.

2.5.2 Accuracy of error estimates

The test systems for the computations presented here are identical to those used in
Section 2.5.1. The results of the real-space error estimate are given in Figure 2.6,
the reciprocal-space error estimates are shown for the randomized bulk and surface
system in Figure 2.7 and in Figure 2.8. Except for small values of β, the real-space
error estimate works well for the bulk system. The error is slightly underestimated
in surface simulations. For the reciprocal-space error estimate, the same behavior is
observed. The error estimates can thus be used to select PPPM parameters to achieve
a desired real- and reciprocal-space accuracy. As a final comment, we note that while
for the force computation using Equations. (2.55) and (2.56) to compute the optimized
Green’s function Ĝopt works well, the usage of the energy-optimized expressions for A
and B is of course unqualified for computing the error estimates.

2.5.3 Performance comparison of variants of the PPPM method

The performance of the different variants of the PPPM method, namely the ik and ad
differentiation schemes and the interlaced and non-interlaced versions, were computed
as a function of force accuracy. A test system was prepared by creating a cubic box with
length 10σ in which 4000 LJ particles with interaction parameters ε = 1 and σ = 1 were
placed at random position. The system was allowed to equilibrate for 10 000 timesteps
of 0.005τ in the NVT ensemble using a Nosé-Hoover thermostat [68] with coupling
constant τT = 0.5τ . Afterwards the system was replicated in each dimension by a
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Figure 2.6: Comparison of the real-space error estimate with measured force errors.
Left: equilibrated bulk system; right: interfacial system. Solid line: mea-
sured error, dotted line: estimated error. The cutoff radius increases from
top to bottom. Overall, the estimate is too pessimistic for small values of
β and too optimistic for the interfacial system.

factor of 4 such that the final system contains 256 000 particles and has a box length
of 40σ. The system was then run 10 times for 100 timesteps in the NVE ensemble for
each set of examined parameters on a single core of the Intel IvyBridge EP processor
to obtain average times per timestep tstep and mean uncertainties.

For the cutoff we chose rc = 3σ and as interpolation order we chose P = 5 in all
computations. The Ewald parameter β and grid spacing are determined based on the
error estimates in Section 2.4.5 by specifying a target accuracy for the equal real- and
reciprocal-space computations. We first set the Ewald parameter to achieve the desired
real-space computation. Once the Ewald parameter is fixed, the grid spacing is the
only free variable, which is then set to achieve the desired reciprocal-space accuracy.
Afterwards, the Ewald parameter is adjusted to balance the error between the real-
and reciprocal space accuracy. The resulting accuracy will thus be slightly different
compared to the accuracy that was initially specified. The overall accuracy is estimated
as [66]

∆F =
√

∆F 2
real + ∆F 2

reciprocal. (2.77)

The timing data over the force error is given in Figure 2.9 for the different variants
of the PPPM algorithm. As expected, all variants follow the trend that computations
with increasing accuracy (i.e., small values of ∆F ) are increasingly expensive. For
large errors in the computations, the non-interlaced versions of the algorithm provide
better performance than the interlaced version, which is in agreement with the inter-
laced version of the algorithm not increasing the accuracy in regions of large ∆F , as
shown above. In regions of small force errors, however, the interlaced version strongly
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Figure 2.7: Comparison of the reciprocal-space error estimate with measured force er-
rors in the bulk system with random particle positions. Top and bottom:
normal and interlaced PPPM. Left and right: ik and ad scheme. The num-
ber of grid points in each direction increases from top to bottom as 4, 8,
16, 32, 64 in each image. Solid line: measured error, dotted line: estimated
error. The predictions of the error estimate are in excellent agreement
with the measurements. Deviations are only observed for the interlaced
ik version at extremely high accuracy and are possibly a result of numeric
errors.
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Figure 2.8: Reciprocal space estimate compared to measured force errors in the random
interfacial system for the non-interlaced ad version of the algorithm. The
error estimate is slightly too pessimistic. P = 5 and the number of grid
points increases from top to bottom as 4, 8, 16, 32, 64.
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outperforms the non-interlaced version. It is noteworthy that the gain of the interlaced
version is much larger in regions of high force accuracy than its loss in regions of low
force accuracy. For example, the interlaced ad version of the algorithm at an error of
∆F ≈ 0.0002ε/σ is around a factor of 4 faster than the non-interlaced versions. In the
regions of low force accuracy, the increase in computation time is only around 30%.
The observed trend is in agreement with results for the PPPM method for dipolar
interactions [69].
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Figure 2.9: Single-core timing per timestep of PPPM variants versus the force accuracy.

A more detailed comparison shows that the interlaced ad scheme is fastest for high
force accuracy and slowest for low force accuracy When comparing the ad and the
ik methods, a crossover point can be found for the interlaced versions of the ik and
the ad scheme, whereas for the noninterlaced version the ik scheme is always faster.
When performing this detailed comparison one needs to consider, however: (i) that
the performance is strongly dependent on the implementation and the trends for these
details necessarily must be attributed to implementation details; (ii) that the PPPM
parameters were not determined from a rigorous optimization over the entire parameter
space, so the selected parameters might be especially well-chosen for one case whereas
they are particularly bad for the other; (iii) that all computations were performed
on a single core which means that the heavy communication burden that can arise on
multi-core machines for performing the 3D FFTs is not considered. These more detailed
differences between the interpolation schemes will thus possibly depend on the exact
choice of parameters, the system size, the architecture on which the simulation is run,
and of course the details of the implementation.

34



2.5 Numerical tests: accuracy and single-core performance

2.5.4 Scaling behavior compared to Ewald summation

The main benefit of mesh-based Ewald methods over traditional Ewald sums is the
improved scaling behavior of the mesh-based approach. To examine the scalability
of the implemented solver we have performed simulations with 2n × 103 LJ particles,
where n = 0, 1, . . . , 10, with the dispersion PPPM solver and the Ewald summation.
The density was 3.64σ−3 in all simulations. The boxes were always cubic. An energy
minimization and equilibration over 50 000 timesteps in the NV T ensemble at T =

0.85ε/kB was followed by a simulation over 1 000 timesteps in the NV E ensemble. The
simulation time of the last 1 000 timesteps was used to measure the performance. These
simulations were executed on a single core of an Intel Harpertown E5454 processor with
eight 3.0 GHz Xeon cores.
Automated parameter generation was applied in simulations with the Ewald sum [23].

For the PPPM algorithm we use the ik scheme without interlacing. The parameters
are set using the same approach described in Section 2.5.3 with a desired real- and
reciprocal-space error of 0.01 ε/σ.
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Figure 2.10: Comparison of the scaling of the Ewald method and PPPM with in-
creasing number of particles. The PPPM algorithm follows the expected
O(N logN) scaling and outperforms the Ewald method for high particle
numbers by orders of magnitude. (Modified reprint with permission from
Ref. [70])

As can be seen from Figure 2.10, which shows the computation time per timestep, the
dispersion PPPMmethod approaches the expected scaling behavior ofO(N logN) with
increasing numbers of particles. Its performance becomes several orders of magnitude
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2 The PPPM for dispersion in theory and practice

faster than the traditional Ewald sum and is thus far more suitable for large-scale
computations. The comparison between the different solvers drawn here should be
considered qualitative, as we did not examine whether the two different solvers were
run with the same accuracy.

2.6 Impact of the real- and reciprocal-space errors

on physical behavior

Using PPPM introduces a set of parameters which strongly influence the accuracy
and the efficiency of a simulation. As often observed in computational methods, an
increase in accuracy will result in a performance penalty. The target when selecting
parameters for PPPM will typically be to achieve maximum performance while having
sufficient accuracy that the obtained physical results are not biased by inaccurate force
computations. This target can only be achieved with a proper understanding of how
inaccuracy affects the physical behavior of a simulated system. In this section we will
first perform a numerical study with the model system hexane to address these issues.
Hexane was chosen as a model system because dispersion interactions dominate and
errors in the computation of dispersion interactions will have a strong and therefore
easily noticeable effect on the results. Afterwards we will provide a theoretical analysis
of the results and comment how the real- and reciprocal-space errors should be selected.

2.6.1 Parameter study with hexane

Hexane was modeled using the OPLS-AA [27] force field. Simulations contained 689
hexane molecules that were placed using PACKMOL [71] in a subvolume around the
center of the box with volume 50×50×150Å3. After an energy minimization with a soft
potential and several runs with restricted movement of the particles, the simulations
were equilibrated for 1 000 000 timesteps with a timestep of ∆t = 1 fs. The temperature
was set to T = 300K using a Nosé-Hoover [68] thermostat with a damping factor
of 0.1 ps. Afterwards, simulations were run for 5 ns and surface tensions and liquid
densities were determined as described in Appendix A. Instantaneous surface tensions
were computed every timestep, particle positions to compute the density profiles were
stored every 12.5 ps. PPPM [34] with a real space cutoff of rc = 10Å, an Ewald
parameter of β1 = 0.17Å−1 and fifth-order interpolation P = 5 was used to calculate
the electrostatic potential. The grid dimension was set to 20× 20× 45.
The parameters of the PPPM method for dispersion are the real space cutoff, the
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Ewald parameter, the interpolation order, and the grid spacing in each dimension. The
influence of the different parameters on the force accuracy is already described at the
beginning of Section 2.4.5. Instead of exploring this six-dimensional parameter space,
we set the interpolation order to P = 5 and the real space cutoff rc = 10.0Å. This choice
of parameters was made because these values are commonly used in MD simulations,
although they are in principle arbitrary. Furthermore, the grid spacing was equal in all
three dimensions because near-cubic grids usually provide most accurate calculations.
This reduction of the parameter space allows for determining suitable simulation

parameters with less effort, but permits reaching a wide range of accuracy in either
real or reciprocal space. As the real-space cutoff is fixed, the real-space accuracy
depends only on the Ewald parameter, which is used in the following simulations to
tune the real-space accuracy. In principle, we could also have fixed the Ewald parameter
beforehand and modified the real-space cutoff to tune the real-space accuracy, but we
decided against it to have better control over the real-space calculation time. For a
given Ewald parameter and the other parameters fixed, the grid spacing can be altered
to tune the reciprocal-space accuracy.
We calculated the surface tension and liquid density with different settings for the

two remaining parameters, the Ewald parameter and the uniform grid spacing. In
addition, we determined the RMS error in the total forces as well as the real- and
reciprocal-space contributions to the error by comparing the forces calculated for a
single snapshot of an equilibrated system to forces that were calculated using a large
real-space cutoff and a very small grid spacing.
The results for the surface tension and density of hexane are given as a function of

the total RMS error in the forces in Figure 2.11. In simulations with fewer grid points,
the total error is always dominated by the reciprocal-space error. In simulations with
smaller grid spacing h = 50/24Å, the real- and reciprocal-space error are approximately
equal for the highest achieved total accuracy at β6 = 0.28Å−1. As can be seen from
Figure 2.12, the real-space error dominates for smaller values of the Ewald parameter
β6, whereas the reciprocal-space error dominates for larger values of β6.
As the total error decreases, the simulated surface tensions and densities plateau,

indicating that further increases in accuracy, which can be obtained by using even finer
grids and larger values for the Ewald parameter, will offer little benefit in the accuracy
of the measured quantities. Decreasing the Ewald parameter, thereby increasing the
real-space error, strongly influences the simulated quantities. In contrast, increasing
the Ewald parameter and in this way increasing the reciprocal-space error has less
influence on the results. Physical data begin to change for reciprocal-space errors
above approximately 0.01 kcal mol−1 Å−1. For the examined quantities, the real-space
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Figure 2.11: Surface tension and density of hexane as a function of the total error in the
calculated forces. The arrows point in the direction of increasing Ewald
parameter. The values plateau at low force error. (Modified reprint with
permission from Ref. [70])

error apparently has a stronger influence on the results than the reciprocal-space error.
The reason for this observation will be addressed in Section 2.6.2.

The data given in Figure 2.11 is also given on the left side of Figure 2.12 as a function
of the Ewald parameter. These results, in combination with those from Figure 2.11,
show that an Ewald parameter of approximately β6 = 0.28Å−1 in combination with
a real-space cutoff rc = 10Å provides sufficient real-space accuracy for the performed
simulations.

As the results from Figure 2.11 indicate that increasing the reciprocal-space error
does not alter the obtained physical data strongly, we have performed further simu-
lations with fixed Ewald parameter and varying grid spacing. Results of these simu-
lations are given on the right side of Figure 2.12. Decreasing the grid spacing below
h = 50/12Å does not alter either the simulated density or surface tension, although
the error in the forces continues to decrease. Because of the extended running times
with higher meshes, these higher-fidelity calculations are computationally undesirable.
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Figure 2.12: Surface tension, density, and errors in the forces in simulations of hexane.
In the lower left graph, the red squares correspond to the real-space error,
while the triangles and circles correspond to the reciprocal-space error
when using the fine grid and coarse grids, respectively. The triangles in
the lower right graph correspond to the reciprocal-space error. The Ewald
parameter is β6 = 0.28Å−1 in all figures on the right side. (Modified
reprint with permission from Ref. [70])

2.6.2 Analysis of the errors

For Coulomb interactions, it is well-established to minimize the overall RMS error by
tuning the Ewald parameter so that the real- and reciprocal-space errors are approx-
imately equal [50]. While performing this minimization is also possible for dispersion
interactions, the results reported in the previous Section 2.6.1 suggest that the real-
space error has a stronger impact on the physics than the reciprocal-space error. This
observation will be analyzed here. It will be shown that this observation is not coin-
cidental but has a physical basis. We show that this is the major difference between
PPPM for Coulomb and dispersion interactions and needs to be taken into account
when selecting PPPM parameters.
The origin for the observed difference is that electrostatic interactions between par-

ticles can be either attractive or repulsive because they can be charged negatively or
positively. In contrast, dispersion interactions between pairs of particles are always

39



2 The PPPM for dispersion in theory and practice

attractive. This difference has important implications when truncating interactions at
the real-space cutoff. For electrostatic interactions, the neglected interactions outside
the cutoff can cause attractive as well as repulsive forces on a given particle. However,
since dispersion interactions are always attractive, neglected interactions beyond the
real-space cutoff always reduce the cohesion of a system. Concretely, this has the effect
that if no correction methods are applied, the truncation of the real-space part of the
dispersion potential leads to increased energy and pressure of a system.
The effect of truncating dispersion interactions on the forces is of less concern for

simulations of homogeneous bulk systems, as error cancellation works well for these
systems because neglected attractive interactions in one direction partly cancel out
against neglected attractive interactions that would arise from interactions with par-
ticles on the opposite side. This is also the reason why, in contrast to energy and
pressure corrections, force corrections are not required to account for the truncation of
dispersion interactions in homogeneous bulk-phase systems.
For inhomogeneous systems, especially systems that contain an interface between a

condensed phase and a vapor phase, the situation is different, however, as illustrated
by Figure 2.13. The image on the left side, which shows the surface of a hexane simu-
lation, can be transformed with a bit of abstraction to the image on the right, where
the left half is the condensed phase and the right half a vapor phase. The attractive
forces exerted by the particles in the condensed phase outside the cutoff radius on
a particle at the surface are not counterbalanced by neglected forces from the vapor
phase. As a result, the neglected force contribution for that particle caused by disper-
sion interactions points toward the interface. In contrast, Coulomb interactions from
the condensed phase have attractive as well as repulsive forces on the particle at the in-
terface. While the errors caused by truncating the dispersion potential accumulate, the
errors caused by truncating the Coulomb interactions even partly cancel for particles
located at the interface.
This effect was quantified using a snapshot of an equilibrated slab system of 5000

SPC/E water molecules [72] in a 50 × 50 × 150Å3 box. The system was equilibrated
for 1 ns in the NVT ensemble using a Nosé-Hoover thermostat [68] at a temperature
of 300K. The slab has surface normals parallel to the z-direction and is located in the
center of the simulation box. For this snapshot, we computed the number density in
z-direction, as well as different types of force errors averaged over slabs parallel to the
interface of the system. The force errors that we determined are (i) the truncation
error of the dispersion forces when using a simple cutoff scheme with rc = 23Å; (ii)
the real- and reciprocal-space error of the dispersion forces when using PPPM for
dispersion with a cutoff rc = 7Å, interpolation order P = 5, an Ewald parameter
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Figure 2.13: Left: Hexane surface obtained from simulation. Right: abstracted image
with the focus on a particle at the surface. The error caused by truncating
the interactions with particles in the condensed phase is not counterbal-
anced because of the void space at the right. The truncation error is
therefore directed and not random.

β6 = 0.4Å−1, a grid spacing of h ≈ 1.67Å and the ad scheme; (iii) the real- and
reciprocal-space errors of the Coulomb forces when using PPPM for electrostatics with
the same cutoff and interpolation order, an Ewald parameter β1 = 0.375Å−1, a grid
spacing of h ≈ 1.25Å and the ad scheme. The errors averaged over slabs in z-direction
were computed from a comparison with a force computation performed with PPPM
for Coulomb and dispersion interactions with very high accuracy.

The results for the measured histograms of the density and force errors are shown
in Figure 2.14. The difference between the average error in the forces ∆Fx and ∆Fy

for the real-space contribution from dispersion interactions in Figure 2.14c in the x
and y-direction parallel to the surface is strikingly different compared to the error ∆Fz

in z-direction. ∆Fx and ∆Fy are approximately constant over the entire range of the
bulk fluid system. In contrast, the absolute value of ∆Fz behaves similar to ∆Fx and
∆Fy away from the interface but strongly grows near the interface. Moreover, ∆Fz has
positive values at the interface for low values of z and negative values for the interface
located at high values of z. This shows that the neglected force contribution points
towards the condensed phase, which is a confirmation of the accumulation of errors
described above.

Comparing the error in the real-space dispersion forces to that obtained from the
reciprocal-space forces in Figure 2.14d reveals that this accumulation only occurs for
the real-space part. For the reciprocal-space part, the error does not have a clear
direction but has the character of noise for all Cartesian dimensions in the system.
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Because of the more statistical behavior of this error, the reciprocal-space error has
less impact on physical results compared to the directed real-space error and is therefore
more tolerable.
The error in the dispersion forces caused by a simple truncation of the potential is

shown in Figure 2.14a. ∆Fx , ∆Fy, and ∆Fz behave similarly to what is observed
for the truncation of the real-space dispersion potential in Figure 2.14c. The most
important difference here is that while the directedness of the real-space error vanishes
a few Ångstroms away from the interface when using PPPM, the directedness of ∆Fz

persists in the entire liquid slab for the simple truncation scheme and slowly transforms
from the positive extreme at the interface located at low values of z to the negative
extreme at the interface located at high values of z.
The error in the Coulomb forces has stochastic behavior over the entire region of fluid

in the simulation cell for both the real-space and the reciprocal-space error, as shown in
Figures 2.14e and 2.14f. The only exceptions are the strong outliers that occur at the
outermost position of the interface on both sides. These outliers result of poor statistics.
Averages in the force error are here taken over only two and four atoms, respectively.
As already described above, errors in the computation of Coulomb interactions can
also cancel in real space. Therefore both the real-space and the reciprocal-space errors
have noisy characters and can be set to similar values to obtain accurate and efficient
simulations with the Coulomb PPPM.
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(c) PPPM for dispersion: real space
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(d) PPPM for dispersion: reciprocal space
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(e) PPPM for electrostatics: real space
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(f) PPPM for electrostatics: reciprocal space

Figure 2.14: Upper right: density profile of the examined surface systems. Other im-
ages: measured local force errors subdivided into the different spatial di-
mensions. The different error types are given in the subcaptions. For the
truncation error or real-space error of dispersion, the force error is directed
towards the interface for the z dimension, whereas it is more random for
all other interactions.
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2 The PPPM for dispersion in theory and practice

2.7 Influence of the PPPM method on physical

properties

In this section we outline how physical quantities are affected by inclusion of long-
range dispersion interactions with the PPPM algorithm compared to simple trunction.
For this purpose we have performed slab simulations with systems of LJ particles,
SPC/E water [72], and hexane modeled with the OPLS all-atom force field [27]. These
systems cover a model system as well as realistic systems in which Coulomb interactions
(water) and dispersion interactions (hexane) dominate. Furthermore, these systems
have already been studied and allow comparison to results from the literature [23, 45,
73–75]. A comparison with results from Shi et al. [49] is of special interest, as they
have also used a PPPM dispersion method to determine the surface tension of SPC/E
water.

2.7.1 Lennard-Jones particles

The LJ simulations were performed in a box with volume 11.01σ×11.01σ×176.16σ and
4000 particles that were placed randomly in a subvolume at the center of the box. After
minimization using a soft potential, the system was equilibrated for 100 000 timesteps.
The timestep was set to 0.005 τ , where τ = σ

√
m/ε. Simulations were executed at

reduced temperatures T ∈ {0.7, 0.85, 1.1, 1.2}ε/kB using a Nosé-Hoover [68] thermostat
with damping factor 10 τ . The equations of motion were solved using a velocity Verlet
algorithm [76]. Afterwards, simulations were run for another 1 000 000 timesteps with
the same conditions and analyzed as described in Appendix A. During that time,
instantaneous surface tensions were calculated every timestep. Configurations were
stored every 1 000 timesteps to calculate the density profile. For simulations without a
long-range dispersion solver, we examined cutoffs of 2.5σ, 5σ, and 7.5σ. In simulations
with dispersion PPPM we used cutoffs of 3σ, 4σ, and 5σ. We used P = 5, β =

1.1σ−1 and a grid with 9 × 9 × 144 mesh points. These parameters were determined
from numerical tests similar to those performed for the hexane system described in
Section 2.6.1.
Results are given in Table 2.1. Overall, we find good agreement with results from

the literature [23, 74]. The simulated densities and surface tensions show a strong
dependence on the chosen cutoff in simulation without a long-range dispersion solver.
The effect of the size of the cutoff is strongest for simulations at higher temperatures.
Systems with small cutoffs were so close to the critical point that error functions
were no longer appropriate for describing the density profile, as can be seen from
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2.7 Influence of the PPPM method on physical properties

Surface tension [εσ−2]
T [ε/kB] solver rc [σ] ρliq [σ−3] γp γt γ
0.7 cutoff 2.5 0.7865 0.588(30) 0.327 0.915(30)

5.0 0.8349 1.006(30) 0.125 1.131(30)
7.5 0.8390 1.112(30) 0.057 1.169(30)

PPPM 3.0 0.8404 1.158(30) - 1.158(30)
4.0 0.8407 1.167(30) - 1.167(30)
5.0 0.8408 1.157(30) - 1.157(30)

0.85 cutoff 2.5 0.6996 0.341(22) 0.221 0.562(22)
5.0 0.7672 0.700(26) 0.098 0.798(26)
7.5 0.7730 0.781(32) 0.046 0.827(32)

PPPM 3.0 0.7748 0.817(26) - 0.817(26)
4.0 0.7758 0.829(24) - 0.829(24)
5.0 0.7756 0.829(28) - 0.829(28)

1.1 cutoff 2.5 n.a. 0.023(26) n.a. 0.023(26)
5.0 0.6282 0.278(26) 0.042 0.320(26)
7.5 0.6385 0.293(24) 0.026 0.319(24)

PPPM 3.0 0.6451 0.314(24) - 0.314(24)
4.0 0.6448 0.330(26) - 0.330(26)
5.0 0.6462 0.302(22) - 0.302(22)

1.2 cutoff 2.5 n.a. 0.001(20) n.a. 0.001(20)
5.0 0.5613 0.113(20) 0.025 0.138(20)
7.5 0.5725 0.159(26) 0.013 0.172(26)

PPPM 3.0 0.5767 0.164(24) - 0.164(24)
4.0 0.5757 0.155(22) - 0.155(22)
5.0 0.5766 0.154(26) - 0.154(26)

Table 2.1: Simulated densities and surface tensions for the LJ system. Statistical un-
certainties are given in parentheses. (Modified reprint with permission from
Ref. [70])

Figure 2.15, whereas a stable liquid phase was formed when using larger cutoffs or
PPPM for dispersion. Agreement between simulated data with and without long-range
dispersion solver can only be obtained when using a large cutoff in simulations without
the long-range solver. Unlike the simulations with simple truncation, the results for
the dispersion PPPM method do not show a dependence on the real-space cutoff.

2.7.2 SPC/E water

Simulations with SPC/E water were performed with 5 000 water molecules in a box
of 50Å×50Å×150Å. The initial configurations of the particles were created using
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Figure 2.15: Measured density profiles for simulations of LJ particles: (top) simulations
with cutoff rc = 2.5σ and (bottom) simulations at T = 1.1ε/kB. (Modified
reprint with permission from Ref. [70])

PACKMOL [71]. If not explicitly given in the following, the simulation was run and
analyzed as the hexane simulation in Section 2.6.1.

Simulations were executed at 300, 350, and 400K. We examined cutoffs of 10, 12,
and 16Å for dispersion and Coulomb interaction. The SHAKE algorithm [77] was used
to constrain the bond lengths and bond angles. A PPPM [34] solver was used for long-
range electrostatics. We picked interpolation order P = 5 and a grid of 24 × 24 × 54

mesh points as grid parameters and used ik differentiation. The Ewald parameter was
β1 = 0.255, 0.226, and 0.184 Å−1 for the three different cutoffs. In simulations with
PPPM solver for dispersion, we used interpolation order P = 5. Following our results
from Section 2.6.1, a grid with 12 × 12 × 36 mesh points was used for the dispersion
interactions. The Ewald parameter for dispersion was set to β6 = 0.28Å−1 for all
cutoffs.

Table 2.2 shows the results of the simulations. When not using a long-range solver,
the simulated density shows a slight dependence on the chosen cutoff radius, whereas
practically no dependence can be observed when using a long-range solver for disper-
sion. For simulated surface tensions, neither the cutoff nor the chosen dispersion solver
have a strong influence. The weak or non-existent influence on physical properties
is due to the fact that Coulomb, and not dispersion, interactions are the dominant
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2.7 Influence of the PPPM method on physical properties

Surface tension [mN/m]
T [K] solver rc [Å] ρliq [kg/L] γp γt γ
300 cutoff 10.0 0.9882 54.59(100) 5.27 59.86(100)

12.0 0.9918 56.38(100) 3.72 60.10(100)
16.0 0.9944 57.51(84) 2.12 59.63(84)

PPPM 10.0 0.9965 60.72(90) - 60.72(90)
12.0 0.9964 60.11(80) - 60.11(80)
16.0 0.9963 59.64(90) - 59.64(90)
10.0 0.9964 61.06(80) - 61.06(80) †

350 cutoff 10.0 0.9539 47.40(60) 4.81 52.21(60)
12.0 0.9576 48.71(60) 3.42 52.13(60)
16.0 0.9607 49.78(70) 1.96 51.74(70)

PPPM 10.0 0.9629 53.29(60) - 53.29(60)
12.0 0.9631 52.35(70) - 52.35(70)
16.0 0.9630 52.30(70) - 52.30(70)

400 cutoff 10.0 0.9067 39.89(60) 4.20 44.09(60)
12.0 0.9114 40.42(60) 3.02 43.44(60)
16.0 0.9151 41.36(58) 1.75 43.11(58)

PPPM 10.0 0.9177 43.98(60) - 43.98(60)
12.0 0.9178 43.89(60) - 43.89(60)
16.0 0.9178 43.44(60) - 43.44(60)

Table 2.2: Simulated densities and surface tensions for the SPC/E system. Statistical
uncertainties are given in parentheses. Simulation labeled with † was run at
increased accuracy. (Modified reprint with permission from Ref. [70])

contribution to the interactions in this system.

Again, our results are in good agreement with the majority of the literature [23,
73–75]; however, they differ substantially from those reported by Shi et al. [49], who
performed simulations of SPC/E with PPPM for dispersion, too. For example, their
result for the surface tension at 300K is more than 70mN/m (read from Fig. 6 in [49]),
whereas the surface tensions in our simulations are always about 60mN/m, consistent
with other studies. To ensure the validity of our results we have run an additional sim-
ulation with increased accuracy, in which we set the Ewald parameter for dispersion
to β = 0.3 Å−1, the interpolation order to P = 5 and the grid spacing to h ≈ 1.56 Å
corresponding to 32× 32× 96 mesh points. Results of this simulation, marked with a
dagger in Table 2.2, are in good agreement with the rest of our results. The increased
value for the surface tension in simulations by Shi et al. might be related to the small
number of water molecules (800) in their simulation or the choice of the Ewald pa-
rameter (0.9, units not given), but is most likely caused by their short sampling time
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of only 100 000 timesteps, as substantially longer run times are required to achieve
equilibration for water at an interface [78].

2.7.3 Hexane

If not explicitly stated in the following, all settings for the hexane simulations were as
reported in Section 2.6.1. We studied temperatures of 300, 350, and 400K and cutoffs
of 10, 12, and 16Å. A PPPM solver was used for electrostatics. The grid size was
set to 20 × 20 × 45 and the interpolation order to P = 5. The Ewald parameter was
approximately β1 = 0.17, 0.16, and 0.14Å−1 for the different cutoffs. In simulations
with PPPM for dispersion, the interpolation order was set to P = 5, the grid size was
set to 12×12×36 and the Ewald parameter was set to β6 = 0.28 Å−1 in all simulations.

Surface tension [mN/m]
T [K] solver rc [Å] ρliq [kg/L] γp γt γ
300 cutoff 10.0 0.6058 7.83(50) 4.59 12.42(50)

12.0 0.6251 10.21(50) 3.75 13.96(50)
16.0 0.6367 13.00(50) 2.34 15.34(50)

PPPM 10.0 0.6434 16.41(50) - 16.41(50)
12.0 0.6439 16.16(50) - 16.16(50)
16.0 0.6453 15.89(50) - 15.89(50)

350 cutoff 10.0 0.5237 2.18(40) 2.13 4.31(40)
12.0 0.5534 4.78(40) 2.20 6.98(40)
16.0 0.5721 7.44(50) 1.71 9.15(50)

PPPM 10.0 0.5823 9.97(44) - 9.97(44)
12.0 0.5839 9.77(60) - 9.77(60)
16.0 0.5851 9.89(44) - 9.89(44)

400 cutoff 10.0 n.a -1.55(32) n.a. -1.55(32)
12.0 0.4467 0.30(36) 0.74 1.04(36)
16.0 0.4905 1.83(36) 0.85 2.68(36)

PPPM 10.0 0.5099 4.59(36) - 4.59(36)
12.0 0.5106 4.66(40) - 4.66(40)
16.0 0.5157 4.45(46) - 4.45(46)

Table 2.3: Simulated densities and surface tensions for the hexane system. Statistical
uncertainties are given in parentheses. (Modified reprint with permission
from Ref. [70])

The results are summarized in Table 2.3. The chosen cutoff radius has a strong influ-
ence on the results in simulations without a long-range dispersion solver. In contrast,
the results for the PPPM method show no dependence on the chosen cutoff radius.
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2.8 Increased performance by using long-range dispersion solvers

Our results for the PPPM algorithm are in good agreement with those from Ismail et
al. [45] in simulations with an Ewald sum for dispersion. This, and the fact that the
chosen cutoff does not influence the results, confirms the validity of our simulations
and the good choice of the Ewald and grid parameters. As can be seen from Figure
2.16, the simulation results when not using a long-range dispersion solver approach
those obtained with PPPM when increasing the cutoff. However, even those with a
cutoff of 16Å provide surface tensions and densities that are below those obtained
from PPPM simulations. The incorporation of long-range dispersion solvers is thus
especially important in systems in which dispersion interactions are dominant.
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Figure 2.16: Surface tensions and densities simulated when using PPPM or a plain
cutoff for dispersion. Results obtained when not using a long-range solver
strongly depend on the chosen cutoff and approach the results of the sim-
ulation with PPPM with increasing cutoff size. (Modified reprint with
permission from Ref. [70])

2.8 Increased performance by using long-range

dispersion solvers

As shown above, mesh-based Ewald summation methods combine the advantages of
the methods mentioned in Section 2.1: their accuracy can be tuned, they are applicable
to arbitrary periodic systems, and their O(N logN) scaling enables large-scale simu-
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lations. Moreover, mesh-based Ewald methods for dispersion interactions are similar
to their Coulomb interactions counterparts. Consequently, adding dispersion PPPM
solvers to codes that already include either the PPPM [34] or the PME [35,36] method
should be straightforward.
Many of the advantages of mesh-based dispersion solvers are obvious from theoretical

considerations. Despite that, relatively limited development of these solvers occurred
prior to this study [36, 49]. To some extent, the development of these solvers has
not been pushed forward earlier because homogeneous correction methods may be
applicable and because adding mesh-based Ewald methods to a code requires significant
effort although, as mentioned above, it is certainly manageable, especially if codes
already have a mesh-based Coulomb solver. The most pressing criticism of mesh-based
Ewald dispersion solvers is the belief that the required additional computations will
impose an unacceptably high computational overhead.
We show that the assumption that mesh-based dispersion solvers inevitably lead

to an increase in computing time is flawed, and that simulations with the PPPM
method for dispersion can actually be both faster and more accurate than using a
truncated potential. The performance gain compared to simulations in which dispersion
interactions are simply truncated emerges from the simulation cutoff becoming a tuning
parameter for long-range dispersion solvers.
In Section 2.8.1 we present the idea of using the cutoff as a tuning parameter. We also

show limits of the applicability of the cutoff as a parameter for tuning the efficiency and
provide a set of parameters for the PPPM method that leads to both accurate results
and efficient simulations. These parameters have been used in large-scale performance
tests described in Section 2.8.2. We show that simulations with the PPPM method for
dispersion can outperform simulations in which dispersion interactions are truncated.
We discuss our findings in Section 2.8.3.

2.8.1 Performance tuning with flexible choice of cutoffs

2.8.1.1 Theoretical considerations in the usage of smaller cutoffs

The error introduced by truncating the real-space term is related to the area of the real-
space potential beyond the cutoff. This error can be decreased by increasing either the
cutoff radius rc or the Ewald parameter βp, as indicated in Figure 2.17. This allows for
more flexible choice of cutoffs, since for any rc, the Ewald parameter can be adjusted
to achieve a given accuracy in the real-space computations. Because of the strong
influence of the cutoff on the computation time, smaller cutoffs facilitated by the use
of an Ewald method are a promising way to accelerate simulations.
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Figure 2.17: Schematic representation of the impact of the Ewald parameter β and
cutoff rc on the real-space error. The effect on the real-space error of
decreasing the cutoff rc from the left to the right image is counterbalanced
by increasing the Ewald parameter.

While a desired real-space accuracy can be obtained for any choice of the cutoff
radius rc by adjusting the Ewald parameter, there are two different reasons why there
is a lower bound for simulation cutoffs, even when using the Ewald method. First, as
the cutoff radius decreases, the Ewald parameter must increase to achieve the same
real-space accuracy [60,66]. Increasing the Ewald parameter, however, simultaneously
reduces the accuracy of the reciprocal-space calculations, which can be corrected by
increasing either the interpolation order or the number of grid points, both of which
increase the computation time. Below a certain cutoff threshold, the Ewald parameter
becomes so large that sufficient reciprocal-space accuracy cannot be achieved for any
reasonable choice of the number of grid points and interpolation order.

The second reason for a lower limit of the cutoff arises because nonbonded potentials
are usually composed of different terms. In such cases, the lower limit for the cutoff
is determined by the truncation error of the slowest-decaying potential for which no
long-range solver is applied. For example, consider the frequently used combination of
Coulomb and LJ interactions

unb,ij =
qiqj
rij
− Cij
r6
ij

+
Dij

r12
ij

, (2.78)

where qi and qj are the partial charges of particles i and j, rij is the distance between
them, and Cij = 4εijσ

6
ij and Dij = 4εijσ

12
ij are LJ coefficients. The need for includ-

ing a long-range solver for the Coulomb part of this potential is generally accepted.
When using a mesh-based Ewald solver, for any cutoff radius rc there exists an Ewald
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2 The PPPM for dispersion in theory and practice

parameter β1 that can achieve a desired accuracy for the real-space Coulomb term.
The error caused by truncating the LJ potential at rc, however, cannot be com-

pensated for if no long-range solver is used for the second and third terms in Equa-
tion (2.78). In this case, the r−6 dispersion term in Equation (2.78) controls the error.
As a consequence the lower value for acceptable cutoffs is typically in the range from
10Å to 14Å depending on the desired accuracy and the selected force field in simu-
lations of homogeneous systems or slightly inhomogeneous systems [27, 79, 80]. It is
worth mentioning that the trend in molecular simulations has largely been moving
towards using larger cutoffs [26]. The performance gain from using small cutoffs is
counterbalanced by the truncation error of the r−6 term.
If an Ewald-based solver is also applied to the r−6 dispersion term in Equation (2.78),

the rapidly decaying repulsive term (here r−12) becomes the slowest-decaying potential,
and its truncation error determines the lower limit of rc. This facilitates decreasing the
computation time by using smaller cutoffs without loss of accuracy. As shown below,
making the cutoff radius rc a tuning parameter when using a PPPM dispersion solver
can lead to a net increase in performance and accuracy compared to simulations in
which dispersion interactions are simply truncated.

2.8.1.2 Numerical tests with smaller cutoffs

We have performed a series of interfacial simulations with the OPLS-AA hexane [27]
system to determine the lower limits for the cutoff when using a long-range dispersion
solver. Except for the parameters for the long-range dispersion solver, simulations
were performed as in Section 2.6.1. For the dispersion interactions, we used real-space
cutoffs of rc ∈ {6, 7, 8, 9}Å. The uniform grid spacing and ranges of Ewald parameters
used in these simulations is given in Table 2.4. The cutoff for the repulsive part of the
LJ potential was equal to the cutoff used for the dispersion part.

rc [Å] h6 [Å] β6 [Å−1]
6 50/96 0.48 to 0.6
7 50/64 0.34 to 0.48
8 50/48 0.25 to 0.42
9 50/40 0.2 to 0.37

Table 2.4: PPPM parameters in simulations to find the lower bound for the cutoff.
(Reprinted with permission from Ref. [81])

The simulations were analyzed as described in Appendix A. The averages of the
computed densities are reported in Figure 2.18. The plotted error bars are twice the
computed standard error in the mean in each direction. Results from Section 2.6.1
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2.8 Increased performance by using long-range dispersion solvers

with a cutoff of 10Å are also included in the figure. Simulated densities are given as
a function of the average error in the forces. This error was determined from a single,
well-equilibrated configuration as described above.
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Figure 2.18: Simulated densities with different cutoffs rc for the LJ potential and differ-
ent Ewald parameters β6 as a function of the measured error in the forces.
Data for rc = 10Å was taken from Section 2.6.1. Results for rc = 6Å are
different from those obtained with larger cutoffs. (Modified reprint with
permission from Ref. [81])

Figure 2.18 shows that, as the accuracy of computed dispersion forces increases, the
simulated densities reach a plateau for each of the chosen cutoff radii. For cutoffs rc ∈
{7, 8, 9, 10}Å, this plateau is located at approximately 0.643 kg/L. For a cutoff radius
of rc = 6Å, however, the plateau is slightly higher at approximately 0.646 kg/L. The
increased simulated density arises because the particles feel significantly less repulsion
for this small cutoff, indicating that errors caused by truncating the repulsive part
of the LJ potential begin to affect the behavior of the system. For cutoffs rc ≥ 7Å,
however, simulated densities are indistinguishable from results obtained in simulations
with larger cutoff radii in the plateau region in Figure 2.18.
Errors in the forces ∆Frep that arise from truncating the repulsive potential have

been determined similar to Equation (2.69). For a cutoff of rc = 7Å the error is
approximately ∆Frep ≈ 0.00015 kcal mol−1 Å−1. For a cutoff of rc = 6Å, the measured
error is approximately ∆Frep ≈ 0.0009 kcal mol−1 Å−1. As the minimum possible cutoff
is determined from the maximum LJ diameter (σCC = 3.5Å in these simulations),
we deduce that cutoffs down to twice the maximum LJ diameter are applicable when
using long-range dispersion solvers without influencing the results by truncating the
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repulsion term.

2.8.1.3 Parameter selection for optimal accuracy and efficiency

In this section we present a set of parameters for PPPM for dispersion and briefly review
the employed methods for accelerating the simulations with which increased accuracy
and efficiency can be obtained. The proof that the techniques and parameters used
provide accurate results is given in this section, whereas the performance benefit is
demonstrated in Section 2.8.2.
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Figure 2.19: Splitting of a pair potential up without (left) and with rRESPA (right).
Without rRESPA, real- and reciprocal-space contributions are computed
with the same frequency. Using rRESPA it is possible to exploit the
less-rapidly changing interactions between particles at large separations
and compute this slowly changing part less frequently. Neither real- nor
reciprocal-space errors are affected by the different splitting approaches.
(Modified reprint with permission from Ref. [81])

As maximum performance for the reciprocal-space computations can be obtained
using ik or analytic (ad) differentiation depending on the simulations settings [66], we
provide parameters for both options. Self-force correction has been applied to Coulomb
and dispersion forces in simulations with ad differentiation [62]. To decrease the ef-
fort for the real-space computations we used the double-precision extraction method
of Wolff and Rudd [82]. Moreover, we have employed the reversible reference system
propagator algorithm [83] (rRESPA), which uses a different force splitting which re-
quires less frequent computation of the reciprocal-space forces (cf. Figure 2.19) [84].
Usage of rRESPA reduces the effort for the reciprocal space calculations by roughly
nr, the ratio of how often the fast-changing part of the potential is evaluated compared
to the slowly changing part. We carried out rRESPA simulations with nr = 4. The
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2.8 Increased performance by using long-range dispersion solvers

fast-changing part of the potential was smoothly shifted to zero between 6.5Å and
7.0Å and evaluated every femtosecond.

PPPM parameters for Coulomb and dispersion interactions were chosen such that
the simulation results are not influenced by inaccuracy in the PPPM method. Pa-
rameters for the Coulomb interactions were generated by applying LAMMPS routines
based on error estimates summarized in [60] to a bulk sample of water with a de-
sired accuracy of ∆F ≈ 0.03 kcal mol−1 Å−1. Dispersion parameters were chosen such
that, for the hexane system, the real-space error was ∆F ≈ 0.0002 kcal mol−1 Å−1,
which is the threshold above which the real-space error influences the simulation re-
sults. This can be seen from Figure 2.18, considering that with the PPPM parameters
used in Section 2.8.1.2 the real-space error is approximately equal to the total error at
the point where simulated densities start to decrease. The reciprocal-space error was
∆F ≈ 0.004 kcal mol−1 Å−1. This value for the required reciprocal-space accuracy for
dispersion interactions was chosen based on findings in Section 2.6.1 and is in good
agreement with recent findings by Wennberg et al. [48] The resulting parameters are
summarized in Table 2.5.

β1 [Å−1] h1 [Å] β6 [Å−1] h6 [Å]
rc [Å] ik ad ik ad ik & ad ik ad

7 0.373 0.375 1.3889 1.25 0.40 2.0 1.6667
8 0.328 0.324 1.5625 1.3889 0.33 2.5 2.0833
9 0.287 0.294 1.8519 1.3889 0.28 3.125 3.125
10 0.257 0.259 2.0833 1.6667 0.24 6.25 6.25

Table 2.5: Ewald parameter and grid spacing for PPPM validation simulations. The in-
terpolation order in the simulations was P = 5. (Reprinted with permission
from Ref. [81])

The parameters have been validated in a series of surface simulations of hexane
modeled with the OPLS-AA force field [27] and SPC/E [72] water. If not otherwise
explicitly stated, simulations were performed as described in Section 2.6.1. Results
of the validation simulations are given in Tables 2.6 and 2.7. For each parameter
combination, simulation results are within statistical uncertainties equal to results from
Sections 2.7.2 and 2.7.3. Hence, inaccuracy introduced by PPPM parameters or the
applied acceleration methods does not alter the simulation results and the performance
results reported below were run with PPPM parameters that ensure accurate physics.
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nr = 1 nr = 4
diff rc [Å] ρliq [kg/L] γ [mN/m] ρliq [kg/L] γ [mN/m]
ad 7 0.6427 (5) 16.40 (60) 0.6431 (8) 16.18 (60)

8 0.6428 (7) 16.57 (70) 0.6425 (6) 16.52 (60)
9 0.6428 (3) 16.22 (60) 0.6423 (3) 16.18 (60)
10 0.6443 (7) 16.23 (50) 0.6437 (5) 16.12 (50)

ik 7 0.6424 (7) 16.04 (50) 0.6428 (3) 16.27 (50)
8 0.6432 (3) 16.30 (50) 0.6426 (6) 16.09 (50)
9 0.6430 (8) 15.99 (60) 0.6423 (3) 16.18 (60)
10 0.6446 (4) 16.08 (60) 0.6438 (6) 16.26 (50)

Table 2.6: Surface tensions and liquid densities of hexane when exploiting all of the
methods to increase the efficiency mentioned in this section. (Modified
reprint with permission from Ref. [81])

nr = 1 nr = 4
diff rc [Å] ρliq [kg/L] γ [mN/m] ρliq [kg/L] γ [mN/m]
ad 7 0.9962 (3) 60.28 (100) 0.9955(4) 60.46 (90)

8 0.9958 (3) 60.94 (100) 0.9952 (2) 59.69 (90)
9 0.9956 (3) 60.78 (90) 0.9952 (3) 60.38 (90)
10 0.9954 (3) 60.05 (90) 0.9962 (2) 58.41 (90)

ik 7 0.9970 (3) 59.60 (90) 0.9962 (3) 59.49 (90)
8 0.9964 (3) 59.82 (90) 0.9956 (3) 60.68 (80)
9 0.9961 (4) 60.15 (80) 0.9955 (4) 60.20 (90)
10 0.9964 (4) 57.96 (80) 0.9956 (5) 58.71 (90)

Table 2.7: Surface tensions and liquid densities of SPC/E water when exploiting all of
the methods to increase the efficiency mentioned in this section. (Modified
reprint with permission from Ref. [81])

2.8.2 Performance simulations

We have performed a series of performance runs on the Vesta Blue Gene/Q system at
the Argonne Leadership Computing Facility. To show that our findings are transferable
to other architecture types, we performed similar performance tests on the SuperMUC
Sandy Bridge-EP processors at the Leibniz Rechenzentrum in Garching, Germany.
Performance simulations have been performed with the 22Mar13 version of LAMMPS.
The parallelization strategies for the parts of the code used here can be found in [84,85].

2.8.2.1 Simulation setup

We have chosen SPC/E water as the test case for our performance comparisons. The
model is widely known and used in the molecular simulation community. Furthermore,
it requires long-range Coulomb solvers, while also allowing use of long-range dispersion
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solvers. As discussed in Section 2.3, the performance of the latter is dependent on
the chosen mixing rule. To examine this effect simulations were run with routines
that compute long-range dispersion interactions for the popular combinations of the
Berthelot [86] mixing rule for energies

εij =
√
εiiεjj, (2.79)

with the Lorentz [87] and Good-Hope [88] mixing rules for the LJ σ-parameters:

σij =
σii+σjj

2
, (Lorentz) (2.80)

σij =
√
σiiσjj. (Good-Hope) (2.81)

Combinations of the Good-Hope and the Berthelot (GHB) rule are computationally
favorable because the dispersion coefficients Cij follow a geometric mixing rule. Per-
formance results reported below for this mixing rule are representative for all mixing
rules that provide geometric mixing of the dispersion coefficients [89,90].

To create an initial starting configuration, a small system of 666 SPC/E molecules
has been equilibrated in a cubic box with a volume of 20191Å3, which corresponds to
a density of approximately 1 kg/L. This system has been equilibrated for 20 ps in the
NV T ensemble at 300 K. Configurations for the performance simulations were obtained
by simply replicating the equilibrated system. Performance simulations were run for
1 ps.

We have performed a series of simulations with the PPPM method for dispersion and
with truncated potentials. Simulations using truncated potentials were performed with
cutoff radii of 10 and 12Å as these are typically used values for bulk phase simulations.
Simulations with the PPPM dispersion method were performed with cutoff radii of
7, 8, 9, and 10Å. As shown in Section 2.8.1.3, simulation results are independent of
cutoffs, provided the remaining parameters are chosen appropriately. These cutoffs
can therefore be considered as tuning parameters. All comparisons are between a
simulation using the PPPM method for dispersion to a simulation using a truncated
potential, with all other features and settings kept the same.

We performed weak-scaling and strong-scaling tests. In the weak-scaling tests, the
average number of particles per task (where the number of tasks is the number of MPI
tasks times the number of OpenMP threads per MPI task) was kept constant at 999.

On the BG/Q machine, the number of tasks in the weak-scaling test were 128,
1024, 8192, and 65536, corresponding to 127 872, 1 022 976, 8 183 808, and 65 470 464
particles. In strong-scaling tests, the overall number of particles was kept constant at
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127 872. The number of tasks were 128, 256, 512, 1024, and 2048. We also examined
the effect of maximizing the performance with hybrid parallelization. We have varied
the number of OpenMP threads per MPI task between 2, 4, and 8 for all simulations.
Additionally, we have performed all simulations with and without rRESPA. rRESPA
settings are as reported in Section 2.8.1.3.

Performance runs on SuperMUC were performed the same way as those on Vesta,
except that the number of OpenMP threads per MPI rank were 1, 2, and 4 in simu-
lations on SuperMUC. Furthermore, weak-scaling tests were performed with 16, 128,
1 024, and 8 192 tasks. Strong scaling tests were performed with 127 872 particles with
64, 128, 256, 512, 1 024, and 2 048 tasks; and with 15 984 particles with 16, 32, 64, 128,
and 256 tasks.

The PPPM parameters for Coulomb interactions were selected as described in Sec-
tion 2.8.1.3. Parameters for the PPPM method for dispersion interactions are almost
identical to those in Table 2.5. Slightly different values for the grid spacing were chosen
because the number of grid points in each direction is restricted to values that can be
factored by 2, 3, and 5. Analytic differentiation has been used in the performance
simulations. Evaluation of the pair potentials was accelerated using tabulation.

2.8.2.2 Results

In this section, we report simulation times for settings that provided maximum perfor-
mance for a given system and number of tasks. For simulations run without PPPM for
dispersion, results for rc = 10Å and rc = 12Å are reported because these are the most
frequently used cutoffs for dispersion terms in popular force fields. For simulations
with PPPM for dispersion, the cutoff is a tuning parameter and we therefore report
only the values that provide the fastest computations. Figures 2.20 and 2.21 show the
total simulation time of the performance runs as a function of the number of tasks for
the performance runs on Vesta and SuperMUC.

In simulations without rRESPA and with a fixed number of particles (cf. Fig-
ure 2.20a), fastest simulations were obtained when the PPPM method for dispersion
was used with the GHB mixing rule. Shorter simulation times were only obtained
without the long-range dispersion solver for systems with around 60 particles per task.
Simulations with PPPM for dispersion and the LB mixing rule usually outperformed
simulations without the PPPM method for dispersion and a cutoff of 12Å. Similar
behavior is observed in tests with an increasing number of particles, as shown in Fig-
ure 2.20b.

In simulations with rRESPA, the best performance in all test cases was achieved
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(c) strong-scaling, with rRESPA
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(d) weak-scaling, with rRESPA
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dispersion PPPM, LB rule

Figure 2.20: Performance of simulations that provided fastest computations for a given
number of particles and CPUs on Vesta. (Modified reprint with permission
from Ref. [81])

when using the PPPM method for dispersion with the GHB mixing rule. For the lowest
number of particles or the highest load of particles per core, the speed-up compared to
simulations with a truncated potential and a cutoff of 12Å is more than 40%. Even
the unfavorable LB mixing rule often provided a better performance than simulations
with a truncated potential cutoff of 10Å. The PPPM method for dispersion with the
LB mixing rule was outperformed by the simulations using a truncated potential and
a cutoff of 12Å only in the simulations of the largest system.

When moving towards larger numbers of particles or a larger number of processors,
larger cutoffs become more favorable, and the PPPM method for dispersion becomes
computationally less advantageous. These observations are related to the limitations
of parallel FFTs, which require data to be contiguous in one dimension and thus can be
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(b) With rRESPA, weak-scaling
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(c) No rRESPA, strong scaling, 15 984 parti-
cles
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(d) With rRESPA, strong scaling, 15 984 par-
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Figure 2.21: Performance of simulations that provided fastest computations for a given
number of particles and CPUs on the Sandy-Bridge architecture at Super-
MUC. (Modified reprint with permission from Ref. [81])
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parallelized only in two dimensions. They also require a redistribution of data before,
in between, and after individual parallelized transforms, leading to increased commu-
nication with more processors. For very large problems and a very large number of
processors it is faster to do the reciprocal-space calculation with a subset of communi-
cating processors via hybrid MPI–OpenMP parallelization or on a separate partition
of processors. At the very extreme scale a multigrid approach offers better scaling
behavior in exchange for a larger prefactor, but uses the same kind of short- versus
long-range split in the calculation of the interactions [32, 38]. We anticipate a similar
performance benefit by including long-range dispersion interactions for these solvers
with reduced short-ranged cutoffs, too. As PPPM for dispersion requires additional
FFTs and the number of grid points for the Coulomb interactions is larger when using
smaller cutoffs, the benefits and shortcomings of the FFTs dominate for simulations
with the long-range dispersion solver; exploring options to reduce the communication
overhead for these cases is thus of importance.

Trends of the simulation results on SuperMUC are similar to those that are observed
on Vesta. Important differences are (i) that the scaling behavior is better on Vesta
and (ii) that simulation results on SuperMUC are subject to stronger fluctuations. For
example, results in Figure 2.21f without PPPM for dispersion and a cutoff of rc = 12Å
with 512 tasks or with PPPM for dispersion and the LB mixing rule with 256 tasks
deviate from the general trend of the lines. Moreover, results in Figure 2.21b for
128 tasks, where the simulations with the LB rule are more efficient than simulations
with the GHB rule, can only be caused by noise in the results. These uncertainties in
the simulation results are almost certainly caused by the node selection policies on the
SuperMUC, which did not guarantee the same network configuration for different jobs
in our trials.1

2.8.3 Discussion

Whether the PPPM method for dispersion can be used to decrease the simulation time
depends on multiple factors, including the system size, the level of parallelization, the
employed mixing rule, the machine used for the simulations, as well as what cutoff
would be considered appropriate in simulations using a truncated potential. Moreover,
the use of rRESPA has an even stronger influence on the results. Therefore drawing
universally valid conclusions is difficult, yet it is possible to state that a performance

1In principle it is possible to obtain the same network configuration when this is specified in the
input scripts. According to the recommendations of the LRZ, we decided against that to shorten
the time that our simulations were pending.
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gain using a PPPM method for dispersion was achieved in most of the test cases
described here. This includes cases using the computationally unfavorable LB mixing
rule. Moreover, even when using a long-range dispersion solver did not lead to a better
performance, the disadvantage was not unaffordably large.
When comparing performance, we note that simulations with the PPPM method

for dispersion provide better accuracy than simulations without a long-range solver.
Especially for strongly inhomogeneous systems, much larger cutoffs (e.g., rc = 23Å
as suggested in [26]) are required to provide accurate results. Such large cutoffs are
much more expensive than any of the results reported in this study. Hence, the PPPM
method for dispersion substantially increases the accuracy with gains or, at worst,
minor losses in efficiency, depending upon the simulation settings. Its application can
therefore be advantageous even when the physics of a system do not seem to demand
the use of a long-range dispersion solver. We note that our approach is also applicable
to other dispersion potentials, such as force fields that use an r−7 term. However,
for force fields like the Born potential [91, 92] that contain multiple dispersion terms
(such as linear combinations of r−6, r−8, and r−10), the technique will become less
advantageous because each term requires a separate reciprocal-space computation.
For a given simulation, one must consider not only how including the long-range dis-

persion solvers affects the efficiency, but also how the physical behavior of simulations
changes and whether this change is desirable. The physical nature of dispersion is not
a simple decay to zero beyond the cutoff. However, many force fields truncate disper-
sion interactions for computational reasons. The parameters in those force fields are
thus partly designed to compensate for errors caused by truncation of the dispersion
potential at the cutoff. Applying a long-range dispersion solver thus usually means
that the force field is used differently than intended.
Whether this alternate usage is acceptable or even desired depends on the simulation

and the force field. As described in Section 2.1, the need for long-range dispersion
interactions is generally accepted in strongly inhomogeneous simulations, which is why
the deviation from the parameterization settings of the force field is of interest here.
For force fields whose dispersion coefficients were not determined from fitting but,
for example, from ab initio calculations, using long-range dispersion solvers is also
beneficial. For force fields that have been parameterized either using a large cutoff (such
as GROMOS96 [80] with a cutoff of 14Å) or small cutoffs with long-range corrections,
such as OPLS-AA [27] or TraPPE [79], the difference in obtained physical results might
be sufficiently small that the decision whether to use a PPPMmethod for dispersion can
be made solely by focusing on the performance. These considerations are in agreement
with recent results by Wennberg et al. [48]. For force fields designed to be used with
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small cutoffs and without long-range corrections, the differences in simulation results
are expected to be relatively large. A long-range solver may not be advantageous under
such conditions.
Optimal results will be achieved, however, when the solver is used together with a

force field parameterized taking long-range dispersion interactions into account. As
the use of PPPM for dispersion facilitates simulations that are more accurate and
more efficient, we suggest that future force-field development should take long-range
dispersion interactions into account alongside long-range Coulomb interactions.

2.9 Interlacing vs. non-interlacing for dispersion in

practice

It has been shown in several articles that interlacing can provide higher accuracy for
given PPPM parameters and therefor has the potential to provide more efficient sim-
ulations for a desired accuracy [63,69,93]. This potential gain is also suggested by our
results in Section 2.5. This finding is true, however, only for a certain parameter and
accuracy domain. Whether a speedup can be observed in practical applications will
thus depend on whether parameters providing optimal performance at the required
accuracy are in the parameter domain where the interlaced algorithm is superior. In
this section we present a parametric study with an atomistic LJ system in which we
address this issue.
The simulation setup is similar to that in Section 2.7.1, with the difference that

we examined different sets of parameters for PPPM for dispersion. We use interpo-
lation order P = 5, ad differentiation, use cutoffs of rc ∈ {2.5, 3.0, 3.5, 4.0}σ with
corresponding Ewald parameters of β6 ∈ {1.18, 0.9, 0.7, 0.56}σ−1 to ensure that all
simulations are run at approximately the real-space accuracy of ∆Freal = 0.001ε/σ

that was found to provide accurate physical results, and with grid points in x direction
nx ∈ {2, 4, 8, 12, 16} whereat the grid spacing was equal in each Cartesian dimension
and was approximately h ∈ {5.5, 2.75, 1.38, 0.92, 0.69}σ. The chosen temperature is
0.8 ε/kB. Surface tensions and liquid densities were determined as described in Ap-
pendix A, with instantaneous surface tensions computed every timestep and particle
coordinates stored every 1000 timesteps to compute liquid densities. The force error
was measured by comparison of a single well-equilibrated snapshot of the simulation to
results obtained with very accurate computations. Single-core timings were obtained
similar to Section 2.5.3 with the difference that the computations were performed on
a single core of a Intel Westmere processor @ 3.07GHz.
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The physical results, force errors, and the timing data from our simulations are shown
in Table 2.8. With decreasing force error, surface tensions and liquid densities converge
to ρliq ≈ 0.796 ± 0.0005σ−3 and γ ≈ 0.93 ± 0.01εσ−2. Simulations run with sufficient
accuracy to provide results in agreement with this high-accuracy limit are printed with
bold font. Both the interlaced and non-interlaced algorithm converge to these limits
with increasing accuracy, which shows that both algorithms provide accurate results
when parameters are selected appropriately.
The maximum force error below which the high accuracy limit is reached in the

simulated data varies between the different cutoffs an PPPM variants. For example,
we observe a highly inaccurate simulated surface tension for the normal PPPM with
rc = 4σ and h = 5.5σ−1 with a reciprocal space accuracy of 0.0263 ε/σ whereas accurate
results are observed for the interlaced version with rc = 3.5σ and h = 2.75σ−1 and
a higher reciprocal-space error of 0.0504 ε/σ. For reciprocal-space force errors below
0.01 ε/σ, results have converged to the high-accuracy limit for all simulations.
The overall best performance at sufficient accuracy to obtain accurate physical results

was obtained with the non-interlaced version of the algorithm with rc = 3σ and h =

1.38σ−1 with a computation time tstep of approximately 12ms per timestep. The best
performance with the interlaced version of the algorithm that provided correct physical
results of the system was obtained with rc = 3σ and h = 1.38σ−1 with a computation
time of approximately 18ms per timestep, or approximately 50% slower. The non-
interlaced version of the algorithm thus strongly outperforms the interlaced version for
the test case reported here. It should be noted that the non-interlaced version of the
algorithm is also superior to the interlaced version when comparing each selected cutoff
separately. Similar tests were performed with interpolation orders P = 3 and P = 4

and the ik differentiation. Results with these settings showed the same trends as those
reported here.
Before concluding this section we briefly comment on the choice of optimal simu-

lation parameters that provide maximum efficiency while providing accurate results.
When, for example, randomly selecting the cutoff value as rc = 2.5σ, the best achieved
performance is approximately a factor of two smaller than what can be obtained with
the improved choice for the cutoff of rc = 3.0σ. Tools that can generate optimal pa-
rameters to avoid pitfalls like the one just mentioned can thus be highly beneficial and
are eagerly desired.
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rc [σ] solver h [σ] ρliq [σ−3] γ [ε/σ2] ∆Freciprocal [ε/σ] tstep [ms]
2.5 normal 5.5 0.8965(397) 15.076(30) 1.73×100 9.66(5)

2.75 0.8519(534) 7.751(26) 1.64×100 9.82(9)
1.38 0.8099(80) 1.823(26) 8.36×10−1 11.17(15)
0.92 0.8044(38) 1.510(27) 2.69×10−1 14.35(9)
0.69 0.7980(6) 0.945(29) 7.53×10−2 20.00(10)

interlaced 5.5 0.8119(12) 0.680(27) 1.72×100 13.49(20)
2.75 0.8113(4) 0.874(27) 1.55×100 13.75(5)
1.38 0.8041(4) 1.014(25) 6.16×10−1 16.08(16)
0.92 0.7992(3) 0.976(25) 1.12×10−1 16.03(7)
0.69 0.7972(8) 0.947(25) 5.90×10−3 30.58(24)

3.0 normal 5.5 0.8415(488) 6.858(30) 4.03×10−1 11.97(9)
2.75 0.8132(81) 3.010(27) 3.30×10−1 11.97(5)
1.38 0.7969(4) 0.941(28) 9.92×10−2 12.01(8)
0.92 0.7934(68) 0.950(29) 1.91×10−2 14.08(10)
0.69 0.7966(13) 0.918(26) 3.71×10−3 19.74(17)

interlaced 5.5 0.7988(7) 0.746(27) 3.95×10−1 15.50(20)
2.75 0.7993(6) 0.878(28) 2.86×10−1 15.96(8)
1.38 0.7971(12) 0.933(29) 5.14×10−2 18.32(5)
0.92 0.7966(7) 0.959(29) 1.82×10−3 18.38(7)
0.69 0.7963(2) 0.946(26) 2.96×10−4 32.90(33)

3.5 normal 5.5 0.8072(316) 15.689(27) 1.02×10−1 14.97(6)
2.75 0.8007(39) 1.383(26) 6.83×10−2 15.09(11)
1.38 0.7966(11) 0.917(27) 1.04×10−2 16.59(15)
0.92 0.7966(6) 0.944(26) 1.24×10−3 19.80(10)
0.69 0.7960(7) 0.943(26) 2.26×10−4 25.43(19)

interlaced 5.5 0.7961(8) 0.823(25) 9.66×10−2 18.78(22)
2.75 0.7971(10) 0.919(26) 5.04×10−2 19.17(14)
1.38 0.7961(11) 0.934(25) 2.62×10−3 21.44(8)
0.92 0.7964(5) 0.951(26) 8.96×10−5 21.51(34)
0.69 0.7964(8) 0.948(25) 9.72×10−6 36.08(51)

4.0 normal 5.5 0.8280(577) 5.515(27) 2.63×10−2 18.95(11)
2.75 0.7960(9) 0.929(27) 1.30×10−2 19.00(10)
1.38 0.7956(9) 0.936(26) 8.90×10−4 20.51(18)
0.92 0.7958(16) 0.936(26) 8.27×10−5 23.63(12)
0.69 0.7962(6) 0.904(24) 1.77×10−5 29.46(21)

interlaced 5.5 0.7958(8) 0.875(26) 2.34×10−2 22.65(19)
2.75 0.7957(3) 0.911(24) 7.23×10−3 22.92(7)
1.38 0.7955(5) 0.930(26) 2.69×10−5 25.30(15)
0.92 0.7953(6) 0.918(27) 4.07×10−6 25.31(11)
0.69 0.7957(10) 0.933(26) 7.44×10−7 40.06(46)

Table 2.8: Liquid densities, surface tensions, reciprocal-space errors and single-core
timings for the LJ system. Simulations that provide corrected physical re-
sults are printed bold. Among those, the fastest computations were obtained
with non-interlaced PPPM.
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2.10 Summary

In this chapter we present the development of a PPPM algorithm for computing long-
ranged dispersion interactions, which included a description of the algorithm, error
estimates, and a couple of numerical tests that highlight the features of the algorithm
and the error estimates. We furthermore perform a series of tests in which the utiliza-
tion of the PPPM method in practice is examined.

An important finding confirmed by numerical studies and theoretical considerations
is that for the dispersion PPPM algorithm, the real-space error has a stronger impact
on physical results than the reciprocal-space error. Parameters for the algorithm must
thus be chosen such that the real-space error is considerably smaller than the reciprocal-
space error to obtain simulations that are both accurate and efficient. This is the major
difference to PPPM for Coulomb interactions, where the choice of parameters is optimal
when parameters are selected such that the real- and reciprocal-space errors are equal.

The effect of including long-range dispersion interactions on physical results versus
simply truncating dispersion interactions was examined for a model LJ system as well as
for the realistic systems of water, in which Coulomb interactions dominate, and hexane,
in which dispersion interactions dominate. In systems in which Coulomb interactions
dominate, the effect on the physical behavior of truncating the dispersion potential was
rather weak. The inclusion of long-range dispersion interactions for these systems is
important either when very accurate physical results are required, or when a posteriori
corrections are not applicable. For systems in which dispersion interactions dominate,
truncation of the pair potentials has strong effects on the results. The inclusion of
long-range dispersion solvers is beneficial for these systems even when only moderate
accuracy is required.

Because the effect of the cutoff on the physical results is eliminated when using
PPPM for dispersion, as long as the cutoff is not chosen so small that truncation
of the repulsive potentials starts to influence the results, the cutoff is no longer a
parameter to tune the accuracy of the simulations and influence the physical results,
but a parameter to tune the efficiency. It was shown that exploiting this feature of
PPPM for dispersion can lead to simulations that are not only more accurate but also
more efficient than those that use a simple truncation of dispersion interactions. This
finding disproves the frequently raised argument against PPPM for dispersion solver
that the gain in accuracy is unaffordable because of the increased computational cost.
Because simulations using PPPM for dispersion are not only more accurate but also
faster than simulations in which dispersion is simply truncated, incorporation of long-
range dispersion interactions is also beneficial in simulations where it is not required
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from the physics of the system.
Finally, we test the interlaced version of the algorithm. We confirm that this modi-

fication can increase the efficiency for high accuracy. For the test case considered here,
however, using the interlaced algorithm was not beneficial in practical applications
because moderate accuracy, at which the non-interlaced PPPM method is faster, was
sufficient to obtain accurate physical results.
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3 The molecular mechanism of
superspreading

3.1 Literature review and motivation

Superspreading is the ultra-rapid wetting of aqueous droplets on hydrophobic sub-
strates facilitated by trisiloxane surfactants. The phenomenon is characterized by
ultra-fast wetting dynamics and final contact angles that are too small to be mea-
sured. The effect depends on the substrate hydrophobicity, the chain lengths of the
hydrophilic tail, and the surfactant concentration. Superspreading is maximized for
intermediate values of all of these factors and vanishes if any of these factors deviate
too far from its optimum. Of particular interest for the surfactant concentration is
that maximal spreading rates are achieved just below a bulk-phase transition from
surfactant vesicles to lamellar phases. Because of its relevance in fundamental physics
and technical applications, there have been numerous studies on this phenomenon in
the last 20 years. Yet, it is still not understood how or why trisiloxane surfactants
facilitate superspreading [3, 10,18,94–98].
Spreading dynamics of droplets can often be described by a power law,

r ∝ tα, (3.1)

where r is the base radius of the droplet, t is the time, and α is the spreading exponent
characterizing the spreading regime. The exponent α results from a balance of driving
and refraining forces and depends on the underlying physics [10]. For small droplets,
the driving force is typically differences in surface free energies, whereas the refraining
force can vary. After depositing a droplet on a substrate, the spreading passes through
different regimes. Right after deposition, the refraining force is inertia; the spread-
ing exponent in this regime is 1/5 ≤ α ≤ 1/2 [99]. After some characteristic time
that depends on the droplet size and fluid properties, the spreading decelerates. The
refraining force in this regime is viscous dissipation at the contact line. Lubrication the-
ory and the no-slip boundary condition between the substrate and the droplet predict
the Huh–Scriven paradox of logarithmically diverging viscous dissipation at wedge-like
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shaped contact lines [10,12]. Obviously, the approximations have to break down at the
contact line because such a result is in conflict with the observed spreading of droplets.
However, this finding illustrates why the region in the vicinity of the contact line is
important for the viscous spreading regime.
Various models have been proposed to overcome the singularity at the contact line,

the most commonly used of which are the hydrodynamic model (HDM) and molecu-
lar kinetic theory (MKT). In the HDM, singularities at the contact line are avoided
by allowing slip [10, 11]. In MKT, contact-line motion is described via molecular
jumps [100]. The models predict different spreading exponents: HDM and MKT pre-
dict α3D,HDM = 1/10 and α3D,MKT = 1/7 in three dimensions, and α2D,HDM = 1/7

and α2D,MKT = 1/5 in two dimensions. The 3D spreading exponent for the HDM cor-
responds to the most frequently observed spreading exponent and matches “Tanner’s
law” [10,17].
Recently, Wang et al. [101] showed that aqueous solutions of trisiloxane surfactants

on hydrophobic substrates pass through the regimes described above. They observed
two major differences between superspreading and non-superspreading solutions of
trisiloxane surfactants. First, in the viscous spreading regime, the spreading exponent
of the non-superspreading surfactants agreed with Tanner’s law for α ≈ 1/10. For the
superspreading surfactant, the spreading exponent was slightly larger, with a value of
α ≈ 1/7. The authors concluded that the HDM describes non-superspreading wetting
well, while the underlying mechanism for superspreading is closer to the MKT. Sec-
ond, while spreading remained in the viscous regime for the non-superspreading surfac-
tant, the superspreading droplet entered a third spreading regime, the superspreading
regime. In their study, spreading exponents in this regime were 0.25 / α / 0.5. Other
authors have measured similar or larger spreading exponents for this regime [102].
Numerous hypotheses have been published attempting to explain the superspreading

mechanism [102–108]. Apart from the theory of Kabalnov [104], which attributes
superspreading to large negative spreading coefficients facilitated by vesicle formation,
the contact-line region of the droplet is commonly considered crucial for superspreading.
Specifically, hypotheses or models that explain superspreading are based on various
assumptions: for instance, that vesicles unzip at the contact line [103], that a thick
precursor stabilized by vesicles is formed [105], that surfactants diffuse rapidly to the
three phase contact line from the bulk [102], that surfactants adsorb directly from the
liquid–vapor interface to the solid–liquid interface [107], or that surfactants form a
bilayer that precedes the droplet [108].
For most of these theories, it is unclear how exactly the hindrance of rapid spreading

because of extreme viscous dissipation at the contact line should be resolved. How-
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ever, Karapetsas et al. [107] showed in computational fluid dynamics simulations that
the extreme dissipation can be overcome and superspreading can occur if Marangoni
stresses arise and are maintained during spreading. In their study Marangoni stresses
and surfactant concentrations gradients resulted from surfactants being both soluble
and being able to adsorb directly through the contact line from the liquid surface to
the solid–liquid interface. The solubility of trisiloxane surfactants is well-known, but
it is unclear how the direct adsorption through the contact line works; formation of a
bilayer ahead of the droplet was hypothesized. The study proves that superspreading
can be facilitated by Marangoni stresses but does not provide evidence for how these
stresses develop and are maintained. The underlying molecular mechanisms remain
subject to speculation.
As suggested by Maldarelli [109], MD simulations are required to further understand

the superspreading phenomenon. Indeed, there have already been several MD simula-
tions related to surfactant enhanced spreading and superspreading in particular. As
part of a larger study Nikolov et al. [110] presented simulations with a trisiloxane sur-
factant at the air–water interface. They find that the head group of the trisiloxane has
a very compact shape and related this to superspreading. Visualization of their results,
however, suggests that the hydrophilic tail of their surfactant was stretched, whereas
it is known from experiment that the tail has a helical configuration in water [111],
indicating that the employed model is inaccurate. McNamara et al. [112] performed
simulations with simple model molecules, finding that linear surfactants can enhance
wetting, especially when there are strong interactions between the substrate and the
hydrophobic part of the surfactant. This finding is also confirmed in a study by Kim
et al. [113]. In a simulation study with stronger connection to superspreading by Shen
et al. [114], the influence of the shape of the surfactant, such as linear or T-shaped
(as in trisiloxanes), has been compared using model LJ surfactants. It was found
that T-shaped surfactants lead to faster spreading rates and smaller final contact an-
gles. Moreover, it was found that under certain conditions T-shaped surfactants can
promote bilayer formation. Finally, Halverson et al. [115] have performed MD simu-
lations of spreading droplets with more complex, realistic models. While simulations
with alkyl ethoxylate surfactants showed behavior in agreement with experiment, the
trisiloxane-laden droplet did not spread. It later turned out that realistic behavior
of the simulations was hindered by the trisiloxane model, which failed to reproduce
adequately the strong reduction in the surface tension of water caused by trisiloxane
surfactants [116].
While the application of MD to directly observe the superspreading effect is not

promising, because the effect possibly involves macroscopic phenomena, i.e., surfactant

70



3.1 Literature review and motivation

concentration gradients at the interfaces and flows driven by the resulting Marangoni
stresses, MD has the potential to observe the molecular mechanisms that underlie the
mechanism. The identification of these mechanisms is the primary target of the work
described in this chapter.

To better understand superspreading using MD simulations, more realistic and re-
liable surfactant force fields are required. We first present an atomistic model suit-
able for studying superspreading. This model contains parameters to describe alkane,
perfluoroalkane, dimethylsiloxane, and poly(ethylene oxide) chains and their interac-
tions with water. It thus contains all building blocks that are required to model sur-
factant laden water droplets and polymeric substrates. The model parameters are
modifications of existing quantum chemistry-based models of the aforementioned poly-
mers [53,54,117,118]. These models have been optimized for use with the TIP4P/2005
water model [119], which is especially suitable for use in interfacial systems because of
its accurate representation of interfacial properties, such as surface tension [120]. The
model is then used in simulations of surfactants at the water interface to validate the
model and assess its potential application to spreading simulations.

Finally, we perform large-scale MD simulations of water droplets laden with different
trisiloxane and alkyl ethoxylate surfactants on various substrates. We cover different
conditions that correspond to superspreading and non-superspreading scenarios in ex-
periment. Specifically we cover substrates from too hydrophilic to too hydrophobic and
surfactants from too short to too long, an intermediate state in which superspreading
occurs in experiment, and a reference simulation with alkyl ethoxylate surfactants. We
report a smooth contact-line transition at superspreading conditions similar to that ob-
served by McNamara et al. [112]. The relation of this mechanism to the Huh–Scriven
paradox [12] is briefly addressed and the relevance to superspreading is discussed. The
observed mechanism complements the simulation study by Karapetsas et al. [107] and
allows plausible explanations for the complex behavior of the superspreading mecha-
nism on the surface energy of the substrate and the the size of the surfactants.

The remainder of this chapter is structured as follows. Section 3.2 covers the force
field development and validation with model compounds and surfactants at the water
interfaces. The spreading simulations are described in Section 3.3. We offer concluding
remarks in Section 3.4.
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3 The molecular mechanism of superspreading

3.2 Molecular modeling of surfactant mixtures

3.2.1 Modeling depth and initial potentials

There are several requirements for a good force field for a given application. First,
all relevant physical properties should be reproduced with sufficient accuracy. For the
problem considered here, this includes the surface tensions of the simulated materials,
as surface tension is the driving force in droplet spreading. For superspreading it is un-
clear which additional properties are most influential. As described in the Section 3.1,
the phase behavior of the surfactant in aqueous solutions might play a dominant role.
Additionally, the influence of the surfactants on the bending rigidity of the droplet
could influence the spreading. Moreover, more subtle features, such as the extraor-
dinary flexibility of the Si-O-Si angle, might play an important role and should be
captured well. In addition, a good force field should be consistent, which means that
simply combining existing models can lead to inaccurate results, as observed in [121].
Finally, the model must be computationally simple enough to allow its application to
the intended problem.

The systems relevant in this study typically require a moderately large number of
particles. Even the interfacial simulations presented in Section 3.2.6 already consist of
around 30 000 to 40 000 atoms, and the simulations of spreading droplets in Section 3.3
have more than 300 000 atoms. Computationally costly models, like ab initio models,
are thus infeasible. Polarizable models [122,123] are computationally less intensive, but
still demanding. For water surfaces that do not contain ions or highly polar moieties,
or are close to anisotropic environments, such as those considered here, the gain in
accuracy by using polarizable models compared to nonpolarizable models is small [123–
126]. Because the expected gain in accuracy is small and the model should be applicable
in simulations with a large number of particles, we use nonpolarizable models with a
slight loss of accuracy in favor of the massive gain in computational efficiency.

At the other end of the complexity scale are coarse-grained (CG) models. At that
level, there has already been very successful work in the development of force fields
for surfactant–water interactions [127–131]. However, we have several concerns about
applying CG models to the problem considered here. First, CG models are usually ded-
icated for a special purpose, so properties not targeted in the development process are
usually not reproduced well. Since neither the properties which enable superspreading,
nor the mechanism itself are clear, starting with a CG model seems unwise. Moreover,
CG models do not provide atomistic detail, which complicates the simultaneous accu-
rate representation of multiple features, such as the flexibility of the Si-O-Si angle and
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the bulkiness of the trisiloxane head group. Finally, the starting point for the devel-
opment of CG models are typically atomistic models. Thus, reliable atomistic models
must be available before we can construct CG models [132].
From the considerations above, a non-polarizable atomistic model appears the proper

starting point. Before proceeding to the surfactant model, we first address the choice
of water model. For spreading, an important criterion is a model’s ability to reproduce
the high surface tension of water. Unfortunately, most popular, non-polarizable water
models such as TIP3P, TIP4P [133], and SPC/E [72], consistently underestimate the
surface tension. For example, deviations from experiment are more than 10% for
SPC/E and almost 30% for TIP3P at 300 K [120]. The only currently available generic
model whose surface tension agrees well with experiment is the TIP4P/2005 model
[119], which can also reproduce well a number of other properties [120]. Hence, we
select the TIP4P/2005 water model for our simulations.
To build the trisiloxane surfactant molecule we follow the typical approach of assem-

bling it from molecular building blocks. The most popular generic models from which
such building blocks can be obtained have been designed for biomolecular simulations,
such as OPLS [27], GROMOS [134], CHARMM [135], and AMBER [136], or phase
equilibria, such as TraPPE [79]. While the former are typically optimized for use with
a given water model, the latter typically do not contain water. Since the dedicated
water model cannot easily be replaced by TIP4P/2005, such force fields cannot be used
for our simulations without intensive testing. Another problem related to these force
fields is that they typically do not contain parameters to describe dimethylsiloxanes,
which is a necessity for superspreading. In principle, one could combine a generic
model with a specialized dimethylsiloxane model, such as those of Sun et al. [137] or
Frischknecht et al. [138], but this is the approach already tried by Halverson et al. [115]
without success. Moreover, these specialized models also might not work well with the
TIP4P/2005 model.
The models that meet our requirements best are quantum chemistry-based models for

polyalkene [53], poly(ethylene oxide) (PEO) [117], polytetrafluoroethylene (PTFE) [54],
and polydimethylsiloxane (PDMS) [118]. Although these force fields are seemingly in-
dependent, the interactions of these force fields have been determined using similar
quantum-chemistry methods and have not been determined from empirical fits, indi-
cating that they should be transferable. Furthermore, the alkane force field of [53] was
used to generate the force fields in [54,117,118]. Finally, the potentials and parameters
are consistent throughout these force fields: for instance, the parameters for the van
der Waals (vdW) interactions for C, H, and O atoms are the same across all the force
fields.
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To fully satisfy our needs, we made three modifications to these models. First, our
developed force field is intended for interfacial simulations in which the application
of long-range dispersion solvers is required to obtain accurate physical behavior, as
discussed in Chapter 2. Because maximum efficiency in simulations with long-range
solvers is achieved if dispersion coefficients follow a geometric mixing rule, coefficients
of the original force field were reparameterized such that this condition is met. Theo-
retical arguments justifying our modifications are presented in Section 3.2.3.1. Next,
the model was extended to work well with the TIP4P/2005 water model. Finally,
for surfactants and copolymers composed of different parts of these polymers, a few
bonded interactions close to the linking points not available in the literature were
parameterized.

3.2.2 Functional form

The functional form of the force field is only briefly presented here. In particular,
we describe the treatment of vdW interactions, because these were the parameters
requiring most modifications. The original force field for the polymers [53,54,117,118]
that we are modifying describes vdW interactions with a Buckingham potential

UBuck = A exp(−Br)− C6

r6
, (3.2)

where r is the distance between two particles and A, B, and C6 are coefficients to
describe the interactions. The TIP4P/2005 model uses the LJ potential

ULJ =
C12

r12
− C6

r6
, (3.3)

where the coefficient C12 describes the repulsive interactions.
In the developed model, the interactions between water and non-water molecules have

been modeled using LJ potentials. To ensure optimal performance, the C6 coefficients
were obtained from the geometric mixing rule

C6,ij =
√
C6,iiC6,jj, (3.4)

where the indices i and j refer to particles of different types. As discussed below,
there was a scenario in which we discarded the use of this mixing rule. However, the
final optimized force field obeys geometric mixing for all dispersion coefficients. Aside
from vdW interactions, the model uses fixed partial charges, bond, angle, and dihedral
potentials. The complete model is given in Appendix B.
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3.2.3 Fitting procedure

3.2.3.1 Nonbonded surfactant interactions

In this section we describe the modifications to the original polymer models result-
ing from enforcing geometric mixing rules on the C6 dispersion coefficients for better
compatibility with long-range dispersion solvers. We show that our modifications are
minor and do not violate the methods applied in the original development. The repa-
rameterization of these coefficients is justified for several reasons. First, the repulsive
and attractive parts of the Buckingham potential have been determined independently
for the polymer force fields that we are modifying [53, 54, 117, 118]. Second, the de-
viation from the geometric mixing rule is usually very small (except for C-F interac-
tions). Moreover, determining the dispersion coefficients is the most challenging part
in quantum chemistry-based force field development [117]; dispersion coefficients are
thus subject to the largest uncertainties. In addition, geometric mixing for dispersion
coefficients has also been enforced in parts of the original force fields [118].

For PDMS, no modifications were needed, as geometric mixing rules were already
fulfilled. For PEO and PE, deviations from geometric mixing were very small, so geo-
metric mixing was enforced for these compounds. For PTFE, the deviation from the
mixing rule for interactions between C and F atoms was strong. To avoid inconsisten-
cies between the C-C interactions in this and other models, the F-F and C-F dispersion
coefficients were reparameterized as follows: two CF4 molecules were repeatedly placed
in random configurations. The F-F and C-F dispersion coefficients were reparameter-
ized to ensure optimum agreement between the potential energy of the original and new
models while obeying the geometric mixing rule. Afterwards, dispersion interactions
were scaled to reproduce experimental quantities of surface tension, liquid density, and
heat of vaporization of the model molecules hexane, dimethoxyethane (DME), and
perfluorohexane. The scaling was required because all deviations from the geometric
mixing rule in the original polymer force fields were such that the coefficients between
unlike elements was larger than what would be obtained from the mixing rule. Thus,
the enforced mixing reduced the net attraction between the molecules. This effect was
counterbalanced by the applied scaling. Similar scaling has already been applied by
the developers of the original polymer models in [117] to compensate for not using
polarizability.

The repulsive part of the Buckingham potential was not parametrized for F-Si, F-O,
and F-H interactions in the original force field. Here we use the Mason-Rice mixing
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rule [139]

Aij =
√
AiAj (3.5)

Bij =
Bi +Bj

2
(3.6)

to describe the missing parameters. This mixing rule has also been applied in parts of
the original models [118].

3.2.3.2 Surfactant–water interactions

The usual approach in force field development is to start with the simplest type of
interactions, constrain the optimized parameters, and then move to more complex
systems. This would suggest to start the polymer-water parameterization with alkane–
water mixtures. Here, however, we follow a different approach and fit the PEO–water
interactions first. The other compounds considered here mix poorly with water, so there
is little experimental data available. Moreover, the proper description of PEO–water
interactions can be quite challenging [121,140–143] and should therefore be addressed
first.

Suitable parameters for the PEO–water interactions were determined from compu-
tations with DME and water. To fit the interactions, we follow three approaches. In
the first approach, labeled as I, we fit the DME–TIP4P/2005 potential to a quantum
chemistry-based potential for the DME–TIP4P model [140]. In that work, the DME–
TIP4P interactions were fit to a series of different DME–water dimer configurations.
Instead of redoing the quantum-chemistry computations, we fit the DME–TIP4P/2005
interactions to the original DME–TIP4P force field for a similar set of configurations
of the DME–water dimer, so that the DME–water interactions are indirectly fit to
quantum-chemistry computations. We also dropped the requirement of geometric mix-
ing for the dispersion coefficients, because the quantum-chemistry data could not be
reproduced otherwise.

In the second approach, labeled as II, we fitted LJ potentials to the Buckingham
potential of the original force field, and defined the interaction parameters with water by
applying standard Lorentz-Berthelot mixing rules to the fitted potential, as suggested
by Ismail et al. [144]. In the third approach, labeled as III, we have simulated a
series of DME–water mixtures with mole fraction xDME ≈ 0.18. The parameters were
fit to reproduce experimental values for the liquid density and viscosity. During the
iterative fitting the radial distribution function was monitored to avoid demixing. In
this approach, we applied geometric mixing for the dispersion coefficients. The LJ

76



3.2 Molecular modeling of surfactant mixtures

parameters for the interactions between the TIP4P/2005 hydrogens and the polymer
compounds were set to zero in all three approaches.

In the next step, the LJ parameters describing the interaction between water and the
polymeric compounds for the C, O, and H atoms were constrained. The remaining Si–
water and F–water interactions were parametrized to match experimental values for the
octamethyltrisiloxane (OMTS)–water and perfluorohexane–water interfacial tensions.

3.2.3.3 Partial charges and bonded surfactant interactions

The polyalkene, PDMS, PEO, and PTFE force fields were developed and published
separately [53, 54, 117, 118]. Consequently, parameters describing links between the
models are missing. Here we describe how these parameters were determined for the
surfactants studied here.

Figure 3.1: Alkyl ethoxylate (left), trisiloxane (center), and perfluoroalkane (right) sur-
factants. The hydrophilic part is the same for all surfactants. The encircled
atoms were selected as “central” atoms of the surfactant for purposes of mea-
suring the surface coverage and diffusion of the surfactants in Section 3.2.6.
(Reprinted with permission from Ref. [145])

For the trisiloxane surfactant, depicted in Figure 3.1, several partial charges for the
linker between the hydrophobic OMTS head group and the hydrophilic PEO head
group were not available. The redefined parameters are the charges of the three CH2

groups that link the central Si atom to the first O atom of the PEO chain. Moreover,
parameters for the Si-C-C angle and the C-Si-C-C, O-Si-C-C, Si-C-C-C, Si-C-C-H, and
O-C-C-C dihedral angles were not available in the literature. The missing parame-
ters were determined from quantum-chemistry computations of a small version of the
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Figure 3.2: Symmetric (left) and unsymmetric (right) conformer of the trisiloxane sur-
factant. Bright gray: hydrogen atoms; dark grey: carbon atoms; red: oxy-
gen atoms; dark teal: silicon atoms. In the lower images the surfactants
have been rotated such that the differences in the head group are high-
lighted. (Reprinted with permission from Ref. [145])

trisiloxane surfactant with n = 1 (cf. Figure 3.1). All quantum-chemistry computations
were performed with Gaussian 2009 [146].

We determined partial charges from a set of conformers of the trisiloxane surfactant.
The starting point for the generation of conformers were two optimized structures of
the trisiloxane surfactant. In both structures, all dihedral angles of the hydrophilic tail
were in the trans configuration. For the first structure, both Si-O-Si-O dihedral angles
are approximately 150◦. For the second structure, one dihedral is approximately 160◦

whereas the other is 10◦. The images of the conformers are depicted in Figure 3.2. New
structures of these starting configurations were generated by performing 120◦ rotations
around all dihedral angles in the hydrophilic tail. All possible combinations of trans
and gauche and the two conformers for the hydrophobic head group were generated
resulting in 256 structures.

These configurations were optimized at the HF/6-31g(2d) level. This is in agreement
with the level of optimization used in the original force field [118]. Some of these
optimizations failed because the generation of starting structures yielded configurations
with strong overlaps. These configurations were excluded from further computations,
leaving 237 configurations.

We applied the CHELPG algorithm [147] to the optimized structures to generate the

78



3.2 Molecular modeling of surfactant mixtures

missing partial charges. We used a cubic grid with spacing 0.3 . The excluded volume
radii were rH = 1.8Å, rC = 2.5Å, rO = 2.0Å, and rSi = 2.5Å. In addition to overall
charge neutrality, we also tried several other constraints: (1) setting the charges of all
Si atoms, all Si and all O atoms, or all atoms for which the original model charges
will be used in the final model to the values given in the literature; (2) enforcing equal
charges on H atoms bonded to the same C atom; and (3) enforcing the sum of the newly
defined charges to be equal to minus the sum of the charges of atoms that were not
reparameterized from the original polymer models to ensure the final model is charge-
neutral. All possible combinations of these constraints were applied. The charges for
the final model were obtained from an unweighted average over the partial charges of
all conformers. The charges used are those obtained by applying only constraint (3),
because the charges obtained for the first and last CH2 groups were in good agreement
with literature values. Moreover, this constraint ensures charge neutrality in the final
model and imposes, compared to (1), little bias. We also examined the effect of applying
Boltzmann averages at 300K instead of unweighted averages. The absolute difference
in the resulting charges was less than 0.01 elementary charges for each atom. Using
the weighted charges instead would have a negligible effect in the final model.

The potentials for angles and dihedrals not defined in the original polymer models
were fit by bending and rotating around the unknown angle and dihedrals of an opti-
mized trisiloxane structure. The energies for the perturbed structures were computed
at the HF/6-31G(2d) level. Angle and dihedral potentials consistent with the func-
tional form of the initial force field were fitted to the energies obtained from quantum-
chemistry computations.

For the perfluoroalkane and alkyl ethoxylate surfactants, because of their weak po-
larity and also because, unlike the trisiloxane surfactant, the charges close to the linker
are all near zero, the linking group charges were not redefined. For the alkyl ethoxylate
surfactant, there are no missing bonded interaction parameters. For the perfluoroalkane
surfactant, several dihedral parameters for the linker are not available. We fit those
parameters as for the trisiloxane surfactant.

3.2.4 Force field validation with model molecules

Here we discuss some findings from our fitting procedure, as well as results obtained
from the optimized force field. The complete set of parameters is given in Appendix B.
For convenience, all parameters taken from the literature, including the bonded pa-
rameters, are also given there with references to the original sources.
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3.2.4.1 Nonbonded surfactant interactions

Results for the modified nonbonded surfactant interactions are presented here. The
model was altered only by enforcing geometric mixing in the dispersion coefficients
and scaling them by two to three percent. Moreover, mixing rules were introduced for
the repulsive parameters not explicitly defined. Because the modifications are rather
small, these modifications are validated with a few tests only.

We ran simulations to obtain liquid densities ρliq, heats of vaporization ∆vapH, and
surface tensions γ of the model molecules hexane, DME, perfluorohexane, and OMTS.
Liquid densities and energies Uliq were determined from bulk simulations with nhexane =

574, nDME = 719, nperfluorohexane = 370, and nOMTS = 261 molecules. Simulations
were executed in a cubic box with side length L ≈ 50 . To determine liquid densities,
simulations were run in the NPT ensemble with a Nosé-Hoover barostat and thermostat
[68,148,149] at 1 bar and 298 K. Simulations were equilibrated for 1 ns. Liquid densities
were determined from subsequent 1 ns production runs.

To determine heats of vaporization, the protocol was similar to the density simula-
tions, except for the temperatures, which depended on the experimental values used:
Thexane = 342K, TDME = 358K, Tperfluorohexane = 298K, and TOMTS = 426K. After equi-
libration, simulations were run for 3 ns in the NVT ensemble to measure the energy of
the liquid Uliq. The energy of the gas phase Ugas was determined by simulating a single
molecule with Brownian dynamics with equilibration for 50 ns and a 250 ns production
phase. From these quantities, the heat of vaporization was computed from

∆vapH = Uliq − Ugas +RT, (3.7)

where R is the gas constant and T is the temperature.

Surface tensions were obtained from slab simulations in a box with dimensions 50 ×
50 × 150 . The number of molecules in the simulations (nhexane = 689, nDME = 863,
nperfluorohexane = 444, and nOMTS = 313) were chosen so that the thickness of the
resulting slab is approximately 60 . The simulations were equilibrated in the NVT
ensemble for 1 ns with a Nosé-Hoover thermostat at 298 K. The surface tension γ was
determined as described in Appendix A from production runs over 5 ns.

For all simulations described above in this section, starting configurations were gen-
erated with PACKMOL [71]. Simulations were integrated with a Verlet integrator [83]
and a 1 fs time step. The damping constants for the Nosé-Hoover barostats and ther-
mostats were set to τp = 1000 fs for the pressure and τT = 100 fs for the tempera-
ture. PPPM with relative accuracy of 0.0001 has been used to compute long-range
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electrostatic interactions [34]. In bulk-phase simulations, dispersion interactions were
truncated at 10 and long-range corrections applied. In surface simulations, PPPM
for dispersion has been applied to accurately capture long-range dispersion effects.
Uncertainties for the densities and heats of vaporization were determined from block
averages. From the different charges for PDMS offered in [118], we used OMTS-specific
charges.

Material quantity exptla originalb,e optimizedc,e Ref.d

hexane ρliq [g/L] 654.96 644.43 (94) 650.56 (26) [150]
γ [mN/m] 17.91 17.89 (50) 18.72 (50) [151]
∆vapH [kcal/mol] 6.90 7.27 (6) 7.56 (10) [152]

perfluorohexane ρliq [g/L] 1679.8 1611.28 (384) 1648.61 (430) [153]
γ [mN/m] 12.23 12.91 (70) 13.57 (70) [154]
∆vapH [kcal/mol] 7.51 7.91 (3) 8.28 (8) [155]

DME ρliq [g/L] 861.3 855.47 (100) 859.59 (68) [156]
γ [mN/m] 23.93 27.43 (60) 27.52 (60) [156]
∆vapH [kcal/mol] 8.65 8.51 (3) 8.61 (2) [157]

OMTS ρliq [g/L] 815.5 815.33 (48) - [158]
γ [mN/m] 16.6 19.28 (100) - [159]
∆vapH [kcal/mol] 9.45 10.38 (2) - [160]

aExperimental values; bSimulated values using original force fields; cSimulated values
using optimized force fields. (OMTS force field was not modified.) d Source of

experimental data. eValues in brackets are twice the standard deviation of the mean
obtained from the statistical uncertainty quantification

Table 3.1: Experimental and simulated quantities for model compounds. (Modified
reprint with permission from Ref. [145])

Our simulation results are summarized in Table 3.1. Overall, the agreement between
experimental and simulated values is good. For hexane, DME, and OMTS, the de-
viation in the liquid densities is less than 2% for the original and less than 1% for
the modified model. For perfluorohexane the deviations are larger: 4% for the original
model and 2% for the modified model. Deviations in the surface tension are better then
15% for all compounds for both models. For the heats of vaporization, the maximum
deviation of the original model from experiment (10%) occurs for OMTS. For the mod-
ified model, deviations of similar size are also obtained for hexane and perfluorohexane.
For these compounds, the deviation is only around 5% in the original model.
Compared to the original literature model, liquid densities are better reproduced for

all compounds. The surface tensions and heats of vaporization are also in good agree-
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ment, although they are slightly worse than those predicted by the original force field.
The performance of both models to describe the properties in Table 3.1 is comparable;
neither model strongly outperforms the other for any of the observed quantities. An
advantage of the modified version of the model, however, is that dispersion coefficients
follow geometric mixing rules, and thus long-range dispersion solvers can be applied
more efficiently. The computational performance of the modified model will thus be
better in simulations in which the application of these solvers is desirable, such as
simulations of interfacial or strongly inhomogeneous systems. Because further increas-
ing the dispersion coefficients would increase all of the quantities reported here, the
resulting parameters are a trade-off between accuracy in the structural and energetic
properties. Further optimization would have been possible either by modifying the
repulsive parameters or by individually adjusting the dispersion coefficients. However,
this would complicate extending the model, because the deviation from the original
development would be greater. Moreover, as the agreement between experiment and
simulation is sufficient for our purpose, we have refrained from further optimization.

Simulations of mixtures of hexane and perfluorohexane like those described in [161]
were used to validate the mixing rules introduced for the missing repulsive interaction
coefficients in Equations (3.5) and (3.6). These mixtures were chosen because properly
describing them is challenging and typically requires selection of special mixing rules
or modifications of the potentials [55, 161]. Simulations have been performed at 1 bar

and 298 K. Simulations were run in the NPT ensemble with a Nosé-Hoover thermostat
and barostat, with 1 ns equilibration and 2 ns sampling, during which we measured the
density and the enthalpy. The number of molecules was chosen such that the box length
of the cubic boxes is approximately 50 in the equilibrated state. Simulations were
performed at molar fractions xC6F14 ∈ {0.0, 0.25, 0.5, 0.75, 1.0} with nC6F14 ∈ {0, 125,

222, 300, 370} C6F14 molecules and nC6H14 ∈ {575, 375, 222, 100, 0} C6H14 molecules.

The excess volumes Ve and enthalpies of mixing ∆mixH were determined from

Ve(xC6F14) = V (xC6F14)− (xC6F14 ∗ VC6F14 + (1− xC6F14)VC6H14) (3.8)

and

∆mixH(xC6F14) = H(xC6F14)− (xC6F14 ∗HC6F14 + (1− xC6F14)HC6H14), (3.9)

where xC6F14 is the molar fraction of perfluorohexane, VC6F14 , VC6H14 , HC6F14 , and
HC6H14 are the molar volumes and enthalpies of pure perfluorohexane and hexane,
and V (xC6F14) and H(xC6F14) are the molar volumes and enthalpies at xC6F14 .
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Figure 3.3: Excess quantities for mixtures of perfluorohexane and hexane. Top: Excess
molar volume, bottom: enthalpy of mixing. Blue lines: Experimental fits
taken from [162] for excess volume and from [163] for heat of mixing. Red
squares: simulated values for OPLS from [161]. Green circles: simulated
values using model presented here. (Modified reprint with permission from
Ref. [145])

The results of the simulations are shown in Figure 3.3. The agreement between ex-
periment and simulation is not perfect, but still significantly better than that obtained
with the OPLS force field in [161]. We note that in [161] the deviations were not at-
tributed to the OPLS model, but to the challenge of modeling alkane–perfluoroalkane
mixtures. The good agreement between experiment and simulation with the quantum
chemistry-based force field is mainly a result of the methodology used for the original
force field, and only to a small extent a result of our modifications.

3.2.4.2 Surfactant–water interactions

In this section we briefly present results from the determination of interactions between
the TIP4P/2005 model and our surfactant models. We start by giving results for the
DME/water interactions before presenting results obtained for the other systems.
We ran simulations of DME–water mixtures at different molar fractions xDME ∈
{0, 0.04, 0.1, 0.18, 0.27, 0.41, 0.64, 1.0} with nDME ∈ {0, 125, 200, 350, 475, 550, 650, 719}
DME molecules and nH2O ∈ {4123, 3053, 1858, 1616, 1279, 776, 361, 0} water molecules.
The range of concentrations was motivated by the simulations reported in [140]. We
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determined the liquid densities ρliq, viscosities η, diffusivities of water Dw, and radial
distribution functions (RDF) g(r) between the water O and DME O atoms. The num-
ber of molecules was chosen such that the cubic box length was approximately 50Å after
equilibration in the NPT ensemble at 1 bar and 318 K for 1 ns. Afterwards, densities
were determined from simulations of at least 2 ns. Viscosities and diffusion coefficients
were obtained from NVT simulations only for potential III (cf. Section 3.2.3.2). Vis-
cosities and diffusion coefficients were determined using 4 ns simulations; RDFs were
determined from 2 ns simulations for potential III. Because of the inaccurate densi-
ties obtained with potentials I and II, viscosities and diffusion coefficients were not
computed based on these potentials. RDFs for these potentials were determined from
trajectories of only 0.5 ns, which is sufficient to obtain qualitatively correct results. The
water geometry was kept rigid using the SHAKE algorithm [77]. All other settings were
the same as described above.

To determine the diffusion coefficients, we tracked in each simulation the movement
of 10 randomly selected water molecules. Ten molecules were selected because this is
a large enough sample to obtain meaningful averages while still keeping the amount of
data written to disk during the simulation reasonable. The diffusion coefficients were
computed from the mean square displacements (MSDs) of the water molecules using
the Einstein relation

D =
1

2d
lim
t→∞
〈r(t)− r(0)〉

t
, (3.10)

where d is the dimensionality of the system, r is the center of mass of a water molecule,
and t is the time. MSDs with reduced noise were computed by selecting each time
step of the stored trajectories as the starting point to compute a different MSD. The
MSD for each molecule was obtained from averaging over the MSDs obtained with
different starting points. Because the long-time limit t → ∞ cannot be reached in
finite-time MD simulations, the diffusion coefficients are determined from linear fits
to the diffusive regime of the MSDs. We determined this regime separately for each
tracked water molecule by identifying the regime with a slope of approximately unity
in log–log representation of the MSD over time.

The viscosities η were determined from the Green-Kubo relations, which for isotropic
systems are written as [164]

η =
V

10kT

∫ ∞
0

∑
αβ

〈Pαα(0)Pαβ(t)〉dt, (3.11)

where V is the volume, k is the Boltzmann constant, α and β are Cartesian indices,
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and
Pαβ =

1

2
(pαβ + pβα)− δαβ

3

∑
γ

pγγ, (3.12)

where pαβ is the αβ-component of the pressure tensor, δ is the Kronecker delta, and γ
is a Cartesian index. Because noise in the data can influence the long-time limit t→∞
in Equation (3.11), we evaluated the integral for different values of t. Before the data
are influenced by noise simulation uncertainties for large values of t, the integral reaches
a plateau. The viscosities reported below correspond to the height of this plateau.

Experimental liquid densities and values obtained from simulations with potentials
I, II, and III (cf. Section 3.2.3.2) are given in Figure 3.4. For the potential from
approaches I and II, the agreement between experiment and simulation is insufficient.
For intermediate concentrations, the deviation between I and experiment is more than
2.5%, and for II the deviation is almost 6%. In approach III, where we fit the DME–
water potential to experimental data, the liquid density is reproduced well for all
concentrations, with deviations between simulation and experiment less than 0.5%.
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Figure 3.4: Experimental and simulated densities of DME–water mixtures at 318 K
with model approaches I, II, and III. Experimental values were taken from
[165]. (Modified reprint with permission from Ref. [145])

The underprediction of the densities by potentials I and II is related to partial or
full demixing. As can be seen from the RDFs depicted in Figure 3.5, the first peak
in the RDFs is distinctly below 1.0 for potential I and less than 0.25 for potential
II, indicating demixing. Similar demixing in DME/water mixtures has already been
detected by Fischer et al. [121] with other force fields for water and DME. For potential
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III, however, the compounds mix properly. The correct phase behavior is also confirmed
by the free energy of solvating a DME molecule in water, which we have computed
using thermodynamic integration [166]. The integration was performed along three
paths. In the first and second paths, a single DME molecule was dissolved in water.
The DME–water interactions were turned off by gradually switching off the charges of
the DME molecule in the first path, and switching off the vdW interactions between
DME and water in the second path. In the third path, the charges of a single DME
molecule in vacuum were switched on again. Simulations of the first and second path
were equilibrated in the NPT ensemble for 0.5 ns with subsequent production runs for
1.5 ns in the NVT ensemble. The third path was equilibrated for 50 ns with subsequent
production for 200 ns using Langevin dynamics [167]. The integration variable λ was
adjusted from 0 to 1 in increments of 0.1 along each path. The given uncertainty
is twice the root of the sum of the squares of the standard deviations of the mean
obtained at each state point. The simulated value is ∆solGsim = −5.4 ± 0.3 kcal/mol,
the experimental value is ∆solGexp = −4.8 kcal/mol [168].
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Figure 3.5: Radial distribution functions between the DME O and water O atoms for
xDME ≈ 0.18. The low value of the first peak for potentials I and II indicates
demixing. (Modified reprint with permission from Ref. [145])

Because of demixing and inaccurate reproduction of the density for potentials I
and II, dynamic quantities were only determined for potential III and are depicted in
Figure 3.6. For viscosities of the pure compounds, the deviation between simulation and
experiment is around 7% for pure water and around 5% for pure DME. In the region of
maximum deviation at xDME ≈ 0.2, the simulated value is around 14% higher than the
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experimental value, indicating that the dynamics are somewhat too slow in this region.
For the diffusion coefficients, aside from the original experimental data from [142], this
figure includes scaled values of the experimental data, as suggested in [121]. For the
experimental data, it is unclear whether the original or scaled data better represent
the true value. The simulated diffusion coefficient is often below the experimental
value. Yet, the general trend that the diffusion coefficient passes through a minimum
is reflected in the simulation results. Combining the results for the viscosities and the
diffusion coefficients, it seems that the dynamics of the developed model is somewhat
too “slow” compared to reality. However, the agreement is sufficient for our purposes.
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Figure 3.6: Experimental and simulated values for the viscosity (top) and water dif-
fusivities (bottom) of DME–water mixtures. Experimental viscosities were
taken from [165]. Original diffusivities were taken from [142], scaled diffu-
sivities from [121]. (Modified reprint with permission from Ref. [145])

Simulations of the surface tension between water and the other model compounds
were performed in elongated boxes. The number of water molecules in the simulation
cell was nwater = 5000. The number of model molecules was equal to the number of
molecules in the surface simulations described in Section 3.2.4.1. The simulations were
equilibrated for 1 ns, during which time, the box dimensions parallel to the interface
was held fixed, while the other dimension was controlled with a Nosé-Hoover barostat
to maintain a pressure of 1 bar. The temperature was fixed at 298 K with a Nosé-Hoover
thermostat. Afterwards, NVT simulations were run for 5 ns. During this period, data
was collected to compute the surface tensions. The results of the simulations are given
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in Table 3.2. The agreement between simulated and experimental data is good for all
three compounds. We note that no additional fit was required for the hexane–water
interactions.

γ [mN/m]
Material experimental simulation Ref.
hexane 50.38 (4) 52.03 (120) [169]
perfluorohexane 57.20(13) 57.94 (140) [170]
OMTS 40.5 (5) 40.3 (18) [171]

Table 3.2: Experimental and simulated interfacial tensions of model compounds and
water. The last column contains references to the experimental data. (Mod-
ified reprint with permission from Ref. [145])

3.2.5 Discussion of the fitting strategies

In this section we discuss the three fitting strategies I, II, and III (cf. Section 3.2.3.2)
and provide explanations for the performance of the models obtained with the different
approaches.
In approach I we fit the DME–TIP4P/2005 potential to a previously developed

quantum chemistry-based DME–TIP4P model [140]. Since the model obtained with
this strategy is an indirect fit to quantum chemistry data, one might expect it to provide
best results. While the original potential was successful in describing the mixture [140],
the resulting model in this work provided a poor description of the system and resulted
in demixing. Since we did not fit directly to quantum chemistry data, and since the
potential upon which it was built was created with methods that were state of the art
in 2002, one might argue that directly fitting to quantum chemistry data with more
elaborate methods will improve the results. While we cannot guarantee that such an
approach will not provide any benefits, we doubt that this approach will result in a
model that will perform better than the model that was obtained with approach III in
this work.
Aside from the potentially insufficient quantum chemistry data approach I was built

upon, the reason for wrong mixing behavior lies within the TIP4P/2005 model itself.
While the TIP4P/2005 model is known to provide good results for many observables,
such as liquid densities, surface tensions, and diffusivities [120], its ability to reproduce
microscopic phenomena is limited. Kiss and Baranyai showed that the TIP4P/2005
systematically underestimates the energy of formation for small water clusters [172].
Thus, the attraction between the TIP4P/2005 water molecules is too strong compared
to real water or accurate quantum chemistry computations. To ensure mixing of DME
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with water, we must ensure that the DME–water interactions are sufficiently favorable
to separate water molecules. Thus, these interactions will also have to be stronger
than DME–water interactions in reality to compensate the strong interactions of the
TIP4P/2005 model. This cannot be achieved with a fit to quantum-chemistry data.
Approach II, in which the potential of the mixture was determined from fitting LJ

potentials to the Buckingham potentials used for the polymer models, yielded phase be-
havior even worse than that found using Approach I. Aside from too strong interactions
between TIP4P/2005 molecules, there was was an additional problem related to the
functional forms of the Buckingham and LJ potentials. We used a simple least-squares
fit with the additional constraint that the C6 coefficients in the final model obey geo-
metric mixing rules. As a result, the minima in the LJ potentials were shallower than
the minima in the Buckingham potentials. Specifically, the minima in the LJ poten-
tials were εO,LJ = 0.176 kcal/mol, εC,LJ = 0.041 kcal/mol, and εH,LJ = 0.003 kcal/mol,
whereas the minima in the Buckingham potentials were significantly larger: εO,LJ =

0.206 kcal/mol, εC,LJ = 0.098 kcal/mol, and εH,LJ = 0.010 kcal/mol. When applying
mixing rules to these reduced potential depths, the resulting ε’s describing the DME–
water interactions were too small and caused the strong demixing. An alternative
strategy to match the Buckingham and LJ potentials, for example, by dropping the
constraint of geometric mixing or constraining the depth of the potentials, might have
improved the results, but the problem of the strong interactions among TIP4P/2005
water molecules remains.
In approach III we fit the DME–TIP4P/2005 interactions such that macroscopic ob-

servables are reproduced well. This strategy automatically compensates for the strong
interactions of the TIP4P/2005 model and in this way provides correct mixture den-
sities and a good estimate for the free energies of solvation ∆solG. The dynamics
obtained with this approach, however, were too slow compared to experiment. For
an effective model such as the one generated with approach III it is difficult to make
precise statements why it has certain features—for instance, why the dynamics are not
reproduced better. An explanation could be that the resulting DME–water interac-
tions of this fit are too strong compared to the DME–DME interactions and that the
connections between DME and water molecules are therefore too stable.

3.2.6 Model validation with surfactant simulations

In previous sections, the developed force field was only applied to small model com-
pounds. It is thus not clear whether the force field will be applicable to simulations
with surfactants and characterize them sufficiently well. The validation of the devel-
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oped model for the description of surfactants is presented here with simulations of
surfactants at the water interface. A comparison to experimental data requires two
features. First that reliable data is available, and second that the specific quantity is
accessible from MD simulations. Comparison to experiment is therefore restricted to
maximum surfactant loads and surface tensions at fully covered surfaces. The remain-
ing data presented in this section only provide information that the model provides the
correct qualitative behavior, such as that surfactants reside at the interface.

3.2.6.1 Simulations setup

We have performed a series of surfactant simulations with the alkyl ethoxylate, trisilox-
ane, and perfluoroalkane surfactants depicted in Figure 3.1. The chain length of the
hydrophilic part was n = 6 for all surfactants, which corresponds to experimental
observations of superspreading with the trisiloxane surfactant. Simulations with the
alkyl ethoxylate surfactant were performed with m = 10 for the hydrophobic part.
Simulations with the perfluoroalkane based surfactant were performed with m = 8.
The box dimensions were 60Å× 60Å× 200Å. The number of water molecules was

10 000 in all simulations. The number of surfactants at each interface were nS ∈ {0, 18,

36, 54, 60, 72, 78, 84} corresponding to interfacial areas of Amol ∈ {∞, 200, 100, 66.67,

60, 50, 46.15, 42.85}2/molecule and concentrations Γ ∈ {0, 0.5, , 1.0, 1.5, 1.67, 2.0, 2.17,

2.33} nm−2. For the trisiloxane surfactant, simulations were not performed with nS =

78 or nS = 84 because the surface was already overcrowded for nS = 72. Starting
configurations were generated with PACKMOL [71]. A slab of water molecules was
generated in the center of the simulation box with interface parallel to the xy plane.
The surfactant molecules were placed so that their hydrophobic parts were at the water
surface when the simulations began. A Nosé-Hoover thermostat [68] was used to keep
the temperature at 298 K. The simulations were equilibrated for 1 ns. Afterwards,
data was taken from production runs over 7 ns. The SHAKE algorithm [77] was used
to constrain the shape of the water molecules. Long-range electrostatic and dispersion
interactions were computed with the PPPM method with analytic differentiation [34],
with parameters set according to Section 2.8. The equation of motion was integrated
with the rRESPA algorithm [83,84], with settings chosen as described in Section 2.8.

3.2.6.2 Surface crowd

We first examine the surfactant crowd at the interface, as it is possible to start sim-
ulations in an unphysical state in which the surface is overloaded with surfactants.
Because of the finite length of the simulations, there is the danger that the system
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cannot escape from this starting configuration.
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Figure 3.7: Histograms of the z position of the central atom (cf. Figure 3.1). For the
trisiloxane surfactant with Γ = 2.0 nm−2, the curve shows secondary peaks,
indicating overcrowding. (Modified reprint with permission from Ref. [145])

As an indirect measure for whether the surface was overcrowded we have examined
the positions of the central surfactant atoms in our simulations. Histograms of their
positions are shown in Figure 3.7 for selected values of Γ from which the differences
between the simulations become apparent. For the alkyl ethoxylate and the perfluo-
roalkane surfactant the only visible effect in the range of examined surfactant loads is
that the distribution broadens and the height of the peak is reduced. Moreover, the
peaks at the left and right interfaces are not identical. The peaks have slightly differ-
ent heights at high surfactant concentration, indicating that further sampling may be
required to obtain more accurate values. For the trisiloxane surfactant, however, the
situation is different. For low and intermediate concentrations, the behavior is the same
as for the alkyl ethoxylates and perfluoroalkanes. At the highest concentration, how-
ever, the profile is much noisier, and the histogram shows secondary peaks, indicating
that the system was in an unphysical, overcrowded state. Moreover, when visualizing
the trajectories, bending of the interface could be observed at the highest surfactant
load, indicating that additional interfacial area is required to hold the surfactants. This
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bending was not observed in any other simulation. Although this simulation was in an
unphysical state, simulation results are reported for completeness.

3.2.6.3 Density profiles

Experimental density profiles to which simulated data could be compared to are not
available. Yet, simulated density profiles can at least provide information whether the
expected qualitative behavior is captured successfully in the simulations.
Number density profiles ρnum of water and the different surfactant parts are depicted

in Figure 3.8. The absolute value of the z dimensions between simulations with a
different number of surfactants contains very limited information. The number of water
molecules is identical in all simulations; thus, with increasing number of surfactants, the
system grows and the entire interfacial region moves. The z positions of the density
peaks move not only because the interface broadens, but also because the interface
itself moves. For fixed surfactant load, the absolute position of the z value is of course
reasonable quantity for comparisons.
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The interface widens with increasing surfactant concentration for all three examined
surfactants. While the thickness of the interface is only approximately 5Å for pure
water, the total width of the interface including the hydrophobic part of the surfactant
becomes as large as 35Å for the surfaces covered with alkyl ethoxylate and perfluo-
roalkane surfactants and 30Å for trisiloxane surfactants at maximum coverage. Even
for the smallest examined surfactant concentration Γ = 18 nm−2, the width of the
interface increases to between 15Å and 20Å.

The number densities of the water O atoms are shown on the left of Figure 3.8 for the
different surfactants. In each case, the distribution broadens with increasing surfactant
concentration. It is noteworthy, though, that the change of the curves is especially
strong for low surfactant concentrations. For higher concentrations (Γ ≥ 1.5 nm−2) the
profile does not broaden significantly.

The distribution of the hydrophilic O atoms depicted in the middle row of Figure 3.8
becomes broader and higher with increasing surfactant concentration. For low concen-
trations, the distribution is rather narrow compared to higher concentrations for all
three surfactants. This indicates that at low concentrations, the hydrophilic part of
the surfactant resides close to the interface. With increasing surfactant concentration,
the interface narrows and the hydrophilic tail stretches out into the water phase.

The extent of surfactant hydration is apparent from a comparison of the distribution
of the water molecules and the hydrophilic O atoms. For low surfactant concentrations
(Γ ≤ 1.5 nm−2), the distributions decay to zero at approximately the same value of
z, which means that the hydrophilic parts are fully hydrated. For higher surfactant
concentrations (Γ = 2.33 nm−2), however, the distribution of water molecules decays
to zero more quickly, meaning that some of the hydrophilic O atoms stick out of the
water surface. At high concentrations, the hydrophilic parts of the surfactants are only
partly hydrated.

The distribution of the hydrophobic atoms are depicted in the right column of Fig-
ure 3.8. Like the hydrophilic part, the distribution is narrow for low surfactant loads,
but broadens with increasing concentration. For the alkyl ethoxylate and perfluo-
roalkane surfactants, this is the result of the hydrophilic chains starting to lift away
from the interface and stretching into the vapor phase.

All surfactants resided at the interface with the hydrophilic parts of the surfactants
hydrated and mixing with water atoms, while the hydrophobic parts were not. This
matches the expected behavior from experiment. Of course this finding does not nec-
essarily imply that the developed model accurately represents the different surfactants,
but it does show that the most basic features of surfactants are reproduced.
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3 The molecular mechanism of superspreading

3.2.6.4 Surface tensions and maximum coverage

Simulated and experimental values for the surface tension at different surfactant con-
centrations for the free and fully covered surfaces are depicted in Figure 3.9. For
the highest surfactant concentrations in simulations that are not overcrowded (Γ =

2.33 nm−2 for the alkyl ethoxylate and perfluoroalkane surfactants, and Γ = 1.67 nm−2

for the trisiloxane surfactant), the estimated surface tensions agree with experimen-
tal values at fully crowded surfaces. For the area per molecule at maximum packing
A∞mol, however, there are deviations between modeling and experiment, as shown in
Table 3.3. While for the trisiloxane surfactant the result from the simulation is in
between the values obtained from macroscopic models, A∞mol is much smaller for the
alkyl ethoxylate surfactant compared to macroscopic models and experiment. The de-
viations might result either from the experiments and modeling not being sufficiently
accurate, or that the state of maximum packing should be attributed to lower values
of the number of surfactants at the interfaces in our simulations. In the latter case
our model would not reproduce well the reduction of the surface tension for the alkyl
ethoxylate surfactant. There is no indication from our simulations, however, that sug-
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Figure 3.9: Simulated and experimental surface tensions at 298K. Red diamond: ex-
perimental value for pure water [173]. Other scatter points: simulated val-
ues. Dashed lines: experimental values for fully covered surfaces [174,175].
Experimental data for the alkyl ethoxylate surfactant were measured for a
slightly different surfactant with m = 11 (cf. Figure 3.1) and hydroxyl end
cap. Shaded area: range of experimental values at fully covered surfaces for
slightly different perfluoroalkane surfactants with m = 3–5 and n = 3–5 (cf.
Figure 3.1) [176–178]. (Modified reprint with permission from Ref. [145])
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3.2 Molecular modeling of surfactant mixtures

gests that simulations with either the alkyl ethoxylate or perfluoroalkane surfactant
with Γ = 2.33 nm−2 were overcrowded. Also, there is no obvious explanation why the
area per molecule of a chain molecule like the alkyl ethoxylate should occupy the same
area per molecule as the bulky trisiloxane surfactant, as suggested by the models and
measurements. Given that small differences in the end caps of large molecules can
have strong effects [176, 179–183], the deviations in Table 3.3 might also result from
the maximum packing for the reference data being determined from surfactants with
a hydroxyl end group, whereas the surfactants in our simulations have a methyl end
group.

surfactant A∞mol,Neut [Å2]a A∞mol,Lang [Å2]b A∞mol,Frum [Å2]c A∞mol,Sim [Å2]d

trisiloxanee - 70.6i 54.3i 60
alkyl ethoxylatef 55± 3h 68j 56j 43
perfluoroalkaneg - - - 43

aobtained from neutron reflectivity measurement; bobtained from a Langmuir model;
cobtained from a Frumkin model; destimated from our simulations; etrisiloxane

surfactant in experiment had a hydroxyl end group; falkyl ethoxylate surfactant in
experiment had a hydroxyl end group and the hydrophobic chain contained one
additional CH2 group; gno reference data available; htaken from [184]; itaken

from [185]; jtaken from [175];

Table 3.3: Surface area per surfactant molecule at the interfaces at maximum packing
(Reprinted with permission from Ref. [145])

3.2.7 Assessment of the developed force field

The developed force field reproduces quantities important for interfacial simulations,
such as surface tensions, free energies, and structural properties [127] of simple model
molecules with reasonable accuracy. Dynamics are also reproduced reasonably well,
but not as accurately as the properties mentioned before. Moreover, a strong feature
is that the parameters for the non-water molecules are based on quantum-chemistry
computations. It was shown that this ensures transferability even for the difficult
problem of mixtures of alkanes and perfluoroalkanes. The force field can therefore be
extended to further compounds using the methods employed in the original develop-
ment. Moreover, the detailed quantum chemistry-based force field has the advantage of
capturing features specific to the studied molecules, such as the flexible Si-O-Si angle
for OMTS [118], which might be relevant to the superspreading problem.
A disadvantage of the model is that reasonable agreement between simulated and

experimental quantities for mixtures with water could only be achieved by fitting pa-
rameters to reproduce experimental quantities, which limits transferability compared
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3 The molecular mechanism of superspreading

to the non-water interactions. The difficulty of combining models developed with
different strategies—the quantum chemistry-based non-water models and the highly
empirical TIP4P/2005 water model—is a general problem in force field development.
It should be noted though, that this problem is more or less pronounced for different
models. For example, a quantum chemistry-based force field to describe the interac-
tions of DME with the original TIP4P model was successful in describing properties of
the mixture [140]. Apparently the capacity of TIP4P/2005 to reproduce a variety of
quantities of pure water [120] is achieved at the expense of difficulties when combined
with other models. Yet, because of its accurate representation of surface properties
and computational simplicity, it is still our model of choice.
The validation of the model in simulations of surfactants at water interfaces pro-

vided satisfying results. Aside from the surface free energies, which are important for
wetting phenomena, being reproduced well by the developed model, the model qual-
itatively provides the correct hydration behavior. These results, in combination with
the validation of the force field for simple molecules, suggest that the developed model
accurately represents relevant properties of superspreading surfactants and will realis-
tically model the spreading phenomena described in Section 3.3. The force field could
also be used as a starting point for the development of coarse-grained potentials for
trisiloxane surfactants.

3.3 Simulations of surfactant enhanced spreading

3.3.1 Simulation setup and analysis methods

3.3.1.1 Simulation setup

We performed MD simulations with cylindrical droplets of aqueous solutions of differ-
ent surfactants on various polymer substrates. The substrate was parallel to the xy
plane and the axis of the cylinder was in the y direction in our setup. Simulations of
cylindrical droplets are computationally less intensive than those of spherical droplets
and avoid effects caused by line tension. However, some properties, such as the spread-
ing exponent, depend on the droplet geometry and have to be translated between
simulation and experiments that are usually performed with spherical droplets [186].
Simulations were performed with three different polymer substrates: polypropylene

(PP), PEO, and PTFE. These different substrates include a substrate that is too hy-
drophobic (PTFE), one that is just right (PP) [187], and another that is too hydrophilic
(PEO) for superspreading. Spreading experiments with trisiloxane-laden water droplets
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3.3 Simulations of surfactant enhanced spreading

on PEO are not available, yet, the small contact angle of around 20◦ indicates that
the material is too hydrophilic for superspreading [3, 188]. To prepare the substrates,
monodisperse polymer chains with nmon,PP = 101, nmon,PEO = 50, or nmon,PTFE = 101

monomers were used to create amorphous bulk configurations with the Polymer Builder
of the MAPS platform [189]. The size of the box was 50Å× 80Å× 30Å. The number
of chains were nPP = 30, nPEO = 34, and nPTFE = 31. The bulk systems were equili-
brated in the NPT ensemble at a pressure of 1 atm with variable box dimensions only
in the z-direction. The simulation was run for 1 ns at 500K, then cooled down to 300K
within 1 ns and run for another nanosecond at 300K. Afterwards, periodic boundary
conditions were removed in the z-direction, the box length in z-direction was extended
and the simulation was run for another 1.5 ns. The resulting slabs had a thickness of
approximately 30Å and were used to generate substrate materials for the spreading
simulations. Simulations setups with different substrates are referred according to the
abbreviated polymer name below.
We ran simulations with trisiloxane surfactants with n = 3, n = 6, and n = 11,

and alkyl ethoxylate surfactants with n = 6 and m = 11 (see Figure 3.1). The sim-
ulations are labeled T3, T6, T11, and CE, respectively. This choice of surfactants
covers trisiloxane surfactants that are too long, too short, and just right for super-
spreading [95] and one additional surfactant for reference. Starting structures for the
droplets were generated by creating a cylinder from equilibrated bulk configurations
of water. Surfactants were added to the surface to generate a fully covered droplet.
Because trisiloxane surfactants are soluble, surfactants were added to the interior of
the droplet to have a surfactant mass fraction wS ≈ 0.02 in the droplet interior in
trisiloxane simulations. Afterwards, simulations of the surfactant-laden droplet were
equilibrated for 1 ns in the NVT ensemble at 300K. To obtain fully covered droplets,
we generated starting structures with different numbers of surfactant molecules at the
interfaces. After equilibration, the shape of the droplets was examined. Droplets with
overcrowded surfaces could easily be identified by the strong deviation from a circular
droplet shape at the end of the equilibration period. Droplets with maximum surfac-
tant concentration at the surface with only small deformations of the droplet were used
in the spreading simulations.
Equilibration simulations were performed with Nosé-Hoover thermostats and barostats

[68, 76, 149]. The damping factors were set to τT = 100 fs for the thermostat and
τp = 1000 fs for the barostat. Integration was performed with the multiple-timestep
rRESPA algorithm [148]. We used a four-stage rRESPA with a factor of two differ-
ence in the frequency of force evaluations between adjacent levels. Bonded interactions
were evaluated in the innermost stage with a timestep of 0.5 fs. On the second level,
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3 The molecular mechanism of superspreading

we evaluated pair interactions within a distance of 6.0Å, with interactions smoothly
shifted to zero beginning at 4.5Å. On the third level, pair interactions up to a dis-
tance of 10.0Å were computed, with the potential shifted to zero starting at 8.0Å.
Long-ranged interactions were computed on the outermost level.
The initial configurations for the spreading simulations were assembled from the pre-

equilibrated polymer slabs and droplets. The starting configurations for the spreading
simulations are depicted in Figure 3.10 for the different surfactants. The droplet radius
for the T11 simulation was chosen to be larger because the surfactant was larger. We
also note that although the droplet diameter for this surfactant was larger, the number
of molecules that can be placed on the interfaces was much lower for this surfactant
because of the overlap of the hydrophilic tails resulting from the strong curvature of
the nanoscale droplet. Further details on the simulation setup is given in Table 3.4.

system npol
a nwat

b nsurf,bulk
c nsurf,int

d Amol
e radiusf Lgx Lhy Liz

[Å2] [Å] [nm] [nm] [nm]
PP, T6 300 55569 52 800 70 135 50 8 40
PP, T3 300 78280 83 950 60 135 50 8 40
PP, T11 360 80665 50 504 115 170 60 8 50
PP, CE 300 59309 0 1078 50 135 50 8 40

PTFE, T6 310 55569 52 800 70 135 50 8 40
PEO, T6 340 55569 52 800 70 135 50 8 40

a number of polymer molecules; b number of water molecules; c number of surfactant
molecules in the bulk; d number of surfactant molecules at the interfaces; e

approximate surface area per surfactant molecule at the interface; f approximate
initial radius of the droplets; g,h,i box dimensions in x, y, and z dimension;

Table 3.4: Setup for surfactant enhanced spreading simulations.

The choice of thermostat can influence the simulation results in non-equilibrium
simulations such as the spreading simulations reported here. Specifically, Heine et
al. [191] showed that spreading velocities can be effected by the thermostat, which is
why we performed our simulations with two different thermostatting strategies. In the
first approach, labeled LN below, the lower 5Å of the substrate were held rigid, while
the region from 5Å to 10Å was coupled to a Langevin thermostat [167] to serve as
an energy sink. The rest of the droplet was integrated using Newtonian dynamics. In
a second approach, labeled NH below, the lower 5Å of the substrate were also held
rigid. The rest of the droplet was very weakly coupled to a Nosé-Hoover thermostat
with damping factor τT = 10000 fs. Because of the relatively large system size with
O(3×105) particles and the large coupling constant τT , the thermostat has a very weak
effect on the dynamics [76].

98



3.3 Simulations of surfactant enhanced spreading

(a) PP, T3 (b) PP, T6

(c) PP, T11 (d) PP, CE

Figure 3.10: Snapshots of the starting configurations in simulations with (a) T3, (b)
T6, (c) T11, and (d) CE on a PP substrate. Gray: substrate; blue: water;
red and black: hydrophilic and hydrophobic part of the surfactant. The
water in the left half of each droplet is transparent. The black bar in each
figure has a length of 10 nm. (Reprinted with permission from Ref. [190])

We used the PPPM algorithm to compute both long-range electrostatics [34] and
dispersion interactions in all simulations. Settings for the PPPM method were as
suggested in Section 2.8. In spreading simulations, we used a two-stage rRESPA,
with a factor of two between the inner and outer timesteps. The inner timestep, on
which bonded an pair interactions up to 7.0Å were computed, was 1 fs. Nonbonded
interactions on the inner level were shifted to zero between 6.5Å and 7.0Å. Long-ranged
interactions were computed on the outer level.

3.3.1.2 Droplet geometry and spreading exponents

The base width of a droplet is the width of the solid–liquid contact area. Although the
lower area of the droplet is not a circle in our simulations, we will in the following use
the commonly used term “base radius” r for half of the base width. For the droplet
simulations reported here, several challenges need to be overcome to compute the base
radius. First, as the polymer substrate is flexible and amorphous, its surface is not as
planar as those of crystalline substrates. Hence, a definition of the exact position zbase

of the surface is not obvious. Second, if there are precursors or feet close to the three-
phase contact line, the shape of droplets can deviate from their macroscopic spherical
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3 The molecular mechanism of superspreading

or cylindrical cap shapes [10]. In an MD simulation, which can resolve such deviations
in the droplet shape, the base radius of the droplet right at the substrate surface is
thus not necessarily comparable to the value reported in experiments.

The base radius r is computed in two steps. In the first step we define the position of
the solid–liquid interface zbase. A histogram of the density of the water and surfactant
molecules is computed with 1Å-wide bins in the x and z dimensions using a procedure
similar to that of [144]. The densities are averaged over 10 ps, a time scale long enough
to obtain data that is not too noisy, but also short enough to avoid distortion of the
data because of changes in droplet shape that occur on much larger time scales. From
the density histogram, the droplet domain is determined. Because the vapor phase is
almost empty and the interface has a steep density gradient, the domain can be simply
defined according to the density: any bin whose density is larger than 10 percent of
the maximum density is considered “inside” the droplet. Bins considered to be inside
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Figure 3.11: Analysis steps. Upper left: Simulation snapshot. Upper right: Density,
with a circular fit defined from the boundary elements, and a horizontal
line at zbase. Middle left: Boundary elements. Middle right: position of
the center surfactant atoms given in Figure 3.1. The atoms are labeled
according to whether they are classified as at the liquid surface (blue),
solid–liquid interface (red), or in the bulk (black). Bottom: Histogram
of the z position of the boundary elements. zbase is the z position of the
highest peak. (Modified reprint with permission from Ref. [190])
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the droplet but next to a vapor element are considered boundary elements. Next, we
compute a histogram of the z position of the boundary elements. For small values of z,
the histogram has a peak which results from the flat surface close to the substrate. The
position of the peak is used as the base position zbase of the droplet. The procedure of
defining zbase is illustrated in Figure 3.11.

In the second step we use a method similar to that suggested by Halverson et al. [115]
to compute the base radius r of the droplet. As base radius, we use half the width of
a rectangular cuboid that contains a fraction p of all atoms within a distance h from
the base position zbase of the droplet. We tried different values for h and p and found
that results, especially for the spreading exponent, are insensitive to these parameters.
In the following, we report results for h = 10Å and p = 0.99.

Different spreading regimes were determined from log-log plots of the base radius
over time. The spreading exponents were determined from fitting straight lines to the
linear regimes of the log-log data.

The height hd of the droplet is defined as the difference between the highest boundary
element and the base position of the droplet. Using the approximation that the droplet
has the shape of a cylindrical cap, the contact angle θ can be determined from

hd = r
1− cos(θ)

sin(θ)
. (3.13)

To examine the macroscopic droplet shape we perform a circular fit to the droplet
boundary. In the fit, we only include points of the boundary farther than 50Å from
the base position zbase. This still leaves a sufficiently large fraction of the droplet to
be included in the fit while eliminating the influence of the base region of the droplet.
This choice still reasonably represents the macroscopic part of the droplet, as shown
in Figure 3.11.

3.3.1.3 Surfactant concentration at the interfaces

Surfactants are considered as adsorbed at the interfaces if their central atom (defined
in Figure 3.1) is within 15Å of the droplet boundary. Among these surfactants, those
whose central atom is within 15Å of the substrate are classified as adsorbed to the
solid–liquid interface, whereas the others are classified as adsorbed to the liquid–vapor
interface. All other surfactants are considered as not adsorbed but in the interior of
the droplet. The value of 15Å was chosen because it gives a reasonable separation of
the different regions, as shown in Figure 3.11. The total surface area of the droplet
is approximated by the number of border elements. The size of the bottom area is
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approximated by the number of border elements of the droplet less than 15Å above
the base position; the rest of the droplet surface is classified as as part of the liquid–
vapor interface. The surfactant concentration at the different interfaces is the ratio of
the number of surfactants at an interface divided by the size of the interface.

3.3.1.4 Moment-based surface analysis of the droplet shape

Differences in the droplet shape at the contact line were quantified using methods from
image analysis with a two step approach. In the first step, we use the binary Mumford-
Shah segmentation model [192] to define the location of the interface of the droplet.
In a second step, we apply the moment-based analysis algorithm for implicit surfaces
by Berkels et al. [193] to locally classify the surface of the droplets. The entire process
is illustrated in Figure 3.12.
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Figure 3.12: Steps to classify the local shape of the droplet. Left: input image for
the Mumford-Shah segmentation; middle: separated condensed and vapor
domains; right: droplet surface, where the color code denotes the value
of the surface classifier C(x). The surface classifier identifies sharp tran-
sitions at both leading edges of the droplet. (Reprinted with permission
from Ref. [190])

We here use the binary Mumford-Shah segmentation functional

E(ρc, ρv,Ωc) =

∫
Ωc

(ρ− ρc)2dA+

∫
Ω\Ωc

(ρ− ρv)2dA+ ηPer(Ωc), (3.14)

where ρ is the histogram of the local densities of the droplet (cf. Section 3.3.1.2), ρc and
ρv are the constant densities of the condensed and vapor phase, Ω is the computational
domain, Ωc and Ω\Ωc are the domains of the condensed and vapor phase, and Per(Ωc)

is the perimeter of Ωc in Ω, which is essentially the length of the interface between
the condensed and vapor phase. The interface of the system is defined by minimizing
Equation (3.14) with respect to ρc, ρv, and Ωc. The last term in the functional is
a penalty term; η is a parameter that controls the weight of this term and can be
adjusted to control the smoothness of the generated segmentation. A large value for η
will decrease the interface by smoothening edges. We used η = 0.005 gÅ/cm3 in our
computations because it provided relatively smooth droplet shapes while preserving
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the shape of the droplet well. For the minimization with respect to the set Ωc, the
unconstrained convex reformulation proposed in [194] is used. The resulting convex
minimization problem is solved using a first-order primal-dual algorithm [195]. For
fixed ρc and ρl, this allows us to find a global minimizer of the non-convex binary
segmentation problem. The segmentation was performed with the Quocmesh library
[196].

The contour of the computed condensed phase is classified using moment-based sur-
face analysis. The zero-moment shift of the boundary of the object Ωc is defined as
M0

ε [Ωc](x)

M0
ε [Ωc](x) =

1

πε2

∫
Bε(x)

dΩc(y)(y − x)dy, (3.15)

where x is a point on the boundary of Ωc, the integral is performed over a disk Bε(x)

centered at position x with radius ε, and dΩc(y) is the signed distance function of Ωc.
The distance function gives the Euclidean distance of any point in the image to the
boundary of the object. The signed distance function is equal to the distance function
with the difference that it is defined as positive outside the object and negative inside
the object. The surface classifier C(x) is defined as

C(x) = gβ(‖M0
ε [Ωc](x)‖/ε2), (3.16)

from the surface moment, where

gβ(t) =
1

1 + βt2
. (3.17)

The smaller the value of C(x), the flatter is the region close to position x of the surface,
C(x) can thus be used to characterized the surface locally. It should be noted that
gβ is a monotonic function that maps the values of ‖M0

ε [Ωc](x)‖/ε2 into the interval
(0, 1]. The use of this function is motivated in [193]. The function and the included
parameter β are only used for scaling purpose and do not qualitatively change the
results. The only parameter that influences the results qualitatively is the value of the
radius of the disk ε, which defines the order of magnitude on which the surface should
be characterized. For small values of ε, the shape is examined on a small scale and the
result is sensitive to noise. For large values of ε, the classifier provides information on
the large-scale contour of the shape. In our analysis we use ε = 20Å because this is
approximately the size of the magnitude of the effect that is observed. The value of β
in gβ is set to 20.

An example of the moment-based surface analysis and important features of the
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resulting classifier are briefly visualized in Figure 3.13. Based on the surface classifier,
it is possible to discriminate edges and smooth regions. The regions at the lower left
and at the upper center are identified as edges. The smooth region at the lower right
can be discriminated from the sharp edges. Another important feature of the classifier
is that the difference between small angles, such as in the lower left of the image, and
wider angles, such as in the upper center, is recognized. The latter effect has important
implications for the application of this method to our results because the value of the
classifier is influenced by the value of the contact angle θ of the droplet.
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Figure 3.13: Example of the moment-based surface analysis. Left: Shape for the anal-
ysis; center: signed distance function in the image domain; right: surface
of the shape color-coded with the value of the surface classifier C(x).
(Reprinted with permission from Ref. [190])

3.3.2 Wetting dynamics and droplet shape

3.3.2.1 Spreading regimes and exponents

We first comment on the absolute value of the base radius over time. At first glance,
the upper part of Figure 3.14, which shows the base radius r of the droplet as a function
of the time t in a log-log representation of the LN simulations, suggests that the droplet
covered with alkyl ethoxylate surfactants spreads more rapidly than the droplet laden
with the superspreading agent, because the value of the base radius r is larger at any
given time. However, the base radius depends on several quantities, such as the total
volume of the droplet (Equation (3.1) is just a proportionality condition). Moreover,
deviations from a perfect circular droplet shape in the starting configuration, as seen in
Figure 3.10, can distort the spreading velocities in the inertial regime. Consequently,
the base radius of the alkyl ethoxylate-laden droplet is larger than the base radius of
the trisiloxane-laden droplet. In contrast to the base radius, the spreading exponent α
in the viscous regime is not influenced by these effects but arises from the underlying
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physics. It is thus the quantity that best describes the spreading. That α is larger
for the simulation with the superspreader shows that the droplet spread faster than in
the non-superspreading simulations. The spreading exponents observed in the differ-
ent simulations and the time intervals of the different spreading regimes are given in
Table 3.5.

initial regime viscous regime
thermostat system t [ns] α t [ns] α superspreadinga

LN PP, T6 0.2 to 2.4 0.39 2.4 to 5.2 0.27 yes
PP, CE 0.2 to 2.0 0.34 2.0 to 5.2 0.20 no

NH PP, T6 0.2 to 2.0 0.34 2.0 to 8.0b 0.20 yes
PP, T3 0.2 to 1.8 0.29 1.8 to 8.47b 0.17 no
PP, T11 0.2 to 2.0 0.25 2.0 to 4.2 0.17 no
PP, CE 0.2 to 2.0 0.28 2.0 to 9.0b 0.14 no
PTFE, T6 0.3 to 3.6 0.37 3.6 to 10.0b 0.16 no
PEO, T6 0.2 to 2.8 0.37 2.8 to 7.7b 0.21 no

a “Yes” indicates superspreading is observed in experiments at these conditions. b end
of reported viscous regime corresponds to end of the simulation.

Table 3.5: Spreading exponents and duration of different spreading regimes. (Modified
reprint with permission from Ref. [190])

Similar to experimental observations, the spreading passes through several regimes.
The first regime is characterized by a high spreading exponent. While the spreading
exponent that we observe in this regime is similar to the inertial regime in macroscopic
experiments [99] the transition time between the first and the second regime is moved
to much larger values of the characteristic inertial time τc = (ρR3/γ)

1/2, where ρ is
the liquid density, R is the initial radius of the droplet, and γ is the surface tension
of the liquid. For macroscopic droplets, the transition time is τ = O(τc) [99], whereas
in our simulations the transition time is τ = O(100τc), with τc = O(10 ps). This large
difference is potentially caused by the small length scales in our simulations compared
to experiments, or could result from using cylindrical droplets instead of the spherical
droplets used in experiments.
The second regime is the viscous regime, characterized by a lower spreading expo-

nent. For this second regime, linear fits used to determine the spreading exponent are
shown in Figure 3.14. The measured data are approximately on a straight line in this
regime. At later times in the LN simulations, the spreading slows down and the curves
level off. In this third regime the surfactant concentration at the interfaces decreases.
Moreover, because of the thermostatting strategy, the temperature strongly increases
in LN simulations. As a result, the driving force for spreading weakens. Representative
snapshots of the simulations for the different regimes are depicted in Figure 3.15.
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Figure 3.14: Base radii r as a function of the simulation time t in log-log representation
and lines to determine the spreading exponent. Top: LN simulations;
middle: NH simulations; bottom: results from the viscous regime from
the NH simulations shifted such that differences between the lines are
highlighted. (Modified reprint with permission from Ref. [190])
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3.3 Simulations of surfactant enhanced spreading

(a) t = 1ns, inertial regime (b) t = 3.7ns, viscous regime (c) t = 10.0 ns, final regime

Figure 3.15: Snapshots of LN simulation with T6 surfactant on PP. Colors are as in
Figure 3.10. In the inertial regime, dynamics are influenced by the initial
droplet shape. In the viscous regime, the initial shape information is lost
and viscous dissipation controls the spreading velocity. In the third regime,
the droplet surface area increases greatly and the surfactant density at the
interfaces and inside the droplet is reduced.

The third regime is a result of the simulations being performed at the nanoscale; a
connection to the macroscale is difficult and further investigation of this regime is un-
likely to enhance understanding of superspreading. For the inertial regime, no relevant
differences were found between superspreading and non-superspreading surfactants in
experiment [101]. For the second, viscous regime, however, significant differences be-
tween superspreading and non-superspreading solutions were observed [101]. The be-
havior of droplets and especially the spreading exponents in this regime are thus of
interest.

For the viscous regime, we find that the spreading exponent for the superspreading
surfactant is greater than the spreading exponent for the non-superspreading solution
in LN simulations. However, comparing the spreading exponents observed by Wang et
al. [101] with ours, and considering the different geometries, the spreading exponents in
the LN simulations appear to be too large: Wang et al. observed spreading exponents
α ≈ 1/7 for superspreading and α ≈ 1/10 for non-superspreading solutions, which
corresponds to the MKT and the HDM. We therefore would expect to find exponents
of α ≈ 1/5 and α ≈ 1/7. However, the observed spreading exponents are larger still
(cf. Table 3.5).

When examining the temperature of the LN simulations, we noticed that over the
time of the simulation the temperature increased by more than 100K. Apparently the
heat sink in the Langevin region was not sufficient to adsorb the heat generated by
dissipation, or the heat could not be transported sufficiently fast to the heat sink. This
motivated the NH simulations, in which the majority of the particles is weakly coupled
to a Nosé-Hoover thermostat. In these simulations the temperature did not increase
during the simulation despite the weak coupling. Because we did not expect to recover
the superspreading regime in our simulations, NH simulations were stopped when the
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3 The molecular mechanism of superspreading

viscous regime was sufficiently well-developed to determine spreading exponents. The
base radius as a function of time is given as log-log data in the middle image of Fig-
ure 3.14; the lower image of Figure 3.14 shows the data of the viscous regime translated
to highlight the differences between the curves. Lines from the fit to determine the
spreading exponent are also shown.
For the NH simulations, results are in much better agreement with experimental

data [101]. The spreading exponent is smallest for the alkyl ethoxylate surfactant
(α ≈ 0.14); for trisiloxane surfactants in conditions that are too long or too short and
where the substrate is too hydrophobic for superspreading, the spreading exponent is
α ≈ 0.17. Considering the inherent noise, the results for these non-superspreading
scenarios are in reasonable agreement with the HDM, such as the experiments by
Wang et al. [101] with non-superspreading solutions of trisiloxanes on PP substrates.
The simulated values are therefore in reasonable agreeent with those from experiment,
especially when considering that also in experiment slight deviations from the ideal
value of α = 1/10 were observed. For the superspreading case, with the T6 surfactant
on the PP substrate, the measured spreading exponent is slightly above 0.2, which is in
reasonable agreement with MKT and therefore also in agreement with the experimental
results [101]. For the PEO substrate, for which no experimental data is available, the
spreading exponent is also slightly above 0.2.
As discussed above, differences in spreading exponents suggest that different physi-

cal processes underlie the spreading. That the experimentally observed difference be-
tween superspreading and non-superspreading solutions is recovered in our simulations
suggests that effects relevant to the superspreading mechanism have been captured.
The reason for the increased spreading exponent for the superspreading case will be
discussed in Section 3.3.2.2. The differences in the physical behavior for the PEO sim-
ulation compared to the other simulations is addressed here: As described above, the
PEO substrate is hydrophilic and water has an affinity to this substrate. A result of
this affinity is that in our simulations, water diffused to the substrate at the contact
line and surfactants desorbed from the substrate, as shown in Figures 3.16 and 3.17.
This desorption of surfactants or even depletion of surfactants close to the contact
line was not observed in any other simulation, which can be seen from the surfactant
concentration at the substrates decreasing much less rapidly for all other simulations
compared to the simulation with the PEO substrate. We therefore suggest that the
increased spreading exponent is a result of water diffusing to the contact line region and
pushing surfactants aside. It is unclear, however, how exactly this process increases
the spreading exponent. We would also like to mention that it is unlikely that this
effect can be captured in an experimental setup because the time scales of surfactant
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depletion at the contact line region is on the order of magnitude of a few nanoseconds,
i.e. the time scale of the simulations reported here. This time scale cannot be resolved
in experiment of spreading in the lab.
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Figure 3.16: Surfactant concentration Γsl at the solid–liquid interface for the different
NH simulations. For the simulation on PEO, the surfactant concentration
drops more rapidly because of unfavorable surfactant adsorption on the
substrates compared to water adsorption. (Modified reprint with permis-
sion from Ref. [190])
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Figure 3.17: Surfactant density close to the three-phase contact line for the PEO sim-
ulation. The region at the substrate close to the contact line is depleted
from surfactants.

3.3.2.2 Droplet shape

As outlined in Section 3.1, a molecular understanding of phenomena at the contact
line region is of great interest to better understand superspreading. Snapshots of the
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3 The molecular mechanism of superspreading

droplets of the different NH simulations with the circular fit to the droplet shape are de-
picted in Figure 3.18. MD simulations with simple model molecules by Shen et al. [114]
suggested that bilayers might form in spreading droplets with trisiloxane surfactants.
In our larger, more realistic simulations, however, it is immediately apparent that nei-
ther a bilayer nor a precursor forms. Likewise, feet are not visible, which argues against
theories based on precursor formation. The results in this Figure also show that the
approximation of the droplet shapes with cylindrical caps is reasonable.

(a) PP, T6 (b) PP, T3 (c) PP, T11

(d) PP, CE (e) PTFE, T6 (f) PEO, T6

Figure 3.18: Simulation snapshots from the NH simulations in the viscous regime. The
orange lines are the circular fit and a horizontal line at the base position
zbase. No bilayer, precursor, or foot is formed in any of the simulations.
(Reprinted with permission from Ref. [190])

Results for the moment-based surface analysis are depicted in Figure 3.19 and 3.20.
The first of the figures shows the surface of the final snapshot of the viscous regime
of each simulation color-coded with the edge classifier. The latter figure shows the
maximum value of the edge classifier Cmax in the left and right half of the droplet
(which is essentially at the leading edge, as can be seen from Figure 3.19) over the
droplet contact angle for all snapshots from the viscous regime of the NH simulations.
In the subfigures in Figure 3.20, the results obtained with the superspreading scenario
are given in every of the subfigures such that a comparison between the superspreading
and non-superspreading cases is possible. For the results in Figure 3.20 the time is
implicity included in the figures. Because the droplets spread over time the contact
angle gets smaller with increasing simulation time. With increasing simulation time,
the results thus move from right to left in the images. In addition, with decreasing
contact angle, the value of the surfactant classifier tends to grow, as the macroscopic
contact angle has an impact on the moment-based analysis, as briefly mentioned in
Section 3.3.1.4.

110



3.3 Simulations of surfactant enhanced spreading

100 150 200 250 300 350 400

50

100

150

(a) PP, T6 50 100 150 200 250 300 350 400

50

100

150

200

(b) PP, T3 150 200 250 300 350 400 450

50

100

150

200

(c) PP, T11

100 150 200 250 300 350 400

50

100

150

(d) PP, CE 100 150 200 250 300 350 400

50

100

150

(e) PTFE, T6 100 150 200 250 300 350 400

20
40
60
80

100
120
140
160

(f) PEO, T6

Figure 3.19: Droplet shapes from the NH simulations in the viscous regime color-coded
with the classifier C(x). (Reprinted with permission from Ref. [190])

The differences between some of the non-superspreading cases compared to the super-
spreading case is immediately visible from Figure 3.19. The droplet at superspreading
conditions (PP, T6) has a smooth transition at both droplet edges, which can be seen
from the shape but also from the surface classifier C(x). For the simulations at non-
superspreading conditions with the surfactant that is too short (PP, T3), the alkyl
ethoxylate surfactant (PP, CE), and the surface that is too hydrophilic (PEO, T6),
the leading edges of the droplet are much sharper. At conditions where the surfactant
is too long for superspreading (PP, T11), the visual impression from the shape is that
the transition from the vapor-liquid interface to the solid-liquid interface is sharper
compared to what is observed for the droplet at superspreading conditions. However,
this feature is not captured well by the image classifier, as can be seen from the color
of the lines. For the case that is too hydrophobic for superspreading (PTFE, T6), a
strong difference in the surface classifier compared to the superspreading case is not
visible.

The differences between the droplet at superspreading conditions and the non-
superspreading cases with a too-short surfactant, the alkyl ethoxylate, and the too-
hydrophilic substrate can also be detected when comparing the maximum values of
the surface classifier during the viscous spreading regime. As can be seen from Fig-
ure 3.20, there is a clear separation of the results obtained for the droplet shape at
superspreading conditions and the three non-superspreading cases for which differences
are also easily visible from Figure 3.19, i.e. for (PP, T3), (PP, CE), and (PEO, T6).
It should be noted that the differences between the computed values for the classifier
are numerically small; however, these small differences reflect the strong differences in
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Figure 3.20: Maximum droplet classifier Cmax of the left and right edge of the droplet
over the contact angle during the viscous spreading regime. The bright
and dark shades of the symbols are the results for the left and right edge
of the droplet. The data for PP, T6 are given in every image to facilitate
direct comparison. (Modified reprint with permission from Ref. [190])
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3.3 Simulations of surfactant enhanced spreading

the shapes that are visible in Figure 3.19. That the resulting numerical differences are
that small is a feature of the method.
Differences in the results are also visible for the too-long surfactant. Because the

contact angle was mainly sampled in different regions for this simulation and the sim-
ulation at superspreading conditions, the discrimination is less obvious. Considering,
however, that the surface classifier has the tendency to grow with decrasing contact
angle, the observed results suggest that a difference exists for these cases, too.
The only case where a separation of the results obtained with the superspreading case

and the non-superspreading case is not possible is the scenario in which the substrate is
too hydrophobic. In agreement with what is seen in Figure 3.19, one edge of this droplet
seems to be sharper than what is observed at superspreading conditions, whereas the
other is smoother.

3.3.3 Relevance for superspreading

Two remarkable features of the simulation at superspreading conditions are that the
contact line lies behind the circular fit and that the transition from the liquid–vapor
to the solid–liquid interface is smooth. This unusual mechanism, to our knowledge,
has previously been observed only in the model LJ surfactant study of McNamara et
al. [112] This transition removes the sharp edge at the contact line. This droplet shape
is thus a mechanism which can overcome the Huh–Scriven paradox [12], which results
from sharp droplet edges, and may possibly explain why the spreading exponent in the
viscous regime is larger for this simulation.
As mentioned above, Karapetsas et al. [107] showed that superspreading can occur

if direct surfactant adsorption through the contact line is possible and surfactants are
soluble. While the latter condition is known to be fulfilled for trisiloxane surfactants,
the direct adsorption mechanism remained obscure. The smooth transition from the
liquid–vapor to the solid–liquid explains how direct adsorption through the contact
line can work, as sketched in Figure 3.21. This smooth contact-line transition can
therefore potentially be the molecular mechanism of superspreading. That simulated
contact line regions do indeed resemble the proposeded mechanisms can be seen from
Figure 3.22. In the following, we discuss why this smooth transition was observed in
simulation at superspreading conditions and relate this to the complex dependencies of
the superspreading mechanism on the surface energy of the substrate and the surfactant
chain length.
The smooth transition between the interfaces requires a strong bending of the droplet

surface close to the contact line. This bending is associated with an energy penalty
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(a) superspreading (b) non-superspreading

Figure 3.21: A sketch of the proposed mechanism for superspreading compared to usual
surfactant enhanced wetting. Gray: solid; blue: water; black and red: hy-
drophilic and hydrophobic parts of the surfactants. The angle θ is the
macroscopic contact angle of the droplet. For the superspreading case,
the contact line is bent inwards, allowing for direct surfactant adsorption
on the substrate. The hydrophilic tails are long enough to form aggre-
gates, but not so long as to overlap and repel each other in the bended
region. The compact head group and the relative size of the head and
tail groups enhance the stability of these aggregates. The preferable ad-
sorption energies and that aggregates are not torn apart compensate for
the bending energy penalty. For conventional surfactant-enhanced spread-
ing, the surfactant aggregates are torn apart: surfactants must reorient at
the contact line, thus imposing an adsorption barrier. (Reprinted with
permission from Ref. [190])

and will thus only occur if this energy penalty is compensated for by an energetically
favorable feature. We hypothesize that this feature is the existence of an unbroken sur-
factant aggregate at the interfaces; the existence of these aggregates for superspreading
trisiloxane surfactants at water surfaces was shown by Ritacco et al. [197]. That the
smooth transition only occurs for the superspreading scenario at intermediate values
of the chain length of the surfactant is a logical consequence of this hypothesis.

The chain length of the surfactants has an impact on the energy penalty associated
with the bending of the interface and the stability of the aggregates. For surfactants
that are too long, the hydrophilic parts will overlap and repel each other when the in-
terface is bent, so this state will be energetically unfavorable and surfactant aggregates
will break up. For surfactants that are too short, surfactant aggregates at the interface
are not formed, as shown experimentally in [197]. Thus, intermediate values for the
chain length are best to facilitate the smooth transition at the contact line.
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(a) superspreading (b) non-superspreading

Figure 3.22: Snapshot of the contact line region for the superspreading (left) and non-
superspreading PP, CE (right) simulations. The geometries resemble the
proposed mechanisms in Figure 3.21. (Reprinted with permission from
Ref. [190])

For surfaces that are too hydrophilic, like PEO, the adsorption of the surfactant is
unfavorable because the surface prefers contact with water. This can be seen from the
surfactant concentration at the solid–liquid interface in Figure 3.16, where it is shown
that the surfactant concentration on the PEO substrate drops more rapidly than on the
other substrates, indicating that surfactants desorb from the interface or are repelled
by water close to the contact line, which will break the surfactant aggregates, which is
visible from Figure 3.17.

For the simulations with a substrate that is too hydrophobic, it seem from our
simulations that the transition from the liquid-vapor interface is smooth. This suggests,
that the fast adsorption through the contact line is in principle possible. That the path
may exist, however, does not necessarily mean the the surfactants will take this path to
adsorb rapidly on the substrate: Substrates with low surface energies, such as PTFE,
have weak interactions not only with water, but also with the surfactants. Adsorption
on these surfaces is thus not very favorable. A possible explanation could also be that
our model is not sufficiently accurate for realistic simulations on that substrate.

The contact-line mechanism at superspreading conditions observed in this study does
not explain why spreading rates are greatest for intermediate surfactant concentrations,
or more precisely, why spreading rates are maximal right before a phase transition
from vesicles to lamellar phases occurs inside the droplet. To show that this is not
an arguement against the proposed molecular mechanism, this feature is addessed
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briefly: The maximum spreading rates below the phase transition are unrelated to the
mechanism at the contact line, but to how fast surfactants can be transported from
the bulk to the interfaces. In the solution with vesicles, surfactant transport will be
faster with greater surfactant concentration; however, when surfactants are in lamellar
phases, the surfactants must pass through a phase transition before they can adsorb to
the interfaces, which is why surfactant transport to the interfaces is slower above the
phase transition, which is a plausible explanation for the role of vesicles and maximum
spreading rates as a function of the surfactant concentration.

Before concluding this chapter, we briefly discuss the impact of dispersion PPPM
on the observed results. It was shown in Chapter 2 that using the PPPM method
for dispersion provides simulations that are both more accurate and more efficient.
From the perspective of computational efficiency, the role of the PPPM algorithm for
dispersion can be easily identified: because simulations were faster, the simulation setup
could be designed such that larger or longer simulations, or more different systems could
be studied, which is of course beneficial, but was possibly not a critical requirement for
the observation of the smooth contact line transition. What was much more important
is that the usage of PPPM increased the accuracy of the simulations. The developed
model for the surfactant could only reproduce both the large surface tension of pure
water and the low surface tension of the surfactant laden interface by incorporating
long-range interactions. Given that the superspreading effect is very sensitive to the
choice of substrate and only occurs for a very narrow range of conditions it is likely that
the corresponding mechanism could only be observed because our simulations provided
a highly realistic representation and therefore were able to fall into this narrow range.
If long-range dispersion interactions had not been incoroprated, this range might have
been missed, the contact line mechanism would not have been observed, and the entire
project would have been a failure.

3.4 Summary and concluding remarks

That previous MD studies on superspreading failed because of inaccurate molecular
models motivated the development of an improved force field that accurately captures
features assumed important for simulations of surfactants in general and the super-
spreading mechanism in particular. This new force field allowed to study the super-
spreading effect with large-scale MD simulations of surfactant enhanced spreading of
aqueous solutions of different trisiloxane and alkyl ethoxylate surfactants on PP, PEO,
and PTFE substrates. We cover simulation setups in which superspreading occurs
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in experiment, as well as simulations at various conditions that are unfavorable for
superspreading, namely that the surfactant is too short or too long, the substrate is
too hydrophilic or too hydrophobic, or because the surfactant does not belong to the
general class of superspreading agents.
In simulations at superspreading conditions we observed a smooth transition at the

contact line, which removes the sharp edge typically encountered in spreading droplets
and thus overcomes the Huh–Scriven paradox. This offers an explanation for the greater
spreading exponent observed in the viscous regime at superspreading conditions. An
increased spreading exponent was also observed for aqueous solutions of trisiloxane
droplets on a PEO substrate, which is too hydrophilic for superspreading. The in-
creased spreading exponent for this simulation might be a result of water adsorbing at
the substrate close to the contact line.
While the simulation scale is apparently too small to capture Marangoni stresses

and therefore cannot directly observe the superspreading phenomenon, our simulation
results provide insight about mechanisms at the contact line. The absence of bilay-
ers, precursors, or feet casts doubt on the majority of the proposed superspreading
hypotheses. In contrast, at superspreading conditions the droplet is bent inwards at
the contact line and the transition from the liquid–vapor to the solid–liquid inter-
face is smooth. This smooth transition renders possible direct surfactant adsorption
through the contact line and in this way provides an explanation for the superspreading
mechanism [107]. Based on this mechanism we provide plausible explanations for the
complex dependency of superspreading on the substrate hydrophobicity, the surfactant
chain length, and the surfactant concentration.
The simulation results reported here show a molecular mechanism at the contact line

that potentially enables the fast wetting kinetics of superspreading and illustrates why
the effect is not observed under conditions far from the optimum. However, these results
do not explain the difference between conditions that both lead to superspreading,
such as between two different substrates on which superspreading can occur or differnt
trisiloxane surfactants with n = 5 and n = 6. Moreover, because of the larger length
and time scales involved in Marangoni flows, the superspreading regime is not captured
directly in our simulations. This also means that, although the proposed mechanism
is simple, based on observations, and explains a lot of experimental results, there
is no direct evidence that the observed mechanism is the molecular mechanism of
superspreading. Further modeling to bridge the involved scales will be required to
obtain a full understanding of all details of superspreading. Coarse-graining can provide
further information on the role of vesicles and phase behavior. To fully capture the
effect, however, accurate hybrid continuum and molecular simulation approaches that
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can cover both the molecular and the continuum scales will be required [98,198].
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4 Molecular precursors

4.1 Previous studies and open questions

Precursor films of molecular thickness that precede droplets were first discovered by
Heslot et al. [19, 20]. Their study has motivated a series of experimental, theoretical,
and numerical studies in which further properties of these films have been described. In
the following we only provide a summary of the most relevant literature to the study at
hand. In particular, we review the most elementary findings known from experiments,
present the four theoretical models on molecular precursors whose current limitations
show that the effect is not yet well understood and deserves further research, and
describe previous MD studies. Afterwards, the objectives of this work are presented.
A more complete overview of the available literature is given in [16,199].

4.1.1 Experimental observations

In the first articles on molecular precursors, Heslot et al. [19,20] report the spreading of
squalane, PDMS and tetrakis(2-ethyl-hexoxy)-silane droplets on (111) silicon wafers.
Three different types of precursors, each with thickness on the length scale of molecular
dimensions were observed. For the squalane droplet a continuously growing precursor
was observed. The PDMS droplets were preceded by a layer with a constant width of
approximately 6Å, the thickness of a PDMS molecule, that smoothly becomes thinner
at the end of the tip. For the tetrakis(2-ethyl-hexoxy)-silane droplet the striking phe-
nomena of the evolution of several distinct layers, each with molecular-scale thickness,
that spread ahead of the droplet, was discovered. This last phenomenon is also known
as terraced wetting. As a fourth type of precursor we mention here a single layer
precursor of molecular thickness with a sharp edge at the leading tip of the precursor
described by Bardon et al. [200] for squalane droplets on the same surface at lower tem-
peratures. The different observed precursor shapes are sketched in Figure 4.1. Many
other types of observed precursors are summarized in [201].

In the overwhelming majority of experimental studies it was found that the dynamics
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Figure 4.1: Sketches of different precursor types that have been observed experimen-
tally. Upper left: Continuously growing precursor as observed for squalane
[20]. Upper right: Sharp increasing and afterwards continuously growing
precursor as observed for squalane at reduced temperature [200]. Lower
left: A single layer precedes the droplet as observed for PDMS in [19].
Lower right: The terraced wetting effect in which multiple distinct layers
precede the droplet as observed for tetrakis(2-ethyl-hexoxy)-silane.

of the precursor length lp follows

lp ≈ (Dpt)
0.5, (4.1)

i.e., has a diffusive behavior with a spreading exponent of 0.5, where Dp is a diffusion
coefficient and t is the time. This scaling behavior was already observed in the first
publication on molecular precursors [20] and was later confirmed in numerous studies
(see [16] and references therein) with only one exception [202] that will be addressed
later.

4.1.2 Theoretical models

Different models have been proposed to describe the evolution of the formation of
layers. De Gennes and Cazabat [203] presented a hydrodynamic approach in which
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the precursor dynamics are described by competitive fluxes in horizontal and vertical
directions. For multilayered spreading the model predicts a spreading exponent of
0.5 for each layer. For a single layer, however, this model predicts slower wetting
dynamics. Moreover, the model requires distinct molecular layers of constant density
and therefore cannot be used to describe continuously growing precursors. It should
also be emphasized that whether one or more layers form is controlled by a friction
coefficient; the formation of multiple layers is thus a result of the dynamic and not the
thermodynamic properties of the system.
An alternative model by Abraham et al. [204,205] is based on nonequilibrium statis-

tical mechanics. The model expresses the free energy of a system as the sum of the free
energies of distinct layers. Compared to the model discussed in the previous paragraph,
the existence of a single or multiple precursors does not depend on the friction in the
system, but depends only on thermodynamic quantities. The friction coefficient in this
model only influences the dynamics with which the layers develop. This model predicts
the occurrence of precursors if the spreading coefficient is positive, so that the system
is in the complete wetting regime. Similar to the model by de Gennes and Cazabat,
a weakness of this model is that the spreading exponents observed in experiment can
only be reproduced in certain limits and that a growing precursor cannot be described
because of the assumption of distinct layers of constant thickness.
The first microscopic model of precursor formation was developed by Burlatsky et

al. [206, 207]. This model describes the development of a monolayer of fluid on a sub-
strate that is connected to a bulk reservoir on one end and has a free end on the opposite
site. The particle movement is described via molecular jumps between adjacent lattice
positions. This model predicts the correct spreading exponent of 0.5 for the monolayer.
The development of the monolayer occurs if a microscopically defined spreading coef-
ficient s is positive, which is equal to minus the energy of moving a particle from the
bulk reservoir to the tip of the film. The model, and extensions in [208], are sufficiently
simple to allow for approximate solutions that can be used to describe the system.
Shortcomings of this model are that it describes only a monomolecular layer, and not
terraced or growing precursors, and that the microscopic spreading coefficient s might
be useful when developing a theoretical model, but its determination or prediction in
reality can be difficult.
Finally, an Ising model was presented in [209] and [210]. In addition to the model

of Burlatsky et al, this model allows the existence of a second molecular layer and
mass transport between the two layers. This model also provides the correct spreading
exponent for the first layer and is sufficiently simple to allow for approximate analytic
solutions. Moreover, it can be extended for the description of multilayered spreading,

121



4 Molecular precursors

as discussed in [16]. A major drawback of the current version of this model is that it
does not predict under which conditions precursors form.
As briefly described above, none of the existing models is capable of capturing all of

the relevant experimental findings. The first models based on a continuum description
of layers of constant density did not successfully capture the film dynamics, suggesting
that the continuum representation of the layers is oversimplified. The models based on
a microscopic description provide the correct exponents, but are not yet in a state in
which the different kinds of precursors can be captured appropriately. Further studies
are thus required to better understand the phenomenon and develop improved models.

4.1.3 Findings from molecular dynamics simulations

That MD simulations are an ideal method to study molecular precursors because of
the length scales inherent to the phenomenon has been realized early and the first MD
study on the subject by Yang et al. [211] appeared only two years after the discovery
of molecular precursors. This and a study from the same authors [212], however,
could not reproduce Equation (4.1). The discrepancy was later resolved by Bekink et
al. [213], who showed that the scaling behavior observed in [211, 212] was caused by
a porous solid in their simulations. Because of computational limitations, the studied
systems were restricted to small system sizes, containing only a few thousand atoms
each of liquid and substrate. In all three studies the authors report of having performed
simulations in the terraced regime, whereas from the results they presented there is
no clear evidence for the formation of multiple distinct layers either in the depicted
snapshots or the plots of the width of the different layers.
The studies by Nieminen et al. [214, 215] that appeared a few years after the first

articles by Yang et al. [211, 212] were performed with even smaller systems. In their
works they vary the shape of the solid–liquid pair potential, and examine lower temper-
atures, such that the simulated liquid is nonvolatile. The spreading exponent known
from experiment was reproduced in their studies. Moreover, from the images of the
provided simulation snapshots it seems that terraced layers formed, as two distinct
layers separate from the droplets, possibly because of the lower temperatures. Unfor-
tunately the systems were run with very small number of particles and the authors did
not measure the layer width except the width of the first one. Another weak point
that might have severe effects on the reported results is that the authors use a flat
substrate as a model and simply use a Nosé-Hoover thermostat for the fluid. The
roughness of the solid and any friction effects, which are typically considered of critical
importance [216], are neglected, which possibly had a strong influence on the results.
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Finally, the temperature T = 0.57/kB used in parts of their simulations is far below
the triple point T ≈ 0.7/kB of the atomistic LJ fluid [217]. Their observations could
thus be a result of that the system was not in a liquid state.
The first simulation studies in which the authors support their claims of having

observed the terraced wetting effect by providing analysis also for higher layers than
only the first layer above the substrate are those reported by Banavar and co-workers
[218,219]. These authors report spreading simulations of chain molecules on crystalline
solid substrates. The droplets in their study are already considerably larger, but still
only contain either 16 384 or 32 000 particles. Because of the three-dimensional system
setup, the majority of the simulated particles, 147 456, are part of the solid substrate.
Aside from simulating larger systems, an additional improvement over previous studies
is that the spreading exponent of the precursors is determined from a fit to the data
in [218]. It was found that the spreading coefficient was not exactly 0.5, but was
approximately 0.46. The evidence for having captured the terraced effect is rather weak.
In [218] there are only pictures of the snapshots from which a distinct separation of the
layers is not observable. In [219], similar snapshots are shown in which the formation of
distinct layers is not visible; additionally they provide the number of atoms in the first
four layers above the substrate. It is argued that the number of particles in the layers
increases linearly with time to prove the existence of multiple layers; the depicted lines,
however, are clearly not straight lines, which makes their claims questionable.
That the terraced wetting effect was captured in the studies of Banavar and co-

workers was also put in question by studies presented by Heine, Grest, and Webb
almost a decade later [186, 191, 220], where simulations similar to those mentioned
in the previous paragraph were performed with much larger systems. The formation
of multiple distinct layers was not observed and it was concluded that capturing the
effect in MD simulations was infeasible because of computational limitations. The
progress made in these studies occurs on many fronts. First, the simulated droplets
were sufficiently large that properties of the main part of the droplet, i.e. the part of
the droplet that is not the precursor, and the precursor can be studied at the same
time. Second, they compare findings for the spreading velocity of the main part of
the droplet to spreading models. Third, which will be addressed in more detail in the
following, the authors explored how spreading simulations can be performed at reduced
computational cost.
In the MD studies discussed here prior to those of Heine et al., the authors either used

a flat substrate and neglected the effect of friction, or they modeled the substrate with
particles, resulting in the substrate particles outnumbering the number of fluid particles
(e.g., by a factor of more than 4 in the studies by Banavar and co-workers [218, 219]).
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Simulating the behavior of the substrate is thus the most demanding task in these
simulations, which is a problem since the features of interest is the behavior of the
liquid. This issue is addressed in [191], where simulations are performed with particle-
based crystalline substrates and perfectly flat substrates. In the simulations of perfectly
flat substrates the friction is modeled by a clever choice of thermostats. It is shown
that when using the thermostats properly, the spreading velocities on flat substrates is
equal to what is observed on crystalline substrates. It should be noted, though, that
the crystalline substrate induces ordering in the liquid layers close to the substrate
[212] that cannot be captured with their approach. To further increase computational
efficiency, Heine et al. [186] studied the effect of using cylindrical instead of spherical
droplets. They observed that, with a proper translation of the findings between the
2D and 3D geometries, the physics of the simulated systems are identical, and that
simulations can therefore be performed with a cylindrical setup to save computation
time.

4.1.4 Objectives

As outlined above, there was a considerable effort of studying precursors with MD
simulations. Features that have been treated especially well in even the earliest studies
[211, 212, 218, 219] included how the simulated systems should be prepared and how
the dynamics should be controlled by thermostats. In contrast, little effort has been
devoted to characterizing the shape of the precursors. Proof for the claims of what kind
of precursor shape (cf. Figure 4.1) was captured in the simulations was usually only
provided with figures of simulation snapshots [211,214,218] or linear fits to clearly non-
linear measured data [219], which is rather weak evidence and possibly also the reason
for the discrepancies between earlier [218, 219] and more recent studies [186, 191, 220].
Another flaw of previous simulation studies is that the precursor length in all MD
studies that we are aware of (all referenced in [16] or [199]), incorrectly measured the
precursor as the distance r from the precursor tip to the center of the droplet (either by
measuring this distance or indirectly by counting the number of atoms in each layer),
whereas the correct measure should be the distance l from the tip of the precursor to
the macroscopic contact line of the droplet, as shown in Figure 4.2. The development
of an improved analysis method that facilitates a clear identification of the simulated
precursor type and the identification of which findings from previous simulation studies
should be questioned because of the incorrect precursor measurements are the first
objectives of this study.
The only experimental study in which significant discrepancies from the diffusive
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Figure 4.2: Liquid droplet (cyan) on a solid substrate (pink). Correct definition of the
precursor length l and incorrect measure r that has often been employed.

layer dynamics in Equation (4.1) has been reported, to the best of our knowledge, is
the study by Albrecht et al. [202], in which the spreading kinetics of extremely small
PDMS droplets with a volume of only a few picoliters was studied. Significantly smaller
spreading exponents of only 0.12 and 0.14 were reported. The authors argued that the
decreased spreading exponent was a result of the hindrance of diffusion caused by
entanglement of chain molecules. The PDMS molecules that were used in their study,
however, had an average molecular weight Mw = 760 g/mol, which corresponds to
an average chain length of 10 or 11 monomers, for which entanglement effects should
not be that pronounced, as shown in [221], where the normal diffusive regime with a
spreading exponent of 0.5 was recovered in bulk simulations of linear polymer chains
with 100 monomers and more. Moreover, this finding also conflicts with Heslot et
al. [20], who observed diffusive behavior in experiments with longer chains of PDMS.
As previous MD studies, Albrecht et al. [202] took a measure that relates the precursor
length to the distance from the film tip to the droplet center. The second objective of
this study is to show that the discrepancy between the study of Albrecht et al. [202] and
other experimental studies is possibly a result of the size of the droplets used in [202]
in combination with the incorrect measure of the precursor length.
While the dynamics and mass transport mechanisms of molecular precursors seem

to be well understood, conditions under which precursors form and what causes the
development of different types of observed precursors (cf. the sketches in Figure 4.1) are
two of the most important remaining open questions in the field of precursors [16]. The
available models for precursors are unable to address these issues, and findings from
experiment and simulation studies provide no definite answers either. For the informa-
tion under which conditions a precursor film can develop, there are conflicting findings.
It has been found in numerous experimental and simulation studies that the onset of a
precursor matches the transition from the partial to the complete wetting regime when
the spreading coefficient becomes positive [186, 191, 216, 222–224]. This conflicts with
the lack of theoretical justification for this relation and with other studies that reported
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precursors in the partial-wetting regime [16]. Information that describes under which
conditions different precursor shapes are observed is absent. The third objective is to
resolve the conflicting findings and explain under which conditions precursors can form
and what controls the different observed precursor shapes.
To address these questions we performed spreading simulations of droplets of atom-

istic fluids and chain molecules. The simulation setup, analysis, and results of these
simulations is described in Section 4.2. The impact on the results of the inaccurate
measures for the precursor is also discussed. The requirements for precursor formation
are addressed in Section 4.3 with free energy computations. Final remarks are given
in Section 4.4.
Before presenting the results, we briefly comment on the incorrect measurement of

the precursor length in previous studies. The reasons why these incorrect measures
were chosen is that most experimental studies, in which the droplets are large and
the exact definition of the precursor films therefore does not seem to play a dominant
role, use r as the length of the precursor. Precise information that the length of the
precursor is only the distance from the precursor tip to the macroscopic droplet edge
is given rarely in the literature and only appeared in recent years [16, 225,226].

4.2 Simulations of molecular precursors

4.2.1 Simulation setup

We perform MD simulations of spreading droplets. Based on the findings of Heine et
al. [186], who found that simulations of cylindrical droplets show the same behavior as
spherical droplets, we used cylindrical droplets in our simulations. Instead of capturing
the effect of the substrate by an effective potential and a thermostat as done in their
simulations, we explicitly model the beads of the crystalline substrate. Our motiva-
tion for treating the solid explicitly is that ordering in the liquid structure induced by
the solid crystal might effect the details of the properties of the precursor layers. In-
deed, when comparing Figures 1 and 2 from [191], in which the simulations on explicit
and implicit substrates are compared, the simulation results look qualitatively similar,
a closer inspection however suggests that the precursor layer formed on the explicit
substrate is thinner. As pointed out above, modeling the substrate explicitly has the
disadvantage of increasing the computation time. For cylindrical droplet geometries,
as those used here, however, the ratio of solid to liquid particles is much lower than
for spherical simulation setups, as shown below. The computational overhead thus
becomes more tolerable.
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4.2 Simulations of molecular precursors

Spreading simulations were performed with cylindrical droplets with the axis of the
cylinder pointing in the y-direction. The substrate’s surface normal pointed in the z-
direction, so spreading occurs in x-direction. Simulations were performed with periodic
boundary conditions in all directions. While periodicity in the y-direction is required
because of the cylindrical droplet geometry, periodicity in the x and z-direction was
required only because of PPPM for dispersion. Because our focus is not on describing
the features of a specific molecule but understanding the underlying physics, we perform
simulations with model substances and use reduced units in all simulations in this
chapter. All data are reported with respect to a reference energy ε, mass m, distance
σ, and derived time unit τ = (mσ2/ε)1/2.

The substrate in all spreading simulations was a fcc crystal with a unit length of
1.5874σ and (111) vector normal to the surface pointing in the z-direction. The sub-
strate was composed of 8 layers, the lowest layer of which was held rigid in all simula-
tions. For the spreading simulations, the substrate extended 600.747σ and 33.6739σ in
the x- and y-directions and contained 142 772 particles. The liquid droplet was com-
posed of 180 000 beads. The number of substrate particles in the simulations is still
large. Because of the cylindrical setup, however, their number is at least smaller than
the fluid particle number instead of being significantly larger. The initial configuration
of the droplet was created using PACKMOL [71].

In simulations of chain molecules, interactions between two beads i and j are de-
scribed with the LJ potential

ULJ = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
, (4.2)

where rij is the distance between the beads, εij is the depth of the potential well and σij
is the distance at which the potential passes through zero. For the substrate-substrate
interactions we use εss = 5ε and σss = σ, which provides a stable solid at the simulated
temperature. The liquid–liquid interactions are described with εll = ε and σll = σ. For
the solid–liquid interactions, we use σsl = σ. Different values of εsl are used in the
simulations. In addition to the LJ potential, bonded atoms interact with the FENE
potential [227]

UFENE = −0.5kr2
0 ln

[
1−

(
rij
r0

)2
]
, (4.3)

where r0 is the maximum possible length of the bond and k is a force constant. We
use k = 30ε/σ2 and r0 = 1.5σ. Each linear chain molecule consisted of 20 beads. The
solid particles have reduced mass ms = 2m and the liquid particles ml = m.
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The main motivation to use chain molecules in this and previous studies is to perform
simulations with a fluid of low volatility to exclude effects caused by droplet evaporation
and condensation of material from the vapor onto the substrate. In contrast, simula-
tions with atomistic fluids would be desirable because their theoretical description is
much easier. In fact, the two theoretical models capable of describing the dynamics
of the first layer properly [206, 210] are both designed for atomistic fluids. Moreover,
atomistic fluids can be handled more easy in molecular simulation than chain molecules
both in terms of performing simulations and extracting data. The problem with simu-
lations of atomistic fluids is, however, that for normal LJ fluids, the vapor phase has a
non-negligible density, so the fluid is volatile above the melting temperature [228]. The
challenge of avoiding volatility for atomistic systems has previously been addressed by
running simulations either at temperatures below the melting point [214], or with two
immiscible liquids, one of which corresponds to the spreading droplet and one which
models the environment and ensures nonvolatility [222]. We propose here an alterna-
tive procedure to model an approximately nonvolatile atomistic fluid. In simulations
with the atomistic fluid, the interactions between particles i and j is described by a
modified Buckingham potential [229]

U =
εij

1− 6
λij

{
6

λij
e

[
λ

(
1− rij

σij

)]
−
(
σij
rij

)6
}

+
Dij

r12
ij

, (4.4)

where rij is the distance between i and j, and λij controls the shape of the curve.
If Dij = 0, the original Buckingham potential, where εij and σij are the depth and
the position of the potential well, is recovered. The last term avoids the unphysical
maximum for small rij in the original Buckingham potential. For the substrate we
use εss = 5ε, λss = 12, σss = 1.122σ, and D = 0.05εσ12. For the liquid we use
εll = ε, λll = 9, σll = 1.1σ, and Dss = 0.03εσ12. For the solid–liquid interaction we use
λsl = 12, σsl = 1.1σ, and Dsl = 0.03εσ12. εsl is varied in the simulations. As for the
chain simulations, we use ms = 2m and ml = m for the mass of the solid and liquid
particles.

The substrate particle interaction was chosen such that a stable solid phase is formed
at the simulated temperature. The liquid–liquid parameters were selected such that
interactions are softer at shorter particle separations compared to an LJ potential,
as shown in Figure 4.3. As a result, the melting point of the liquid is reduced and
simulations can be performed at lower temperatures, which results in less fluid volatility.
Effects due to evaporation and condensation can therefore be neglected. That the fluid
has low volatility is apparent from a snapshot of a slab simulation of the atomistic liquid
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shown in Figure 4.4. The condensed phase is liquid; the vapor phase is almost empty.
For simulations with the pure liquid in the slab setup, crystallization did no occur
within simulations over 20 000τ . Crystallization of the droplet material occurred in
few simulations when brought in contact with the solid substrate. When crystallization
has occurred, this is given explicitly when presenting the simulation results and the
influence of solidification on the reported results is discussed.
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Figure 4.3: LJ and modified Buckingham potential for the atomistic fluid. The Buck-
ingham potential is less repulsive at lower particle distances.

Figure 4.4: Equilibrated slab system of the atomistic fluid. The condensed phase is
liquid and the vapor phase is almost empty.

For simulations with the chain molecules, the substrate was equilibrated at T = ε/kB

using a Langevin thermostat [167] with damping factor τD = 0.3τ . The droplet was
preequilibrated for 500τ at a reduced temperature of T = ε/kB using a Nosé-Hoover
thermostat [68] with damping factor τT = 0.5τ . For the atomistic fluid, the substrate
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and droplet were preequilibrated for 50τ and 1000τ at a reduced temperature of T =

0.6ε/kB using a Nosé-Hoover thermostat [68] with damping factor τT = 0.5τ .

For both, the atomistic fluid and the chain molecules, the equilibrated droplet was
then positioned 2.5σ above the equilibrated substrate. The first five substrate layers
above the rigid layer were coupled to a Langevin thermostat [167] with a damping
factor τD = 0.3τ . No thermostat was used for the rest of the simulation, as in [218],
because it provides closest similarity to experiment.

During the equilibration and production, the particle positions and velocities were
updated using a two-stage rRESPA integrator [83], with interactions within a distance
of 3.0σ shifted to zero starting at 2.5σ and computed every 0.005τ . Long-ranged
dispersion interactions were computed using a PPPM solver with ik differentiation,
interpolation order P = 5, grid spacing h ≈ 0.75σ, Ewald parameter β = 1.0/σ and a
real-space cutoff rc = 3.0σ and were evaluated every 0.02τ . The repulsive terms were
truncated at rc. The spreading progress is visualized in Figure 4.5.

Figure 4.5: Spreading process of chain molecules (cyan) on a substrate (pink) with
εsl = 1.5ε at times (from top to bottom) 0τ , 1250τ , 5000τ , 7500τ , and
10000τ . A thin precursor evolves.
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4.2.2 Analysis methods

4.2.2.1 Layer classification

Obviously, if the target is to define the requirements for precursor formation and dif-
ferent types of precursors, the first necessary step is to extract from the simulation if
and what kind of precursor has formed. To address this target we first identify molec-
ular layering of the liquid in the vicinity of the substrate. The length of each layer
ahead of the droplet is then determined in a second step. The development of these
widths over time in combination with additional analysis reported below can be used
to characterize the simulated precursor.
The identification of layers is done with the same approach used in the first MD

studies on precursors [212]. Near a solid wall, such as the substrate in our simulations,
liquid particles are more ordered compared to the bulk liquid and form layers of molec-
ular thickness. The separation of these layers can easily be determined from density
profiles of the liquid in z-direction, as shown in Figure 4.6. For small values of z, the
profile oscillates, with each peak corresponding to a molecular layer. The position of
the minima are used as separators between different layers. With increasing distance
from the substrate the oscillations decay. Defining discrete layers is not possible for
this larger distance (but is also not required because relevant processes in the context
of molecular precursors occur close to the substrate).
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Figure 4.6: Number count of liquid particles over the z dimension. For low separa-
tions from the substrate, there is a natural layering of the atoms, each
corresponding to one molecular layer.

The next step is to define the width r of each molecular layer. Previous approaches
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were to approximate the width of a layer by the distance between the minimum and
maximum extrema of the particles [214], the number of particles included in that
layer [218, 219], or the point where the local binned density drops below a threshold
[191, 211]. The first approach obviously fails if single molecules separate from the
droplet and spread far ahead of the contact line and the rest of the precursor. The
second approach is more stable, but changes in the local density of the precursor, such
as those reported in [212], cannot be captured by this method. The last approach
compensates for this weakness, but the position of the interface can only be resolved to
the width of the bins used to create the histograms of the densities. To overcome these
shortcomings, we use an alternative approach to determine the width of each layer.
For a given snapshot, the particles are binned in a histogram in the x and z directions.
For small z, the bins are separated according to the separation of layers, for large z,
where layering is not visible, the bins are separated by a distance σ. The width of the
bins in the x direction is uniformly taken as σ. Each horizontal layer of the histogram
was fit to an error function. The inflection point of the error function is used as the
position of the liquid–vapor interface, which for the lowest layers corresponds to the
tip of the precursor.

Figure 4.7: Definition of the precursor length. Instantaneous droplet positions are
binned in a histogram. The interface position (blue points) is determined
from fits of error functions to the histogram. A circular arc is fitted through
the upper 20 pairs of the interface position. The precursor length in each
layer is the horizontal distance from the blue points to the red curve. Top:
Entire droplet; bottom: region in the cyan rectangle from the upper image
with the first layers’ length li.

The final step in the analysis is to determine the width of the precursor for each
layer. As mentioned above, previous studies have incorrectly measured the precursor
length as the distance from the precursor tip to the center of the droplet, whereas the
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width from the tip of the precursor to the macroscopic contact line of the droplet is
the correct measure [16]. To define this distance, we fit a circular arc to the 20 upper
pairs of the positions of the interface, where 20 was chosen to provide good fits to the
macroscopic droplet shape while avoiding inclusion of the region close to the foot. The
horizontal distance of the liquid–vapor interface to the circular arc is the precursor
length li of layer i. The horizontal distance to the liquid–vapor interface to the center
of the drop (the incorrect value for the layer width used in previous studies), is denoted
as ri in the following. A sample histogram with the measured interface, a circular fit,
and the definition of li is shown in Figure 4.7.
The new method presented thus far has the benefit of clearly defining whether layers

separate from the droplet and how many of them separate. If multiple layers separate
from the droplet, however, the method cannot be used to identify the shape of the
precursor, as shown in Figure 4.8. Continuously growing and terraced precursors can
provide identical evolution for different layers li over time. Additional analysis is thus
required to fully characterize the precursor.
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Figure 4.8: Measuring the precursor length li does not provide a complete description
of the precursor, but only provides the position of the red crosses. Distin-
guishing, for example, between a continuously growing precursor as on the
left and a precursor with a well defined layer as on the right is not possible.

One approach would be to use snapshots of the simulations to distinguish between
these states. However, this approach does not provide strong evidence and has led to
conflicting statements on the type of precursor observed in previous studies. The infor-
mation can also be extracted from the histograms of the density (cf. Figure 4.7), but
this still leaves room for discussion. We propose to extract the missing information by
determining the shape of the droplet similar to what is obtained in ellipsometric exper-
iments with which the effect of molecular precursors was discovered first. Ellipsometric
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measurements provide an effective thickness of the liquid that can, for a dilute layer,
be smaller than the molecular diameter [16] and corresponds to the average density of
the fluid. This quantity can be approximated in simulation by binning the particles in
the x-direction only and counting the number of particles in each bin. The obtained
data is then scaled such that the maximum value of the histogram corresponds to the
height of the droplet at its center. The resulting data is similar to the results obtained
from ellipsometric measurements and can be used as an auxiliary tool to differentiate
precursor types. Figure 4.9 shows an example of this analysis.

Figure 4.9: Measurement of the droplet profile to mimic ellipsometric experiments.
Black circles: measured droplet height, red line: circular fit to the droplet
profile determined from the histograms of the density. Top: Entire droplet
with equal scaling in x and z dimensions. Bottom: selected region that
highlights the precursor with unequal scaling in x and z dimensions to
capture the different dimensions. The substrate surface is at z = 0. Mea-
surements of the droplet profile with z = 0 as on the right of the lower
image correspond to a density of zero.

4.2.2.2 Determination of spreading exponents

Spreading exponents can be determined for the correct and incorrect measures of the
precursor length li and ri. For the data that is obtained for ri, a spreading exponent
can be determined by fitting a function of the type

fr = C(t− t0)α, (4.5)
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to the measured data, where C is a coefficient, t0 is a reference time that needs to be
subtracted from the results because the position of t = 0 is not defined in the simulation,
and α is the spreading exponent. The parameters C, t0, and α are determined in the
fit. The fit was performed using orthogonal distance regression, which is superior to
simple least square minimization for the type of function above because of the strong
gradient of the function for values of t close to t0. The region close to t0 dominates
the fit, whereas the region at larger times is more important to compute an accurate
value of the spreading coefficient, especially because for small t the simulation results
might be influenced by noise caused by that the droplet not yet entering the proper
spreading regime.
For the correct value of the precursor width li, the spreading exponents are much

more difficult to determine. li is computed using the difference between the tip of the
drop and the width of the circular arc at the z position of the layer i. Because of this,
the values for li are subject to strong noise. Moreover, the growth of li is much slower
than that of ri. As a consequence, determining the spreading exponent α for this data
as above for the incorrect measure ri does not work. Instead, we make a linear fit to
the log–log representation of the data. Further difficulties and possibilities to overcome
them are presented below.

4.2.3 Precursor types, transition regimes, and wetting dynamics

4.2.3.1 Precursor types and transitions for chain molecules

Results for the time evolution of the length li of the first layers of the polymer droplets
for different values of εsl are given in Figure 4.10. It is immediately apparent from
the results that for εsl = 1.05ε no precursor is formed, whereas for all other depicted
images a precursor that separates from the droplet is formed. For all examined values
of εsl < 1.05ε no precursor was formed either. The energy εsl,c where the onset of the
precursor occurs is 1.05ε < εsl,c < 1.1ε. Values for εsl between these values were not
examined.
For 1.1ε ≤ εsl < 2.0ε, it is clear that not only the first layer above the substrates

separates from the droplet. As discussed above, however, these figures do not provide
evidence to which precursor type the layers should be attributed. From the effective
densities of the droplet shape given in Figure 4.11 it becomes apparent that distinct
layers cannot be detected in any simulation. It is thus evident that for the simulations
of the chain molecules there is a continuously growing and not a terraced precursor.
This conclusion is in agreement with that by Heine et al. [186, 191, 220] and questions
results in [218,219] where terraced wetting was reported for a similar setup.
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(f) εsl = 3.0ε

Figure 4.10: Evolution of the first four layers of the chain molecules at different solid–
liquid interactions εsl. For εsl = 1.05ε, no precursor forms, whereas layers
separate from the droplet for stronger solid–liquid interactions. For in-
termediate substrate energies, multiple li grow over time, whereas only a
single layer grows for the strongest interactions.
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(a) εsl = 1.05ε, t = 8000τ

(b) εsl = 1.1ε, t = 16000τ

(c) εsl = 1.5ε, t = 10000τ

(d) εsl = 2.0ε, t = 6000τ

Figure 4.11: Effective thickness of the droplet of chain molecules for different values of
εsl. Left: entire droplet with equal scaling in x and z directions. Right:
selected region with different scaling. The snapshots correspond to the
final snapshot from each simulation. Multiple distinct layers do not occur
in simulations with chain molecules. While it seems from Figure 4.10 that
multiple distinct layers separate, results in these images show that the
precursor is continuously growing and not terraced.

137



4 Molecular precursors

The properties and dynamics of the precursor change with increasing εsl. As can be
seen from Figure 4.10, the spreading velocity of the first layer increases up to εsl = 1.5ε

and then starts to decrease again. For the highest simulated value of εsl = 3.0ε the
rate of layer growth is very slow. These observations agree with results in [216], where
the maximum spreading velocity of the precursor at intermediate substrate energies is
explained by a balance of driving forces and friction forces between the layer and the
substrate. The width of the second layer l2 shows a similar behavior as the first one,
with the difference that the maximum spreading velocity is observed for εsl = 1.3ε.
The separation of the layer from the main droplet is essentially no longer visible for
substrate energies εsl ≥ 2.0ε. The separation of a third layer from the droplet is only
visible for εsl = 1.1ε and is not visible for any higher values of εsl. Overall, these
findings show that as long as the friction between the lowest layer and the substrate
does not dominate spreading, the precursor layer becomes more slender with increasing
εsl, which can be explained by a competition of particle displacements in vertical and
horizontal directions. The stronger the interaction between the substrate and the
liquid, the greater the tendency for the fluid to move to the first layer, which thins the
precursor. These observations support the idea of de Gennes and Cazabat [203], whose
model is based on competitive horizontal and vertical displacements.
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Figure 4.12: Evolution of the value or ri of the first four layers of the chain molecules.
li in Figure 4.10 shows that no precursor forms for εsl = 1.0ε whereas
a precursor forms at εsl = 1.1ε. This finding is hardly visible from this
image.

Before proceeding with the atomistic fluid, we briefly comment on the capability
of distinguishing precursor regimes by means of the incorrect measure for the layer
width ri. Figure 4.12 shows the evolution of ri of the first layers of chain molecules
for εsl = 1.0ε (no precursor regime) and εsl = 1.1ε (continuously growing precursor
regime). While from Figure 4.10 discrimination between the different spreading regimes

138



4.2 Simulations of molecular precursors

is possible, it is not visible from the evolution of ri over time that a precursor develops
for the higher substrate energy.

4.2.3.2 Precursor types and transition for the atomistic fluid

The evolution of the length of the first layers li over time for the atomistic fluid is shown
in Figure 4.13 for different εsl. Similar to the chain molecules, no precursor forms for
the lowest substrate energies. In contrast to the chain molecules, however, the atomistic
fluid passes through different precursor regimes. For εsl,c1 < εsl < εsl,c2, where the exact
value of εsl,c1 and εsl,c2 will be discussed later, a single layer separates from the droplet.
That only a single layer separates can be seen best for εsl = 1.6ε in Figure 4.13 where
li only grows for the first layer. This finding is also confirmed by results of the effective
density in Figure 4.14 (although the visibility of the effect is here less apparent than
from Figure 4.13), which shows that a single layer slowly grows, stays constant for a few
σ, and then has a transition to the main part of the droplet where the thickness starts
to increase again. When the substrate energy increases further, such that εsl > εsl,c2,
a second transition occurs, in which multiple layers separate from the droplet. This
regime can be best identified for εsl = 2.0ε from Figures 4.13 and 4.14. Figure 4.13
shows that for εsl = 2.0ε, multiple layers separate from the droplet, and Figure 4.14
reveals that there is a continuously growing layer rather than multiple distinct layers.
For the highest value of εsl = 3.0ε used in this study, a fourth regime is sampled. As
for εsl = 2.0ε, multiple layers separate from the droplet in Figure 4.13. In contrast to
the results for εsl = 2.0ε, however, the precursor is not continuously growing but has
distinct steps, as can be seen from Figure 4.14. This suggests that the terraced effect
was captured in this simulations. Visualization of the simulation, however, revealed
that the droplet partly crystallized. The effect was thus possibly observed because of
the transition to the crystalline phase of the droplet material. This is in agreement
with the study of Nieminen et al. [214], where the simulation was run at temperatures
below the melting point. Because of the solidification of the droplet material for this
value of εsl, this finding was not studied further. We note that crystallization of the
fluid was observed in this spreading simulation exclusively.

The transition between the regime of a single layered precursor and the continuously
growing precursor can be seen directly from the time evolution of the different layers in
Figure 4.13. For εsl = 1.6ε only a single layer separates from the droplet. For εsl = 1.8ε,
li grows for multiple layers over time. No further values of εsl were sampled between
those values. The transition between these two regimes thus occurs at 1.6ε < εsl,c2 <

1.8ε. The onset of a single layer precursor is harder to identify from the time evolution
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Figure 4.13: Evolution of the first four layers of the atomistic fluid at different solid–
liquid interactions εsl. For low substrate energies, no precursor forms. For
intermediate energies at εsl = 1.6ε a single layer separates. Multiple layers
separate for substrate energies εsl ≥ 1.8ε.
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(a) εsl = 1.2ε, t = 8000τ

(b) εsl = 1.6ε, t = 8000τ

(c) εsl = 2.0ε, t = 8000τ

(d) εsl = 3.0ε, t = 8000τ

Figure 4.14: Effective thickness of droplets of atomistic fluid for different values of
εsl. Left: entire droplet with equal scaling in x and z direction. Right:
selected region with different scaling. The snapshots correspond to the
final snapshot from each simulation. No precursor forms at the lowest
substrate energy. For εsl = 1.6ε, a single layer forms. (That this is not a
continuously growing precursor is not obvious from this image but becomes
clear in combination with Figure 4.13, where only a single layer separates
from the droplet). A continuously growing precursor forms for εsl = 2.0ε
and precursor with multiple distinct steps at εsl = 3.0ε.
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of the layer width. Close to the transition from no precursor to a single layer precursor,
the first layer grows very slowly and is thus harder to identify. An additional difficulty
is that the data is very noisy. The sources of the noise are the intrinsic thermal noise
of MD simulations and the uncertainty of fitting the droplet layers to error functions.
The dominant reason for the strong fluctuations, however, is that the layer width must
be determined from a difference between the outer tip of the layer and a circular fit to
the droplet, which is again subject to uncertainties. As a result, the transition cannot
be directly identified from the time evolution of the layer width li in Figure 4.13.

What is well visible in Figure 4.13 is that the noise in the data follows a trend. When
the the first layer passes through a peak, all other layers simultaneously pass through
a peak. These trends are a result of the noise introduced by the circular fit. When
the fitted circular arc grows over time, all layers shrink; when the circular arc shrinks,
all layers grow. Because this deviation occurs for all layers, the noise in the data can
be reduced by subtracting the width of a higher reference layer. Results are shown
in Figure 4.15 for εsl = 1.25ε and εsl = 1.3ε. While for εsl = 1.25ε no layer separates
from the droplet, the slow separation of the first layer from the droplet can be observed
for εsl = 1.3ε. The transition between the regime of no precursor and the single layer
precursor thus occurs as 1.25ε < εsl,c1 < 1.3ε. No further values of εsl were sampled in
that interval.
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Figure 4.15: Evolution of the first four layers minus a reference layer. Because the pre-
cursor evolves slowly close to the crossover point, the transition between
no precursor and a single layer precursor cannot be identified directly from
Figure 4.13. Subtracting a reference layer reduces the noise of the circu-
lar fit, such that it becomes visible that l1 slowly separates for εsl = 1.3ε
whereas no layer separates from the drop for εsl = 1.25ε.
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4.2.3.3 Measured spreading exponents

In this section we first address the spreading coefficients as determined from the “in-
correct” measure for the precursor length ri. The spreading exponents obtained from
the time evolution of li will be discussed later. Figure 4.16 shows the time evolution of
the tip-to-center distance of the first layer above the substrate r1 for the simulations
with the chain molecules and varying εsl. In addition to the measured data, depicted as
points, the plot contains the fitted functions as continuous curves. Aside from the ve-
locity of the precursor tip being fastest for intermediate substrate energies (εsl = 1.5ε),
one can see that the resulting fit of Equation (4.5) works well for both the droplets in
the regimes without a precursor (εsl = 1.0ε) and with a precursor (all other lines).
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Figure 4.16: Measured values of r1 and fitted functions for the chain molecules. Scatter
points (that almost look like lines because of their high number): measured
data. Continuous lines: fitted functions. Top: fit without constraints.
Bottom: fit with constraint that α = 0.5. When α is not constrained,
excellent agreement can be achieved between the measurements and the
fit. Enforcing α = 0.5 provides a lower quality fit.
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The spreading exponents that result from the fit are depicted in Figure 4.17 as a
function of the solid–liquid interactions εsl. With increasing substrate energy, the mea-
sured exponents increase, reaching a maximum of α ≈ 0.4 for εsl = 1.3ε, and then
start to decrease again. The measured spreading exponent is neither a constant nor is
it close to the exponent of 0.5 expected for diffusive spreading. The good agreement
between the fit and the measured data suggests that the specified spreading exponents
are accurate. For reference, we have also tried to perform the fit by enforcing a spread-
ing exponent of 0.5 in the lower image of Figure 4.16. The quality of the fit is much
poorer. These results show that the evolution of ri does not necessarily have a spread-
ing exponent of 0.5. That diffusive growth was reported in previous simulation studies
for the incorrect measure of the precursor length r might be a coincidence or that the
spreading exponent was not measured carefully enough.
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Figure 4.17: Spreading exponent obtained from the fit of measured values of r1. α is
distinctly smaller than the diffusive exponent of 0.5 for all values of εsl
and is dependent on the substrate energy.

We now address the spreading exponents obtained when analyzing the evolution of
the correct measure for the precursor length li. As discussed above, a determination
of the spreading exponent from the data in linear representation as for ri is impossible
because of the slow evolution of the films and the noise in the data. The linear and
the log–log data of the time evolution of the first layer li of the simulations with the
chain molecule for three different values of εsl are given in the top and middle image
of Figure 4.18. As can be seen from the log–log data, all three precursors seem to
approach the correct diffusive behavior with increasing simulation time.
The gradient of the fitted line to the log–log data is the spreading exponent. Although

performing a linear fit to a set of points is numerically trivial, determining the spreading

144



4.2 Simulations of molecular precursors

0 2 4 6 8 10

t [1000τ ]

10

20

30

40

50

60

70
l 1

[σ
]

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

log10(t/τ)

1.1

1.3

1.5

1.7

1.9

lo
g 1

0
(l

1
/σ

)

εsl = 1.3ε

εsl = 1.5ε

εsl = 2.0ε

ideal slope

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

log10(t/τ)

0.3

0.4

0.5

0.6

0.7

α

Figure 4.18: Analysis of the spreading exponent from the correct measure of the pre-
cursor length l1. Top: measured data in linear representation. Middle:
measured data in log–log representation with straight lines with the ideal
slope of 0.5 that matches the diffusive spreading exponent. The measured
data seem to approach the diffusive behavior for long simulation times.
Bottom: Attempts to measure the spreading exponent from linear fits
to the log–log representation. The desired plateau is only observed for
εsl = 1.5ε and is located at α ≈ 0.55.

145



4 Molecular precursors

exponent properly is still challenging, because the starting time t0 is undefined and
can impact the results. Moreover, data at the beginning of the simulation is unusable
because the precursor has not yet developed and should be excluded. When excluding
too much data, however, the data set for the fit becomes too small and the noise in the
data dominates the fit. While we cannot offer a solution to overcome the undefined
starting time t0, we can suggest an approach to handle the amount of data to be
included in the fit. To determine how much data should be selected, we performed the
fit for different choices of the selected data: for each data point of li over t, we performed
a fit such that only the data points at higher values of t are included, whereas all points
at lower values of t are excluded. In this way we determine a different value for the
spreading exponent at each value of t. For small values of t, the spreading exponent
is influenced by the data from the beginning of the simulation being included. For
large t, the spreading exponent is controlled by the uncertainty caused by the data
set being too small. If the approach has worked successfully, the spreading coefficients
form a plateau for intermediate values of t. The height of the plateau approximates the
spreading exponent. The resulting development of the spreading exponent for different
data sets is shown in the lower image of Figure 4.18. The fitted value for α forms a
plateau for εsl = 1.5ε, whereas no plateau is formed for other values of εsl. The height
of the plateau is approximately α = 0.55, which is in reasonable agreement with the
expected value of 0.5. The remaining difference could be a result of that the starting
time t0 is not well defined. We would like to point out that the plateau was observed
only for this single spreading simulation. All other simulations were thus either too
short or the data too noisy to properly quantify the spreading exponent and the correct
spreading behavior can only be confirmed from the log–log representation.

4.2.4 Effects of correct and incorrect precursor analysis

We here suggest a novel approach to characterize precursors in simulations of droplet
spreading. Instead of incorrectly measuring the distance from the droplet tip to the
droplet center, as done in previous studies, we use the correct measure from the droplet
tip to the “macroscopic” contact line. In addition, we compute effective densities similar
to what is obtained in ellipsometry studies. When combining the results from the evo-
lution of the different layers and the effective densities, a clear identification of whether
a precursor is formed and a characterization of the shape of the developed precursor
is possible. It should be noted that both approaches are required to fully describe a
precursor. Only using the time evolution of the layers cannot distinguish between con-
tinuously growing precursors and terraced layers. Likewise, using the effective densities
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does not provide an accurate measure for the transitions between different precursor
regimes and cannot identify whether a precursor separates or not. A disadvantage of
the method seems to be that the determination of the spreading exponents with this
approach is difficult, because a circular fit has to be performed to identify the macro-
scopic contact line and also because the layer width li grows much slower than ri. The
latter is not a problem of the described method, but a feature of the precursors, though.
The incorrect measure for the precursor width ri has several severe disadvantages.

First, unlike the method presented here, a determination of the precursor regime or
even whether a precursor is formed is not possible. Second, the observed spreading
dynamics of ri do not correctly reflect the spreading dynamics of a precursor. While
the majority of the conclusions drawn in previous studies with the incorrect measure for
the precursor are in agreement with what we find despite the incorrect measurement of
the precursor, there are three claims in the literature that are questioned by the results
presented here.
First, Banavar and co-workers [218,219] report the observation of terraced precursors

for chain molecules similar to those used in this study. Their report of formation of
distinct layers is a result of no effort being taken to characterize the precursor. In our
simulations, the careful analysis of the precursor shows that the terraced effect is not
observed in agreement with findings from Heine et al. [186, 191, 220]. Given that the
simulation results of Nieminen et al. [214] were run at temperatures below the melting
point, this means that the terraced wetting effect has not yet been captured in an MD
study of spreading liquids.
Second, Heine et al. [220] examine the effect of the droplet volume on the spreading

dynamics of the precursor and concluded that the diffusion coefficient follows a relation
Dp ∝ Rx

0 , where R0 is the initial radius of the droplet in their simulation setup. They
report values of x = 0.5 and x = 0.65 for two different systems. These findings were
based on the incorrect measure of the precursor length ri, and are therefore possibly
flawed. In fact, that the reservoir size influences the diffusive mass transport of the
precursor is implausible and is in conflict with any theoretical model on precursor
formation described above.
Finally, Albrecht et al. [202] have reported spreading exponents for precursor evo-

lution that are distinctly below the diffusive value 0.5. Their findings, however, are
based on the incorrect measure ri of the precursor length. As shown above, using
this incorrect measure can provide spreading exponents that deviate strongly from 0.5
even when the correct width of the precursor li has diffusive behavior. Apparently
their finding of small spreading exponents is a result of the incorrect measure of the
precursor length in combination with the small size of their droplets, which was only a
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few picoliters. For larger droplets and longer experimental observations, the final state
of the precursor is so much larger than the macroscopic shape of the droplet that the
effect of using the incorrect measure does not play a dominant role.

4.3 Requirements for precursor formation

The requirement for the formation of precursors are examined in this section. In partic-
ular, we examine the role of the spreading coefficient, because it was frequently argued
that the onset of precursor formation matches the transition from the partial to the
complete wetting regime, corresponding to a change in the sign of the spreading coef-
ficient S [186,191,216,222–224]. It is noteworthy, though, that despite this claim, the
spreading coefficient has, to thee best of our knowledge, only been computed in simu-
lations of precursor formation by Wu et al. [222], possibly because its determination is
nontrivial. Moreover, we examine the changes of free energy of layer formation, which
has not been computed before.

4.3.1 The spreading coefficient

The spreading coefficient S is defined via Equation (1.2) as a force balance of the solid,
solid–liquid, and liquid surface energies γs, γsl, and γl. While γl can be computed easily
from MD simulations, γs and γsl cannot be readily accessed.
γl is computed from slab geometry simulations of the liquids with the surface of the

slab being perpendicular to the z dimension with 16 000 fluid particles in a 23.3σ ×
22.5σ × 60.0σ box for both the atomistic fluid and the chain molecules similar to the
setup in Figure 4.4. Simulations were run with a Nosé-Hoover thermostat with damping
factor τd = 0.5τ . After equilibration for 500τ , surface tensions were computed from
a subsequent run over 20 000τ using the approach in Appendix A. The remaining
simulation settings were similar to the spreading simulations.
The difference between γs and γsl was determined using the thermodynamic inte-

gration approach of Leroy et al. [230], in which the potential between the substrate
and the liquid is gradually switched off. This is realized in our simulations by scal-
ing εsl for the chain molecule, and εsl and Dsl for the atomistic fluid. Simulations
were executed with 16 000 fluid particles on a solid substrate with 3 736 particles in a
23.3σ× 22.5σ× 86.0σ box, in which there is an eight-layer solid slab, a liquid slab, and
a vapor slab, as shown in the left image of Figure 4.19. The path was sampled along
values of εsl between 0.06ε and 3.0ε with spacing 0.02ε below εsl = 2.0ε and 0.05 above
this threshold. For εsl ≥ ε, Dsl = 0.03εσ12 for the atomistic fluid, in agreement with
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spreading simulations. Below, Dsl is scaled linearly to zero with the same factor as εsl.
For εsl = 0, the contribution to the change in free energy is taken as zero [230]. At
each εsl the simulations are equilibrated for 500 τ . Production runs are performed for
2000τ during which the change of the potential energy with respect to the change in εsl
and Dsl is evaluated every 2.5τ . The temperature was controlled using a Nosé-Hoover
thermostat with τT = 0.5 τ . Other settings were as described above. Using this method
a solid–liquid interface is removed and separate solid and liquid interfaces are created.
The result from this method is thus

∆γ = γl + γs − γsl. (4.6)

The spreading coefficient can then be determined from S = ∆γ−2γl. For the atomistic
fluid, crystallization of the droplet material was observed in some of these simulations
at εsl ≥ 1.34ε. Reported spreading coefficients for εsl ≥ 1.34ε are thus influenced
by the crystallization. Because this value is above the onset of precursor formation,
the information whether the wetting transition matches the comparison to onset of
precursors is thus not influenced by this effect.

γsl γs

γl

Figure 4.19: Simulation setup for the computation of ∆γ with fluid particles (cyan) and
a solid substrate (pink). Box edges are depicted as black lines. Switching
off the interactions between the solid and the liquid particles is equiva-
lent to pulling the solid and liquid particles apart and thereby removing
the solid–liquid interface and generating a solid and a liquid surface as
indicated from the left and right images.

The spreading coefficient as a function of εsl is depicted in Figure 4.20 for the chain
molecule and the atomistic fluid. The region in which the transition between no pre-
cursor and a precursor appears according to the analysis described in Section 4.2 is
shaded. For the chain molecules, the transition from partial wetting to complete wet-
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ting matches the onset of the precursor, whereas the onset of a precursor is still well in
the partial wetting regime for the atomistic fluid. These results suggest that the onset
of precursors can match the transition from the partial to the complete wetting regime,
but that it is not a necessity. That the agreement between the onset of precursors and
the wetting transition for the chain molecules is not a coincidence will be discussed in
the next section.
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Figure 4.20: Spreading coefficient of the chain molecules (left) and atomistic fluid
(right) as a function of the substrate energy. The region in which the
onset of precursors occurs is shaded. The width of the red line for the
spreading coefficient corresponds to the statistical uncertainty (two-sigma
environment) from the simulations.

4.3.2 Free energy of depositing fluid on substrates

Given that processes occur spontaneously if the associated change in free energy is
negative, it is logical to assume that precursors will form if the change in free energy
of forming a precursor is negative: the formation of layers on the substrate should be
energetically favorable. Even though this change in free energy is in principle accessible
from molecular simulations, it has not been previously computed. Here we approximate
the free energy of forming precursors by computing the change in free energy required
to deposit a layer of liquid from a bulk reservoir on a bare solid substrate. In this
approach, the deposited layer is a substitute for the precursor and the bulk reservoir
is representative for the droplet. This approximation resembles the assumptions that
underlie the model of Burlatsky et al. [206,207].
The changes in free energy are computed with the two-phase thermodynamic (2PT)

method [231–233] using the implementation of Lin et al. [234]. This method splits the
densities of states, which can be computed from the velocity autocorrelation function,
into solid and gas contributions (hence the name of two phases). For each contribution,
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thermodynamic quantities can be accessed directly using either a harmonic oscillator for
the solid component, or the ideal gas approximation for the gas component. Compared
to alternative methods to compute the free energy, such as thermodynamic integration
or test-particle insertion, which are both exact within statistical uncertainties, this
method is an approximation. Its accuracy, however, has been demonstrated for various
test cases and was found to be especially striking for single-centered Lennard-Jones
particles [231]. Given that the atomistic system studied here resembles single-centered
Lennard-Jones particles, we expect the method to provide accurate results for this
system. The method has not yet been applied to melts of oligomers or polymers. Its
applicability to chain molecules is therefore not warranted. Given the challenges of
computing the free energies of chain molecules in solution with the more established
free energy methods mentioned above, the approximation with the 2PT method for
the chains is still the only viable approach for the systems studied here.
The free energy of the liquid state is computed from bulk systems of fluid. For the

atomistic fluid 1 024 particles are randomly positioned in a cubic box of length 12σ.
The system is then equilibrated in the NPT ensemble at zero pressure and temperature
T = 0.6ε/kB for 250τ using Nosé-Hoover barostats and thermostats with τT = 0.5τ

and τp = 5τ . Afterwards, the simulation was run for 500 τ in the NVT ensemble. A
Verlet integrator with a timestep of 0.005 τ was used. Every 50τ , the particle velocities
for computing the velocity autocorrelation functions for the 2PT method were dumped
with frequency 0.001τ for a period of 10τ .
For the chain molecule 400 molecules were randomly positioned in a cubic box of

length 25σ using PACKMOL [71]. The system was then equilibrated in the NPT
ensemble at zero pressure using Nosé-Hoover barostats and thermostats with τT = 0.5τ

and τp = 5τ . During the equilibration, the temperature was first slowly increased
from 1.2 to 2.0 ε/kB, then run at constant temperature, then slowly cooled down to
1.0 ε/kB and then ran at 1.0 ε/kB, each of the four steps taking 2000τ . This extended
equilibration was used to avoid the system being in a kinetic trap. Afterwards, the
system was switched to NVT and run for 2000τ at a temperature of 1.0 ε/kB. Particle
velocities were dumped every 200τ with a frequency of 0.001τ for a period of 10τ to
compute the velocity-autocorrelation function.
The free energy of the (fluid-laden) substrate was computed from a simulation cell

with an eight-layer solid slab consisting of 3736 atoms covered with liquid in a 23.3σ×
22.5σ × 46σ box. The simulation setup is depicted in Figure 4.21. Simulations were
performed for different values of the ratio ρsurf of fluid particles to the surface area of
the substrate, with the number of liquid particles varying from 0 to 1200.
For the atomistic system, we use εsl = 1.3ε. A Nosé-Hoover thermostat with damping
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Figure 4.21: Solid substrates (pink) covered with thin layers of liquid (cyan) used in
simulations to compute the free energy with the 2PT method.

factor τT = 0.5τ and a Verlet integrator with time step 0.005τ was used to equilibrate
the system in the NVT ensemble for 250τ . Afterwards, simulations were run for 1000τ ,
with particle velocities dumped every 50τ for 10τ with a frequency of 0.001τ to compute
the velocity-autocorrelation functions.

For the chain molecule we use εsl = 1.0ε. The equilibration is performed in the
NVT ensemble in which the substrate and the fluid layer are coupled to Nosé-Hoover
thermostats separately, both with a damping factor τT = 0.5τ . The temperature of
the solid is kept at 1.0 ε/kB during the equilibration. The temperature of the fluid was
raised from 1.0 to 1.5 ε/kB, kept at this temperature, then cooled back to 1.0 ε/kB and
kept at that temperature, each for 250τ . The simulation is then continued for 1000τ

during which the particle velocities are dumped every 50τ for 10τ with a frequency of
0.001τ to compute the velocity autocorrelation functions. A Verlet integrator with a
timestep of 0.005τ is used in these simulations.

Velocity-autocorrelation functions and the derived thermodynamic quantities were
computed separately for each set of particle velocities. Mean values and statistical
uncertainties are computed from the results obtained for each separate velocity auto-
correlation function. The internal energy is taken directly from the simulations, while
the entropy is obtained from the 2PT method. The specific volume of the liquid on
the covered substrate, which is required as an input for the 2PT method, was assumed
equal to that of the pure liquid. Planck’s constant in reduced units was chosen as
h = 0.185σ(mε)1/2 in agreement with [231].

The change in free energy with varying substrate energy compared to the reference
energies of εsl = 1.3ε for the atomistic case and εsl = 1.0ε for the chain molecules was
computed using the thermodynamic integration scheme already used for computing the
spreading coefficient. Differences compared to the description above are that for the
atomistic fluid we used a Langevin thermostat instead of the Nosé-Hoover thermostat
to enhance the sampling, that the equilibration was done for 125τ and the production
for 250τ , that a Verlet integrator with a timestep of 0.005τ was used, and that the
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4.3 Requirements for precursor formation

derivative of the potential was evaluated every 0.625τ . For the chain molecule we used
a Nosé-Hoover thermostat and used the same equilibration routines as used in the
computations for the 2PT method. After the equilibration the simulation was run for
250τ during which the derivative of the potential energy was evaluated every 0.5τ .
The change in free energy ∆A for depositing fluid layers of the atomistic fluid on the

substrate depicted in Figure 4.22 shows characteristic features connected to spreading
onset and the different observed precursor types. For low substrate energies, the free
energy has a minimum that drops below zero for the first time at εsl ≈ 1.3ε, in agree-
ment with the onset of a single-layer precursor at this εsl. Moreover, the minimum
is located at a surface density of ρsurf ≈ 1.0/σ2, equivalent to a substrate covered by
a fluid monolayer. With increasing substrate energy, the minimum at ρsurf ≈ 1.0/σ2

is followed by a maximum best visible for εsl ≈ 1.7ε, and completely vanishes for the
highest substrate energies. While for εsl = 1.6ε the minimum at ρsurf ≈ 1.0/σ2 is a
global minimum in the direction of the surface density, ∆A drops below the minimum
for εsl = 1.8ε at ρsurf ' 1.5/σ2, in agreement with the transition from a single-layer
precursor to a continuously growing precursor in the spreading simulations.
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Figure 4.22: Change in free energy of depositing layers of the atomistic fluid from a bulk
reservoir on a bare substrate over the surface density ρsurf and different
values of εsl. The symbols are larger than the statistical uncertainties
(two-sigma environment).

Results for the change in the free energy for the chain molecules are depicted in
Figure 4.23. For this system, there is no agreement between a transition to negative
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4 Molecular precursors

free energies and the onset of precursors. It has to be kept in mind, however, that the
changes of the free energy shown in this figure are the difference of large values: the
free energy of the pure liquid plus the free energy of the bare substrate minus the free
energy of the covered substrate. Given that the 2PT method is only an approximation,
it is unclear whether it provides sufficiently accurate results for polymer melts in the
context of this study; small inaccuracies in, for example, the pure liquid, can result
in strong changes in the final results. Decreasing the free energy of the bulk polymer
by only a few ε, which provides the results given in Figure 4.24, leads to perfect
agreement between the change in free energy and the onset of precursors observed at
1.05ε < εsl,c1 < 1.1ε. We note that we do not argue that there is a specific reason that
the bulk system’s free energy should be lowered by exactly this value compared to our
simulation results, but that an error of only less than 0.5ε per bead — which is certainly
possible given that the 2PT method is an approximation for the free energy and also
that the proper simulation of oligomer melts is more challenging than simulations of
the atomistic fluid — can explain discrepancies between the computed free energies
and the observations from the spreading simulations.
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Figure 4.23: Change in free energy of depositing layers of the chain molecules from
a bulk reservoir on a bare substrate over the surface density ρsurf and
different values of εsl. The symbols’ size is equal to statistical uncertainties
(two-sigma environment).

Finally, we conclude this section by providing information that resolves the discus-
sion on the conflict of the role of the spreading coefficient for the onset of precursor
formation. As shown in Figure 4.25, with increasing ρsurf a layer of increasing thickness
is deposited on the substrate. In the limit of ρsurf →∞, the deposited layer is so thick
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Figure 4.24: Same as Figure 4.23 except that the free energy of the pure liquid is
increased by approximately 5ε per chain molecule (0.4ε per bead).

that the substrate–liquid interface and the liquid–vapor interface do not interfere. The
change in free energy of creating this system from a bulk liquid and a bare substrate
corresponds to the removal of a solid surface and the creation of solid–liquid and liquid
interfaces: −γs + γls + γl = −S. Thus, for ρsurf → ∞, ∆A → −S. Because ∆A = 0

for ρsurf = 0, the change in the nonwetting–wetting transition has to match the onset
of precursors if ∆A does not show a minimum in the direction of ρsurf for a studied
system; in this case ∆A cannot drop below 0 in the partial wetting regime and has to
drop below 0 in the complete wetting regime. This is in agreement with the results
obtained for the chain molecules, where the wetting-nonwetting transition and the on-
set of the precursor match and a monotonic behavior of ∆A as a function of ρsurf was
observed. This finding also implies that a precursor in the partial wetting regime can
only exist if ∆A has a minimum in the direction of ρsurf that drops below zero and that
a precursor has to exist in the complete-wetting regime for simple fluids.

The examination of ∆A as a function of ρsurf might also explain why the terraced
wetting effect has hitherto never been captured properly in MD simulations. Given
that the formation of a single layer precursor is described by a shape of ∆A over ρsurf

with a single minimum and that a continuously growing precursor is described by a
continuously decreasing ∆A, it is plausible to assume that for the terraced effect a
curve with several minima, each corresponding to one layer, is to be expected. This is,
however, speculation and requires further investigation.

Before concluding this chapter we’d briefly like to comment on the role of the PPPM
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4 Molecular precursors

γs γc γsl

γl

Figure 4.25: Schematic explanation of the role of the spreading coefficient. Pink: solid;
cyan: droplet material. The free energy changes when increasing the
number of particles on the surface. Starting from the bare substrate with
the surface free energy γs over a substrate covered with a thin layer of fluid
that has an effective surface energy γc to a substrate covered with a thick
layer. For the thick layer, the upper and the lower interface of the liquid
do not interfere and therefor correspond to a liquid and a solid–liquid
interface with surface energies γl and γsl and a bulk like phase in between
the interfaces. The change of free energy per unit area when moving from
the left system to the right system is thus γl + γsl − γs = −S.

algorithm for the results presented here. The understanding of the requirement for
the formation of different kinds of precursors and the role of the spreading coefficient
for precursor formation are certainly the most relevant result of the work described in
this chapter. The trigger for these findings was mainly given by the minimum that
was observed in ∆A for the atomistic fluid in Figure 4.22 and the mismatch of the
onset of precursors and the wetting transition in Figure 4.20. Both of these effects are
rather subtle. The minimum in ∆A for the relevant substrate energy εsl = 1.3ε is only
approximately 0.2ε/σ2 below the plateau value at larger values of ρsurf . Likewise, the
separation of the onset of precursors and the wetting transition is only ∆εsl ≈ 0.1ε.
These subtle energies are smaller than the influence of using a long-range dispersion
solver versus truncation, as shown in simulations with the LJ system in Table 2.1,1

which means that these results might have been missed if the long-range dispersion
solvers had not been used. The key findings in this chapter would then be missing.

4.4 Summary

In this chapter we present a series of spreading simulation and novel analysis methods
in the context of precursor formation. The superiority of the new analysis method

1Note that the uncorrected surface tension γp in Table 2.1 is the correct measure for this comparison.
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4.4 Summary

compared to methods used in previous simulation studies is that a clear characteriza-
tion of precursors is possible. When comparing the new method to previous methods
we reveal that previous incorrect measurements of the precursor have led to a series
of conclusions that are possibly incorrect, namely: (i) that precursor dynamics can
have significant subdiffusive spreading dynamics (cf. Ref. [202]) and (ii) that the ef-
fective diffusion coefficient of the precursors is dependent on the size of the droplet
(cf. Ref. [220]). Moreover, the analysis suggests that despite many prior claims, the
terraced effect has never been captured in simulations of liquid droplets.
In the second part of this chapter we present a series of free energy computations to

examine the requirements for the onset of precursor formation and the different types of
observed precursors. It is shown that the change in free energy of depositing fluid from a
bulk to the substrate correlates with the onset and different types of observed spreading
exponents. Using theoretical arguments we also show why the wetting transition can
correlate with the onset of precursor formation and thereby resolve the conflict on the
role of the spreading coefficient.
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Wetting phenomena with strong molecular aspects were examined with the MD sim-
ulation method. This work contains the development of a new long-range dispersion
solver that was required to accurately model properties of interfacial systems in MD
simulations and the study of two selected phenomena, superspreading and molecular
precursors.

It was shown that the PPPM Ewald method for dispersion presented in Chapter 2
fulfills all requirements needed for its application in interfacial simulations: long-range
forces are accurately captured, the effect on the physical behavior of a system by
introducing a cutoff is removed, fast execution, and applicability to large-scale systems.
On top of these requirements that motivated the development of the algorithm, it was
shown that the transformation of the cutoff from a parameter for tuning the accuracy
to a parameter for tuning the efficiency can facilitate simulations that are both more
accurate and more efficient than simulations with a simple cutoff. Application of long-
range dispersion solvers is thus also beneficial in simulations where their application is
not required for an accurate descriptions of the underlying physics.

That computation of long-range dispersion interactions with the PPPM method
provides better accuracy, faster simulations, and a closer representation of the true
physics of molecular systems suggests that the inclusion of long-range dispersion forces
should be the default in MD, just like the long-range treatment of Coulomb interactions
is the default nowadays. To achieve this goal, however, many further steps will have to
be taken. Because of the global communication required for the 3D FFTs, the PPPM
will not perform well in ultra-large scale computations and will possibly also have strong
limitations on modern accelerators, namely GPU and Intel Xeon-Phi coprocessors. If
long-range dispersion solvers should become the standard, efficient algorithms that
allow rapid computation will have to be provided for applications for all system sizes
and all hardware architectures. The multilevel summation method or the fast multipole
method seem promising candidates to achieve this goal for applications where the
PPPM has limitations.

The efficiency and accuracy of PPPM is controlled by various parameters. Their
optimal choice is challenging, and despite excessive computations and large parametric
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studies described here, there is no hint that any of the computations were performed
with a set of parameters even close to optimal. Methods that automatically generate
optimal parameters to achieve maximum performance while warranting a desired ac-
curacy are thus desirable. The need for such methods will become even more pressing
when not only a set of parameters for a method has to be selected, but when the
method for treatment of dispersion forces, e.g., continuum corrections, PPPM, MSM,
or FMM, is itself an option and therefore drastically increases the parameter space
from which the optimum has to be determined.
For the superspreading problem, a molecular mechanism of smoothing the transition

at the contact line facilitated by superspreading surfactants has been observed. It was
shown that this molecular mechanism complements existing simulation studies on the
continuum level and provides plausible explanations for why the superspreading effect
occurs and why it occurs only at specific conditions.
Although the proposed mechanism is simple, provides plausible explanations for ex-

perimental observations, and is — in contrast to all other mechanisms that have been
hypothesized in the literature — based on direct observations, there is no direct ev-
idence provided that the observed mechanism is the true superspreading mechanism.
The lack of direct evidence stems from the superspreading phenomenon involving mi-
croscopic and macroscopic effects, the latter of which cannot be captured in MD sim-
ulations. To provide an incontestable description of the superspreading mechanism by
simulation, the effect has to be captured directly, and both microscopic and macro-
scopic features need to be accessible simultaneously. Simulation methods that might be
able to tackle this problem are on the way [235–237], but are still in their infancy. The
development of methods capable of capturing an effect as complex as superspreading
is possibly still a long way off. Given that these methods will be beneficial not only
for superspreading but all phenomena in wetting with both microscopic and macro-
scopic aspects — which is the case even for the simple spreading of a droplet on a flat
substrate — it is certainly worth an investment.
The mechanism of smooth transitions provides an explanation for occurrences at the

contact line, but other questions in the context of superspreading remain. In particular,
it is unclear how surfactant transport from the interior of the droplet to the surface can
work sufficiently fast that the surfactant density at the interfaces does not drop below a
threshold where the effect cannot occur. The capacity of trisiloxane surfactants to form
vesicles and the vesicles’ hypothetical capacity to adsorb directly to the interface might
play a deciding role in this context. Coarse-grained MD or other mesoscopic simulation
methods are promising tools to examine this problem and may provide answers long
before the multiscale methods proposed in the previous paragraph are even close to
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5 Summary and future research

capturing the superspreading effect.
For molecular precursors, new methods to properly characterize simulation results

were developed. These methods and extensive free energy computations provided re-
sults that explain the onset of precursor formation, which was the major objective for
this part of the study at hand. Nevertheless, not all kinds of precursor shapes known
from experiment could be captured in our simulations. In particular, the terraced pre-
cursor was not captured adequately. The simulation results at hand suggest, however,
that capturing the effect is possible when the system is set up properly and that it
is not computationally limited, as has been previously claimed [220]. Future studies
could thus attempt to capture and study this effect using suitable molecular models
and system setups.
The simulations in the context of molecular precursors were performed with model

fluids on smooth, crystalline substrates. In other words, the simulation setup could not
have been any simpler. The understanding about the need for proper analysis of these
simulations and the physical insight about the onset of precursor formation pave the
way for tackling systems with more complex features, such as realistic potentials for
the liquid and substrate, multifunctional or amphiphilic molecules, or substrates with
nanopatterns, nanoscale roughness, or chemical inhomogeneities.

160



Appendix

161



A Surface tensions and liquid densities
from slab simulations

Because surface tensions obtained from slab simulations are reported several times in
this thesis, their derivation is given here in the appendix to avoid unnecessary repeti-
tion. Surface tensions can be obtained from MD simulations via two-phase simulations.
We use the approach, developed by Tolman [238] and Kirkwood and Buff [239], in which
the surface tension is expressed via

γp =
1

2

∫ ∞
−∞

(
p⊥(z)− p‖(z)

)
dz, (A.1)

where p⊥(z) = pz(z) is the pressure component normal to the surface and p‖(z) =

(px(z) + py(z))/2 is the pressure component parallel to the surface. Replacing the
integral with an ensemble average leads to

γp =
Lz
2

(
p⊥ − p‖

)
=
Lz
2

[
〈pz〉 −

〈px〉+ 〈py〉
2

]
, (A.2)

where Lz is the box dimension in the z-direction. The outer factor of 1/2 takes into
account that the simulated system contains two interfaces.
If a cutoff is introduced for the pair potential, the surface tensions calculated with

Equation (A.2) will underestimate the correct surface tension of the simulated material.
This error can be estimated by adding a “tail correction” γtail to the simulated surface
tension to provide a better estimate of the correct surface tension

γ ≈ γp + γtail (A.3)

from the simulation. The correction can be calculated as [21, 22]

γtail =
π

2

∫ ∞
−∞

∫ 1

−1

∫ ∞
rc

r3 dU(r)

dr
g(r)(1− 3s2)

×
(
ρ(z)ρ(z − sr)− (ρG(z))2) drdsdz, (A.4)

where U(r) is the pair potential, g(r) is the radial distribution function, ρ(z) is the
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simulated density profile, rc is the cutoff radius for the pair potential, and ρG(z) is the
Gibbs dividing surface

ρG(z) = ρc +
∆ρ

2
sgn(z), (A.5)

where ρc is the mean and ∆ρ is the difference of the densities of the coexisting phases.
g(r) was assumed to be unity beyond the cutoff in the calculations of the tail correction.
The values for ρc and ∆ρ, which were also used to calculate the liquid and vapor
densities in this study, were obtained from fitting an error function to the simulated
density profile [78, 240–242]. Statistical uncertainties for the surface tensions were
obtained using the blocking method [243]. When statistical uncertainties are reported
for the density, those were computed from subdividing the trajectory into 5 blocks
and determining the liquid density for each of the blocks to compute mean values and
standard deviations of the mean.
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B Force field parameters

The total potential Utotal of a standard two-body force field for simulations in Chapter 3
is composed of bonded Ubonded and nonbonded Unonbonded interactions:

Utotal = Ubonded + Unonbonded. (B.1)

B.1 Nonbonded interactions

The nonbonded interactions consist of terms for Coulomb interactions Ucoul and for
van der Waals (vdW) interactions UvdW:

Unonbonded = Ucoul + UvdW. (B.2)

The Coulomb term is described via

Ucoul =
1

4πε0

∑
i,j>i

qiqj
rij

, (B.3)

where ε0 is the vacuum permittivity, the sum is over all pairs of particles in the system,
qi is the fixed point charge of atom i, and rij is the distance between particles i and j.
The vdW term is described either by a Buckingham potential

UBuck =
∑
i,j>i

Aij exp(−Bijrij)−
C6,ij

r6
ij

, (B.4)

where A, B, and C6 are coefficients to describe the interactions, or a LJ potential

ULJ =
∑
i,j>i

C12,ij

r12
ij

− C6,ij

r6
ij

, (B.5)

where C12 is a coefficient. The C6 coefficients follow geometric mixing rules

C6,ij =
√
C6,iiC6,jj. (B.6)
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B.1 Nonbonded interactions

Nonbonded interactions are computed for all atoms of different molecules and for atoms
within the same molecule that are separated by more than 2 bonds. Nonbonded inter-
actions of atoms that are separated by 3 bonds are scaled by f1−4. This scaling factor
was taken from the original polymer models and is either 1.0 or 0.5. The factor for
specific pairs is given in Table B.5.
The coefficients for the nonbonded interactions are given in Tables B.1 and B.2. The

charges are given in multiples of the elementary charge e. The subscripts of the atom
types indicate to which molecule type an atom belongs; for example, CPDMS is a carbon
atom of a PDMS molecule. The classification of the atom types for the surfactants for
vdW interactions is given in Figure B.1.

Figure B.1: Surfactants used in this study. The different regions of the surfactants
separated by horizontal lines define to which vdW type the atoms are
assigned. The blue numbers are used to identify special charges and bonded
parameters.
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B Force field parameters

Atom Type q [e] C6 [kcalÅ6/mol] reference for q reference for C6

Water
Owater -1.1128 736.085 [119] [119]
Hwater 0.5564 0.0 [119] [119]

PA
CPA 0.0 660.024 [53] this work
HPA 0.0 28.222 [53] this work

PTFE
CPTFE 0.0 660.024 [54] this work
FPTFE 0.0 135.72 [54] this work

PDMS
CPDMS -0.5604 640.8 [118] [118]
HPDMS 0.137 27.4 [118] [118]
OPDMS -0.462 398.9 [118] [118]

SiPDMS
a 0.7608 3085.3 [118] [118]

SiPDMS
b 0.6792 3085.3 [118] [118]

PEO
CPEO

a -0.0326 650.352 [117] this work
CPEO

b -0.1187 650.352 [117] this work
HPEO 0.0861 27.7644 [117] this work
OPEO -0.2792 404.838 [117] this work

Trisiloxane surfactantc
C12,15−20 -0.4275 640.8 [118] [118]

C8 -0.4887 640.8 this work this work
C7 0.0598 660.024 this work this work
C6 0.0277 660.024 this work this work

H12,15−20 0.0861 27.4 [118] [118]
H8 0.0977 27.4 this work this work
H7 0.0244 28.222 this work this work
H6 0.0621 27.7644 this work this work

O10,13 -0.5302 398.9 [118] [118]
Si9 0.8612 3085.3 [118] [118]

Si11,14 0.778 3085.3 [118] [118]
a middle group; b terminal group; c Charges not defined explicitly are PEO specific

charges.

Table B.1: Partial charges and dispersion coefficients. Element indices correspond to
the blue numbers in Figure B.1.
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B.1 Nonbonded interactions

Atom Type 1a Atom Type 2 A [kcal/mol] B [−1] C12 [kcal12/mol] reference
C∗ C∗ 14976 3.09 [53,54,117,118]
C∗ H∗ 4320 3.415 [53,117]
C∗ O∗ 33702 3.577 [53,117,118]
C∗ F∗ 6923.2 3.084 [54]
C∗ Si∗ 24753 2.968 [53,117,118]
H∗ H∗ 2649 3.74 [53,117,118]
H∗ O∗ 14176 3.9015 [117,118]
H∗ F∗ 12983.41692 4.0005 this work
H∗ Si∗ 11548 3.293 [118]
O∗ O∗ 75844 4.063 [117,118]
O∗ F∗ 69471.814 4.162 this work
O∗ Si∗ 61781 3.454 [118]
F∗ F∗ 63635 4.261 [54]
F∗ Si∗ 56590.59118 3.5535 this work
Si∗ Si∗ 50326 2.846 [118]

CPDMS HPDMS 6300 3.415 [118]
Owater C∗ 545 888.165 990 791 this work
Owater H∗ 97 991.000 487 818 6 this work
Owater O∗ 282 583.136 478 903 this work
Owater F∗ 339 379.491 056 056 this work
Owater Si∗ 726 207.735 099 629 this work
Hwater C∗ 0.0 this work
Hwater H∗ 0.0 this work
Hwater O∗ 0.0 this work
Hwater F∗ 0.0 this work
Hwater Si∗ 0.0 this work
Owater Owater 731 380.256 787 889 [119]
Owater Hwater 0.0 [119]
Hwater Hwater 0.0 [119]

a Atoms labeled with “∗” are generic types. Atom labeled with a molecule name are
exceptions to the generic coefficients.

Table B.2: vdW coefficients for the repulsive terms.
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B Force field parameters

B.2 Bonded interactions

The geometry of the water molecule is rigid. The bonded interactions of the other
molecules are composed of bond, angle, and dihedral potentials Ubond, Uangle, and
Udihedral. The bonded potential between two connected atoms l and m is

ubond =
4∑
i=2

kbond
i,lm (rlm − r0

lm)i, (B.7)

where rlm is the distance between those particles, r0
lm is their equilibrium distance, and

kbond
i,lm are coefficients.
The angle potential between three connected atoms l, m, and n is

uangle =
4∑
i=2

kangle
i,lmn(θlmn − θ0

lmn)i, (B.8)

where θlmn is the angle between those particles, θ0
lmn is the equilibrium angle, and kangle

i,lmn

are coefficients.
The dihedral potential between four connected atoms l, m, n, and o is

udihedral =
1

2

7∑
i=1

kdihedral
i,lmno [1− cos(iφlmno)], (B.9)

where kdihedral
i,lmno are coefficients to describe the interactions between particles l, m, n, and

o, and φlmno is the dihedral angle between those atoms. An exception is the Si-O-Si-O
dihedral potential, which is computed with [118]

udihedral,Si,O,Si,O =
sin2(θSi,O,Si)

sin2(θ0
Si,O,Si)

× 1

2

7∑
i=1

kdihedral
i,Si,O,Si,O[1− cos(iφSi,O,Si,O)]. (B.10)

The bonded interaction coefficients are given in Tables B.3, B.4, and B.5.
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B.2 Bonded interactions

kbond
2,lm kbond

3,lm kbond
4,lm r0

lm

l m [kcal/mol/Å2] [kcal/mol/Å3] [kcal/mol/Å4] [Å] reference
Water
O H 0.9572 [119]
PA
C C 309 1.53 [229]
C H 327 1.1 [229]
PTFE
C Ca 308.9 1.5727 [54]
C Cb 308.9 1.5658 [54]
C Fa 361 1.351 [54]
C Fb 361 1.3391 [54]

PDMS
Si O 350 -517 674 1.651 [118]
Si C 190 -279 308 1.878 [118]
C H 328 1.092 [118]

PEO
C C 309 1.5075 [244]
C O 369.5 1.4115 [244]
C H 327.5 1.1041 [244]

alkyl-ethoxylate surfactant
C1 C6 309 1.5075 [117]

trisiloxane surfactant
C7 C8 309 1.5075 [117]
C7 H7 327.5 1.1041 [117]
C6 C7 309 1.5075 [117]
C6 H6 327.5 1.1041 [117]

perfluoroalkane surfactant
C7 C6 308.9 1.517 [54]c
a middle group; b terminal group; c force constant taken from the literature,

equilibrium distance from this work;

Table B.3: Bond coefficients. Special bonded interactions of the surfactants are labeled
with numbers corresponding to those in Figure B.1. Bonded parameters not
given explicitly for the surfactants correspond to generic types.
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kangle
2,lmn kangle

3,lmn kangle
4,lmn θ0

lmn

l m n [kcal/mol/rad2] [kcal/mol/rad3] [kcal/mol/rad4] [deg] reference
Water
H O H 104.52 [119]

PA
C C C 54 114.4 [229]
C C H 44 110.5 [229]
H C Ha 38.5 108.2 [229]
H C Hb 38.5 107.7 [229]

PTFE
C C C 80.3 115.55 [54]
C C F 90 109.46 [54]
F C Fa 120 110.13 [54]
F C Fb 120 108.54 [54]

PDMS
Si O Si 10.305 -18.101 10.1 137.63 [118]
O Si O 91.835 105.56 [118]
O Si C 23.022 -31.399 24.981 109.82 [118]
C Si C 36.21 -20.39 20.02 112.44 [118]
Si C H 28.77 -13.95 111.09 [118]
H C H 38.5 107.77 [118]

PEO
C C H 42.9 110.1 [117]
H C H 38.5 109.47 [117]
O C H 56 109.48 [117]
C O C 74.5 108.05 [117]
O C C 86 108.54 [117]

alkyl-ethoxylate surfactant
C6 C6 C1 54 114.4 [229]
O2 C1 C6 86 108.54 [117]
C2 C6 H6 44 110.5 [229]
C6 C2 H2 44 110.5 [229]

trisiloxane surfactant
Si9 C8 C7 46.45 115.35 this work
C8 C7 C6 54 114.4 [229]
C7 C8 H8 42.9 110.1 [117]
C8 C7 H7 42.9 110.1 [117]
C7 C6 H6 42.9 110.1 [117]
C6 C7 H7 42.9 110.1 [117]

perfluoroalkane surfactant
C7 C7 C6 44.16 115.6 this work
F7 C7 C6 90 110.3 [54]c
C7 C6 H6 42.9 108.71 [117]c
C7 C6 O5 95.6 107.1 this work

a middle group b terminal group c force constant taken from the literature,
equilibrium angle from this work;

Table B.4: Angle coefficients. Special bonded interactions of the surfactants are labeled
with numbers corresponding to those in Figure B.1. Bonded parameters not
given explicitly for the surfactants correspond to generic types.
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B.2 Bonded interactions

kdihedral
i,lmno [kcal/mol]

l m n o i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 f1−4 reference
PA

C C C C 0.06 0.132 0.06 -0.429 1.0 [229]
C C C H -0.3 1.0 [229]
H C C H -0.3 1.0 [229]

PTFE
C C C C -0.925 0.07 1.427 -0.54 -0.207 0.676 1.0 [54]
C C C F 1.0 [54]
F C C F -0.38 1.0 [54]

PDMS
Si O Si O -0.41 0.27319 0.21968 0.5 [118]
Si O Si C -0.05706 0.5 [118]
O Si C H -0.15 0.5 [118]
C Si C H -0.15 0.5 [118]

PEO
O C C H -0.28 1.0 [117]
H C C H -0.28 1.0 [117]
C O C H -0.73 1.0 [117]
O C C O 0.47 -2.43 -0.36 -0.95 -0.45 1.0 [117]
C O C C 1.87 1.17 0.46 -0.37 1.0 [117]

alkyl-ethoxylate surfactant
C6 C6 C6 C1 0.06 0.132 0.06 -0.429 1.0 [229]
O2 C1 C6 C6 2.56 0.33 -1.04 1.0 this work
H1 C1 C6 H6 -0.28 1.0 [117]

trisiloxane surfactant
O10,13 Si9 C8 C7 -0.19 0.5 this work
C16 Si9 C8 C7 -0.19 0.5 this work
Si9 C8 C7 H7 -0.11 0.5 this work
Si9 C8 C7 C6 -0.11 0.5 this work
C8 C7 C6 O5 2.56 0.33 -1.04 1.0 this work
H8 C8 C7 H7 -0.28 1.0 [117]
H6 C6 C7 H7 -0.28 1.0 [117]

perfluoroalkane surfactant
C7 C7 C7 C6 -0.791 -0.47 -2.03 1.0 this work
F7 C7 C7 C6 -1.686 -1.650 -0.991 1.0 this work
C7 C7 C6 H6 -0.073 0.129 -0.157 1.0 this work
C7 C7 C6 O5 -0.071 -0.137 0.079 1.0 this work
F7 C7 C6 H6 0.073 -0.122 -0.334 1.0 this work
F7 C7 C6 O5 -0.071 0.13 -0.167 1.0 this work
C7 C6 O5 C4 -0.422 -0.513 2.113 1.0 this work

Table B.5: Dihedral coefficients and f1−4 scaling factors. The scaling factor is for the
first and last atom of the dihedral. Special bonded interactions of the sur-
factants are labeled with numbers corresponding to those in Figure B.1.
Bonded parameters not given explicitly for the surfactants correspond to
generic types.
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