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Abstract 

 

The diffusion in complex media is of high interest for a broad range of applications. 

Fluorescence correlation spectroscopy (FCS) is often used to study diffusion in complex 

media, such as semi diluted polymer solutions, living cells or complex, heterogeneous 

hydrogel structures. In these media the refractive index usually differs from that of the 

immersion medium and is potentially changing across the sample. The two-focus 

fluorescence correlation spectroscopy (2fFCS) is known to be robust against the 

refractive index mismatch. In this work the 2fFCS is used to measure the diffusion in 

such complex media and the results are compared to single-focus FCS measurement 

results on the same samples to demonstrate the potential impact of the refractive index 

mismatch on the single-focus FCS measurement results. The diffusion of tagged dextran 

tracers in water, dilute dextran solutions, acrylamide monomer solutions, poly-

acrylamide polymer solutions, and a cross-linked polyacrylamide hydrogel is probed by 

2fFCS. In these experiments, both the refractive index and the potential topological 

constraint and thermodynamic interaction to the probe diffusion is varied, and pairs of 

samples with same refractive indexes but different compositions are compared. 

Whereas 2fFCS shows no anomalous diffusion in any of them, single-focus FCS indicates 

anomalous diffusion. In particular, the values of the stretching exponent of the 

fluorescence autocorrelation function, which is often interpreted to reflect the extent of 

anomaly of diffusion, does not vary systematically with the extent of topological or 

thermodynamic complexity of the different matrixes, but with their refractive index. This 

shows that apparent anomalous diffusion in FCS is at risk to be the result of refractive 

index mismatch rather than reflecting truly complex diffusion. 
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Furthermore the 2fFCS has been used in a spatial resolved mode to study the diffusion in 

core-shell particles and thermo-responsive composite hydrogels. 

The diffusion of payloads within core–shell carrier particles is of major relevance for 

drug-delivery applications.  We use spatially resolved two-focus fluorescence correlation 

spectroscopy to quantify the diffusivity of different dextran molecules and colloids 

within carrier particles composed of a temperature-responsive poly(N-isopropyl-

acrylamide) (PNIPAM) shell that surrounds a temperature-insensitive poly(acrylamide) 

(PAAM) core.  The deswelling of the shell that occurs upon heating above the lower 

critical solution temperature of PNIPAM slightly slows down the diffusion of these tracer 

oligomers near the core–shell interface.  By contrast, the mobility of the tracers inside 

the core is not affected by deswelling of the shell.  This finding assures absence of 

artifacts such as adsorption of the guests to the amphiphilic shell polymer, supporting 

the utility of these microgel carriers in encapsulation and controlled release applications. 

Thermosensitive composite hydrogels that consist of a PAAM hydrogel matrix with 

embedded micrometre-sized PNIPAM microgel beads are promising models for complex, 

heterogeneous gels and living cells.  The coupling of the microgel beads with the gel 

matrix and the formation of interpenetrating networks inside the microgels had been 

investigated by 2fFCS. This technique serves to study the effects of the heterogeneous 

structure of the composite hydrogels on the diffusive mobility of nanoscopic dextran 

tracers within the gels. The investigations reveal that the formation of interpenetrating 

networks inside the embedded microgel beads depends on their cross-link density: 

whereas interpenetrating networks are formed inside weakly cross-linked beads, they 

are not formed inside strongly cross-linked beads. If the formation of interpenetrating 

networks occurs, the temperature-dependent swelling and deswelling of the beads is 
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obstructed. In addition, the mobility of dextran tracers inside the embedded microgel 

beads is hindered compared to those in free beads and in the surrounding gel matrix. 

Surprisingly, the surrounding PAAM hydrogel matrix swells inhomogeneously when the 

embedded PNIPAM beads collapse upon heating. This indicates the formation of pores 

near the surface of the collapsed beads, offering promising means to tailor composite 

hydrogels for applications such as membranes with tunable permeability. This 

experiment also demonstrates the utility of 2fFCS to study spatially resolved diffusion in 

complex environments, which is of great interest in biomaterials research. 
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Kurzfassung 

 

Die Diffusion in komplexen Medien ist von großem Interesse für eine breite Palette von 

Anwendungen. Fluoreszenzkorrelationsspektroskopie (FCS) wird oft verwendet, um eine 

Diffusion in komplexen Medien, wie halb verdünnten Polymerlösungen, lebenden Zellen 

oder komplexen, heterogenen Hydrogelen zu untersuchen. In diesen Medien 

unterscheidet sich in der Regel der Brechungsindex von dem des Immersionsmediums 

und möglicherweise ändert der Brechungsindex sich innerhalb der  Probe. Die zwei-

Focus-Fluoreszenzkorrelationsspektroskopie (2fFCS) ist bekannt dafür, gegenüber der 

Brechungsindex-Fehlanpassung unempfindlich zu sein. In dieser Arbeit wurden die 

Ergebnisse aus 2fFCS-Messungen mit den Ergebnissen aus  Einzelfokus-FCS-Messungen 

in denselben Proben verglichen, um die möglichen Auswirkungen der Brechungsindex-

Fehlanpassung auf die Einfokus-FCS-Messergebnisse zu demonstrieren. Die Diffusion 

von markierten Dextran-Tracern in Wasser, verdünnten Dextranlösungen, Acrylamid-

Monomer-Lösungen, Polyacrylamid-(PAAM)-Polymerlösungen und ein vernetztes 

Polyacrylamid-Hydrogel wurden durch 2fFCS-Messungen sondiert. In diesen 

Experimenten sind sowohl der Brechungsindex, als auch die potentiellen topologischen 

Einschränkungen der thermodynamischen Wechselwirkung der Diffusion der Sonden-

moleküle verändert worden und Probenpaare mit gleichem Brechungsindex, aber 

unterschiedlichen Zusammensetzungen verglichen worden. In allen gemessenen Proben 

zeigt die 2fFCS keine anomale Diffusion, wohingegen die  Einfokus-FCS anomale 

Diffusion zeigt. Insbesondere haben sich die Werte des Exponenten der Fluoreszenz-

autokorrelationsfunktion, die oft interpretiert wird, um das Ausmaß der Anomalie der 
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Diffusion zu beschreiben, nicht systematisch mit dem Ausmaß der topologischen oder 

thermodynamischen Komplexität der verschiedenen Matrizen verändert, sondern 

abhängig vom Brechungsindex. Dies zeigt, dass das Auftreten von nicht ausreichend 

berücksichtigten Brechungsindexunterschieden die Gefahr birgt, als  anomale Diffusion 

in FCS Messungen fehlinterpretiert zu werden.  

Ferner wurde die 2fFCS in einem ortsaufgelösten Modus verwendet, um die Diffusion in 

Kern-Schale-Partikel und temperaturabhängigen Verbund-Hydrogelen zu untersuchen.  

Die Diffusion von Wirkstoffmolekülen, sowohl innerhalb als auch hinein und hinaus, 

Kern-Schale-Trägerpartikel ist von großer Bedeutung für Wirkstofffreisetzungs-

anwendungen. Die Diffusion verschiedener Dextranmoleküle und Kolloide im 

Trägerpartikel wurde untersucht. Die Trägerpartikel bestehen dabei aus einer 

temperaturempfindlichen Poly(N-isopropylacrylamid)(PNIPAM)-Schale und einem 

temperaturunempfindlichen Poly(acrylamid)(PAAM)-Kern. Die Entquellung der Schale, 

welche beim Erhitzen der Probe oberhalb der unteren kritischen 

Entmischungstemperatur(LCST) von PNIPAM auftritt, verlangsamt die Diffusion dieser 

Tracer-Oligomere in der Nähe der Kern-Schale-Schnittstelle leicht. Im Gegensatz dazu ist 

die Beweglichkeit der Tracer im Kern nicht durch die Entquellung der Schale beeinflusst. 

Dieses Ergebnis verdeutlicht die Abwesenheit von Artefakten in den Messungen, wie die 

Adsorption der Gastmoleküle an der amphiphilen Polymerhülle, und verdeutlicht den 

Nutzen dieser Mikrogelpartikel bei der Verkapselung und kontrollierten Freisetzung in 

der Anwendung.  

Temperaturabhängige Verbundhydrogele, die aus einer PAAM-Hydrogelmatrix mit 

eingebetteten Mikrometer großen PNIPAM Mikrogelpartikeln bestehen, sind viel-

versprechende Modelle für komplexe, heterogene Gele und lebende Zellen. Die 
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Kopplung der Mikrogelpartikel an die Gel-Matrix und die Bildung von durchdringenden 

Netzwerken (IPN) innerhalb der Mikrogele wurden untersucht. Die Ortsauflösung dient 

dazu, die Auswirkungen der heterogenen Struktur der zusammengesetzten Hydrogele 

auf die Diffusionsmobilität von nanoskopischen Dextran-Tracer innerhalb der Gele zu 

studieren. Die Untersuchungen zeigen, dass die Bildung von sich durchdringenden 

Netzwerken innerhalb der eingebetteten Mikrogelpartikel von ihrer Vernetzungsdichte 

abhängen. Während sich IPNs im Inneren schwach vernetzter Partikel bilden, werden sie 

in stark vernetzten Partikeln nicht gebildet. Bilden sich IPNs, wird die temperatur-

abhängige Quellung und Entquellung der Mikrogelpartikel behindert. Außerdem ist die 

Beweglichkeit von Dextran-Tracern innerhalb der eingebetteten Mikrogelpartikel 

gehindert, im Vergleich zur Diffusion in  freien Mikrogelpartikeln in Wasser oder in der 

umgebenden Gelmatrix. Überraschenderweise quillt die umgebende PAAM- 

Hydrogelmatrix inhomogen, wenn die eingebetteten PNIPAM-Partikel beim Erhitzen 

kollabieren. Dies deutet auf die Bildung von Poren in der Nähe der Oberfläche der 

kollabierten Partikel hin und bietet vielversprechende Möglichkeiten um 

Verbundhydrogele für Anwendungen als Membranen mit einstellbarer Permeabilität 

herzustellen. Diese Experimente zeigen auch die Nützlichkeit von ortsaufgelösten  2fFCS- 

Messungen um die Diffusion in komplexen Umgebungen, die von großem Interesse für 

die Biomaterialforschung ist, zu studieren. 
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1. Motivation and Aim of the Thesis 

In modern life the role of soft materials are getting more and more important. We are 

surrounded by plastics and gels. Especially stimulus-responsive or smart materials such 

as thermo-responsive materials are of high interest. The research on such materials is a 

continuously growing field. The applications for new smart materials are huge and 

complex smart hydrogels are very interesting for a huge variety of applications, such as 

tunable membranes in food production, filtering and tissue engineering; as carriers in 

drug delivery; as “intelligent patches” in medicine and many more. A great advantage of 

hydrogels is, that they are easy to modify and their properties are tunable. Making 

heterogeneous hydrogels out of a surrounding gel matrix and incorporating colloidal 

materials such as microgels or nanoparticles increases the number of tunable properties 

for hydrogels. 

In all mentioned applications the diffusion of small guest molecules inside and through 

the hydrogel is of mayor importance. Measuring the diffusion is rather tricky. One has to 

somehow visualize the diffusion. A very common way to do this is to tag the guest 

molecules with a fluorescent dye. The labeled guest molecules can now be tacked if the 

label is excited by light and the emitted light is detected. A very simple method to do 

this is to illuminate the whole gel with the correct wavelength and making a film of the 

gel which is floated from one side with a solution of labeled molecules. The molecules 

will form a border inside the gel between the parts of the gel already filled with labeled 

molecules and the part with no labeled molecules. The border moves across the gel and 

the speed of the border gives information about the diffusion of the molecules inside 

the gel. 
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One well-established method which is based on the described method is the 

fluorescence recovery after photo beaching (FRAP) method. In this method a spot inside 

the gel, which is filled with labeled molecules, is bleached and the vanishing of the 

bleached spot is measured. These two methods have a big disadvantage, they need 

rather high concentrations of labeled guest molecules and therefore the molecule 

concentration is of risk to lower the diffusion of the molecules additionally to the gel. 

Another technique which deals with fluorescently labeled molecules is the confocal 

fluorescence correlation spectroscopy (FCS). This method measures the time a labeled 

molecule stays inside a small volume determined by a laser focus. This technique has the 

advantage that the molecule concentration is close to the infinite dilution and no 

macroscopic concentration gradient is present. A big disadvantage of this technique is 

that the measured diffusion coefficient is not an absolute value and has to be referenced 

by a standard. The standard is a molecule with known diffusion coefficient and is used to 

determine the detection volume. This makes the method fragile to refractive index 

mismatches, cover slight thickness and the used wavelengths.  

A modification of the standard FCS is the rather new two-focus fluorescence correlation 

spectroscopy (2fFCS). This technique is robust against refractive index mismatch. This is 

achieved by introducing an external length scale.  A detailed description will be given 

later. With the 2fFCS absolute diffusion measurements are possible and make it to the 

technique of choice for investigating complex hydrogels. 

In complex heterogeneous hydrogels with stimulus-responsive additives the diffusion of 

guest molecules is dependent on the position inside the complex hydrogel.  

The aim of this thesis is to introduce the spatially resolved 2fFCS measurements. This 

method will then be applied to core-shell particles and in hydrogels with switchable 
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inhomogeneities. The question to answer is: How does the diffusion in these samples 

react on external stimuli? In these environments the aspect of anomalous diffusion will 

be investigated by comparing FCS and 2fFCS results on different samples to answer the 

question of possible artifacts in the detection of anomalous diffusion caused by the 

refraction index mismatch. 
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2. Theory 

2.1. Diffusion 

 

One approach, to describe the diffusion was established by Adolf Fick in 1855[1]. Fick 

started with a macroscopic observation of the diffusion.  

 If one puts a drop of liquid soap into a glass of water, the soap drop will dissolve and the 

drop of liquid soap will vanish, meaning that the opaque soap drop will become more 

and more transparent, whereas the transparent water will become slightly opaque if the 

soap concentration in water gets high enough. In other words the density gradient of 

the soap surfactant is very high in the beginning and will drop during time until the 

gradient is zero in equilibrium state. This effect is called diffusion. A cartoon of the 

process is shown in Figure 2.1. 

 

 

Figure 2.1 A schematic draw of the diffusion of soap from the soap droplet (yellow) into the surrounding 
water (blue). 

 

 The diffusion can be seen by naked eye, if the process is not too fast. 

 The number of particles that moves through a defined unit area into a second is called 

particle flux density     which is a vector. 
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The particle flux density is given by Fick’s first law for one dimension: 

 

 

 

 

     
     

 
 
  

  
  

 

 

(2.1) 

 

 

L is the mean free path, <v> is the mean velocity and dn/dx is the one dimensional 

particle density gradient.  

The first factor on the right side is obviously a particle-specific constant. So we can 

define 
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And call D the diffusion coefficient.  

Due to entropy more particles of the higher concentrated species will diffuse out of the 

volume. In other words the particle density will be reduced in the volume of high 

concentration: 

 

 

 

 

             

 

 

(2.3) 

 

Where     is a vector. 

Including Fick’s first law we get: 
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The diffusion coefficient D is constant. 

Another path to determine the diffusion coefficient more mathematically is discussed in 

the next part. 

2.2. Brownian motion 

 

Particles in a system with a temperature T move with an undirected movement. The 

mean kinetic energy of such particles is given by                . The motion was first 

observed by Robert Brown in 1827 on pollen grains in water under a microscope. This 

was the first direct evidence of kinetic energy theory of matter [2, 3]. In 1905, Albert 

Einstein published a paper about the origin of the motion Brown fond in 1827 [4]. An 

example for Brownian motion in two dimensions is shown in Figure 2.2. 

 

Figure 2.2 Sketch of a trace of a particle under Brownian motion, using a self defined matlab routine with 
1000 steps of moving. 

He considered that the pollen grains were moved by the collision with the water 

molecules. This motion can be described by a random walk. The particle moves strait for 

a certain length L between to individual collisions. Averaging over all Li, leads to the 

mean free path L. The mean free path is dependent on the density of particles in a 
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liquid. Einstein showed, for one dimension, that if (x,t) is the particle density at a point 

x at a time t, the movement can be described by 

 

 

 

  

  
  

   

   
 

 

(2.5) 

 

D is the diffusion coefficient. The equation is equivalent to equation (2.4). 

Solving the equation, using the initial conditions: 
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For x  0, t = 0. 

And 

 

 

 

              

  

  

 

 

 

(2.7) 

 

Leads to: 
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Now the moments can be calculated directly. The first moment is zero, which is 

equivalent to no preferred direction for the particle movement.  This is expected for 

random walk. The second moment gives us the mean square displacement <x2>: 

 

 

 

 

           

 

 

(2.9) 
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And for three dimensions: 

 

 

 

           

 

 

(2.10) 

 

In 1908 Jean-Baptist Perrin got the Nobel Prize for proving Einstein’s theory in an 

experiment[5]. 

As a direct consequence, the diffusion coefficient of particles with a thermal energy of 

               in a solution can be described by the mobility of the particle inside the 

solution: 

 

 

 

 

          

 

 

(2.11) 

 

For low Reynolds numbers  is the inverse of the flow coefficient  

With 

 

 

 

 

 

           

 

 

(2.12) 

 

Where rh is the hydrodynamic radius of the particle and h is the viscosity of the particle. 

Combining equation (2.11) and (2.12) we get the well-known Stokes – Einstein equation: 

 

 

 

 

   
    

        
 

 

 

(2.13) 

 

Now we have a direct relation between the diffusion coefficient and the size of the 

diffusing particle. Therefore, a change in the diffusion coefficient of the same particle at 
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the same temperature but in different environments can be described directly by a 

change of the viscosity or more generally spoken a change of the mobility of the particle.  

 

2.3. Fluorescence 

 

To investigate small particles in different environments, the contrast between the 

particles of interest and the environment has to be high enough to distinguish between 

particle and environment. The contrast can be described by a certain attribute of the 

particle of interest. This attribute can be a special structure for NMR measurements, 

high scattering potential for neutrons in SANS or many other attributes. In our case we 

need a photo-physical active particle which shows luminescence under irradiation of 

light of a defined wave-length. This luminescence can be distinguished between two 

different categories: Fluorescence and phosphorescence, depending on the physical 

properties of the excited state in the molecule. The fluorescence takes place on a 

smaller timescale as the phosphorescence and is the effect of choice for our 

experiments.  

Both effects, fluorescence and phosphorescence, can be explained, using the Jablonski 

diagram (figure 2.3). 
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Figure 2.3 Simple Jablonski diagram including fluorescence and phosphorescence.  

 

In 1933 Aleksander Jablonski described the fluorescence and phosphorescence using a 

scheme equal to that shown in figure 2.3[6].   

If a dye is exposed to light with a wavelength equal to the energy difference between 

the ground state S0 of the dye and an exited state S1’ of the same dye and the valence 

electrons of the dye are in ground state, one electron will be excited by absorbing the 

energy of a light photon and moves to the state S1’. S1’ is one state of the possible 

states of the S1 states without specifying all other quantum values. If S1’ is not equal to 

S1, the S1 state with lowest energy and all quantum values equal to 0 except the main 

quantum value of 1, an internal relaxation without irradiation of light takes place. At this 

point the differentiation between fluorescence and phosphorescence takes place. If the 

internal conversion of the S1’ to S1 state is combined with a spin change of the electron, 

a return of the exited electron to S0 is not allowed. Then, an inter-system interaction is 

needed to change the spin of the excited electron again. This is called inter-system 

crossing. This leads to phosphorescence and needs larger timescales as a direct 

relaxation of the excited electron with no spin change. The direct relaxation with 

irradiation of light is called fluorescence.  
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Due to the internal relaxation of the S1’ to S1 state, an energy lost between excitation 

and fluorescence light occurs. This shift to longer wavelengths from the absorption to 

the emission is called Stokes shift. The Stokes shift is crucial for the distinction between 

excitation and emission light and there for the technique used in this work. 

 

 

 

2.4. Hydrogels 

 

Hydrogels are a sort of material which is used in a huge variety of applications in modern 

life. They are used for contact lenses[7, 8], as super absorbers for example in napkins[9], 

in DNA analysis[10], cosmetics[11], drug delivery[12-14] and many more. The definition 

of gels is difficult. Up to now no consistent definition exists. The most common 

definition is “…if it looks like ‘Jell-O’, it must be a gel!”[15]. There is only one rule that fits 

to all hydrogels, that it is composed out of at least two components, a liquid and a solid 

component. The properties of the hydrogel are a composition of the properties of the 

solid and the properties of the liquid part. This makes the hydrogel being soft matter. 

They retain their form as a solid and store the liquid inside without floating out of the 

gel. At the same time, small particles are able to diffuse through the hydrogel as if they 

were dissolved in a liquid[16].  

There are two types of hydrogels known. The first one is the chemically cross-linked 

hydrogel and the second one is the physically cross-linked one. The chemically bond 

hydrogels are formed using a cross-linker in the synthesis to form covalently bonds 

between different polymer chains. These bonds are permanent bonds. Physically cross-

linked hydrogels are bonded non-permanently by using interactions like electrostatic 
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interactions [17-19], entanglements or other intermolecular interactions. The physically 

cross-linked hydrogels therefore can be influenced by changing the interaction 

potentials and therefore can be destroyed or changed in their properties easily. Due to 

the fact, that the polymers have a lot of hydrophilic groups, they can incorporate huge 

amounts of water inside the hydrogels. Depending on the cross-link density the amount 

of water inside the hydrogel can be 10 wt% up to nearly 100 wt% in weight of the 

swollen hydrogel[20]. In cases of the super absorber hydrogels, as used in napkins, the 

amount of water which can be taken up can be 1000 times of the weight of the polymer 

network [21, 22].  

For a huge variety of applications the swelling and deswelling behaviour of the hydrogels 

are of major importance. The swelling kinetics of hydrogels strongly depends on the size 

of the hydrogel [23, 24]. Therefore small gel structures swell and deswell much faster 

than big gel structures.  The fast kinetics is often requested. Therefore hydrogels in the 

nanometre and micrometre scales are synthesized. These hydrogels are called 

microgels. 

It is also possible to synthesize hydrogels with special properties, as sensitive to external 

stimuli such as temperature, pH, electro-magnetic fields and many more. These 

hydrogels are called “smart hydrogels”. The sensibility to the external stimuli can be 

introduced to the hydrogel by using special monomers, for example N-isopropyl-

acrylamide (NIPAM) for the temperature sensibility. PNIPAM has a volume phase 

transition temperature (VPTT) of 32°C in water[25]. Above the VPTT the polymer 

becomes hydrophobic and the hydrogel deswells in water. This deswelling is driven by 

entropy and endothermic[26]. For other sensibilities, additional other components such 

as magnetic nanoparticles, or charged monomers can be used. 
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Combining the fast swelling kinetics and the stimuli sensitivity is quite easy by 

synthesizing microgels with the stimuli responsive components inside. But in some 

applications it is necessary that the macroscopic shape of the hydrogel does not change 

upon one external stimulus and at the same time the hydrogel should react quite fast on 

this stimulus. In these cases so-called “composite hydrogels” are needed. Composite 

hydrogels contain of a microgel which is sensitive to the external stimulus und a 

surrounding hydrogel which is not. These composites retain their shape and show a 

reaction on the external stimulus. The reaction of the sensitive microgels, with a size of 

several nanometre, is almost the same as those the pure microgel shows. Only at very 

high cross-linker concentrations an effect is visible [27].  

A very large number of monomers, cross-linkers and additives is available and makes 

hydrogels, smart hydrogels and composite hydrogels to a research field of ongoing work 

of finding new materials with new properties and applications. 

 

 

 

2.5. Fluorescence Correlation Spectroscopy 

 

In the 1970’s the idea of fluorescence correlation spectroscopy (FCS) was invented by 

Elson, Magde and Webb [28-34]. The theory for the FCS was developed by Ehrenberg 

and Rigler [35] from the theory of dynamic light scattering (DLS). In 1976 Hirschfeld 

succeeded with the first detection of single molecule diffusion in a liquid. This was 

possible due to the fact that the detection volume of the FCS had been minimized using 

the confocal technique [36]. In the confocal setup an objective of high numerical 
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aperture (NA > 0.9) was combined with a lens / pinhole setup. With this setup 

investigation of polymers with only one fluorescent label was possible in a liquid [37-41]. 

A huge step forward for the FCS was the development of stable and powerful lasers and 

single avalanche photo multipliers of high accuracy in the early 1990’s. The first review 

articles about the FCS were published 1997-2002 [40]. They mark the point in time 

where the FCS technique reached their state as it is used nowadays. There are some 

new modifications of the FCS in use. For example the two-focus fluorescence correlation 

spectroscopy (2fFCS)[42], total internal reflection fluorescence correlation spectroscopy 

(TIRFFCS)[43], scanning fluorescence correlation spectroscopy (SFCS)[44] and more. All 

these modifications try to tackle the problems of the standard FCS, as they are refractive 

index mismatch, dependency on the cover slight thickness, optical saturation and other 

optical and photo physical problems which lead to artifacts in the measurement.  

2.5.1. Basic working principle 

 

 

Figure 2.4 Schematic draw of the setup of a confocal fluorescence microscope [42]. 
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In principle the set up of an FCS machine is the same as a standard confocal fluorescence 

microscope (Figure 2.4). A laser beam of a defined wavelength is coupled into an 

inverted microscope via a dichroic mirror, which is highly reflective for the wavelength 

of the laser beam and highly transparent for the other wavelengths. The microscope is 

focusing the laser beam to a small point with highest laser intensity inside the sample. 

Fluorescence of the whole focus cone is then detected through the objective, passing 

the dichroic mirror and is focused by a lens through a pinhole. The pinhole is positioned 

in the focus of the lens. This leads to a selection of the fluorescence light. Only the light 

from the focus point inside the sample passes the pinhole. The resulting fluorescence 

from the very small focus point volume in the sample is then measured by single photon 

detectors. The resulting signals are measured time resolved and lead to an intensity time 

trace (Figure 2.5). From this time trace one can calculate the so called auto correlation 

function (ACF) (Equation 2.14).  

 

 
      

            

       
 

 

(2.14) 

 

I(t) is the intensity at a time t and I(t+) is the intensity at a time t+The angle brackets 

indicate the time average. The AFC describes the probability to have intensity of a label 

at the time t+ provided that there was intensity at a time t. 
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Figure 2.5 Typical time trace recorded by a confocal fluorescence microscope. 

 

To get quantitative data out of the ACF it is necessary to have a precise description of 

the underlying molecule detection function (MDF). For the MDF the correct shape of the 

detection volume is needed. In common theory for FCS the shape of the detection 

volume is assumed to be a tree-dimensional, rotationally symmetric Gaussian ellipsoid 

with a radius 1/e2. It had been shown by Dertinger at al.[45] that this is critical because a 

slight refractive index mismatch changes the shape of the detection volume strongly. 

This makes it complicated to measure in samples with a different refractive index with 

respect to the immersion liquid, used in the microscope. 
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2.6. Two-focus Fluorescence Correlation Spectroscopy 

 

2.6.1. Basic working principle 

 

The knowledge of the correct shape of the detection volume in FCS measurements is 

needed to have a length scale for the calculation of the diffusion coefficient from the 

diffusion time D. This is critical due to the fact, that a refractive index mismatch changes 

the shape of the detection volume from the tree dimensional, rotational symmetric 

Gaussian ellipsoid and makes it difficult to work with. T. Dertinger invented in 2007 the 

so-called two-focus fluorescence correlation spectroscopy (2fFCS)[42, 45, 46]. 

 

Figure 2.6 Schematic draw of the setup of a confocal fluorescence microscope for 2fFCS measurements. 
DIC prism denotes the Nomarski prism [42]. 

 

This technique is a modification of the standard FCS, where a second laser focus is used 

in the sample. The both foci are individual foci that overlap. The lateral shift distance is 

realized by a Nomarski prism. The Nomarski prism displaces the incoming laser beam 
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depending on the polarization of the beam. Using two perpendicularly polarized laser 

beams leads to the fixed shift distance between the foci (Figure 2.6). The detection of 

the signals from the two foci is done with the same setup as in the standard FCS. This is 

possible if pulsed lasers are used, which are triggered to illuminate the foci fast one after 

the other. Now the signals of the two foci are separated in time. The laser pulses do 

have a length of several picroseconds and the time between the two pulses for the 

different foci is in the order of nanoseconds. The ns scale is needed due to the fact that 

the life time of the most fluorescence dyes is in that time scale. 

 

 

 

2.6.2. The molecule detection function (MDF) and the resulting correlation functions 

 

In contrast to the standard FCS, where the MDF is described using a three-dimensional 

Gaussian distribution, we use description introduced by T.Dertinger [42]. In this 

description the MDF is approximated by a modified Gauss-Lorentz distribution, given by 

equation 2.15. 

 

 

 

 

       
    

     
     

 

     
         

 

 

(2.15) 

 

U(  ) denotes the MDF, x, y, z are the Cartesian coordinates with z along the optical axis. 

(z) is given by: 

 

 

 

 

        
 

     
     

   

     
 

 

 

           
   

     
  

 

(2.16) 
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The parameter a denotes the pinhole radius of the confocal optics. The expressions R 

and w are defined equally: 

 

 

 

 

             
     

   
  

 

 

 

 
  

 

 

 

(2.17) 

 

and 

 

 

 

 

             
     

   
  

 

 

 

 
  

 

 

 

(2.18) 

 

n is the refractive index,     denotes the emission wavelength,     the excitation 

wavelength and w0 and R0 are in principal unknown model parameters.  

The auto correlation function for lag time  and for one focus is given by [47]: 

 

 

 

 

                                                              

  

        

                

 

 

 

 

 

 

(2.19) 

 

Using Green’s probability density function              for molecular motion from point    

to point    in time  and neglecting uncorrelated background intensity Ibg leads to: 
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(2.20) 

 

With: 

 

 

 

                      
 

      
 

  
      

       
 

   
  

 

(2.21) 

 

 

The Green function                      describes the three dimensional diffusion. 

Up to now we have an expression for a single focus experiment. To describe the whole 

2fFCS experiment we have to introduce the shift distance    and spreading the detection 

efficiency  to 1 and 2 for the different foci in equation 2.20 lead to [47]: 

 

 

 

 

                     

 

                            

 

               
     

 
 

 

  
 

  
       

                     

 

  

 

  

 

      
       

 

   

   

                    
       

 

 

(2.22) 

 

There is no analytical solution for this equation available and a numerical solution of the 

equation is needed to fit the measurement data (see e.g. Equation 3.2). 
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3. Refractive index mismatch can misindicate anomalous 

diffusion in single-focus fluorescence correlation spectroscopy1 

 

3.1. Introduction 

 

Molecular and particulate diffusion in crowded environments such as cells,[1-3] 

membranes,[4-6] or gels[7] is a  rate-determining factor in dynamic processes in these 

media,[8-12] including cellular metabolism,[13, 14] transmembrane transport,[15-17] 

and drug delivery.[18-21] A suitable observable to quantify diffusivities in these media is 

the time-dependent mean square displacement (MSD); in the simple limit of Brownian 

motion, this quantity scales linearly with time, as captured by the Einstein–

Smoluchowski equation, MSD ~ t, with α = 1. By contrast, diffusion in crowded media is 

often anomalous, assessed by α < 1 and commonly referred to as subdiffusion.[22] This 

deviation from the simple Brownian limit can be caused by temporal entrapment of the 

diffusing species due to mechanical constraint or chemical binding imposed by the 

surrounding matrix. 

A suitable method to probe diffusion processes in the Brownian and the anomalous limit 

is fluorescence correlation spectroscopy (FCS). After initial use in the biophysical 

field,[23, 24] this technique has gained remarkable popularity in the colloid and polymer 

sciences.[25-31]  In this approach, a determined femtoliter-sized sample volume is 

irradiated by a focused laser beam, causing autofluorescent or fluorescently tagged 

                                                
1
 This chapter was published in Macromol. Chem. Phys., 2014. DOI: 10.1002/macp.201400349. The study 

was performed in collaboration with the co-authors. My contribution was the synthesis of the final 

samples. Furthermore, I performed the 2fFCS measurements and did the data analysis for single and 

2fFCS. 
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probe molecules to fluoresce. If the probe molecules are present in nanomolar 

concentrations, only a small number of them occupy the probe volume at a time, 

causing measurable fluctuation of the fluorescence intensity as probe molecules diffuse 

in and out of the probe volume. Autocorrelation analysis of these temporal fluctuations 

of the fluorescence intensity allows the translational diffusion coefficient to be 

calculated. For this purpose, the autocorrelation data are fitted with suitable 

mathematical models containing different adjustable parameters;[12] these models 

differ in detail, depending on whether or not they account for potential complexity such 

as triplet-state blinking, but they all share the same basic expression. If simple Brownian 

diffusion is probed, the model consists of a combined reciprocal and inverse square-root 

function.[12] By contrast, complex subdiffusion requires more sophisticated power-law 

functions to be applied to obtain confident fitting.[32, 33]  

Despite its elegance and excellent sensitivity, FCS is subject to inaccuracy as a result of 

potential refractive index mismatch between the sample and the microscopy cover slide 

and immersion fluid that hold the specimen and interface it to the objective lens.[34, 35] 

If such effects impair an FCS experiment, the resulting autocorrelation data cannot be 

accurately fitted with standard simple models, [12] but needs sophisticated power-law 

fitting.[16, 17] As a result, these effects are at risk to be misinterpreted as anomalous 

diffusion. To overcome this limitation, two-focus fluorescence correlation spectroscopy 

(2fFCS) is a promising technique.[34, 36, 37] In this approach, two laterally overlapping 

foci are operated at a determined distance to realize two FCS experiments at a time,[38, 

39] followed by cross-correlation analysis. The determined shift distance defines the 

extent of overlap of the two foci, simultaneously setting the length scale under 

investigation. As a result, this approach is robust against deviations of the shape of the 
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laser foci from the ideal Gaussian form, which may arise due to optical effects like 

refractive index mismatch.[26] 

The impact of the refractive index and the ability to probe anomalous diffusion in 

classical single-focus FCS has been subject to several previous investigations. Aouani et 

al.[40] showed that refractive index mismatch can be used to minimize the detection 

volume and therefore optimize the signal to noise ratio in measurements. Harlepp et 

al.[41]  varied the refraction index of RNA (ribonucleic acids) and protein-based samples 

and took the different refractive indices into account for the data evaluation, 

demonstrating that such treatment prevents the need for complex power-law fitting. 

Masuda et al.[42, 43] showed that anomalous diffusion can be measured by evaluating 

experiments with different sizes of the detection volume, in agreement with theoretical 

work of Enderlein.[44] These results indicate striking necessity for an in-depth treatment 

of the impact of refractive index in standard FCS. For the more robust and versatile 

technique of two-focus FCS, however, no comparable assessment has been made to 

date. Hence, the role of the refractive index and its potential mismatch, along with the 

potential benefit of the focal separation in 2fFCS to prevent misinterpretation of 

seemingly anomalous diffusion, remains elusive. 

In this work, we explore to what extend single- and two-focus confocal FCS are 

influenced by the refractive index of the sample. We use both these techniques to probe 

the diffusion of fluorescently tagged dextran tracers in different environments, including 

plain water, dilute dextran solutions, acrylamide monomer solutions, semidilute 

polyacrylamide polymer solutions, and a crosslinked polyacrylamide hydrogel. With this 

set of experiments, we vary both the refractive index of the samples and the potential 

topological constraint and thermodynamic interaction to the dextran tracer diffusion. To 
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systematically assess the impact of the refractive index, we compare pairs of samples 

from the upper collection that exhibit the same refractive index but that have 

completely different compositions. Whereas 2fFCS shows no anomalous diffusion in any 

of these different samples, single-focus FCS indicates anomalous diffusion in every case 

that differs from the simplistic scenario of plain tracer diffusion at high dilution in water. 

In particular, the numerical values of the stretching exponent of the fluorescence 

autocorrelation function, which is often interpreted as an indicator of the extent of 

diffusion-anomaly in single-focus FCS,[32, 33] does not vary systematically with the 

extent of potential topological or thermodynamic complexity of the different matrixes, 

but with their refractive index. This finding shows that apparent anomalous diffusion in 

FCS is at risk to be the result of refractive index mismatch rather than truly reflecting 

complex diffusion. This doesn’t mean that anomalous diffusion doesn’t exist, but it 

demonstrates that taking the refractive index mismatch into account is crucial when 

measuring anomalous diffusion by single focus FCS.  

 

 

3.2. Experimental Part 

 

3.2.1 Sample preparation 

 

3.2.1.1 Tracer particles 

 

3-kDa dextran labeled with Alexa Fluor 647 (rh = 1 nm, Invitrogen) and 70-kDa dextran 

labeled with rhodamine B (rh = 6.5 nm, Invitrogen) [45] were dissolved in 

chromatographic pure water (LiChroSolv, Merck). The hydrodynamic radii of these 

tracers, rh, were calculated with the Stokes–Einstein equation (Eq.3.1) from diffusion 
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coefficients determined at infinite dilution with 2fFCS. 

 

 
  

    

         
 

 

(3.1) 

In this equation, kB is Boltzmann’s constant, T the temperature, η the viscosity of the 

medium, and rh the hydrodynamic radius of the diffusing tracer. These experiments were 

repeated 30 times, respectively, denoting experimental accuracies of the tracer diffusion 

coefficient of ±5% each. 

We choose dextrans as tracers due to their low interactions with other polymers except 

some specific proteins that are irrelevant here.[46] In most of the former studies, 

anomalous diffusion of dextran tracers is not reported. This is because in most cases, the 

correlation data of the dextran diffusion in crowded environments are fitted with two-

particle model functions[20] or with model functions additionally accounting for triplet-

state blinking.[47] These models can lead to sufficiently low residuals for small refractive 

index mismatches. At high refractive index mismatches, however, the deformation of the 

correlation function of the dextran diffusion is marked (Supplemental Information, Fig. 

S1), and two-particle models or models including triplet blinking are insufficient. Hence, 

as an alternative, the appearance of anomalous diffusion for dextran tracers has been 

reported as well.[48] 

 

3.2.1.2 Matrix polymers 

 

One matrix was unlabeled 70-kDa dextran (Invitrogen) dissolved in LiChrioSolv.  A second 

matrix was dimethylmaleimide-functionalized polyacrylamide (p(AAm-co-DMMIAAm), 

Mw = 687 kg mol–1, 1 mol-% dimethylmaleimide moieties [49]) dissolved in  LiChrioSolv; 
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the overlap concentration of this polymer is 5 g L–1.  As a more complex analogue to the 

latter type of sample, a third matrix was used in the form of a hydrogel  prepared by 

free-radical crosslinking copolymerization of acrylamide (AAm, Merck) and N,N’-

methylenebisacrylamide (BIS, Polysciences Inc.) To prepare this gel, a solution of 90 g L–1 

of pure acrylamide, 3.25 g L–1 BIS, and 0.001 g L–1 of the UV-cleavable initiator VA-086 

(2,2`-azis[2-methyl-N-2-hydroxyethyl)propinonamide], Wako) in LiChroSolv solvent was 

irradiated with UV light for 15 minutes at a wavelength of 256 nm with an intensity of 1.5 

W cm–1. 

 

3.2.2 Experimental techniques 

 

 

3.2.2.1 2fFCS 

 

Two-focus FCS was performed on a setup based on an inverted fluorescence microscope 

of type MicroTime200 (PicoQuant, Berlin, Germany), consisting of a life science 

microscope XI71 equipped with a water immersion objective UPLAPO 60× W, 1.2 N.A., 

both from Olympus Europa (Hamburg, Germany). The objective is equipped with a 

correction collar that was used to compensate for spherical aberration[50].  A pinhole 

with a diameter of 150 µm was used to achieve an ellipsoidal confocal volume of 279 × 

279 × 693 nm. Measurements were performed at T = 25 °C with a duration of 1 h to 

obtain proper correlation functions. A large pinhole entails specific requirements to the 

sample preparation.  In this context, Enderlein et al. [35] demonstrated that simulations 

of FCS measurements with a pinhole of 100 µm are reliable if the pinhole is correctly 

adjusted to the focus plane of the confocal optics and if the tracer concentration is 

sufficiently low.  In addition, Banachowicz et al. [50] recently showed that the pinhole 
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diameter has to be adjusted to a given tracer concentration to achieve reliable results.  

In our present work, we account for this by using a tracer concentration adjusted to the 

pinhole diameter according to these previous insights.  We measured with tracer 

concentrations between 5 nM and 0.5 nM.  In this concentration range, it is sufficient to 

have a rather big detection volume and still have a low number of tracer molecules 

inside the detection volume.  To further assure reliability in our experiments, we used 

chromatographically clean water, LiChroSolv (Merk, Germany), thereby minimizing the 

background signals that may originate from the dissolution medium.  Both these 

arrangements lead to a sufficient signal to noise ratio and a sufficiently reliable 

correlation function.  As for the standard FCS setup: the accuracy of this setup has been 

demonstrated in an earlier publication by the Oppermann-group [51]. 

The correlation function of the temporally fluctuating fluorescence intensity in 2fFCS is 

given by: 

 

           
 

 
 

 

   
            

 

 
 
 
 

          

                     
 

    

 
 
 
 
   

            
 

     

    
       

    
    

                      
 
 
 
 

 

 
 
 
 

 (3.2) 

 

 

In this equation, D is the translational diffusion coefficient, the lag time of the cross-

correlation, c the concentration of the tracer species in molecules per sample volume, 

and δ the shift distance of the two foci. x and y are the Cartesian coordinates 

perpendicular to the optical axis, whereas z is the coordinate along the optical axis. 

Further variables are: 
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In these equations, λex and λem are the excitation and emission wavelengths, n is the 

refractive index, and a is the confocal pinhole radius. R0 and w0 are free fitting 

parameters.  

The data analysis in 2fFCS and single-focus FCS measurements was done using a single-

particle model. No triplet-state blinking or other photophysical effects were taken into 

account to keep the model simple. The sufficiency of such a simple model is supported 

by the obvious absence of low-tau triplet-state blinking contributions to the 2fFCS 

correlation function, such that the simple function of Eq. (3.2) accurately fits these data. 

 

 

 
 
 

3.2.2.2 FCS data evaluation 

 

 

Simple FCS and two-focus FCS data were analyzed with two complimentary approaches. 

The 2fFCS measurements consist of two independent but equal FCS measurements in 

each focus, respectively, which are correlated separately and cross-correlated to get the 

correlation in the cross section of the two foci. In the cross-correlation function, the 
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detection volume geometry is expressed by the shift distance, which is an external 

length scale. This makes the cross-correlation function robust against deformation of the 

detection volume.[26, 36] By contrast, the simple FCS data were fitted with the 

autocorrelation function of just one of the two independent foci of the 2fFCS 

measurements, which is identical to the simple correlation function in single-focus FCS. 

The fitting was performed with two different equations, one not accounting for 

anomalous diffusion (Equation 3.6) and the other accounting for anomalous diffusion 

(Equation 3.7).                               
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   (3.7) 

 

In these equations, Dis the diffusion time of the fluorescence particle inside the focus, 

k is the quotient of focus width and diameter, and α is the exponent for stretching the 

power-law decay of the fit. The value of  is commonly interpreted as the extent of 

anomaly of diffusion.[32, 33]  As a check of consistency, we have conducted FCS 

experiments on a 70-kDa dextran tracer that diffuses within 80-gL–1 semidilute solutions 

of aqueous p(AAm-co-DMMIAAm) on both our 2fFCS setup in its single-focus mode of 

operation and, in addition, on a classical single-focus FCS setup (Institute of Physical 

Chemistry, Clausthal University of Technology, Germany).  This classical setup consists of 

a confocal laser scanning microscope (Leica TCS SP2) with FCS extension (Leica FCS2) 

equipped with a 63× objective immersed in water with a numerical aperture of 1.2, a 

detection pinhole of 100 µm in diameter, and an excitation with a He-Ne laser at 543 
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nm; to compensate for spherical aberration, a correction collar that is part of the 

objective lens was used. Both these experiments yielded the same result, assessed by a 

best-fit value of  = 0.665 if fitting to Eq. 3.7 is applied (Supplemental Information Fig. 

S.3.1).  

 

3.3. Results and Discussion 

 

A simplistic diffusion experiment is performed if fluorescently tagged dextran tracer 

polymers diffuse in plain water.  We conduct such experiments with two different 

dextran tracers, exhibiting molecular weights of 3 kDa and 70 kDa.  In both these cases, 

classical single-focus FCS shows no indication for anomalous diffusion, and the 

fluorescence-autocorrelation data can be fitted with a simple decay function according 

to Eq. 6 to obtain 3-kDa = 1.13 ms and 70-kDa = 1.98 ms, as shown in Figure 3.1b and f.  

The same result is obtained in 2fFCS, both qualitatively and quantitatively, as shown in 

Figure 3.1a and e.  A different result is obtained if the medium is supplemented by 30 g 

L–1 of untagged 70-kDa dextran as an additional matrix. Even though this concentration 

is below the overlap concentration of 70-kDa dextran (c* = 60 g L–1, calculated according 

to Ying and Chu[52]), single-focus FCS data can no longer be fitted with a simple decay 

according to Eq. 3.6 but require fitting with a stretched decay function according to Eq. 

3.7, denoting  = 0.89 for the 3-kDa dextran tracer and  = 0.85 for the 70-kDa dextran 

tracer, as shown in Figure 1d and h.  By contrast, no such effects are detected in 2fFCS.  

In this case, simple decay functions serve to obtain reliable data fitting,[16] as shown in 

Figure 3.1c and g. To explain the latter finding in single-focus FCS, it is commonly 

assumed that chain entanglement or polymer–polymer interactions obstruct the 
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diffusion.[53, 54] In the present case, however, chain entanglement can be excluded, 

because the matrix and tracer concentrations are below the overlap threshold. 

Furthermore, if polymer–polymer interaction is assumed to cause deviation from normal 

diffusion, then this effect should be more pronounced at higher tracer molecular weight 

due to greater extent of hypothetic interaction. In our experiment, however, the 

stretching exponent  is very similar for both the low molecular weight 3-kDa dextran 

tracer and the high molecular weight 70-kDa tracer, in contradiction to the latter 

argument. Thus, we assume another reason to cause the above effects: differences in 

the refractive index of the different samples.[26, 35, 37] 

To challenge the preceding hypothesis, we conduct experiments on 3-kDa dextran 

tracers immersed in a different polymer matrix: dimethylmaleimide-functionalized 

polyacrylamide, denoted p(AAm-co-DMMIAAm)[49, 55] (Mw = 687 kDa). We use 

different concentrations of this polymer, c = 28–84 g L–1. All these concentrations are 

above the overlap concentration, which is c* = 5 g L–1. These experiments confirm the 

previous trends observed on dextran matrixes: whereas single-focus FCS denotes 

anomalous diffusion in all cases, two-focus FCS does not, as shown in Figure 3.2. In 

single-focus FCS, increase of the matrix concentration from 28 over 56 to 84 g L–1 causes 

decrease of the best-fit values of the stretching exponent  from 0.83 over 0.57 to 0.43. 

This effect may be explainable by increasing topological constraint to the tracer motion 

or by increase of potential matrix–tracer polymer–polymer interactions imparted by 

increase of the matrix concentration. However, both these potential lines of argument 

cannot explain why 2fFCS adequately fits to simple decay functions according to Eq. 3.2, 

thereby not denoting any anomaly of diffusion. Again, this rationale leads us to conclude 
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that optical artifacts are the true major contributor to deviation from simple decay in 

single-focus FCS. 

 

Figure 3.1. 2fFCS and single-focus FCS on fluorescently tagged 3-kDa dextran and 70-kDa dextran tracer 
polymers, either dissolved in water ((a),(b), (e), (f)) or in a 70-kDa dextran untagged polymer matrix with 
concentration of 30 gL

–1
 ((c), (d), (g), (h)), which is below the overlap concentration of dextran at this 

molecular weight (c* = 60 gL
–1

). In single-focus FCS, data fitting (red lines) to a stretched power-law decay 

function (Eq. 3.7) yields  = 0.89 for the 3-kDa dextran tracer and  = 0.85 for the 70-kDa dextran tracer 
((b), (d), (f), (h)). By contrast, 2fFCS measurements ((a), (c), (e), and (g)) show no anomalous diffusion and 
can be fitted with a simple decay function (Eq. 3.2). g) We fitted the data with a model including a term 
that accounts for triplet-state blinking. In the left column, the black and blue lines indicate the auto-
correlation functions of the two separate foci, whereas the pink line indicates the cross-correlation 
function of the two foci. The residuals to the fits can be found in the supplemental information, Fig. S.3.2. 
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Figure 3.2 Comparison of 2fFCS ((a), (c) (e)) and single-focus FCS ((b), (d), (f)) on 3-kDa tagged dextran 
tracers that diffuse within semidilute p(AAm-co-DMMIAAm) matrixes. The matrix concentration increases 
from top to bottom top, covering 28 g L

–1
 ((a),b)), 56 g L

–1
 ((c), (d)), and 84 g L

–1
 ((e), (f)). The fitting 

parameter from Eq. 3.7 decreases in the same order: 28 g/L = 0.83; 56 g/L = 0.57; 84 g/L = 0,43, denoting 
increasing extent of anomaly of the diffusion. By contrast, no anomalous diffusion is detected in 2fFCS ((a), 
(c) (e)), which allows for simple data fitting according to Eq. 2 in all cases. The residuals to the fits can be 
found in the supplemental information, Fig. S.3.3. 
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In the preceding samples, the refractive index linearly increases with the polymer 

concentration, as shown in Figure 3.3. This assessment can serve to identify dextran and 

p(AAm-co-DMMIAAm) polymer matrixes that exhibit the same refractive index, despite 

being fundamentally different in their chemical composition and nanometer-scale 

topology. When single-focus FCS results obtained for the 3-kDa dextran tracer in such 

complimentary pairs of different matrixes are compared, they all show very similar 

values of the fitting parameter , as compiled in Table 3.1 and shown in Figure 3.2 and 

3.4. In 2fFCS, however, no effect of anomalous diffusion is seen in all these cases, as also 

shown in Figure 3.2 and 3.4. These results support our hypothesis of optical effects to 

cause apparent anomalous diffusion in single-focus FCS, whereas 2fFCS is not prone to 

exhibit these artifacts. 

 Table 3.1. Best-fit values of according to Eq. 7 if single-focus FCS is measured on 3-kDa dextran tracers 
that diffuse in matrixes of either p(AAm-co-DMMIAAm) or 70-kDa dextran, chosen such to exhibit similar 
refractive indexes (cf. Figure 3.3).  

n cp(AAM-co-DMMIAAm) 

[g L–1] 

cDextran 

[g L–1] 

 p(AAM-co-DMMIAAm) 

 

Dextran 

 

1.337 28 45 0.83 0.81 

1.343 56 90 0.57 0.49 

1.351 84 130 0.43 0.39 

 

To further strengthen our conclusion, we conduct a last set of experiments with a view 

to two extreme situations: we compare the diffusion of 3-kDa labeled dextran tracers in 

either an acrylamide–bisacrylamide monomer solution (cAAm = 90 g L–1; cBIS = 3.25 g L–1) 

or in a chemically crosslinked polyacrylamide hydrogel obtained by free-radical 

crosslinking copolymerization of the latter monomers (Figure 3.5). These samples exhibit 

the same refractive index, but very different extent of topological constraint on the 

tracer diffusion, along with different extent of potential matrix–tracer interaction. In 
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these experiments, single-focus FCS denotes anomalous diffusion in both the monomer 

solutions and the hydrogels, with best-fit values of solution = 0.49 and gel = 0.52. 

Whereas such anomalous diffusion might be expected in the hydrogel sample,[53, 54] it 

is unexpected for the simple monomer solution. The finding that even this monomer 

solution seems to exhibit anomalous diffusion, with a stretching exponent  that closely 

matches that of the hydrogel, supports our hypothesis of optical artifacts to be the main 

contributor to apparent anomalous diffusion in single-focus FCS. By contrast, 2fFCS does 

again not show any indication of anomalous diffusion in both the latter samples.          

           

Figure 3.3 Dependence of the refractive index, n, of aqueous solutions of 70-kDa dextran (black) or 687-
kDa p(AAm-co-DMMIAAm) (red) on the respective polymer concentration, c. Dashed lines highlight similar 
values of the refractive indexes that denote complimentary pairs of polymer matrixes, fundamentally 
different in their composition and polymer topology, but similar in terms of their optical properties.   
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Some of the present correlation functions have a rather low signal-to-noise ratio of 

about 1.5 to 1, which we attribute to light scattering of the fluorescence signal in the 

samples. An evidence for this hypothesis is that the noise in the correlation function 

increases with the sample refractive index. Nevertheless, the increasing difference of 

the simple model without anomalous diffusion (Eq.3.6) and the more sophisticated 

model that includes anomalous diffusion (Eq.3.7) is visible by eye (Figure 3.1, 3.2, 3.4, 

and 3.5). Therefore, we are convinced that even noisy correlation functions are suitable 

to demonstrate the effect of the refractive index mismatch on the general shape of the 

correlation function.  
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Figure 3.4 Comparison of 2fFCS ((a), (c), (e)) and single-focus FCS ((b), (d), (f)) on 3-kDa tagged dextran 
tracers that diffuse within 70-kDa dextran matrixes. The matrix concentrations increase from top to 

bottom. Top: cmatrix = 45 g L
–1

; center: cmatrix = 90 g L
–1

; bottom: cmatrix = 130 g L
–1

. The value decreases in 

the same order: 45-g/L = 0.81; g/L = 0.49; g/L = 0.39. By contrast, no anomalous diffusion is detected 
in 2fFCS ((a), (c), (e)). The refractive indexes of the dextran matrixes match those of the p(AAm-co-

DMMIAAm) samples from Figure 3. The values of  are the same for corresponding samples with similar 
refractive indexes, independent of their chemical composition and polymer topology. The residuals to the 
fits can be found in the supplemental information, Fig. S.3.4. 
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Figure 3.5 Comparison of 2fFCS ((a),( c)) and single-focus FCS ((b), (d)) on 3-kDa tagged dextran tracers 
that diffuse within a 90-gL–1 acrylamide–bisacrylamide solution ((a), (b)) or in a corresponding chemically 
crosslinked PAAm hydrogel ((c), (d)). Fitting of the single-focus FCS data was performed with the standard 
model according to Eq. 3.6 (blue lines) and with the model for anomalous diffusion according to Eq.3.7 
(red lines). In both measurements, the standard model does not fit sufficiently, whereas fitting with the 

anomalous diffusion model is possible with good confidence, yielding  = 0.49 for the solution and  = 
0.52 for the hydrogel. The residuals to the fits can be found in the supplemental information, Fig. S.3.5.  
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3.4. Conclusions 

 

Comparison of single-focus and two-focus experiments on dextran tracers in different 

complex environments highlights the relevance of refractive index mismatch in 

fluorescence correlation spectroscopy. If single-focus FCS must be used in a given 

experimental situation, refractive index mismatch needs to be taken into account during 

the data analysis.[21, 35, 37, 44, 56, 57] However, it is not always possible to determine 

the refractive index, especially for samples with heterogeneous morphology. Such 

samples are characterized by local variation of their composition and refractive index, 

preventing correction of single focus FCS data with respect to optical artifacts. In such 

cases, 2fFCS is a better technique that still provides reliable data.[58, 59] The message of 

this chapter is to sensitize the reader for the impact of the refractive index mismatch on 

the single-focus FCS measurements and for the need of taking the refractive index 

mismatch into account during the data analysis. However, this work does not at all 

attempt to question the existence of anomalous diffusion. 
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3.5. Supporting Information 
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Fig. S.3.1 FCS experiments on 70-kDa dextran tracers that diffuse within 80-gL–1 p(AAm-co-DMMIAAm) 
semidilute polymer matrixes. a) 2fFCS measurement fitted with Eq. 2, not indicating anomalous diffusion. 
b) Autocorrelation of the first focus of the 2fFCS measurement fitted with Eq. 6 for normal diffusion (red 

line) and Eq.7 (green line) with  = 0.665. c) Related measurement with single-focus FCS instrumentation, 

fitted with an equation equal to Eq. 6 (red line) and Eq. 7 (green line), again denoting  = 0.666. 
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Fig. S.3.2 Residuals to the single focus FCS data in Figure 1. a) Corresponding to Figure 1d; b) 
corresponding to Figure 1h. Black: fit to Eq.6 without taking anomalous diffusion into account. Red: fit to 
Eq.7 accounting for anomalous diffusion. 
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Fig. S.3.3 Residuals to the single focus FCS data in Figure 2. a) Corresponding to Figure 2b; b) 
corresponding to Figure 2d; c) corresponding to Figure 2f. Black: fit to Eq.6 without taking anomalous 
diffusion into account. Red: fit to Eq.7 accounting for anomalous diffusion. 
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Fig. S.3.4 Residuals to the single focus FCS data in Figure 4. a) Corresponding to Figure 4b; b) 
corresponding to Figure 4d; c) corresponding to Figure 4f. Black: fit to Eq.6 without taking anomalous 
diffusion into account. Red: fit to Eq.7 accounting for anomalous diffusion. 

 

 

 

 

Fig. S.3.5 Residuals to the single focus FCS data in Figure 5. a) Corresponding to Figure 5b; b) 
corresponding to Figure 5d. Black: fit to Eq.6 without taking anomalous diffusion into account. Red: fit to 
Eq.7 accounting for anomalous diffusion. 
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4. Diffusion of guest molecules within sensitive core–shell 

microgel carriers2 

 

4.1. Introduction 

 

Microgels are small particles with size in the range of 10 nm to 100 µm.[1]  They consist 

of polymer networks swollen by solvent, typically water.  These particles have the 

capability to incorporate guest molecules or colloids within their interior; this makes 

microgels interesting for a variety of applications [2], including those in catalysis [3], 

separation procedures [4], and in drug delivery [5-12].  These and other applications are 

particularly excelled when the microgels exhibit environmentally responsive swelling 

and deswelling, which is achieved if they consist of environmentally responsive polymer 

gels.  One of the most popular polymers exhibiting such responsivity is poly(N-

isopropylacrylamide) (PNIPAM) [13].  Water-swollen PNIPAM networks have a lower 

critical solution temperature (LCST) of 33.6 °C [14-16].  Above this critical temperature, 

the polymer becomes less soluble in water, and the size of a PNIPAM microgel markedly 

decreases, entailing volume changes of up to 1000% [17]. 

There are two different classes of microgel particles: small, colloidal-scale microgels with 

sizes of a few micrometers to some few micrometers [18, 19], and bigger, non-colloidal 

microgels with sizes of several tens or hundreds of micrometers [20].  Depending on 

their targeted application, both these classes of microgels have their specific 

advantages.  For example, whereas colloidal-scale microgels can penetrate cells or 

                                                
2
 This chapter was published in Journal of Colloid and Interface Science, 2014. 431(0): p. 204-208. The 

article had been accepted. The study was performed in collaboration with the co-authors. My contribution 

was the synthesis of the final samples. Furthermore, I performed the 2fFCS measurements and did the 

data analysis. 

 



52 
 

capillary tubes, above-colloidal microgels cannot, which may both either be desired or 

undesired in inter- or extracellular drug delivery applications.  For both these different 

classes of microgels, a particularly useful morphology is that of a core–shell particle, 

because this morphology intrinsically resembles that of a microcapsule [19, 20]. Such 

core–shell particles allow active compounds to be encapsulated within their core, 

whereas the shell can be tailored such to allow for triggered, controlled release of the 

actives [19, 21, 22].  However, to make this truly useful, it must be understood how the 

shell swelling and deswelling affects the diffusive mobility of the active payload within 

the microgel core, because it is this mobility that eventually determines the rate of 

release of the active in an application [23, 24]. 

 

                                                  

Scheme 4.1 Schematic of a core–shell particle as studied in this work. The grey center indicates a 
temperature insensitive and unlabeled PAAM hydrogel core. The green layer indicates a temperature 
sensitive, AlexaFluor488-labeled PNIPAM hydrogel shell. The red dots indicate labeled tracer particles. In 
this work, the diffusive mobility of these tracers is probed by 2fFCS at positions indicated by the black 
scale. 

 

 

In this chapter, we study the mobility of different dextran tracer molecules and colloids 

inside above-colloidal core–shell microgel particles through the use of spatially resolved 

two-focus fluorescence correlation spectroscopy (2fFCS) [25] as shown in Scheme 4.1.  

The microgels consist of a core of polyacrylamide (PAAM) surrounded by a shell of 
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PNIPAM that slightly interpenetrates the PAAM core at the core–shell interface.  Despite 

this interpenetration, the core shows no change of size and shape upon variation of 

temperature around 34 °C in aqueous media, whereas the shell does [21].  This 

mechanism can be used to incorporate guest molecules or colloids inside the core: at 

elevated temperature, the shell deswells and the guest molecules are trapped within the 

particle core but still freely diffuse within it, while reswelling the shell by temperature 

decrease allows the guests to be released [21].  In solvents different than water that are 

non-solvents or poor solvents for PAAM and PNIPAM, both the core and the shell 

deswell completely or partially.  In both the above scenarios, we find that it is the core 

degree of swelling or deswelling that determines that of the interpenetrating part of the 

shell polymer network, independent of the shell degree of swelling or deswelling itself.  

In neither case, however, we find marked effect of the shell swelling or deswelling on 

the diffusivity of dextran tracers within the core.  This finding assures absence of 

artifacts such as adsorption of the guests to the amphiphilic shell polymer, supporting 

the utility of the microgel carriers in encapsulation and controlled release applications. 

 

4.2. Materials and methods 

 

4.2.1. Microgel synthesis 

 

Core–shell particles as sketched in Scheme 4.1 are obtained by two-step droplet-based 

microfluidic templating [21].  In the first step, 60-µm polyacrylamide (PAAM) hydrogel 

core particles are prepared.  In the second step, these particles are wrapped into 30-µm 

hydrogel shells of poly(N-isopropylacrylamide) (PNIPAM) labeled with AlexaFluor488.  To 
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allow for rapid shell gelation at room temperature, a photochemical polymer-analogous 

approach is employed: instead of using monomer polymerization, the shell hydrogel is 

prepared from pre-polymerized PNIPAM chains that carry small percentages of 

photoreactive moieties, dimethylmaleimide.  These moieties can be rapidly dimerized by 

UV-induced [2+2] addition without marked heat of reaction, thereby ensuring a 

homogeneous, non-porous polymer gel layer to be formed at high reaction rate [26]. 

 

4.2.2. Tracer entrapment 

 

We probe two kinds of labeled dextran tracers that diffuse within the core–shell 

microgels: a 3000 g mol-1 dextran labeled with AlexaFluor647 (Invitrogen) with a 

hydrodynamic radius of Rh = 1 nm and a 70,000 g mol-1 dextran labeled with Rhodamine 

(Invitrogen) with a hydrodynamic radius of Rh = 6.5 nm.  Whereas the first tracer 

resembles a typical molecular active compound, the second tracer resembles a typical 

colloidal active.  The hydrodynamic radii of both these tracers are calculated via the 

Stokes–Einstein equation from their diffusion coefficients determined at infinite dilution.  

To load these tracers into the microgels, an aqueous (LiChroSolv water, Merck) solution 

of both dextrans is mixed with an aqueous microgel suspension and then left to 

equilibrate for 24 h, allowing the tracers to penetrate the microgels by diffusion.  The 

samples are then transferred into a temperature controlled sample cell [27] that allows 

the sample temperature to be varied between 5 and 60 °C.  At low temperature, both 

the PAAM core and the PNIPAM shell are swollen in aqueous medium, whereas the shell 

deswells at elevated temperature.   
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To supplement contrary experiments with particles with deswollen core and partially 

swollen shell, methanol (MeOH) is added to the water to serve as a precipitation agent 

for PAAM.  When this is done, the co-nonsolvency effect of water/MeOH on PNIPAM 

[28-32] allows the shell degree of swelling to be determined by the water/MeOH mixing 

ratio [33]. To quantify this, we measure the swelling ratio of a PAAM gel with the same 

composition as the core of the core–shell particles, along with the swelling ratio of plain 

PNIPAM microgels with the same composition as the shell of the core–shell particles in 

different water/MeOH mixtures, as shown in Figure 4.1. To realize the PAAM-gel control 

experiment, a macroscopic PAAM gel with a radius of 50 mm and a height of 7 mm is 

prepared by photo-crosslinking similar to the procedure of the core microgel gelation. 

This gel is stored for 24 hours and then cut into discs of equal size each (radius 10 mm). 

The gel discs are dried at room temperature for 16 days until no further mass changes 

are measurable. The dried discs are then immersed in water/MeOH mixtures with 

compositions as detailed in Figure 4.1 (left) and stored in these media for 7 days to 

reach equilibrium-swollen states. The mass-swelling ratios are calculated from the 

masses of the discs before and after swelling. 
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Figure 4.1 Comparison of the deswelling of a PAAM hydrogel (left) and the co-nonsolvency of a PNIPAM 
microgel [30] (right) in mixtures of water and methanol (MeOH) at 20 °C. The red line in the left diagram 

indicates a single exponential fit. m is the mass ratio of the PAAM hydrogels with respect to the mass in 

dry state (before dissolving in the water/MeOH mixtures).r is the ratio of the PNIPAM microgel radii in 
swollen and  deswollen states, referenced to the particle size in water at 40 °C.  xMeOH is the mol fraction of 
MeOH in the solvent mixture. 

 

 

4.2.3. 2fFCS 

 

To probe the diffusivities of fluorescently labeled dextran tracers within the microgels in 

a spatially resolved fashion, we use two-focus fluorescence correlation spectroscopy 

(2fFCS).  The simpler one-focus variant of this technique (FCS) is often used to determine 

tracer diffusion in hydrogels [34-37], and the two-focus extension allows us to conduct 

these experiments in complex environments, solving potential problems due to 

refractive-index mismatch between the immersion medium and the microgel sample 

specimen.  This is achieved by introduction of an external length scale , which is the 

shift distance between two overlapping laser foci that is adjustable by a Nomarski prism 

[38].  To evaluate the diffusion coefficient from the 2fFCS experiments, the following 

equation is used: 
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In eq. (4.1), D is the translational diffusion coefficient,   the lag time of the cross-

correlation, c the concentration of the fluorescent dextran tracers,  is the shift distance 

(determined independently) and x, y, and z are Cartesian coordinates with z along the 

optical axis.  Further functions are: 
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In these latter equations, ex is the excitation wavelength, em is the emission 

wavelength, n is the refractive index, and R0 is the confocal pinhole radius.  The 

correlation function can be calculated numerically, and w0 and R0 are fit parameters [39].  

A great benefit of the 2f-FCS data evaluation is that three correlation functions are fitted 

simultaneously with the same three fitting parameters D, w0, and R0; this makes the 

fitting very accurate.  Even in the case of poor statistics in the measurement, the 

simultaneous fitting of the three correlation functions leads to an accurate result [40].  
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The high accuracy of 2fFCS in crowded environments has been demonstrated previously 

[41, 42].  To achieve high spatial resolution for tracer-diffusion experiments, we employ a 

confocal microscope equipped with a 3D piezo table with a range of 100 µm in all three 

dimensions that serves to locate the regions of interest.  With this setup, we measure 

the diffusion coefficient at several defined points in the sample, as indicated in Scheme 

4.1.  

 

4.3. Results and discussion 

 

 

Figure 4.2 Confocal fluorescence microscopy images of a core–shell microgel particle as sketched in 
Scheme 1. The images are taken at the equator plan of the core of a core–shell particle lying on the lower 
cover slide of the sample cell. a) – d): particle in pure water at different temperatures; the core diameter 

of about 60m is retained upon heating and cooling. e): particle in water/MeOH mixture with 40 mol% of 
MeOH. Adding MeOH lead to deswelling of the core and the shell, but the shell is more swollen than the 
core. The shell thickness influences the deswelling of the core and leads to a deformation of the core in 
regions where the shell is thin (lower-left part of the particle); vice versa, this deformation also deforms 
the shell in these regions. No effect of adhesion between particle and cover slide on the deswelling of the 
core is visible. The scale bar in Panel e) equally applies to all panels. 

water
T = 25°C

b)a)

c)

water
T = 30°C

water
T = 32°C

water
T = 36°C

d)

water/MeOH
(60:40 

mol/mol)
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Our study is based on composite microgels with core–shell architecture that consist of 

different core and shell polymer networks, PAAM (core) and PNIPAM (shell).  These 

different networks exhibit different swelling in different media: whereas the shell 

gradually deswells in water if the temperature increases from 25 to 36 °C, the core 

remains swollen and has the same size and shape at all these temperatures, as shown in 

Figure  4.2 a) – d).  By contrast, the shell is partially swollen in a water/MeOH mixture 

(60:40, mol/mol), but the core completely deswells in this medium, as shown in Figure 

4.2 e). At these conditions, the core is deformed from its originally spherical shape 

dependent on the shell thickness: in a region with high shell thickness (upper right of the 

microgel in Figure 4.2e), the spherical shape is retained, whereas in regions with low 

shell thickness (lower left of the microgel in Figure 4.2e), the core is deformed, and so is 

the shell.  This observation is made because the shell is mechanically connected to the 

core.  During the core–shell microgel preparation, the shell precursor polymer can 

penetrate into the rim region of the pre-fabricated core microgel before crosslinking of 

the shell occurs.  This leads to an interpenetrating core and shell network in the outer 

rim of the core.  The polymer density profile at the core–shell interface is therefore 

gradual rather than sharp, such that the shell follows the deformation of the core in 

regions of low shell thickness.  The asymmetric position of the core in the core–shell 

particle is caused by the microfluidic synthesis procedure: in this procedure, the 

densities of the pre-fabricated microgel core and the pre-microgel shell polymer solution 

are not matched, thereby entailing sedimentation or floatation of the core particles 

inside the shell pre-microgel droplet.  Depending on how rapidly these transient 

structures are fixed by droplet gelation, the resulting core–shell particles exhibit more or 

less pronounced anisotropic architectures [21].  For all confocal microscopy images, 
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samples were equilibrated for 2 h before micrographs were recorded.  During this time, 

adhesion of the PNIPAM microgel shells on the microscopy glass slide leads to small 

deformation of the microgel particles, but this has no visible effect on their deswelling 

[25].  To further ensure consistency, all samples were checked again after the diffusion 

measurements with respect to the shape of the particles, indicating no changes in either 

case. 

The latter interpenetration and interaction of the core and shell polymer gel networks 

poses a potential challenge to the use of the core–shell microgels in encapsulation and 

release applications.  To check for such potential complexity, we probe the tracer 

diffusion of molecular and colloidal probes at different regions of the core–shell carrier 

microgels.  We use 3000 g mol–1 and 70,000 g mol–1 dextrans as tracers and probe them 

by spatially resolved two-focus fluorescence correlation spectroscopy (2fFCS).  In all 

these experiments, we do not observe complex sub diffusive behavior, as shown 

exemplarily in Figure 4.3, indicating that the tracers do not bind to the gel network.  
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Figure 4.3 2fFCS measurement on 3000 g mol–1 dextran labelled with AlexaFluor 647 in the PAAM core of 
the microgel shown in Figure 4.2 in water at 25 °C.  A single-exponential model function is used to fit the 

data (smooth lines). Fluorescence excitation is achieved with ex= 637 nm at an excitation power of 2 µW. 
The detection signal is filtered by a HC 687/70 (AHF) band pass filter. 

 

 

When 2fFCS experiments are conducted in aqueous medium at different regions of the 

core–shell microgel, as indicated in Scheme 4.1, the diffusion coefficients of the two 

different tracers vary similarly as a function of the location of the probing, as seen in 

Figure 4.4. For better comparison, we focus on diffusion coefficients in a form 

normalized to the temperature and the viscosity of the outer medium to blank the direct 

impact of the temperature change on the diffusion coefficient.  In the bulk interior of 

the core, close to its center, the diffusion coefficient exhibits no perceptible spatial 

variation.  In addition, no effect of the shell degree of swelling on the diffusion of the 

tracers is visible. By contrast, at about 5 m distance to the core–shell interface inside 

the core, the diffusion of the tracers slightly decreases as the measuring position is 

moved outbound at both swollen and deswollen shell.  This is again because this region 

of the microgel consists of an interpenetrating network of core and shell polymer with a 
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higher polymer segment density.   As a result, the obstruction on the tracer diffusion 

increases.  Nevertheless, we do not observe any marked effect of temperature, as 

shown in Figure 4.5.  In particular, the tracer diffusivity inside the core is the same for 

both swollen and partially deswollen PNIPAM shell; only at the complete shell 

deswelling, at 36 °C, a slight decrease of the tracer diffusivity is detected, as also shown 

in Figure 4.5.  This finding indicates that the PAAM core polymer, which remains swollen 

at all temperatures, prevents the interpenetrating part of the PNIPAM shell polymer 

network from deswelling thereby entailing no change of the polymer segment density 

and its effect on the tracer diffusion up to this point. 

In the water/MeOH mixture, diffusion of the 70,000 g mol–1 dextran is not measurable.  

While we still detect perceptible fluorescence intensity in FCS, which assures that the 

tracer has not been squeezed out of the microgel upon deswelling the core, correlation 

of fluctuations of this intensity is impossible.  This finding indicates that the 70,000 g 

mol–1 dextran tracer is immobilized within the deswollen core polymer network.  In 

contrast to this, diffusion of the 3000 g mol–1 dextran is still measureable in the 

deswollen core. We detect it to be much slower than inside the preceding set of 

experiments with swollen cores, as also seen in Figure 4.4, which is expected because 

the polymer segment density is much higher within a deswollen core, thereby more 

effectively obstructing the tracer diffusion.  This decrease of mobility also entails greater 

data scattering, because the inflection points of the semi-log fluorescence correlation 

curves are shifted to longer correlation times that require longer sampling and that are 

therefore more sensitive to noise.  In these latter experiments, no radial decrease of the 

diffusion coefficient is observed if the measuring position approaches the core–shell 

interface (Figure 4.4, open inverted triangles, open diamonds, and open pentagons).  
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This indicates that the shell cannot prevent the deswelling of the core.  This is in contrast 

to the opposite scenario discussed above, where the swollen core could prevent shell-

polymer deswelling in the region of core–shell interpenetration.  It is therefore the core 

polymer network alone that dictates the extent of tracer-diffusion obstruction: if the 

core is swollen, the tracer diffusion is not markedly hindered, nearly independent of the 

degree of shell swelling or deswelling, but if the core is deswollen, the tracer diffusion is 

greatly obstructed, and the degree of swelling of the shell has no influence. 

 

Figure 4.4 Normalized dextran-tracer diffusion coefficients at different positions within core–shell 
microgel particles, as sketched in Scheme 4.1. Filled symbols correspond to 70,000 g mol–1 dextran, 
whereas open symbols correspond to 3000 g mol–1 dextran. Different colors indicate different 
measurement temperatures: black 25 °C, blue 30 °C, dark cyan 32 °C, and red 36 °C. The different symbol 
types (square, triangle, and circle) indicate experiments conducted on three different core–shell particles.  
The inverted triangles, diamonds, and pentagons in the lowermost dataset indicate measurements on a 
deswollen core in a water/MeOH mixture (60:40, mol/mol). Error bars are smaller than the symbols for 
the data points; therefore no error bars are shown. 
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Figure 4.5 Normalized diffusion coefficient at the core–shell interface in aqueous medium as a function of 
temperature, which corresponds to different degrees of microgel-shell deswelling. Filled symbols indicate 
the diffusion coefficients of 70,000 g mol–1 dextran; open symbols indicate the diffusion coefficients of 
3000 g mol–1 dextran. Different colors indicate measurements performed on different microgel particles. A 
decrease of the diffusion coefficients is only visible for the measurements at 36 °C. This indicates that the 
deswelling of the shell hardly influences the density of the core, in good agreement with the results shown 
in Figure 4.2. The second abscissa indicates the degree of swelling of the shell with respect to the swelling 
degree at 25 °C. The swelling degree was calculated from the fluorescence microscopy images in Figure 
4.2. Error bars are smaller than the symbols for the data points; therefore no error bars are shown. 

 

 

 

 

 

4.4. Conclusions 

 

Sub-millimeter-sized hydrogel particles consisting of a thermoresponsive shell that 

surrounds a non-thermoresponsive core can be used as microcarriers that allow 

molecular and small colloidal additives to be encapsulated and released by selective 

shell deswelling or swelling [6, 21].  In this work, 2fFCS is used to probe the mobility of 

oligomeric guest molecules with spatial resolution.  The data demonstrate that 2fFCS is 
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indeed able to provide information on how the local network structure affects tracer 

mobility [25].  This will allow for exploiting recent developments of gel synthesis to 

control the structure of complex gels for a rational control of mobility of actives inside 

gels [43-45].  Determining the local mobility will be important in the development for 

tissue engineering scaffolds containing colloidal particles [46] and also for sensors [47] 

and microgel-modified membranes [48].    

In this chapter, a small deceleration of the tracer diffusion is observed very close to the 

core–shell interface, indicating that an interpenetrating network is present in that 

region.  Changing the degree of swelling in the shell has no marked effect on the 

mobility of the additives within the microgel core.  Thus, the release properties of such 

core–shell particles can be changed by controlling the degree of swelling of the shell 

without affecting the mobility of the non-binding dextran additives inside the core.  This 

is in agreement with earlier findings by Seiffert et al. [21], where the retaining core size 

of the core–shell-particle was demonstrated by fluorescence microscopy.  In addition, 

this finding shows that the guest oligomers are entrapped within the microgel carrier by 

topological constraints only, without binding to the network.  This greatly facilitates 

rational design of such carriers for biomedical applications [46-48]. 
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5. Spatially Resolved Tracer Diffusion in Complex Responsive 

Hydrogels3 

 

5.1. Introduction   

 

Hydrogels are highly hydrated, cross-linked polymer networks that are valuable for many 

biological applications,[1, 2] including those in drug delivery,[3-5] biosensing,[6] and 

tissue engineering.[7-11] In one class of applications, hydrogels serve as scaffolds for the 

encapsulation of living cells.[12]  Such systems provide a versatile platform to study the 

interaction of cells with confining environments that exhibit mechanical characteristics 

similar to that of the cells.  A particularly important technique to be used in this context 

is traction force microscopy.[13] In this approach, cells are imbedded into a hydrogel 

along with colloidal tracer particles.  Tracking the displacements of these particles serves 

to measure the traction forces that the encapsulated cells exert on their environment in 

response to external stimuli.  These studies provide a basis to understanding the 

complex relationship between cells and physiological environments, which is a crucial 

step towards understanding physiological processes such as cell migration, tissue 

morphogenesis, and signaling pathways.[13]  

The use of cell-laden hydrogels in traction force experiments requires sound knowledge 

on the micro- and nanostructural complexity of the gel environment close to the 

encapsulated cells. In addition, it is necessary to understand the dynamics of additives 

                                                
3
 This chapter was published in J. Am. Chem. Soc., 2012. 134(38): p. 15963-15969. The study was 

performed in collaboration with the co-authors. My contribution was the synthesis of the final samples. 

Furthermore, I performed the 2fFCS measurements and did the data analysis. 
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such as cell nutrition and signaling compounds inside these systems, because this affects 

the viability and ability of the encapsulated cells to communicate and to be stimulated.   

To acquire such knowledge, it is helpful to perform investigations on model systems that 

are less complex and provide more flexibility for custom variation of experimental 

parameters than real cell-laden gels.  For this purpose, composite gels that consist of 

micrometer-sized hydrogel particles embedded into a surrounding independent hydrogel 

matrix are of particular value.[14-16] If the embedded microgel particles are built from 

environmentally-sensitive polymers[17] that can react to changes in their surrounding by 

pronounced swelling and deswelling, they provide a perfect model for cells that contract 

or relax upon stimulation.[18] 

To ascertain the utility of microgel-laden, composite gel systems as models for more 

complex cell-laden gels, it must be known to what extent the presence of the external 

scaffolding gel matrix affects the ability of the embedded microgels to swell and deswell.  

Conversely, it must also be known how the swelling and deswelling of the embedded 

microgels affects and distorts the surrounding scaffolding gel. Previous work by our 

group has shown that the incorporation of environmentally responsive microgels into a 

scaffolding gel matrix retains the sensitivity the embedded microgels.  For example, the 

size of poly(N-isopropylacrylamide) (PNIPAM) microgel particles embedded into a 

scaffolding poly(acrylamide) (PAAM) gel matrix has the same temperature dependence 

as in plain aqueous environment.[15], [19] Moreover, when these particles undergo their 

volume-phase transition, the size and shape of the entire composite system remains 

unaffected; this is because the gel matrix takes up the water that is released by the 

embedded microgels.[20]  
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These observations suggest that the sensitive microgels are embedded freely into the 

scaffolding gel matrix, without formation of an interpenetrating network. However, large 

microgel beads might behave differently due to their different internal structure as 

compared to small microgels.[21] Thus, knowledge about the presence or absence of 

interpenetrating network domains in composite gel matrixes filled with large microgel 

beads is crucial to appraise their utility as model systems for more complex, cell-laden 

gels.  In addition, no previous work has yet focused on using composite gels to 

investigate the influence of heterogeneous structures on the local, spatially resolved 

dynamics of nano- and mesoscopic probe molecules that move through the hydrogel.  

The derivation of a sound knowledge on the tracer mobility in these complex 

environments is another precondition to ascertain the utility of composite gels as 

models for cell-laden gels. This knowledge is also of direct relevance to understand the 

viability and reactivity of cells that are immobilized in hydrogel matrixes.[12],[22] 

In this chapter, we use composite hydrogels that consist of micrometer-sized, 

thermosensitive microgel particles (labeled with a fluorescent dye) embedded into a soft 

hydrogel matrix (see Scheme 5.1) to study the diffusive mobility of nanometer-sized 

tracers (labeled with a different fluorescent dye); this is achieved by two-focus 

fluorescence correlation spectroscopy.[23] In addition, we use these composites to study 

the interplay of the embedded microgel particles with the surrounding scaffolding gel 

matrix to unravel the presence or absence of interpenetrating polymer network 

structures within the microgel beads.  This is achieved by observing the swelling and 

deswelling of the thermosensitive microgel beads within the scaffolding hydrogel 

matrixes through the use of confocal laser scanning microscopy.  
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Scheme 5.1  Illustration of the formation of composite hydrogels that consist of micrometer-sized, 

thermoresponsive microgel beads embedded into a soft hydrogel matrix. [24] 

 

 

5.2. Experimental Part 

 

5.2.1. Sample Preparation 

 

Fluorescently labeled PNIPAM microgel beads were prepared from N-isopropylacrylamide 

(NIPAM, Acros Organics), BIS, and methacryloxyethyl thiocarbonyl rhodamine B 

(Polysciences Inc.) in two different ways: type-A beads (cross-linker to monomer ratio 

1:70, PNIPAM concentration 100 gL–1) were fabricated by droplet-based microfluidic 

templating,[25] whereas  type-B beads (cross-linker to monomer ratio 1:13, PNIPAM 

concentration 143 gL–1) were synthesized by inverse suspension polymerization.[26] 

Dextran labeled with Alexa Fluor 647 (10 kDa and 3 kDa, Invitrogen) or Alexa Fluor 488 

(70 kDa, Invitrogen) were dissolved in water (LiChroSolv, Merk). 3-kDa dextran has a 

hydrodynamic radius of Rh = 1 nm, 10-kDa dextran has Rh = 2.3 nm, and 70-kDa dextran 

has Rh = 6.5 nm. All hydrodynamic radii were calculated via the Stokes–Einstein equation 

from the diffusion coefficient measured at infinite dilution. 

Composite hydrogel samples were prepared with a final bead volume fraction of 0.05 at 

25 °C. Less than 1 mg of the UV-cleavable initiator VA-086 (2,2’-azobis[2-methyl-N-2-
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hydroxyethyl)propionamide], Wako) was added, and the solutions were filled into a 

temperature-controlled sample cell.[27] The polymerization was performed under UV 

exposure with an intensity of 1.5 Wcm–2 at  = 254 nm for 30 min at 25 °C after mixing 

the stock solutions. 

All bead particles, the hydrogels and the composite gels were synthesized at 25°C. In this 

state, monomers and cross-linkers are homogeneously distributed in the pre-gel reaction 

mixtures, which lead to a rather uniform distribution of cross-linker in the hydrogel. 

Thus, we assume that gel matrix and gel beads exhibit similar spatial distribution of 

cross-links.  

Table 5.1 Compositions of composite hydrogel samples that consist of PNIPAM microgel beads embedded 

within PAAM hydrogel matrixes 

Sample 

name 

cPAAM 

(gL–1) 

cPNIPAM 

(gL–1) 

nBIS / 

nPAAM
 

nBIS / 

nPNIPAM
 

HG-25-A 25 100 1:60 1:70 

HG-50-A 50 100 1:60 1:70 

HG-25-B 25 143 1:60 1:13 

HG-50-B 50 143 1:60 1:13 

 

HG in the sample name indicates the existence of a PAAM hydrogel; 25 or 50 indicates the PAAM 

concentration in the hydrogel; A and B denote the bead type;  cPAAM is the matrix concentration; cNIPAM the 

PNIPAM concentration during bead preparation;  nBIS : nPAAM is the molar ratio of cross-linker to monomer 

in the matrix;  nBIS : nPNIPAM is the molar ratio of  cross-linker to monomer in the beads. 

 

Note that the type-A beads are less cross-linked and contain less polymer than the type-

B beads. Hence, the type-A beads are referred to as soft beads, whereas the type-B 

beads are referred to as dense beads. 
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5.2.2. Dynamic Light Scattering 

 

Dynamic light scattering (DLS) experiments are performed to determine the mesh size of 

the gels. We use an ALV DLS with a 7004 correlator (ALV-Laser Vertriebsgesellschaft m-

b.H., Langen, Germany), equipped with a 473-nm 40-mW DPSS laser (Cobold AB, 

Sweden). As gels are non-ergodic, we used the Pusey–van Megen method to determine 

the mesh size of our gel samples.[28] To determine the mesh size of the PNIPAM beads, 

we synthesize macroscopic hydrogels with same composition at comparable reaction 

conditions. 

The mesh size of a PAAM hydrogel with a composition of 50 gL–1 of PAAM and nBIS : nPAAM 

of 1:60 at 25°C is in the order of 15 nm, whereas the mesh size of a PNIPAM hydrogel 

with a composition of 100 gL–1 of PNIPAM and nBIS : nPNIPAM of 1:70 at 25°C is in the order 

of 19 nm.  

 

 

5.2.3. Spatially Resolved 2fFCS 

 

Fluorescence correlation spectroscopy (FCS) is well suited to measure the diffusion 

coefficient of tracer particles in gels.[29, 30] In this context, the correct treatment of 

potential changes in the confocal volume, which can occur due to changes in the sample 

refractive index, is of major importance.[31] This is particularly relevant for the present 

study, because the local polymer density varies with the position in composite gels, 

leading to different refractive indexes and thus different sizes and shapes of the confocal 

volume. 
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To account for these complications, we use 2fFCS.[23] In 2fFCS, two laterally shifted but 

overlapping laser foci are used to determine correlation functions of each focus and of 

the cross-section of the two foci. The lateral shift is obtained by the use of a Nomarski 

prism, which leads to the shift distance  that is not affected by refractive index 

mismatch and optical saturation. 

The correlation function in 2fFCS is given by: 

 

           
 

 
 

 

   
            

 

 
 
 
 

          

                     
 

    

 
 
 
 
   

            
 

     

    
       

    
    

                      
 
 
 
 

 

 
 
 
 

 (5.1) 

 

In eq. (5.1), D is the translational diffusion coefficient, t the lag time of the correlation, c 

the concentration of the fluorescent particles, is the shift distance (determined 

independently) and x, y, and z are Cartesian coordinates with z  along the optical axis. i 

are optical fit parameters including the fluorescence excitation efficiency and quantum 

yield. 
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ex is the excitation wavelength, em is the emission wavelength, n the refractive index, 

and a is  the confocal pinhole radius. The correlation function can be calculated 

numerically, and w0 and R0 are fit parameters.[32] The high accuracy of 2fFCS in crowded 

environments has been demonstrated previously.[33] 

Tracer diffusion measurements in pure PAAM hydrogels are performed at 9 different 

positions, each yielding the same diffusion coefficient. This shows that 2fFCS probes 

diffusion processes on length scales lager than spatial heterogeneities within the 

hydrogels.[34, 35] 

To achieve high spatial resolution for tracer diffusion experiments in 2fFCS, we employ a 

confocal microscope. A 3D piezo table with a range of 100 µm in all three directions 

serves to locate the regions of interest. With this setup, we measure the diffusion 

coefficient at several defined points in the sample. Measurements inside microgel beads 

at 36 °C are precluded due to the high scattering intensity caused by the collapsed 

particles. Similar effects were reported by Raccis et al. for the diffusion of dyes in 

collapsed PNIPAM hydrogels.[30] 

A typical measurement time is 1 hour. The error bars for the diffusion coefficients 

obtained in spatially resolved measurements are obtained from fits of the correlation 

function. 
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5.3. Results and Discussion 
 

PNIPAM microgels show pronounced swelling and deswelling upon changes in 

temperature; this transition is accompanied by microgel volume changes of up to 

1000%.[36] The swellability of these and other microgel particles depends on the cross-

link density of their constituent polymer network.  The swellability of the PNIPAM 

microgel beads to be used in this work is characterized by their temperature-dependent 

sizes prior to their incorporation into a hydrogel matrix; this is determined by 

fluorescence microscopy. Fluorescence micrographs recorded at 25 °C and 36 °C show 

that soft, loosely cross-linked microgel beads, hereinafter referred to as “type-A beads”, 

deswell with V= Vc/ Vs = (Rc / Rs)
3 = 0.09 ± 0,01, whereas stiff, densely cross-linked 

beads, hereinafter referred to as “type-B beads”, deswell with V = 0.42 ± 0.15, 

(Supporting information Fig. S.5.1). Here, V is the ratio of the microgel volume in the 

collapsed state, Vc, and the microgel volume in swollen state, Vs. Rc and Rs are the 

corresponding microgel particle radii. 
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Figure 5.1 Side view of PNIPAM beads embedded in a PAAM hydrogel with an AAM concentration of 50 gL–

1
. The white line at the bottom of the pictures is the glass cover slide. The beads are scanned in the center 

plane of the particle along the x–z-directions (Supporting Information Fig. S.5.2). Top:  PNIPAM bead of 

type A at 25 °C (left) and at 36 °C (right). The bead collapse is much less pronounced than in water. 

Bottom: PNIPAM bead of type B at 25 °C (left) and at 36 °C (right). The bead collapses as in water, and the 

center of the bead moves down until the bottom of the collapsed bead reaches the level of the bottom of 

the swollen bead. Black crosses indicate the center of the beads.  The scale bar denotes 25 micrometers 

and applies to all panels. 

 

If these microgels are embedded into surrounding 50-gL–1 PAAM hydrogel matrixes, the 

less cross-linked, soft type-A beads (HG-50-A) collapse (V = 0.61) much less upon 

heating as compared to their behavior in water (V = 0.09), as shown in Figure 5.1.  This 

can be explained by the formation of a PAAM gel inside the beads that interpenetrates 

the gel-bead PNIPAM gel network, thereby obstructing the thermo-induced collapse of 

the beads.  By contrast, the dense type-B beads (sample HG-50-B) collapse just as they 

do in water, as also shown in Figure 5.1. This indicates that their dense structure 

prevents the formation of an interpenetrating gel network.  

Figure 5.1 also shows that the center of mass of the type-B beads moves downwards 

when these beads collapse. Again, this indicates that there is hardly any coupling 

between the type-B beads to the surrounding hydrogel matrix. 
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Figure 5.2 Side view of type-A PNIPAM bead embedded in a PAAM hydrogel with an AAM concentration of 
25 gL–1.  The bead collapses almost to the same extend as in water, and the bead center does not move. 
The scale bar denotes 25 micrometers and applies to both panels. 

 

When the segmental density of the PAAM matrix is lowered to only 25 gL–1 (sample HG-

25-A), a different result is obtained: in this case, the soft type-A beads do collapse inside 

the PAAM matrix just as they do in water, as shown in Figure 5.2. In this sample, 

however, the center of the bead does not move when the bead collapses, different from 

the behavior of the highly cross-linked beads in sample HG-50-B, which collapse and 

move downwards upon heating. This marked difference is an indication for the 

formation of an interpenetrating network that is not strong enough to prevent bead 

collapse, but still strong enough to keep the bead at its position upon heating. 

The previous experiments demonstrate how the coupling with a surrounding gel matrix 

influences the temperature sensitive swelling of hydrogel-embedded microgel beads. To 

supplement a nanometer-scale picture, we now turn to the molecular scale and discuss 

the influence of this coupling on the mobility of molecules that diffuse through these 

gels. In particular we investigate how the heterogeneous local environment affects the 

mobility of these probe molecules. We use fluorescently labeled dextrans as tracer 
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particles; these tracers hardly interact with other molecules[37] and have therefore been 

employed in related previous investigations.[38-41] We quantify the dextran diffusivity 

inside the microgel beads and outside of them in the surrounding hydrogel matrix by 

2fFCS. 

The diffusion of 10-kDa dextran is slower inside the water-swollen type-A PNIPAM beads 

than it is in pure water, as illustrated in Figure 5.3 (open symbols). The diffusivities inside 

the beads agree well with those in macroscopic PNIPAM hydrogels of the same 

composition. This finding suggests that the gel architecture inside the type-A microgels 

resembles that inside a bulk macroscopic gel. This appears justified, because these beads 

were templated in emulsion droplets that solely act as micrometer-sized reaction vessels 

without any impact on the course of the free-radical polymer network formation. 

The tracer diffusion inside the water-swollen beads depends slightly on the position of 

measurement. The tracer diffusion coefficient determined in the center of the bead is 

lower than that determined near to the bead surface. This is surprising, as it is expected 

that beads prepared in the swollen state have a homogenous cross-link density. We 

address this finding to the circumstance that the beads, when dissolved in water, swell a 

little compared to the size during their polymerization. Our spatially resolved tracer 

diffusion experiments indicate that this swelling is not fully affine. 

Corresponding investigations on a composite gel with a matrix concentration of 25 gL–1 

that is loaded with the same type-A microgel beads show that the tracer diffusion inside 

the embedded beads is slower as compared to both the diffusion in beads dissolved in 

water and to the diffusion in the surrounding PAAM hydrogel matrix (Supporting 

Information Fig. S.5.3), as shown in Figure 5.3 (filled symbols).  This finding indicates that 

an interpenetrating network has formed inside the beads.  
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Figure 5.3 Diffusion coefficient of 10-kDa dextran out- and inside of type-A PNIPAM microgel beads, either 
embedded into a 25-gL–1 PAAM hydrogel matrix (filled symbols) or suspended in water (open symbols).  
The upper picture is a confocal micrograph showing the different positions of measurement. T = 25 °C. 
Different symbols (triangles, squares, and circles) indicate measurements performed on different beads. 
For 3-kDa dextran see Supporting Information Fig.S.5.4.   

 

Increase of the concentration of PAAM in the surrounding hydrogel matrix pronounces 

the effect of tracer deceleration inside the microgel beads: if the same experiments are 

repeated at a PAAM concentration of 50 gL–1, the dextran tracer diffusion coefficient 

inside the embedded bead is reduced further; it is also again lower as compared to the 

hydrogel matrix and the free bead in pure water, as shown in Figure 5.4. 
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Figure 5.4 Diffusion coefficient of 10-kDa dextran out- and inside of type-A PNIPAM microgel beads 
embedded into a 50-gL–1 PAAM hydrogel matrix.  T = 25 °C. Different symbols (triangles, squares, and 
circles) indicate measurements on different beads. 

 

The diffusion of tracers through a gel depends on the mesh size of the constituent 

polymer network relative to the size of the tracer.[42] The mesh size of PAAM gels at 50 

gL–1 and different cross-linker ratios can be determined by dynamic light scattering. We 

follow this approach and determine it to be in the order of 15 nm, in good agreement 

with literature data.[43] The hydrodynamic diameter of 10-kDa dextran in water is 4.6 

nm; this is rather small compared to the polymer network mesh size. We describe the 

diffusion coefficient of the tracer as 

    
  

    
 (5.5) 

 

with kT the thermal energy and feff an effective friction coefficient. In this approach, the 

hydrogel is considered as a continuous environment providing an effective friction for 

the random motion of the tracer on the length scale probed by FCS.[44]  
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Hydrogels are known to exhibit heterogeneities on length scales of 10 to 100 nm.[34, 35] 

This is smaller than the optical resolution of our 2fFCS measurements, which probes the 

mobility of labeled molecules on length scales that are limited by the optical resolution. 

The shift distance between the two foci in our 2fFCS setup is of the order >300 nm. Thus, 

the mobility of tracer molecules probed by 2fFCS is averaged over both, mesh size 

fluctuations and heterogeneities. 

The two-foci cross-correlation data acquired in this study can all be fitted to eq. 5.1 

(Supporting Information Fig. S.5.5). Thus, we do not observe anomalous diffusion. 

Table 5.2 summarizes the diffusion coefficients of the 10-kDa tracer in different 

environments. Dividing the diffusion coefficient in water (Dw) by the diffusion coefficient 

in a complex environment (PNIPAM bead or PAAM matrix plus embedded bead, 

respectively) yields the effective friction coefficient of the tracer inside this environment 

relative to that in water.  

The data in Table 5.2 show that the increased friction encountered by the 10-kDa 

dextran tracers inside the embedded microgel beads in sample HG-25-A (feff = 7) can be 

approximated by a sum of the friction coefficients of the beads (feff = 2.6) and the gel 

matrix (feff = 2.6). However, in the case of sample HG-50-A, the experimental friction 

coefficient (feff = 13) is much higher and cannot be modeled by simple addition of the 

bead (feff = 2.6) and gel (feff = 3.4) friction contributions. This indicates that the effective 

mesh size of the interpenetrating network inside the beads in sample HG-50-A is no 

longer large compared to the size of the tracer; thus, the topological restrictions of the 

network affect the tracer diffusion in this case.  
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Table 5.2 Diffusivities and relative friction coefficients of 10-kDa dextran tracers that diffuse through 

PNIPAM-PAAM composite gel matrixes at 25°C. 

Medium D (10
–6 

cm
2
 s

–1
) feff 

Water 1.17 ----- 

Bead A
 

0.443 2.6 

HG-25 
0.449 2.6 

HG-50 
0.344 3.4 

HG-25-A
 

0.167 7 

HG-50-A 
0.089 13 

 

 

Finally, we address the question whether the formation of interpenetrating networks 

and potential bead collapse also affect the tracer diffusion within the surrounding 

hydrogel matrix outside the beads. For this purpose, we probe the diffusion coefficients 

of 3-kDa and 70-kDa dextrans in the hydrogel matrixes at 25 °C and 36 °C with sample 

HG-25-A and HG-25-B. At 25 °C, which corresponds to the preparation temperature of 

the pure PAAM gel and the two composite gels HG-25-A and HG-25-B, we find identical 

tracer diffusion coefficients in the matrix. This is expected and demonstrates that the 

incorporation of the microgel beads does not affect the formation of the PAAM gel.  
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Figure 5.5 Normalized diffusion coefficients of 70-kDa dextran in the hydrogel matrix close to the bead 
surface in sample HG-25-A. Full symbols denote T = 25 °C, whereas open symbols denote T = 36 °C. 
Measurements were conducted on three different beads, as represented by different symbols (circles, 
upright triangles, and inverted triangles). The dashed line indicates the normalized diffusion coefficients of 
70-kDa dextran in water. The vertical solid line indicates the position of the bead surface at T = 25°C. 

 

Figure 5.5 displays the diffusion coefficient of 70-kDa dextran in the hydrogel matrix of 

sample HG-25-A. In this plot, the diffusion coefficient is normalized by the solvent 

viscosity, η, and by the temperature, T, to account for the trivial temperature 

dependence of diffusion. The normalized diffusion coefficients do not change when the 

sample is heated from 25 °C to 36 °C, and there is no dependence on the distance to the 

bead surface. For this sample, we have shown that an interpenetrating network is 

formed. However, the collapse of the bead does not affect the tracer diffusion in the 

surrounding matrix. The same result is found for 3-kDa dextran in this sample 

(Supporting Information Fig. S.5.6). 
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Figure 5.6 Normalized diffusion coefficients of 3-kDa dextran (center) and 70-kDa dextran (bottom) in the 
hydrogel matrix close to the bead surface in sample HG-25-B. Full symbols denote T = 25 °C, whereas open 
symbols denote T = 36 °C. Measurements were conducted on three different beads, as represented by 
different symbols (squares, circles, and triangles). The dashed lines indicate the normalized diffusion 
coefficients of the dextrans in water. The vertical solid line indicates the position of the bead surface at T = 
25 °C.  The scale bar denotes 20 micrometers and applies to both panels. 

 

In contrast to the presence of an interpenetrating network in sample HG-25-A, there are 

no indications for an interpenetrating network in sample HG-25-B. The normalized tracer 

diffusion coefficients in the gel matrix of this sample are enhanced near the particle 

surface upon heating, as shown in Figure 5.6. We address this finding to the following 

rationale: 

The data at 25 °C are taken at positions outside the beads, and when these positions are 

studied at 36 °C, the diffusion coefficient, normalized by the change of  and T, is not 
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affected. Due to the strong collapse of the beads, however, it is possible to measure 

tracer diffusivities at positions that were occupied by the bead at 25 °C but are no longer 

occupied at 36 °C, as represented by the 36 °C data left of vertical line in Figure 5.6. 

These tests show that the tracer diffusivity increases in the volume formerly occupied by 

the bead when the bead is deswollen at 36 °C (Measurements near the bead surface 

were performed after annealing times of 7 hours to ensure that the hydrogel matrix has 

enough time to reach equilibrium swelling.). The value of the increased normalized 

diffusion coefficient of 3-kDa dextran is the same as in water at 36 °C (Figure 5.6, lower 

left). This suggests that the PAAM hydrogel is locally swollen so much by the water 

released from the collapsed bead that the small 3-kDa dextran is no longer restricted in 

its diffusion. The 70-kDa dextran also shows accelerated diffusion inside the volume 

previously occupied by the beads (Figure 5.6, lower right). The normalized diffusion is, 

however, always smaller than in water.  

These results show that the PAAM hydrogel matrix has swollen into the volume that was 

formerly occupied by the bead at 25 °C. The local segmental density of the PAAM 

hydrogel in these regions is lower than that in the bulk gel away from the bead, 

indicating that the gel matrix swells heterogeneously. The segmental density is still 

sufficiently high to hinder the diffusion of 70-kDa dextran compared to its diffusion in 

pure water, but the gel does no longer obstruct the diffusion of 3-kDa dextran. As the 

swelling of the matrix is localized to the volume close to the beads, it might be possible 

to form channels across the composite hydrogel when the bead concentration is so high 

that the beads are close together in the swollen state but apart from each other at 

higher temperatures when they are deswollen. 
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5.4. Conclusions 

 

Interpenetrating polymer networks can be formed in composite hydrogels that consist of 

microgel particles embedded in a surrounding macroscopic gel matrix. This, however, 

depends on the density of the embedded microgel beads. No interpenetrating networks 

are formed inside the incorporated beads when the beads are highly cross-linked. In this 

limit, spatially resolved tracer diffusion measurements reveal that the hydrogel matrix 

swells heterogeneously when the beads collapse, indicating the formation of pores near 

their surface. 

By contrast, interpenetrating networks are found with less cross-linked beads; this entails 

slower diffusion of tracers inside the beads. In this scenario, the temperature dependent 

swelling of the PNIPAM beads depends on the polymer concentration of the hydrogel 

matrix.  

These results show that the properties of thermo-sensitive composite hydrogels as well 

as the mobility of guest species can be tailored by the composition of the embedded 

particles and the surrounding gel matrix. Tuning these parameters can therefore serve to 

control the movement of active species through such composite hydrogels. This 

foreshadows the utility of these systems as membranes with tunable permeability in 

separation techniques and analytical sciences. In addition, our experiments demonstrate 

the utility of 2fFCS for the determination of spatially resolved tracer diffusion in complex 

gels or biomaterials.  
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5.5. Supporting Information 
 

 

Fig. S.5.1 PNIPAM beads in water, imaged by fluorescence microscopy. Top: PNIPAM beads of type A at 25 
°C (left) and at 36 °C (right). Bottom: PNIPAM beads of type B at 25 °C (left) and at 36 °C (right).  The scale 
bar denotes 100 micrometers and applies to all panels. 

 

 

Fig. S.5.2 3D schematic of the filled hydrogels. The sphere represents a microgel bead, the lower grey 
plane indicates the lower glass cover slide; the light grey plane indicates the vertical confocal scanning 
plane.  
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Fig. S.5.3 Diffusion coefficients of different dextran in PAAM hydrogels of different compositions and in 
water. 
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Fig. S.5.4 Diffusion of 3-kDa dextran in microgel beads of type A suspended in water (open symbols) or 
embedded into polymer matrixes HG-25-A (filled symbols).  T = 25 °C. 
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Fig. S.5.5 2fFCS measurement on 10-kDa dextran labeled with Alexa Fluor 647 in a PAAM hydrogel matrix 
with cross-linker to monomer ratio of 1:60 and a PAAM concentration of 50 gL–1 at 25 °C. A single particle 
model including triplet state relaxation is used to fit the data (smooth lines). Fluorescence excitation was 

achieved with ex= 470nm at an excitation power of 2 µW. The detection signal was filtered by a HC 687/70 
(AHF) band pass filter. 
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Fig. S.5.6 Normalized diffusion coefficients of 3k-Da dextran in the hydrogel matrix close to the bead 
surface in sample HG-25-A. Full symbols denote T = 25 °C, whereas open symbols denote T = 36 °C.  
Measurements at three different beads are shown and represented by different symbols (squares, 
triangles, and diamonds). The dashed line indicates the normalized diffusion coefficient of the same 
dextran tracer in water. The vertical solid line indicates the position of the bead surface at T = 25 °C. 
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6. Summary and Outlook 

 

Hydrogels and hydrogel particles have a great potential in a huge numbers of 

applications. One of the most important parameters for applications such as drug 

delivery, catalysis and membranes is the diffusion coefficient. The macroscopic diffusion 

coefficient through a hydrogel or a hydrogel particle is rather easy to address. A located 

diffusion coefficient at defined positions inside a hydrogel or a hydrogel particle is much 

more difficult even if the hydrogel is of high complexity.  

The capability of reliable measurements of the diffusion coefficient inside complex 

stimulus-responsive hydrogels and hydrogel particles lead to very important information 

about the structure and possible applications, especially if the measurements can be 

done spatially resolved. One target for spatial resolution is the complex structure of the 

refractive index inside these samples. The single focus FCS suffers from this. We were 

able to show that an insufficient consideration of the refractive index in the data 

evaluation of single focus FCS can lead to a misinterpretation of anomalous diffusion. 

The highly complex structure inside complex stimulus responsive hydrogels makes it 

very hard to calculate the correct refractive index distribution for one measurement 

point inside the sample. This makes reliable single focus FCS measurements in such 

samples very hard.  

The spatial resolution is even harder to be realized. Therefore, a huge number of 

refractive index distributions inside the sample must be calculated, at least for each 

measurement point. The number is even multiplied by the number of variations of 

stimulus-responsible parameters.  
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The 2fFCS is introduced in the spatial resolved mode. The changes of the refractive index 

upon changing the position or stimulus relevant parameters do not influence the 

measurement results.  This makes the 2fFCS the method of choice for spatial resolved 

diffusion measurements inside complex gel structures.  

The comparison of single-focus and two-focus experiments on dextran tracers in 

different complex environments with same refractive indexes demonstrates the impact 

of the refractive index mismatch in single-focus FCS data evaluation. The refractive index 

of the sample must be taken into account to avoid artifacts which can be misinterpreted 

as anomalous diffusion. If the refractive index can’t be determined, especially in 

hydrogels with heterogeneous morphologies, 2fFCS is the better technique to determine 

the diffusion coefficient. Anomalous diffusion itself is a relevant and interesting 

phenomenon and has to be investigated, but the refractive index mismatch always has 

to be considered in such investigations. 

A system were the complex refractive index is of high importance is, a sub-millimeter-

sized hydrogel particles consisting of a thermo-responsive shell that surrounds a non-

thermo-responsive core. Such particles can be used as microcarriers that allow 

molecular and small colloidal additives to be encapsulated and released by selective 

shell deswelling or swelling.[1, 2]  The used 2fFCS probes the mobility of oligomeric 

guest molecules with spatial resolution.  The data demonstrate that 2fFCS is indeed able 

to provide information on how the local network structure affects tracer mobility [3]. 

We were able to show that core and shell affect each other only at the interface. 

Therefore we have demonstrated a carrier with a controlled entrapment of guest 

molecules and a defined diffusion of those inside the core of the particle. The defined 
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diffusion inside the core can be used to control the release of the guest molecule if the 

shell is swollen and permeable for the guest molecules. This will allow for exploiting 

recent developments of gel synthesis to control the structure of complex gels for a 

rational control of mobility of actives inside gels [4-6].  Determining the local mobility 

will be important in the development for tissue engineering scaffolds containing 

colloidal particles [7] and also for sensors [8] and microgel-modified membranes [9].    

Modifying membranes or, more generally speaking, hydrogels with microgels is a simple 

way to combine the fast responds of responsive microgels with macroscopic scale 

applications. The microgels are immobilized and located in the macroscopic gel matrix 

and retain their fast respond. The concentration of the microgel particles inside the 

hydrogel matrix can be easily defined with respect to the requirements of the 

application. One big question in such systems is the formation of interpenetrating 

networks. In the discussed composite hydrogels, interpenetrating networks can be 

formed. 

This, however, depends on the density of the embedded microgel beads. No 

interpenetrating networks are formed inside the incorporated beads when the beads are 

highly cross-linked. In this limit, spatially resolved tracer diffusion measurements reveal 

that the hydrogel matrix swells heterogeneously when the beads collapse, indicating the 

formation of pores near their surface. 

By contrast, interpenetrating networks are found with less cross-linked beads; this entails 

slower diffusion of tracers inside the beads. In this scenario, the temperature dependent 

swelling of the PNIPAM beads depends on the polymer concentration of the hydrogel 

matrix.  
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These results show that the properties of thermo-sensitive composite hydrogels as well 

as the mobility of guest species can be tailored by the composition of the embedded 

particles and the surrounding gel matrix. Tuning these parameters can therefore serve to 

control the movement of active species through such composite hydrogels. This 

foreshadows the utility of these systems as membranes with tunable permeability in 

separation techniques and analytical sciences. In addition, our experiments demonstrate 

the utility of 2fFCS for the determination of spatially resolved tracer diffusion in complex 

gels or biomaterials.  

 

 

6.1. Outlook 

6.1.1. Anomalous diffusion 

6.1.1.1. Detection of anomalous diffusion via 2fFCS 

 

Tackling the field of anomalous diffusion, it would be nice to test whether the 2fFCS is 

able to measure the anomalous diffusion in systems, where anomalous diffusion is 

predicted.  I would suggest measuring the diffusion of proteins inside a functionalized 

hydrogel which offers specific none covalent binding sides for the protein. In such 

systems the prediction of Enderlein et al.[10] about the optical resolution of the 2fFCS 

can be proofed. If anomalous diffusion can be seen in 2fFCS measurements, an 

improved data evaluation for 2fFCS can be introduced. Or, if no anomalous diffusion is 

visible in the experiments, the approach of Masuda et al. [11, 12], using different sizes of 

the detection volume to determine anomalous diffusion, can be applied to the 2fFCS. 
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6.1.2. Diffusion inside core-shell particles 

6.1.2.1. Core-shell particle composition 

 

We demonstrated that the core-shell structure of microgel particles is a very promising 

architecture for controlled release and uptake of small molecules. In this field it would 

be interesting to change the core and the shell polymer. Introducing different 

responsibilities to the core and shell and even the polymer density in the core and the 

shell may lead to very powerful properties for application.  If core and shell respond 

completely independent on specific stimuli, measurement series with respect for both 

stimuli are interesting to determine whether the collapse of the core squeezes out the 

incorporated guest molecule or immobilizes the guest molecule upon shrinking.  

 

6.1.2.2. Core-shell particle architecture 

 

Another interesting question is the solidity of the collapsed shell with respect to the 

diffusion of the incorporated guest oligomers. This can be tested by incorporating the 

guest molecules into the core-shell particle, than completely collapsing the shell of the 

particle. Afterwards cleaning the particles by simultaneously cleaning the shell 

completely collapsed at any time and finally disperses the particles with collapsed shell 

in clear solvent. The diffusion of the guest molecule has to be measured before swelling 

the shell in a series with several time steps for equilibration, up to about some weeks 

and after swelling the shell, again with an equilibration time determined by the diffusion 

coefficients of the guest oligomers in the swollen particle.  

If the solidity of the shell is not sufficient, a core-shell-shell architecture may lead to a 

sufficient solidity. A particle with two responsive shells with independent triggers is 
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more difficult to handle but, using micro fluidic devices, almost as simple to synthesize 

as a particle with only one shell. The different triggers for the core and the shells have to 

be chosen very carefully for applications but the variety of potentially useful polymers is 

that high that it should be possible. 

 

6.1.3. Hydrogels with switchable inhomegeneties 

 

Until now we studied the diffusion in PAAM hydrogels filled with PNIPAM microgel 

beads. The beads were incorporated in swollen state into the hydrogel. An interesting 

sample would be if the beads are incorporated into the hydrogel at collapsed state. In 

agreement with our results we would expect to see no interpenetrating polymer 

networks. But how do the beads swell? Is there a limitation in swelling, due to the 

surrounding hydrogel? If the beads swell how this does effect the diffusion close to the 

surface of the beads and in the hydrogel bulk. Is the effect of the bead swelling again 

local close to the beads, as we had shown in chapter 5 for the effect on the diffusion 

inside the hydrogel due to collapsing the beads? 

Further on, it would be interesting to modify the architecture of the composite hydrogel. 

Preparing vertical channels with a high concentration of microgel beads, which are 

almost in contact to each other but do not aggregate, in a microgel free hydrogel film 

may lead to a membrane with defined diffusion which can be controlled by switching 

the beads from swollen to collapsed state.  
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6.1.3.1. Combining core-shell particles with hydrogels 

 

Another interesting approach is to combine the core-shell particles with the composite 

hydrogels. A great benefit of such systems is the well defined location for the core-shell 

particles. The resulting hydrogel or hydrogel film has a high potential to be a novel pad 

for skin injuries. The hydrogel would cover the injury and can be filled with additives that 

supports the healing if the injury and at the same time the core-shell particles are 

carrying drugs that are released in the case of an infection of the injury to cure the 

infection. Such pads would be very interesting in the therapy of burns of the skin. 
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7. Appendix 

 

7.1. Quantum dots as tracer particles  

 

Quantum dots (QD) are photoactive nano-crystals that emit light upon excitation with 

light of short wave-lengths like UV-light[1]. The emission of light is quite similar to 

fluorescence. In contrast to classical fluorescence the excitation is not done by 

increasing the energy level of single electrons but by electron hole interactions[1]. This 

means that the electrons near the conduction band of the crystal absorb the energy of 

the excitation light and not a single electron alone. This leads to a very broad 

absorbance band for QDs. The emission of light is again much defined and has a small 

width[1]. The wave-length of the emitted light is strongly correlated to the size of the 

QDs[1]. The broad absorption band and the small emission band makes the QDs very 

interesting for labeling cells, polymers or proteins.  

One big disadvantage of the “simple” QDs is that they perform blinking [1-3]. This means 

the QDs have dark states during the excitation. This is due to plasmon reactions with the 

crystal. To overcome this problem core-shell structures of the QDs are introduced [2, 3]. 

The core of such particles is again the photoactive QD surrounded by a shell which 

minimizes side effects of the plasmon interactions with the crystal. A scheme of the 

architecture of QDs is shown in Figure 7.1. 

Another big disadvantage is that the QDs are built out of metals and therefore are not 

water soluble. This is unlikely for applications in biological systems and all other systems 

built on water. To overcome this problem a second shell is added using water soluble 

polymers with a water insoluble anchor group. The anchor group attaches to the QDs 

and the water soluble rest dissolves in water and makes the whole QD water soluble. A 
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second effect of the polymer shell is that they prevent the QDs from aggregation[2]. The 

aggregation leads to a shift to higher wave-lengths in the emission of the QD aggregates.  

 

 

Figure 7.1 Schematic draw of the core-shell structure of the QDs. [2] 

 

QDs are very interesting to be used as tracers in FCS measurements. Therefore we 

tested two different QD sorts: The commercially available Qtracer 705 (Invitrogen) and 

the handmade QDs from Dr. Marc Thiry (University of Hamburg).  

The QDs from Hamburg are PEO covered CdSe/CdS/ZnS nano particles with a particle 

diameter of 7 nm and a Quantum yield of 36%. The emission maximum of the 

fluorescence of the particles is at 590 nm. 

We performed SAXS and DLS measurements on these particles to verify the particle 

structure and to check whether the redispersed particles are aggregated or not. 
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Figure 7.2 Measurement results of the SAXS experiment. left: scattering intensity; black: measurement 

data; red: corresponding fit. right: The pair correlation function from the SAXS measurements of the QD 

solutions with concentrations of 1 gL–1 (red) and 3 gL–1 (black). For the lower concentration (red) the core-

shell architecture of the particle is retained. The radius of gyration is found to be 25.1 Å; the resulting 

particle diameter is 64.9 Å. For the higher concentration (black) the information of the core-shell structure 

is lost. The resulting radius diameter of the particle is 72.24 Å. 

 

We performed SAXS experiments to check the architecture and size of the single QDs 

(Figure 7.2). SAXS measurements can only address small particles therefore we do not 

get information about aggregates.  For the experiment with a concentration of 1 gL–1 

(Figure 7.2, red) we were able to show the core-shell structure of the QDs. The resulting 

particle diameter of 64.9 Å is in good agreement with the given 7 nm diameter form the 

specifications from Hamburg. 

The information about the core-shell structure is lost for higher concentrations. The size 

of the particle is calculated to be 72.24 Å. This is in good agreement with the former 

results. 

Then we performed DLS measurements to get information about aggregation in our 

samples. We made an angle dependent measurement with a scattering angle from 30° 

to 150°.  

In these measurements (Figure 7.3) we found that there are single particles in our 

samples as well as big aggregates.  
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Figure 7.3 Autocorrelation functions of the measurement of the QD’s from Hamburg. Black: measurement 
angle 30°; red: 90°; blue 150°. 

 

Due to the fact that bigger particles have a higher scattering intensity, we recalculated 

the intensity weighted distribution (Figure 7.4, left) into a mass weighted distribution 

(Figure 7.4, right). In the recalculated distribution, it is shown, that aggregates with a 

size of about two times of the diameter of a single particle are dominating. The origin of 

these particles can be the single QDs with a PEO shell of 5 nm, or if the shell does not 

scatter high enough, these particles are aggregates of 2 to 4 QDs. This would lead to 

major problems for FCS measurements. We will discuss this later. 
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Figure 7.4 DLS measurements of the QDs. left: intensity weighted size distribution; right: mass weighted 

size distribution. The black lines indicate measurements at an angle of 30°, red at 90° and blue at 150°. 

The peaks below 1 nm are artifacts due to bad statistics for short times. The measurements duration was 

120 s. 
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At the moment we think that the particles with a size of about 11 nm are the single QDs 

with a shell of 5 nm. On the other hand bigger aggregates are visible in the 

measurements. 

To measure the QDs in the 2f-FCS, we diluted the QD solution to a concentration of c = 

0.001 gL–1. This is equal to a particle concentration of about 2.4 nM. We performed a 

series of independent measurements with this solution, each with duration of 6h.  
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Figure 7.5 2f-FCS measurements of the QDs. Two independent measurements are shown to demonstrate 

reproducibility. Both measurements show the auto correlation functions of the two foci (black and blue) 

and the cross correlation of the two foci (red). All correlation functions had to be fitted with a two particle 

model. The resulting diffusion coefficients and radii are for the bigger particles: left: D = 1.41 m2s–1; R = 

173.54 nm; right: D = 1.33 m2s–1; R = 183.97 nm; and for the smaller particles: left: D = 73.7 m2s–1; R = 

3.32 nm; right: D = 73.3 m
2
s

–1
; R = 3.34 nm. 

 

Two of the measurement results are shown in Figure 7.5. The fitting of the resulting 

correlation functions had to be done using a two particle model. The resulting 

hydrodynamic radii of the smaller particles are in good agreement with the SAXS and 

DLS experiment. The bigger particles in the 2f-FCS measurement are much bigger than 

the dominating species in the DLS measurement. On the other hand, a dominating 

species with a radius double of the radius of a single QD are not visible in the 2f-FCS 

measurements. This is a strong indication that this particle species does not fluoresce. 
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The species dominating in the DLS measurements therefore can be explained by clusters 

of free PEO. 

The PEO is only adsorbed on the surface of the QDs. Diluting the QDs lead to desorption 

of PEO. The no longer attached PEO forms clusters to prevent the hydrophobic anchor 

group from water. The QDs on the other hand are no longer sufficiently covered by PEO 

and aggregate.  Dialysis and centrifugation are no options to get rid of the aggregates. 

One solution would be to dilute the sample using a PEO solution or chemically bind the 

PEO to the surface of the QDs to avoid desorption.  

The Qtracer 705 from Invitrogen is covered by PEG and has its emission maximum at 705 

nm. We used the specifications given by Invitrogen. 

As for the QDs from Hamburg, we performed angle-dependent measurements with a 

scattering angle ranging from 30° to 150° (Figure 7.6). 
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Figure 7.6 Angle-dependent DLS measurement. Shown are the resulting hydrodynamic radii for each 

measured angle. Black: hydrodynamic radii from the first order cumulant fit; red: second order cumulant 

fit; Blue: third order cumulant fit.  

 

Comparing the results of the cumulant fits for the hydrodynamic radii (Figure 7.6) shows 

that the Qtracer 705 sample is polydisperse. Furthermore, the minimum hydrodynamic 
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radius is about 55 nm. This is about six times higher than the pure QDs are. The Qtracers 

therefore have a very thick shell of about 18 nm. The thickness of the shell may lead to 

the polydispersity. This makes the Qtracer 705 difficult to handle in 2f-FCS 

measurements. The polydispersity of the QDs result in different results compared to the 

DLS measurements. 

In Figure 7.7 a measurement results of the Qtracer 705 are shown. The resulting 

diffusion coefficient and hydrodynamic radii for the smaller particles is strange. The 

diffusion coefficient indicates that the particles are smaller than the QDs from Hamburg, 

which cannot be. The emission wave-length of the Qtracers is higher than the emission 

wavelength of the QDs from Hamburg. This can only be if the Qtracer is larger than the 

QDs from Hamburg. This is in contradiction to the 2f-FCS results. The diffusion 

coefficient of the bigger particle species (D = 1.78 m2s–1) is in the same order as the 

diffusion coefficient of the QDs from Hamburg (D = 1.33 m2s–1). The polydispersity in 

the Qtracer 705 sample is too high to measure the QDs in the 2f-FCS. 
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Figure 7.7 2f-FCS measurement of the Qtracer 705. The measurement shows the auto correlation 

functions of the two foci (black and blue) and the cross correlation of the two foci (red). All correlation 

functions had to be fitted with a two particle model. The resulting Diffusion coefficients and radii are for 

the bigger particles: D = 1.78 m2s–1,  R = 137.5 nm and for the smaller particles: D = 116.6m2s–1 and R = 

2.1 nm.  
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Comparing the commercially available Qtracer 705 and the QDs, made by Dr. Marc Thiry 

from Hamburg, shows us that the Qtracers are very polydispers. It was not possible to 

measure the correct hydrodynamic radius in the 2f-FCS whereas this is possible for the 

QDs from Hamburg. Both samples suffer from the polydispersity and aggregation. This 

makes the QDs still interesting as a tracer for 2f-FCS but improvements have to be made 

for both samples to get better results in the 2f-FCS measurements. For the Qtracer 705 

from Invitrogen, the different species of particle sizes has to be separated. This would 

lead to high cost for a sufficient number of QDs and this makes it unlikely to use the 

Qtracer. On the other hand, other commercially available QDs should be tested.  

The QDs from Hamburg are custom made and therefore they are very nice in mono-

dispersity.  On the other hand the PEO shell is not chemically bond to the QDs this has to 

be solved to have accurate tracer particles with a very high signal to noise ratio and 

therefore can be used in samples with a high background. 
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7.2. Dimerization of STAT3 protein and measurement in living cells4 

 

In cooperation with Prof. Dr. Müller-Neven and Tamas Domoszlai we investigated the 

protein- protein interactions of STAT3 (Signal Transducers and Activators of 

Transcription 3) proteins. A schematic draw of the STAT proteins is shown in Figure 7.8. 

 

 

Figure 7.8 Schematic draw of the STAT protein. The N-terminal (grey) is assumed to be the functional 

group for dimerization of the protein. 

For our research the important group is the N-terminal (Figure 7.8, grey). To this group 

the dimerization of the STAT proteins is dedicated. We used the natural STAT3 protein 

and an artificial N-STAT3 protein mutant. The N-STAT3 protein is identical with the 

natural STAT3 protein except the N-terminal which is missing in the N-STAT3 mutant. 

Comparing both should give us information about the role of the N-terminal in 

dimerization of the protein. 

The STAT3 proteins are labeled by eGFP (enhanced green fluorescent protein). To test if 

the eGFP signal leads to a sufficient signal to noise ratio on our 2fFCS we measured the 

diffusion coefficient of the protein in aqueous solution (Figure 7.9). 

                                                
4
 This chapter was published in Journal of Cell Science, 2011. 124(6): p. 900-909. The study was performed 

in collaboration with the co-authors. My contribution was the performance of the 2fFCS measurements 

and I supported the data analysis. 
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Figure 7.9 2fFCS measurement of the eGFP. Only the cross correlation function (black) and the 
corresponding fit (red) is shown. The measurement temperature was 25°C, the duration was 2h. As fit 
model we used a single particle model including triplet state. 

 

Figure 7.9 shows non-normalized measurement results. The rather low background in 

figure 7.9 demonstrates the low signal background during the measurement. This 

indicates that eGFP is a sufficient label for the investigation of the STAT3 dimerization. 

We measured the diffusion coefficient three times. The results of the measurements are 

shown in table 7.2.  

 

Table 7.2 Summary of the measurements of eGFP in aqueous solution. D denotes the diffusion coefficient; 
Average is the average of the diffusion coefficients; SD denotes the standard deviation of the diffusion 
coefficient and Rh denotes the hydrodynamic radius calculated from the average diffusion coefficient 
calculated from the Stokes-Einstein equation (Eq. 2.13).  

Measurement D / x 10–6 cm2s–1    

1 1.02  Average 1.03 

2 1.08  SD 0.04 

3 0.98  Rh / nm 2.4 
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The standard deviation of 0.04 is equal to the systematic error of the 2fFCS instrument.  

The resulting hydrodynamic radius of Rh = 2.4 nm is in good agreement with literature 

[1, 2]. 

The next step was to measure the N-STAT3 mutant. We measured the protein in the 

cell lysate from the cells which produced the protein previously. The information about 

the diffusion coefficient of the mutant gives us an upper boundary for the diffusion 

coefficient of the natural STAT3 protein.  

Table 7.3  Summary of the measurements of the N-STAT3 mutant in aqueous solution. D denotes the 
diffusion coefficient; Average is the average of the diffusion coefficients; SD denotes the standard 
deviation of the diffusion coefficient and Rh denotes the hydrodynamic radius calculated from the average 
diffusion coefficient calculated from the Stokes-Einstein equation (Eq. 2.13).  

Measurement 

Series 

D / x10–6 cm2s–1    

1 0.67    

1 0.71    

1 0.65    

1 0.75    

1 0.72    

2 0.64    

2 0.69    

2 0.75  Average 0.7 

2 0.7  SD 0.04 

3 0.7  Rh / nm 3.5 

 

 

Table 7.3 shows the result of several measurement series. One series was measured in 

one sample in a time series. Each measurement had a duration of 2h and a 

measurement temperature of 25°C.  

Measuring the natural STAT3 protein, under the same conditions as the N-STAT3 

mutant in cell lysate, lead to interesting results, which are summarized in table 7.4. 
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We fitted all results using a single particle model including triplet state. The results can 

be divided in to two groups of diffusion coefficients,   the results with a slower diffusion 

coefficient (Table 7.4, left) can be dedicated to the dimmers of the protein, whereas the 

faster diffusion coefficients (Table 7.4,right) are almost equal to the diffusion 

coefficients of the N-STAT3 mutant. This clearly indicates that this species is the 

monomer of the STAT3 protein. The resulting hydrodynamic radii of both species 

support the conclusion that the slower species is the species of the dimmers. The 

hydrodynamic radius of this species is almost twice of the radius of the monomer 

species.  

Table 7.4 Summary of the measurements of the STAT3 protein in aqueous solution. D denotes the 
diffusion coefficient; Average is the average of the diffusion coefficients; SD denotes the standard 
deviation of the diffusion coefficient and Rh denotes the hydrodynamic radius calculated from the average 
diffusion coefficient calculated from the Stokes-Einstein equation (Eq. 2.13). left: results corresponding to 
the dimmers; right: results corresponding to the monomers. 

dimers  monomers 

Measurement 

series 

D / x10–6 cm2s–1  Measurement 

series 

D / x10–6 cm2s–1 

1 0.45  1 0.73 

1 0.57  1 0.68 

1 0.54  2 0.64 

2 0.48    

3 0.42    

3 0.52    

4 0.54    

5 0.42    

     

Average 0.49  Average 0.68 

SD 0.05  SD 0.03 

Rh / nm 5  Rh / nm 3.6 
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A complete description of the role of the N-terminal of the STAT3 protein in dimerization 

can be found else were[3].   

In a second approach we tried to measure the diffusion coefficient of the STAT3-eGFP 

protein inside a living cell.  A picture of the living cell before and after the test 

measurement is shown in figure 7.10. 

 

Figure 7.10 Confocal fluorescence microscopy images of a living cell. The labeling was done by STAT3-
eGFP wich was produced by the cell previously. left: the cell before the diffusion measurement; right: the 
same cell after the diffusion measurement (2h). In the top left corner of both images are dead cells visible. 

 

The cell survived inside the sample cell the duration of the measurement and therefore 

is sufficient for the 2fFCS to measure inside the cell. Nevertheless the protein 

concentration in the cell was too high for the diffusion measurement. No useful results 

could be obtained. This makes further investigations and the control of the protein 

concentration inside the cell necessary or the detection volume had to be decreased, by 

lowering the pinhole radius, until a sufficient concentration inside the detection volume 

is reached. 
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7.3. DNA-functionalized gold nano particles (Au-NP) 
 

In cooperation with Katrina Witten from the Institute of inorganic chemistry we 

investigated ssDNA functionalized Au-NP diffusion in buffer solution. The ssDNA 

molecules are built out of two parts. One part is labeled using the fluorescence dye Cy5 

and is called DNA-Cy5. The other one carries the linker group (DNA-linker) and is able to 

form double helixes with the DNA-Cy5. As linker groups of the ssDNA molecules we used 

thymine instead of adenine. Thymine adsorbs less to the Au-NP then adenine.  This leads 

to a larger distance between Au-NP and the Cy5 dye and to a higher stabilization of the 

Au-NP in water based buffer solutions, due to higher surface coverage[1].The linker 

group had a repetition number of 10 repeating units per DNA molecule. The DNA-linker 

has got the following structure: 

TTT TTT TTT T CCC AAA GGA GTT TCC AAA ACG GGG-5` 

and the DNA-Cy5 has got this structure: 

5’-GGG TTT CCT CAA AGG TTT TGC CCC-3`-Cy5 
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The overall length of the ssDNA is calculated from the number of base pairs of 24 times 

the length of one base of 0.34 nm. This leads to a total length of 8.2 nm. 

 As buffer solution we used phosphate buffered saline (PBS) and PBS/sodium dodecyl 

sulfate (SDS) solutions. 
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Figure 7.11 2fFCS measurement result of DNA-Cy5 in PBS buffer solution. Shown are the two auto 

correlation functions (black and blue), the cross correlation function (magenta) and the corresponding fits 

(red). The resulting diffusion coefficient is D = 335 m2s–1. 

 

In Figure 7.11 is shown the measurement of the diffusion coefficient of DNA-Cy5. The 

high diffusion coefficient of D = 335 m2s–1 shows that the DNA-Cy5 diffuses free 

through the PBS buffer solution. 
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Figure 7.12 2fFCS measurement results of ssDNA labeled with Cy5 in PBS-SDS buffer solution. Two 

independent measurements are shown (left and right). The two auto correlation functions (black and 

blue), the cross correlation function (magenta) and the corresponding fits (red) are shown for each 

measurement. The resulting diffusion coefficients are D = 73,8 m2s–1(left) and D = 73,6 m2s–1(right). 
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Adding SDS to the PBS buffer decreases the diffusion coefficient of the DNA-Cy5 to 73.7 

m2s–1 (Figure 7.12). This is a factor of 4.5. Origin of the strong decrease of the diffusion 

coefficient is the adsorption of SDS on the DNA-Cy5 molecule. 

The two independent measurements of two equal samples demonstrate the high 

reproducibility of the measurements. 

In the next step we measured two different sizes of Au-NPs. The smaller one (Au-NP-s) 

has got a hydrodynamic radius of Rh = 17 nm and the larger one (Au-NP-l) has got a 

hydrodynamic radius of Rh = 29 nm. Both Au-NPs were stabilized and labeled using the 

same DNA-Cy5 solution.  
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Figure 7.13 2fFCS measurement of Au-NP-s. Shown are the two auto correlation functions (black and 
blue), the cross correlation function (magenta) and the corresponding fits (red). The resulting diffusion 

coefficient is D = 9.91 m2s–1. This leads to a hydrodynamic radius of Rh = 24.7 nm. 

 

Figure 7.13 shows the results of the measurement of the Au-NP-s sample. The resulting 

hydrodynamic radius of the Au-NP-s/ssDNA-Cy5 complex (24 nm) is in very good 

agreement with the sum of the known radius of the Au-NP (17 nm) and the size of the 

ssDNA (8.2 nm).  
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Figure 7.14 2fFCS measurement of AU-NP-l. Shown are the two auto correlation functions (black and 
blue), the cross correlation function (magenta) and the corresponding fits (red). The resulting diffusion 

coefficient is D = 4.02 m
2
s

–1
. This leads to a hydrodynamic radius of Rh = 60.8  nm. 

 

The measurement of the Au-NP-l is shown in Figure 7.14. The resulting hydrodynamic 

radius (60.8 nm) is much larger than the expected radius (29 nm + 8.2 nm = 37.2 nm). 

We think that this is due to aggregation of Au-NP-l’s. The surface coverage of the Au-NP-

l’s is not sufficient to avoid aggregation of low numbers of Au-NPs. Therefore the 

synthesis of the Au-NP-l’s has to be improved. 
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7.4. Hydrogels made of star polymers 

 

In cooperation with Konstantina Dyankova and Jürgen Groll we started to investigate 

hydrogels, formed quit of star polymers. This hydrogels should have a heterogeneous 

size distribution in mesh size. The approach was to synthesize gel films with a thickness 

of012 less than 100 m to measure the diffusion of different tracer molecules in water, 

above the gel film, near the interface of water and gel film (top of the gel film), in 

different heights inside the gel film and near the interface between gel film and cover 

slide glass (bottom of the gel film). The resulting diffusion coefficients should give us 

information about the influence of the hydrogel on the diffusion and therefore answer 

the question, if there is a spatial order in the mesh size inside the gel film, and dose the 

density of the star polymers inside the gel film show any spatial structure. 

In a first approach, we synthesized the gel film in the sample cell, mount the sample cell 

on the 2fFCS and then added a solution containing the two fluorescence dyes 

AlexaFluor488 and AlexaFluor587 (both from Invitrogen, Germany) on top of the gel 

film. Then we measured a fluorescence microscopy image in z direction after 

equilibration for one hour, Figure 7.15. 

 

Figure 7.15 Fluorescence microscopy images of the hydrogel with added dye solution. a) Image of the 
AlexaFluor 488; b) image of the AlexaFluor 587. 

 

a) b) 



121 
 

The images show that we were able to control the thickness of the gel film. The next 

step was to calculate the intensity profile of both images (Figure 7.16) and compare 

them.  
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Figure 7.16 Intensity profile of the hydorgel filled with a solution of AlexaFluor488 and AlexaFluor587 dye. 
Red line indicates the intensity of the AlexaFluor 587 dye and black the intensity if the AlexaFluor 488 dye.  

 

The two intensity distributions correlate well and demonstrate that we covered the 

complete gel film in the measurement. 

Then, we repeated the experiment, without equilibration time and using bovine serum 

albumin (BSA) labeled with Atto655 (Atto-TEC GmbH, Germany) (Figure 7.17). 

 

 

Figure 7.17 Fluorescence microscopy images of the pure gel (a), gel with added BSA direct after adding the 
BSA solution (b) and 2 min after adding the BSA solution. The red line indicate the highest point of the gel 
film.  

a) b) c) 
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The BSA diffuses into the hydrogel (Figure 7.17 b) and c)). The diffusion is hindered. 

Therefore the lower part of the hydrogel is not illuminated by labeled BSA. This indicates 

two things. First of all, the gel film again is prepared with a thickness of less than 100 

m. This is proven by the fact, that we are covering the range above the gel with no BSA. 

This is only possible if we are above the droplet with BSA, we added. The second is, that 

the diffusion of the BSA is hindered by the gel. Otherwise the gel film should be 

illuminated by the labeled BSA down to the bottom of the gel film, which is not the case. 

The intensity profiles of the images in figure 7.17 b) and c) are shown in Figure 7.18. 
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Figure 7.18 Intensity profile of the hydorgel with added solution of BSA. Red line indicates the intensity 
direct after adding the BSA solution and black the intensity 2 min after adding the BSA solution. The peak 
is slightly shifted to lower z value.  
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Figure 7.19 2f-FCS measurement of BSA in the hydrogel. The measurement shows the auto correlation 
functions of the two foci (black and blue) and the cross correlation of the two foci (red). The correlation in 
this measurement is very low. No reliable results can be taken from the measurement. Nevertheless the 
measurements show a correlation. The measurements work but have to be improved. 

 

In the first diffusion measurements, we were able to measure a correlation function 

(Figure 7.19). Nevertheless the correlation is very low. Therefore the measurement has 

to be improved. The BSA was labeled by Konstantina herself. The BSA molecules are 

probably not sufficiently labeled and/or the labeled BSA has to be cleaned more 

efficiently to minimize the background in the measurement.  

The measurements are promising to be accurate and may give the answers to the open 

questions. Therefore the measurements have to be repeated and improved.  

 

7.5. Temperature-sensitive polymers from Renate Messing 

 

We measured homemade model polymers of different polymerization degree from 

Renate Messing. The polymers were named R94.R-rein-a to e. The polymer was labeled 

with Rhodamine B and shows a lower critical solution temperature (LCST) of 28°C to 

30°C. For the first test measurements, we choose a measurement temperature of 25°C, 

below the LCST.  
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First DLS measurements from Renate Messing gave us hydrodynamic radii which we can 

use to interpret our 2fFCS measurements (Table 7.5). 

 

Table 7.5 Summary of the DLS measurement results for three different samples. ri indicates the intensity 
weighted radii; rv the volume weighted radii and rn the number weighted radii; PDI is the polydispersity 
index. 

Name ri / nm rv / nm rn / nm PDI 

R94.R-rein-a  3 1.4 1.9 0.29 

R94.R-rein-b  2.8 1.6 2 0.228 

R94.R-rein-c 3.1 1.7 2.2 0.284 

 

 

The polymer was diluted in LiChroSolv water and measured in the temperature 

controlled sample cell for 2 hours. Each sample was measured in a series of 10 

repetitions of measurement. The measurements of one sample series were compared.  
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Figure 7.20 2fFCS measurement of the sample R94.R-rein-a. Black: auto correlation function of focus one; 
blue: auto correlation function of focus two; magenta: cross correlation function of the two foci; red: the 
corresponding fits. As fitting model we used a two particle model. 

 



125 
 

Figure 7.20 shows one of the measurement results of sample R94-a. The fitted diffusion 

coefficient of sample R94.R-rein-a is D = 164.9 m²s–1. Calculating the hydrodynamic 

radius via Stokes-Einstein equation (Eq. 2.13) leads to rh = 1.5 nm. This radius is in good 

agreement with the volume weighted result of the DLS measurements. We had to fit the 

results of the sample using a two particle model. The diffusion coefficient of the second 

species is about one decade lower than the expected diffusion coefficient and can be 

explained by aggregates. 

Sample R94.R-rein-b shows a similar behaviour as sample R94.R-rein-a (Figure 7.21). This 

again makes the fitting with a two particle model necessary. The fitted diffusion 

coefficient of the faster component was D = 106.2 m²s–1. The slower species again can 

be explained by aggregates in the sample. 
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Figure 7.21 2fFCS measurement of the sample R94.R-rein-b. black: auto correlation function of focus one; 
blue: auto correlation function of focus two; magenta: cross correlation function of the two foci; red: the 
corresponding fits. As fitting model we used a two particle model. 

 

The resulting hydrodynamic radius for the faster species was calculated to be rh = 2.3 

nm. A decrease in the diffusion coefficient was expected. The increasing polymerization 
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degree leads to an increase in chain length and therefore an increase in the 

hydrodynamic radius. The radius is higher than from the DLS measurement predicted. 

This is maybe due to small aggregates in the sample, which disturb the results of the 

single polymers.  

Sample R94.R-rein-c and R94.R-rein-e could not be evaluated. The samples had a too 

high polydispersity to be fitted sufficiently with our fitting models. Therefore we do not 

show results here. 
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Figure 7.22 2fFCS measurement of the sample R94.R-rein-d. Black: auto correlation function of focus one; 
blue: auto correlation function of focus two; magenta: cross correlation function of the two foci; red: the 
corresponding fits. As fitting model we used a two particle model. 

 

Sample R94.R-rein-d again shows evaluable results (Figure 7.22). The diffusion 

coefficient for the fast species was fitted to be D = 103.5 m2s–1. The calculated radius 

was rh = 2.4 nm. The increase of the radius is smaller than expected, compared to the 

results from sample R94.R-rein-b. Nevertheless, taking into account that the results for 

sample R94.R-rein-b was too high, the resulting hydrodynamic radius of sample R94.R-

rein-d is plausible.  
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The next step would be the investigation of the LCST behavior. The very small radii of 

the investigated polymers can be a problem for this investigation. The collapse of the 

polymer above the LCST is maybe too small to be detected by the 2fFCS. A much bigger 

polymer would be more sufficient for this investigation. 

 

 
 

7.6. Galectin-1 – LacNAc Interaction 

 

In cooperation with Christiane Römer and Claudia Rech, we wanted to measure the 

binding of N-acetyllactosamine (LacNAc) to Galectin-1. Therefore, we measured the 

diffusion coefficients of Galectin-1 labeled with Dylight649 and the LacNAc sugar labeled 

with Atto 488 in buffer solution at 25°C. The results are shown in figure 7.23. 
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Figure 7.23 2fFCS measurements of LacNAc labeled with Atto 488 (left) and Galectin-1(right). The 
measurement results of Galectin-1 had to be fitted with a two species model. The slower species in this fit 
is addressed to aggregates inside the sample. The resulting diffusion coefficients are, for LacNAc: D = 

189.83 m2s–1; and for Galectin-1: D = 118.46 m2s–1. 

 

Calculating the hydrodynamic radius of galectin-1 from the diffusion coefficient using 

the Stokes-Einstein equation (Eq.2.13) leads to Rh = 2.07 nm which is in good agreement 

with literature[1].  
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To measure the binding of LacNAc to the Galectin-1, we performed a two colour-2fFCS 

measurement. Such an experiment is realized by measuring both components, LacNAc 

and Galectin-1 simultaneously using their specific excitation wavelengths and calculate 

the cross correlation for the two laser light colours. The resulting diffusion coefficients 

for the LacNAc should retain the diffusion of free LacNAc and additionally show the 

diffusion of the complex. The same should be for the Galectin-1 diffusion coefficients. In 

the colour cross correlation only the diffusion coefficient of the complex should be 

visible. The results of the experiment is shown in figure 7.24. 
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Figure 7.24 Two collor-2fFCS measurement of LacNAc-Atto488 (a), Galectin-1-Dylight649(b). c) show the 
color cross correlation in this experiment. 

 

The result of the LacNac measurement channel (figure 7.24 a) is D = 189 m2s–1, retains 

the diffusion coefficient of the measurement of figure 7.23 left. No other diffusion is 
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visible in this result. The measurement result for the Galectin-1 only shows a much 

slower diffusion (D = 44.08 m2s–1) as the measurement of figure 7.23 right. The 

diffusion is of a factor of 2.7 slower than for free Galectin-1. Is this an indication for 

binding of LacNAc to the Galectin-1? A factor of 2.7 indicates that the complex has to 

consist out of more than one Galectin-1 and one LacNAc molecule. But if this is a 

complex of Galectin-1 and LacNAc and not only Galectin-1 aggregates why does one not 

see the complex in the LacNAc measurement? If there are complexes which show 

fluorescence for both labels, this complexes should be measured in the cross colour 

correlation, Figure 7.24 c).  

The cross colour correlation shows no correlation at all. This proofs that no complexes, 

which show fluorescence for both excitation wavelengths are measured.  

Only one possibility for complexes is left, the fluorescence of the LacNAc label is 

quenched during the complexation. We started to proof this with a blind test by 

measuring the diffusion coefficient of the LacNAc labeled with Atto 488 with added 

unlabeled Galectin-1. The resulting diffusion coefficients are almost the same as in figure 

7.23 left, and figure 7.24 a).  
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7.7. Lysozyme labelled with Fluorescein and Rhodamin 

 

In cooperation with Ilja Voets and Saskia Bucciarelli we measured home-labelled 

lysozyme proteins. Therefore we prepared stock solutions for both lysosymes in buffer. 

The concentration of the stock solutions is about 1x10-4 mol/L for the rhodamine-

labelled and about 2x10-4 mol/L for the fluorescein-labelled lysozyme. The solutions 

where stored for 12h in the fridge.  Before measuring we diluted the solutions to a 

concentration of about 2x10-9 mol/L, to be able to measure them in the 2fFCS. 

The diluted solutions were filled in our temperature controlled sample cells and 

equilibrated at 25°C for approximately 30 min. 

Afterwards we measured the samples for 1 h using proper laser colours and 

fluorescence filters. 
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Figure 7.25 2f-FCS measurement of lysozyme labeled with fluorescein. The measurement shows the auto 
correlation functions of the two foci (black and blue) and the cross correlation of the two foci (magenta). 
All correlation functions had to be fitted with a single particle model including triplet state. The resulting 
Diffusion coefficient and radius is D = 23.96 m2s–1, R = 10.2 nm. 
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The results for the lysozyme labelled with fluorescein are shown in the figure 7.25. The 

measurement data were fitted with a single molecule model including triplet state. As 

one can see, the fit for the cross correlation of the two foci does not match properly. 

And the diffusion coefficient is about 10 times to high. 

A fit, with a two component model, lead to senseless diffusion coefficients. We think this 

is maybe due to the fact of aggregation. We have to think about how to prevent this by 

achieving better dilution of the lysosyms.  
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Figure 7.26 2f-FCS measurement of lysozyme labeled with fluorescein. The measurement shows the auto 
correlation functions of the two foci (black and blue) and the cross correlation of the two foci (magenta). 
All correlation functions had to be fitted with a single particle model including triplet state. The resulting 

Diffusion coefficient and radius is D = 372.2 m
2
s

–1
,
 
R = 0.66 nm. 

 

The results for the lysozyme labelled with Rhodamine are shown in the figure 7.26. The 

data were fitted as well by the one component model including triplet state. 
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Here, the fit for the cross correlation of the two foci matches much better with the data 

and the diffusion coefficient is too small only in a factor of 2. The sample seems to work 

much better than the other one. But here we see shoulders in the decay, which maybe 

cause the error in the diffusion coefficient and are as well due to aggregation.  

We have to solve the problem with the aggregation, but then we are able to measure 

the lysosyms in our 2fFCS. 

Is it possible to use ultra sound bath to desolve of the aggregates or do we have to 

prepare a stock solution with lower concentration, or do we have to use other 

techniques? These are the main questions which have to be solved. 
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