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Kurzfassung

Der Einzug moderner Informations- und Kommunikationstechnik in den Alltag während
der letzten Jahrzehnte ist direkt mit der Skalierbarkeit von elektronischen Bauteilen
und hierbei insbesondere der fortschreitenden Miniaturisierung von Transistoren und
Informationsspeichern wie Flash verbunden. Das Skalierungspotentail konventioneller
Speichertechnologie ist jedoch auf Grund physikalischer Grenzen weitestgehend aus-
geschöpft. Daher sind neuartige Konzepte zur Überwindung dieser Limitierungen Be-
standteil aktueller Forschung. Hierbei stellen nichtflüchtige, redoxbasierte resistive
Speicher (Redox based Resistive Switching Random Access Memories, ReRAMs) eine
herausragende Alternative zu konventionellen ladungsbasierten Speichern wie Flash
dar. Die zweipolig ausgeführten Speicherzellen zeichnen sich durch einen einfachen
Schichtaufbau aus und kodieren die gespeicherte Information in unterschiedlichen elek-
trischen Widerstandswerten, die durch Spannungspulse eingeschrieben werden können.
Sie zeigen ein Höchstmaß an Skalierbarkeit und ermöglichen einen im Vergleich zu
Flash-Speichern deutlich schnelleren Schreibzugriff bei gleichzeitig verbesserten Ver-
lustleistungseigenschaften. Je nach Materialsystem wird resistives Schalten meist auf
Grund eines Valenzwechselmechanismus oder des elektrochemischen Metallisierungsef-
fekts beobachtet. Die Effekte, die für den höchst lokalen Schaltprozess eine maßgebliche
Rolle spielen, sind bislang jedoch nicht ausreichend erforscht, was für die Optimierung
derartiger Speicherzellen einen entscheidenden Nachteil darstellt.

In dieser Dissertation werden elektrochemische und physikalische Effekte, die unmittelbar
mit dem resistiven Schaltprozess einhergehen, anhand von ReRAM-Zellen auf der
Basis des elektrochemischen Metallisierungseffekts untersucht. Da resistives Schalten
in einer Vielzahl unterschiedlicher Materialien beobachtet wird, wurden zwei äußerst
gegensätzliche Materialien, Siliziumdioxid (SiO2) als typischer Vertreter von Isolatoren
und Silberjodid (AgI), das ein klassischer Ionenleiter ist, ausgewählt. Hierbei zeigt
insbesondere nanoskaliertes Siliziumdioxid eine überraschend hohe Kationen-Mobilität,
die bei Bulk-SiO2 nicht beobachtet wird, aber für den Schaltvorgang unerlässlich ist.

Die vorliegende Arbeit gliedert sich im Wesentlichen in zwei Teile. Im ersten Teil werden
elektrochemische Prozesse unmittelbar vor dem Schaltvorgang anhand potentiodynamis-
cher und spektroskopischer Messmethoden analysiert und interpretiert. Es konnte gezeigt
werden, dass für den Schaltvorgang in SiO2 Gegenladungen in Form von OH–-Ionen
zwingend erforderlich sind. Bei Silberjodid konnte nachgewiesen werden, dass die Ag/AgI
Grenzfläche chemisch inaktiv ist, jedoch Silber in Form kleiner Metallkristallite in AgI
eindringt. Zudem werden bei redoxbasierten Speichern Nichtgleichgewichtszustände
inhärent aufgebaut, die in den in der Literatur veröffentlichten Modellsystemen bislang
unberücksichtigt blieben. Diese Effekte haben einen unmittelbaren Einfluss auf den
resistiven Schaltvorgang, der im zweiten Teil der Arbeit untersucht wird. Es konnten
sowohl bei SiO2 als auch bei AgI quantisierte Leitfähigkeitswerte beobachtet werden, die
auf ein ultimativ atomares Skalierungspotential von ReRAM-Zellen hinweisen. Darüber
hinaus wurde die extrem nichtlineare und für praktische Anwendungen vorteilhafte
Schaltkinetik experimentell wie auch theoretisch analysiert.





Abstract

In the last decades, modern information and communication technology have become
part of daily life, which is unequivocally linked with the progressive scaling of electronic
components and particularly with the ongoing miniaturization of transistors and memory
devices such as Flash. As the scaling limit of conventional memory technology is
approaching, new concepts are part of current research. In this context, nonvolatile redox
based resistive switches (Redox based Resistive Switching Random Access Memories,
ReRAMs) are considered as a highly promising alternative to Flash memories. These
two-terminal memory cells are based on a simple layer structure and the information is
stored as different resistance levels by applying appropriate voltage pulses. In comparison
to Flash, ReRAMs offer a high potential of scalability, low power consumption and
fast write access. The strongly local resistive switching effect is observed in various
material systems and often based on a valance change mechanism or electrochemical
metallization effect. However, the processes involved during the resistance transition are
not yet studied in detail, which is disadvantageous for device optimization.

In this thesis, ReRAM cells based on the electrochemical metallization effect are analyzed
in respect to electrochemical and physical processes, which are contributing to the
resistive switching effect. Since resistive switching is observed in various materials, two
different materials, i.e. silicon dioxide (SiO2) and silver iodide (AgI), representing the
material class of insulators and ion conductors, respectively, were selected. In particular,
nanoscale SiO2 is characterized by an unexpected high cation mobility, which is essential
for the resistive switching effect but not reported in bulk SiO2.

This work can be divided into two parts. In the first part, electrochemical processes prior
to the switching event are analyzed by potentiodynamic and spectroscopic measurement
methods. It has been observed that in SiO2 OH–-ions act as counter charges, which are
required for resistive switching. In case of silver iodide the Ag/AgI-interface was found
to be chemically inactive, but silver can penetrate as small metal-crystallites in AgI.
Moreover, in redox based resistive switches nonequilibrium states are inherently induced,
which have been neglected in device models reported in literature. These effects are
directly affecting the resistive switching process itself, which is studied in the second
part of this thesis. Quantized conductance values have been observed both in silicon
dioxide and silver iodide giving the prospect of the ultimate atomic scaling potential of
ReRAMs. Additionally, the strongly nonlinear, and from an application point of view
beneficial, switching kinetic is analyzed experimentally and is theoretically discussed.
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collaboration. I am very grateful to Florian Lentz, Bernd Rösgen and René Borowski
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1. Introduction

In the last decade, modern information and communication technology have exception-

ally changed the way people live, communicate and work. Flash transistors became

an integral part of daily life and led to a striking increase of mobility, and economic

innovation and productivity. The ongoing development of information technology is

inextricably linked with the miniaturization of electronic devices. According to Moore’s

law [1], the number of components on integrated circuits increased exponentially in

the last decades. As more electronic elements were integrated on a semiconductor chip,

the fabrication cost for each individual component decreased exponentially likewise.

However, the integration limit of conventional semiconductor devices is approaching [2].

Among various challenges, substantial problems arise from localized heat generation

on integrated circuits, as transistors continue to become smaller. Nowadays, sophisti-

cated semiconductor fabrication techniques are required for device scaling and further

miniaturization becomes economically more and more unobtainable.

Nanotechnology has the potential to overcome these issues and research on new materials,

revolutionary new logic architectures and neuromorphic concepts may lead to a paradigm

shift in information and communication technology. In this context, Resistive Switching

Random Access Memories (RRAMs) represent a particularly promising future memory

technology [3].

1.1. State of the Art

Advanced Flash memories are currently fabricated using lithography technology beyond

the 20 nm node [4]. Vertical Flash [5] and even complete three-dimensional (3D) Flash

structures [6] were proposed to negotiate scaling limitations. However, regardless of high

effort in research, 3D structures are not yet commercially available due to high fabrication

cost and low yield [4]. Among other memory concepts such as Spin-torque-transfer

Magnetoresistive Random Access Memories (MRAM) [7] or Ferroelectric Random

Access Memories (FeRAM) [3], RRAMs have a high potential to replace Flash memory

technology [8].
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In this regard, the redox based resistive switching effect (Redox based Resistive Switching

Random Access Memories, ReRAM) attracted high attention and can be observed in

various material systems [4; 9]. The essential processes for the operation of these

resistive switches are redox reactions at the electrode-electrolyte interfaces and the ionic

transport within a nanoscale solid film. Depending on the mobile ions and processes

involved during resistive switching, devices based on the thermochemical mechanism

(TCM) [10] as well as anion based (Valence Change Mechanism, VCM) [11] and cation

based (Electrochemical Metallization Mechanism, ECM) [12] memory devices can be

distinguished. ReRAMs are in focus of current research due to their ease of fabrication,

high scalability, fast read and write access, and low power consumption [13–15]. At first

glance, the resistive switching effect seems to be rather simple but detailed microscopic

understanding of the processes involved during resistance transition, including the redox

reactions on the nanoscale and the switching kinetics, is still missing.

Besides fundamental investigation on the electrochemical and physical effects, and

mechanisms underlying the resistive switching effect, the nonlinear characteristics of

ReRAMs offer the prospect of new memory architectures and applications. Concepts of

fully passive and highly scalable memory crossbar arrays [16] as well as logic-in-memory

[17; 18] and neuromorphic applications [19; 20] are discussed in literature, which further

intensified the research in the field of ReRAMs.

1.2. Scope of this Work

This work is focused on ReRAMs based on the electrochemical metallization effect

(ECM cells). Fundamental questions regarding quantum-size effects, charge and mass

transport, nonequilibrium states and redox reactions, and nucleation effects at the

electrode-electrolyte interfaces are considered at both experimental and theoretical level.

In respect to various classes of materials showing the resistive switching effect, silicon

dioxide (SiO2) and silver iodide (AgI) have been selected as model materials in this work.

Here, silicon dioxide represents the class of conventional insulators and silver iodide is a

well-known ion conductor. Despite their antithetic characteristics in the macroscopic

bulk phase, both materials are termed as ionic or mixed ionic–electronic electrolytes at

room temperature on the nanoscale [12; 21; 22].

This work is divided into six chapters. In the following chapter the resistive switching

effect as well as electrochemical fundamentals are introduced. Fabrication and charac-

terization methods are summarized in chapter three. In this context, generic material

properties are presented. In chapter four results on redox and transport phenomena of
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cations in silicon dioxide and silver iodide thin films as well as the origin of nonequilib-

rium states are discussed and analyzed. Chapter five is concerned with resistive switching

experiments in SiO2 and AgI, and applications based on ReRAMs. The results of this

thesis and an outlook are given in chapter six.





2. Fundamentals

The investigation of nanoionic phenomena playing an essential role within the context of

the resistive switching effect requires a deep insight into electrochemical fundamentals.

Although the basic principle of the resistive switching effect itself is rather descriptive,

the processes which are responsible for resistance transition are of complex nature when

studied in detail. In this respect, electrochemical fundamentals are outlined in this

chapter. Primarily, an overview of resistive switching memories being one example of

a promising application of nanoionic redox phenomena is given. Furthermore, special

attention is paid to oxidation and reduction (redox) processes of metal cations within

solids and the kinetics of these redox reactions.

2.1. Nonvolatile Resistive Switching Memories

The ultimate memory device features high scalability, fast read and write access, high

endurance, long (nonvolatile) retention, and low cost fabrication. Nowadays, memory

devices can be classified in four major categories in regard to their application re-

quirements [9]. Static Random Access Memories (SRAMs) based on bistable latching

circuits offer fast read and write access. Although the stored data does not need to be

periodically refreshed, SRAMs are considered as volatile memory devices loosing their

stored information when the memory is not powered. Since SRAMs consist of six MOS-

FETs (Metal Semiconductor Fieldeffect Transistors), highly scalable devices cannot be

achieved. In contrast to SRAMs, the information in volatile but highly scalable Dynamic

Random Access Memories (DRAMs) is periodically refreshed. For longtime mass storage

hard disk drives made of rotating magnetic discs are primarily used. Both write and

read access are sequential, and these devices are in such a way not referred as random

access memories. State of the art technology of nonvolatile random access memories are

Flash devices. They basically consist of floating gate MOSFETs, where the threshold

voltage can be modulated by high voltage programming modes. However, reaching its

ultimate downscaling limit within the next years, new emerging memory devices are

indispensable to replace conventional Flash memory technology [3; 23]. In this context,

Resistive Switching Random Access Memory (RRAM) cells are a promising alternative
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to standard Flash based memory devices due to the prospect of high scalability and low

power consumption. Of particular interest among other emerging RRAM technologies

are redox based resistive switching memory cells (ReRAMs), which are in the focus of

this work.

2.1.1. Categories of Resistive Switches

Different categories of RRAMs based on their physical working principle can be classified

as depicted in figure 2.1 [24]. Redox based RRAMs (i.e. ReRAM devices) are highlighted

by red color. Regardless of the individual physical working principle, all ReRAM devices

have in common that their resistance can be modulated by an appropriate voltage or

current pulse. Thus, information is stored in a low resistive state (LRS) and high resistive

state (HRS). Moreover, intermediate resistance states can be also programmed in some

ReRAM devices giving the prospect of storing multiple bit in one single device [25].
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Figure 2.1. Categories of resistive switches (based on [11]). Special attention is paid to
two-terminal redox related electrochemical metallization cells.

In some ReRAM devices the functional principle is mainly dominated by the working

electrode (e.g. Cu or Ag), while for other devices the actual switching layer (typically
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transition metal oxides or higher chalcogenides) plays the fundamental role [24]. Despite

the physical working principle one can also classify ReRAM devices depending on the

operating voltage regimes. For unipolar working devices a single voltage polarity is used

for both write (SET) and erase (RESET) of the information as shown in figure 2.2a. In

some devices unipolar switching in both voltage polarities can be observed. All unipolar

switching devices have in common that the current compliance ICC needs to be lower

than the current for RESET. In general, a current compliance is needed to prevent

damage of the device in the low resistive state. In contrast to unipolar switches, bipolar

devices require voltages of opposite polarity for SET and RESET of the cell as depicted

in figure 2.2b.
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Figure 2.2. Categories of resistive switches classified by the operating voltage regime.
Blue and red color indicate the current/voltage characteristic in the HRS and LRS,
respectively. The RESET process is highlighted by green colored lines (redrawn from
[26]). (a) Unipolar switching (only one voltage polarity is shown for simplification) and
(b) bipolar switching.

There are several ways to achieve a significant resistance transition. This work is focused

on ReRAM devices, which are based on bipolar electrochemical effects where the active

electrode is playing the fundamental role for the switching effect. These two-terminal

devices highlighted in figure 2.1 are called Electrochemical Metallization (ECM) cells

and are based on redox related effects such as the anodic oxidation of the active electrode

[27; 28]. They are typically characterized by ease of fabrication and high scalability.

Besides ECM cells high attention has been also paid to memory devices based on the

valence change mechanism (VCM) and thermochemical mechanism (TCM) in literature

[3; 8]. VCM and TCM cells both typically consist of transition metal oxides (such as

SrTiO3 or TiO2) as insulating layers. While VCM cells show bipolar switching charac-

teristics, unipolar switching is observed in TCM cells. The valence change mechanism is

contributed to migration of oxygen ions leading to different resistance states [11]. In

contrast, thermally controlled redox processes leading to the formation of conductive
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filaments are believed to be responsible for the thermochemical mechanism [29; 30].

Among other material systems NiO is widely used for TCM cells [10].

2.1.2. Electrochemical Metallization Effect

This work is mainly focused on ReRAM devices based on the electrochemical metal-

lization effect. In general, the simple structure of ECM cells consists of a metal/insula-

tor/metal layer stack. Several higher chalcogenides (e.g. GeSex [31]) and oxide insulating

thin films (such as SiO2 [21; 32] and TiO2 [33]) show resistive switching behavior. It is

assumed that the transition between the high resistive state and low resistive state of

the memory cell is caused by the electrochemical formation and rupture of a nanoscale

metallic filament [28].
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Figure 2.3. Basic principle of the resistive switching effect during a current-voltage
(I/V ) sweep in electrochemical metallization cells [28].

The basic working principle of an ECM cell becomes clear in figure 2.3. In general, an

ECM cell is made of a working electrode (WE) such as Ag or Cu and an electrochemically

inert counter electrode (CE) such as Pt or Au. Starting from an initial HRS (A), the

cell current is more or less slightly increased by increase of the applied voltage. In the

HRS no conductive channel can be found in the insulating layer. Here, the current is
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dominated by the leakage current and the anodic oxidation of the working electrode

metal M to a metal cation Mz+:

M −−→ Mz+ + ze−, (2.1)

whereas z is the charge number of the metal cation. The metal ions injected into the

insulator drift under the applied electric field (B) and are reduced on the surface of the

inert counter electrode (C):

Mz+ + ze− −−→ M (2.2)

Subsequently, the cation diffusion processes is enhanced by the electric field resulting in

the formation of a nanoscale metal filament [34]. The SET voltage VSET is defined as the

voltage where the ECM cell switches from the HRS to the LRS (SET process) due to the

filament short circuiting both electrodes (figure 2.3 (D)). A current compliance ICC is

needed to prevent damage of the cell in the LRS. The current compliance is controlling

the effectively applied voltage to regulate a constant cell current (see chapter 3.2.2).

As soon as the voltage is decreased, a linear slope of the current versus voltage is observed

when the current is again below the current compliance level. By further decrease of the

applied voltage (E) the absolute cell current is increased until the cell switches back

from the LRS to the HRS (RESET process). The above described resistance transition

is reproducible. In this regard, the filament rupture is contributed to electrochemical

oxidation and reduction processes of the filament according to equation 2.1 and 2.2. The

existence of one or more nanoscale filaments is motivated by the observation that most

ReRAMs show resistances in the LRS, which are independent on the electrode diameter

[35].

2.2. Mass and Charge Transport in Solid Electrolytes

When the potential E = −Er (rest potential Er) is applied, the anodic and cathodic

current densities are compensated resulting in a zero net current density of the elec-

trochemical cell. In this case the cathodic and anodic current densities have the same

magnitude of the exchange current density j0 [36]. The exchange current density is

determined by the concentration of the active ionic species and the kinetics, and free en-

ergies of the electrochemical reaction. As soon as the electrode potential is E = −Er+ η,

where η is the overpotential, a current density j is measured, which can be described by
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the Butler-Volmer equation consisting of both the cathodic as well as anodic current

density [36; 37]:

j = j0 · exp
(
(1− α)zFη

RT

)

︸ ︷︷ ︸

anodic current density

−j0 · exp
(−αzFη

RT

)

︸ ︷︷ ︸

cathodic current density

(2.3)

Here, z is the number of electrons involved in the transfer process, R the universal

gas constant, F the Faraday constant and T the absolute temperature. A graphical

representation of the net current density, and the anodic and cathodic fraction is

illustrated in figure 2.4a as a function of the overpotential η. The charge transfer

coefficient α is in between zero and unity. The current density curve is apparently

symmetric solely for α = 0.5 as shown in figure 2.4b.
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Figure 2.4. Graphical representation of the current density j described by the Butler-
Volmer equation. (a) Anodic and cathodic fraction to the net current density, (b) net
current density depending on the asymmetry parameter α.

It is noteworthy that the current density can be only thoroughly expressed by the

Butler-Volmer equation when the current density depends solely on the interfacial

dynamics. In general, this does not hold for thin film insulators such as SiO2, which

initially do not contain mobile ions. Thus, the ion concentration close to the electrode

and in the bulk are not self-evidently equal. In this case the current density can be

also determined by the mass transport from or to the active electrode. This situation

has to be also considered for electrochemical systems at high overpotentials even if the

concentration of ions near the electrode is equal to the bulk concentration at moderate

overpotentials. In this case the current density approaches a limit determined by the

mass transport of the ionic species to or from the electrode.
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2.3. Electrochemical Oxidation and Reduction

Among other new emerging systems such as solid thin film fuel cells or thin film batteries,

resistive switches are one potential application for devices based on nanoionic redox

effects. As already outlined above in equation 2.1 and 2.2, these devices are essentially

based on electrochemically assisted oxidation and reduction processes. Thus, for a deep

insight into the processes involved during the device operation fundamental knowledge

of electrochemical oxidation and reduction (redox) processes is indispensable. Oxidation
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Figure 2.5. Linear voltage sweep while simultaneously measuring the current density
response. (a) Transient voltage signals for two different sweep rates ν1 > ν2. (b) Current
density response of the electrochemical system.

and reduction processes can be studied by linear voltage sweeps and simultaneously

measuring the current response of the electrochemical system. In this context, a widely

used method in electro chemistry is cyclic voltammetry (CV) [38], which is also an

integral part of the measurement techniques utilized in this thesis. Cyclic voltammetry is

not allowing very precise quantitative analysis. However, CV perfectly affords analyzing

trends as well as qualitative analysis, and is furthermore adequate to estimate material

parameters such as concentration or diffusion coefficients of mobile ions.

Considering a single electron transfer for simplification, the oxidation of a species S to

S+ can be written as:

S −−→ S+ + e− (2.4)

A linear voltage sweep from a potential E = E1 to E = E2 at a specific sweep rate

ν = dE/dt (cf. 2.5a) can result in a current response as depicted in figure 2.5b. E0
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is the formal potential denoted by the working electrode. Assuming a virgin cell no

significant electrochemical reaction is observed and only non Faradaic currents flow by

increase of the potential below E0. Beyond E0 the oxidation of S to S+ begins, resulting

in a significant increase of the current density. By further increase of the potential, and

thereupon of the driving force for oxidation, the concentration of S close to the electrode

drops and mass transfer of S from or into the electrolyte is limited by the diffusion. The

concentration depletion of S and the diffusion limitation results in an anodic (oxidation)

current density peak jp at the peak potential Ep. By further increase of the potential

the concentration of S stays depleted and the diffusion layer growths at a constant mass

transfer of the oxidizable species.

For cyclic voltammetry triangular potential pulses are now applied. The influence of

the vertex potential on the subsequent current response is negligible when E2 lies far

enough beyond the anodic current density peak. After the vertex potential is reached,

the driving force for oxidation is diminished and the previously oxidized S+ ions will

be reduced by decrease of the potential. Again, a diffusion limitation of the reducible

species results in a cathodic (reduction) current density peak. However, for quantitative

evaluation of cyclic voltammograms a new baseline for the current density is needed,

since the decaying anodic current density is superimposing the current for the cathodic

peak. Figure 2.6a depicts transient current responses during oxidation and reduction for

two sweep rates ν1 > ν2. In figure 2.6b complete cyclic voltammograms for ν1 > ν2 and

a single electron transfer are illustrated. The blue dotted line in figure 2.6b indicates

the current response of a virgin cell.
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Figure 2.6. Oxidation and reduction measured by applying triangular voltage sweeps. (a)
Transient measurement of the current during oxidation, (b) cyclic voltammetry (adapted
from [36]).
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The specific behavior of the electrochemical system depends instantly on the individual

kinetic of the electron transfer during the redox reaction and sweep rate. In general,

electrochemical redox systems can be classified in three different categories: (I) reversible

systems, (II) irreversible systems, and (III) quasi reversible systems [38]. The nomencla-

ture relates to the kinetic of the electron transfer in comparison to the sweep rate. In

this way, the term irreversible system does not imply that the oxidation or reduction of

a specific species is generally not reversible.

2.3.1. Reversible System

In case of a reversible system, also called Nernstian system, the kinetic of the electron

transfer compared to the diffusion rate is fast and the concentration of active species

close to the electrode follows immediately the ratio given by the Nernst equation (chapter

2.4) [36]:

E(x = 0, t) = E0 +
RT

zF
ln

cS+(x = 0, t)

cS(x = 0, t)
(2.5)

Here, E(x = 0, t) = E1 + νt is the transient working electrode potential at any time

t, R the universal gas constant, z the number of electrons transfered, T the absolute

temperature, F the Faraday constant, as well as cS+(x = 0, t) and cS(x = 0, t) the

concentration of oxidized and reduced species at the electrode, respectively. x is the

distance from the working electrode. The boundary condition for x = 0 and t > 0 can

be written as:

cS+(x = 0, t)

cS(x = 0, t)
= exp

(
zF

RT
(E1 + νt− E0)

)

(2.6)

With Fick’s second law and the diffusion coefficients DS+ and DS of the oxidized and

reduced species, respectively, the diffusion of S+ and S can be obtained:

dcS+

dt
= DS+

(
d2cS+

dx2

)

(2.7)

dcS
dt

= DS

(
d2cS
dx2

)

(2.8)

Using Fick’s first law the current density j holds:

j = −zFDS+

(
dcS+

dt

)

= zFDS

(
dcS
dt

)

(2.9)
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In the special case of an ideally reversible system a semi-infinite linear diffusion and no

electrochemical reaction at the potential E1 is assumed. A reversible system requires

that the concentration of oxidized ions S+ at the working electrode (x = 0) tends to zero,

while the concentration of S+ within the electrolyte (x → ∞) approaches the constant

(bulk) concentration cS,0. At any time t the boundary conditions for the concentration

of S+ and S for x = 0 and x → ∞ can be written as:

cS+(x = 0, t) = 0 (2.10)

cS(x → ∞, t) = cS,0 (2.11)

Now, the transient current density is given by:

j(t) = zFDS
dcS
dx

∣
∣
∣
∣
x=0

(2.12)

Based on the boundary conditions discussed above equation 2.12 can be solved, which

leads to the expression [39]:

j(t) = zFcS,0

√

πDS
zF

RT
ν · χ

(
zF

RT
νt

)

(2.13)

χ is a dimensionless current density function, which can be solved numerically [37]. The

graphical representation of χ is depicted in figure 2.7. A maximum of χ ≈ 0.4463 is

found at the peak potential Ep ≈ ±28.5/zmV (at room temperature).

Figure 2.7 Graphical representa-
tion of the dimensionless current
density function χ (adapted from
[36; 37]).
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This leads to the Randles-Sevcik equation for reversible systems, which describes the

current density peak as a function of the sweep rate ν:

jp = 0.4463 · zF · cS,0 ·
√

zFDS

RT
ν, (2.14)
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where jp is in A/cm2, cS,0 in mol/cm3, DS in cm2/s and the sweep rate ν is in V/s. The

Randles-Sevcik equation predicts a linear increase of the peak current density jp with
√
ν. At room temperature equation 2.14 can be simplified:

jp = 2.69 · 105 · z 3

2 · cS,0 ·
√

DSν (2.15)

For reversible systems the peak potentials Ep ≈ ±28.5/zmV for reduction and oxidation

are independent on the sweep rate [36]. The Randles-Sevcik equation is valid for both

reduction and oxidation. Nonetheless, the boundary conditions may not hold for thin

film electrolytes in general. However, in this case the Randles-Sevcik equation can be

used as a first approximation of electrolytic characteristics of thin films.

2.3.2. Irreversible System

In case of an irreversible system the electron transfer is slow in comparison to the

diffusion rate, so that the ion concentration at the electrode cannot follow the Nernst

equation. Thus, equation 2.6 is not valid anymore. To obtain notable Faradaic currents,

a potential far beyond E0 is needed. The current density can be written as:

j = zFDS ·
[
dcS(x, t)

dx

]

x=0

(2.16)

The solution of equation 2.16 follows in analogous manner to that described in section

2.3.1. Again, a closed solution for the current density cannot be given. However, based

on numerical integration the current density peak for irreversible systems at room

temperature can be written as [37]:

jp = 2.99 · 105 · z 3

2 · cS,0 ·
√

αDSν, (2.17)

where α ≈ 0.1...0.9 (typical values) is the dimensionless charge transfer coefficient. It is

remarkable that although the boundary conditions for reversible and irreversible systems

are not comparable, a similar equation for the current density peak jp in equation 2.16

and 2.17 can be found, respectively. However, in contrast to reversible systems the peak

potential Ep in irreversible systems shifts to the vertex potential by increase of the

sweep rate ν.
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2.3.3. Quasi Reversible System

A system is called quasi reversible when the current density depends both on the charge

transfer as well as diffusion limitation. This implies that depending on the sweep rate

the system is either dominated by the diffusion limitation (making the system more or

less reversible) or charge transfer (making the system more or less irreversible). However,

besides the kinetic of the electrochemical system itself high sweep rates resulting in

higher current densities may also result in a shift of the peak potential due to significant

ohmic loss effects in the electrolyte.

(a) (b) (c)

E

j

E
p

 

E

j

E

j

  

Figure 2.8. Cyclic voltammograms for different sweep rates ν1 < ν2 < ν3 in case of (a)
a reversible redox reaction, (b) a quasi reversible reaction and (c) an irreversible redox
reaction (adapted from [38]).

Figure 2.8 depicts exemplarily cyclic voltammograms of (a) a reversible system, (b) a

quasi reversible system, and (c) an irreversible system by variation of the sweep rate.

It is noteworthy that intercepts with the j-axis cannot directly be related to electrode

potentials in thermodynamic equilibrium. A general trend can be observed that an

electrochemical system may only yield reversible characteristics at small sweep rates

[37]. In contrast, at high sweep rates irreversible characteristics are observed. The quasi

reversible behavior is an intermediate state.

2.3.4. Multistep and Multielectron Charge Transfer Reactions

In chapter 2.3.1 to 2.3.3 a single electron transfer reaction is considered for simplification.

Physical systems typically show multistep and/or multielectron charge transfer reactions.

For example, in aqueous solutions dissociation of water can be observed resulting in

hydrogen or oxygen formation dominating the current density at higher potentials.

Additionally, the electrochemical active species itself can undergo multistep charge

transfer reactions. For example, copper can be oxidized to Cu+ or Cu2+ during one
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linear voltage sweep. Thus, for the case of multistep/multielectron charge transfer

reactions the current densities of each reaction are superimposed as illustrated in figure

2.9. For a quantitative analysis two baselines have to be obtained in order to measure

the precise current density peaks jp,1 and jp,2.

S ! Sz+ + ze-

P ! Pz+ + ze-

j
p,1

j
p,2

j

E

Figure 2.9 Multistep charge transfer reaction
of an oxidation process S −−→ Sz+ + ze− and
P −−→ Pz+ + ze−. The blue curve is the current
density j response of the electrochemical system
consisting of the superimposition of both partial
reactions (adapted from [37]).

2.4. Nonequilibrium States

Three origins of nonequilibrium states can be found, which are depicted in figure 2.10

[40]. A Nernst potential (see figure 2.10a) is formed due to a gradient of the chemical

potential of a certain species (e.g. neutral silver atoms) [37]:

VN = V 0 +
RT

zF
ln

(
aO
aR

)

(2.18)

Here, V 0 is the standard potential, R the universal gas constant, T the absolute

temperature, z the charge number, F the Faraday constant, and aO and aR the activity

of the oxidized and reduced species, respectively. The Nernst potential is further discussed

in section 2.4.1. In case of a concentration gradient of e.g. Ag+ and OH− ions a diffusion

potential (cf. 2.10b) is generated, which will be discussed in section 2.4.2. Since the

metallic filament in a ReRAM is considered as a nanosized phase an additional surface

energy term must be added to the chemical potential, resulting in the Gibbs-Thomson

potential as illustrated in figure 2.10c. The evidence of the Gibbs-Thomson potential

has been reported for Ag/GeS2.2/Pt cells [28]. In this case the emf corresponds to the

previously programmed metallic ON resistance RON after transition from an (unstable)

ON to OFF state, and thus, it depends on the geometry of the nanosized filament. It

should be noted that the contribution of the Gibbs-Thomson potential cannot be clearly

distinguished from the contribution of the diffusion potential in the systems discussed

in this work.
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Vemf = VN < 0
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Figure 2.10. Origins of nonequilibrium states in redox based resistive switches resulting
in an electromotive force voltage Vemf (redrawn from [40]). eϕ describes the electrostatic
potential. (a) Nernst potential VN given by electrochemical activity gradient of atomic silver
µAg, (b) concentration gradient of Ag+ and OH− ions resulting in a diffusion potential
voltage Vd, (c) the chemical potential of silver must be extended by an additional surface
energy term in case of a nanosized filament, resulting in the Gibbs-Thomson potential
VGT, and (d) the emf voltage cannot be measured in case of a metallic short circuit.
The interfaces electrode/electrolyte (insulator) and electrolyte (insulator)/electrode are
labeled by s’ and s”.

Depending on the operation nonequilibrium states are induced in ReRAMs based on at

least one of these three effects. These nonequilibrium states result in a measurable cell

voltage VCell, whose value depends both on the device operation and material properties.

In particular, the ionic and electronic transference number tion and te (defined by the

ionic and electronic partial conductivity σion and σe) strongly influence the measurable

cell voltage VCell (with tion + te = 1):

VCell = tionVemf =
σion

σion + σe

Vemf (2.19)

Here, ti = σi/
∑

j σj is the transference number of species i given by the quotient of

the conductivity σi and the total conductivity
∑

j σj. In this regard, tion is the ionic
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transference number, which is a sum of the transference numbers of all ionic species

participating to the emf. In case of a metallic short circuit (e.g. low resistive ON state

in ReRAMs, cf. 2.10d) te → 1 holds. Thus, in this case no emf voltage can be measured

according to equation 2.19.

2.4.1. Nernst Potential

A simple H2 partial pressure concentration cell, as depicted in figure 2.11, is a typical

example of an electrochemical system, where a Nernst potential can be observed. A

H+ conductor with electrode grids on both sides separates two half cells with different

hydrogen partial pressures pH2
I > pH2

II. The chemical potential gradient is a driving

force for H2 diffusion from half cell I to II. However, only protons are mobile within the H+

conductor. Hence, molecular hydrogen will be oxidized at the left electrode and protons

will be reduced to molecular hydrogen at the right electrode. The electrons involved in

this redox reaction are charging the electrode grids resulting in an electric field, which

will counter act the chemical potential difference, and as follows, an electrochemical

equilibrium is reached.

V
emf

V

H+ 

Conductor
pH

2

I pH
2

II

H
2 
 !2H+ + 2e- 2H+ + 2e-  !H

2 

2e- 2e-

Figure 2.11 Schematic of a H2 partial pres-
sure concentration cell with a concentration
gradient determined by the hydrogen partial
pressure in both half cells pH2

I > pH2
II.

It is sufficient to describe the redox reaction on each side i ∈ {I,II} of the concentration

cell by the chemical potential µH
2
,i since H2 is neutral [36]:

µH
2
,i = µ0

H
2
,i + kT ln aH

2
,i = 2µ̄H+,i + 2µ̄e,i, (2.20)

where k is the Boltzmann constant, T the absolute temperature, aH
2
,i the chemical

activity and µ0
H

2
,i the standard chemical potential of H2 on side i, respectively. The

charge number is z = 2 for H2.
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For gaseous reactants the chemical activity can be expressed by the partial pressure of

the reactant px, the standard pressure p0 and a dimensionless fugacity coefficient φx:

ax = φx
px
p0

(2.21)

The fugacity coefficient depends on the active species, and is thus, equal for both half

cells. The local electrostatic potential is the potential at the electrode E, i, respectively,

and can be expressed by the electrochemical potential of the electrons:

µ̄e,i = µe,i − eϕE,i (2.22)

Evidentiality, µe,I = µe,II when both electrodes are of the same material. Hence, the

potential difference is given by:

ϕE,I − ϕE,II =
µ̄e,II − µ̄e,I

e
(2.23)

With equation 2.20 it follows:

ϕE,I − ϕE,II =
1

2e
·
(
µH

2
,II − µH

2
,I

)
+

1

e
·
(
µ̄H+,II − µ̄H+,I

)
(2.24)

The concentration gradient of H+ ions and the electrical potential gradient within the

electrolyte is zero, and thus, µ̄H+,I − µ̄H+,II → 0. With Vemf = VN = ϕE,I − ϕE,II, and

equation 2.20 and 2.24 the electromotive force may be written as (z = 2):

Vemf = V 0 +
kT

ze
ln

(
pH2

II

pH2
I

)

(2.25)

Here, the standard potential is V 0 = 1/ (2e) ·
(

µ0
H

2
,II − µ0

H
2
,I

)

. In the case of a H2

partial pressure concentration cell V 0 = 0 due to the same reaction on both sides of the

electrolyte. Equation 2.25 is the Nernst equation, where the partial pressures can be

also replaced in a more general form by chemical activities. The hydrogen concentration

cell example can be applied for other electrochemical systems as well, where a gradient

of the electrochemical activity of a certain species is observed. For example, in case of

a Ag/AgI/Pt cell the electrochemical activity of silver at the Ag/AgI interface (s’) is

different from the AgI/Pt interface (s”). In this way, a Nernst potential is induced in

the cell.
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2.4.2. Diffusion Potential

Besides the Nernst potential a diffusion potential contribution to the emf voltage is

observed in case of excess concentrations of charged species [40]. In general, the diffusion

potential voltage Vd is given by [41]:

Vd = −kT

e

∑

i

∫ I

II

ti
zi

d ln ai (2.26)

Here, k is the Boltzmann constant, T the absolute temperature, e the elementary

charge, zi the charge number, ti the transference number and ai the activity of species i

(including ions and electrons), respectively. For the derivation of the diffusion potential

equ. 2.26 is integrated along the concentration gradients (e.g. I: high concentration, II:

low concentration). Figure 2.12 depicts two examples where the concentration gradient

of two species is in the same and opposite direction, respectively.

(a) (b)

c

x

NaOH

1 mol

NaOH

10-5 mol

C
Na+

C
OH-
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x

Ag Pt

C
Ag+ C

OH-

SiO
2

s' s''s' s''

Ag+ OH-

Figure 2.12. Example of the origin of a diffusion potential for two theoretical systems.
(a) Concentration profile for Na+ and OH– ions in case of a 1mol:NaOH/10−5mol:NaOH
solution system. The concentration of both ions is equal. The red and green arrows
indicate the diffusion direction of each species. Both anions and cations diffuse in the
same direction. (b) Concentration profile for Ag+ and OH– in case of a Ag/SiO2/Pt
ReRAM cell. Now, the concentration profiles are not in the same direction, and thus, the
directions of diffusion are opposed.

The situation of a 1mol:NaOH/10−5 mol:NaOH solution system is illustrated in figure

2.12a. Here, the concentration profile of Na+ and OH– ions is equal and the diffusion for

both species is in the same direction. Thus, the integration limits in equation 2.26 are

equal for both anions and cations. In this case, the contribution of Na+ and OH– would

be compensated. However, a small diffusion potential voltage is measured due to the

different mobility of each ion species.



22 2. Fundamentals

A different situation is given in figure 2.12b. As discussed in chapter 4.1, OH– acts

as a counter charge for the anodic oxidation of the silver electrode. Here, Ag+ and

OH– show opposite diffusion directions due to their concentration gradients. In this

case the integration limits I and II in equation 2.26 are different for each species. This

inhomogeneous charge distribution results in a diffusion potential voltage accounted

for Ag+, OH– and e− (not shown in fig. 2.12b). In case of a Ag/SiO2/Pt ECM cell

the average of the total ionic transference number is given by t̄ion = t̄Ag+ + t̄OH− with

zAg+ = +1, zOH− = −1 and ze− = −1 [28]. Thus, the diffusion potential voltage may be

written as:

Vd = Vd,Ag+ + Vd,OH− + Vd,e− (2.27)

⇒ Vd =
kT

e
·
(

−t̄Ag+ ln

(
aAg+

)

s’(
aAg+

)

s”

− t̄OH− ln

(
aOH−

)

s’(
aOH−

)

s”

− t̄e− ln
(ae−)s’
(ae−)s”

)

(2.28)

Experimental results on nonequilibrium states are given in chapter 4.3. Furthermore,

the impact of the Nernst potential (equation 2.25) and the diffusion potential (equation

2.28) on ReRAMs are discussed in chapter 5.2.



3. Experimental

In this chapter the experimental methods used within this work are outlined. This includes

the fabrication processes covering thin film deposition, and pattern transfer using UV

lithography and reactive ion etching. Special attention is paid to the analytical methods,

which were primarily used in the context of this work. Nondestructive measurement

techniques such as X-ray Diffraction (XRD) are used to investigate the structure and

crystallographic properties of the deposited thin films. Furthermore, the electrical

characterization of the fabricated samples is certainly of major importance. Besides

the experimental techniques introduced in this chapter, additional methods such as

Rutherford Backscattering Spectroscopy (RBS), X-ray Photo Electron Spectroscopy

(XPS) and Atomic Force Microscopy (AFM) were also used. Detailed information on

these techniques can be found in the corresponding literature (e.g. [42–45])

3.1. Fabrication Processes

3.1.1. Physical Vapor Deposition (PVD)

For thin film fabrication Physical Vapor Deposition (PVD) was used within this work

covering direct current (DC) and radio frequency (RF) sputtering, electron-beam (e-

beam) evaporation and thermal evaporation. While Chemical Vapor Deposition (CVD)

methods (and in particular Atomic Layer Deposition, ALD) are commonly used in

semiconductor industry, PVD is typically used in ReRAM research due to ease of sample

fabrication. Nevertheless, sputtering and evaporation are state of the art technologies for

thin film deposition, and are thus, only briefly introduced. For sputtering and e-beam

evaporation a Cluster Tool 500 ES by von Ardenne was used as depicted in figure 3.1.

The tool is equipped with an e-beam evaporation chamber, a sputter chamber and a

transfer chamber, which allows to fabricate in situ SiO2 and Pt thin film stacks without

breaking the vacuum. The process tool offers four positions to store substrates in vacuum

(P1 to P4), four sputter positions (DC1, DC2, RF and ISE) and one e-beam evaporation

position (EB). Wafers can be transfered from each position using a robotic arm.
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Sputtering

The term sputtering denotes ejecting material from a sputter target, which is subsequently

deposited onto a substrate. Depending on the material used as target two categories of

sputter deposition can be distinguished: direct current sputtering (used for metals) and

radio frequency sputtering (used for any material but mainly for semiconductors and

insulators). During DC sputtering a sputter gas (e.g. argon) is injected into a high vacuum

chamber. By applying an electric field between the cathode (target) and anode (substrate)

the sputter gas is ionized and the positively charged ions are accelerated towards the

target under the electric field, and ballistically eject target material. Subsequently, the

ejected material condenses onto the substrate. The deposition rate can be increased by

increase of the sputter power and decrease of the chamber pressure. At high pressure,

target material will collide with gas atoms more easily resulting in a lower deposition

rate. However, at high deposition rates the thin film quality (e.g. surface roughness)

degrades. Therefore, high pressure DC sputtering (about 10−3 hPa to 10−2 hPa) was

used within this work.

Wafer/

Substrate

E-Beam 

Evaporation

Transfer

Chamber

Sputter

Chamber

N
2

N
2

XTL

Figure 3.1. Schematic of the Cluster Tool 500 ES by von Ardenne. The 6” high vacuum
process tool is equipped with an e-beam evaporation chamber, a sputter chamber and a
transfer chamber. The Inverse Sputter Etching (ISE) position is not used in this work.

The above described sputter process can be only utilized for conducting materials such as

platinum. When semiconductors or insulators are sputtered the target being collided by

sputter gas ions cannot be discharged. Thus, charging of the target results in an electric

field counter acting the applied electric field, which suppresses the sputter deposition. In

this case, radio frequency sputtering is used for materials such as SiO2. The alternating
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electric field avoids charging up of the target material. When the frequency of the electric

field is high enough, the ions in the gas phase cannot follow the electric field due to

their mass inertia. By applying a bias voltage the gas ions can be accelerated towards

the target and eject material without charging up the target. The subsequent sputter

deposition is similar to the DC sputter process.

In addition to the electric field a magnetic field is applied in case of magnetron sputtering.

The magnetic field results in circuitous path carved by electrons enhancing the probability

of ionizing sputter gas atoms by several orders of magnitude. This increases the deposition

rate significantly. Sputtering can be also used for plasma etching. In this work a Reactive

Ion Etching (RIE) tool (by Roth und Rau) was used for plasma etching. Details on this

technique and process parameters can be found in [46].

Electron-Beam and Thermal Evaporation

Electron-beam and thermal evaporation have in common that in high vacuum (typically

between 10−7 hPa to 10−5 hPa) a source material within a crucible is vaporized (by

either a focused electron-beam or a heating coil). Atoms or molecules from the source

material are evaporated and subsequently precipitate on the substrate. The thickness and

deposition rate is typically controlled by a quartz oscillator (XTL). E-beam evaporation

and thermal evaporation can be used both for metals, and semiconducting and insulating

materials. In the particular case of silver iodide (chapter 4.2) thermal evaporation is

used since AgI can be reduced by the electron-beam. Based on the vapor pressure

the evaporation temperature TB can be estimated by a fit function (cf. 3.2). For AgI

the temperature for thermal evaporation is below 300 ◦C. The current for evaporation

of AgI is in this case close to the lower limitation of the equipment. Therefore, the
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control of the evaporation speed is sophisticated. However, an advantage of e-beam and

thermal evaporation is that the kinetic energy of the source material precipitating on

the substrate is much lower in comparison to sputtering methods.

3.1.2. Pattern Transfer

Primarily, conventional (optical) UV lithography is used for pattern transfer. Thereby, a

UV light sensitive photo resist polymer is deposited by spin-coating onto the substrate

(with a thickness of ≈ 1.4µm) and exposed to UV light after heating and drying. A

photo-mask is in contact to the photo resist during UV light exposure. Depending on

the process flow the resist in the illuminated areas will be either removed (positive

lithography), or remains (negative lithography) after exposure and development. Finally,

pattern transfer is done either by a subtractive pattern transfer process (e.g. using a

Reaction Ion Etching tool) or a simple lift-off (e.g. in acetone), depending whether a

positive or negative lithography process is used, respectively. For UV lithography a Suss

Microtech Maskalinger MA 6 (UV wavelength 365 nm) is used. More details on the UV

lithography process steps used within this work can be found in [35; 46; 49], and on UV

lithography in general in [50]. The fabrication processes for nano crossbar devices is

described in [51].

3.2. Characterization Methods

3.2.1. Morphology and Stoichiometry Analysis

Thin film morphology was mainly analyzed using a Veeco CP-2 Atomic Force Microscope

(AFM) in noncontact mode and a Zeiss 982 Gemini digital Scanning Electron Microscope

(SEM). In case of silver iodide thin films, the electron-beam of the SEM affects the

morphology and stoichiometry of the thin films and therefore, an AFM is more suitable

for morphology analysis.

Analysis of stoichiometry requires various methods including Rutherford Backscattering

Spectroscopy (RBS) and X-ray Absorption Spectroscopy (XAS). XAS measurements

were performed at the A1 beam line at DORIS III (Deutsches Elektronen-Synchrotron,

DESY, Hamburg) and at the 11A1 beamline at Taiwan Light Source. Additionally,

impurities were analyzed using Energy Dispersive X-ray Spectroscopy (EDX) using the

Zeiss 982 Gemini digital Scanning Electron Microscope. Moreover, injected Cu ions in

SiO2 were analyzed by X-ray Photo Electron Spectroscopy.
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X-ray Diffraction (XRD)

The crystallographic structures of thin films were investigated by X-ray Diffraction, which

utilizes the interference spectrum of a X-ray beam. When X-ray waves are reflected at the

crystal lattice planes, the different path lengths of reflected waves lead to constructive

and destructive interferences. This interference spectrum depends on the crystallographic

structure and orientation of the thin film, the distance of lattice planes in the crystals,

and the angle of incidence. A simple schematic of a XRD measurement is depicted in

figure 3.3a.
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Figure 3.3. (a) Principle of X-ray Diffraction. The interference spectrum depends on the
crystallographic characteristic of the thin film and the incident angle Θ. (b) Crystalline
response of a platinum thin film on (100) orientated silicon.

A relation between the X-ray wave lengths, the crystal lattice plane distance dhkl

(where hkl are the Miller indices), the incident angle Θ and the order n of constructive

interference is given by Bragg’s Law [52]:

n · λ = 2dhkl · sinΘ (3.1)

By comparing the resulting XRD peaks with reference data, different crystalline stoi-

chiometric phases can be distinguished. XRD spectra are measured using a X’Pert Pro

diffractometer (by PANalytical) in Θ–2–Θ geometry. Since the XRD tool is not equipped

with a monochromator, a nickel filter is used to suppress the X-ray tube characteristics.

However, crystalline responses with high intensity can lead to secondary peaks being a

measurement artifact. Figure 3.3b shows exemplarily the crystalline response of a 100 nm

thick platinum film on (100) orientated silicon. The X-ray diffractometer is furthermore

equipped with an Anton Paar XRK 900 thermal processing chamber allowing to heat
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the sample at a constant rate of 4K/min, while simultaneously monitoring crystalline

responses in ambient atmosphere. The peak positions of the XRD diffractograms are

evaluated using the PANalytical High-Score software.

X-ray Reflectivity (XRR)

X-ray Reflectivity is a powerful measurement technique to analyze thin film thicknesses

between 2 nm and 100 nm with an accuracy of typically down to 0.1 nm. Moreover,

thin film roughness as well as density with a precision of up to 1% can be measured.

A schematic of a XRR measurement is illustrated in figure 3.4a. For XRR, a grazing
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Figure 3.4. (a) Schematic of a X-ray Reflectivity measurement setup and (b) XRR scans
of wet-thermally oxidized SiO2 and e-beam evaporated SiO2.

incident angle is used. At Θ = Θc total reflection is observed, whereas Θc corresponds

to the thin film density. For Θ > Θc oscillations can be detected. These oscillations can

be attributed to reflections of X-rays at interfaces and at underlying layers resulting in

constructive and destructive interferences. Thus, the period of oscillations ∆Θ allows

calculating the thin film thickness. By further increase of the reflection angle the intensity

of the oscillations is decreasing due to the interface roughness.

Typical XRR scans for wet-thermal oxidized SiO2 (thickness 450 nm) and e-beam

evaporated SiO2 (thickness 30 nm) are shown in figure 3.4b. The thickness of the wet-

thermal oxidized SiO2 film is too high for XRR and oscillations are suppressed. However,

the critical angle Θc can be used to calculate the film density. In contrast, the e-beam

evaporated SiO2 film shows pronounced oscillations.
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XRR allows to analyze multilayer thin film stacks as well. Nonetheless, interpretation

of XRR scans is usually sophisticated. Software tools such as PANalytical X’Pert

Reflectivity are used to simulate the sample stack.

3.2.2. Electrical Characterization

Electrical characterization covers measurement techniques such as leakage current

measurement, current-voltage sweeps (I/V switching curves and cyclic voltammetry, CV)

and AC impedance spectroscopy. Leakage current measurements and potentiodynamic

current-voltage sweeps are typically performed using a Keithley 6430 Subfemto Remote

Source Meter, which allows to apply triangular voltage sweeps. Details on the waveform

and background on the measurement technique can be found in [35; 49; 53; 54].

Using a triaxial measurement setup currents between < 0.01 pA and 105mA can be

measured with a sweep rate from 1mV/s to 4V/s (depending on the integration time

of the specific current range). The triaxial setup allows to decrease the effective cable

capacity by a factor of 10−4 to 10−5. Although the source meter can automatically

adjust the measurement range, a preset current and voltage range is recommended

to avoid switching between different ranges and to adjust a constant sweep rate. The

specifications of the Keithley source meter can be found in [55]. In case of resistive

switching experiments a current compliance is needed to avoid damage of the memory

cell in the low resistive state. To suppress thermal effects [25], low current compliances

between 1 nA and 10µA were mainly used. In addition to the trixial measurement setup,

all measurements have been performed in a radio frequency shielded setup.

Resistive Switching

Figure 3.5 shows the resistive switching characteristics of a Ag/AgI/Pt micro crossbar

cell (see chapter 5). The current response is given by the black curve, while the cell

voltage VCell during I/V sweeping is depicted by a red curve. Arrows indicate the

sweeping direction. The applied voltage VAppl is the voltage sent to the source meter by

a computer. VCell = VAppl holds as long as the current is below the current compliance

ICC (a). When the cell switches from the high resistive state to the low resistive state,

the effectively applied cell voltage is regulated to adjust the preset current compliance

(b) to (d) despite VAppl. For low cell voltages, a linear slope of the current versus cell

voltage is observed when the current is below the current compliance level. In this case

and during RESET the applied voltage and cell voltage are equal again ((e) and (f)).
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Figure 3.5. Resistive switching of a Ag/AgI/Pt micro crossbar cell. The current is given
as black curve, while the effectively applied voltage to the cell is shown as red curve.
As soon as the cell switches to the ON state, the source meter switches from voltage to
current driven mode.

A current compliance measurement is depicted in figure 3.6. Here, a voltage pulse of 2V

is applied. Within a few hundred microseconds the current is regulated to the current

compliance ICC = 50 nA. However, a significant current overshoot of up to 105 nA is

detected. This current overshoot can drastically affect the switching behavior of the cell

and is a potential reason for device degradation.

Figure 3.6 Current compli-
ance overshoot experiment. A
current compliance of ICC =
50nA is applied and a current
overshoot of up to 105 nA is
recorded.
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Cyclic Voltammetry

For cyclic voltammetry of SiO2 based cells, sweep rates between 1mV/s and 4V/s and

current ranges of 0.1 nA to 1µA were used. The vertex potentials were set to ±2V in case

of Cu, and ±1.2V...1.5V in case of Ag to avoid resistive switching at higher voltages. The

voltage and current transients and the corresponding cyclic voltammograms are shown

in figure 3.7a,b using a Cu/SiO2/Pt cell with sputtered silicon dioxide (see chapter 4.1).

A current compliance is not needed since the current is limited by the electrochemical

behavior of the cell and the cell remains in the high resistive state.
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Figure 3.7. Cyclic voltammetry of a Cu/SiO2/Pt cell using sputtered silicon dioxide
(Cu electrode diameter d = 100µm). The sweep rate is set to 10mV/s. (a) Voltage and
current transients during cycling. (b) Corresponding cyclo voltammogram.

For cyclic voltammetry non polarizable reference electrodes are typically used and

the electrode potentials are related to reference potentials. For example, a common

reference electrode for liquid electrolytes is the standard hydrogen electrode (SHE). The

reversible hydrogen electrode (RHE) or more practically the silver chloride electrode

(Ag/AgCl/KCl) [36; 37] are often used as well. However, due to the sample geometry

the placement of a reference electrode is not as simple as for liquid electrolytes in case

of solid thin films [56; 57], and in particular even more complicated for high resistive

thin films such as SiO2. Despite that several approaches for solid thin film reference

electrodes have been reported (e.g. [58; 59]), an approved and standardized reference

electrode technique is still missing. Thus, in the context of this work a two-electrode

setup is used, where the potential of the counter electrode (e.g. Pt) has been used as

a quasi-reference electrode. Therefore, the impact of ohmic losses in the electrolyte

has to be considered [56] when interpreting measurement results and identifying peak
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potentials to specific electrochemical reactions. Alternatively, additional experimental

verifications (such as XAS or XPS) can be used to overcome this drawback.

Short Voltage Pulse Measurements

For short pulse measurements, with pulse lengths between 50 ns and 1 s, a Wavetek 100

MHz Synthesized Arbitrary Waveform Generator (model 395) was used. Pulse voltages

between 70mV to 2V were applied. Transient current and voltage signals were recored

by a Tektronix TSD 684A digital oscilloscope (1 GHz bandwidth). The voltage signal

was measured by a 50Ω coupled input in parallel to the sample (DUT, device under

test) to suppress RF reflections. The input impedance (1MΩ coupled input) for the

current signals acts as a simple current/voltage converter and series resistor to limit the

current in the low resistive ON state.

3.3. Material Characterization and Sample

Preparation

3.3.1. Silicon Dioxide

Silicon dioxide is deposited by physical vapor deposition using either radio frequency

sputtering or electron-beam evaporation. In both cases amorphous SiO2 thin films are

prepared. Nevertheless, morphology, film density and roughness depend on the deposition

technique and parameters. Both sputtered and evaporated SiO2 show similar electrical

and electrochemical characteristics, respectively, and resistive switching can be observed

in all fabricated Ag(Cu)/SiO2/Pt devices. However, e-beam evaporation offers some

benefits compared to RF sputtering, such as ease of thickness control using a quartz

micro balance during evaporation and lower kinetic energy for deposition. Therefore,

SiO2 was mainly deposited by e-beam evaporation.

Thin Film Stoichiometry

The chemical composition of the deposited thin films was analyzed using Rutherford

Backscattering Spectroscopy as depicted in figure 3.8a for e-beam evaporated and 3.8b

sputtered silicon dioxide. In both cases the simulations of stoichiometric SiO2 fit well to

the measured spectra. Impurities of copper or silver have not been found.
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Figure 3.8. Rutherford Backscattering Spectroscopy of (a) 120 nm e-beam evaporated
silicon dioxide and (b) 215 nm rf sputtered SiO2. In both cases the measurements fit to
simulations of stoichiometric SiO2.

Thin Film Density and Morphology

X-ray Reflectivity scans of e-beam evaporated and sputtered SiO2 are shown in figure

3.9a. For comparison the XRR signal of a silicon wafer after wet-thermal oxidation

is depicted as well. The film density ρ is of particular interest since the amorphous

structure on the nanoscale is believed to have an impact on the cation mobility. ρ can
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Figure 3.9. X-ray Reflectivity of (a) wet-thermal oxidized, e-beam evaporated and
sputtered SiO2, and (b) e-beam evaporated SiO2 after temperature annealing. The
thickness of the wet-thermal oxidized SiO2 layer is 450 nm and of the e-beam and
sputtered thin films between 15 nm and 30 nm, respectively.

be calculated by the critical angle Θc. Based on a XRR simulation (not shown) the

thin film density of both e-beam evaporated and sputtered SiO2 equals ρ = 2.2 g/cm3,



34 3. Experimental

which fits to the literature value of amorphous SiO2 (ρRef = 2.23 g/cm3, [60]) and to the

density of wet-thermally oxidized silicon dioxide.
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Figure 3.10. Atomic Force Microscopy of a 30 nm thick e-beam evaporated SiO2 thin
film on (a) a SiO2/Si substrate and (b) a Pt/TiO2/SiO2/Si substrate.

Figure 3.9b shows XRR scans of e-beam evaporated SiO2 after thermal annealing for 1 h

in air at different temperatures (30 nm SiO2 at RT = room temperature, 15 nm SiO2 at

200 ◦C to 800 ◦C). In contrast to a previous work on resistively switching silicon dioxide

[35], the critical angle does not shift to higher values, and as follows, an increase of the

thin film density cannot be observed. Notwithstanding, a change of the density for a

temperature range between 20 ◦C and 800 ◦C is questionable, because the as-deposit

density is ρ = 2.2 g/cm3, which is already close to ρRef of amorphous silica. The thin

film roughness of e-beam evaporated SiO2 was analyzed using Atomic Force Microscopy.

A roughness of rRMS ≈ 0.9 nm has been estimated on a SiO2/Si substrate (figure 3.10a)

and rRMS ≈ 2.4 nm on a Pt/TiO2/SiO2/Si substrate (figure 3.10b), respectively. This

roughness fits to XRR measurements for e-beam evaporated SiO2.

3.3.2. Silver Iodide

Silver iodide is a crystalline silver cation conductor offering a high ion conductivity.

At room temperature the β- and γ-AgI phase are thermodynamically stable. A phase

transformation to superionic conducting α-AgI can be observed above 147 ◦C for bulk

silver iodide [61; 62]. Although bulk AgI is a well known Ag+ ion conductor, in nanoscale

dimensions the morphological and electrochemical characteristics (especially the resistive

switching properties), and its stoichiometry has not been analyzed in detail yet.
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Thin Film Stoichiometry

The crystalline structure of AgI thin films can be easily analyzed by X-ray Diffraction.

This technique enables to distinguish between α-AgI, β-AgI and γ-AgI. AgI samples were

heated from room temperature up to 600 ◦C (constant temperature ramp of 4 ◦C/min),

while the crystalline response was simultaneously measured in a Θ-2-Θ geometry, in order

to analyze the phase transition between γ-/β- and α-phase AgI thin films deposited on

silicon wafers. The corresponding XRD profiles are shown in figure 3.11a.
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Figure 3.11. XRD profiles of a AgI thin film deposited on a silicon wafer simultaneously
measured during increase of the sample temperature indicating a phase transition at
T ≈ 145 ◦C.

At room temperature the observed peak (A) at 2 ·Θ = 23.67 ◦ corresponds to the (111)

γ-AgI phase [63] and a thorough analysis reveals that the β-AgI phase concentration

is below 1% [64] (see chapter 4.2.2). At an ambient temperature above T > 145 ◦C a

phase transition to the α-AgI phase is observed, which is revealed by the peak (B) at

2 ·Θ = 24.69 ◦, and fits well to literature values [61; 62]. Additionally, a high temperature

peak for T > 526 ◦C (C) at 2 · Θ = 43.89 ◦ is recorded. However, the identification of

peak (C) is unclear. It can be attributed both to a β-AgI or more probably to a AgO

phase.
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In conclusion, (poly-) crystalline stoichiometric AgI thin films have been deposited and

the characteristic phase transition to the high temperature phase of AgI is observed

at about T ≈ 145 ◦C. Besides a potential decomposition of the thin film at high

temperature (T > 526 ◦C), nonstoichiometric crystalline phases have not been observed.

Nonetheless, XRD profiles do not reveal the existence of amorphous nonstoichiometric

phases. Therefore, X-ray Absorption Spectroscopy measurements have been performed

in a detailed study (see chapter 4.2.2) revealing a high chemical stability of Ag on the

deposited AgI thin films. This indicates the absence of nonstoichiometric amorphous

phases.

Thin Film Density and Morphology

Besides the chemical composition of the deposited AgI thin films analyzed by XRD, both

thin film density and morphology are of high importance for device performance. The

morphology of a deposited AgI thin film measured by Atomic Force Microscopy is shown

in figure 3.12a. The comparatively high roughness of rRMS ≈ 5.3 nm (rRMS ≈ 4.6 nm

based on the XRR measurement) is contributed to the evaporation method. As the

evaporation temperature of AgI is below 300 ◦C in high vacuum (cf. 3.2), the control of

the evaporation speed is difficult. This may result in a temporary high evaporation speed,

and thus, a poor thin film roughness. Additionally, the adhesion of AgI especially on Pt,
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Figure 3.12. AgI thin film morphology and density analysis. (a) Atomic Force Microscopy
scan of a deposited AgI thin film on Si revealing a high roughness of rRMS ≈ 5.3 nm
(rRMS ≈ 4.6 nm based on the XRR measurement). (b) XRR measurement of a AgI thin
film (intended thickness 20 nm) on a silicon substrate. The measurement is compared to
a simulation of a 23.8 nm thick AgI layer. The thin film density ρAgI can be calculated by
measuring the critical angle (see section 3.2.1).
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Si, TiO2 and SiO2 is rather poor. This could further contribute to the high rRMS value.

Further experiments are required to optimize the thin film quality including alternative

deposition methods such as Pulsed Laser Deposition (PLD).

The film density ρAgI has been measured by XRR (see figure 3.12b). Based on the critical

angle a density of ρAgI = 4.4 g/cm3 has been found, which is smaller than the literature

value of bulk AgI (5.667 g/cm3 [65]). A reason for the deviation of ρAgI from the literature

value could be a porous structure of the AgI thin film due to the evaporation conditions.

Pattern Transfer

Silver iodide is sensitive towards UV light, electron-beams and many chemicals including

TMAH (Tetramethylammonium hydroxide), which is required for UV lithography and

pattern transfer. Moreover, the adhesion of AgI thin films on SiO2, Si, TiO2, and Pt is

poor. Though, conventional pattern transfer is unfeasible, pattering of micro crossbars

and even nano crossbars can be realized when the AgI/Ag layers are deposited as the

last critical process step during device fabrication.

Thermal 

Evaporation AgI

E-Beam 

Evaporation Ag

Lift-Off

Resist

UV Lithography

Subtractive Pattern

Transfer

UV Lithography

Top Electrode pattern

Figure 3.13. Flow chart of the pattern transfer for AgI based micro crossbars [54].

In [54] a fabrication method for micro crossbars is presented, which can be easily

adapted for nano crossbars without making use of shadow masks (which typically limits

scaling down the lateral dimensions). The process flow chart is shown in figure 3.13 for

micro crossbars. At first, the Pt bottom electrodes are fabricated by conventional UV

lithography or nano imprint technology, followed by subtractive pattern transfer using

a Reactive Ion Etching tool or a Reactive Ion Beam Etching (RIBE) tool. In case of

conventional ReRAM device fabrication the subsequent step would be the deposition of
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the electrolyte, i.e. silver iodide. However, following treatments may result in crucial

impact on the AgI thin film. To avoid potential thin film damages the pattern for the top

electrode is directly transfered either by UV or e-beam lithography to the etched bottom

electrode. Subsequently, the AgI thin film and the actual Ag top electrode metal are

deposited by thermal and e-beam evaporation, respectively, making use of the strongly

anisotropic deposition characteristics. Finally, the device fabrication is completed by a

lift-off in acetone, isopropanol and water. The lift-off step is crucial and needs to be act

with caution.



4. Redox Processes in Thin Films

4.1. Cations in Insulators: Silicon Dioxide

Silicon dioxide is an insulating material, and widely used in nanoscale devices and

information technology. Despite that SiO2 is electrically insulating, electrochemical

redox reactions of Cu/Cuz+ (charge number z) as well as Ag/Ag+ at the interface with

SiO2 thin films can be observed. These redox reactions are analyzed in the following

chapter using cyclic voltammetry and spectroscopic techniques such as XPS and XAS.

Special attention is paid to the kinetics of the redox reactions, particular half cell redox

reactions and cation diffusion behavior. Of high importance are nonequilibrium states,

which are inherently induced during operation of redox based resistive switches. These

nonequilibrium states result in a nanobattery effect, which is discussed in section 4.3.

4.1.1. Anodic Oxidation and Cation Diffusion Behavior

By applying a positive voltage between the active electrode (e.g. Cu or Ag) and inert

electrode (e.g. Pt), anodic oxidation of the active electrode takes place and cations (e.g.

Cu+) are penetrating into the insulating SiO2 thin film. Without limitation of the voltage

and/or time the injected ions are reduced at the inert electrode and form a filament,

and the cell switches to a low resistive state. However, when the voltage amplitude

during a voltage sweep is limited to avoid resistive switching, redox processes prior to

the switching event can be observed (see also chapter 5.1.1). These sweep experiments

are further denominated as cyclic voltammetry (CV). A typical cyclic voltammogram

for a Cu/SiO2/Pt cell is shown in figure 4.1. Here, the Cu oxidation appears to be the

preceding process enabling the first resistive switching event, which is observed without

voltage limitation (not shown). The current during the redox reaction depends on the

electrode area and therefore, the current density is plotted in the following figures.

The observed current peaks are associated to redox reactions of the Cu electrode [53].

Despite that current peaks are clearly shown, a major disadvantage here is the missing

reference electrode typically used for cyclic voltammetry experiments. This is due to the

nanoscale vertical dimensions and comparatively high lateral insulator resistance (see
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Figure 4.1 Cyclic voltammetry of a
Cu/SiO2/Pt cell (Cu top electrode
diameter d = 150µm) [53]. By lim-
itation of the voltage amplitude to
avoid resistive switching, redox pro-
cesses prior to the switching event
can be analyzed. Arrows and labels
indicate the direction of the sweep.
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chapter 3.2.2). Nevertheless, CV curves give qualitative information and trends of the

electrochemical system. In this way, the redox reactions depicted in figure 4.1 can be

interpreted as follow: Cu is initially oxidized by applying a positive voltage between the

Cu and Pt electrode (A). As the voltage further increases more Cuz+ ions are formed by

anodic oxidation resulting in an increase of the current (B). The oxidized Cu ions are

injected into the SiO2 thin film under the concentration and electrical field gradients.

After the vertex potential is reached, the current decreases because the driving force

of the oxidation process is reduced (C). At V ≈ 0.85V a reduction of the oxidized Cu

ions is starting to take place (D). By further decrease of the applied voltage a reduction

current density peak jp at Vp ≈ −0.72V is observed. Here the concentration of Cu

ions close to the Cu electrode is strongly decreased and the current is limited by the

diffusion of Cu ions (injected into the SiO2 thin film during oxidation). In this case the

reduction cannot take place at the Pt electrode due to the voltage polarity. In contrast,

injected Cu ions are reduced at the active electrode. The second peak (G) V ≈ −1.6V

is associated to a direct Cu2+ to Cu reduction or to a partial Cu2+ to Cu+ reduction. As

soon as the driving force of the reduction is diminished, the absolute current decreases

(H) while a second current zero crossing is observed at −1.1V (I). During the reverse

sweeping anodic oxidation is observed although a voltage of less than 0 V is applied (J).

Hence, the initial curve and second curve do not overlap for V = 0. Without an initial

sweep in the positive direction, a current density peak jp in the negative voltage regime

has not been observed because there are no Cu ions which can be reduced.

Typical CV measurements with variable sweep rates ν are shown in figure 4.2a [53].

The current peaks increase by increase of the sweep rate, and simultaneously, the peak

potential Vp shifts to more negative values, indicating an inhibited charge transfer

controlled electrode reaction [37]. In case of an inhibited charge transfer, the reduction

peak current density jp can be estimated at room temperature based on the Randles-
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Figure 4.2. Kinetics of anodic Cu oxidation [53]. (a) Cyclic voltammorgrams by variation
of the sweep rate ν. (b) Reduction peak jp vs. ν1/2.

Sevcik equation (see chapter 2.3.1 and 2.3.2). Thus, a linear relation of jp versus ν1/2

is expected, which is shown in figure 4.2b. At a sweep rate below ≈ 30mV/s the

interpretation of CV curves becomes difficult as more than one reduction and oxidation

peaks are observed, which can be attributed to partial redox reactions of different Cuz+

species.
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Figure 4.3 Cyclic voltammetry of a
Ag/SiO2/Pt cell (Ag top electrode diame-
ter d = 150µm). Analogous to Cu/SiO2/Pt
cells, Ag based cells also show redox reac-
tions during cyclic voltammetry. However,
the voltage amplitude is reduced since the
electroforming and SET voltages for resis-
tive switching of Ag/SiO2/Pt cells are typi-
cally smaller than for Cu/SiO2/Pt cells.

Figure 4.3 depicts a typical cyclic voltammogram for a Ag/SiO2/Pt cell. Though, the

voltage amplitude is limited compared to Cu/SiO2/Pt cells, since the electroforming and

SET voltages for resistive switching of Ag/SiO2/Pt cells are typically smaller compared

to Cu based cells, redox reactions of Ag/Ag+ can be clearly observed. However, the

following sections are mainly focused on Cu/SiO2/Pt, since the redox current response

is higher compared to Ag based systems and Cuz+ ions can be easier detected by further

analysis methods such as XPS.
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Ion Concentration and Diffusion Coefficient

The ion concentration cion can be derived by the integration of charge from cyclic

voltammograms. Afterwards, the diffusion coefficient D can be calculated based on cion

and the Randles-Sevcik equation (see chapter 2.3.1) for reversible systems

jp = 2.69 · 105 · z 3

2 · cion ·
√
Dν, (4.1)

and

jp = 2.99 · 105 · z 3

2 · cion ·
√
αDν (4.2)

for irreversible systems (see chapter 2.3.2) at room temperature for a specific sweep

rate ν. In the particular case of a Cu/SiO2/Pt cell, the charge number of Cuz+ ions

can be z = 1, 2 while for Ag/SiO2/Pt cells the charge number of Agz+ ions is z = 1.

As discussed below, z = 2 is assumed for Cu/SiO2/Pt cells as the dominating ion

species. The ion concentration is given by the concentration of cations cCuz+ and counter

charge(s) (e.g. cOH− , see section 4.1.3), i.e. cion = cCuz+ + cOH− .
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Figure 4.4. Ion concentration for a Cu/SiO2/Pt cell. [66] (a) The ion concentration cion
is calculated by the total charge Q and cell geometry. Q is given by the integration of
the current during anodic oxidation. (b) Ion concentration depending on the sweep rate.
At high sweep rates less time is available for anodic oxidation resulting in a lower ion
concentration.

The ion concentration cion is estimated by integration of the current during anodic oxida-

tion (assuming the total current is ionic) as shown in figure 4.4a (here for Cu/SiO2/Pt)

and ν = 34mV/s. cion depends on ν as depicted in figure 4.4b for a Cu/SiO2/Pt cell and

4.5a for a Ag/SiO2/Pt cell. The ion concentration decreases by increase of ν, which can

be contributed to shorter time for oxidation during the voltage sweep. At low sweep rates
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sufficient time is available for oxidation of the active electrode, and thus, cion is high.

Based on equation 4.2 the diffusion coefficient D (in cm2/s) can be calculated (assuming

a charge transfer coefficient α = 0.5 [53]). The estimation of D is complicated when

more than one reduction current density peak is clearly observed (below ν ≈ 30mV/s

for Cu/SiO2/Pt cells). In this case the dominating peak is used for a first approximation

of D.

(b)(a)

c
ion

 ! 10-4 [mol/cm3]

0 0.5 1 1.5 2

D
 [

c
m

2
/s

]

10-14

10-13

10-12

10-11

10-10

 
 
Ag+ Measurement

Fit

Sweep Rate   [V/s]

c
io

n
 !

 1
0

-4
 [

m
o

l/
c

m
3
]

0.01 0.1 1 10

0.5

1.5

1

2

 
 
Ag+ Measurement

Fit
0

Figure 4.5. (a) Ion concentration cion for a Ag/SiO2/Pt cell versus sweep rate ν. cion is
smaller for Ag than for Cu based cells. (b) Diffusion coefficient D for Ag+ ions in SiO2.
D is significantly smaller compared to Cu based cells (cf. 4.6a).

The ion mobility µ can be further calculated by the Nernst-Einstein relation (with e the

elementary charge, kB the Boltzmann constant and T the absolute temperature):

µ =
Dze

kBT
(4.3)

For most of the ion conducting solids, the ion mobility is expected to be nearly indepen-

dent on the defect concentration presuming an ideally diluted solution. In contrast, a

strong dependence of the cation diffusion coefficient (and thus, ion mobility) on cion is

observed as shown in figure 4.5b for a Ag/SiO2/Pt cell and figure 4.6a for a Cu/SiO2/Pt

cell. cion is smaller for Ag than for Cu based cells. However, this is not only due to the

different cation species but also due to the different experimental parameters. Since the

forming voltage for resistive switching is smaller in Ag/SiO2/Pt cells compared to Cu

based cells, the voltage amplitude for cyclic voltammetry is limited to ±1.2V...1.5V

affecting the lower value for cion.

As the sweep rate deceases, the ion concentration increases, and as follows, D decreases

indicating that the SiO2 layer close to the active electrode behaves similar like a

concentrated solution. Apparently, ion-ion interactions cannot be neglected, which



44 4. Redox Processes in Thin Films

results in a decrease of the diffusion coefficient. At high sweep rates less time is available

for anodic oxidation and cion is low. The weaker ion-ion interactions result in an increase

of D, and as follows, the ion mobility increases. Figure 4.6b shows the cation diffusion

coefficient versus sweep rate ν for Cu/SiO2/Pt and Ag/SiO2/Pt cells, respectively. Silver

ions seem to be less mobile in SiO2 than Cu ions. Assuming in both cases OH− as

counter charge species (see section 4.1.3), the limiting factor for anodic oxidation seems

to be the cation oxidation of the active electrode.
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Figure 4.6. Diffusion behavior of cations in SiO2 [66]. (a) Diffusion coefficient D of Cuz+

ions depending on the ion concentration cion. (b) Diffusion coefficient D for both Cuz+

and Ag+ ions as a function of the sweep rate ν. The ion concentration, and thus, the
diffusion coefficient can be adjusted by variation of ν.

It is noteworthy that the diffusion coefficients and ion concentrations measured in this

study are orders of magnitudes higher than the values for Cu and Ag atoms in bulk SiO2

extrapolated to room temperature. However, based on bulk SiO2 diffusion coefficients,

resistive switching in a few hundred microseconds or even below cannot be explained at

all. McBrayer et. al. [67] measured diffusion coefficients and solid solubility for singly

ionized Cu and Ag atoms in SiO2 prepared by wet- and dry-oxidation of Si. The quality

of the SiO2 layers was reported to be comparable to SiO2 used for integrated devices

(and thus, potentially much more insulating as evaporated SiO2 in this study). The

thickness of SiO2 was 500 nm and thicker (compared to 50 nm and below used here).

The results are shown in figure 4.7 and fit to other reports in literature (e.g. [68]). Both

the diffusion coefficients and ion concentrations for Ag and Cu are much higher in

this study compared to Ref. [67]. Based on figure 4.7 the diffusion coefficient of Cu

extrapolated to room temperature is in the order of 10−21 cm2/s, resulting in an ion
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mobility of µ ≈ 10−20 cm2/Vs. The average drift velocity vD of ions can be described by

the formula for high-field ionic drift [69]:

vD = µ · E0 · exp
(

E

E0

)

(4.4)

Here, E = V/d is the electric field (applied voltage V and oxide thickness d) and E0 the

characteristic field for a specific mobile ion in the solid. E0 is typically in the order of

1MV/cm for T = 300K [69]. Additional acceleration of ions due to Joule heating can

be excluded in case of ECM cells, as switching with low currents (below 1µA) has been

reported in literature [70; 71] (see also e.g. figure 5.2). The minimum time for resistive

switching can be roughly approximated by the drift time of the ions across the insulating

solid (see chapter 5.1.4). Based on diffusion coefficients reported by McBrayer et. al., the

time for resistive switching of a Cu/SiO2/Pt cell would be in the order of 108 s ≈ 76 years.

Thus, these low diffusion coefficients cannot explain properly the resistive switching

effect. In contrast, the high diffusion coefficients measured here can explain switching

within milli seconds down to tens of micro seconds, and are contributed to a nano porous

thin film structure [35] and due to rest moisture (see section 4.1.3).
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Ion Distribution

The formation of Cu ions during electrode polarization is clearly confirmed by XPS depth

profiles of Cu/SiO2/Pt cells in as-deposited state (Figure 4.8b) and after electrochemical

oxidation (Figure 4.8c). The spectra evidently reveal the presence of Cu2+ ions under-

neath the Cu electrode in the case of previously applied electrode polarization. While

cyclic voltammograms indicate the presence of a small amount of Cu+ ions (z = 1, see

below) additionally to Cu2+ ions, by XPS profiles it is not possible to clearly distinguish

the Cu+ signal from metallic copper due to the small difference in the binding energies

(below 0.1 eV for both species). However, the XPS results confirm the findings discussed

below drawn on the basis of the CV analysis indicating the presence of Cu2+ ions. As

derived in chapter 4.1.2, Cu2+-O2− bonds in SiO2 are much weaker than Cu+-O2− bonds,

suggesting that Cu2+ is more mobile in SiO2 and in this way dominating the switching

process. It is worth mentioning that the thickness of the interface layer containing Cu2+

ions is in the range of a few nm limited by the Cu2+ mobility. This indicates that during

the switching event Cu ions must be (further) significantly accelerated by the applied

field in order to achieve switching times in the µs regime or below [69].
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Figure 4.8. Cation distribution in a Cu/SiO2/Pt cell. (a) For simplification only the
signal response around the binding energy of Cu 2p3/2 at the Cu/SiO2 interface is shown
(see zoom). Depth profile XPS analysis of (b) a pristine Cu/SiO2/Pt cell and (c) a cell
after anodic oxidation. The distribution of Cu2+ ions underneath the Cu electrode can
be clearly observed. Redrawn from [72].
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Partial Redox Reactions

It is generally expected that current peaks during anodic oxidation are observed. However,

here the active electrode acts as an endless source for Cuz+ ions and is of the same thick-

ness as the SiO2 insulator. Additionally, oxidation peaks are not observed since diffusion

seems to be not significantly limiting the ion generation above ν > 35mV/s. Notwith-

standing, as the sweep rate decreases diffusion limitation becomes more dominating

both during oxidation and reduction processes.

Figure 4.9 depicts a typical CV sweep for a low sweep rate of ν = 15mV/s. Analogous

to the processes described for figure 4.1, anodic oxidation of the Cu electrodes takes

place by increase of the applied voltage V resulting in an increase of the current. After

reaching the vertex potential at V = 2V the driving force for further oxidation is

diminished and the current density decreases. During the following negative voltage

sweep the oxidized Cu ions are reduced, whereby diffusion limitations of Cu ions injected

into the SiO2 thin film are responsible for the negative current density peak jp,red(2).

A subsequent reduction peak jp,red(1) is also observed indicating several partial redox

reactions. Additionally, two oxidation peaks jp,ox(1) and jp,ox(2) can be distinguished in

contrast to figure 4.1. Note, peak jp,ox(2) is only observed for subsequent cycles but not

observed during the first sweep when the cell is in an initial pristine state.
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Figure 4.9 Partial redox reactions
observed at a low sweep rate ν =
15mV/s [66]. Various peaks are ob-
served, which are contributed to
Cu+ and Cu2+ redox reactions.

The dependence of D on ν depicted in figure 4.6b can explain why current density

peaks for anodic oxidation are observed by decrease of the sweep rate. Here, the high

ion concentration decreases D and further oxidation is limited by the diffusion of Cuz+

into SiO2. At high sweep rates the fewer oxidized ions can diffuse faster in SiO2 and

the diffusion limitation is less pronounced. The interpretation of jp,ox(1) and jp,ox(2) as

well as jp,red(1) and jp,red(2) can lead to the identification of each electrochemical partial

reaction and the dominating ion species (Cu+ or Cu2+).
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In aqueous solutions the standard redox potentials for Cu are given as: Cu+/Cu Eφ,1 =

0.52V, Cu2+/Cu Eφ,2 = 0.34V and Cu2+/Cu+ Eφ,3 = 0.159V. Although Cu ions are

dissolved in SiO2 in this case, the general trend of reduction potentials holds here as

well and furthermore, incorporation of water in SiO2 based ECM cells has been reported

[32; 73] (see also chapter 4.1.3). Thus, Cu should be oxidized to Cu2+ first since this

process is thermodynamically favorable according to the standard redox potentials.

The current density peak jp,ox(1) is contributed to this partial reaction. The Cu to Cu+

oxidation takes place after jp,ox(1) and a current density peak may be beyond the vertex

potential of 2V. Hence, both Cu+ and Cu2+ can be found in SiO2 after the oxidation.

When V is decreased the reduction of Cu+ to Cu is thermodynamically favorable (lower

reduction energy) resulting in the current density peak jp,red(2). The absolute current

density increases further close to the vertex potential −2V, which is an indication for

Cu2+ to Cu reduction (jp,red(1)), and by further decrease of V Cu2+ to Cu+ reduction

may take place as well. When a subsequent cycle is started a new jp,red(2) oxidation peak

is observed. Accounting that only a part of the generated Cu+ ions were reduced these

ions can now undergo an oxidation to Cu2+ ions since the standard reduction potential

for this process is lower than for Cu to Cu+ or Cu2+.

In summary, both Cu+ and Cu2+ are observed by CV sweeps in Cu/SiO2/Pt cells. As

discussed above, Cu2+ can be also found by XPS. In the following section the bond

nature of both Cu+ and Cu2+ are analyzed by X-ray Absorption Spectroscopy to identify

the more mobile, and as follows, the dominating ion species during resistive switching in

Cu/SiO2/Pt cells.

4.1.2. Bond Nature of Mobile Cations in Silicon Dioxide

The experimental findings discussed in the last section reveal the existence of mobile

Ag+ and Cuz+ cations in SiO2. The chemical interactions of these cations, and the

dominating charge number of mobile ions for resistive switching (in case of Cu/SiO2/Pt

cells), remain however still questionable. Therefore, the bonding characteristics of Ag+

and Cuz+ cations in silicon dioxide based ECM cells have been examined using soft

X-ray Absorption Spectroscopy at the 11A1 beam line at Taiwan Light Source [74]. XAS

gives complementary (local) geometric and electronic structural information including

bond lengths [75].

The XAS experiments were performed with SiO2 samples (thickness 60 nm) prepared by

e-beam evaporation on platinized Si substrates. Cu and Ag electrodes (thickness 5 nm) in

situ deposited by e-beam evaporation on SiO2 were used. X-ray Absorption Spectra were

measured at the O K-edge (hν ∼ 530 eV) and Cu L2,3-edges (hν ∼ 930 eV). While the
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Figure 4.10 O K-edge XAS spectra
in TEY mode of pure SiO2 and SiO2

thin films, covered by 5 nm Cu or Ag
thin films, respectively. The Ag/SiO2

and pure SiO2 spectra are similar (ex-
cept for a small Ag M3-edge absorp-
tion) indicating the absence of any
chemical interaction of Ag and SiO2.
Reproduced from Ref. [74].

absorption spectra near the O K-edge were both measured in total electron yield (TEY)

and fluorescence yield (FY) modes, absorption spectra near the Cu L2,3-edges were

measured only in TEY mode. The fluorescence yield reflects most likely bulk properties

of the SiO2 film, while TEY can be utilized to analyze the electronic structures near the

surface due to their probing depths, respectively.

Figure 4.10 depicts O K-edge XAS spectra in TEY mode of pure SiO2, and SiO2 thin

films covered by 5 nm Cu or Ag thin films on Pt, respectively. While the spectra of the

Ag/SiO2/Pt sample is similar to the pure SiO2 sample, the spectra of the Cu/SiO2/Pt

sample is considerably different. In particular, figure 4.10 reveals that the bonding

of oxygen ions of the Ag/SiO2/Pt sample is the same as for the pure SiO2 sample,

indicating the absence of any chemical interaction of Ag and SiO2. Thus, Ag is only

electrochemically dissolved in SiO2 prior to the resistive switching event.

The spectra of the Cu/SiO2/Pt and pure SiO2/Pt sample are comparatively different.

The two low-energy features below hν = 540 eV are attributed to the Cu2+ (3d9) and

Cu+ (4sp) ionized states, respectively. The features at higher energies represent a mixture

of Cu2+ and Cu+ (4sp) states. Hence, copper is partially oxidized by the presence of

SiO2 in contrast to silver.

A more detailed insight into the oxidation state of Cu on top of SiO2 is given by a

magnified view of the O K-edge XAS spectra shown in figure 4.11a in TEY mode.

The oxidation of Cu is mainly driven by the ambient (moisture and oxygen), and the

intensity ratio of the Cu2+ and Cu+ features are proportional to the ion concentration

ratio
[
Cu2+

]
/
[
Cu+

]
[74]. Additionally, chemical copper dissolution into SiO2 seems to

further facilitate the Cu+ → Cu2+ oxidation. In the fluorescence yield mode (figure

4.11b) bulk properties are dominating the spectra. For comparison the signal of a pure
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Pt layer is depicted indicating that even bare platinum is partially oxidized. Again,

the Cu2+ signal is stronger while the Cu+ is weaker in case of the Cu/SiO2 sample,

respectively. As follows, Cu+ seems to be further oxidized to Cu2+ in the presence of

SiO2. This can be clearly observed when the strong contributions of the SiO2 and Pt

signals are subtracted as shown in figure 4.11c. While the Cu/SiO2/Pt sample shows

features of Cu2+ (3d) and Cu2+ (4sp), similar features are suppressed for the Cu/Pt

sample.
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Figure 4.11. Analysis of oxidation state of Cu on top of SiO2 [74]. Magnified view of
the O K-edge XAS spectra in (a) TEY and (b) FY mode. In (c) the contributions from
Pt/SiO2 and Pt are subtracted, respectively. (d) Cu L2,3-edge XAS of Cu/SiO2/Pt and
Cu/Pt samples (TEY mode). The spectra look very similar and the sharp features reflect
the coexistence of Cu2+ and Cu+ ions with considerable higher-energy backgrounds for
both samples [74]. Additionally, a high Cu0 background is observed in both samples
indicating that only a few percent of Cu atoms are oxidized. (e) Hybridization strengths
of Cu (3d/4sp)-O (2p) orbitals in the Cu+ and Cu2+ ions. The features for Cu2+ (3d)
and (4sp) in brown, Cu+ (3d-4sp) in gray, and Cu2+ and Cu+ (4sp) in yellow of O K-edge
XAS spectra are decomposed exemplary for clarity, respectively. These signals contribute
to the total spectra (green) which is very similar to the measured O K-edge XAS spectra.

The resistive switching effect is based on the drift of mobile cations under the applied

electric field, and thus (in case of SiO2), the bonds of cations to the nearest oxygen

ions should be weak for a considerable high diffusion coefficient. Figure 4.11d depicts
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Cu L2,3-edge XAS of Cu/SiO2/Pt and Cu/Pt samples. Similar to the O K-edge XAS

spectra shown in figure 4.11a, both Cu2+ and Cu+ features are observed. The high

background of metallic Cu0 (indicating a high Cu0 concentration) reveals that only a

few percent of atoms of the Cu electrode are oxidized and can incorporate into SiO2.

In figure 4.11e both Cu L3-edge and O K-edge XAS spectra are shifted for comparison.

The Cu2+ and Cu+ signals can be roughly separated for the O K-edge XAS spectra. The
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Figure 4.12. Schematic of the bond structures of (a) fourfold-coordinated Cu2+ and (b)
twofold-coordinated Cu+ ions in association with SiO4 networks in the SiO2 matrix [74].

Cu L3-edge and O K-edge spectra show similar Cu2+ (3d) and Cu+ (3d-4sp) features

below a relative photon energy of 5 eV. The features above 5 eV (mainly originating from

Cu (4sp) states) become weaker for the Cu L3-edge spectra compared to the O K-edge

XAS spectra. While the peak intensities of both species in the Cu L3-edge spectra are

comparatively high indicating a similar concentration of
[
Cu2+

]
to

[
Cu+

]
close to the

surface, the Cu+ peak is at least 3 times higher than the Cu2+ peak in the O K-edge

XAS spectra. Therefore, Cu+-O2− bonds are much stronger than Cu2+-O2− bonds. This

reveals that the hybridization strengths of Cu2+ and Cu+ ions are different, as shown in

figure 4.12 for (a) fourfold-coordinated Cu2+ and (b) twofold-coordinated Cu+ ions.

The strength difference of the Cu+-O2− and Cu2+-O2− bonds results in different diffusion

coefficients DCu2+ ≈ 10−12 cm2/s and DCu+ ≈ 10−22 cm2/s calculated for T = 723K [74],

respectively. Though the actual energy cost for Cu migration can be larger, because

drift of Cuz+ ions by a hopping mechanism is reasonable, the tendency that Cu2+ are

more mobile than Cu+ ions may still hold, despite the nature of the migration process.

In summary, XAS measurements support the observation by cyclic voltammetry that

both Cu+ and Cu2+ ions can be found in SiO2, while Cu2+ appears to be more mobile

than Cu+. Cu2+ ions may therefore play the dominating role during resistive switching

of Cu/SiO2/Pt based ECM cell.
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4.1.3. Impact of Moisture during Anodic Oxidation

In contrast to AgI or Ag-GeSe, SiO2 does not initially contain mobile metal cations,

which are responsible for the filament formation during resistive switching. The XAS

measurements discussed in section 4.1.2 reveal only the existence of a small amount

of Cuz+ ions close to the Cu/SiO2 surface but not within the insulator. Evidently,

one needs first to electrochemically dissolve Cu ions into SiO2 in order to operate

the cell. In this case it is not sufficient to simply apply a positive voltage to the

electrochemically active electrode. A counter charge(s)/reaction, e.g. electrons or OH–,

must keep electroneutrality during anodic oxidation. OH– ions can be supplied by

reduction of moisture from the surrounding ambient, which is incorporated into SiO2

because of its nano-porous structure. Hence, during the CV sweeps the half cell reaction

at the active electrode is:

Cuz+ + ze− ⇋ Cu (4.5)

And at the inert Pt electrode the required counter reaction is given by

1

2
O2 +H2O+ 2e− ⇋ 2OH−, (4.6)

or alternatively by

2H2O+ 2e− ⇋ 2OH− +H2. (4.7)

Different water and oxygen partial pressures (pH2O and pO2, respectively) were set up

in an enclosed measurement chamber, using two MKS 179B digital mass flow controllers

admixing anhydrous N2 with anhydrous O2 or hydrated N2, to study in detail the

impact of moisture on Cu redox processes. The total flow rate through the measurement

chamber was kept constant to 100 sccm. The absolute pressure within the measurement

chamber was also kept constant close to the ambient absolute pressure using a pressure

relief valve. During the measurement the oxygen partial pressure was measured by

a Zirox O2-DF 12.2 oxygen sensor. The water partial pressure was monitored by a

Honeywell HIH-4000 humidity sensor. The sample temperature (room temperature) was

simultaneously measured.

Figure 4.13a depicts the impact of pH2O in N2 atmosphere on the redox reactions of

Cu at the interface with SiO2 (Pt used as counter electrode). As pH2O increases the

current during anodic oxidation increases, and thus, the reduction current increases as

well. In anhydrous atmosphere anodic oxidation does not take place and as follows, there
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are no Cuz+ ions, which can be reduced. Absence of any redox processes is observed

in anhydrous O2 atmosphere as well. The impact of pH2O on the anodic oxidation

is attributed to counter charges supplied by water. In this case water is most likely

penetrating from the lateral into the SiO2 thin film as schematically illustrated in figure

4.13b.

Based on the cyclic voltammograms shown in figure 4.13a, the ion concentration and

the diffusion coefficient can be calculated by the Randles-Sevcik equation (equ. 4.2)

and integration of the current during anodic oxidation. The impact of pH2O on the ion

concentration cion is depicted in figure 4.14a. Note, both Cuz+ and the counter charge are

contributing to cion. Increase of pH2O results in an increase of cion because the counter

charge concentration at the Pt/SiO2 interface seems to be the limiting process for the

cation generation. This relation unequivocally reveals that hydroxide ions are acting as

counter charges rather than electrons. At a higher water partial pressure more OH– can

be reduced at the Pt/SiO2 interface, and in this way, a higher amount of Cuz+ can be

dissolved. In the following only one cation species z = 2 is assumed to be dominating

based on XAS measurements (see section 4.1.2). Since the high local concentration of

Cu2+ ions leads to ion-ion interactions, the thermodynamic factor ∂ ln ai/∂ ln ci (with

the activity ai and the concentration ci of species i) is reduced. Thereupon, increasing

the water partial pressure results in a decrease of the diffusion coefficient D as shown in

figure 4.14b. This situation is typically observed for concentrated solution conditions,
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Figure 4.13. Role of water supplying counter charges during anodic oxidation [72]. (a)
Impact of water partial pressure pH2O on redox reactions studied by cyclic voltammetry.
(b) Potential water penetration in SiO2.
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interactions become dominating. This results in a decrease of D at high water partial
pressures. Redrawn from [72].

and is further supported by the observed impact of the sweep rate ν on the diffusion

coefficient (cf. 4.6b).

In conclusion, water is supplying the counter charge OH–, which is necessarily needed

for anodic oxidation. In anhydrous atmosphere Cuz+ ions cannot be formed, and thus,

resistive switching is suppressed. As pH2O increases the ion concentration increases as

well. The impact of pH2O on the diffusion coefficient is rather complex, since high ion

concentrations result in ion-ion interactions decreasing the effective diffusion coefficient.

4.1.4. Impact of Counter Electrode

Although cations supplied by the active electrode are responsible for filament formation,

the material of the counter electrode also affects electrochemical reactions (i.e. the

resistive switching processes), due to redox reactions supplying the necessarily needed

counter charge. Figure 4.15a depicts cyclic voltammograms of Cu/SiO2/CE cells with

various counter electrodes CE = Pt, Ir, Ti and Ru, respectively. The cell geometry and

sweep rate was kept constant for all devices. A significant impact of the counter electrode

material is observed. Notably, the Ir based cell is characterized by the highest current

density amplitude. By integration of the current during anodic oxidation (see section

4.1.1) the ion concentration cion composed both of cations and the counter charge(s)
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can be calculated. For some counter electrode materials, e.g. Al, only one significant

anodic oxidation sweep can be observed (figure 4.15b). An insulating (or counter charge

blocking) aluminum oxide layer could be potentially formed during the first reduction

sweep, and may further grow in subsequent sweeps. The potential oxide layer seems to

withstand positive voltage sweeps. Thus, only one anodic oxidation sweep is observed.

Figure 4.16a shows cion in SiO2 for various counter electrodes, and Cu and Ag as active

electrode materials (AE). The ion concentration is calculated from cyclic voltammetry

experiments. In principle, a small ion concentration in Ag based cells is observed
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Figure 4.16. (a) cion depending on the counter and active electrode material. (b) cion
for various CE materials as a function of the sweep rate ν for Cu based cells. Redrawn
from [76].
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1947 [80] and Shibutani et. al. 1998 [81]. The work function is based on measurement
data given in [82; 83]. Redrawn from [76].
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compared to Cu based cells. However, the voltage amplitude is additionally reduced to

±1.2V...1.5V for Ag based cells to avoid resistive switching. The counter electrodes

are sorted by the resulting ion concentration during anodic oxidation. A more detailed

analysis of cion for various CE materials is given in figure 4.16b as a function of the

sweep rate.

In figure 4.17 hydrogen evolution potential values are shown for various electrode

materials (measured versus the potential of the saturated calomel electrode, SCE). The

hydrogen evolution potential values vary depending on the measurement conditions. The

values by Miles et. al. [77] for example are given at a specific current density 2mA/cm2

and sweep rate ν = 50mV/s in 0.1M H2SO4 solution at 80 ◦C. In principle, small

hydrogen evolution potentials are found for noble metals (including Pt, Pd and Ir).
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ν = 20mV/s for selected counter elec-
trode materials. Data points labeled
with asterisk are extrapolated values
from figure 4.16b. Redrawn from [76].

The ion concentrations for ν = 3V/s and ν = 20mV/s and selected counter electrode

materials for a Cu/SiO2 based cell as a function of the hydrogen evolution potential

(based on [77]) are shown in figure 4.18. cion tends to increase as the equilibrium potential

for hydrogen evolution decreases, i.e. reduction of H2O (equation 4.7), and therefore,

supply of counter charges becomes energetically more favored, and more counter charges

are available [76].

Regardless that the hydrogen evolution potential values reported in literature (cf. 4.17)

vary on the preparation of the cathode material and experimental conditions, a similar

trend of the hydrogen evolution potential values vs. work function as shown in figure 4.17

can be also observed eg. for Fe, Ni, W, Pt in [79] and Zr, Ti, V, Cr, Fe, Co, Ni in [81].

For some CE metals like Y and Ta the ion concentration is close to the measurement

limitation. This could be explained by a native oxide of these materials suppressing the

anodic oxidation. Similar effects and additional oxygen evolution could also affect the

anodic oxidation using counter electrode materials like Zr, Ti or Fe. In case of In as CE



58 4. Redox Processes in Thin Films

material the current density was found to be very high and potentially dominated by

electronic current since no redox reactions were observed. Materials such as La, Sa or Yb

show ion concentrations similar to Co and Ni (cf. 4.19a,b). The work function of these

materials is low and higher hydrogen evolution potentials are expected for lanthanides.

However, the hydrogen evolution potentials for lanthanides is comparatively high in

figure 4.17. This is potentially due to different measurement conditions in Ref. [78]

compared to Ref. [77]. It is noteworthy that resistive switching is not observed when La,

Sa or Yb are used. The forming voltages are above 20V (SiO2 thickness 50 nm). The

reason for this is yet unclear and should be further investigated.

Compared to lanthanides, ITO (indium tin oxide) and TiN are of more practical use.

Cyclic voltammograms of these materials as counter electrodes in Cu/SiO2 based cells
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Figure 4.19. Redox reactions and ion concentration for Cu/SiO2 based cells with various
counter electrode materials. (a) Cyclic voltammetry for counter electrode materials CE
= Yb, Sa and La. (b) Corresponding ion concentration versus sweep rate. (c) Cyclic
voltammetry for counter electrode materials CE = ITO and TiN. (d) Corresponding ion
concentration versus sweep rate. Redrawn from [76].
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are shown in figure 4.19c. The corresponding ion concentration versus sweep rate is

depicted in figure 4.19d. TiN based cells show various redox reaction peaks indicating

several multielectron reactions. The ion concentration for ITO and TiN is comparable to

Ti or Cr, making these materials interesting for practical devices where noble materials

cannot be used.

4.2. Cations in Solid Electrolytes: Silver Iodide

In contrast to SiO2, which is a typical insulating material, silver iodide AgI is a well-

known ion conductor. AgI is chosen as a model system because the concentration of Ag+

ions in the electrolyte material stays constant during device operation (stoichiometric

material). In contrast to SiO2, silver iodide already consists of mobile Ag+ cations.

4.2.1. Electronic and Ionic Partial Conductivity

Silver iodide is a well studied Ag+ ion conductor at room temperature and becomes a

solid superionic conductor after the γ-AgI/β-AgI to α-AgI phase transition at about

T ≈ 150 ◦C [84], i.e. α-AgI shows an ion conductance in the order of some liquid

electrolytes. The high temperature phase has not been studied in this work since the

normal operating temperature for ReRAM devices is below 150 ◦C. The superionic

high temperature phase can be achieved even at room temperature for some AgI based

glasses such as the AgI-Ag2O-V2O5-P2O5 system [85], RbAg4I5 [86; 87] and Ag6I4WO4

[88; 89]. These materials are however, even more sensitive towards light and moisture (e.g.

RbAg4I5) and the stoichiometry control (in case of Ag6I4WO4) by thermal evaporation

is difficult to be achieved.

Although AgI has still a high ion conductance at room temperature (compared to

other solid electrolytes) the electronic partial conductivity can be also significantly high

especially in thin film systems. The electronic partial conductivity can be derived by

measuring the emf voltage of a Ag/AgI/C(I2) layer stack as depicted in figure 4.20a.

The reaction at the Ag/AgI interface is:

2Ag+ + 2e− ⇋ 2Ag (4.8)

and at the AgI/C(I2) interface:

I2 + 2e− ⇋ 2I− (4.9)
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Figure 4.20. (a) Measurement setup for evaluating the electronic and ionic partial
conductivity. (b) The ionic transference number is derived from the ratio of measured
cell voltage VCell and theoretically expected emf voltage.

As follows, the overall redox reaction is given by

2Ag + I2 ⇋ 2AgI, (4.10)

and the theoretical value of the emf is Vemf = 0.69V. However, the measurable absolute

cell voltage VCell is expressed by the ionic transference number. Therefore, the electronic

partial conductivity can be calculated by the ratio of the theoretical value of the emf and

the practically measured cell voltage after relaxation of the electrochemical system. The

result of the experiment is shown in figure 4.20b. Here, the ionic transference number

is tion ≈ 0.7 (thus, the electronic transference number is tel = 1 − tion ≈ 0.3). Based

on impedance spectroscopy of Ag/AgI/Pt (cf. 4.21) a total conductivity of σ ≈ 1.9 ·
10−6 Ω−1cm−1 was found. This gives an ion conductivity of σion ≈ 10−6 Ω−1cm−1, which

is about three times higher than the ion conductivity of bulk γ-AgI (3 · 10−7 Ω−1cm−1,

[90]). The higher conductivity differs slightly from cell to cell and could be explained by

the morphology of the deposited AgI thin films, since a significant higher ion conductivity

of small-grain polycrystals of AgI compared to bulk AgI has been reported [62].

In figure 4.22 the temperature dependence of the ion conductivity of a Ag/AgI/Pt

micro crossbar is shown. The activation energy for the hopping transport is about

∆Hhop(γ)-AgI ≈ 0.34 eV, which is similar to values reported in literature [62; 91; 92]. A

phase transition for T ≈ 130 ◦C − 150 ◦C is found, which fits to the phase transition
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alent circuit shown
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total conductivity of
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was calculated.

to the high conductive α-AgI phase observed by XRD measurements. The activation

enthalpy for the ion transport in the α-AgI phase is ∆Hhop(α)-AgI ≈ 0.1 eV. This value is

in good agreement with literature values [92].

For short pulse experiments (see chapter 5.1.4) the RC time constant is important in

case of fast switching. Therefore, the capacity, dielectric constant, and dissipation factor

tan δ of a Ag/AgI/Pt micro crossbar cell versus frequency f has been measured as

shown in figure 4.23. At low frequencies a high dielectric constant ǫr and dissipation

factor is observed. ǫr and tan δ decrease as the frequency increases. For f = 1MHz

the dissipation factor ǫr ≈ 10 is similar to values reported for bulk AgI at f = 18GHz

[93]. Most analysis of the frequency behavior of AgI has been done in the microwave

range to study the ion conduction mechanism [93], and only few results are given for
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impedance spectroscopy. A
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a frequency range below 1MHz. Nonetheless, it has been reported for AgI that the

dielectric constant decreases by increase of f [94]. B. Deb et. al. measured the dielectric

constant for the AgI–Ag2O–SeO2 material system in a frequency range of f = 10Hz to

f = 2MHz [95]. The authors report on a high dielectric constant of up to ǫr = 2 · 103.
Moreover, ǫr decreases similar to the measurement performed in this study by increase

of f .
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Figure 4.23. Capacity, dielectric constant and dissipation factor tan δ measurement
of a Ag/AgI/Pt micro crossbar cell versus frequency f . At small frequencies a high
dissipation factor is observed, because AgI is a good ion conductor. This results in a high
dielectric constant. At high frequencies the dissipation factor is drastically reduced, and
the dielectric constant of about ǫr ≈ 10 is similar to values reported for bulk AgI in the
microwave range [93].

4.2.2. Chemical Stability of the Ag/AgI Interface

In ReRAMs a nanoscale filament is grown within the resistive switching layer and the

chemical stability of the (metal) filament at the interface with the electrolyte is crucial

for device operation. For example, in GeS or GeSe nanoscale Ag filaments are easily

dissolved (e.g. by UV-light) [40; 96]. As discussed in section 4.1.2, Ag seems to be

chemically inactive in contact to SiO2. In contrast, a few at-% of Cu are oxidized to

Cu+ and mainly Cu2+, but the majority of Cu remains inactive in contact with SiO2.

Bulk AgI is a stoichiometric compound, and is therefore, believed not to dissolve Ag

chemically. However, in thin film systems the situation can be different compared to

bulk materials. Additionally, the ionic transference number differers from the ideal

value tion = 1 (for γ-AgI) indicating some (amorphous) impurities in AgI. Moreover,

Ag/AgI/Pt samples with a thin Ag top electrode showed poor device characteristics,
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such as high switching voltages and high resistance. Therefore, the chemical stability of

the Ag/AgI interface was studied by X-ray Absorption Spectroscopy [64].

Normalized Ag L3-edge XAS of 50 nm thick bare AgI thin films, and AgI thin films

covered by 10 nm, 20 nm and 50 nm thick Ag films, respectively, are shown in figure

4.24a. The spectra clearly depend on the amount of Ag deposited on AgI. As the amount

of Ag on AgI increases the Ag/AgI signal becomes more similar to the signal of a bare

Ag foil. Since the signals can be separated into respective XAFS (X-ray Absorption Fine

Structure) features of Ag and AgI (indicated by vertical lines), the absence of a chemical

reaction of Ag and AgI is assumed. In principle, the edge energy in the XAS spectra

reflects the chemical valence of a photo-excited atom (and thus, chemical interaction of

the specific species) [64]. The edge energy can be estimated by the maximal slope of the

excited atom’s lowest-energy feature. The derivative spectra of the thin films are shown

in figure 4.24b. At a photon energy of 3551 eV the peak maxima for Ag0 ions (Ag metal)

is observed. The peak maxima (highlighted by vertical lines) at 3552 eV corresponds to

Ag1+ ions as in AgI. The Ag1+ signal decreases by increase of the Ag thickness deposited

on AgI. This implies that no chemical reaction of Ag and AgI is observed.

Despite that no evidence of any chemical interaction of Ag at the interface with AgI was

found, thin Ag films (electrodes) on AgI seem to be unstable resulting in bad device

performance. Thus, Ag seems to be incorporated as small metallic (but potentially

reduced) clusters in AgI. However, the spectra shown in figure 4.24a,b only reflect the

averaged electronic structures over all silver atoms, regardless if they are penetrated

into AgI or not.

For a more specific analysis of the interaction of Ag at the interface with AgI, Ag difference

spectra are depicted in figure 4.25a. Here, several AgI samples (thickness 50 nm) with
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Figure 4.25 (a) Difference spectra de-
rived from the XAS spectra in figure 4.24a.
(b) Schematic description to account for
the difference analysis in (a) [64].
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different Ag thickness (0 nm, 10 nm, 20 nm and 50 nm) are analyzed (schematic shown

in figure 4.25b). The red line in figure 4.25a corresponds to the AgI sample with 10 nm

Ag thickness on top ([10 nm Ag]) subtracted by the spectra of a pure AgI sample ([AgI]).

The blue line is the difference spectra of the AgI sample with 20 nm Ag thickness ([20 nm

Ag]) subtracted by the spectra of the [10 nm Ag] sample, and the green line corresponds

to the spectra of the AgI sample with 50 nm Ag thickness ([50 nm Ag]) subtracted

by the [20 nm Ag] sample. While the red spectrum reflects the unoccupied electronic

structure of added Ag, separately out of the contribution of AgI (due to the same AgI

thickness), the blue and green spectra correspond to further addition of 10 nm Ag and

30 nm Ag to that spectra, respectively. For simplification the edge energies of all signals

in figure 4.25a are labeled by vertical lines. The XAS spectrum of a Ag foil is added for

comparison. The XAFS features in all difference spectra are very similar and the edge

energies fit to the XAS spectrum of the pure Ag foil. AgI has a zinc-blend structure, and

hence, any intercalation of added Ag in AgI would change the local structure. However,

such a change of the local structure is not observed and added Ag seems to aggregate in

a metallic face-centered-cubic (fcc) structure. Thus, the added Ag appears to remain as

metallic Ag0 when diffused in AgI.

The I L3-edge XAS spectra of the AgI thin films with and without additional Ag

evaporation is shown in figure 4.26a, reflecting the chemistry of I− ions in AgI. The XAS

spectra of AgI and AgI with Ag evaporation are very similar. Therefore, no chemical

interaction of Ag at the interface with AgI is observed based on both Ag L3-edge and I

L3-edge XAS spectra.

On the atomic scale a change in the local structure of AgI (i.e. stoichiometry) by

evaporation of Ag on AgI is not observed. However, the penetration of Ag in AgI can
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Figure 4.26. (a) I L3-edge XAS spectra and (b) XRD profiles of the AgI thin films with
and without additional Ag evaporation [64]. The I L3-edge XAS spectra reveal no change
in the local structure of AgI by evaporation of Ag. However, adding Ag can take effect in
the scale of some tens of atoms as revealed by the inset in (b). The full-width-at-half-
maximum (FWHM) of the (111) γ-AgI peak for each sample is also tabulated. (c) XRD
pattern close to the (400) Si peak indicating no decrease of signal intensity as observed
for the γ-AgI (111) peak in the inset of (b).

take effect in the scale of some tens of atoms. XRD profiles of AgI thin films with and

without additional Ag evaporation are depicted in figure 4.26b. The peak 2Θ = 23.65 ◦

can be identified as γ-AgI (111), and the peak at 2Θ = 25.5 ◦ corresponds to a small

(< 1Vol%) amount of β-AgI. Ag (111) features for samples with additional Ag layer

are also observed. The γ-AgI (111) peaks are magnified in the inset of figure 4.26b. A

systematic decrease of the intensity is observed by increase of the Ag thickness. Figure

4.26c shows the peak intensities of Si (400) diffraction (from the Si substrate), which,

in contrast to the γ-AgI peak intensities, do not depend on the amount of added Ag.

Thus, the decrease of the γ-AgI (111) intensity by increase of the Ag thickness cannot

be attributed to measurement artefacts, which would also affect the Si (400) peak

intensities. The full-width-at-half-maximum (FWHM) of the (111) γ-AgI peak for each

sample is also shown in figure 4.26b. As the Ag thickness increases the FWHM also

increases, indicating a weaken of long-range order in the AgI thin films. The slightly

higher FWHM of pure AgI compared to the [10 nm Ag] sample is potentially due to an

improvement of the crystallinity, caused by the Ag bombardment during fabrication.

Hence, despite no chemical interaction of Ag on/within AgI was found the evaporation

of Ag on AgI results in some disorder effect in the AgI thin film. These disorder effects
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can be explained by the formation of Ag metal crystallites in the AgI thin films in

a sub-mesoscopic scale [64]. Thus, Ag can penetrate into AgI thin films without any

chemical interaction. This penetration can affect the morphology of thin Ag electrodes

on top of AgI, which results in a loss of electric contact. It can also affect the stability

of nanoscale Ag filaments in the ON state after resistive switching.

4.3. Nonequilibrium States

Nonequilibrium states are inherently induced during device operation in nanoionic

based cells including ReRAMs, which involve the oxidation, reduction and transport

of active ions [40; 97]. These nonequilibrium states result in a nanobattery effect and

in open circuit conditions an electromotive force (emf) is measured, which depends

on the chemistry and the transport properties of the materials system. During device

operation nonequilibrium states can be also induced or influenced. The emf is not

only useful to further analyze redox reactions (including the nature of counter charges

in SiO2, see section 4.3.2), but has also a strong impact on the dynamic behavior of

nanoscale devices. Nonequilibrium states have been observed in various material systems

including SiO2, AgI, GeSx and SrTiO3 both for ECM and VCM type ReRAMs. The

theoretical background for nonequilibrium states is given in chapter 2.4. Special attention

to nonequilibrium states introduced during ReRAM operation is paid in chapter 5.2.

4.3.1. Electromotive Force (emf) Measurements

In AgI nonequilibrium states are attributed to a gradient of the (electro-) chemical

potential difference µAg of atomic silver. Hence, in open circuit conditions the measurable

cell voltage is believed to be dominated by a Nernst potential VN. In case of AgI the

measurable emf is only slightly affected by device operation, and can thus, only be

controlled in a small bandwidth. In contrast, the emf in SiO2 based devices is believed

to be dominated by a concentration gradient of cations and counter charges. Here, the

concentration gradient can be easily adjusted during device operating (e.g. by variation

of the sweep rate and voltage amplitude). The emf in SiO2 based devices gives also

information about the nature of counter charges (i.e. OH– ions or electrons, see section

4.3.2). Special attention is thence paid to nonequilibrium states in Ag/SiO2/Pt and

Cu/SiO2/Pt devices in this section.

Regardless of the cation species, i.e. Ag+ or Cuz+ (with z = 2 expected as the dominating

species for Cu based devices), the nanobattery effect is influenced by a concentration

gradient of cations and counter charges, and can be expressed by the diffusion potential
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voltage and Nernst potential voltage Vemf = Vd + VN. For Cu/SiO2/Pt based cells the

overall diffusion potential voltage Vd is determined by the diffusion potential voltage

accounting for the cations Vd,Cu2+ , and counter charges and electrons Vd,OH− + Vd,e− :

Vd = Vd,Cu2+ + Vd,OH− + Vd,e− (4.11)

As follows, Vd may be written as (see section 2.4.2) [72]:

Vd =
kT

e
·
(

− t̄Cu2+

2
ln

(aCu2+)s’
(aCu2+)s”

− t̄OH− ln

(
aOH−

)

s’(
aOH−

)

s”

− t̄e− ln
(ae−)s’
(ae−)s”

)

(4.12)

Additionally to the diffusion potential voltage a Nernst potential VN can also contribute

to the nanobattery voltage [72]:

VN = V 0 +
kT

2e
· ln

(aCu2+)s’ · (aOH−)s”
2

(aCu)s’ · (aO2
)s”

1

2 ·
(
aH

2
O

)

s”

(4.13)

Equation 4.13 accounts also for the electrochemical activity of oxygen
(
aO

2

)

s”
(given by

pO2) and the electrochemical activity of water
(
aH

2
O

)

s”
(given by pH2O) at the interface

s” (SiO2/Pt).
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Cyclic voltammetry of a Ag/SiO2/Pt cell is shown in figure 4.27. For emf measurements

the voltage was swept from 0V to the maximum voltage amplitude (here 1.2V), and

subsequently back to 0V. Afterwards, the source meter was switched to a high impedance

voltage measurement mode. The cell voltage VCell was finally measured as a function of

the ion concentration cion as shown in the inset of figure 4.27. The ion concentration can

be adjusted by variation of the sweep rate (as discussed in 4.1.1). Figure 4.28a depicts

cell voltage measurements versus time t for various ion concentrations for a Ag/SiO2/Pt

cell.

Relaxation of the cell voltage is observed within several minutes up to a few hours for Ag

based cells. The cell voltage strongly depends on the ion concentration (i.e. concentration

gradient of cations and counter charges) as shown in figure 4.28b after initial relaxation.

The slope of the line provides the pre-exponential term and can be used to determine

the average ionic transference number t̄ion ≈ 0.5. The cion-axes intercept corresponds to

the condition ln(cion) = ln(aion) = 0 and provides the value of V0 = 0.17V.
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voltage VCell versus time for various ion concentrations cion adjusted by the sweep rate
during anodic oxidation. (b) VCell versus cion. The ionic transference number can be
determined by the slope of the regression line. The inset depicts a schematic of the
concentration gradients of cations and counter charges (e.g. OH– ions) both contributing
to the emf.

An equivalent circuit for Ag/SiO2/Pt or Cu/SiO2/Pt cells is shown in figure 4.29a. It

consists of the nanobattery (emf voltage Vemf), the ionic resistance Ri and the electronic

resistance Rel. The emf cannot be directly measured since the measurable cell voltage

VCell is determined by the voltage divider of Ri and Rel. For as-deposited cells, Ri and
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Rel depend on the device geometry, and the electronic resistance is determined by the

electronic partial conductivity. After forming and resistive switching the situation can

be different. Now the device can be dominated by filamentary effects, and Ri and Rel

may not scale compared to as-deposited cells. Additionally, Rel comprises also of the

(high conducting) filament resistance in the ON state. In case of a metallic ON state

Rel >> Ri holds. Thus, the cell voltage is drastically reduced close to zero. However,

the nonequilibrium states are still remaining in the ON state and can affect the state

retention (see also chapter 5.2.2) [40].

Figure 4.29b shows cell voltages of a Cu/SiO2/Pt cell versus time for various ion

concentrations. The relaxation time for Cu based cells is in the order of several hours

up to days, and is therefore, significantly larger than for Ag/SiO2/Pt cells. Moreover,

the cell voltage in Cu cells is up to ten times higher than for Ag based cells.
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4.3.2. Impact of Water Partial Pressure

In section 4.1.3 the importance of counter charges for anodic oxidation has been discussed.

The results of cyclic voltammetry in nitrogen atmosphere and different water partial

pressures pH2O indicate that hydroxide ions OH– and not electrons are the dominating

counter charges. OH– is supplied by reduction of water from the ambient. The counter
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charge effect can be further analyzed by measuring the cell voltage by variation of pH2O.

Figure 4.30a depicts VCell versus pH2O (in nitrogen atmosphere) for a Cu/SiO2/Pt cell.

The ion concentration of both cations and OH– is believed to be constant during the

experiment. From equation 4.13 it is evident that the emf is influenced by
(
aH

2
O

)

s”

(and thus, pH2O) also when (aCu2+)s’ and
(
aOH−

)

s”
are constant. To ensure reproducible

experimental conditions, the oxygen partial pressure pO2 was monitored by an oxygen

sensor simultaneously and was found to be constant during the measurements. The

highest value for VCell is measured in anhydrous nitrogen atmosphere as expected from

equ. 4.13. The system requires at least 60min for relaxation as soon as quasi-equilibrium

for each water partial pressure is reached. Figure 4.30b shows that VCell remains constant

over days, in contrast to Ag/SiO2/Pt cells where the relaxation is in the order of some

hours. Cu/SiO2/Pt cells are therefore more useful for electromotive force versus water

partial pressure measurements. VCell can be reversibly tuned (increased or decreased)

depending on the particular water partial pressure as depicted in figure 4.30c. Hence,

pH2O and therefore, the water molecules incorporated into SiO2 do not significantly
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increase the ion mobility (due to solvent effects). As follows the Cuz+ and OH– ion

concentration gradients remain constant, and respectively, the actual origin of the emf

is not changed.

In conclusion, the results presented above and in section 4.1.3 underline the importance

of a counter charge/reaction. Without a counter charge/reaction anodic oxidation cannot

take place, and thus, the resistive switching effect is not observed. These experiments

evidently verified that water is mainly supplying the required counter charge(s) for

anodic oxidation and hence resistive switching, rather than enhancing the cation mobility

in SiO2 thin films, which would result in an irreversible decrease of VCell by increase

of pH2O. Electrons alone seem to play an inferior role as counter charges required for

keeping the electroneutrality, because anodic oxidation is not observed in anhydrous

atmosphere.

By XPS depth profiling (section 4.1.1) a pronounced increase of the Cu2+ concentration

for the electrochemically treated sample in the immediate vicinity of the electrode is

observed (section 4.1.1), whereas the concentration within the SiO2 film is very small.

Thus, the half cell potential at the working electrode interface (Cu/SiO2) is most likely

defined by the Cu2+ ion concentration, and at the counter electrode interface (SiO2/Pt)

the water redox reaction is determining the electrode potential and providing the counter

charge needed for the Cu half cell reaction. Increasing the water partial pressure increases

the half cell potential at the counter electrode, but lowers the absolute cell potential

difference in accordance to equation 4.13. As soon as water is removed by decrease of

pH2O, the cell voltage VCell will increase again in accordance to equation 4.13.





5. Resistive Switching Effect and

Applications

This chapter deals with the resistive switching effect in electrochemical metallization

memory cells based on silicon dioxide and silver iodide. It is shown that the resistance

transition in ECM cells is strongly affected by redox processes (section 5.1) and nonequi-

librium states (section 5.2) as described in the previous chapter. The feasibility of the

fabricated ECM cells for practical applications is discussed in section 5.3. Furthermore, a

nondestructive readout approach for passive crossbar arrays composed of complementary

resistive switches (section 5.3.2) is introduced. This readout method can additionally be

used for a fully parallel pattern recognition based on an associative capacitive network

(section 5.3.3).

5.1. Switching Behavior in Silicon Dioxide and Silver

Iodide

In this section the cation based resistive switching effect in silicon dioxide, as a widely

used insulating material, and silver iodide, representing a typical solid electrolyte, is

discussed. The switching effect is studied by both potentiodynamic current/voltage (I/V )

sweep experiments as well as (ultra-) fast pulse experiments. Figure 5.1 depicts SEM

images of micro crossbar (electrode area A between 2µm×2µm and 10µm×10µm) and

nano crossbar (A = 100 nm× 100 nm) cells exemplarily for Ag/SiO2/Pt based devices.

For larger cell areas micro structured cells with a diameter between 100µm to 1mm

were fabricated.

5.1.1. Current/Voltage Sweep Experiments

For many ECM devices (including SiO2 [32; 53; 72] and GeSx based cells [99; 100])

an initial electroforming step by applying a forming voltage VF is required to be able

to operate the memory cell. In this regard, the electroforming step is considered as
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Figure 5.1. Scanning Electron Microscopy of (a) micro crossbar, and (b) nano crossbar
cells with a Ag/SiO2/Pt layer stack [98].

a soft-break-down [101–104] and/or injection of mobile cations into the electronically

insulating thin film [34; 71]. Here, the cell switches from a high resistive state to a low

resistive state during electroforming. Either a current compliance ICC or a series resistor

is required to avoid damage of the cell after electroforming. The cell switches back to a

high resistive state when a negative voltage is applied between the anode and cathode.

In some ECM devices the resistance in the high resistive state is decreased by a few

orders of magnitude after electroforming compared to the resistance of the pristine cell.

In AgI based cells an electroforming process is not required [54]. This is contributed to

the inherent high cation mobility in AgI and the presence of mobile cations within the

electrolyte after fabrication.

Figure 5.2 Resistive switch-
ing behavior of Ag/SiO2/Pt,
Ag/AgI/Pt and Ag/GeSx/Pt
micro crossbars (µXBar) as
well as a Ag/SiO2/Pt nano
crossbar (nXBar) [98]. Ar-
rows indicate the direction of
sweep.
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The subsequent I/V cycles, termed as resistive switching in the following, look similar

to the electroforming process but the voltage for resistance transition (i.e. SET voltage,

VSET) is typically smaller compared to the electroforming voltage VF. The resistive

switching behavior for various ECM based cells including Ag/AgI/Pt micro crossbars

(µXBar) as well as Ag/SiO2/Pt micro and nano crossbars (nXBar) is shown in figure

5.2 (the electroforming step is not depicted). For comparison, a typical I/V curve for a

Ag/GeSx/Pt cell is also shown as well (details on fabrication and switching behavior can

be found in [100]). A current compliance or series resistor is required during resistive

switching as well to prevent damage of the cell in the low resistive state due to high

currents.

Electroforming and Resistive Switching in Silicon Dioxide

Typical electroforming processes for Cu/SiO2/Pt and Ag/SiO2/Pt cells are shown in

figure 5.3a and 5.3b, respectively. Regardless of the anode material a large statistical

variation on both the forming voltage VF as well as the SET voltages VSET is observed.

However, the forming voltage for silver based cells is typically smaller than for Cu based

cells.

In ambient atmosphere and for an insulator thickness of 50 nm, the electroforming voltage

for Cu/SiO2/Pt cells varies from VF = 2V to VF = 7V, and the SET voltage varies

between VSET = 0.25V...2V. A similar behavior has been observed for Cu/SiO2/Pt cells

based on RF-sputtered silicon dioxide (see also [35; 105; 106]). For silver based cells the
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Figure 5.3. Electroforming and subsequent resistive switching of (a) a Cu/SiO2/Pt [53]
and (b) a Ag/SiO2/Pt cell.

electroforming voltage varies from VF = 1V to VF = 3V (for a SiO2 thickness of 50 nm).

SET voltages between VSET = 0.1V...1.6V were observed, which fits to SET voltages

reported for Ag/SiO2 based cells with various counter electrodes in literature [107–111].
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In general, the forming voltage increases by increase of the insulator thickness, while the

SET voltages are nearly independent on the device geometry. This has been previously

studied in detail for SiO2 (e.g. [34; 35; 110]).

Figure 5.4 Electroform-
ing step required to en-
able resistive switching of
a Cu/SiO2/Pt cell (blue
curve) [66]. By limitation
of the vertex potential re-
sistive switching is avoided
and the oxidation/reduc-
tion reactions being the
preceding processes of re-
sistive switching can be
analyzed (red curve) by
cyclic voltammetry (CV).
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The electroforming cycle is shown exemplarily for a Cu/SiO2/Pt cell in a logarithmic

current scale in figure 5.4 and compared to the oxidation and reduction current measured

during cyclic voltammetry (red curve). By limitation of the vertex potential to ±2V

resistive switching is avoided, and thus, oxidation and reduction of Cu and Cuz+ can be

analyzed prior to the switching event by cyclic voltammetry (see chapter 4.1.1). Arrows

indicate the sweeping direction (a) to (h). In case of (a) where Cu ions are formed the

red curve and blue curve are overlaid. The case (b) to (h) for the red curve differs from

the blue curve. The cell switches at an applied voltage of approximately V = 2.4V (b1).

During switching to the low resistive state a current compliance ICC is used to avoid

damage of the cell ((c1) and (d1)). The cell switches back to the high resistive state

by applying a negative voltage ((f1) to (h1)). Oxidation and reduction processes can

be observed as shown by the red curve ((a) to (h2)) when switching is avoided (see

chapter 4.1). This implies that the current prior to the resistance transition represented

by the blue curve is dominated by the ionic current as assumed in simulation models

[25; 112; 113].

By controlling the current compliance the ON resistance RON in the LRS can be

adjusted by orders of magnitude during voltage sweeping, which has been reported for

various ECM material systems [53; 70; 114; 115] including SiO2 [35; 106]. This multilevel

switching by orders of magnitude cannot be solely explained by a simple change of

the filament diameter (i.e. higher SET current results in an increase of the filament
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diameter). For ON resistances above 13 kΩ tunneling between the filament and the active

electrode is believed to be dominating the ON resistance [25]. This is further discussed

in section 5.1.3. A comparison of multilevel switching results of typical Ag/SiO2/Pt cells

(this study) and results reported in literature for Cu/SiO2/Pt cells (Bernard et. al. 2011

[106] and Schindler 2009 [35]) are shown in figure 5.5. The slope of ≈ −0.99 fits very

well to simulation results [25]. In the context of multilevel switching the ON resistance

is typically extracted from I/V curves. However, poor stability of high resistive ON

states (RON above 13 kΩ) was observed, which has been also reported in literature

[35; 40; 71; 116]. Only few reports indicate stable ON states above 13 kΩ for a reasonable

long time [117–119].

0 1 2 3 4-1-2-3

0

20

40

60

80

100

-20

1k

1M

1G

1T

100 101 102 103 104 105 106

Applied Voltage V (Ag vs. Pt) [V] # Cycles

R
O

F
F
 +

 R
S
 [
 
]

C
u

rr
e
n

t 
I 
[µ

A
]

Fail

(a) (b)

R
S
 = 47 k 

(R
OFF

 + R
S
) < 100 · (R

ON
 + R

S
)

Figure 5.6. (a) Resistive switching of a Ag/SiO2/Pt cell using a RS = 47kΩ series
resistor to limit the current in the low resistive ON state. (b) Endurance of the same cell.
The device failure is here defined as soon as the cell exhibits a ROFF/RON ratio smaller
than 100. The cell withstands more than 104 I/V cycles.



78 5. Resistive Switching Effect and Applications

The finite response time of the current compliance is considered as a serious problem

for resistive switching applications due to a current overshoot [120; 121]. The current

compliance can have a significant impact on the device performance [122] and on the

multilevel switching [123], if the current compliance is too slow and the current overshoot

is too high. The response and tripping time for the Keithley 6430 source meter can be in

the order of a few tens of milliseconds [124]. This seemed to be fast enough for multilevel

switching as observed in this study. However, the endurance of cells measured using a

current compliance was found to be poor (up to a few hundred cycles). A series resistor

can be alternatively used to limit the current in the low resistive ON state. A typical

I/V curve of a Ag/SiO2/Pt cell in series to a shunt resistor RS = 47 kΩ is depicted in

figure 5.6a. Using a series resistor, the cell withstands more than 104 I/V cycles (cf.

5.6b).

Resistive Switching in Silver Iodide

Typical resistive switching characteristics of a Ag/AgI/Pt micro crossbar are shown

in figure 5.7a. In contrast to systems like SiO2, an electroforming step is not required

for AgI. This is contributed to a sufficient amount of mobile cations in the electrolyte

in the as-deposited state. The comparatively small switching voltage VSET is usually

between 60mV and 250mV. For memory applications higher switching voltages (e.g.

VSET = 0.5V) are required to prevent unintentional SET of the cell. However, many

ReRAMs including Ag/AgI/Pt cells show strongly nonlinear switching kinetics (see

section 5.1.4), which fulfills the requirements for fast switching at moderate voltages and
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contrast to SiO2 ReRAMs, an initial electroforming step to enable resistive switching is
not required. (b) Multilevel switching by variation of the current compliance. The ON
resistance was extracted from I/V curves. [54]



5.1. Switching Behavior in Silicon Dioxide and Silver Iodide 79

0 50 100 150 200
0

0.05

0.1

0.15

0.2

V
S

E
T
 [

V
]

Temperature T [°C]

0 0.1 0.2 0.3-0.1

Applied Voltage V [V]

C
u

rr
e
n

t 
I 
[n

A
]

0

20

40

60

-20

(a) (b)

T = 25 °C

T = 80 °C

T = 200 °C

Measurement

Fit

Figure 5.8. (a) Typical I/V curves for various temperatures T = 25 ◦C, 80 ◦C and
200 ◦C, respectively. (b) SET voltage VSET versus temperature.

prevention of unintended switching at low voltages for a reasonable voltage stress time.

The maximum absolute current during RESET is typically smaller compared to SiO2

cells. A potential reason could be that the electrochemical oxidation of the Ag filament

is more feasible in AgI than in SiO2. As depicted in figure 5.7b, the ON resistance can

be adjusted by orders of magnitude by variation of the current compliance comparable

to SiO2 based ReRAMs (cf. 5.5).

Figure 5.8a shows the impact of elevated temperatures T on the resistive switching

characteristics of AgI. The SET voltage is decreased by increase of the temperature.

Additionally, the resistance in the OFF state is decreased, potentially due to an increase

of the ion conductivity. The relation of VSET versus T is shown in figure 5.8b. An abrupt

decrease of the SET voltage after the γ-AgI to α-AgI phase transition (T ≈ 145 ◦C) is

not found. This is an indication that for slow sweep rates, in the order of some tens

to hundred mV/s, the cation drift is not the limiting factor for resistive switching in
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Figure 5.9. (a) Impact of AgI electrolyte thickness on the SET voltage. (b) SET voltage
versus micro crossbar electrode area.
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case of I/V sweeps. In contrast, as discussed in chapter 5.1.4, nucleation limitation and

charge transfer can be the dominating factors.

Compared to SiO2, the statistical variation (i.e. SET voltage, ON and OFF resistance)

from cell to cell was found to be smaller. The SET voltages are similar even for cells

with different AgI electrolyte thickness as depicted in figure 5.9a (similar results were

reported for SiO2 based ECM cells [35]). Additionally, a significant impact of the micro

crossbar electrode area on the SET voltage has not been observed as shown in figure

5.9b.
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Figure 5.10. Endurance test for a Ag/AgI/Pt micro crossbar. (a) and (b) SET voltage,
and ON and OFF resistance using a current compliance of 20 nA. (c) and (d) VSET, and
RON and ROFF endurance using a current compliance of 2µA.

Although the statistical variation in AgI is better than in SiO2, the cells exhibit a poor

device endurance depending on the current compliance level. For ICC in the order of

some µA to some tens of µA only few cycles can be performed. Afterwards, the cell

cannot be RESET into the OFF state. For smaller current compliances the endurance is

improved up to a few hundred cycles, but the ON resistance is comparatively high (above

1MΩ). In figure 5.10 the endurance data of Ag/AgI/Pt micro crossbars are shown. The

current compliance was set to 20 nA ((a) and (b)) and 2µA ((c) and (d)), respectively.

In some cases the ON state was not very stable after switching and the cell switched
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back to the OFF state as shown in Fig. 5.10d. For more than 1400 cycles in (a) and

(b), and 58 cycles in (c) and (d) the cells were not able to RESET into the OFF state.

For practical applications an ON resistance of RON ≈ 50 kΩ is required to reduce the

voltage drop across the bit lines in a memory array [119; 125]. This is, however, not

fulfilled by many ReRAM devices (e.g. [31; 35; 86; 126; 127], see also section 5.3.1).

5.1.2. Impact of Water Partial Pressure on Silicon Dioxide based

Cells

The role of counter charge(s) and/or reactions at the counter electrode for anodic

oxidation, and the impact of pH2O on the electromotive force has been discussed in

chapter 4.1.3 and 4.3.2 for SiO2 based cells. This section is focused on the impact of

ambient moisture on the resistive switching behavior of Ag/SiO2/Pt cells. The dielectric

constant of SiO2 increases as the water partial pressure pH2O increases as shown in figure

5.11a. Simultaneously, the dissipation factor tan δ increases by increase of pH2O. These

effects are contributed to the penetration of water in the porous silicon dioxide thin film,

and can practically be used for moisture sensors [128]. In figure 5.11b a pronounced
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Figure 5.11. Impact of water partial pressure pH2O on (a) the dielectric constant and
dissipation factor tan δ, and (b) the forming voltage VF of Ag/SiO2/Pt cells in N2:H2O
atmosphere [32].

dependence of pH2O on the average forming voltage VF is shown. High forming voltages

have been observed for both anhydrous nitrogen and oxygen atmospheres. By further

increase of the humidity a logarithmic decrease of the forming voltages has been observed.

As previously discussed in chapter 4.1.3, water from the ambient could be reduced at the

SiO2/Pt interface [72; 129], supplying the required counter charge, and hence, enabling

resistive switching. Alternatively, hydration of Ag+ could enhance the metal cation drift
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across the insulator. Theoretical studies of hydrated Ag ions predict geometrically highly

flexible hydrate structures with short lifetimes [130; 131], which could easily interact

with SiO2 during the drift across the insulator.

The same impact of moisture on the resistive switching effect of Cu/SiO2/Pt cells has

been reported in literature [73]. Here, the SET voltage increases in vacuum, which is also

contributed to removal of previously incorporated water. Similar effects have been also

reported for the Cu/poly(3-hexylthiophene)/Au system (P3HT) where the switching

voltage decreases by increase of pH2O [132].

5.1.3. Quantum Conductance Experiments

Multilevel switching has been reported for many material systems (e.g. [35; 70; 106; 114;

115]). A simple change of the filament geometry (i.e. filament radius) cannot properly

describe this effect, since the ON resistance can be adjusted by many orders of magnitude

[12]. In contrast, a tunnel gap between the filament and the active electrode can explain

multilevel switching [25]. In case of low resistive ON states (i.e. RON < 13 kΩ) the device

conductance is, however, equal or close to the single atomic point contact conductivity.

In this case the device resistance can be dominated by a single or a few metal atoms

between the filament and the active electrode.
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Figure 5.12. Analysis of filament formation by measuring the actual cell voltage drop
simultaneously during an I/V sweep of a Ag/AgI/Pt cell [54]. (a) Although the cell
already switched, a significant voltage drop of about 25mV is observed during further
sweeping, indicating a quantized change of the filament conductivity. (b) At lower current
compliances a similar voltage drop is not observed.

After switching to the ON state, the effectively applied cell voltage is controlled (i.e.

lowered) by the source meter to adjust the programmed current compliance. Typical cell

voltages during I/V sweep are shown in figure 5.12. Although, the cell is switched to a

specific ON resistance (depending on the current compliance), the effective cell voltage
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further decreases during the sweep (cf. 5.12a). This can be understood in a further (but

slow) growth or strengthen of the metallic filament towards the active electrode, since

the driving force (cell voltage) for electrochemical filament formation is reduced but

still effective. However, for comparatively high RON >> 13 kΩ the voltage decrease is

rather continuous or nearly not detectable, which is exemplary shown in figure 5.12b. It

is remarkable that only for low ON resistances RON < 13 kΩ a nearly discrete voltage

drop is observed.

In case of high RON the overall conductivity of the cell seems to be dominated by

tunneling between the filament and the active electrode. By further growth of the

filament the tunneling distance is reduced continuously resulting in a gradual change

of the conductivity, and hence, gradual voltage drop. In contrast, in case of RON <

13 kΩ the overall resistance is close to the resistance of a single atomic point contact

R0 = 1/G0 = (2e2/h)
−1 ≈ 12.9 kΩ ≈ 1/ (78µS) [133]. Hence, a single metal atom of the

filament seems to be dominating the device resistance. As the growth of the filament

continues, a second atom can contribute to the conductivity resulting in a quantized

decrease of the ON resistance, and as follows, a discrete cell voltage drop. This can

explain the discrete voltage steps in figure 5.12a. In this respect, in both cases the

filament resistance Rf of about 500Ω to 1 kΩ is in series either to the tunnel contact or

to the atomic point contact. A proposed equivalent circuit of the overall cell resistance is

depicted in figure 5.13. The contact resistance Rc, the filament resistance Rf as well as

the resistance of the Ag and Pt electrodes Re are contributing to the total cell resistance

RON in the ON state. It should be noted that Rf and Rc may vary during measurement,

and depend on the cell voltage due to further filament growth, whereas Re << 100Ω

depends only on the device geometry and conductivity of Ag and Pt, and will be further

neglected for simplification.

Keithley
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R
f

R
e

R
ON

Ag/AgI/Pt cell

Figure 5.13 Equivalent circuit of a simple mea-
surement setup consisting of the Ag/AgI/Pt cell
and the Keithley source meter. The electrode
resistance Re is small compared to the contact
resistance Rc and the filament resistance Rf.
Hence, Re will be further neglected. [54]
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Quantized conductance values were only observed within a current window of 1µA to

30µA. By conventional I/V sweeps (cf. 5.12a) more than one or two discrete voltage

drops were not detected. In contrast, several discrete conductance levels can be observed

by a current sweep measurement as shown in figure 5.14a. At the beginning the cell

is switched to the ON state using a current compliance of 100 nA. Subsequently, the

current is increased stepwise from 100 nA to 20µA by 100 nA and 2 s per step. The

cell resistance/conductance is simultaneously measured. In figure 5.14a at least five

quantized cell conductance levels can be observed, which fit well to integer multiple of the

conductivity G0 of an one atomic point contact. Here, a filament resistance Rf = 800Ω

was assumed. It should be noted that the current resulting in specific conductance level

varies from cell to cell, and some levels (e.g. 1 · G0 or 5 · G0 in this example) can be

skipped during measurement.
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Figure 5.14. Analysis of quantized cell conductance by a current sweep using Ag/AgI/Pt
cells. [54] (a) At least five quantized resistances have been observed in this example by
current sweeping. (b) Cumulative statistics of measured cell conductivity.

Due to the statistical variation from cell to cell, 65 cells have been measured resulting

in a total number of more than 2 · 104 conductivity measurement points. Based on these

measurement points a cumulative statistics of cell conductivities has been calculated.

Rf = 800Ω is assumed because this value fits good to the resistance calculated by the

conductivity of Ag (based on the Fuchs-Sondheimer theory [134]), a length of 30 nm

and a diameter of 1− 2 nm [25]. The result is shown in figure 5.14b. It is remarkable,

that maximum of the cumulative probability for specific conductivities n · G0 (with

n = 1, 2, 3, ...) are observed. In particular, the maxima for n = 1, 3, 4, 5 are distinctive.

Variation of the actual filament resistance from cell to cell and during measurement may

result in deviation from the exact conductivity n ·G0. However, the reason for the gap

between 7 ·G0 and 12 ·G0 is unclear. It was found that for RON < 2 kΩ the cell resistance
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drops fast below 1 kΩ. Hence, it is assumed that the measurement equipment is too slow

to detect resistance levels between 2 kΩ and 1 kΩ in this experimental setup. Thus, in

a cumulative statistics these resistances are potentially not contributing. Below 1 kΩ

the cell resistance is nearly constant and may be dominated by the filament resistance.

Therefore, this resistance is again contributing to the cumulative statistics. As the ON

resistance decreases the LRS becomes more stable with less resistance fluctuation. Cell

conductance values between G = n · G0 = 1 · G0...7 · G0 are hardly stable at room

temperature, since the relocation of a single atom has a strong impact on the device

resistance. However, for lower temperatures the conductance values are stabilized as

exemplarily shown for T = 173K in figure 5.15.
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Figure 5.15 Quantum conduc-
tance experiment of a Ag/AgI/Pt
cell at an ambient temperature of
T = 173K. Here, the conductance
values fit very well to integer num-
bers of G0 when a filament resis-
tance of Rf = 500Ω is assumed.

Quantized conductance values are not only observed in AgI based resistive switches but

also in silicon dioxide based ReRAMs. Figure 5.16 depicts various quantized conductance

experiments for Ag/SiO2/Pt micro crossbars analyzed by a current sweep similar to the

experiment described above. The potential filament resistance Rf, which is in series to

the contact resistance (cf. 5.13), seems to differ more from cell to cell compared to AgI

based devices. In some cases the measurement results fit best to a comparatively high

Rf in the order of a few kΩ, while for other cells a low Rf ≈ 100Ω is more reasonable.

The larger statistical spread of the generic resistive switching characteristics of silicon

dioxide based cells, such as the switching voltage, is a potential reason for the variation

of Rf.

In figure 5.17 the cumulative statistic of the measured cell conductivity levels of

Ag/SiO2/Pt micro crossbars is depicted. Here, the filament resistance Rf was first

optimized so that the cell conductivity fits best to integer values of the atomic point

contact conductivity. Afterwards, the cumulative statistic has been calculated. In con-

trast to AgI based ReRAMs, intermediate conductance steps (e.g. 1.5 ·G0, 2.5 ·G0 or

3.5 ·G0) are observed for Ag/SiO2/Pt micro crossbars.
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Figure 5.16. Analysis of quantized cell conductivities of Ag/SiO2/Pt micro crossbars
using current sweeps. The assumed filament resistance Rf differs more from cell to cell
compared to AgI based devices: (a) Rf = 1kΩ, (b) Rf = 100Ω and (c) Rf = 200Ω. In (d)
quantized cell conductivities of a of Ag/SiO2/Pt nano crossbar are given. The current
response is fitted by various filament resistances Rf = 100Ω...1.5 kΩ.

At first glance, quantum size effects at room temperature seem to be questionable.

Typically, quantum size effects are expected at cryogenic temperatures. However, as

the dimensions of the filament are in the order or smaller than the phase coherence

length of the electrons, quantum size effects become relevant [135]. The filament can

be considered as a wave guide for electrons and the conductance can be expressed in

terms of the Landauer theory. In this case the Landauer expression is applicable here as

well since the Fermi wavelength of Ag or Cu is similar to the atomic diameter and the

quantum mode splitting is in the order of ≈ 1 eV [119; 135].

Quantum size effects in resistively switching devices have been first reported for gap

type atomic switches [136–138]. The atomic switch is an ECM cell where the active

electrode (e.g. Ag) is covered by a mixed-conducting thin film (e.g. Ag2S). In contrast to



5.1. Switching Behavior in Silicon Dioxide and Silver Iodide 87

0 1 2 3 4 5 6 7 8 9 10 11 12

0

0.005

0.01

0.015

0.02

0.025

0.03

1/(R
ON

 - R
f
) · (h/2e2)

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

1

1
.5

2

2
.5

3

3
.5

7 10654

1/(R
ON

 - R
f
) · (h/2e2)

Figure 5.17. Cumulative statistic of the measured cell conductivity levels of Ag/SiO2/Pt
micro crossbars.

conventional ECM cells, a vacuum gap is separating the electrolyte and counter electrode.

This can be easily achieved using a Pt STM tip (Scanning Tunneling Microscopy), or

alternatively a special fabrication method based on sulfidation of the Ag electrode, and

final electrochemical dissolution of a thin Ag layer separating the electrolyte and counter

electrode [136]. Besides the prospect of high scalability to an almost atomic level, the

atomic switch concept can be further used for neuromorphic applications [139], and

spectroscopic and kinetic analysis of ion conductors on an atomic level [87].

In addition to conventional (gapless) ECM cells using AgI [54] or SiO2 as electrolyte,

quantized conductance effects have been observed for various ECM material systems

including Ta2O5 [140], Ag2S [141], GeS2 [142], Ag/a-LSMO/Pt [143] and liquid systems

[144], and even for VCM type devices like HfO2 [145; 146]. Moreover, quantum size

effects have been theoretically discussed in the context of memristors and memristive

systems [147; 148].

5.1.4. Pulse Measurements and Switching Kinetics

As shown in figure 5.7a, AgI based cells switch at low SET voltage (≈ 80mV) in case

of potentiodynamic measurements, which seems to be disadvantageous for memory

applications since it drastically reduces the read voltage margin. However, fast read- and
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write-pulses are preferably applied for memory applications. Therefore, it is important

to analyze the switching behavior using short pulse voltages. Additionally, analysis of

the switching kinetics over a large time scale can disclose electrochemical effects involved

during resistive switching. This section deals with the analysis of the switching kinetics

of Ag/AgI/Pt micro crossbars in a time scale of up to twelve orders of magnitude.

The experimental data is compared to a simulation model, which accounts for three

limitation factors: nucleation, charge transfer and cation drift limitation [87].

Pulse Measurements

In case of potentiodynamic experiments where the sweep rate was varied between

40mV/s and 3V/s, the SET voltage VSET ≈ 0.1V was found to be nearly independent

on the sweep rate [54]. In contrast, strong exponential relation between the pulse

amplitude VPulse and the SET time tSET is observed for pulse measurements as described

below. This has been also demonstrated for various resistive switching materials [28].
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Figure 5.18. (a) Measurement setup for pulse experiments. The AgI micro crossbar cell
(device under test, DUT) can be described by a RCC circuit. The voltage signal supplied
by the pulse generator is recorded by an oscilloscope channel (SCOPE CH1) coupled by
50Ω. The current response is recorded by a second oscilloscope channel (SCOPE CH2)
coupled by 1MΩ which acts as shunt resistor. (b) Short circuit reference measurement.
The cable length in the RFI shielded measurement box was reduced in order to measure
signals down to ≈ 10 ns.

The measurement setup for pulse experiments is shown in figure 5.18a. Two oscilloscope

channels SCOPE CH1 and SCOPE CH2 are recording the voltage and current signal,

respectively. SCOPE CH1 is connected to the Ag/AgI/Pt micro crossbar (device under

test, DUT) and the pulse generator. The channel is coupled by 50Ω to reduce high

frequency reflexions. The input impedance (1MΩ) of SCOPE CH2 acts as shunt resistor

for the current/voltage conversion. The cable length was kept short in order to measure

signals down to ≈ 10 ns as revised by a short circuit reference measurement (cf. 5.18b).

The limiting factor in this measurement setup is the RC time given by the input
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impedance of SCOPE CH2 and the capacity of the DUT in the OFF state. In chapter

4.2.1 a capacitance of ≈ 250 fF was measured for f = 1MHz and a cross section area of

A = 10µm× 10µm. For pulse measurements, cells with a cross section area of up to

A = 3µm× 3µm were used. This results in a cell capacity of about 10 fF...23 fF (which

is below the measurement resolution of the LCR-Meter). Thus, the delay time of the

measurement setup is given by RC = 1MΩ · 23 fF = 23 ns. For a shorter delay time

nano crossbar devices and a smaller shunt resistor should be used. However, the later

results in a smaller current resolution. Alternatively, active amplifiers for I/V conversion

could be used to reduce the RC time. For pulse measurements a pulse voltage between
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Figure 5.19. Short pulse measurements and current transients for (a) VPulse = 0.4V
and (b) VPulse = 1.5V [54].

VPulse = 70mV up to VPulse = 2V was generated by the pulse generator, and the voltage

and current signals were monitored using the oscilloscope. Recording long voltage pulses

(above a pulse length of 1 s) is sophisticated using an oscilloscope. Therefore, a Keithley

6430 Source meter was used for long voltage pulses where the pulse voltage range is

VPulse = 25mV...VPulse = 100mV. In this context, the current in the ON state was

limited by a current compliance of 100 nA instead of a series resistor. The voltage range

for the source meter and pulse generator measurement setup are overlapping to ensure

comparability.

Typical voltage pulse measurements and the corresponding current response of the cells

are depicted in figure 5.19. For small pulse voltages (e.g. VPulse = 0.4V, cf. 5.19a) the

SET time tSET is significantly larger than for high pulse voltages (e.g. VPulse = 1.5V) as

shown in figure 5.19b. Here, the pulse length is tPulse = 250 ns with an applied voltage

of VPulse = 1.5V. tSET is defined as the time difference between the voltage signal rise

and the current signal rise.

In figure 5.20 current transients for various pulse voltages over a large time scale (up to

12 orders of magnitude) are shown. For readability, only the current rise normalized with
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Figure 5.20 Current
transients for various
pulse voltages over a large
time scale of up to 12
orders of magnitude.
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the maximum current in the low resistive ON state is shown. The maximum current

is either given by the pulse voltage and the series resistor, or the current compliance

depending on the measurement setup. From the current transients the average SET

time for a specific pulse voltage can be extracted, which is depicted in figure 5.21a for

T = 298K and in figure 5.24 for a sample temperature range between T = 298K and

T = 373K, respectively. The statistical probability for switching can be expressed by a

Weibull distribution [149; 150]

F (tSET) = 1− exp

(

−
(
tSET
τ

)β
)

, (5.1)

exemplarily shown for VPulse = 0.3V, 0.4V, 0.5V, 1V, 1.5V and 2V in figure 5.21. Here,

F is the cumulative fraction of cells, which successfully switched to the ON state in

a certain time tSET. τ is a characteristic time where F = 0.63 [149]. The Weibull

slope β defines the time-to-switch spreading degree and can provide information about

the mechanism behind the switching event [149]. β ≈ 1...1.7 increases slightly for

VPulse ≤ 0.5V. For higher pulse voltages VPulse ≥ 1V β increases from 2.2 to 5.1. This

is an indication that between VPulse = 0.3V and 2V two different limiting factors are

determining the switching time. For VPulse < 0.3V less statistical information is available

due to long pulse lengths of up to 10 h. The individual limiting factors are discussed in

the next section.

Simulation Model

A simulation model for the strong nonlinearity of the switching kinetics of AgI was

presented by S. Menzel et. al. [112]. The model accounts for three rate limiting steps,
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which can be (i) a nucleation process to form a stable Ag nucleus on the Pt interface for the

metal filament, (ii) the electron-transfer reaction, which occurs at the metal/electrolyte

interfaces, and (iii) the cation transport within the electrolyte. These processes are

schematically shown in figure 5.22. At first, oxidation of the active electrode takes place

supplying a small number of cations (A). Further oxidation is initially limited until

cations, which migrate across the electrolyte (B), are reduced at the counter electrode

(C). A stable Ag nucleus is formed during the nucleation process (D). The nucleation

time and the number of atoms required to form a stable nucleus generally depend on

the cation species, the counter electrode and electrolyte material, and the nucleation

overpotential. After the nucleation process, the filament growth (E) is both limited by

the charge transfer reaction and/or migration process as soon as the filament approaches

the active electrode (F), and the cell switches to the low resistive ON state. Depending

(A)

(B)

(C)

(D)

(E)

(F)

T
im
e

Figure 5.22 Schematic of the nucleation,
charge transfer, and drift process dur-
ing filament formation. Reproduced from
[112].
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on the experimental conditions and the material system at least one of these rate limiting

steps is considered to dominate the switching time.

In figure 5.23 the equivalent circuit model for the switching simulation is shown. For

simplicity a cylindrical filament is assumed to grow within the electrolyte, which is

sandwiched between the active top and inert bottom electrode. The filament modulates

the tunneling gap x. The 1D simulation model accounts both for electronic ITu and

ionic current paths Iion, respectively. The overpotentials ηac, ηnuc, ηhop, and ηfil are

introduced below. Details on the simulation can be found in [112]. The rate limiting

steps (nucleation, charge transfer, and drift) are discussed in the following paragraphs

in respect to the switching model.

Figure 5.23 Equivalent circuit model for 1D
switching simulation. The switching layer of
thickness L is sandwiched between the active top
and inert bottom electrode. The filament grows
within the electrolyte film and modulates the
tunneling gap x. The model accounts both for
ionic and electronic current paths. RS = 1MΩ
is the series resistor, Rel,ac and Rel,in are the
active electrode and inert electrode resistances,
respectively. Rfil is the filament resistance. Re-
produced from [112].
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(i) Nucleation Process The nucleation process can be expressed by an activation

energy ∆G 6=
nuc, which should be added to the activation energy of the electrode reaction

[87; 112]. During the nucleation process a stable Ag nucleus consisting of an integer

number of atoms (further denoted as critical cluster size Nc) is formed. Nc depends on

the applied voltage and in particular of the nucleation overpotential ηnuc. In special

cases each vacancy acts as critical nucleus and Nc = 0 holds [87]. During the nucleation

time tnuc the filament growth is significantly suppressed. The nucleation time is given

by [87; 112]:

tnuc = t0,nuc · exp
(
∆G 6=

nuc

kBT

)

· exp
(

−(Nc + α) ze

kBT
ηnuc

)

(5.2)
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Beside Nc, ηnuc and ∆G 6=
nuc, further parameters of equation 5.2 are the prefactor t0,nuc,

the temperature T , the number z of electrons involved in the cation reduction, the

charge transfer coefficient α, the Boltzmann constant kB and the elementary charge e.

(ii) Charge Transfer Reaction The current density jet of the electron transfer reaction

is mathematically described by the Butler-Volmer equation [112], which has been

introduced in chapter 2.2:

jet = j0,et ·
[

exp

(
(1− α) ze

kBT
ηet

)

− exp

(

− αze

kBT
ηet

)]

(5.3)

Parameters of the charge transfer reaction are the Butler-Volmer overpotential ηet and

the exchange current density j0,et, which depends on the activation barrier ∆G 6=
et [112]:

j0,et = zecAg+k0,et · exp
(

−∆G 6=
et

kBT

)

(5.4)

Here, k0,et is a rate constant and cAg+ the cation concentration (i.e. Ag+ ion concen-

tration). The oxidation and reduction processes are described by the first and second

exponential terms in equation 5.3, respectively. The oxidation process is dominating for

a strong positive overpotential ηet > 0 and |ηet| >> (kBT ) /e. In contrast, the reduction

of cations predominates for ηet < 0 and |ηet| >> (kBT ) /e.

(iii) Cation Drift The cation drift is expressed by a hopping transport, which is

determined by the migration barrier enthalpy H 6=
hop, and calculated by the Mott-Gurney

law [112]:

jhop = 2zecAg+af · exp
(

−
∆H 6=

hop

kBT

)

· sinh
(

aze

2kBT
E

)

, (5.5)

where a is the mean cation hopping distance, which is in the range of some inter

atomic distances. Further parameters are f the attempt frequency, and E the externally

applied electric field. The ion transport depends linearly on E for E << (2kBT ) / (aze).

In contrast, the cations are exponentially accelerated for high electric fields where

E > (2kBT ) / (aze).

The pulse voltage vs. SET time characteristic is simulated as follows: At first, the

nucleation time tnuc is calculated based on equation 5.2. During the nucleation the
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Faradaic current is zero and the ECM cell is in the high resistive OFF state. Therefore,

the nucleation overpotential is assumed to be equal to the pulse voltage ηnuc = VPulse.

For considerable high electronic leakage current only a part of the pulse voltage drives

the nucleation. The actual filamentary growth starts when t = tnuc, and is based on an

extension of the dynamic switching model presented in [25]. The growth of the filament

is modulated by the change of the tunneling gap x between the active electrode and the

filament. The growth can be mathematically described by Faraday’s law [151]:

∂x

∂t
= − MMe

zeρm,Me

jion, (5.6)

where MMe and ρm,Me are the deposited metal atomic mass and density, respectively. jion

is given either by the Butler-Volmer equation (see equation 5.3) or the hopping current

(equation 5.5). For η >> kBT/ze the Butler-Volmer equation can be approximated by

the Tafel equation [37]. In general, the overpotentials at the filament/insulator interface

ηfil and the active electrode/insulator interface ηac are different. Thus, different equations

apply for the description of the ionic currents across these two interfaces. The Tafel

equation describing the ionic current at the filament/insulator interface reads [112]:

Ifil,SET = j0,ctAfil

(

exp

(

− αze

kBT
ηfil

)

− 1

)

, (5.7)

with ηfil the electron transfer overpotential at the filament/electrolyte interface.

Analogous, the ionic current at the active electrode/insulator interface is given by [112]:

Iac,SET = j0,ctAac

(

exp

(
(1− α) ze

kBT
ηac

)

− 1

)

(5.8)

Here, ηac is the electron transfer overpotential at the active electrode.

Moreover, the cation drift is expressed by the hopping current given in equation 5.5, the

area Ais responsible for ionic conduction, and E = ηhop/x (with the hopping overpotential

ηhop):

Ihop = 2zecAg+Aisaf · exp
(

−
∆G 6=

hop

kBT

)

· sinh
(
azeηhop
2kBTx

)

(5.9)

Due to the charge neutrality all ionic currents are equal, i.e. Iion ≡ Ifil,SET = Iac,SET = Ihop,

and the overall current I is given by the tunneling and ionic current I = ITu + Iion. It

can be shown that I is only a function of the overpotential ηfil and the gap distance x

[25]. During the simulation equation 5.6 is solved based on the equations derived above



5.1. Switching Behavior in Silicon Dioxide and Silver Iodide 95

and Kirchhoff’s law for the equivalent circuit model (cf. 5.23). Simulation parameters

are given in table 5.1. Further details of the simulation can be found in [112].

Symbol Value Symbol Value

Mme 1.79 · 10−22 g ∆G 6=
nuc 0.8 eV

z 1 t0,nuc 2 · 10−8 s
ρm,me 10.49 g cm−3 Nc 3

a 0.25 nm Aac 804.25 nm2

α 0.3 Afil 12.57 nm2

j0,ct 3.2 · 105 Am−2 Ais 12.57 nm2

∆G 6=
ct 0.6 eV L 20 nm

j0,hop 1.1 · 1011 Am−2 ρfil 1.7 · 10−8 Ωm
RS 1MΩ Rel 76.4mΩ

∆H 6=
hop 0.3 eV

Table 5.1. Simulation model parameters from [112].

The parameters in table 5.1 are based on literature values (e.g. Mme or ρm,me), measure-

ment results (e.g. ∆H 6=
hop), or device geometry and the measurement setup (e.g. L and

RS). Further parameters such as Nc or α were chosen to fit to the pulse measurement

data (cf. 5.24).

Comparison of Experimental Data and Simulation Results

Pulse experiments were performed for various temperatures, and SET times between

50 ns ≤ tSET ≤ 104 s were measured. The measurement results are shown in figure 5.24

and fit very well to the simulation model (solid lines). In regime I the nucleation seems

to be the limitation for resistive switching. For simplification, all simulation parameters

for the nucleation limitation (e.g. Nc or ∆G 6=
nuc) are assumed to be constant. In a real

device these parameters may depend on the applied voltage, and may also differ from

cell to cell. In regime II resistive switching is limited by the electron transfer reaction,

and regime III is a mixed controlled regime where the electron transfer reaction and ion

drift are the limitation factors.

Both the simulation and pulse measurements show a very strong nonlinearity of the

switching kinetics of Ag/AgI/Pt cells. This is advantageous from an application point

of view: At low voltage stress (e.g. read access) switching of the cell is suppressed, while

fast write access down to 50 ns and below is possible when higher voltages are applied.

Based on the simulation it can be shown that the measurement setup, e.g. the pulse rise

time, has a strong impact on the switching characteristics for high pulse voltages [112].
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Figure 5.24. Pulse measurement data (squares) and simulation results (solid lines) for
various ambient temperatures T = 298K (blue), T = 323K (red), T = 348K (black) and
T = 373K (light green) [112]. I, II, III mark the nucleation limited, the electron transfer
limited, and the mixed control regime, respectively. Details of statistical variation can be
found in [54].

A SET time down to 50 ns at a comparatively moderate switching voltage of 2V is

fast compared to conventional Flash memory devices, where write-access is typically

in the order of a few µs to ms [9]. Faster switching in the pico second range has been

demonstrated for Nb2O5 VCM cells [152]. In case of AgI, switching below 10 ns may be

in principle possible using an adequate high frequency measurement setup. However, by

increase of the pulse voltage the risk of thin film decomposition is high, which would

result in a significant device degradation.

5.2. Nanobatteries in Redox Based Resistive

Switches

In chapter 4.3 nonequilibrium states originating from redox processes on the nanoscale

that are responsible for resistive switching have been discussed. In open circuit conditions

these nonequilibrium states result in an electromotive force, and based on the device

characteristics a cell voltage can be measured, i.e. a nanobattery. In the following section



5.2. Nanobatteries in Redox Based Resistive Switches 97

the impact of this nanobattery effect on redox based resistive switches is discussed. In

contrast to the cell voltage measurement before electroforming shown in chapter 4.3,

here open circuit cell voltages and short circuit currents are analyzed after resistive

switching (SET and subsequent RESET process). In some cases, in particular for VCM

cells, a high conductive channel (both for ions and electrons) is potentially grown during

the forming process. A similar effect is also discussed for ECM cells such as Cu/SiO2/Pt

[35]. Thus, the first switching cycle can have a strong impact on the nanobattery effect.

5.2.1. Electromotive Force Measurements under Open Circuit

and Short Circuit Conditions

In figure 5.25a the cell voltage of a Ag/SiO2/Pt cell in open circuit condition after

switching and RESET is shown. For comparison, the cell voltages for cells without a

previous electroforming and switching step are depicted as well (see chapter 4.3). The

cell shows an open circuit voltage similar to the cell with cion = 1.4 · 10−4 M cm−3.

Note, during the RESET process cations are reduced depending on the negative voltage

amplitude.
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Figure 5.25. Nanobattery effect in Ag/SiO2/Pt resistive switching devices [40]. (a) Open
circuit cell voltage for a cell after SET and RESET operation (red curve) compared
to cell voltages without a previous electroforming step (blue, green, brown and purple
curves). (b) Short circuit discharge current density (VCell = 0) of the same cell with
similar ion concentration. The inset depicts the discharge current over a long time scale.
The measurement limitation is about 0.01 pA.

Since the cell is characterized by a measurable cell voltage in open circuit conditions, a

short circuit discharge current density is measured when VCell = 0 is applied (cf. 5.25b).
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In the inset the discharge current is shown until it is close to the measurement limitation

of about 0.01 pA. The cell current scales with the electrode area as depicted in figure

5.26. This is an indication that the nanobattery effect is not dominated by a filament in

this particular ECM system but by the whole electrode area. In general, both the cell

voltage and the short circuit current may depend on the device characteristics, and in

some cases they may scale in a non trivial manner according to equation 2.19. However,

the electromotive force voltage itself and effects, which can be caused by nonequilibrium

states, are still persistent.

Figure 5.26 Short circuit dis-
charge current density (VCell =
0) after SET and RESET of a
Ag/SiO2/Pt cell [40]. The dis-
charge current (recorded after
a discharge time of t = 150 s,
see inset) scales with the elec-
trode diameter indicating that
the nanobattery effect is do-
minated by the whole electrode
area.
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In general, during device operation the RESET process can be incomplete and further

ions are generated in the following SET cycle. This results in an ion accumulation at

the electrode interfaces (or depletion in case of a strong RESET, see section 5.2.2), and

therefore, in a non-zero crossing I/V curve. Figure 5.27a depicts a typical I/V curve of

a Cu/SiO2/Pt cell. The non-zero crossing characteristic (also termed as non-pinched

characteristics at the origin of the I–V plane) is clearly observed in the inset. Note, the

absolute voltage value for the axis crossing at I = 0 is not equal to the open circuit

cell voltage, since the emf voltage is a static thermodynamic value and I/V sweeps are

potentiodynamic measurements.

Moreover, this non-zero crossing effect is pronounced for relatively large micro scale

cells, since the ionic current generally scales with the electrode diameter depending

on the ReRAM system. In some VCM type cells the ionic current is believed to be of

filamentary nature and in this case the non-zero crossing effect does not scale with the

device geometry [40].

For Ag/SiO2/Pt cells a similar non-zero crossing effect is observed (cf. 5.27b). Here, the

RESET process is analyzed with respect to further ion reduction after dissolution of the

filament. At first, the cell is switched to the ON state. Afterwards, the cell is RESET to
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Figure 5.27. Non-zero crossing effect in ECM type resistive switching cells [40]. (a)
Cu/SiO2/Pt cells with a pronounced non-zero crossing behavior for V = 0. (b) Non-zero
crossing of a Ag/SiO2/Pt cell with special attention to subsequent reduction cycles.
The RESET process appears to be incomplete resulting in an ion accumulation at the
interfaces.

the OFF state, and further cycling in the negative voltage regime is performed. The first

RESET cycle appears to be incomplete since further ion reduction is observed during

the subsequent reduction cycles. Thus, although the cell is switched back to the OFF

state an ion accumulation at the interfaces can still remain, which affects the device

performance as discussed in section 5.2.2.

Both VCM type and ECM type memory cells are based on redox reactions on the

nanoscale. Hence, nonequilibrium states are inherently induced during device operation.

In figure 5.28 open circuit cell voltages of several material systems are summarized. The

particular cell voltage depends on the device operation history such as voltage amplitude

or sweep rate. The cell voltages of VCM type cells are smaller, which is due to a higher

electronic partial conductivity (i.e. tel ≈ 103 · ti) [40].
In 1971, L. Chua introduced the memristor as the missing fourth basic circuit element

[153] and further developed the theory of memristive devices [154; 155]. By definition,

the memristor or memristive device is a passive device, which resistance depends on

the previous device operation. The resistance of the device is linked to inner state

variable(s). The zero-crossing hysteresis loop is an important fingerprint of memristors

and memristive devices [153; 156–158]. For example, Lissajous curves do not show a

zero-crossing hysteresis loop, and are thus, not termed as memristors. In 2008, the

serendipitous discovery of the link between redox based nano ionic resistive memory cells,

and memristors and memristive devices has further intensified the research in the field

of resistive switches [40; 127; 159]. In this context, at least one state variable describing

a structural change of the filament is needed, e.g. the gap distance between the filament
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Figure 5.28 Open circuit cell volt-
ages for several VCM and ECM type
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tronic partial conductivity.

and active electrode [28; 160]. Recently, the question of the scientific legitimacy of a

physical memristor has been raised in literature [161–163].

Moreover, the inherent non-zero crossing effect of VCM and ECM type cells is in conflict

with the fingerprint of the existing memristor theory. Thus, a modified theory termed as

extended memristive devices has been developed, which accounts for the nanobattery

effect [40]. In contrast to the existing memristor model, the ionic resistance and the

filament (controlled resistance) are separated. This is closer to the device physics since

the state variable (filament/electrode gap distance) depends only on the total charge

flow through the ionic resistance.

In the original paper by L. Chua the device resistance is not separated in an electronic

and ionic partial resistance. Thus, the state variable also depends on the charge flow
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Figure 5.29. Extended memristive device model [40]. (a) Equivalent circuit of the
extended memristive device accounting for the nanobattery effect and ionic resistance. (b)
The SPICE simulation results fit very well to the measurement data shown in figure 5.27.
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towards the filament. However, only the ionic current contributes to the redox reactions

and mass transport, and thus, the change of the device resistance. In the extended

memristive device model the nanobattery is in series to the ionic resistance. Discharging

effects of the nanobattery in the ON or OFF state can explain retention and endurance

problems as discussed in the following section.

5.2.2. Influence on Device Endurance and Retention

The violation of the zero-crossing axiom may seem to be a side note in the context

of the memristor theory. However, the impact of the discovered nonequilibrium states

on the switching, endurance, and the retention of ReRAM devices is of high practical

interest. The relaxation of the electromotive force voltage for example leads to a shift of
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the resistance level (both for the ON and OFF resistance). Therefore, the impact of the

nanobattery effect on the device endurance and state retention both for micro and nano

crossbars was analyzed.

OFF state resistance ROFF retention and SET voltage variability measurements were

performed to study the impact of nonequilibrium states on the device characteristics

[98]. The equivalent circuit model of redox based resistive switches (e.g. a Ag/SiO2/Pt

based ECM cell, cf. 5.30a) inherently consists of a nanobattery Vemf, an ionic resistance

Ri, and an electronic (leakage) resistance Rel as shown in Fig. 5.30b [40]. Vemf results

from chemical asymmetry of the electrode materials and/or nonequilibrium states due to

nano ionic effects, such as ion concentration gradients of Ag+ and OH– in case of SiO2.

Both Rel and Ri are determining the OFF state resistance as shown in Fig. 5.30b. While

Rel depends on the materials parameters and device geometry, and remains constant

after the forming process, the drift of ROFF is determined only by Ri.
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Figure 5.31. OFF state retention and VCell relaxation versus time for (a) AgI, (b) GeSx
and (c) SiO2 ECM cells, and a (d) SrTiO3 VCM cell. [98]

A scheme of the OFF state retention measurement is shown in Fig. 5.30c. The cells

are first SET and RESET. Afterwards, ROFF is repeatedly calculated by measuring the

cell voltage VCell (which is determined by Vemf, Ri and Rel) and subsequently the short

circuit current. ROFF can be expressed by the ionic transference number ti [40] of the

individual materials system and Ri. The measurement results for VCell and ROFF versus
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time are shown in Fig. 5.31a-d both for ECM and VCM type cells [98]. In all cases a

relaxation of the cell voltage (and in such a way, Vemf) is observed. Simultaneously, Ri,

and thus, the OFF resistance shifts to higher values during emf relaxation. Hence, the

OFF resistance becomes more stable in these cases. While the relaxation of Ri, and as

follows ROFF, is due to discharging of the nanobattery (see equivalent circuit model in

Fig. 5.30b), the relaxation time depends on the local ion distribution and movement, as

well as the chemical and electrochemical potential gradient of charged or neutral species

of the particular material system. Moreover, this resistance shift has to be taken into

account for the retention of high resistive multilevel states [164; 165].
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switches from the high resistive state to the low resistive state) to smaller values. (b)
Extracted SET voltage VSET for the cell in (a). A clear decrease of VSET is observed.

Besides OFF state retention the SET voltage variability, and in this way, the device

endurance is of high practical importance. Therefore, the SET voltage shift of Ag/SiO2/Pt

nano crossbars has been analyzed [98]. The current/voltage curves are depicted in Fig.

5.32a. The SET voltages for each cycle have been extracted from these I-V curves and

are shown in Fig. 5.32b. A clear trend of a SET voltage decrease by 30 % is observed.

By further cycling the SET voltage will further decrease to zero and the cell is stuck in

ON state.

Several failure mechanisms have been proposed in literature mainly for VCM type

systems. For example, B. Chen et. al. [166; 167] suggest that during RESET cycles the

recombination rate of the oxygen vacancies is reduced, which further reduces ROFF. For

ECM type systems, very little has been published on endurance failure mechanisms [12].

In the section above an extended memristor model [40] is presented, which accounts for

the nanobattery effect for both ECM and VCM devices. Simulation results for several

SET and RESET cycles based on the extended memristor model are shown in Fig. 5.33.
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During RESET operation a considerable number of ions are remaining resulting in an

ion accumulation at the interfaces, which can drastically affect the SET voltage variation.

The simulation results for an incomplete RESET shown in Fig. 5.33a fit very well to the

measurement data from Fig. 5.32a. After several cycles the cell is stuck in ON state.
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Figure 5.33. Simulation results based on the extended memristor model [40; 98]. Arrows
indicate the trend of the SET voltage and absolute maximum RESET current by further
cycling. (a) The cell is stuck in ON state due to incomplete RESET operations. (b)
Unstable ON states are observed for emf voltages in the range of the RESET voltage.

Besides VSET degradation ON state retention problems have been published especially

for comparatively high resistive ON states [119; 164; 165]. Using the extended memristor

model, ON state retention problems in ECM cells (as depicted in Fig. 5.33b) can also be

explained [98]: Since RESET voltages of ECM cells are typically small, an emf voltage

in the range of the RESET voltage (and the same polarity) can induce self-dissolution of

the filament. This emf voltage can exemplarily originate from the formation of counter

charges (e.g. OH– [72]) at the active electrode, and can be a driving force for oxidation of

the filament tip. In case of high resistive ON states this oxidation results in a spontaneous

and unintended filament dissolution. For low resistive ON states the filament remains

stable after the nanobattery is discharged.

5.3. Resistive Switching Applications

5.3.1. Electrochemical Metallization Cells for Memory

Applications

In this section, the applicability of SiO2 and AgI based ECM cells for memory applications

is discussed. The performance of state of the art memories, and in particular of Flash
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cells, and requirements for future memory technology are given in the International

Technology Roadmap for Semiconductors (ITRS) [2]. To compete with Flash technology,

the ECM cells fabricated in this study have to fulfill the IRTS requirements.

Both AgI and SiO2 based cells can be operated using smaller programming voltages

than NAND Flash (17V − 19V) and NOR Flash (7V − 9V). For example, Ag/AgI/Pt

cells can be switched within 50 ns when a pulse voltage of only 2V is applied. The

switching kinetics of SiO2 based cells need to be further investigated, but some reports

in literature indicate that a SET time below 200 ns is achievable when moderate voltages

(below 5V) are applied [168]. In contrast, the time for write access of Flash memories is

typically in the order of some tens of micro seconds to milli seconds. Thus, the ECM

cells discussed in this study have the potential to outperform current Flash technology

in respect to high speed write access using moderate voltages.

The energy to write a bit is directly linked to the operation voltage regime and the

programming time. The write energy for Ag/AgI/Pt micro crossbars is about 10−13 J/bit.

In many Flash memories the write operation is based on hot electron injection and

requires a write energy of about 10−10 J/bit [9]. Thus, AgI based ECM cells offer the

benefit of a significant decrease of the power consumption compared to Flash.

Of high importance for practical use is the device endurance. The requirements for

NOR Flash are 105 write and erase cycles, and for NAND Flash 104 write and erase

cycles are needed, respectively [2]. The ECM cells fabricated in this study and the

measurement setup were not optimized to achieve a high endurance. However, using a

series resistor Ag/SiO2/Pt cells can withstand more than 104 potentiodynamic switching

cycles. The endurance may be further improved when voltage pulses and a transistor

close to the memory cell as selector device and current limiter are used. Similar results

have been also reported for Cu/SiO2/Pt cells [35]. In contrast to SiO2, the endurance of

AgI based cells is yet insufficient, and no significant improvement has been observed

when a series resistor is used as current limiter instead of the source meter current

compliance. Nevertheless, an endurance of 104 does not fulfill the requirements of the

ITRS for ReRAMs (at least 105 write and erase cycles are needed [2]). Hence, further

research should be focused on the improvement of the device endurance of these material

systems.

The resistive switching effect is contributed to a very localized change of the device

resistance. In fact, quantized conductance values observed both for SiO2 and AgI based

ECM cells reveal that the device resistance can be dominated by the conductance values

of a few atoms. This implies an ultimate scalability of ECM cells to an almost atomic

level, which overcomes the scaling limitation of conventional Flash technology.
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A serious problem for passive crossbar arrays is the asymmetry between the SET and

RESET voltage (shown for example in figure 5.2). Depending on the write and read

scheme [169], a memory cell can lose its stored information by unintended RESET, when

the absolute RESET voltage is very small [170]. In CRS (Complementary Resistive

Switch, [16]) based arrays a series resistor can be used to overcome this drawback [171].

A major disadvantage of the fabricated ECM cells is the poor retention of the logic

states. The retention requirement for nonvolatile memories is 10 years [2]. While the

fabricated cells remain in the high resistive OFF state for years, the ON state retention

is a serious problem. When the ON state resistance RON is above ≈ 13 kΩ the retention

is in the order of only several minutes. When RON is below 13 kΩ a retention time of

several hours can be achieved. However, for memory array applications an ON state

resistance in the order of 50 kΩ is required due to the voltage drop across the bitlines. In

literature most of the retention studies were performed when comparatively low resistive

ON states were programmed (RON << 13 kΩ, e.g. [31; 35; 86; 126; 127]). A detailed

study of the ON state retention has not been done in this study but reports in the

literature indicate that achieving a high ON state retention for RON > 13 kΩ is difficult

[119]. A potential reason could be the influence of nonequilibrium states. In this context,

further research is required to solve the ON state retention problem.

5.3.2. Nondestructive Readout of Complementary Resistive

Switches

One of the major benefits of resistive switches is the feasibility to fabricate large and dense

passive crossbar memory arrays. However, the current sneak path problem (crosstalk of

neighboring cells) is a major challenge of a purely passive architecture. E. Linn et. al.

suggested to use a complementary setup of two bipolar resistive switching cells called

Complementary Resistive Switch (CRS) [16; 49; 160; 171–173], which drastically reduces

the sneak path problem. However, a drawback of the CRS concept is the destructive

current based readout, where the CRS cell is switched and the current response is

analyzed in order to identify the stored information. Hence, the conventional destructive

CRS readout is limited by the switching speed. Furthermore, the CRS device requires a

high switching endurance to perform up to 1016 destructive readout operations (which

is the endurance requirement for DRAM [2]).

This problem is solved by a nondestructive capacity based readout (NDRO) [174]. The

basic idea of the NDRO approach is an asymmetric setup of a CRS device, where both

resistive switching cells have similar switching characteristics, but are distinguishable by

different capacities. Figure 5.34a illustrates the equivalent circuit model of the alternative
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CRS cell setup shown in figure 5.34b. Here, the CRS cell is fabricated in a lateral setup

for process simplification. Using the lateral setup up to 50% of the process steps required

for patterning can be saved [171].

The two resistive switching elements A and B can be described by their device resistance

RA and RB, as well as their inherent capacity CA and CB. During normal CRS operation

either RA or RB is in the low resistive state, and thus, short circuiting the respective

element capacity (cf. 5.34c,d). In redox based resistive switches the switching is due to

formation and dissolution of a nanoscale filament, whose area is practically insignificant

compared to the electrode area [174; 175]. The capacity of each element is given by the

element geometry (electrode distance and area) and the permittivity of the switching

material. Here, different electrode areas are used. In practical applications different

element capacities can be prepared by different electrode distances and/or the use of

materials with different permittivity of each element to decrease the lateral feature size

of the CRS device.

If the resistance levels for HRS and LRS of both elements are similar but the cell

capacities are different, one can distinguish by measuring the time constant of the

overall device whether element A or element B is in the LRS or HRS without switching.

Alternatively, the stored information can be analyzed by a capacitive voltage divider.

For state 1 (see figure 5.34c) and fast read access (ω → ∞) the output voltage of the

capacitive voltage divider is given by [174]:

Vout,1 = Vin
CA

CA + Cout

(5.10)

Here, Vin is the read pulse voltage and Cout is a reference capacity of the capacitive

voltage divider. Typically, the inherent bit line capacity is used in memory applications

as reference capacity [174]. Analogous to equation 5.10 the output voltage for state 0

(figure 5.34d) is given by (for ω → ∞):

Vout,0 = Vin
CB

CB + Cout

(5.11)

In figure 5.35a the voltage response for Vin = 0.5V is shown both for state 1 and 0. One

can clearly distinguish between both logic states. When TiO2 is used instead of SiO2, the

normalized voltage margin is increased up to 8.1 % due to the higher dielectric constant

of TiO2 [174]. Note that a discrete reference capacity is used here (Cout = 24 pF) given



108 5. Resistive Switching Effect and Applications

(b)(a)

(d) State 0(c) State 1

5 µm

15 µm

10 µm
Terminal 1

Top Pt

Bottom

Cu

A

B

Terminal 2

top Pt

A

B

Terminal 1

Terminal 2

A

B

C
A

R
A

C
B

R
B

A

B

C
A

R
HRS

C
B

R
LRS

V
out

C
out Sense

Amplifier

V
in

C
in

R
ser

A

B

C
A

R
HRS

C
B

R
LRS

V
out

C
out Sense

Amplifier

V
in

C
in

R
ser

Figure 5.34. Capacity based nondestructive readout for CRS cells redrawn from [174].
(a) Equivalent network for a CRS device. In state LRS/HRS (state 0) RA = RLRS and
RB = RHRS holds, while in state HRS/LRS (state 1) RA = RHRS and RB = RLRS holds.
CA and CB are independent of the device state, and depend only on device geometry
and material permittivity. In (b) an exemplary device geometry is shown. The area of
element A is AA = 50µm2 and area of element B is AB = 150µm2, hence CA/CB = 1/3.
(c) and (d) depict the equivalent circuit of a CRS device and circuitry for capacitive
voltage divider evaluation. The behavior of element A and B is either dominated by a
low resistance or capacitance depending on the particular element state.
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Figure 5.35. (a) Capacitive readout of SiO2 based CRS cells [174]. The film thickness
for both elements A and B is d = 8nm (area size see figure 5.34). The ON state resistance
is RLRS = 130Ω and the OFF state resistance is RHRS = 10MΩ. CA = 0.9 pF and
CB = 0.3 pF resulting in a normalized voltage margin of 2.4 %. (b) The nonlinear
switching kinetics can be used to increase the input voltage for short pulse lengths (here
50 ns) [174], exemplarily shown for Vin = 2V and Vin = 3V, respectively. Voltage margins
are about 46mV for a 2V input pulse and 68mV for a 3V input pulse, respectively.

by the amplifier input capacity. To increase the voltage margin an optimized reference

capacity Cout,opt can be found for a m×m array [174]:

Cout,opt = m ·
√

CA · CB (5.12)

In this case the voltage margin in a 8 × 8 (m = 8) SiO2 based array is 6.5 % with

CA/CB = 10.

It should be emphasized that the preparation of a fast sense amplifier with a desirable

small input capacity as well as high input resistance, and optimized for a small voltage

margin reported above is challenging. The circuit of the noninverting sense amplifier

used in Ref. [174] for the nondestructive readout is shown in Fig. 5.36a. A wideband

unity gain amplifier (OPA 656N) with a voltage amplification of AV = 10 was used.

The layout of the circuit is depicted in Fig. 5.36b. The cable and wire lengths were kept

small to measure ultra short pulses down to some tens of nanoseconds. The absolute

voltage margin for Vin = 0.5V is ∆Vout = 12mV. The input voltage Vin = 0.5V was

chosen because it is below the potentiodynamic switching voltage of the tested devices.

In this context, the strong nonlinear switching kinetics of redox based resistive switches

(compare section 5.1.4) can be used to increase the absolute voltage margin. Figure

5.35b depicts the voltage response for Vin = 2V and Vin = 3V, respectively. The output

voltage margin is increased of up to ∆Vout = 48mV and ∆Vout = 68mV, respectively.
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Figure 5.36. (a) Fast noninverting sense amplifier circuit for nondestructive readout of
CRS cells. (b) Layout of the sense amplifier. The cable and wire lengths were kept small
to measure ultra short pulses.

The presented nondestructive readout approach for CRS cells can be used for small to

medium sized purely passive crossbar arrays [174]. It offers the potential of an ultra

fast and low power read access. However, the read voltage margin of the nondestructive

readout depends on the array size. For large crossbar arrays the voltage margin is

potentially too small for sense amplifiers.

5.3.3. Logic and Neuromorphic Applications

Besides memory applications resistive switches can be also used for logic and neuromor-

phic applications. In case of the implementation of logic functions, several approaches

are reported in literature, including programmable interconnects (i.e. programmable

logic arrays, PLA) [17; 176], passive crossbar memory arrays acting as look-up tables

(LUT) [177], and a sequential logic concept [18; 178; 179]. In general, resistive switches

and CRS cells can be considered as Moore machines [171], which are able to perform

the implication (IMP) operation. By sequential execution of the negate IMP operation

(NIMP) or the reserve implication (RIMP), 14 out of 16 Boolean logic functions (e.g.

NOR or AND operation) can be realized with a single memory cell [180]. The remaining

two Boolean logic functions (XOR and XNOR operation) require two memory cells.

Neuromorphic applications using resistive switches are typically based on the ON state

retention and nonlinear switching kinetics [20; 139]. In this respect, the ON state

retention is either increased or decreased by input pulses (e.g. amplitude or pulse count).

In this context, the resistive switching cell can be characterized by a learning ability

represented by the ON state retention.
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A complete different approach for neuromorphic applications was suggested in Ref. [125],

which utilizes the nondestructive readout discussed in section 5.3.2. Here, an associative

capacitive network (ACN) is formed using CRS cells where the logic information is stored

in a capacitive manner. The CRS cells are capable of providing a weighted synaptic-like

contribution on a shared line, which is called match-line. In contrast to previous ACN

concepts [181], the information is here represented as different nonvolatile capacity

values instead of volatile charge stored in fixed memory capacities. The basic principle

of ACNs is a bit-by-bit XNOR operation between the input (search pattern) and stored

capacity value (template). A single match-line for an one bit j matching operation of

template i (array row) is depicted in Fig. 5.37. The output voltage Vout of the amplifier

is related to the Hamming distance (HD), i.e. similarity, of the input xj and template

pattern. The template pattern is stored in CRS cells as the capacity value CT(i,j) and

its negate CN(i,j). A negate is required to avoid different output voltages for the same

HD [125]. The red equivalent circuit symbols for CRS cells in state 0 and 1 (cf. 5.37),

respectively, are an example of a stored pattern. When the input pattern is xj = 1 (and

its negate is x̄j = 0, indicated by a red 1 and 0, respectively) the resulting Hamming

distance is HD = 1, for example.

Φ1 and Φ2 are operation modes to precharge the cells and start the measurement,

respectively. The switches S1, S2 and S3 are closed during reset operation Φ1 (RST).

The Hamming distance evaluation (EVAL) is performed during operation Φ2 when

the switches S4 and S5 are closed. Each match-line i consists of a match-line reference

capacity CM,i. The match-line voltage is compared to a threshold voltage VTH. The

output voltage is low when the match-line voltage is below the threshold voltage and

high when match-line voltage is above VTH. The higher the match-line voltage the

less similar are the search and template pattern (i.e. high HD). When a ramp voltage

(from a low voltage to a high voltage level) is used as threshold voltage signal, the

output voltage of each comparator in line i can be used for a fully parallel search of the
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Figure 5.37. A single match-line MLi consisting of two CRS cells, a threshold voltage,
and an analog comparator for an one bit matching operation. Redrawn from [125].
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minimum Hamming distance of an input pattern and various stored pattern. In this case

comparators of match-lines with a more similar stored and input pattern switch faster to

a high voltage level than those, where the stored and input pattern are less similar. This

time difference can be used for a parallel analog calculation of the Hamming distance

between the input and each stored pattern. Additionally, a Winner-Take-All (WTA)

circuit [182] can be used to search for the template with the highest similarity.

Typical applications of these ACNs include internet and network switches and routers as

binary and ternary Content Addressable Memories (CAMs), cognitive computing, and

intelligent data processing [125]. The advantages of this approach are a fully parallel

memory-intense search operation, high scalability (compared to CMOS based CAMs),

and improved retention due to nonvolatile information storage. A disadvantage is the

conditional probability of up to a few percent to detect HD > 1 as the minimum

Hamming distance (HD = 0) by mistake [125].

Due to feasibility a read-only-memory (ROM) array consisting of 8 × (8 + 8) fixed

capacities and appropriated readout circuits were fabricated in the context of this work.

The basic circuit of each match-line comparator amplifier is shown in Fig. 5.38a. In

accordance to the nondestructive readout circuit a fast wideband unity gain amplifier

(OPA 656N) is used as voltage follower, located as close as possible to the memory array.

High frequency reflexion are reduced by curved wires as shown in the circuit layout in

Fig. 5.38b for up to eight match-lines. The input pattern y1...8 and its negate ȳ1...8 is

programmed by switches, and supplied by a pulse voltage VPulse. Each voltage follower

output voltage is compared to the threshold ramp voltage VTH using a fast comparator

(MAX99E).

In Fig. 5.38c comparator output voltages Vout,1...8 (for specific test input and template

pattern) and the pulse voltage signal are shown. Initially, the output voltages are reset

from Vout,i = 5V to Vout,i = 0V. Afterwards, the threshold voltage is increased according

to the applied ramp voltage. In this example the match-line voltages of template i = 1 has

the smallest HD, and thus, the output voltage Vout,1 switches at first to 5V. Subsequently,

the other comparator output voltages are switching to 5V depending on the specific

Hamming distance. These voltage transients vary when different input and template

patterns are used.

Each comparator output voltage can be further analyzed. In the context of this work

an analog adder circuit was designed, which acts as a Winner-Take-All circuitry. At

first, each comparator output voltage is buffered until an ENABLE signal starts the

WTA measurement (Vout,i = WLi). Each output voltage is then weighted by a unique

amplification AV,i. In the example of Fig. 5.38c output i = 1 is first set to the high

voltage level while the other outputs are 0V. Thus, output i = 1 is weighted by
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AV,1 = −6.8 kΩ/10 kΩ ≈ −0.68. The WTA output voltage VWOUT is then the summation

of all weighted output voltages: VWOUT =
∑8

i AV,i · Vout,i. A LATCH functionality is

able to stop the WTA evaluation and the WTA output voltage remains constant. If the

LATCH functionality is not used, the WTA output voltage is a staircase like signal,

where each step depends on the input and template patterns, and the specific match-line

weight as shown in Fig. 5.40.

Figure 5.40 Example of the staircase like
output voltage of the analog adder (LATCH
functionality is disabled) based on the input
signal in Fig. 5.38c. The first step corresponds
to the match-line with lowest HD.
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The search speed of the discussed ACN circuits can be significantly increased. For

example, the circuit in Fig. 5.38a,b is able to analyze the match-line voltages within

some tens of nanoseconds. However, the analog adder based on a TL072 general-purpose

operational amplifier in Fig. 5.39 has a unity gain bandwidth of only 3MHz, which

drastically limits the evaluation speed. The search speed can be increased using wideband

amplifiers for the WTA circuit. Alternatively, conventional CMOS based WTA circuits

can be used [182] for further acceleration of the Hamming distance evaluation.

The discussed associative capacitive network is able to perform a fully parallel search

for the smallest Hamming distance of an input pattern and up to eight stored template

patterns. Monte-Carlo simulations revealed that the array can be increased of up to
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41 × (40 + 40) template bits [125]. If HD = 0 the match-line output is high with a

probability of p = 0.95. For HD = 3 the match-line output is high with p = 0.05. Hence,

the ACN approach is able to detect HD = 0 with a high probability.





6. Conclusions

6.1. Summary

In this thesis, redox processes and cation mass transport in two model materials, SiO2

and AgI, have been investigated. Special attention has been paid to the resistive switching

effect. Silicon dioxide represents the class of insulating materials while silver iodide is a

well-known stoichiometric ion conductor. On the nanoscale, both materials show ionic

or mixed ionic–electronic characteristics as confirmed by various experimental results of

this study. The aim of this work was to identify physical and electrochemical processes,

which are involved prior and during the resistive switching effect of cation based ECM

cells.

In silicon dioxide, mobile cations need to be injected in order to operate the memory

cell. By cyclic voltammetry (CV) redox reactions of Ag/Ag+ as well as Cu/Cuz+ at the

interface with SiO2 were observed. Spectroscopic analysis including X-ray Absorption

Spectroscopy (XAS) and X-ray Photo Electron Spectroscopy (XPS) complemented the

electrical measurements. While in Ag based silicon dioxide cells the charge number is

z = 1 for cations, CV measurements reveal the evidence of partial redox reactions in Cu

based SiO2 cells. From potentiodynamic experiments Cu+ and Cu2+ are both observed

and Cu2+ ions are found using depth-profile XPS. According to XAS experiments, Cu2+

appears to be the more mobile cation species in Cu/SiO2/Pt ECM cells, and may be

thus, the dominating cation species for resistive switching in SiO2. The mobility of Ag+

and Cuz+ cations in the fabricated SiO2 thin films was found to be orders of magnitudes

higher compared to the extrapolated values in bulk SiO2 at room temperature. The

dissolved cation concentration in silicon dioxide thin films depends on the sweep rate

and may therefore vary during memory operation depending on the pulse length, pulse

voltage rise time and amplitude. Moreover, the ion mobility shows a strong dependence

on the ion concentration indicating ion–ion interactions typical for concentrated solution

conditions. Potentiodynamic and open circuit measurements demonstrate the formation

of cations proceeds in parallel to reduction of moisture supplied by the ambient. As
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follows, counter charges and/or counter reactions at the inert electrode play a crucial

role for resistive switching.

Contrary to SiO2, silver iodide contains mobile cations and is known to be a cation

conductor even at room temperature. α-AgI becomes superionic above a transition

temperature of T ≈ 150 ◦C. Since an electroforming voltage is not required to enable

resistive switching in AgI based cells and the switching voltages are comparatively

low, the voltage amplitude is too small for cyclic voltammetry experiments. However,

impedance spectroscopy of Ag/AgI/Pt ECM cells and open circuit measurements of

Ag/AgI/C(I2) cells were used to analyze the electronic and ionic partial conductivity

of the fabricated AgI thin films. A high ion mobility close to the bulk value was found

in the AgI thin films. Being a stoichiometric material, the ion concentration in AgI

should be constant during device operation in contrast to SiO2 based cells. Despite X-ray

Absorption Spectroscopy complemented by X-ray Diffraction (XRD) reveal that the

Ag/AgI interface is chemically inactive, nanoscale Ag metal crystallites can penetrate in

the AgI thin film. This results in a loss of electric contact in case of thin Ag electrodes

and can impact the retention of the low resistive ON state.

Based on the analysis of redox and transport phenomena in solid thin films, resistive

switching of SiO2 and AgI based ECM cells was investigated. In both material systems

the resistive switching effect is similar compared to other ECM memory cells including

Ag/GeSx/Pt and Ag/GeSex/Pt. However, in SiO2 an electroforming voltage is required

to enable resistive switching and the switching voltages are typically larger compared to

AgI. Multilevel switching was observed both in AgI and SiO2 based memory cells. In

this context, current sweeps reveal the existence of quantized cell conductance steps in

AgI and SiO2 based ECM cells, which can be attributed to a multiple of the one atomic

point contact conductivity. Furthermore, the nonlinear switching kinetics were studied

over 12 orders of magnitude in time using Ag/AgI/Pt cells. Switching below 50 ns at

moderate pulse amplitudes (≤ 2V) has been demonstrated. The experimental switching

results are consistent with an advanced 1D simulation model accounting for nucleation

effects, charge transfer and cation drift.

The existence of nonequilibrium states, which are inherently induced during device opera-

tion in redox based resistive switches, was highlighted in this thesis. These nonequilibrium

states result in a nanobattery effect leading to non-zero crossing I–V characteristics.

The relaxation of the nanobattery voltage affects the device stability and endurance,

which is consistent with the extended memristor model.

Applications based on the specific characteristics of resistive switches are complementing

this thesis. An asymmetric setup of a complementary resistive switching cell can be

alternatively considered as switchable capacity. The presented nondestructive readout
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approach for CRS cells makes use of this asymmetric setup. Further development of the

asymmetric CRS approach resulted in the concept of associative capacitive networks

allowing fully parallel pattern recognition.

6.2. Outlook

While the electrochemical metallization effect is observed in various material systems,

only SiO2 has been yet systematically analyzed by cyclic voltammetry experiments. CV

could be established as a generic measurement tool to analyze the cation concentration

and mobility as well as redox reactions prior to the switching event. In this respect, the

measurement problems of cyclic voltammetry for analyzing resistively switching thin

films of conventional bulk ion conductors, such as AgI, needs to be solved. Additionally,

further research should be focused on resistively switching memory cells based on cation

redox reactions in various amorphous oxide material systems such as Ta2O5 [101] and

Al2O3 [118]. An open question in this context is the reason for the high cation mobility

observed in nanoscale solid films, which is essential for resistive switching. The impact of

the thin film morphology and chemical composition on the cation diffusion behavior may

gain deeper insight into the processes determining the resistive switching characteristics.

Additionally, the relevance and nature of potential counter charges and/or counter

reactions in material systems other than SiO2 were not yet studied in detail.

The scalability of ECM cells is of high importance to compete with conventional Flash

technology. Using Conductive Atomic Force Microscopy, filaments with a diameter of

20 nm have been observed [27]. Conductance experiments showing quantum size effects

revealed that even a single metal atom can determine the memory cell resistance. This

implies an ultimate scalability of ECM cells to an almost atomic level, which needs to

be thoroughly investigated. Besides scalability, the research on device endurance and

retention problems should be further intensified. In terms of proper device modeling, a

single simulation model for ECM cells is advantageous. Such a comprehensive model

should account for the mechanisms responsible for the nonlinear switching kinetics,

quantum-size effects and the impact of nonequilibrium states on the resistive switch-

ing characteristics. Based on this simulation model, strategies to improve the device

endurance or to eliminate retention problems due to the nanobattery effect may be

derived. From an application point of view further device engineering is mandatory to

comply with the requirements of large and dense passive memory arrays (such as ON

state resistance and SET and RESET voltage window).



120 6. Conclusions

Finally, new logic concepts, like the sequential logic approach [18; 171; 178; 179] and

neuromorphic applications including CRS based associative capacitive networks [125;

181], should be in the focus of future investigations. Further research on resistive switches

could therefore lead to a paradigm shift in information technology.
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U. Böttger, and R. Waser, Capacity based Nondestructive Readout for Comple-

mentary Resistive Switches Nanotechnology, vol. 22, no. 39, p. 395203, 2011.

[175] Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and

W. D. Lu, Electrochemical dynamics of nanoscale metallic inclusions in dielectrics

Nature Communications, vol. 5, p. 4232, 2014.

[176] M. M. Ziegler and M. R. Stan, CMOS/Nano Co-Design for Crossbar-Based

Molecular Electronic Systems IEEE Transactions on Nanotechnology, vol. 2, no. 4,

pp. 217–230, 2003.

[177] S. Paul and S. Bhunia, A Scalable Memory-Based Reconfigurable Computing

Framework for Nanoscale Crossbar IEEE Transactions on Nanotechnology, vol. 11,

pp. 451–42, 2011.

[178] E. Lehtonen, J. H. Poikonen, and M. Laiho, Two memristors suffice to compute

all Boolean functions Electronics Letters, vol. 46, no. 3, pp. 239–240, 2010.

[179] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S.

Williams, ‘Memristive’ switches enable ‘stateful’ logic operations via material

implication Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[180] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser, Beyond von
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A. Appendix

PVD Parameters

Various device fabrication parameters based on sputtering and evaporation technologies

(see chapter 3) are given here.

RF-Sputtering Silicon Dioxide

Target Size and Material: 6 inch SiO2

Power: 300W
Max. DC-Bias: 1000V
Pressure: 5.4 · 10−3 hPa
Sputter Time (50 nm): 300 s
Gas Flow: 30 sccm Ar

RF-Sputtering ITO

Target Size and Material: 6 inch ITO
Power: 300W
Max. DC-Bias: 1000V
Pressure: 5.4 · 10−3 hPa
Sputter Time (100 nm): 120 s
Gas Flow: 30 sccm Ar

DC-Sputtering TiN (on Si Wafer)

Target Size and Material: 6 inch Ti
Power: 200W
Pressure: 5.8 · 10−3 hPa
Sputter Time (20 nm): 150 s
Gas Flow: 27 sccm Ar, 2 sccm N2
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DC-Sputtering Silicon

Target Size and Material: 6 inch Si
Power: 200W
Pressure: 7.7 · 10−3 hPa
Sputter Time (50 nm): 500 s
Gas Flow: 40 sccm Ar

DC-Sputtering Platinum

Target Size and Material: 6 inch Pt
Power: 300W (DC)
Pressure: 5.4 · 10−3 hPa
Sputter Time (100 nm): 86 s
Gas Flow: 30 sccm Ar

Electron Beam Evaporation Silicon Dioxide

Crucible Material: SiO2

High Voltage: 8.4 kV
Current: ≈ 12mA (Circulating Beam)
Evaporation Speed: 0.01 nm/s
Pressure: ≈ 10−6 hPa
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Electron Beam Evaporation Silver and Copper

Crucible Material: Ag/Cu
High Voltage: 8.4 kV
Current: ≈ 145mA/160mA (Circulating Beam)
Evaporation Speed: 0.02 nm/s
Pressure: ≈ 10−6 hPa

Thermal Evaporation Silver Iodide

Crucible Material: AgI
Evaporation Speed: 0.1 nm/s
Pressure: ≈ 10−5 hPa
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