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Summary

In this thesis we propose new methods in multi-qubit multi-mode circuit quantum
electrodynamics (circuit-QED) architectures. In Chapter 2 we describe a direct
parity measurement method for three qubits, which can be realized in 2D circuit-
QED with a possible extension to four qubits in a 3D circuit-QED setup for the
implementation of the surface code. In Chapter 3 we show how to derive Hamilto-
nians and compute relaxation rates of the multi-mode superconducting microwave
circuits consisting of single Josephson junctions using an exact impedance synthe-
sis technique (the Brune synthesis) and applying previous formalisms for lumped
element circuit quantization. In the rest of the thesis we extend our method in
Chapter 3 to multi-junction (multi-qubit) multi-mode circuits through the use
of state-space descriptions which allows us to quantize any multiport microwave
superconducting circuit with a reciprocal lossy impedance response.
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Zusammenfassung

Wir entwerfen in dieser Arbeit neue Methoden für Architekturen der Quantenelek-
trodynamik elektrischer Leiter (circuit-QED) mit mehreren Eigenmoden, die aus
mehreren Qubits bestehen.
Wir beschreiben im zweiten Kapitel eine direkte Messmethode für die Parität

eines Systems dreier Qubits, die durch eine Architektur zweidimensionaler circuit-
QED realisiert werden kann. Dieses Verfahren kann auf vier Qubits in einer dreidi-
mensionalen circuit-QED Architektur erweitert werden. Mit dieser Methode kann
der Oberflächen-Code (surface code) verwirklicht werden.
Im dritten Kapitel zeigen wir, wie für den supraleitende Stromkreis mit mehreren

Eigenmoden, der aus einem einzelnen Josephson-Kontakt besteht und im Mikrow-
ellenbereich operiert, Hamilton-Operatoren abgeleitet und Relaxationsraten berech-
net werden können. Wir verwenden eine exakte Methode zur Impedanzsynthese
(die Brune-Synthese) und verwenden bekannte Methoden für die Quantisierung
von konzentrierten Elementen.
Im weiteren Teil der Arbeit erweitern wir unsere Methode aus dem dritten

Kapitel für die Zustandsraumdarstellung mehrerer Josephson-Kontakte (das heißt
mehrere Qubits), die jeweils mehrere Eigenmoden haben. Diese Methode erlaubt
es uns jedes supraleitende Bauteil aus dem Mikrowellenbereich, das mehreren Tore
hat, mit einer umkehrbaren, verlustbehafteten Impedanz zu quantisieren.
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CHAPTER 1

Introduction

Quantum computing is a new computing paradigm which allows the solution of
certain types of computationally hard problems which would otherwise be impos-
sible even with the fastest supercomputer in the world. This includes the factoring
problem [1] on which the most popular secure communication scheme in use to-
day is based. This security scheme is used for example to encrypt online credit
card transactions which constitutes a big portion of the total volume of money
transfers today. Fortunately quantum computing has applications in many other
disciplines which might be more useful for mankind than breaking cryptosystems.
This includes quantum chemistry in which a quantum computer might help to
discover new drugs by simulating molecules which might be otherwise impractical
to experiment with in a lab or to simulate with a classical computer [2, 3].

1.1 Bits and Qubits

The bit is the currency of all classical information processing machines such as
our laptops, mobile phones or the fastest supercomputer in the world. It can
be in one of two definite states which is usually denoted by “0” and “1”. The
bit is physically encoded in transistor electronics as in the registers of computer
processors, in computer memories or in a magnetic medium as in harddisks. A
quantum computer however operates on quantum bits or “qubits”. A qubit is
the encoding of information in a two level quantum system. It can be in one of
the states |0〉 and |1〉 or in a superposition of them |ψ〉 = α |0〉 + β |1〉 which is
allowed by quantum mechanics where α and β are complex numbers satisfying
|α|2 + |β|2 = 1. Any state in the Hilbert space of a single qubit can be described
by a point on the Bloch sphere shown in Fig. (1.1). The state of a multi-qubit
quantum processor lies in the tensor product of single qubit Hilbert spaces and
information can be stored in an entangled state which has no classical counterpart.
An entangled state of a multi-qubit system is a state which can not be decomposed
into a tensor product of individual qubit states. It is believed that it this ability
of the quantum computer to explore those large multi-qubit Hilbert spaces that
brings its computational power over the classical computers.
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1 Introduction

Figure 1.1: The Bloch sphere (image generated by the software package QuTiP
[4]). Any single qubit state |ψ〉 = α |0〉+β |1〉 can be uniquely mapped
to a point on the Bloch sphere. Three different states are shown on
the Bloch sphere. |0〉 state (blue vector) corresponds to the north pole
of the Bloch sphere. The state on the x-axis represented with a green
vector is the quantum state ψx = 1√

2
(|0〉+ |1〉). The state shown on

the y-axis with an orange arrow is the state ψy = 1√
2

(|0〉+ i |1〉). The
state |1〉 is at the south pole of the Bloch sphere (not shown with an
arrow vector).

Unfortunately quantum states are fragile. They correspond to the quantized
states of systems consisting of a few degrees of freedom. Those degrees of freedom
are coupled to the outside world which is a macroscopic system usually modeled as
consisting of an infinite number of degrees of freedom. The quantum system can
not be decoupled completely from its environment since it needs to be addressed
to do quantum gates and to be read-out. Hence it loses energy in an irreversible
way by interacting with its environment. This process is called relaxation. The
same process causes also fluctuations in the system parameters such as the qubit
frequency. This leads to dephasing which is the loss of phase information of the
qubit or the coherence of the quantum state. Relaxation and dephasing processes
are together referred to as decoherence. It is the decoherence that prevented the
quantum computer to become a reality up to present.

1.2 Quantum Error Correction

Error correction is needed to correct errors happening due to the noise generated in
decoherence channels that couple to qubits. In [5] Shor proposed the first quantum
error correcting code by showing that the state of a single qubit can be protected

2



1.2 Quantum Error Correction

Figure 1.2: (Image taken from [8]) The square lattice (in general of size L×L) of the
surface code with logical operators X̄ and Z̄ and parity operators As
and Bp. Parity check operators are star As of X-checks and plaquette
Bp of Z- checks acting locally on four qubits. At the boundaries they
act on only three qubits. The logical X̄ is an X-string connecting left
to right boundary and the logical Z̄ is a Z-string connecting top to
bottom boundary.

against bit-flip and phase-flip errors by encoding it in a nine-qubit state. Shor has
also showed [6] that the quantum computer can be made fault-tolerant at the cost
of an overhead. That is he showed that by introducing redundancy through the use
of quantum error correcting codes a quantum computation can be completed free
of errors if the error rate of individual components are below a certain threshold.
Since then many other quantum error correcting codes have been proposed.

Among them is the “Surface Code” which is widely accepted today as being
the code with the most realistic requirements that the first faul-tolerant quantum
processors might be built on. Surface code requires only local interactions and has
a relatively high error threshold (estimated to be around 1%). It is derived from
Kitaev’s original proposal [7] to implement the quantum computer in topologically
protected 2D quantum systems. It is a stabilizer code on a square lattice as shown
in Fig. (1.2) with qubits sitting on the edges. Parity check operators are plaquette
operators Bp consisting of local Z-checks on four qubits and star operators As
of X-checks on neighboring four qubits as shown on Fig. (1.2). The logical X̄
operator is any string of X’s connecting left and right boundaries and logical Z̄ is
any string of Z’s connecting the top boundary to the bottom. In Chapter (1.8)
down below we will discuss a proposal on how to implement the surface code as a
skew-lattice in the circuit-QED architecture (see Chapter (1.6)).
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1 Introduction

1.3 Superconducting Electronics

There are many proposals to realize the quantum processor in a physical system.
One such system is trapped ions where the qubits are encoded in the electronic
states of ions trapped by lasers. Another proposal is to use electron spins in
semiconductor structures. Single electrons are captured in confined regions by
applying potentials at metalic gates. Here our focus will be on the realization of
quantum processors in superconducting electronics.
Below a critical temperature Tc electrons in a superconductor form Cooper pairs

and condense into a quantum state that can be described by a wavefunction with
a single degree of freedom ϕ, the phase of the superconductor. Such a state is
robust enough to exhibit quantum behavior at the macroscopic scale.
Two superconductors separated by an insulating barrier form a “Josephson junc-

tion”. If the insulating barrier is thin enough Cooper pairs can tunnel coherently
through the barrier to form a supercurrent I which is related to the phase differ-
ence δ across the junction, i.e. the difference of the phases of superconductors at
each side of the junction, by the following formula

I = Icsinδ (1.1)

where Ic is the critical current of the junction. This relation corresponds to a
nonlinear inductor. The voltage V across the junction is related to the phase
difference δ by the Josephson relation

V =
Φ0

2π
δ̇ (1.2)

where Φ0 = h/2e ' 2.07× 10−15 T ·m2 is the flux quantum.
The Josephson junction is a nonlinear non-dissipative circuit element which

provides the anharmonicity needed to get qubit levels in superconducting circuits.
Superconducting qubit coherence times have increased dramatically over the

16 years since the first experimental demonstration of the coherent superposition
of charge states in a Cooper Pair box circuit [9]. Research has been done on
designing lumped element circuits with Josephson junctions to make qubits less
susceptible to noise. This research has resulted in a variety of superconducting
qubit circuit designs such as the Cooper Pair Box (CPB) [10], the flux qubit [11],
the phase qubit [12], the Transmon [13] and more recently the Fluxonium [14]
which are arranged in the table in Fig. (1.3) in a Mendeleev’s Periodic Table like
configuration. In the section below we will review the research that has led to the
invention of the Transmon qubit which has been the most popular qubit for the
experiments running in the labs around the world nowadays due its simplicity of
design and its long coherence times.
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1.3 Superconducting Electronics

Figure 1.3: A Mendeleev-like Table for Superconducting Qubits (image taken from
[15]). (A) Various superconducting qubit circuits can effectively be
represented by a parallel connection of a capacitor C, a Josephson
junction LJ and an inductor L. (B) Potential shapes can be engineered
by tuning the circuit parameters in (A). (C) Superconducting qubits
arranged in 2D in analogy with the Periodic Table of Elements as a
function of the ratios of circuit parameters in (A). The vertical axis is
the axis of the ratio EJ/EC .
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Vg

−

+

Cg

CJ LJ

Figure 1.4: Circuit representation of the Cooper Pair Box. The Josephson junction
with capacitance CJ and linear inductance LJ is biased by a voltage
source through a gate capacitance Cg. A superconducting island is
formed by the right plate of the gate capacitor Cg and the upper elec-
trode of the Josephson junction. Cooper pairs tunnels to this island
through the Josephson junction. In the limit EC � EJ the number of
Cooper pairs on the island is a good quantum number.

1.4 Superconducting Qubits

The Cooper Pair Box (CPB) is one of the first superconducting qubits. Its circuit
representation is shown in Fig. (1.4). It has a Hamiltonian of the following form

Ĥ =

(
Q̂− CgVg

)2

2CΣ

− EJ cos
(

2πΦ̂/Φ0

)
(1.3)

where Φ̂ is the operator corresponding to the flux across the Josephson junction
and Q̂ is the operator corresponding to the charge on the superconducting island
formed by the right plate of the gate capacitor Cg and the upper electrode of
the Josephson junction in Fig. (1.4). Φ̂ and Q̂ are conjugate variables satisfying[
Φ̂, Q̂

]
= i~. CΣ = Cg + CJ is the total capacitance and EJ = IcΦ0/2π is the

Josephson energy. Deriving the Hamiltonian of a lumped element superconducting
circuit - even for a circuit as simple as the CPB - is not a trivial task and one
usually needs to resort to formalisms based graph theoretical network analysis to
get the Hamiltonians [16, 17, 18]. One can rewrite the CPB Hamiltonian in Eq.
(1.3) as

Ĥ = 4EC (n̂− ng)2 − EJ cos (ϕ̂) (1.4)

where n̂ = Q̂/2e is the operator counting the number of Cooper pairs that have
been tunneled into the superconducting island and ϕ̂ = 2πΦ̂/Φ0 is the phase
operator conjugate to n̂. The effective gate charge ng is defined by ng = CgVg/2e

6



1.5 The Transmon Qubit

Figure 1.5: (Taken from [13]) Evolution of the charge dispersion for the CPB
Hamiltonian in Eq. (1.4) from EJ/EC = 1 to the Transmon regime
EJ/EC = 50. The first three energy levels are plotted (in units of
the transition energy E01 between |0〉 and |1〉 states) as a function of
the offset gate charge ng for four different values of the ratio EJ/EC .
Vertical arrows indicate charge sweet spots.

and the charging energy by EC = e2/2CΣ.
The CPB operates in the EC � EJ regime which makes it highly sensitive to the

charge noise, i.e. to the fluctuations in the gate charge ng. This leads to dephasing
since the qubit frequency corresponding to the energy difference between ground
state and first excited state of the Hamiltonian in Eq. (1.4) is a function of the
gate charge ng as shown in Fig. (1.5). This problem has been cured first by the
introduction of Quantronium [19] which is a CPB voltage biased at a sweet spot
where the qubit is insensitive to first order to the charge noise.

1.5 The Transmon Qubit

Later it has been realized that by operating the CPB in the EJ � EC regime it is
possible to make the energy levels of the CPB Hamiltonian in Eq. (1.4) insensitive
to the charge noise for all values of charge bias ng as shown in Fig. (1.5). The
CPB circuit operating at the EJ � EC limit has been named the “Transmon” qubit
[13]. The EJ � EC limit has been achieved by shunting the Transmon by a large
capacitor CJ . The charge sensitivity is shown [13] to be reduced exponentially as a
function of the energy ratio EJ/EC . The price paid for this exponential reduction

7



1 Introduction

Figure 1.6: The circuit QED Architecture (image taken from [20]). A coplanar
waveguide cavity resonator formed by interrupting the center line by
capacitive gaps at each end. On each side of the center line are the
ground planes. The qubit is placed between the center line and ground
planes and is coupled to the electric field of electromagnetic mode in
the cavity resonator. The qubit is placed at an antinode of the electric
field to give a strong dipole coupling to the photon in the resonator.
The coupling strength g is higher than the rate κ of photon loss in the
cavity so that the microwave photon has enough time to interact with
the qubit before getting lost.

is a decrease in the anharmonicity of qubit which is only polynomial in the ratio
EJ/EC . Hence for EJ/EC ' 50 one already gets flat energy levels insensitive to
the charge noise while still keeping around 5% of anharmonicity which corresponds
to 250MHz for a qubit frequency of 5GHz .

1.6 The Circuit QED Architecture

By placing the Transmon qubit at a voltage maximum in the area between two
metallic conductors of a CPW (Co-Planar Waveguide) resonator as shown in Fig.
(1.6) one can achieve strong coupling of the qubit to the microwave photon trapped
in the resonator. Transmon’s capacitance is coupled to the electric field of the
electromagnetic mode in the cavity by an electric dipole interaction. Such a system
is analogous to the cavity quantum electrodynamics setups of quantum optics
where atoms are coupled to the modes of an optical cavity; hence the name “circuit
quantum electrodynamics (circuit QED)” [20]. In circuit QED architecture the
qubit plays the role of the atom and the microwave field in the resonator plays the
role of the light. Although atoms in cavity QED experiments are flying through

8



1.6 The Circuit QED Architecture

the cavity the qubits are stationary in the circuit QED architecture.
Assuming a two-level system for the superconducting qubit circuit one can write

a Jaynes-Cummings Hamiltonian for the circuit QED structure in Fig. (1.6)

Ĥ = ~ωr
(
â†â+

1

2

)
+

~ωq
2
σ̂Z + ~g

(
â†σ̂− + âσ̂+

)
(1.5)

where â is the operator that destroys a photon in the cavity, ωr the cavity resonance
frequency, σ̂Z is the Pauli Z operator corresponding to the qubit, ωq the qubit
frequency, g the qubit-cavity coupling rate and σ̂− and σ̂+ are lowering and raising
operators for the qubit, respectively.
In circuit-QED qubits are usually operated in the dispersive regime, that is

when the qubit frequency ωq is detuned from resonator frequency ωr such that
|ωq − ωr| � g. When operated in the dispersive regime the qubit embedded inside
the resonator is protected from decoherence since the microwave resonator suppress
spontaneous emission rate of the qubit by acting as a Purcell filter.
In the dispersive regime of circuit QED one can re-write the Hamiltonian in Eq.

(1.5) for the qubit-cavity system to the second order in the coupling rate g

Ĥ = ~
(
ωr +

g2

4 σ̂Z
)
â†â+

~
2

(
ωq +

g2

4

)
σ̂Z (1.6)

where 4 = (ωq − ωr) is cavity-qubit detuning. From the Hamiltonian in Eq. (1.6)
we see that the cavity resonant frequency ωr is shifted by an amount±g2

4 depending
on the state of the qubit. This feature of the circuit QED Hamiltonian is used to
do a quantum non-demolition (QND) measurement of the qubit state. The QND
measurement of the qubit state is done by driving the cavity by a probe signal of
appropriate power at the cavity resonance frequency ωr and measuring the phase
of the transmitted signal by homodyne detection. The transmitted signal then
acquires different phases depending on the state of the qubit. To see why such
a measurement is of QND character we note that the qubit operator σ̂Z that’s
been probed is a constant of motion and commutes with the interaction term
Ĥint = g2

4 σ̂Z â
†â in the Hamiltonian in Eq. (1.6), i.e.

[
σ̂Z , Ĥint

]
= 0.

Single qubits rotations are simply done by driving the microwave resonator at the
qubit frequency. To do two-qubit gates the cavity resonator is used as a quantum
bus to entangle qubits separated by distances at the scale of centimeters. Two
qubits placed along the center line of a CPW resonator can interact through the
virtual excitations in the resonator mode. In this case one can write an effective
Hamiltonian of the following form for two qubits detuned from the resonator but
in resonance with each other [20]

9
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Figure 1.7: The 3D Transmon (Image taken from [22]).

Ĥ2Q = ~
(
ωr +

g2

4 σ̂
a
Z +

g2

4 σ̂
b
Z

)
â†â+ (1.7)

+
1

2
~
(
ωa +

g2

4

)
σ̂aZ +

1

2
~
(
ωb +

g2

4

)
σ̂bZ + ~

g2

4
(
σ̂a+σ

b
− + σ̂a−σ

b
+

)
(1.8)

where a and b are qubit labels. See [20] for more details on the circuit-QED
architecture and [21] for different protocols to do single and two-qubit gates in the
circuit-QED architecture.

1.7 The 3D Transmon

For the Transmon qubits coupled to 2D circuit-QED structures as shown in Fig.
(1.6) it was suspected that one of major loss channels was the dielectric losses
happening at the metal/dielectric interfaces. In Fig. (1.7) the Transmon is put
in the middle of a 3D Aliminium cavity with a large dipole antenna coupling the
Transmon to the fundamental mode of the cavity. By taking the feature sizes of
the circuit-QED system to such an extreme the ratio of the electromagnetic energy
stored in the dielectric medium to total energy decreases. In such a case one would
expect a reduction in the dielectric loss hence an increase in the coherence time of
the Transmon. This is exactly what is measured in [22] where the 3D architecture
for the Transmon qubit was first proposed. 3D Transmon is the superconducting
qubit exhibiting the longest coherence times as of today.

1.8 A Two Dimensional Fabric for Fault-Tolerant
Quantum Computation

The quantum computer will need at least thousands and ideally millions to bil-
lions of qubits to solve a practical problem which is impossible with the classical
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1.8 A Two Dimensional Fabric for Fault-Tolerant Quantum Computation

Figure 1.8: The skew-lattice implementation for the surface code in the circuit-
QED architecture originally proposed in [23]. Green dots are qubits.
Each qubit is coupled to only two bus resonators (grey rectangles).
Yellow squares are I/O ports.

computers. At the lowest hardware level the quantum processor should satisfy
five DiVincenzo criteria proposed in [24]. Since physical qubits won’t be ideal
the quantum processor will need to run a quantum error-correction protocol at
a higher level. As we noted in Chapter (1.2) above the most practical quantum
error-correction scheme known today is the surface code. The ultimate goal of
various research groups around the world is to implement the surface code in their
physical architecture of choice for the quantum computer. With coherence times
for the qubits approaching the threshold the question now is how to scale things
up without sacrificing the performance of individual components.
For superconducting qubit systems one answer to this question is given in [23].

It is based on a tiling of the 2D plane in a skew-lattice with cells consisting of
superconducting qubits and resonators coupled according to the circuit-QED ar-
chitecture as shown in Fig. (1.8). Each qubit (green dots) is only coupled to two
bus resonators (grey bars) and has its own individual bias, drive/readout lines
(yellow squares are I/O ports).
In Fig. (1.9) we see a 3-qubit quantum processor recently designed by IBM which

is the result of the efforts of implementing the building blocks of the surface code
skew-lattice in Fig. (1.8). Three superconducting transmon qubits are coupled to
two CPW resonators. Airbridges are used to short ground planes on each side of
the transmission lines’ central conductors to suppress couplings of spurious modes
to the qubits. The spurious modes cause decoherence through the radiative loss.
As is apparent from the Fig. (1.9) scaling the quantum processor up will be a

big scientific and engineering challenge. As the complexity of the circuit increases
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1 Introduction

Figure 1.9: IBM’s three qubit quantum processor chip. Qubits Q1, Q2 and Q3
are coupled to two transmission line resonators in the 2D circuit-QED
architecture implemented in a CPW structure. Each qubit has its
own bias line and each resonator has a separate drive line. Airbridges
shorting different ground planes are used to suppress spurious modes
which are a potential source of radiation loss.

spurious modes appear in microwave waveguide circuits as in Fig. (1.9). Qubits
coupled to those spurious modes lose energy which results in decoherence [25].
Solutions like airbridges are fine for small scale processors. However to scale those
small quantum processor up to the level of the surface code in Fig. (1.8) one needs
to understand better the multi-mode microwave interactions happening in those
superconducting circuits.
Multiple modes however are not always a nuisance for the quantum engineer.

Superconducting quantum circuits can also be engineered to benefit from the multi-
mode physics to design new types of measurement and two-qubit gate protocols.
In Chapter (2) we propose a new multi-qubit direct parity measurement protocol
in circuit-QED which needs two or more almost degenerate microwave modes.
The direct parity measurement protocol removes the need for CNOT gates which
are required by the standard implementations of the surface code. For another
example of the use of multiple microwave modes see [26] where they describe how
to use multi-mode physics in the circuit-QED architecture for the benefit of getting
higher contrast in two-qubit gates.
As we noted earlier in this chapter there has been a rapid progress in the per-

formance of superconducting qubit circuits in the last two decades. With the
Q-factors of superconducting qubit and cavity components getting closer to the
error-correction threshold we need highly accurate models for their design, opti-
mization and predictability. This is the main focus of this thesis starting from
Chapter (3) where we propose new methods to get highly accurate Hamiltonian
descriptions of multi-qubit multi-mode low-loss superconducting circuits and show
how to do dissipation treatment to estimate relaxation rates in those circuits.
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CHAPTER 2

Multi-qubit parity measurement in
circuit quantum electrodynamics

In this chapter we present a concept for performing direct parity measurements
on three or more qubits in microwave structures with superconducting resonators
coupled to Josephson-junction qubits. We write the quantum-eraser conditions
that must be fulfilled for the parity measurements as requirements for the scatter-
ing phase shift of our microwave structure. We show that these conditions can be
fulfilled with present-day devices. We present one particular scheme, implemented
with two-dimensional cavity techniques, in which each qubit should be coupled
equally to two different microwave cavities. The magnitudes of the couplings that
are needed are in the range that has been achieved in current experiments. A
quantum calculation indicates that the measurement is optimal if the scattering
signal can be measured with near single photon sensitivity. A comparison with
an extension of a related proposal from cavity optics is presented. We present
a second scheme, for which a scalable implementation of the four-qubit parities
of the surface quantum error correction code can be envisioned. It uses three-
dimensional cavity structures, using cavity symmetries to achieve the necessary
multiple resonant modes within a single resonant structure. The material in this
chapter is directly taken from our published work in [27] with minor modifications.

2.1 Introduction

The essence of error correcting either quantum or classical information is parity
checking. In all practical quantum error correction codes [28], the error-free state
is signalled by parities of a selection of subsets of qubits all being “even”; con-
versely, the occurrence of “odd” parities indicates a non-trivial error syndrome,
with which the particular form of errors can be diagnosed. Calculations show that
remarkably simple codes are very effective as the substrate of fault tolerant quan-
tum computation; the subsets subjected to parity checks are geometrically local
on a two-dimensional lattice. In addition, the weight of the parity checks is low;
for the canonical code of this class, the Kitaev toric code [29], the weights of all
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2 Multi-qubit parity measurement in circuit quantum electrodynamics

checks are four.
It has been standard to assume that a qubit parity should be obtained by com-

putation, in particular by a series of two-qubit quantum logic gates. Thus for the
weight-4 case, the circuit involves four controlled-NOT gates from each of the four
qubits in succession to a fifth, ancilla qubit. The ancilla then holds the value of
the parity (or is, perhaps, in an entangled superposition of the two different parity
states), so that a measurement of the ancilla reveals (or fixes) this parity. In this
paper, we show that, by use of standard microwave scattering techniques, the par-
ity of a small subset of qubits may be measured directly, without the need of an
intermediate calculation requiring a logic circuit. We hope that this will simplify
the process of error correction, and improve thereby its error robustness.
We first discuss some features of the parity determination that are of a partic-

ularly quantum-mechanical character. First, it cannot be trivially assumed that
after a quantum measurement records some value, the state of quantum object
necessarily still has that value. For example, if a polarization-sensitive photode-
tector “clicks" to indicate the polarization of the photon, the photon possessing
that polarization will have vanished. In quantum mechanics there is a name for
measurements for which the quantum object remains in the state that is recorded:
these are called quantum nondemolition (QND) measurements. Fortunately, there
are many implementations of QND-type measurements, and the types of scattering
measurements proposed here will have the QND character.
Second, there is a choice of basis involved in defining parity. Thus, while in the

classical basis(called the “Z basis” [28]) we would call 0000, 0011, 0110, etc., the
even parity states, it is possible to take the basis of the qubit to be, for example
|+〉 = (|0〉 + |1〉)/

√
2 and |−〉 = (|0〉 − |1〉)/

√
2. In this “X basis”, the even

parity states are + + ++, + +−−, +−−+, etc. In fact, both the X- and Z-type
parity checks are needed in quantum error correction. We will introduce a parity
measurement for just one basis, understanding that it is possible apply one-qubit
gates to rotate the qubits so that the parity detection is either of X- or of Z-type.
In the superconducting qubit systems that we discuss, these one-qubit rotations
can be performed very accurately and quickly.
Third, it is crucial that the parity measurement reveal only the parity, and

nothing more. For example, the states 0000 and 0011 should both give parity
“even”, and should be seen as identical in the measurement process. This concept
has no meaning in the classical setting, where 0000 and 0011 represent objectively
different states. Quantum mechanics permits a state like (|0000〉 + |0011〉)/

√
2,

which does not have a specific, definite bit state, but which nevertheless has a
definite parity. In fact, we employ here a strengthening of the idea of QND, which
traditionally requires only that a quantum state remain in a certain subspace
after measurement. For the measurements that we need, the state is to remain
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2.1 Introduction

exactly unchanged, and two states with the same parity should reveal nothing of
the differences between them.
In quantum physics, this final concept has been given a name, the quantum

eraser [30]. This name refers to the fact that typically in the course of the mea-
surement process, information is temporarily imprinted on the measurement probe,
which is however erased by the end of the measurement process. In interferometry
this information is the welcher weg (“which path”) information which temporarily
exists while a photon is moving through the interferometer. This information is
erased by the passage of the photon through the final beam splitter of the inter-
ferometer. In the implementation we develop below, the measurement probe will
temporarily have “which bitstring” information, which, by the time the scattering
process is complete, will be all erased, except for a single bit of parity informa-
tion. We will show explicitly two different microwave protocols which will permit
this quantum eraser condition to be satisfied; we will in fact precisely quantify the
degree to which this condition is fulfilled.
Discussions of parity measurements are not new to quantum computing theory;

it was understood almost from the beginning that two-qubit parity measurement
permitted the implementation of standard two-qubit logic gates [31]. A wide va-
riety of two-qubit implementations have been proposed, in electron optics [32], for
spin qubits in quantum dots [33], and for charge qubits [34]. The previous discus-
sions of two-qubit parity measurement for atoms in optical cavities [35], and for
superconducting qubits [36, 37], will be particularly relevant for the present work.
Other theoretical work has simulated the details of the parity measurement pro-
cess [38, 39], and more generally of “joint measurement”, in which other two-qubit
operators other than the parity are detected. Such joint measurements have been
achieved in the area of circuit QED [40, 41, 42, 43], the implementation that we
discuss here.
Especially for the application to fault-tolerant error correction [44, 45], it is

very important to go beyond two-qubit parity. While quantum error correction
codes are known for which two-qubit parity measurements do suffice [46], they are
found to have much worse threshold-rate behavior than the Kitaev code [29], which
requires 4-qubit checks [47]. The Bacon-Shor codes [48] also permit error correction
with only two-bit parity checks, and have rather good error correction performance
[49], but cannot achieve fault-tolerant operation by only local operations [50].
Many architectural details of a quantum computer employing the surface code
have been worked out [51], and the outlook seems quite favorable [47, 52, 53].
Much less is known about the efficacy of 3-qubit parity measurements for error
correction, although there is a very promising, recent preliminary result [54].
Extending existing two-qubit parity measurements to more than two is not triv-

ial. Classically combining many two-bit parity results to obtain a multi-qubit
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2 Multi-qubit parity measurement in circuit quantum electrodynamics

parity is not permitted, as the overall quantum eraser condition is not satisfied
in this case. A real modification of the measurement protocol or of the coupling
structure is necessary. For some other existing schemes [36, 37] we see no reason-
able extension to more than two qubits; in the case of Kerchhoff et al. [35] such
an extension is possible, as we note below. There is another related proposal for
a multiqubit parity measurement in optical systems [55] based on the acquisition
of successive small phase shifts by a probe beam; this scheme seems to require
some fine tuning, and has no clear extension beyond three qubits. A very recent
proposal shows another technique related to the one we present here for extracting
multi-qubit parities [56].

We present here a new solution, requiring a specifically designed cavity (or multi-
cavity) structure with multiple, closely spaced resonant modes. We first provide
a detailed proposal for performing the 3-qubit parity measurement, with accurate
satisfaction of the quantum eraser condition, in circuit quantum electrodynamics
using superconducting qubits. In the current work the preferred type of super-
conducting qubit is the “transmon" type [13], although other types would also
be possible [57]. We will always require that the couplings between qubits and
microwave resonators be in the well-studied “dispersive regime” [21, 20], in which
the qubit transition frequency and the microwave resonant frequency are well sep-
arated. In this regime, the qubit gives a state-dependent shift to the resonant
frequency of a microwave cavity – one shift for qubit state |0〉 , and a different
shift for qubit state |1〉 (note that state 0 and state 1 are at different energies).
In this regime, the requirements of the multi-qubit parity measurement reduce to
those of a classical microwave design problem.

Our first proposal requires a particular hardware arrangement, involving a ca-
pability that has been developed only in the most recent experimental literature
[58, 59]. In particular, we require the qubits involved in a 3-qubit parity measure-
ment each to have equal dispersive coupling to two different resonant modes. In
the first version of our proposal described below, these two different modes are
realised as the fundamental modes of two different microwave resonators. Crucial
for the proposal is that each resonance should occur at nearly (but not exactly)
the same frequency. This near-coincidence allows a scattering phase shift to wind
through 2×2π over a narrow range of frequency. For the 4-qubit parity, a winding
of 6π is needed, requiring three closely spaced resonant modes to be involved. Our
second proposal will deal with this case. We will show that multiple resonances
need not require multiple resonators. This proposal will use the currently popular
“3D" cavity [22], but one having a nearly cubical shape so that the three lowest
TE101-type modes (see Chap. 10.07 of [60]) are nearly degenerate. We will show
a hypothetical scalable implementation of the surface code within this scheme.
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2.2 Results – 2D resonant structure

2.2 Results – 2D resonant structure

We will first show that the necessary quantum-erasure function can be realized
by the choice of circuit hardware illustrated in Fig. (2.1). We will work through
and discuss the case of the parity measurement for three qubits; generalizing our
construction to more qubits is clear, and will be discussed below. In this construc-
tion we have two resonators (we envision 1/4-wave coplanar waveguide resonators
[61, 62], as illustrated schematically); in each we will employ one resonant mode,
with creation operators a† and b†. It would be normal to use the lowest-frequency
(fundamental) modes; all other modes are far separated in frequency (the next be-
ing at three times the fundamental, in a 1/4-wave structure) and will be ignored.
In our scheme, these two fundamental frequencies ωa and ωb should be almost,
but not exactly, degenerate. The qubit-cavity coupling will be the standard one
given by the Jaynes-Cummings model in the dispersive regime [20]. It will be
non-standard only in that each qubit will couple to both resonators, so that each
qubit j will have a physical coupling strength gj,a to the a resonator and gj,b to
the b resonator. The Hamiltonian of the system of resonators and qubits can be
written [21]

H =

(
ωa +

3∑

j=1

χjaσ
j
z

)
a†a+

(
ωb +

3∑

j=1

χjbσ
j
z

)
b†b+

1

2

3∑

j=1

ωjσ
j
z. (2.1)

Here ωj are the qubit frequencies, and the dispersive coupling parameters are
χja = g2

j,a/∆j,a with ∆j,a = ωj − ωa, and similarly for χjb and ∆j,b. Note that we
assume that the system should be engineered so that there is no direct coupling
between qubits.
As indicated in Fig. (2.1), this resonator/qubit structure is to be coupled capac-

itively to a scattering probe. Rather than extend our Hamiltonian to include all
these other details, we proceed in the following way: Since H commutes with each
σjz, we can examine the Hamiltonian separately in each of its 23 qubit eigensectors;
within each of these sectors H describes a harmonic bosonic system, with qubit-
dependent resonant-frequency parameters. Thus, the full scattering experiment
can be described quite economically using the classical language of impedance and
scattering parameters; the conclusions we draw from this classical discussion will
have an immediate, standard quantum interpretation in terms of coherent-state
propagation.
From ordinary electrical transmission line theory, the impedance between point

A in Fig. (2.1) and ground is given by

ZA(ω) = iZ0 tan

(
π

2

ω

ωr,a

)
. (2.2)
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2 Multi-qubit parity measurement in circuit quantum electrodynamics

Figure 2.1: A schematic circuit QED setup for measuring the parity of three qubits.
Two transmission-line resonators have slightly different resonant fre-
quencies fa and fb. The three qubits Q1,2,3 (which could be of the
transmon type) each couple equally to the two resonators. The parity
information is contained in the phase of the reflection coefficient at
point P , which, throughout the action of the circulator [63, 64], ap-
pears as a phase change of the output signal V − relative to the input
tone V +.

Here Z0 = 50Ω is the impedance of the waveguide. The effective resonant frequency
ωr is dependent on the state of the three qubits |s1s2s3〉 according to

ωr,a = ωa +
3∑

j=1

(−1)sjχja. (2.3)

This same discussion applies to the qubit-state-dependent impedance ZB(ω) of
the B resonator. The impedance ZP (ω) of the entire structure at point P is then
given by ordinary series- and parallel-combination rules. In fact in the frequency
range of interest, the response is very well represented by the lumped circuit of
Fig. (2.2).
The measurable quantity for this structure is the reflection coefficient r at P .

This is given by [61]

r(ω) =
V −(ω)

V +(ω)
=
ZP (ω)− Z0

ZP (ω) + Z0

. (2.4)

Note that because ZP is purely imaginary (lossless), |r| = 1, so that only the phase
of r,

θ(ω) ≡ arg r(ω) (2.5)

contains information (which can in fact be measured interferometrically).
Our object is to find a probe frequency ωp such that the reflected signals for all

the even-parity qubit states, and all the odd-parity states, are indistinguishable,

18
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Figure 2.2: Equivalent circuit for the double-resonator structure [61]; Cra = π
4ωr,aZ0

, Lra = 1
ω2
r,aCra

, Crb = π
4ωr,bZ0

, Lrb = 1
ω2
r,bCrb

.

but that the reflection coefficient for the even and odd cases are distinct. This
will give us conditions on the reflected phase θs1s2s3(ωp) for the different qubit
state settings. A general feature of the θ function will make this possible in our
two-resonance setting. If ω passes through a resonance of the system (pole of ZP ),
then, while the phase change of the impedance is π, the change of the reflected
phase is 2π (cf. Eqs. (2.4), (2.5)). We will arrange that ZP has two poles within
a narrow range of frequency; this means that θ(ω) will vary smoothly over 4π
in that range. But, from the point of view of a scattered tone, θ and θ + 2πn
are indistinguishable. Thus, the θ(ω) function varies over a sufficient range that
we can satisfy our quantum eraser condition for the parity measurement in the
following way:

θeven ≡ θ000(ωp) = θ011(ωp) + 2π, (2.6)
θodd ≡ θ111(ωp) = θ001(ωp)− 2π. (2.7)

Since the χ coefficient for all qubits is taken to be equal, the other necessary
conditions, θ011(ωp) = θ101(ωp) = θ110(ωp) and θ001(ωp) = θ010(ωp) = θ100(ωp), are
satisfied automatically. It is also necessary that θeven 6= θodd (mod 2π), with the
best case (most distinguishable) being ∆θ ≡ θeven − θodd = π.
One can show that for any choice of parameters in the two-pole circuit, there

exists a probe frequency ωp and a dispersive shift constant χ such that the parity-
measurement conditions Eqs. (2.6), (2.7) are satisfied. However, if the resonant
frequencies ωa and ωb are far apart compared with the width of the resonances,
θeven − θodd is very small. By placing the resonances close to one another and
choosing the capacitance values carefully, a favorable solution can be found. We
note that for further optimization of this structure, there would be no difficulty in
replacing the simple pair of capacitors Ca,b with a capacitance bridge in a wye- or
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2 Multi-qubit parity measurement in circuit quantum electrodynamics

Figure 2.3: Solution for realistic values ωa = 2π(9.99 GHz), ωb = 2π(10.01 GHz),
Ca = Cb = 10 fF ; with ωp = 2π(9.804GHz), χ = 5.77MHz, giving
∆θ = 172.9◦. Blue points correspond to even states whereas red points
correspond to odd states. Vertical blue line shows the probe frequency
fp = 9.804GHz.

delta-configuration [61].
Figure (2.3) shows a solution for the case of a realistic set of parameters. The

choices are ωa = 2π(9.99 GHz), ωb = 2π(10.01 GHz), Ca = Cb = 10 fF ; note that
realistic values for coupling capacitors are in 0.5−50fF range (see Ref. [65]). Our
Eqs. (2.6), (2.7) are satisfied (after a simple, efficient numerical search) for ωp =
2π(9.804GHz) and χ = 5.77MHz, giving the nearly optimal value ∆θ = 172.9◦.
Note that the coupling capacitors will introduce T1 qubit relaxation, but we can
estimate that capacitances on this scale give a cavity loss rate of κ ∼ 5MHz. The
Purcell formula for the resulting qubit relaxation time is T1(P ) = ∆2

κg2
= ∆

κχ
. If we

assume ∆ = 5GHz, this gives T1(P ) ∼ 200µs. Thus, the Purcell mechanism for
relaxation will not be a severe limit on the lifetime of the qubits.
We can qualitatively assess the result of applying the measurement tone for a

finite length of time. The signal-to-noise ratio for distinguishing even from odd is
largely a technical matter involving the noise performance of amplifiers and the
effective temperature of filters associated with the resonator-qubit structure. The
quantum-erasure property sets a more fundamental limit. If the measurement time
is T , the measurement signal will then have a bandwidth W ∼ 1/T around the
probe frequency ωp. Because the dispersion of the reflection response is different
for the different even and odd states (that is, dθ

dω
is different for the distinct states,
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see Fig. (2.3)). Thus we expect that to maintain the quantum-eraser condition,
the bandwidth W should be kept to a small fraction of the resonance width, so
perhaps T ∼ 10/χ. This gives a measurement time T ∼ 2µs. While this is shorter
than the expected T1 in current devices, it would be desirable to shorten T ; we
expect that further optimization of the scattering structure could make all the
( dθ
dω

)odd and ( dθ
dω

)even more nearly equal, so that perhaps T could approach 1/χ.
A detailed calculation, given in the Appendix (6.1), confirms these qualitative

considerations. This calculation involves a quantum treatment of the input tone
V +, in which it is written as a coherent state [66] |α〉 , pulsed with a gaussian time
profile with characteristic time T = 1/W . The pulse has mean photon number
|α|2, and therefore energy ~ωp|α|2. The output tone V − is also a coherent state βs,
but dependent on the qubit state |s〉 = |s1s2s3〉 . The coherent state amplitude is
always unchanged, |βs| = |α|, but it is dispersed differently for each state because
of the scattering phase shift.
The relevant result from the Appendix (6.1) is

〈βs|βs′〉 = 1− |α|
2b2W 2

2
+O(|α|4b4W 4), qubit parities s and s’ the same, (2.8)

〈βs|βs′〉 = e−|α|
2(1−cos ∆θ)

(
1 +O

(
W
dθ

dω

))
, qubit parities s and s’ different.

(2.9)
The new parameter b is the first-order difference of phase dispersion,

b ≡ θ
′

s (ωp)− θ
′

s′ (ωp) . (2.10)

The quantum-eraser condition requires that the “same parity” cases be indistin-
guishable (〈βs|βs′〉 = 1), and the “different parity” cases be perfectly distinguish-
able (〈βs|βs′〉 = 0). Noting that, on dimensional grounds, b ∼ 1/χ, these quantum-
erasure conditions are well approximated so long as T = 1/W > |α|b ∼ |α|/χ. This
confirms the qualitative discussion above, with the additional insight that it is best
if the probe is not too strong, i.e., if α is not too large (or course, it should be
greater than one to satisfy the “different parity” condition). If the photon number
is taken to be |α|2 = 5, and the pulse duration is T ≈ 1µs, the peak pulse power
will be about P = |α|2~ωp

T
= −135 dBm. This is indeed a weak signal, but in the

detectable range with the current state of the art [67].
The effect of transient dynamics on the fidelity is computed using stochastic

master equations in [68]. It is shown that a measurement fidelity of 95% is pos-
sible with our direct parity measurement scheme assuming realistic values for the
decoherence parameters.
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2.2.1 Comparison with Kerchhoff et al.

Figure 2.4: Circuit for three-qubit extension of the scheme proposed as a cavity-
optics experiment in [35], as it would be implemented with microwave
components in circuit QED.

Before presenting our second proposal, we can compare our concept for three-qubit
parity with the three-qubit extension of the two-qubit parity measurement that
was recently proposed by Kerchhoff, Bouten, Silberfarb, and Mabuchi [35]. They
propose sequential scattering from a set of cavities, each coupled to one qubit;
the extension of their idea to three qubits, as rendered in plausible microwave
components, is shown in Fig. (2.4). Note that for n-qubit parity this scheme uses
n resonators, while a generalisation of our scheme above would use d(n + 1)/2e
resonators (see the following section). The Kerchhoff et al. scheme is certainly
elegant, and simpler in that each qubit only needs to couple to a single cavity.
The idea is to choose the coupling and the probe tone such that there is a phase
difference of π between qubit state 0 and 1; then this network constructs a sum
of the phases for each qubit1. Each cavity should have exactly the same resonant
frequency (perhaps by tuning). This scheme is more obviously scalable to more

1We have learned that the method stated here of synthesising a desired circuit response by
cascaded circulators was known a long time ago; it is attributed to Desoer and Belevitch [69]
in Chap. 3 of [70].
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qubits than ours, and it would be possible in this scheme to get rid of the first-order
dispersion effects which degrade the quantum-eraser condition, as calculated above.
But, as we show in the Appendix (6.1), the second-order dispersion difference,
which would still be present, leads to similar qualitative limits on the measurement
time and fidelity. Also, we point out that the quantum-eraser condition would also
be degraded by imperfections in the circulators, unlike in our scheme. Given that
there presently are no on-chip circulators suitable for qubit experiments (but see
progress in [71, 72]), we believe that our scheme is closer to being realized with
currently-available components.

2.3 Results – 3D resonant structures

The theoretical generalization of our scheme to the measurement of the arguably
more important case of 4-qubit parity is straightforward. We require three closely
spaced resonances fa, fb and fc , equal coupling χ of each qubit to each of the three
resonances, and a network that couples resonators to a single reflected probe. In
this case again all measurable quantities will emerge from a single reflected-phase
function θs(ω). Since this function will vary smoothly over 6π, it will be possible
to satisfy the three quantum-eraser equations for this case:

θeven = θ0000(ωp) = θ0011(ωp) + 2π = θ1111(ωp) + 4π (2.11)
θodd = θ0111(ωp) = θ0001(ωp)− 2π (2.12)

Tuning the fi values, χ and ωp gives enough freedom so that these equations should
always be solvable. The analogous conditions for n-qubit parity are straightforward
to write down; if we use the notation θwt.i to indicate the phase shift if i of the
quibits are 1, then the condition is

θwt.i(ωp) = θwt.i+2k(ωp) + 2kπ. (2.13)

Combined with the desire that θwt.0(ωp) ≈ θwt.1(ωp)+π, we see that the θ function
should vary by at least πn. For even n this will be accomplished with n/2 + 1
resonances (so that θ winds through phase π(n + 2)), while for odd n, (n + 1)/2
resonances suffice (θ winds through phase π(n+1) in this case). For both even and
odd n, the number of resonances required can be written d(n + 1)/2e, as stated
above.
Returning to the consideration of 4-qubit parity, we see that some new hardware

elements would be required to achieve this by an extension of the “2D" (coplanar
waveguide) scheme above. The requirement that each qubit be equally coupled
to each of three different CPW resonators has not previously been achieved. It
seems likely that it is doable with the use of air bridges, which have only recently
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entered the toolkit of quantum microwave engineering (see [73, 74]). Another
possible way to obtain the multiple resonant modes needed for multi-qubit parity
measurement would involve the use of multi-conductor CPWs [73], which naturally
support modes that are closely spaced in frequency.
But given these difficulties, we explore a second protocol to achieve the imple-

mentation of 4-qubit parity measurement, involving “3D” superconducting cavities
[22]. These high quality factor rectangular cavities have recently been proven to
be excellent implementations of nearly decoherence-free Jaynes-Cummings physics
[56]. In these the qubit-cavity coupling is provided by antenna structures extending
out from the transmon qubits [22]. Multi-qubit structures [75] have been achieved
in this technology, and bridging qubits, antenna-coupled to two different cavities,
are now possible2 [56]. This second protocol illustrates a further fact, which is
that multiple, closely spaced resonances can be achieved within a single resonant
structure.
Figure (2.5) illustrates the concept of this second protocol, also showing how

it could be extended to be part of a scalable implementation of the surface code
architecture [51, 76]. The key modification in this structure is that the 3D cavities,
rather than having a large aspect ratio in which w >> l >> h (w=width, l=length,
h=height), should be nearly, but not exactly, cubical. Thus, the three lowest
resonant modes would be nearly degenerate in frequency, since their wavelengths
will be set by π/w, π/l, and π/h. (Be warned that the traditional labels for these
modes are TE101, TE011, and TM110 (see Chap. 10.07 of [60]).) Each cavity is
coupled, via antenna structures, to four qubits, two on the front surface in Fig.
(2.5) and two on the back (not shown). Each antenna runs along the body diagonal
(i.e., 〈111〉 axis) of the cubical cavity; with this geometry the coupling is equal to
each of the three eigenmodes, whose modal electric field patterns point straight
along one of the three coordinate axes.
Unlike for our first (“2D”) proposal, we will not provide calculations of the per-

formance of the structure of Fig. (2.5). While the structure of Fig. (2.1) can be
analyzed using elementary transmission line theory and a few component parame-
ter values whose ranges are well understood, the system of Fig. (2.5) is a complex,
three-dimensional structure whose electromagnetic response can only be obtained
reliably by detailed calculations that are beyond the scope of this paper. It is en-
couraging that progress is being made in the detailed modeling of couplings in such
a 3D geometry [78]. We note that many details of Fig. (2.5), such as the thin-film
metallisation around the qubit, contacts between chip conductors and antenna and
cavity metal, the shape of the antennas, and the exact geometry of the cavities,
should be optimised by detailed simulation. One comment on the cavity structure:
while the cubical cavity satisfies the requirement of three closely spaced modes in

2J. M. Gambetta, private communication.
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2.3 Results – 3D resonant structures

(a) (b)

Figure 2.5: Potentially scalable implementation of the surface code using direct
4-qubit parity measurements (rendering by Google Sketchup). a)
Overview of the proposed structure. A solid plate of metal (Al or
Cu, as in recent experiments [22, 77]) is perforated with nearly square
holes. The thickness of the plate is close to the dimension of the square.
When closed with thin top and bottom plates (not shown), these holes
become nearly cubical microwave cavities. Qubit structures are grown
on chips (lighter squares) using existing thin-film techniques. The insu-
lating side of the chip is mounted to a junction point in the perforated
plate; half of the junctions contain chips at the front surface of the
plate, and the other half are on the back side (not visible). Each qubit
is in electrical contact, via leads going to the corners of the chip, with
four antenna structures (tapered rods) projecting diagonally into the
four cubical cavities surrounding the chip. Each cavity will enable a
four qubit parity measurement, either ZZZZ or XXXX, as indicated.
The external feed lines needed to interrogate each cavity by reflectom-
etry will enter via one of the unoccupied corners of the cubes (not
shown). b) Close-up around one qubit chip. It could be made in the
conventional way, in which a thin film of metal is etched away in slot
regions, exposing the underlying insulating substrate (orange). This
forms four short segments of coplanar waveguide structures, with the
center conductor (green) going to each of the corners of the chip. One
small structure (blue) containing a Josephson junction connects the
central region of center conductor to one of the ground planes (light
grey). The four triangular ground-plane regions are tied to the metal
plate, and therefore to each other, by bridges or wire bonds near the
corners of the chips. Such bridge/bond connections are also made
between the four center conductors and the antenna rods. Insulating
support structures isolating the antennas from the conducting walls are
only schematically shown. The consequence of this connection arrange-
ment is that the Josephson junction is shunted by four capacitances in
series, each formed by an antenna and the side walls of the cavity con-
taining it. Presumed optimal dimensions for the chip (sub-millimeter)
and cavity (few centimeter) are not accurately depicted. 25



2 Multi-qubit parity measurement in circuit quantum electrodynamics

an elegant way, it will be perhaps discouragingly large (centimeter-scale) from the
point of view of potential scale-up of the surface code. Work is commencing on
much different forms of resonator geometries, which by being “quasi-lumped” [79],
can be much more physically compact. It will not be necessary to remain only
with the Platonic cavities.

2.4 Discussion and Conclusions

We consider our basic schemes of Figs. (2.1) and (2.5) to be realistic for imple-
mentation by experiment. For Fig. (2.1), a precise thin-film layout of an on-chip
structure (to the right of point P in Fig. (2.1)) could be devised based on the
parameter values we have determined. It is clear that detailed electromagnetic
modelling would be useful to guide the layout design [80]. The values obtained
for Ca and Cb correspond to well-known few-finger interdigitated capacitors. We
foresee three main difficulties: 1) Coupling each qubit to the two resonators. 2)
Tuning the qubits to achieve the equal-χ condition. The topology of the chip lay-
out would preclude bringing flux-bias lines to each qubit; it is possible that only
two of the three qubits would need to be tuned, and one of these tunings could be
from an external magnetic field. 3) Measuring few-photon signal levels. It appears
that the standard HEMT amplifier arrangements would have too much noise for
the conditions we have calculated; adoption of new, quantum-limited amplification
will be needed for high-fidelity readout.
The 3D scheme of Fig. (2.5) will require more work to assess its optimal imple-

mentation. Achieving the parameter values envisioned by our theory will require
detailed simulation of the complex structure that we have proposed, with many
details subject to variation. Since the direct, ancillaless approach studies here is so
different from the existing technique of collecting error syndromes with the action
of a quantum circuit using ancillas, we believe that it is impossible to know which
approach will be superior. Further studies and refinement of both approaches will
be necessary to determine which will provide the best way forward.
So, it may be that our proposals can only attain satisfactory performance in

structures in which the resonators are tuneable (as in [81, 82, 83]), or qubits are
tuneable in frequency (as in [42] and in many other works) or in effective coupling
strength (as in [84]). Application of these device construction techniques, as well
as near-quantum limited amplification [67], will be likely be needed to achieve
high-fidelity, single-shot parity measurement as envisioned in the proposals we
give here. We hope that following this route will indeed be facilitated by the many
interesting experimental [85, 86, 87] and theoretical [39, 88, 89] innovations in the
application of circuit QED that we see presently.
The proposals of this chapter are not the blueprint for a scalable quantum
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2.4 Discussion and Conclusions

computer; they are concepts on which further detailed studies to determine optimal
device functionality can be based. While the structures that we suggest here will
by no means be trivially realised, we believe that the crucial role played by parity
measurement in the implementation of reliable quantum computation makes these
approaches worthwhile to pursue.
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CHAPTER 3

One-port Brune Quantization

3.1 Introduction

Superconducting electronics is one of the most promising ways to realize the quan-
tum computer’s hardware. As we have seen in the previous chapters, a typical
superconducting processor consists of microwave cavities connected by microwave
waveguide structures and components. The anharmonicity necessary for getting
qubits is supplied by Josephson junctions which are usually positioned inside the
cavities and coupled to the cavity modes.
Superconducting qubit lifetimes have increased from a couple of nanoseconds

in 1999 [9] to tens of microseconds in 2011 [22]. The increase in Q-factors of su-
perconducting qubits and cavities requires highly accurate models for their design,
optimization and predictability. The common approach to model such systems has
been to use Jaynes-Cummings type Hamiltonians borrowed from quantum optics.
However several problems arise like convergence issues when one wants to include
higher levels of superconducting qubits or higher modes of cavities in such models
[91].
To remedy those issues a method is proposed in [78] to derive Hamiltonians and

compute relaxation rates for weakly anharmonic superconducting circuits. In this
method the linear electromagnetic environment shunting the Josephson junction,
as extracted, for example, using microwave simulation software, is lumped together
with the junction’s linear inductance, to give a “blackbox” impedance function
Zsim (ω). This response is then fitted, pole by pole, to an analytic function Z (ω).
Then an approximate version of Foster’s theorem [92] in the low loss limit [93],
applied to Z (ω), gives an equivalent circuit as a series connection of resonant RLC
stages, one stage for each term in the partial fraction expansion of Z (ω). In this
method, which we refer to as the “lossy Foster” method, Q factors for each resonant
mode are computed using Qp = ωp

2

Im[Y ′(ωp)]

Re[Y (ωp)]
where ωp = (LpCp)

−1/2 is the resonant
frequency of the mode and Y = Z−1 is the admittance. The lifetime of the mode
is given by Tp = Qp/ωp.
Lossy Foster, while simple to apply, is not always accurate or even well-conditioned.

Terms in the partial-fraction expansion of Z (ω) do not always correspond to stages
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3 One-port Brune Quantization

of a physical circuit [94, 95]. As Brune showed [96], the property that an impedance
function must have in order to correspond to a passive physical network is termed
“PR (Positive-Real)”. We note that even if all terms in the expansion of Z (ω) are
individually PR, one might still need to remove terms by inspection to get a better
fit, making the method dependent on ad-hoc decisions. As applied in [78], lossy
Foster parameters are dependent not only on the properties of the electromagnetic
environment, but also on the precise value of the junction inductance.
In this chapter we propose a new method to derive highly accurate Hamiltonians

for systems consisting of a single Josephson junction connected to lossy microwave
environments. Most of the material in this chapter is taken from our published
work at [97]. Our method is general enough to treat fully non-linear systems,
as was done in [98] for one-dimensional (1D) resonator systems. In the following
chapters we will show also how to extend the method to treat systems consisting of
multiple Josephson junctions. We treat the linear and passive part of the circuit as
a blackbox as in [78]. We however don’t combine linear Josephson inductance with
the response of the environment. A Josephson junction connected to the blackbox
will define a port at its connection terminals.
The blackbox is characterized by its linear response which might be an impedance

matrix, an admittance matrix or a scattering matrix. Response of the blackbox
might be either measured or computed using for example a finite-element simula-
tor such as HFSS [99]. The output of such a simulation is usually in the form of
response values sampled at discrete frequency points.
The response of the blackbox is fitted to a finite pole-residue model which is

equivalent to a rational function(rational matrix in the multiport case) model.
For this purpose we use Vector Fitting MATLAB package [100]. Vector Fitting
uses the following finite pole-residue model for the fit

Z (s) =
M∑

k=1

Rk

s− sk
+ D + Es (3.1)

to minimize the error between the data and the fit over a finite bandwidth by
choosing a proper set of poles {s1, . . . , sM} and residues {R1, . . . ,RM}.
Vector Fitting is an algorithm to approximate a sampled impedance/admittance

response by a rational function. It takes a dataset Zsim simulated at sampled
frequency points, and the number of poles M required for the fit, as its input and
gives a set of poles {s1, . . . , sM} and residues {R1, . . . ,RM} as its output (See
[101] for models with infinite number of poles) minimizing the error between Zsim
and Z (s) in Eq. (3.1) over the simulation bandwidth. Ref. [102] discusses details
of VF. Its passivity enforcement subroutine [103] makes sure that the real part
of the resulting rational approximation is positive definite. This feature is crucial
for our analysis since we require the impedance response to be PR (see Chapter

30



3.2 The Impedance Synthesis Problem

(3.2.1)) for the existence of a finite passive network having the same impedance
across its terminals. Note that passivity enforcement may not always work if the
accuracy of the microwave simulation is not high enough and we have taken care
to run the simulation with suitably high resolution in the example discussed in
Chapter (3.4).
Once an impedance fit Z (s) as in Eq. (3.1) is obtained we apply Brune’s

method of circuit synthesis to get a lumped element circuit which admits the
same impedance Z (s) at its terminals. This circuit we call the “Brune’s circuit”.
Resistors in the Brune’s circuit are coupled to the reactive part of the circuit in a
non-trivial way. We resort to the formalisms developed in [17, 18] for lumped ele-
ment circuit quantization to quantize the Brune’s circuit and compute relaxation
rates. The accuracy of our Hamiltonian and dissipation analysis gives an exact
description except for small errors, introduced in fitting.
In this chapter we introduce Brune’s method of synthesis for one-port impedances.

Brune’s algorithm will be described in s-domain (frequency domain) where s is the
Laplace variable. This is the classical network theory approach. We will then ap-
ply formalisms [17, 18] developed for lumped element circuit quantization to get a
quantum model for the Brune circuit and compute relaxation rates 1/T1.

3.2 The Impedance Synthesis Problem

Impedance synthesis problem is an old problem of electrical network theory. Given
an impedance function Z (s) the problem is to find an electrical network which has
the impedance Z (s) at its terminals. Foster [92] gives a solution for the lossless
one-port networks. He writes the form of the impedance of the most general finite
network consisting of capacitors, inductors and mutual inductors but containing
no resistors. He further shows that any such lossless impedance function can be
realized in the form of networks in Figs. (3.1)-(3.2).

L
(p)
1

C
(p)
1

L
(p)
2

C
(p)
2

L
(p)
M

C
(p)
M

Figure 3.1: First Foster form
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C
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2
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2
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(s)
M

L
(s)
M

Figure 3.2: Second Foster form

The synthesis problem for lossy responses is a tricky one. Guillemin [94] proposes
the construction shown in Fig. (3.3) and makes the false claim that one can
synthesize any one-port impedance by such a circuit. Inductors in the circuit
should be understood as belonging to a multiport mutual inductor with couplings
between any two ports. We can see why Guillemin’s claim is false by studying the
simple circuit shown in Fig. (3.4) and showing that it is non-mapable to a circuit
in the form in Fig. (3.3).

L1

R1

C1

L2

R2

C2

LM

RM

CM

Figure 3.3: Canonical circuit proposed by Guillemin in [94] for the realization of
any PR impedance function.

R

C L

Figure 3.4: Simple circuit to show why Guillemin’s proposition is in error.

The correct answer to the lossy impedance synthesis problem is given by Brune
[96]. He shows that any one-port impedance corresponding to a finite passive
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3.2 The Impedance Synthesis Problem

network can be realized by a circuit in the form shown in Fig. (3.9). In Section
(3.2.2) we describe the algorithm proposed by Brune [96] to synthesize such a
circuit given an impedance function. An important question is how to check if
a given function is the response of a finite physical network. There will be a
finite passive network which has a given impedance across its terminals only if the
impedance function satisfy certain conditions. Brune discovered those conditions
and called them “PR (Positive-Real)” conditions [96]. Below we define PR property
and describe Brune’s algorithm. For more details see [94].
An important feature of Brune’s algorithm is that it gives a circuit with a min-

imum number of reactive elements. This allows a Hamiltonian description for the
system with a minimum number of degrees of freedom. The number of resistors
is however not minimum. In the following we adhere to the electrical engineering
convention for the imaginary unit j = −i.

3.2.1 PR property

A scalar impedance function Z (s) is PR if the following two conditions are met
1) Z (s) is a rational function which is real for real values of s.
2) Re [Z (s)] ≥ 0 for Re [s] ≥ 0.
The second condition is equivalent to the following
1) No poles lie in the right half plane.
2) Poles on the j-axis have finite positive real residues and are simple.
3) Re [Z (jω)] ≥ 0.
Physically the first condition requires the network to be stable whereas the third

condition requires it to be passive, i.e. that it doesn’t generate energy.

3.2.2 Brune’s algorithm

As input, this algorithm for extracting all parameter values of the Brune circuit in
Fig. (3.9) takes the impedance function Z(s) in rational-function form, or (equiv-
alently) partial fraction expansion form. Y (s) = 1/Z(s) can be easily computed in
these representations. The algorithm proceeds by looping over the following steps
1-5:

1. If Z (s) or Y (s) has j-axis poles, remove them by realizing terms correspond-
ing to those poles in the partial fraction expansion. Those terms correspond
to parallel LC resonators(connected in series) in case of Z (s) poles and series
LC resonators(connected in parallel) for Y (s) poles. Repeat until no j-axis
pole is left.

33
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R1 L1

L2

C2

L3

Z2(s)
Z(s)

Figure 3.5: Brune circuit extraction step

2. Find ω1 and R1 such that R1 = min
ω

Re[Z (jω)] and Re[Z (jω1)] = R1 .
Define Z1 (s) = Z (s) − R1 . This step fixes the value of the resistor R1 in
Fig. (3.5). See below for the degenerate case when ω1 =∞.

3. Define L1 = Z1 (jω1) / (jω1). If we extract the inductance L1 as shown in
Fig. (3.5), 1/ (Z1 (s)− L1s) is the admittance corresponding to the rest of
the circuit and has a pole at s = jω1, hence we can write

1

Z1 (s)− L1s
=

(1/L2) s

s2 + ω2
1

+
1

W (s)
(3.2)

4. The first term in Eq. (3.2) corresponding to the pole at s = jω1 is realized
with a shunt LC branch consisting of inductance L2 connected in series with
capacitance C2 = 1/ (L2ω

2
1) as shown in Fig. (3.5).

5. W (s) has a pole at infinity such that

lim
s→∞

W (s) = − L1L2s

L1 + L2

= L3s (3.3)

This pole is removed by constructing Z2 (s) = W (s) − L3s which corresponds
to connecting in series an inductance of value L3 = −L1L2/ (L1 + L2). Z2 (s) is
PR, and one loops though steps 1-5 whole applied to Z2.
Steps 1 to 5 reduce degrees of both numerator and denominator of Z (s) by 2

so that the algorithm terminates once a constant Z2 (s) = RM+1 is reached. For
more details on Brune’s algorithm, see Chap. 9 of [94].
The circuit in Fig. (3.5) involves negative values for either inductance L1 or

L3 [94]. However one can replace the T-shaped inductive part of the circuit in
Fig. (3.5) with a “tightly coupled” inductor as shown in Fig. (3.6) where the
inductances are all physically realisable and given by
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L1

L2

L3

L11 L22

M

≡

Figure 3.6: Equivalence of T-shaped inductive circuit in Fig. 3.5 to a coupled
inductor

L11 = L1 + L2 (3.4)
L22 = L3 + L2 (3.5)
M = L2 (3.6)

Note that lower terminals of the coupled inductor are short-circuited. A generic
two-port coupled inductor is shown in Fig. (3.7) with the following constitutive
relations

+

V1

−

I1

L11

−
V2

+

I2

L22

M

Figure 3.7: Generic 2-port coupled inductor with convention chosen for current
directions and voltage polarities

(
Φ1

Φ2

)
=

(
L11 M
M L22

)(
I1

I2

)
(3.7)

assuming the conventions shown in Fig. (3.7) for current directions and voltage
polarities. With the current directions chosen the stored energy in the coupled
inductor is given by

E =
1

2

(
L11I

2
1 + 2MI1I2 + L22I

2
2

)
(3.8)

Note that at any stage in the application of step (2) above, one may find ω1 = 0
or ω1 =∞. In case of ω1 =∞ we have the degenerate circuit in Fig. (3.8) which
corresponds to the circuit in Fig. (3.6) with L1 = L2 = L3 = 0 . Cj in Fig. (3.8)
is given by
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Rj

Cj

Rj+1

Figure 3.8: A degenerate stage in Brune circuit

Cj = lim
s→∞

1

s (Zj −Rj)
(3.9)
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3.3 Quantization of the one-port Brune circuit

3.3.1 Hamiltonian Derivation

LJ

R1

L11 L12

C1

M1 RM

LM1 LM2

CM

MM

RM+1

Figure 3.9: Brune circuit (in dotted box) shunted by a Josephson junction.

In this section we will quantize the circuit in Fig. (3.9) generated by Brune’s
algorithm. Note that in Fig. (4.3) we show another equivalent form of the Brune
circuit which is quantized using the “effective Kirchhoff” technique described in
Chapter (4.3).
Brune’s circuit consists of M stages each containing a tightly-coupled inductor

pair (Mj =
√
Lj1Lj2), a capacitor Cj, and a series resistor Rj. As we will show

below, this interleaving ofM lossless stages with (M+1) resistors results in a non-
trivial coupling between the modes of the circuit and the dissipative environment
represented by these resistors. Since the Brune circuit has a non-trivial topology,
we resort to [17, 18] to derive its Hamiltonian and compute the relaxation rates.

LJ

L11 L12

C1

M1

Lj1 Lj2

Cj

Mj

LM1 LM2

CM

MM

Figure 3.10: Lossless part of the Brune circuit. This is the circuit that corresponds
to the Hamiltonian in Eq. (3.24) below. The lossless circuit is ob-
tained from the circuit in Fig. (3.9) by taking R1, . . . , RM → 0 and
RM+1 →∞ limits. Low-impedance treatment of R1 −RM needs [18]
whereas high-impedance treatment of RM+1 requires [17].

Lossless part of the Brune circuit is shown in Fig. (3.10). This is the circuit that
corresponds to the Hamiltonian in Eq. (3.24) that is derived below. In the case
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LJ CJ → 0

R1

L11 L12

C1

−M1 Rj

Lj1 Lj2

Cj

−Mj RM

LM1 LM2

CM

−MM

CM+1
= 1

iωRM+1

Figure 3.12: Modified Brune circuit. Tree branches are shown in black and chord
branches are shown in green. Current directions are chosen to have
the matrix FC in Eq. (3.10) with all positive entries. Formal capaci-
tance CM+1 is introduced for a technical reason: with the substitution
CM+1 = 1

iωRM+1
we are able to compute dissipation rate due to RM+1

in the formalism of [17]. After the coordinate transformations we
take CJ → 0 limit so that this element is removed. To get FC in Eq.
(3.10) with all positive entries we reversed the direction of currents
through and inverted the polarity of voltages across right coupled in-
ductor branches which requires the update Mj → −Mj for mutual
inductances. See Fig. (3.7) for the definition of the coupled inductor.

of unity turns ratios, this circuit is the (dual) lossless Foster form in Fig. (3.1) as
shown by the equivalence in Fig. (3.11).

L L

L

≡
L

Figure 3.11: In the case of unit turns ratios, tightly-coupled inductor pairs simplify
to ordinary inductors. In this case linear part of the circuit in Fig.
(3.10) reduces to one of the classic Foster canonical forms [92, 94]
shown in Fig. (3.1).

To apply analysis methods in [17, 18], we need to modify the original Brune cir-
cuit in Fig. (3.9) to get the augmented Brune circuit shown in Fig. (3.12). We re-
place the last resistor RM+1 with the capacitor CM+1 for a technical reason. It will
be included in our analysis later through the substitution CM+1 ← 1/(iωRM+1).
Its contribution to the relaxation rate will be computed by referring to the equa-
tion of motion Eq. (61) in [17]. We also shunt the Josephson junction with the
“formal” capacitance CJ . This is required for a non-singular capacitance matrix
if there is no degenerate stage (see Chapter (3.3.3) for the treatment of a single
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degenerate stage).
With the ordering {L12, L22, . . . , LM2, L11, L21, . . . , LM1} for the tree inductors

(note that the right coupled inductor branches come first and there is no chord
inductor) and the ordering {C1, . . . , CM+1} for chord capacitors we construct the
FC matrix defined in Eq. (21) of [18] (To get FC with all positive entries we
reversed the direction of currents through and inverted the polarity of voltages
across right branches of the coupled inductors which requires the update Mj ←
−Mj for mutual inductances. See Fig. (3.12) for the directions of the branch
currents and Fig. (3.7) and Eq. (3.7) for the definition of the coupled inductor.)

FC =




1 1 · · · 1 1
1 · · · 1 1

. . . ...
...

0 1 1
1

1 1 · · · 1 1
1 · · · 1 1

. . . ...
...

0 1 1




(3.10)

where FC is a (2M + 1) × (M + 1) matrix. We then compute the capacitance
matrix in Eq. (22) of [18]

C0 =

(
CJ 0
0 0

)
+ FCCF tC (3.11)

where C is a diagonal matrix with capacitances {C1, . . . , CM+1} on the diagonal.
Coupled inductors in the circuit in Fig. (3.12) satisfy the “tight coupling” con-

dition Mj =
√
Lj1Lj2. The inductance matrix defined in Eq. (15) of [18] becomes

singular in this tight coupling limit. To get around this issue we first introduce a
small parameter L0 controlling the deviation from the tight coupling limit (L0 → 0)
by writing

Mj =
√
Lj1Lj2 − L2

0 (3.12)

Respecting the directions of the coupled inductor currents in Fig. (3.12) we can
then write the inverse inductance matrix L−1

t defined in Eq. (16) of [18]
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L−1
t =

1

L2
0




L11 0 M1 0
. . . . . .

0 LM1 0 MM

M1 0 L12 0
. . . . . .

0 MM 0 LM2




(3.13)

G matrix defined in Eq. (32) of [18] is given by

G =

(
0

I(2M×2M)

)
(3.14)

and M0 defined in Eq. (31) of [18] is

M0 = GL−1
t Gt (3.15)

=

(
0 0
0 L−1

t

)
(3.16)

To remove the singularities due to tight coupling condition we will rotate the
coordinates to identify a subspace of the phase-space with finite eigenvalues and
truncate the subspace with infinite eigenvalues. Note that this is a generalized
eigenvalue problem for the matrices C0 and M0 and we took care to ensure that
finite eigenvectors have no support in the infinite subspace. We define the following
rotation matrix U

U =




1 0 · · · 0
0 1√

1+t21
0 t1√

1+t21
0

. . . . . .
... 0 1√

1+t2M
0 tM√

1+t2M

− t1√
1+t21

0 1√
1+t21

0

. . . . . .
0 0 − tM√

1+t2M
0 1√

1+t2M




(3.17)

where tj =
√

Lj1

Lj2
. We compute U tM0U and truncate it to its upper-left (M + 1)×

(M + 1) sector (after taking the tight-coupling L0 → 0 limit) which corresponds
to the subspace with finite eigenvalues to get
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M ′
0 =




0 · · · 0
... 1/L1 0

. . .
0 0 1/LM


 (3.18)

where Lj = Lj1 + Lj2. We also transform C0 in Eq. (3.11) by computing U tC0U
and truncate it to get C ′0.
C ′0 and M ′

0 give a valid representation of the dynamics of the system. Although
M ′

0 is diagonal, C ′0 is in general non-zero in all its entries. There is however another
transformation which is band-diagonal and brings the dynamics into a nearly di-
agonal form. The following transformation matrix T makes the Lagrangian of the
system (i.e., both C ′0 and M ′

0) band-diagonal:

T =




1

−
√

1+t21
1−t1 −

√
1+t21

1−t1 0√
1+t22

1−t2

√
1+t22

1−t2
. . . . . .

0 (−1)M
√

1+t2M
1−tM

(−1)M
√

1+t2M
1−tM




(3.19)

Applying T to C ′0 and M ′
0 we get

C = T tC ′0T (3.20)

=




CJ + C ′1 t1C
′
1 0

t1C
′
1 t21C

′
1 + C ′2
. . . . . .

t2M−1C
′
M−1 + C ′M tMC

′
M

0 tMC
′
M t2MC

′
M + CM+1




(3.21)

and
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M0 = T tM ′
0T (3.22)

=




1
L′1

1
L′1

1
L′1

1
L′1

+ 1
L′2

1
L′2

0
1
L′2

1
L′2

+ 1
L′3

. . .
. . . . . .

0 1
L′M−1

+ 1
L′M

1
L′M

1
L′M

1
L′M




(3.23)

where C ′j = Cj/ (1− tj)2 , L′j = Lj2 (1− tj)2.
A Lagrangian L0 (and equivalently a Hamiltonian HS) can be written as

LS =
1

2
Φ̇
TCΦ̇− U (Φ) ,HS =

1

2
QTC−1Q+ U (Φ) , (3.24)

where

U (Φ) = −
(

Φ0

2π

)2

L−1
J cos (ϕJ) +

1

2
ΦTM0Φ. (3.25)

Φ is the vector of transformed(and truncated) coordinates of length (M + 1). ϕL
is the phase across the Josephson junction. One can relate Φ to the original branch
fluxes in the Brune circuit by introducing an auxiliary vector Φ′ of length (M + 1)
and keeping track of the two coordinate transformations U and T applied as follows

Φ′ = TΦ (3.26)

with

Φ′ = (ΦJ ,Φ
′
1, · · · ,Φ′M) (3.27)

= U t (ΦJ ,ΦL)t (3.28)

where

(ΦJ ,ΦL) = (ΦJ ,Φ12,Φ22, · · · ,ΦM2,Φ11,Φ21, · · · ,ΦM1) (3.29)

is the vector of fluxes of tree branches in the Brune circuit in Fig. (3.12) , ΦJ =(
Φ0

2π

)
ϕJ and

Φ′j =
1√

1 + t2j

(Φj2 − tjΦj1) (3.30)
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3.3 Quantization of the one-port Brune circuit

for 1 ≤ j ≤ M . Note that Φ1 = ΦJ . We assume that the vector U t (ΦJ ,ΦL)t is
truncated to its first (M + 1) rows before assignment to Φ′ in Eq. (3.28). From
the truncated sector of the equation Φ′ = U t (ΦJ ,ΦL)t we get the relations

1√
1 + t2j

(tjΦj2 + Φj1) = 0 (3.31)

for 1 ≤ j ≤M , which gives using Eq. (3.30)

Φ′j =
√

1 + t2jΦj2 (3.32)

for 1 ≤ j ≤M .
By Eq. (3.26) we can write the jth component of Φ′ for 1 ≤ j ≤M as

Φ′j = (−1)j

√
1 + t2j

1− tj
(Φj + Φj+1) (3.33)

Hence by Eq. (3.31) and Eq. (3.32) we have

Φj1 = (−1)j+1 tj
1− tj

(Φj + Φj+1) (3.34)

Φj2 = (−1)j
1

1− tj
(Φj + Φj+1) (3.35)

for 1 ≤ j ≤ M . We see that the flux variables Φj1 and Φj2 of coupled inductor
branches are functions of only two consecutive flux variables in the new coordinates
Φ.

3.3.2 Dissipation Analysis
In this section our aim is to compute relaxation rates. We treat resistors in
Caldeira-Leggett formalism with each resistor representing a bath of harmonic
oscillators with a smooth frequency spectrum. Couplings of the baths to the cir-
cuit degrees of freedom are given by m̄ vectors as defined in Eqs. (64) and (27) of
[17] and [18], respectively.
We start by rearranging the equation of motion Eq. (29) of [18] (correcting the

typo in the sign of CZ)

C ∗ Φ̈ = −∂U
∂Φ

+ CZ ∗ Φ̈ (3.36)

CZ is given in frequency domain in Eq. (26) of [18] as

43
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CZ(ω) = m̄C̄Z (ω) m̄T (3.37)

Comparing Eq. (3.36) to the equation of motion Eq. (61) in [17] we identifiy in
frequency domain

Md (ω) = ω2CZ (ω) (3.38)

Using Eq. (3.37) and (3.38)

Md (ω) = ω2m̄C̄Z (ω) m̄T (3.39)

Comparing Eq. (3.39) to the Eq. (64) in [17] we make the identification

L̄−1
Z (ω) = ω2C̄Z (ω) (3.40)

Note then that the m̄ vectors of both [17] and [18] are identical.
We will treat resistors one at a time. In such a case C̄Z (ω) defined in Eq. (28)

of [18] is a scalar function which allows us to write the kernel defined in Eq. (73)
of [17] using Eq. (3.40) above

K (ω) = ω2C̄Z (ω) (3.41)

Applying Eq. (124) of [17] we get the contribution to the relaxation rate from
the resistor Rj (1 ≤ j ≤M + 1):

1

T1,j

=
4

~
|〈0 |m̄j ·Φ| 1〉|2 Jj (ω01) coth

(
~ω01

2kBT

)
(3.42)

|0, 1〉 are the qubit eigenstates of the system Hamiltonian in Eq. (3.24) and ω01 is
the transition frequency between them. Calculating these quantities requires solv-
ing the Schrodinger equation for the system Hamiltonian in Eq. (3.24) above; this
can be a difficult task, but many effective accurate methods have been developed
for doing this, in many works right up to the present [17, 18, 20, 104, 105]. The
vector m̄j represents the coupling of the system to the bath of the resistor Rj.
Note that our use of the non-normalized coupling vector m̄j and the flux vector Φ

implies removal of the factor µ
(

Φ0

2π

)2 from the definition of the spectral function
of the bath J in Eq. (93) of [17] (See Eqs. (3.47) and (3.50) below).
For 1 ≤ j ≤M , using Eqs. (26-28) in [18] we compute
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m̄j =




0
...
0

(−1)j−1Cj

(1−tj)
(−1)jCj+1

(1−tj+1)
+

(−1)j−1tjCj

(1−tj)
...

(−1)M−1CM

(1−tM )
+ (−1)M−2tM−1CM−1

(1−tM−1)
(−1)M−1tMCM

(1−tM )




(3.43)

where m̄j are vectors of length (M + 1) and

C̄Z,j (ω) =
iωRj

1 + iωRj

(
M∑
k=j

Ck

) (3.44)

We then have

Kj (ω) = ω2C̄Z,j (ω) (3.45)

=
iω3Rj

1 + iωRj

(
M∑
k=j

Ck

) (3.46)

Hence we obtain

Jj = Im [Kj (ω)] (3.47)

=
ω3Rj

1 + ω2R2
j

(
M∑
k=j

Ck

)2 (3.48)

To treat the last resistor RM+1 we first replace CM+1 in the last row of capac-
itance matrix by 1/(iωRM+1). This gives a term − 1

RM+1
ϕ̇M on the right hand

side of the Euler-Lagrange equations of motion (Eq. (29) of [18]). Such a simple
replacement in one term is valid because the flux variable of this capacitive branch
never appears as an independent variable. The reason for this special treatment
of the last resistor is that, because of its shunt position, its resistance should be
sent to infinity rather than zero to get the lossless limit; thus, 1/RM+1 should be
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3 One-port Brune Quantization

the small parameter controlling dissipation. To perform a quantum treatment of
all these dissipative contributions, we introduce a Caldeira-Leggett environment
following the prescription of [17]. Following the notation of this treatment, we get
a dissipation matrix for resistor RM+1

Md = KM+1 (ω) m̄M+1m̄
T
M+1, (3.49)

where KM+1 (ω) = iω
RM+1

and m̄M+1 =




0
...
0
1


 is a vector with (M + 1) rows. We

then have

JM+1 (ω) = Im [KM+1 (ω)] =
ω

RM+1

, (3.50)

We note that this formalism has been thoroughly studied in previous work [104],
where it was seen that it gives a good accounting for relaxation of nearly harmonic
systems, obtaining results in agreement with classical arguments.
Finally, we note that while the formulation given above appears to be highly

singular for the case of any turns ratio ti → 1 in both the Hamiltonian (Eqs. (3.21)
and (3.23) above), and in the decay rates (Eqs. (3.42) and (3.43) above), we have
confirmed by examining other representations that all observable properties of the
dynamics, such as ω01 and T1, are smooth functions of ti as it passes through unity.

3.3.3 Degenerate stages

The circuit extracted at each stage of the Brune’s algorithm is shown in Fig. (3.5).
It is possible that the extraction of the minimum resistance R1 happens at ω1 = 0
or ω1 = ∞. Such cases we describe as being degenerate. In the case of an odd
number of poles there will be necessarily a degenerate stage. In this section we will
show how one can deal with the case ω1 =∞ and how to update the Hamiltonian
matrices in Eqs. (3.21), (3.23) and the coupling vectors mj in Eq. (3.43).
We consider a degenerate case appearing at kth stage. Such a stage corresponds

to the limit of L′k → 0 and tk → 0 . To remove the singularity we define a
transformation
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Td =




1
. . . 0

1
row (k + 1)→ −1 −1

. . .

0 −1




(3.51)

Applying this tranformation to the matrices M0 and C and removing the coordi-
nate of the degenerate stage(this corresponds to the removal of (k + 1)th row and
(k + 1)th column from both matrices) we get

T tdM0Td =




1
L′1

1
L′1

1
L′1

1
L′1

+ 1
L′2

1
L′2

1
L′2

1
L′2

+ 1
L′3

. . . 0
. . . . . .

1
L′k−1

+ 1
L′k+1

1
L′k+1

1
L′k+1

1
L′k+1

+ 1
L′k+2

. . .

0 . . . . . .
1

L′M−1
+ 1

L′M

1
L′M

1
L′M

1
L′M




(3.52)

T tdCTd =




CJ + C
′
1 t1C

′
1

t1C
′
1 t21C

′
1 + C

′
2

. . . 0
. . . . . .

t2k−1C
′
k−1 +

(
C ′k+1 + C ′k

)
tk+1C

′
k+1

tk+1C
′
k+1 t2k+1C

′
k+1 + C ′k+2

. . .
. . . . . .

0 t2M−1C
′
M−1 + C

′
M tMC

′
M

tMC
′
M t2MC

′
M + CM+1




(3.53)
Note that the matrices above are of size M ×M .
One needs to update also m̄ vectors. To do this we have to apply the trans-

formation Td to m̄ vectors and remove the entry corresponding to the degenerate
coordinate (i.e. the (k + 1)th row). Now we define some auxiliary vectors
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m̄a (j) =




0
...
0

jth row −→ (−1)j−1 Cj

(1−tj)
...

(−1)k−2 Ck−1

(1−tk−1)

(−1)k+1 Ck+1

(1−tk+1)
...

(−1)M CM

(1−tM )

0




(3.54)

m̄b (j) =




0
...
0

(j + 1)th row −→ (−1)j−1 tjCj

(1−tj)
...

(−1)k−2 tk−1Ck−1

(1−tk−1)

(−1)k+1 tk+1Ck+1

(1−tk+1)
...

(−1)M tMCM

(1−tM )




(3.55)

m̄Ck
=
(
0 · · · 0 Ck 0 · · · 0

)t (3.56)

where Ck is in kth row. Now we can write coupling vector m̄j to the bath of the
resistor Rj as a function of the vectors defined in Eqs. (3.54), (3.55), (3.56) above
as

m̄j = m̄a (j) + m̄b (j) + m̄Ck
, if j ≤ k

= m̄a (j) + m̄b (j) , if j > k (3.57)

Note that vectors above are all of length M . Spectral densities Ji (ω) are the
same as in the non-degenerate case (Eqs. (3.47),(3.50)) for all resistors. Note also
that dissipation treatment for the last resistor RM+1 is unaffected since CM+1 is
untouched in Eq. (3.53).
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3.4 Example

Figure 3.13: Geometry of the 3D transmon qubit simulated in HFSS. Light blue
is perfect conductor and dark blue is the vacuum. The qubit port
terminals are defined on a dielectric substrate located at the po-
sition of the red line. Two coaxial ports are positioned symmet-
rically on each side of the substrate. The cavity dimensions are
(height, length, width) = (4.2mm, 24.5mm, 42mm).

To show the application of the synthesis method we have just described, we analyse
a dataset produced to analyse a 3D transmon similar to the one reported in a
recent experiment at IBM [77]. Our modeling is performed using the finite-element
electromagnetics simulator HFSS [99]. Since the systems we want to model admit
very small loss [22, 106], they are very close to the border which separates passive
systems from active ones. Therefore it is necessary to take care that the simulation
resolution is high enough to ensure the passivity of the simulated impedance.
Otherwise the fitted impedance Z (s) does not satisfy the PR conditions in Chapter
(3.2.1) meaning that there is no passive physical network corresponding to Z (s).
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Figure 3.14: Fundamental mode (the TE101 mode) of the cavity with frequency
fTE101 = 6.875GHz. Green color indicates electric field regions of
higher magnitude compared to blue regions.

The simulated device is a 3D transmon, inserted with appropriate antenna struc-
tures into the middle of a rectangular superconducting (aluminium) box cavity,
which is standard in several labs presently for high-coherence qubit experiments.
Fig. (3.13) shows a perspective rendering of the device, and Fig. (3.14) shows
an intensity map of the fundamental mode of the cavity. The simulation includes
two coaxial ports entering the body of the cavity symmetrically on either side of
the qubit. HFSS is used to calculate the device’s three-port S matrix over a wide
frequency range, from 3.0 to 15.0 GHz. The three ports are those defined by the
two coaxial connectors and the qubit terminal pair. That is, the metal defining
the Josephson junction itself is absent from the simulation, so that its very small
capacitance and (nonlinear) inductance can be added back later as a discrete ele-
ment as in Fig. (3.9). The conversion from the S matrix to Zsim is calculated using
standard formulas [70, 61], in which it is assumed that the two coaxial ports are
terminated with a matched (Z0=50Ω) resistor. We have confirmed that the lossy
part of the resulting impedance is mostly determined by these port terminations,
rather than by the (physically rather inaccurate) HFSS model of cavity-metal
losses; this is consistent with the Q of the system being determined by its external
couplings [77].
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k Pole sk (GHz) Residue Rk

1 −1.6152× 10−6 8363.13
2,3 −0.00110372± j6.87473 5.69612± j0.00369273
4, 5 −0.00671733± j7.05711 (6.26609± j1.34164)× 10−5

6, 7 −1.34901± j8.98453 (7.33283± j5.61551)× 10−3

8, 9 −0.00272701± j12.0048 7.15159± j0.0227882
10, 11 −0.00918635± j12.8561 (1.98602± j0.0134996)× 10−3

12, 13 −1.40214± j13.7644 (−8.60807± j9.40397)× 10−3

14, 15 −0.131778± j17.7404 23.8075± j1.17404
16, 17 −3.14927± j88.3524 (1.19527± j0.120033)× 104

Table 3.1: Poles and residues for the fit to the HFSS dataset Zsim as in Eq. (3.1).

To obtain the fitted rational impedance function Z(s) as in Eq. (3.1), we use
the MATLAB package Vector Fitting (VF) [100]. Applying VF to the simulated
data Zsim gives the partial fraction expansion form in Eq. (3.1) with the poles
sk and residues Rk listed in Table (3.1), with e = 0 and d = 2.80407Ω. We
fixed the number of poles M by increasing M until VF could not improve the fit
further, stopping at M = 17. Note that some of the poles obtained in the fit have
frequencies (imaginary part of sk) outside the range of the simulation data; this
is a normal feature of the fitting routine, used to guarantee a highly accurate fit
throughout the entire simulated frequency band.

i Ri (Ω) Ci (nF ) Li1 (nH) Li2 (nH)

1 5.71974× 10−5 1.17020× 10−4 1.32810× 10−1 3.02058× 101

2 5.53199× 10−2 2.49081× 10−6 8.75272× 101 3.74225× 103

3 1.84087× 102 6.01727× 10−8 4.12954× 103 1.98121× 104

4 1.79021× 104 1.44153× 10−9 4.56024× 104 2.67489× 105

5∗ 6.57108× 105 2.01906× 10−10 0 0
6 4.90091× 105 9.69933× 10−12 1.56173× 107 1.55436× 107

7 4.14678× 107 1.64015× 10−12 3.09821× 108 3.1134× 108

8 2.33793× 107 6.32007× 10−11 4.74168× 106 1.95174× 106

9 1.22342× 108 1.70536× 10−11 7.42302× 106 1.10608× 107

R10 = 6.35712× 108Ω

Table 3.2: Parameter values for synthesized Brune circuit. Note the strong (orders
of magnitude) increase in impedance (in R and

√
L/C values) as we

go deep in the circuit. 5th stage is degenerate treated in more detail in
Chapter (3.3.3).

We have applied both Brune’s algorithm and a lossy Foster analysis to our fitted
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Z (s). Circuit parameters obtained for the Brune circuit are listed in Table (3.2).
We see that the series resistor connected directly to the qubit is quite tiny – the
qubit is nearly lossless. The progressive increase of the resistance values in further
stages of the circuit does not imply a large contribution of these resistors to loss, as
they are seen by the qubit only through a kind of LC “filter”. Indeed, the strong
trend towards increasing impedance from stage to stage in the Brune network
(both in the R and

√
L/C values) means that the first few stages of the Brune

network already give a good approximation of the cavity response Z(s).
In fitting our data with the lossy Foster method (see Appendix (6.3)) one must

be careful about residues with negative real parts or significant imaginary parts.
Note that one cannot apply the lossy Foster approximation to terms corresponding
to poles 12 and 13 in Table (3.1) since they have residues with negative real parts
— there is no physical network to approximate those terms alone. We also drop
DC and high-frequency terms corresponding to poles 1 and 14 − 17 respectively:
such a choice gives a better approximation for the real part of the impedance in the
frequency band of interest. Thus, the best approximating Foster network consists
of five RLC stages, representing the ten remaining pole pairs.
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Figure 3.15: Real part of open-circuit response. Dotted green is open-circuit re-
sponse for the Brune circuit which we identify with the open-circuit
fit. Solid magenta is the simulated response. Red is the response of
lossy Foster circuit. TE101 and TE103 are the resonances associated
with classical rectangular cavity modes [60].
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In Fig. (3.15) we compare these open-circuit impedances, as represented by the
Brune and lossy-Foster methods, over the full range of our simulation data. The
Foster representation clearly captures the main features of the response, notably
the two classical box resonances of the cavity. But in finer details, especially far
away from the resonances, the Brune representation, which is essentially indistin-
guishable from the fit obtained from VF, matches much better than the best lossy
Foster circuit.
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Figure 3.16: Real part of impedance in a small range of frequencies around the
qubit pole (fqb = 6.7052 GHz where fqb is the qubit resonance for
the exact fit) for the system shunted (with impedance Zs) by a linear
inductance LJ = 4.5nH representing the Josephson junction for three
different cases. The TE101 mode is not strongly affected by the
presence of LJ .

We now show the improvements that can be expected by using the Brune circuit
when representing the dynamics of the qubit-cavity system. Here we perform only
simple calculations involving a harmonic qubit1 (i.e., one represented by a linear
inductance LJ), but our results give evidence that the Brune circuit will provide
high-quality predictions even for more complex, strongly anharmonic qubits. In
Fig. (3.16) we show the lossy part of the impedance when the cavity is shunted

1For the purely harmonic system, the quantization discussed here was already treatable with
the methods of [107].
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by a linear inductance LJ = 4.5nH. The fundamental cavity resonance (TE101)
is not significantly changed from the open circuit case, but the qubit appears as a
new pole in the response. This “qubit pole” is again very accurately represented by
the Brune circuit2 ; however, using the lossy-Foster circuit derived from the open
circuit case above, the qubit pole is significantly misplaced, by about 100MHz.
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Figure 3.17: Magnitude of the real part of qubit pole sqb as a function of linear
inductance representing the Josephson junction shunting the system
for three different cases: exact fit for the system shunted by the linear
inductance, Brune circuit shunted by the linear inductance and lossy
Foster circuit shunted by the linear inductance. The overall decreasing
trend of this rate is simply due to the movement of the qubit pole to
decreasing frequency as LJ is increased. T1 relaxation rate of the qubit
is given by T−1

1 = ωqb/Qqb, where the quality factor Qqb = ωqb/ |ξqb|
with ξqb = Re [sqb], and ωqb = Im [sqb] is the frequency of the qubit
mode.

Of course, in current applications of the Foster approach [78], one can do much
better by refitting the Foster form with the linear inductance included in the re-
sponse, and thus adding a new RLC stage to explicitly represent the qubit pole.

2The identification of this pole as the “qubit pole” is established by calculating the eigenmode
of this pole, and observing that it has its highest weight on the Josephson junction branch of
the circuit. Its mode frequency is also strongly dependent on LJ .
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This is an effective strategy3, but the results in Fig. (3.17) will indicate its limi-
tations.
Here we compare the use of the Brune and (fixed) lossy-Foster circuit in giving

the real part of the qubit pole, which is proportional to the relaxation rate 1/T1

Eq. (3.42), as the inductance LJ is varied. We see again that the Brune circuit
matches the “fit” result, obtained directly from the HFSS data, very closely. The
deviations of the lossy-Foster result are up to 20%, and the decrease of the loss rate
with LJ is significantly underestimated. This suggest that no single lossy-Foster
network, incorporating some fixed amount of linear inductance, will be able to
match this trend.
Thus, while the Foster approach has been of considerable value in modelling

nearly harmonic qubits like transmons [78], it appears that the exactness of the
Brune approach will be of real value as we consider other, more anharmonic cavity-
coupled qubits. A clear application in this direction will be the cases of fluxonium
[108] or flux qubits [109] – our approach should provide a highly accurate multi-
mode Hamiltonian for modelling dynamics in those cases.

3But note a drawback of the approach of including the linear part of the Josephson response
in the model circuit: in the resulting circuit there is no one branch circuit variable that
represents the physical response of the Josephson device, unlike in our approach where a
single variable (ϕJ of Eq. 3.25) plays this role directly.
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CHAPTER 4

State-Space Brune Quantization

4.1 Introduction

In Chapter (3) we presented Brune’s algorithm in s-domain (or frequency domain),
s being the complex Laplace variable. In s-domain the impedance is given as a
rational function of s (or as a rational matrix for multiports). As we saw in
Section (3) Brune’s algorithm needs partial fraction expansion operation in Eq.
(3.2) to find L2 which is related to the residue at the finite pole ω1. Partial
fraction expansion is an ill-conditioned operation since it requires finding roots
of polynomials. Root finding is a numerically unstable problem since the roots
become very sensitive to small perturbations in the coefficients as the degree of
the polynomial increases. This is illustrated by Wilkinson’s polynomial [110]. The
problem becomes even more severe if one wants to apply multiport generalizations
of synthesis algorithms(see [70]) since the degrees of polynomials increase with the
number of ports.
Synthesis methods given in s-domain are usually referred to as classical network

synthesis. See [70] for a comprehensive summary of classical synthesis algorithms.
Classical synthesis methods appeared first in the historical development of the
subject and played a key role in building the theory and expressing synthesis
procedures. However classical frequency domain methods are not suitable for
computer implementations due to the stability issues mentioned above.
The situation however is not so hopeless. Network synthesis algorithms can

also be expressed in state-space formalism. State-space approach can be seen
as a reformulation of the synthesis problem in the time-domain. See [111] for a
comprehensive coverage of network theory in state-space. Most synthesis methods
reexpressed in state-space requires the solution of a type of Riccati equation [111].
Solving the Riccati equation when the system’s poles approach the imaginary axis
is a “hard” problem. Since superconducting circuits have very little loss we usually
encounter hard instances of Riccati equations in our models. Brune’s algorithm
expressed in state-space terms provides a method for solving such hard Riccati
equations. Since Brune’s algorithm reduces the complexity of the problem by
a small amount at each step it avoids numerical instabilities appearing in more
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direct methods which try to complete the synthesis in fewer steps. See [112] for
a discussion of how Brune’s method in state-space might help in solving hard
Riccati equations. In the following section we briefly review state-space formalism
and present Brune’s impedance synthesis algorithm expressed in state-space terms.
In the last section of this chapter we introduce a new technique for the quan-

tization of the one-port Brune circuit with ideal transformers. We call this new
technique “effective Kirchhoff” method. We will see how much the effective Kirch-
hoff method simplify the analysis of the Brune circuit presented in the previous
chapter. However the full power of the effective Kirchhoff method will be apparent
in the next chapter when we will apply it to quantize the multiport Brune circuit.
The earliest appearance (and the only one that we could find) of this technique
in the literature is in [113] where ideal transformer variables are eliminated from
mesh equations to compute some effective mesh impedance matrices.

4.2 State-Space Formalism

In state-space formalism (see Chapter 3 of [111] for more details on the state-
space formalism in the context of network synthesis or [114] in the context of
dimensionality reduction theory) the state of a linear time-invariant system with
m inputs and n outputs is given by a real vector x of length N . The time evolution
of the state is described by a first-order differential equation

ẋ = Ax + Bu (4.1)

where u is the input vector of length m, A a (N ×N) matrix and B a (N ×m)
matrix. The output vector y is related to the input vector u by the following
algebraic relation which involves also the state vector x

y = Cx + Du (4.2)

The output vector y is of length n, C is a (n×N) matrix and D a (n×m) matrix.
If u holds the currents and y holds voltages at the ports of a network then m = n
and the multiport impedance is given by

Z (s) = D + C (sI−A)−1 B (4.3)

We will only consider real realizations here such that the matrices {A,B,C,D}
are all real.
Now let’s assume that we transform the state x by a non-singular transformation

T such that the new state x1 is given by

x1 = Tx (4.4)

58



4.2 State-Space Formalism

Then using Eqs. (4.1) and (4.2) the state-space description for the state x1 is
given by

ẋ1 = A1x1 + B1u (4.5)
y = C1x1 + D1u (4.6)

where

A1 = TAT−1 (4.7)
B1 = TB (4.8)
C1 = CT−1 (4.9)
D1 = D (4.10)

The important point to note here is that the input-output relationship is unchanged
that is {A1,B1,C1,D1} is another state-space realization for the impedance Z (s),
if u and y are the currents and voltages at the ports of the network corresponding
to Z (s), respectively. To show this let Z1 (s) be the impedance corresponding to
the realization {A1,B1,C1,D1} then by Eq. (4.3)

Z1 (s) = D1 + C1 (sI−A1)−1 B1 (4.11)

= D + CT−1
(
sI−TAT−1

)−1
TB (4.12)

= D + C (sI−A)−1 B (4.13)
= Z (s) (4.14)

where in the second line above we used Eqs. (4.7)-(4.10). For more details see
Theorem (3.3.9) of [111].

4.2.1 Minimal Realizations
Given the impedance Z (s), a fundamental question in state-space theory is how
to find a set of real matrices {A,B,C,D} such that

Z (s) = D + C (sI−A)−1 B (4.15)

is satisfied with the dimension N of the state-space being minimum. In state-
space theory minimal realizations are defined in a more abstract way. The set
{A,B,C,D} is called a minimal realization for the impedance Z (s) if [A,B] is
completely controllable and [A,C] is completely observable.
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4 State-Space Brune Quantization

Given the time evolution equation

ẋ = Ax + Bu (4.16)

[A,B] is said to be completely controllable, if given the system is at state x (t0) at
time t0, there exists a control u (t) defined over [t0, t1] such that the system can
be brought to the zero state x (t1) = 0 at time t1 under the driven time evolution
in Eq. (4.16).
Complete observability is defined for a triple {A,B,C} with D = 0 such that

we have the state-space equations

ẋ = Ax + Bu (4.17)

y = Cx (4.18)

The pair [A,C] is said to be completely observable if, given the input and ouput
functions u (t) and y (t) over an interval [t0, t1] it is possible to determine x (t0)
uniquely.
For more details on the properties of state-space realizations and the minimal

realizations we refer the reader to Chapters 3.3 and 3.4 of [111].
For a scalar impedance function z (s) the problem of finding a minimal state-

space realization is relatively easy to answer. Without loss of generality we can
assume that z (∞) = 0. Let z (s) be given as

z (s) =
bns

n−1 + . . .+ b2s+ b1

sn + ansn−1 + . . .+ a2s+ a1

(4.19)

We assume that the numerator and the denominator polynomials in Eq. (4.19)
have no common factors. If we define A in companion matrix form as

A =




0 1 0 · · · 0
0 0 1 0
... . . . ...
0 0 0 1
−a1 −a2 −a3 · · · −an




(4.20)

together with the following definitions for B and C

B =




0
0
...
0
1




(4.21)
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CT =




b1

b2
...

bn−1

bn




(4.22)

then {A,B,C} is a minimal realization for z (s). This is equivalent to [A,B] being
completely controllable and [A,CT ] completely observable.
Finding a minimal realization corresponding to a multiport impedance matrix

Z (s) is more involved and there are many procedures to find one. We will follow a
physically motivated approach to find a minimal realization. The fitted impedance
Z (s) in Eq. (3.1) contains most of the time numerical noise which makes residue
matrices full rank. This is generically unphysical since a full rank residue matrix
would correspond to a degenerate mode at a finite frequency. Finding a minimal
representation for such an impedance would introduce unphysical degrees of free-
dom. To cure this problem we will apply the “compacting” technique described in
[115] to reduce the rank of residue matrices and to obtain a minimal realization
for our models.
Model-order reduction techniques are also used to reduce the dimension of non-

minimal realizations. In applying order reduction procedures one should make
sure that the passivity and reciprocity of the system is preserved [114, 116].

4.2.2 Positive-Real Property in State-Space terms
Here we state PR conditions given in Chapter (3.2.1) for a one-port impedance
function in the state-space language for a multiport impedance Z (s).
Positive Real Lemma
Given an m ×m impedance matrix Z (s) corresponding to an m-port network

with Z (∞) < ∞ and with a minimal realization {A,B,C,D}. Z (s) is positive
real if and only if there exist real matrices P, L and W0 with P being positive
definite symmetric satisfying

PA + ATP = −LLT (4.23)
PB = CT − LW0 (4.24)

WT
0 W0 = D + DT (4.25)

The Positive Real Lemma stated above goes also under the name “Kalman –
Yakubovich – Popov Lemma” in control theory literature which refers to names
involved in its development [117, 118, 119, 120, 121]. For more details on Positive
Real lemma see Chapter 5 of [111].
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R1 u1

N1

+

y1

−

iL1

L1

1 : n1 u2

N2

+

y2

−C1
+
vC1−

Figure 4.1: Brune circuit extraction in state-space

Most of the synthesis algorithms stated in state-space [111] are based on the
determination of the matrix P which is usually done by solving a Riccati equation.
The algorithm we present in the following will identify P in a recursive way which
avoids numerical difficulties appearing in more direct methods presented in [111].
We will now present the Brune algorithm in state-space terms as described in

[122].

4.2.3 Brune’s algorithm in state-space terms (one-port case)
Here we assume that we have a one-port positive real impedance function z (s)
with the minimal realization {A,B,C, D} (We note that D = D is a scalar in
this case). As shown in Fig. (4.1) Brune’s algorithm in state-space starts with
the extraction of the series resistance R1. This step is identical to the step 2 in
Chapter (3.2.2) except that the real part of the impedance is computed using the
state-space matrices {A,B,C, D}. Using Eq. (4.3) we can evaluate the real part
of the impedance over the imaginary axis as follows

Re[z (jω)] =
1

2
(z (jω) + z (−jω)) (4.26)

= D +
1

2
C (jωI−A)−1 B +

1

2
C (−jωI−A)−1 B

Then the extracted resistance R1 is given by

R1 = min
ω
Re[z (jω)] (4.27)

for some frequency ω0 with

Re[z (jω0)] = R1 (4.28)
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4.2 State-Space Formalism

Let the network N2 in Fig. (4.1) be described by the state-space equations

ẋ2 = A2x2 + B2u2 (4.29)
y2 = C2x2 +D2u2 (4.30)

so that the realization {A2,B2,C2, D2} corresponds to the impedance z2 (s) =
D2 + C2 (sI−A2)−1 B2 seen at the terminals of the network N2 (D2 is a scalar).
Then the state-space equations for the network N1 are given by




ẋ2

ẋC1

ẋL1


 =




A2 0 − B2

n1
√
L1

0 0 1
n1
√
L1C1

C2

n1
√
L1
− 1
n1
√
L1C1

− D2

n2
1L1







x2

xC1

xL1


+




B2

n1
(1−1/n1)√

C1
D2

n2
1

√
L1


u1

y1 =
(

C2

n1

(1−1/n1)√
C1

− D2

n2
1

√
L1

)



x2

xC1

xL1


+

D2

n2
1

u1 (4.31)

where xC1 =
√
C1vC1 and xL1 =

√
L1iL1 . Hence the state-space equations for the

network N1 are of the form

ẋ1 = A1x1 + B1u1 (4.32)
y1 = C1x1 +D1u1 (4.33)

with

x1 =
(

xT2 xC1 xL1

)T (4.34)

A1 =




A2 0 − B2

n1
√
L1

0 0 1
n1
√
L1C1

C2

n1
√
L1
− 1
n1
√
L1C1

− D2

n2
1L1


 (4.35)

B1 =




B2

n1
(1−1/n1)√

C1
D2

n2
1

√
L1


 (4.36)

C1 =
(

C2

n1

(1−1/n1)√
C1

− D2

n2
1

√
L1

)
(4.37)

D1 =
D2

n2
1

(4.38)
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The realization {A1,B1,C1, D1} then corresponds to the impedance function z1 (s) =
D1 + C1 (sI−A1)−1 B1 seen at the terminals of the network N1 (D1 is a scalar)
which is related to z (s) by

z1 (s) = z (s)−R1 (4.39)

We note that Re [z1 (jω0)] = 0.
The following lemma stated in [122] shows that if z1 (jω0) + z1 (−jω0) = 0

is satisfied for some ω0 > 0 for a positive-real impedance function z1 (s) with a
minimal realization {Aa,Ba,Ca, Da} then there exists a coordinate transformation
T which would give an equivalent state-state description {A1,B1,C1, D1} for the
impedance z1 (s) in the form given in Eqs. (4.32-4.38) with

A1 = TAaT
−1 (4.40)

B1 = TBa (4.41)
C1 = CaT

−1 (4.42)
D1 = Da (4.43)

See Chapter (4.2) for why {A1,B1,C1, D1} is an equivalent realization for the
same impedance z1 (s).
An explicit procedure is presented in [122] to compute T. We now state the

lemma and describe the algorithm to compute T.
The Fundamental Lemma (one-port case)
Let z1 (s) be a positive-real impedance function with the minimal realization
{Aa,Ba,Ca, Da} satisfying z1 (jω0) + z1 (−jω0) = 0 for some finite frequency
ω0 (with jω0 not being an eigenvalue of Aa). Then there exists a coordinate
transformation matrix T such that A1 = TAaT

−1, B1 = TBa, C1 = CaT
−1 and

D1 = Da are of the form given in Eqs. (4.32-4.38).
Now we show how to construct T.
1) Construct a nonsingular matrix Ta with the last two columns of T−1

a being
(ω2

0I + A2
a)
−1

Ba and −Aa (ω2
0I + A2

a)
−1

Ba.
2) Set Ab = TaAaT

−1
a , Bb = TaBa and Cb = CaT

−1
a and compute

(
Cb (ω2

0I + A2
b)
−1

Cb (ω2
0I + A2

b)
−1

Ab

)
=
(

K12 K22

)
(4.44)

where K22 is a 2× 2 matrix. Define

Tb =

(
I 0

K−1
22 K12 I

)
(4.45)

3) Set Ac = TbAbT
−1
b , Bc = TbBb and Cc = CbT

−1
b then
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Figure 4.2: The capacitive degenerate Brune stage corresponding to the extraction
of the resistor R1 in Eq. (4.27) at inifinite frequency ω0 =∞.

(
Cc (ω2

0I + A2
c)
−1

Cc (ω2
0I + A2

c)
−1

Ac

)
=

(
0 · · · 0 α2 0
0 · · · 0 0 β2

)
(4.46)

for non-zero α, β. Define

Tc =




I 0 0
0 α 0
0 0 β


 (4.47)

Then T = TcTbTa.

4.2.3.1 The Capacitive Degenerate Case

It is possible that the frequency ω0 in Eq. (4.28) where the minimum in Eq. (4.27)
is reached occurs at infinity ω0 =∞. In such a case we need to extract a capacitive
degenerate stage which doesn’t involve the inductive circuit as shown in Fig. (4.2).
Such a stage corresponds to the limit of L′k → 0 and nk → ∞. (The case ω0 = 0
requires the extraction of an inductive degenerate stage which won’t be treated
here).
Let the network N2 in Fig. (4.1) be described again by the state-space equations

ẋ2 = A2x2 + B2u2 (4.48)
y2 = C2x2 +D2u2 (4.49)

for some real matrices {A2,B2,C2, D2} so that the realization {A2,B2,C2, D2}
corresponds to the impedance z2 (s) = D2 + C2 (sI−A2)−1 B2 seen at the termi-
nals of the network N2.
Then the state-space equations for the network N1 are given by
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(
ẋ2

ẋC1

)
=

(
A2 − B2C2

D2

B2

D2
√
C1

C2

D2
√
C1

− 1
D2C1

)(
x2

xC1

)
+

(
0
1√
C1

)
u1 (4.50)

y1 =
(

0 1√
C1

)( x2

xC1

)
(4.51)

where xC1 =
√
C1vC1 and D2 is a scalar in the one-port case. Hence the state-space

equations for the network N1 are of the form

ẋ1 = A1x1 + B1u1 (4.52)
y1 = C1x1 +D1u1 (4.53)

with

x1 =
(

xT2 xC1

)T (4.54)

A1 =

(
A2 − B2C2

D2

B2

D2
√
C1

C2

D2
√
C1

− 1
D2C1

)
(4.55)

B1 =

(
0
1√
C1

)
(4.56)

C1 =
(

0 1√
C1

)
(4.57)

D1 = 0 (4.58)

The realization {A1,B1,C1, D1} then corresponds to the impedance function z1 (s)
seen at the terminals of the network N1 which is related to z (s) by

z1 (s) = z (s)−R1 (4.59)

In such a degenerate case we should also modify the Fundamental Lemma as
follows:
The Fundamental Lemma (one-port capacitive degenerate case)
Let z1 (s) be a positive-real impedance function with the minimal realization
{Aa,Ba,Ca, Da} satisfying z1 (jω0) + z1 (−jω0) = 0 for ω0 = ∞. Then there
exists a coordinate transformation matrix T such that A1 = TAaT

−1, B1 = TBa,
C1 = CaT

−1 and D1 = Da = 0 are of the form given in Eqs. (4.52-4.58).
Now we show how to construct T.
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1) Construct a nonsingular matrix Ta with the last column of T−1
a being Ba.

2) Set Ab = TaAaT
−1
a , Bb = TaBa and Cb = CaT

−1
a and make the partitioning

Cb =
(

K12 K22

)
(4.60)

where K22 is a scalar. Define

Tb =

(
I 0

K−1
22 K12 I

)
(4.61)

3) Set Ac = TbAbT
−1
b , Bc = TbBb and Cc = CbT

−1
b then

Cc =
(

0 · · · 0 α2
)

(4.62)

for a non-zero α. Define

Tc =

(
I 0
0 α

)
(4.63)

Then T = TcTbTa.
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4.3 Quantization of the one-port state-space Brune
circuit

R1

L1

1 : n1

C1

LJ

RM

LM

1 : nM

CM

RM+1

Figure 4.3: Brune circuit obtained from the state-space Brune algorithm is shown
in the dotted box. We note that the coupled inductors at each stage
of the classical Brune circuit in Fig. (3.9) are replaced by ordinary
inductors shunting ideal transformers.

We call “the state-space Brune circuit” the circuit obtained by the application of
the state-space Brune algorithm described in the previous section. An M stage
state-space Brune circuit is shown in the dotted box in Fig. (4.3). We note that
the coupled inductors at each stage of the classical Brune circuit in Fig. (3.9) are
replaced by ordinary inductors shunting ideal transformers in Fig. (4.3). To treat
the ideal transformers in the formalism of [18] we will introduce a new technique
which will eliminate them by generating effective loop matrices involving turns
ratios in their entries. We will see how this technique will simplify significantly
the analysis of the one-port Brune circuit presented in the previous section. It will
allow us to skip the transformation defined in Eq. (3.17). We will however see the
full power of this technique in the next chapter when we will use it to quantize the
multiport Brune circuit. Before starting to analyze this circuit we need to modify
it as we did in Chapter (3.3.1).
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R1

L1

1 : n1

C1

LJ CJ

RM

LM

1 : nM

CM

CM+1

Figure 4.4: Modified state-space Brune circuit. Tree branches are shown in black
and chord branches are shown in blue. Formal capacitance CM+1 is
introduced for a technical reason: with the substitution CM+1 = 1

iωRM+1

we are able to compute dissipation rate due to RM+1 in the formalism of
[17]. After the coordinate transformation (see below) we take CJ → 0
limit.

An augmented form of the state-space Brune circuit is shown in Fig. (4.4). We
modified the state-space Brune circuit in the same way as we did the original Brune
circuit in Section (3.3.1). We repeat the modifications here for completeness. The
last resistor RM+1 is again replaced with a capacitor CM+1 which is included in
our analysis later through the substitution CM+1 ← 1/(iωRM+1). Its contribution
to the dissipation rate will be computed referring to the equation of motion Eq.
(61) in [17].

L1

1 : n1

C1

LJ

LM

1 : nM

CM

Figure 4.5: Lossless part of the state-space Brune circuit. It is this circuit that
corresponds to the system Hamiltonian derived below. As discussed
above, we take the limit CJ → 0 so that this element is removed. The
lossless circuit is obtained from Fig. (4.4) by taking R1, R2, ...RM → 0
and RM+1 → ∞. It is these different limiting treatments that require
the descriptions of R1−RM follow the low-impedance treatment as in
[18], while the description ofRM+1 needs the high-impedance treatment
as in [17].

The lossless part of the state-space Brune circuit which corresponds to the sys-
tem Hamiltonian derived below is shown in Fig. (4.5). As shown in Fig. (4.6) in
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4 State-Space Brune Quantization

the special case of unity turns ratio, this circuit is exactly the (dual) lossless Fos-
ter form. We again add a formal capacitance CJ shunting the Josephson junction.
This is required for a non-singular capacitance matrix if there are no degenerate
stages.

L

1 : 1

≡
L

Figure 4.6: Circuit identity showing that inductor-ideal transformer pairs appear-
ing in state-space Brune stages simplify in the case of turns ratio equal
to one; in this case Fig. (4.5) becomes identical to one of the classic
lossless Foster canonical forms in Fig. (3.1).

We now show how to treat ideal transformers by extending the loop analysis in
[18]. Kirchhoff’s laws are given by Eqs. (4-5) in [18]

FIch = −Itr (4.64)

FTVtr = Vch (4.65)

where we have assumed that there is no flux bias. Itr and Ich are the tree and
chord branch current vectors respectively partitioned as follows

Itr =
(
IJ , IL, IZ , I

(tr)
T

)
(4.66)

Ich =
(
IC , I

(ch)
T

)
(4.67)

Here labels J , L, Z, C, T correspond to Josephson junction, inductor, resistor, ca-
pacitor and ideal transformer branches, respectively. I

(tr)
T and I

(ch)
T are the current

vectors for the ideal transformer branches in the tree and chords respectively. We
also partition loop matrix F according to the partitioning of current vectors

F =




FJC FJT

FLC FLT

FZC FZT

FTC FTT


 (4.68)

We will eliminate ideal transformer branches from Kirchhoff laws in Eqs. (4.64)-
(4.65) to get an effective loop matrices Feff and

(
FT
)eff such that we have a new

set of effective Kirchhoff relations
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FeffIeffch = −Iefftr (4.69)
(
FT
)eff

Veff
tr = Veff

ch (4.70)

where

Iefftr = (IJ , IL, IZ)

Ieffch = IC

and

Feff =




Feff
JC

Feff
LC

Feff
ZC


 (4.71)

(
FT
)eff

=
( (

FT
JC

)eff (
FT
LC

)eff (
FT
ZC

)eff ) (4.72)

In this section for simplicity reasons we will derive only the effective Kirchhoff’s
current law in Eq. (4.69) by computing Feff . We postpone the derivation of the
effective Kirchhoff’s voltage law and the computation of the matrix

(
FT
)eff to the

Appendix (6.5.1). However we note here that

(
FT
)eff

=
(
Feff

)T (4.73)

should be verified to hold. This ensures the symmetry of various matrices com-
puted in the formalisms of [17, 18] like the capacitance matrix C and the stiffness
matrix M0 for example.
Now we claim that Feff in Eq. (4.71) is given by

Feff
JC =

(
1 1 · · · 1 1

)
(4.74)

Feff
LC =




1 (1− n1) · · · (1− n1) (1− n1)
. . . . . . ...

...
1 (1− nM−1) (1− nM−1)

0 1 (1− nM)


 (4.75)

Feff
ZC =




1 1 · · · 1 1
1 · · · 1 1

. . . ...
...

0 1 1


 (4.76)
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where Feff
JC is a row vector of length (M + 1), Feff

LC and Feff
ZC are M × (M + 1)

matrices. To see how the matrices in Eqs. (4.74)-(4.76) can be computed we first
note the following

I
(tr)
T = −FTCIC (4.77)

with

FTC =




0 1 1 · · · 1
0 1 · · · 1

. . . . . . ...
0 0 1


 (4.78)

where FTC is a M × (M + 1) matrix. We note that FTC doesn’t involve any turns
ratios. Using the ideal transformer relations I

(ch)
T = −NI

(tr)
T with N being the

diagonal matrix of turns ratios

N =




n1 0
. . .

0 nM


 (4.79)

and Eq. (4.77) we get

I
(ch)
T = NFTCIC (4.80)

Inductor currents are given by

IL = −FLCIC − FLT I
(ch)
T (4.81)

where

FLC =




1 1 · · · 1 1
1 · · · 1 1

. . . ...
...

0 1 1


 (4.82)

and FLT = −I. Using Eqs. (4.80) and (4.81) we get

IL = − (FLC −NFTC) IC (4.83)

which gives the effective loop matrix Feff
LC
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Feff
LC = FLC −NFTC (4.84)

=




1 (1− n1) · · · (1− n1) (1− n1)
. . . . . . ...

...
1 (1− nM−1) (1− nM−1)

0 1 (1− nM)


 (4.85)

We note that Feff
LC is no longer a binary matrix as we have turns ratios appearing

in its entries.
Feff
JC is simply given by

Feff
JC = FJC (4.86)

=
(

1 1 · · · 1 1
)

(4.87)

Since the current through the Josephson junction depends only on chord capacitor
currents

IJ = −FJCIC (4.88)

Note that Feff
JC does not depend on turns ratios. Similarly the currents through

the resistors Rj for 1 ≤ j ≤M depend only on chord capacitor currents

IZ = −FZCIC

Hence

Feff
ZC = FZC (4.89)

=




1 1 · · · 1 1
1 · · · 1 1

. . . ...
...

0 1 1




We compute the capacitance matrix in Eq. (22) of [18] as

C0 =

(
CJ 0
0 0

)
+ F effC C

(
F effC

)T
(4.90)

where C is the diagonal matrix of capacitances
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C =




C1 0
. . .

0 CM+1


 (4.91)

and

F effC =

(
Feff
JC

Feff
LC

)
(4.92)

Lt in Eq. (15) of [18] is a diagonal matrix of inductances

Lt =




L1 0
. . .

0 LM


 (4.93)

With

G =

(
0

1M×M

)
(4.94)

we get using Eq. (31) of [18]

M0 = GL−1
t Gt (4.95)

=

(
0 0
0 L−1

t

)
(4.96)

We skip the first transformation defined in (3.17) and the truncation afterwards
since we are already in the low dimensional subspace with (M + 1) degrees of
freedom. We again define a local transformation matrix T which makes the Lan-
grangian description (i.e., both C0 and M0) of the system band-diagonal:

T =




1

−1/(1− n1) −1/(1− n1) 0
1/(1− n2) 1/(1− n2)

. . . . . .

0 (−1)M /(1− nM) (−1)M /(1− nM)




(4.97)
Applying T to C0 and M0 we get
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C = T tC0T (4.98)

=




CJ + n2
1C
′
1 n1C

′
1

n1C
′
1 C

′
1 + n2

2C
′
2

. . . 0
. . . . . .

0 C
′
M−1 + n2

MC
′
M nMC

′
M

nMC
′
M C

′
M + CM+1




(4.99)

M0 = T tM0T (4.100)

=




1
L′1

1
L′1

1
L′1

1
L′1

+ 1
L′2

1
L′2

0
1
L′2

1
L′2

+ 1
L′3

. . .
. . . . . .

0 1
L′M−1

+ 1
L′M

1
L′M

1
L′M

1
L′M




(4.101)

where C ′j = Cj/ (1− nj)2, L′j = Lj (1− nj)2.
A Lagrangian L0 (and equivalently a Hamiltonian HS) can be written as

L0 =
1

2
Φ̇
TCΦ̇− U (Φ) , HS =

1

2
QTC−1Q+ U (Φ) (4.102)

where

U (Φ) = −
(

Φ0

2π

)2

L−1
J cos (ϕJ) +

1

2
ΦTM0Φ (4.103)

Φ is the vector of transformed coordinates of length (M + 1) and Φ1 =
(

Φ0

2π

)
ϕJ .

4.3.1 Dissipation Analysis
To compute relaxation rates 1/T1 for each resistor we will follow the same treat-
ment of the Section (3.3.2). That is we will again interpret the equation of motion
in Eq. (29) of [18] as an equation of motion in Eq. (61) of [17]. This allows us to
make the following identifications as in Section (3.3.2)

Md (ω) = ω2CZ (4.104)
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K (ω) = ω2C̄Z (ω) (4.105)

Md and K (ω) are given in Eqs. (72-75) of [17]. Then coupling vectors m̄ are
identical in both formalisms [17, 18] which can be computed using Eq. (27) of [18]
with effective loop matrices computed in the previous section in Eqs. (4.89) and
(4.92)

m̄ = F effC C
(
Feff
ZC

)T
(4.106)

We note that Feff
ZC is independent of ideal transformer turns ratios. We treat each

resistor separately. Hence for the resistor Rj we will use only the jth row of the
Feff
ZC matrix in the formula Eq. (4.106). We apply again Eq. (124) of [17] as in

Section (3.3.2) to compute the contribution to the relaxation rate from the resistor
Rj (1 ≤ j ≤M + 1):

1

T1,j

=
4

~
|〈0 |m̄j ·Φ| 1〉|2 Jj (ω01) coth

(
~ω01

2kBT

)
(4.107)

where |0, 1〉 are the qubit eigenlevels of the system Hamiltonian. As noted pre-
viously the vector m̄j (of length (M + 1)) describes the coupling of the system
to the environment representing resistor Rj. Note again that our use of the non-
normalized coupling vector m̄j and the flux vector Φ implies removal of the factor
µ
(

Φ0

2π

)2 from the definition of the spectral function of the bath J in Eq. (93) of
[17] (See Eqs. (4.112) and (4.115) below).
For 1 ≤ j ≤M , using Eqs. (26-28) in [18] we compute

m̄j =




0
...
0

jthentry → (−1)jnjCj

(1−nj)
(−1)j+1nj+1Cj+1

(1−nj+1)
+

(−1)jCj

(1−nj)
...

(−1)MnMCM

(1−nM )
+ (−1)M−1CM−1

(1−nM−1)
(−1)MCM

(1−nM )




(4.108)

where m̄j are vectors of length (M + 1) and

C̄Z,j (ω) = − iωRj

1 + iωRj

(
M∑
k=j

Ck

) (4.109)
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We then have

Kj (ω) = ω2C̄Z,j (ω) (4.110)

=
iω3Rj

1 + iωRj

(
M∑
k=j

Ck

) (4.111)

Hence we obtain

Jj = Im [Kj (ω)] (4.112)

=
ω3Rj

1 + ω2R2
j

(
M∑
k=j

Ck

)2 (4.113)

We treat the last resistor RM+1 in the same way as in Section (3.3.2), i.e. we
replace CM+1 in the last row of capacitance matrix by 1/(iωRM+1) and the dis-
cussion in Section (3.3.2) applies again. We get the following dissipation matrix
for resistor RM+1

Md = KM+1 (ω) m̄M+1m̄
T
M+1, (4.114)

where KM+1 (ω) = iω
RM+1

and m̄M+1 =




0
...
0
1


 is a vector with (M + 1) rows. We

then have

JM+1 (ω) = Im [KM+1 (ω)] =
ω

RM+1

, (4.115)

4.3.2 Degenerate case

Here again we consider only a single capacitive degenerate stage. Such a case has
appeared in the example circuit we studied as listed in Table 3.2. We consider a
degenerate case appearing at kth stage. As noted in Section (4.2.3.1) such a stage
corresponds to the limit of L′k → 0 and nk → ∞ . In case of such degeneracy we
remove the (k + 1)th row in the F effC matrix in Eq. (4.75):
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F effC =




1 1 · · · 1 1 · · · 1 1
1 (1− n1) · · · (1− n1) (1− n1) · · · (1− n1) (1− n1)

. . . . . . ...
...

...
...

1 (1− nk−1) (1− nk−1) · · · (1− nk−1) (1− nk−1)
1 (1− nk+1) · · · (1− nk+1) (1− nk+1)

. . . . . . ...
...

0 1 (1− nM−1) (1− nM−1)
1 (1− nM)




(4.116)
Using again Eqs. (22) and (31) of [18] respectively we obtain

C =




CJ + C
′
1 n1C

′
1

n1C
′
1 n2

1C
′
1 + C

′
2

. . . 0
. . . . . .

n2
k−1C

′
k−1 +

(
C ′k+1 + C ′k

)
nk+1C

′
k+1

nk+1C
′
k+1 n2

k+1C
′
k+1 + C ′k+2

. . .
. . . . . .

0 n2
M−1C

′
M−1 + C

′
M nMC

′
M

nMC
′
M n2

MC
′
M + CM+1




(4.117)

M0 =




1
L′1

1
L′1

1
L′1

1
L′1

+ 1
L′2

1
L′2

1
L′2

1
L′2

+ 1
L′3

. . . 0
. . . . . .

1
L′k−1

+ 1
L′k+1

1
L′k+1

1
L′k+1

1
L′k+1

+ 1
L′k+2

. . .

0 . . . . . .
1

L′M−1
+ 1

L′M

1
L′M

1
L′M

1
L′M




(4.118)
Note that the matrices above are of size M ×M .
In case of degeneracy m̄ vectors are computed again using the Eqs. (26-28) in

[18]. We define some auxiliary vectors

78



4.3 Quantization of the one-port state-space Brune circuit

m̄a (j) =




0
...
0

jth row −→ (−1)j
njCj

(1−nj)
...

(−1)k−1 nk−1Ck−1

(1−nk−1)

(−1)k nk+1Ck+1

(1−nk+1)
...

(−1)M−1 nMCM

(1−nM )

0




(4.119)

m̄b (j) =




0
...
0

(j + 1)th row −→ (−1)j
Cj

(1−nj)
...

(−1)k−1 Ck−1

(1−nk−1)

(−1)k Ck+1

(1−nk+1)
...

(−1)M−1 CM

(1−nM )




(4.120)

m̄Ck
=
(
0 · · · 0 Ck 0 · · · 0

)t (4.121)

where Ck is in kth row. Now we can write coupling vector m̄j to the bath of the
resistor Rj as a function of the vectors defined in Eqs. (4.119), (4.120), (4.121)
above as

m̄j = m̄a (j) + m̄b (j) + m̄Ck
, if j ≤ k (4.122)

= m̄a (j) + m̄b (j) , if j > k (4.123)

Note that vectors above are all of length M . Spectral densities Ji (ω) are the
same as in the non-degenerate case (Eqs. (4.112),(4.115)) for all resistors. Note
also that dissipation treatment for the last resistor RM+1 is unaffected since CM+1

is untouched in Eq. (4.117).
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CHAPTER 5

Multiport Brune Quantization

5.1 Introduction

In this chapter our aim is to introduce multiport state-space generalization of the
Brune’s impedance synthesis method. We will call the circuit obtained by this
method the “Multiport Brune Circuit”. We will then apply the multiport gener-
alization of the effective Kirchhoff technique introduced in the previous chapter
to quantize the multiport Brune circuit. However it is instructive to review first
multiport network synthesis theory and discuss the properties of the synthesized
multiport circuits.

5.2 A Survey of Multiport Network Synthesis

5.2.1 Lossless Synthesis

The simplest scenario for the multiport synthesis is the case of a lossless (n× n)
impedance matrix Z (s). Such a case can be seen as the multiport generalization
of the Foster’s theorem. In that case the para-Hermitian part ZPH (s) of the
impedance matrix vanishes ZPH (s) = 1

2

[
Z (s) + ZT (−s)

]
= 0 and one can make

a partial fraction expansion of Z (s) as

Z (s) = B∞ + A∞s+ A0s
−1 +

M∑

i=1

Ais+ Bi

s2 + ω2
i

(5.1)

where each term is LPR(lossless, positive-real), Ai is a (n× n) symmetric positive
semidefinite matrix i = 0, 1, . . . ,M,∞ and Bi is (n× n) skew-symmetric matrix
for i = 1, . . . ,M,∞. As shown in [70] each individual term in the expansion in
Eq. (5.1) can be synthesized independent of the other terms and Z (s) is realized
by the series connection of circuits corresponding to each term. Matrices Ai and
Bi are related to the residue matrices Ki by the following relations
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t11 t12

t22

t13

t23

t33

t1r

t2r

t3r

trr

t1n

t2n

t3n

trn 1

1 1/Ω2

1

1 1/Ω2

1

1 1/Ω2

1

1 1/Ω2

Figure 5.1: The canonical Cauer form [123, 124] for the term Zi (s) = Ais
s2+ω2

i
in the

reciprocal case of Bi = 0. On the left is a Belevitch transformer with
n open-circuited ports on the left and r ports on the right shunted by
parallel LC circuits with resonance frequency Ω = ωi, where r being
the rank of the matrix Ai.

{
Ai = Ki + KT

i i = 0, 1, . . . ,M,∞
Bi = jωi

[
Ki −KT

i

]
i = 1, . . . ,M

(5.2)

The synthesis of the circuits corresponding to the terms A0, A∞ and B∞ are
relatively easy and we refer the reader to Chapter (7.2) of [70] for the details. Here
we will focus on the terms Zi (s) = Ais+Bi

s2+ω2
i

at finite frequencies ωi for i = 1, . . . ,M .
In the reciprocal case of Bi = 0 we have the canonical Cauer realization [123,

124] shown in Fig. (5.1) for the term Zi (s) = Ais
s2+ω2

i
. On the left side in Fig.

(5.1) we see a new type of circuit element: the “Belevitch Transformer” [125]. The
Belevitch transformer in Fig. (5.1) is a multiport device with n open-circuited
ports on the left and r ports shunted by parallel LC circuits of resonant frequency
Ω = ωi on the right, with r being the rank of the matrix Ai. The Cauer realization
is canonical in the sense that r = k where k = rank[Ki] and a minimum number
of 2k reactive elements are used in the circuit of Fig. (5.1) (see [70], p. 215 for a
proof).
A generic multiport Belevitch transformer with N ports on the left andM ports
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P11

t11

I
(L)
1

tM1

PM1

P1N

t1N

I
(L)
N

tMN

PMN

1

I
(R)
1

+
V

(R)
1−

1

I
(R)
M

+
V

(R)
M−

T → ≡

+
V

(R)
1

I
(R)
1

−

+
V

(L)
1

I
(L)
1

−

+
V

(R)
M

I
(R)
M

−

+
V

(L)
N

I
(L)
N

−

Figure 5.2: The Belevitch Transformer with N ports on the left and M ports on
the right. On the right side we see the detailed circuit representation

of this device. There is a turns ratio matrix T =




t11 · · · t1N
... . . . ...
tM1 · · · tMN




associated with the Belevitch transformer which relates currents and
voltages on both side of the device as given in Eqs. (5.8) and (5.9).
The arrow in the box is used to refer to the asymmetrical character of
the Belevitch transformer.
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on the right is shown in Fig. (5.2) on the left. The detailed circuit representation
of the Belevitch transformer T is shown on the right of Fig. (5.2) which defines a
M ×N matrix for T

T =




t11 · · · t1N
... . . . ...
tM1 · · · tMN


 (5.3)

Let the current vectors I(L) and I(R) be the vectors holding the currents at
the ports on the left side and the right side of the Belevitch transformer T ,
respectively, i.e.

I(L) =
(
I

(L)
1 , . . . , I

(L)
N

)T
(5.4)

I(R) =
(
I

(R)
1 , . . . , I

(R)
M

)T
(5.5)

and let the vectors V(L) and V(R) be the vectors holding the voltages at the ports
on the left side and the right side of the Belevitch transformer T , respectively, i.e.

V(L) =
(
V

(L)
1 , . . . , V

(L)
N

)T
(5.6)

V(R) =
(
V

(R)
1 , . . . , V

(R)
M

)T
(5.7)

then we can write the Belevitch transformer relations as

I(R) = −TI(L) (5.8)
V(L) = TTV(R) (5.9)

One should recognize the asymmetrical character of the Belevitch transformer
which we noted by putting an arrow in the box representing the Belevitch trans-
former in Fig. (5.2). However in Chapters (5.3), (5.4) and (5.5) we will use the
Belevitch transformer in Fig. (5.2) in a reflected form as shown in Fig. (5.3).
The current and voltage relations for the reflected Belevitch transformer in Fig.

(5.3) are given by

I(L) = TI(R) (5.10)
V(R) = TTV(L) (5.11)
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Figure 5.3: The Belevitch transformer in reflected form as used in Chapters (5.3),
(5.4) and (5.5). The current and voltage relations for this transformer
are given in Eqs. (5.10), (5.11).

It is interesting to note the similarity of the Belevitch transformer relations in
Eqs. (5.8) and (5.9) to the Kirchhoff’s laws given in terms of the loop matrix F
in Eqs. (4.64) and (4.65) given in Chapter (4.3).
Now going back to the canonical circuit of Cauer in Fig. (5.1) the impedance

matrix seen by the Belevitch transformer looking to the right is the impedance
matrix of the parallel LC resonators

ZLC (s) =
s

s2 + Ω2
IM×M (5.12)

where ZLC (s) = s
s2+Ω2 is the impedance of a single LC resonator in Fig. (5.1).

Noting

V(R) = −ZLC (s) I(R) (5.13)

and using Eqs. (5.8) and (5.9) we get

V(L) = TTZLCTI(L) (5.14)

=
s

s2 + Ω2
TTTI(L) (5.15)

from which we conclude
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Zi (s) =
s

s2 + Ω2
TTT (5.16)

and

Ai = TTT (5.17)

We observe that T can be chosen to be the Cholesky decomposition of the sym-
metric positive semidefinite matrix Ai.
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t2n

t3n
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1
1

1
1

1/Ω

1
1

1
1

1/Ω

1
1

1
1

1/Ω

Figure 5.4: The circuit corresponding to the term Ais+Bi

s2+ω2
i

(with Ω = ωi) in the
partial fraction expansion of Z (s) in Eq. (5.1). On the left we see a
(n× 2k)-port Belevitch transformer (for the definition of the Belevitch
transformer see Fig. (5.2)), k being the rank of the residue matrix Ki.
The n ports on the left are the ports of the (n× n) impedance matrix
Z (s). The 2k ports on the right are shunted by circuits consisting of
gyrators shunted by capacitors on both of their ports. See Fig. (5.5) for
the choice of current directions and voltage polarities for the gyrator.
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In Fig. (5.4) we show the circuit corresponding to the term Zi (s) = Ais+Bi

s2+ω2
i

for
the case when Bi 6= 0. For details about the algorithm to synthesize such a circuit
we refer the reader to Chapter 7.2 of [70] where it is also noted that the circuit
in Fig. (5.4) reduces to the Cauer realization in Fig. (5.1) when Bi = 0. Here
we note that the circuit in Fig. (5.4) is canonical in the sense that the number
of reactive elements which is the number of capacitors in this case is equal to 2k
where k = rank [Ki], Ki being the residue matrix defined in Eq. (5.2) (see [70], p.
215).

I1
+

V1

−

I2
+

V2

−

γ

Figure 5.5: Circuit symbol and choice of current directions and voltage polarities
for the gyrator.

In Fig. (5.4) appears a new type of circuit element: the gyrator. It was proposed
first by Tellegen in [126] as a new kind of circuit element. The gyrator is a two-port
circuit element which provides the non-reciprocity required for the most general
non-reciprocal multiport impedance response. The two-port circuit symbol for the
gyrator is shown in Fig. (5.5) with following voltage-current relations

(
V1

V2

)
=

(
0 γ
−γ 0

)(
I1

I2

)
(5.18)

In Fig. (5.6) we show an important circuit equivalence which also explains the
absence of inductors in the canonical circuit in Fig. (5.4).

C

a

γ2C

b

≡
a

b

γ

Figure 5.6: Circuit equivalence showing how to obtain an inductor of inductance
L = γ2C by terminating a gyrator with a capacitance C. This equiv-
alence explains the absence of the inductors in the canonical circuit in
Fig. (5.4).
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For lossless circuits see [127] for a synthesis method in state-space which is min-
imal in both the number of reactances and the number of gyrators. The minimum
number of gyrators that a synthesis can achieve for an impedance Z (s) (lossy
or lossless) is given by half of the normal rank of

(
ZT (s)− Z (s)

)
(normal rank

is equal to the rank of the matrix with the variable s taken as indeterminate).
In Appendix (6.4) we discuss the quantization of circuits involving gyrators for
a subclass of circuits where each gyrator is shunted by a capacitor at each of its
ports.

1

1

1

1

1

1 1

−Ω

1

−Ω

1 1

−Ω

1

Figure 5.7: The curious circuit for the canonical realization for the term Yi (s) =
Cis+Di

s2+ω2
i
. We call this circuit the multiport second Foster form by anal-

ogy with the circuit in Fig. (3.2).

The partial fraction expansion for a lossless admittance Y (s) has the same form
as the lossless impedance Z (s) in Eq. (5.1)

88



5.2 A Survey of Multiport Network Synthesis

Y (s) = D∞ + C∞s+ C0s
−1 +

M∑

i=1

Cis+ Di

s2 + ω2
i

(5.19)

For completeness we show the circuit corresponding to the term Yi (s) = Cis+Di

s2+ω2
i

in Fig. (5.7). By analogy with the circuits in Figs. (3.1), (3.2) in Chapter (3.2)
we can call the circuit in Fig. (5.4) the multiport first Foster form and the circuit
in Fig. (5.7) the multiport second Foster form.

5.2.2 The Bayard Synthesis

NΣn m Im

Nr

N

Z(s)

Figure 5.8: Resistance extraction procedure of the Bayard’s method. The ex-
tracted resistances shunt the purely reactive subnetwork NΣ.

In this section we discuss beriefly one of the simplest multiport lossy impedance
synthesis methods, the Bayard synthesis [128] (see also [129, 130, 131]) as described
in [70]. The Bayard synthesis is based on a resistance extraction to isolate a purely
reactive subnetwork NΣ as shown in Fig. (5.8). The Bayard synthesis is originally
a classical synthesis method in the sense that it is based on the factorization of
rational matrices in Laplace domain as we will see below. However the idea of par-
titioning of the full network into reactive, resistive and nondynamic subnetworks
is extensively used in state-space synthesis methods. We will give an example of
such a state-space method in Chapter (5.2.3) below; see [111] for other methods
in state-space using similar partitioning approaches.
If we assume the following partitioning for the lossless impedance matrix ZΣ (s)

for the subnetwork NΣ

ZΣ (s) =

(
U (s) V (s)

−VT (−s) W (s)

)
(5.20)

89



5 Multiport Brune Quantization

such that ZT
Σ (−s) = −ZΣ (s) where U (s), V (s) and W (s) are (n× n), (n×m)

and (m×m) matrices respectively, then by multiport circuit composition rules we
can write

Z (s) = U (s) + V (s) (W (s) + Im)−1 VT (−s) (5.21)

Bayard’s synthesis starts by the factorization of the para-Hermitian part ZPH (s)
of the impedance matrix Z (s)

ZPH (s) =
1

2

[
Z (s) + ZT (−s)

]
(5.22)

= N (s) (d (s) L (s))−1 (d (−s) L (−s))−1 NT (−s) (5.23)

where d (s) d (−s) is the least common denominator of ZPH with d (s) being a
monic Hurwitz polynomial, N (s) is a n× ρ real polynomial matrix and L (s) is a
ρ× ρ diagonal matrix of real Hurwitz polynomials with ρ = rank [ZPH ].
Then one follows one of the two cases below:
Case 1

W (s) = Ev [d (s) L (s)] (5.24)
Y (s) = Od [d (s) L (s)] (5.25)

Case 2

W (s) = Od [d (s) L (s)] (5.26)
Y (s) = Ev [d (s) L (s)] (5.27)

and form

V (s) = N (s) (Od [d (s) L (s)])−1 (5.28)
W (s) = Ev [d (s) L (s)] (Od [d (s) L (s)])−1 (5.29)

for Case 1 or

V (s) = N (s) (Ev [d (s) L (s)])−1 (5.30)
W (s) = Od [d (s) L (s)] (Ev [d (s) L (s)])−1 (5.31)

for Case 2. Form also U (s) for both cases as
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U (s) = Z (s)−V (s) (W (s) + Iρ)
−1 VT (−s) (5.32)

Now one can synthesize ZΣ (s) in Eq. (5.20) using the lossless synthesis methods
of the previous section and terminate the last ρ ports by unit resistors as shown
in Fig. (5.8). The most important property of the Bayard’s synthesis is that it
achieves the synthesis by using the minimum number of resistors given by the
rank of ZPH . However the number of reactive elements used is non-minimal which
makes a quantum analysis problematic with this method. One reason for that is
numerical difficulty since one then needs to solve a Schrodinger equation in non-
minimal dimensions. Another aspect of the method is that if one follows the Case
2 above one may end up with a circuit containing gyrators even though Z (s) is
symmetric(reciprocal). Case 1 however will always produce reciprocal circuits for
symmetric impedances Z (s).

5.2.3 State-space Reactance Extraction Synthesis

Nrn m Im

NL

N

Z(s)

Figure 5.9: State-space reactance extraction. A purely reactive subnetwork NL

consisting of unit inductors is extracted to isolate a nondynamic sub-
network Nr.

In this section we will present a canonical multiport synthesis method in the state-
space [111]. The method is based on the extraction of reactances and isolating
a nondynamic subnetwork Nr as shown in Fig. (5.9), where the subnetwork NL

is the subnetwork of unit inductances shunting the nondynamic subnetwork Nr.
The absence of capacitors in the subnetwork NL can be understood by observing
the equivalence of the circuits shown in Fig. (5.10). Using this equivalence any
extracted capacitor in the subnetwork NL can be converted to an inductor shunting
one port of a gyrator as shown in Fig. (5.10) and the gyrator can be absorbed in the
nondynamic subnetwork Nr. In addition to gyrators Nr might contain resistors,
and ideal transformers.
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L

a

L/γ2

b

≡
a

b

γ

Figure 5.10: Equivalence of an inductor shunting a gyrator to a capacitor. The
ratio of the inductance to the capacitance is γ2 where γ is the gyration
ratio. This circuit equivalence explains the lack of capacitors in the
reactive subnetwork NL in Fig. (5.9).

If we partition the constant impedance matrix ZNr of the subnetwork Nr ac-
cording to its n ports on the left and m ports on the right as

ZNr =

(
Z

(Nr)
11 Z

(Nr)
12

Z
(Nr)
21 Z

(Nr)
22

)
(5.33)

then by multiport impedance cascading formulas we can write the impedance Z (s)
of the full network N in Fig. (5.9) as

Z (s) = Z
(Nr)
11 − Z

(Nr)
12

(
sIm + Z

(Nr)
22

)−1

Z
(Nr)
21 (5.34)

But we know from Eq. (4.3) that given a state-space realization {A,B,C,D} for
the impedance Z (s) we have

Z (s) = D + C (sI−A)−1 B (5.35)

Comparing Eqs. (5.34) and (5.35) above we identify

Z
(Nr)
11 = D (5.36)

Z
(Nr)
12 = −C (5.37)

Z
(Nr)
21 = B (5.38)

Z
(Nr)
22 = −A (5.39)

that is

ZNr =

(
D −C
B −A

)
(5.40)

As we see in Eq. (5.40) there is natural connection between the submatrices of
the impedance matrix ZNr for the nondynamic subnetwork Nr and the state-space
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description {A,B,C,D} for Z (s). However before claiming that we achieved a
synthesis for Nr (and hence for Z) we need to check that ZNr is positive-real.
Since Nr is nondynamic ZNr is a constant matrix in which case the positive-real
condition we need to satisfy simplifies to

ZNr + ZT
Nr
≥ 0 (5.41)

ZNr defined in Eq. (5.40) doesn’t necessarily satisfy Eq. (5.41). However as we
show below one can find another equivalent representation {Aa,Ba,Ca,Da} for
Z (s) such that

Z (s) = Da + Ca (sI−Aa)
−1 Ba (5.42)

and if we re-define ZNr in Eq. (5.40) as

ZNr =

(
Da −Ca

Ba −Aa

)
(5.43)

then ZNr satisfy the positive-real condition in Eq. (5.41).
To show this we need Theorem 9.1.1 in [111] which states that given a minimal

realization {A,B,C,D} for a positive-real Z (s) it possible to find a transformation
T such that {Aa,Ba,Ca,Da} is a minimal realization for Z (s) with

Aa = TAT−1 (5.44)
Ba = TB (5.45)
Ca = CT−1 (5.46)
Da = D (5.47)

and there exists matrices L and W0 such that

Aa + AT
a = −LLT (5.48)

Ba = CT
a − LW0 (5.49)

Da + DT
a = WT

0 W0 (5.50)

The matrix T is a non-singular matrix satisfying TTT = P where P is the sym-
metric positive definite solution of the positive real lemma Eqs. (4.23)-(4.25) for
the realization {A,B,C,D}. We already know from Chapter (4.2) that such a
non-singular transformation keeps the impedance unchanged.
Hence we can write using Eq. (5.43)
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ZNr + ZT
Nr

=

(
Da + DT

a

(
Ba −CT

a

)T
(
Ba −CT

a

)
−
(
Aa + AT

a

)
)

(5.51)

=

(
WT

0 W0 −WT
0 LT

−LW0 LLT

)
(5.52)

=

(
WT

0

−L

)(
W0 LT

)
(5.53)

≥ 0 (5.54)

where in Eq. (5.52) in the second line above we used Eqs. (5.48)-(5.50). Therefore
ZNr defined in Eq. (5.43) satisfies Eq. (5.41). We refer the reader to p. 373 of
[111] for the details of the synthesis of the impedance ZNr .
We note that the reactance extraction method described here is minimal in

the number of reactive elements. One can also achieve the minimum number of
resistors which is given by rank

[
Z (s) + ZT (−s)

]
simultaneously. We refer the

reader to [111] for details. We should also mention that in the case of a symmetric
Z (s) the reactance extraction method above will possibly produce a synthesis
with gyrators in the subnetwork Nr. However there exists a reciprocal state-space
reactance extraction synthesis method that generates a gyrators-less circuit for a
symmetric Z (s); for details see [111], Chapter 10.3.
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Figure 5.11: The multiport Brune Circuit

95



5 Multiport Brune Quantization

5.3 Multiport Brune’s method

The multiport Brune circuit is shown in Fig. (5.11). This circuit is obtained
by applying the multiport Brune’s method [122] in state-space which we describe
below. There is also a classical generalization of the one-port Brune’s method to
multiport responses (including non-reciprocal ones) which is described in Chapter
8.3 of [70] (for more details on the multiport circuit structures obtained see [132,
133]). Generalization of Brune’s method to multiport responses was first given by
Oono [134] (see also Chapter 8.4 of [70]) in the reciprocal case. Other approaches
which generalize Brune’s method and which differ in the way they extract resistors
in the reciprocal case are [135, 136, 137, 138] and in the non-reciprocal case [139].
The circuit in Fig. (5.11) consists of N ports and M stages. On the far left

we have N terminal pairs corresponding to the ports. Each stage starts with
the extraction of a Belevitch transformer Tk. Each Tk is a 2N -port transformer
with N ports on the left and N ports on the right. The circuit representation
of the Belevitch transformer is shown in Fig. (5.3). The multiport Belevitch
tranformer Tk is followed by a resistor rk extracted only at the first port. We
will describe below how to extract Belevitch transformers and resistors. After
the resistor extraction we have the reactive part of the multiport Brune stage.
We observe that the part of each Brune stage that comes after the Belevitch
transformer at the first port is almost identical to the one-port Brune stage. We
see however an additional transformer νk coupling the reactive circuit in the first
port to the remaining ports. νk is a multiport transformer with the primary
winding connected in parallel across the terminals of the capacitor Ck at stage
k. Each of the secondary windings are connected in series between terminals of
the Belevitch transformers at the remaining ports. The last stage consists of the
Belevitch transformer TM+1 shunted by the resistors R1, . . . , RN .

5.4 Multiport Brune Algorithm

In this section we will describe multiport generalization of the Brune’s synthesis
algorithm described in state-space in Chapter (4.2.3) for one-port networks. Fig.
(5.12) illustrates extraction of a multiport Brune stage. Since the algorithm is
recursive we will describe it only on the first stage. At each stage the degree of
the network is reduced by two hence the algorithm terminates once a constant
multiport impedance is reached as in the one-port case.
We will only focus on the reciprocal response case, that is when Z = ZT . We

will show later how the gyrators appear in the multiport Brune circuit in case of
a non-reciprocal impedance.
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Port 1→

Ports
{2, · · · , N} →

← T1

r1 u1A

+

y1A
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Figure 5.12: Multiport Brune circuit extraction step. The extraction starts with
the Belevitch transformer T1. The circuit that follows T1 is almost
identical to the one-port Brune stage in Fig. (4.1) except the multi-
port transformer ν1 coupling the first port to the remaining ones.
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The synthesis of a multiport Brune stage starts with the extraction of the mul-
tiport Belevitch transformer T1 together with the resistor r1 at the first port. Let
the impedance matrices seen at the ports of the networks labeled N and N1 in
Fig. (5.12) be Z and Z1 respectively. Assuming that Z is positive-real the aim of
the resistance and Belevitch transformer extraction is to get Z1 PR together with
Re [Z1,11 (jω1)] = 0 for some frequency ω1 where Z1,11 is the (1, 1) entry of the
impedance Z1. As we will see below those are necessary and sufficient conditions
for the multiport Brune algorithm.

5.4.1 Resistance Extraction
The most direct way to get Re [Z1,11 (jω1)] = 0 is to first make an eigenvalue
decomposition for the Hermitian part ZH of Z at each frequency ω

ZH (jω) = U (ω)S (ω)UT (ω) (5.55)

where

ZH (jω) =
1

2

(
Z (jω) + ZT (−jω)

)
(5.56)

S (ω) can be assumed to be the diagonal matrix having the eigenvalues αj (ω)’s for
1 ≤ j ≤ N on its diagonal in increasing order (αj (ω) ≥ 0 since ZH (jω) is positive
semi-definite):

S (ω) =




α1 (ω) 0
. . .

0 αN (ω)


 (5.57)

and U (ω) can be chosen to be orthogonal.
If we then choose the following value for the extracted resistor r1

r1 = min
0≤ω≤∞

α1 (ω) (5.58)

with ω1 being the frequency at which the minimum in Eq. (5.58) occurs

α1 (ω1) = r1 (5.59)

We have Re [Z1,11 (jω1)] = 0 with

Z1 = UT (ω1) ZU (ω1)− r1




1 0
0

. . .
0 0


 (5.60)
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One then needs to choose the turns-ratio matrix T1 as

T1 = U (ω1) (5.61)

One can also imagine extracting first the resistor and then the Belevitch trans-
former. The value of the resistor r1 in Fig. (5.12) in that case can be computed
using the following formula [140]

r1 = min
0≤ω≤∞

∆ (ω) /∆11 (ω) (5.62)

where ∆ (ω) is the determinant and ∆11 (ω) is the (1, 1) minor of ZH (jω).
Let ω0 be the frequency at which the minimum in Eq. (5.62) occurs such that

r1 = ∆ (ω0) /∆11 (ω0) (5.63)

Then the Belevitch transformer matrix T1 in Fig. (5.12) is given by the matrix

that simultaneously diagonalizes [141] ZH (jω0) and




1 0
0

. . .
0 0


 such that

ZH (jω0) = T1DTT
1 (5.64)

where D is a diagonal matrix with D (1, 1) = r1. T1 in that case can be found
using the Gauss diagonalization procedure.
The formula given in Eq. (5.62) is nice in the sense that it doesn’t require an

eigenvalue decomposition for each frequency ω, 0 ≤ ω ≤ ∞. However the Belevitch
transformer matrix T1 obtained by the above method is in general non-orthogonal.

5.4.2 Extraction of the reactive part of the multiport Brune
stage

Let the subnetwork N2 in Fig. (5.12) be described by the following state space
equations

ẋ2 = A2x2 + B2u2 (5.65)
y2 = C2x2 + D2u2 (5.66)

where

B2 =
(

B2A B2B

)
(5.67)
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C2 =

(
C2A

C2B

)
(5.68)

D2 =

(
D2AA D2AB

D2BA D2BB

)
(5.69)

and

u2 =

(
u2A

u2B

)
(5.70)

y2 =

(
y2A

y2B

)
(5.71)

where u2A is the current into the first port of the subnetwork N2 in Fig. (5.12) and
u2B is the vector holding the currents at the remaining ports (ports 2−N) of the
subnetwork N2. Similarly y2A is the voltage across the first port of the subnetwork
N2 and y2B is the vector holding the voltages across the remaining ports (ports
2−N) of the subnetwork N2. {A2,B2,C2,D2} is a state-space realization for the
impedance Z2 (s) seen at the ports of the network N2.
Then the network N1 is described by the the following equations




ẋ2

ẋC1

ẋL1


 =




A2 0 − B2A

n1
√
L1

0 0 1
n1
√
L1C1

C2A

n1
√
L1
− 1
n1
√
L1C1

−D2AA

n2
1L1







x2

xC1

xL1


+




B2A/n1 B2B
1−1/n1√

C1

νT
1√
C1

D2AA

n2
1

√
L1

D2AB

n1
√
L1



(
u1A

u1B

)

(5.72)

(
y1A

y1B

)
=

(
C2A

n1

1−1/n1√
C1

− D2AA

n2
1

√
L1

C2B
ν1√
C1

− D2BA

n1
√
L1

)


x2

xC1

xL1


+

(
D2AA/n

2
1 D2AB/n1

D2BA/n1 D2BB

)(
u1A

u1B

)

(5.73)
from which we identify

A1 =




A2 0 − B2A

n1
√
L1

0 0 1
n1
√
L1C1

C2A

n1
√
L1
− 1
n1
√
L1C1

−D2AA

n2
1L1


 (5.74)

B1 =




B2A/n1 B2B
1−1/n1√

C1

νT
1√
C1

D2AA

n2
1

√
L1

D2AB

n1
√
L1


 (5.75)
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C1 =

(
C2A

n1

1−1/n1√
C1

− D2AA

n2
1

√
L1

C2B
ν1√
C1

− D2BA

n1
√
L1

)
(5.76)

D1 =

(
D2AA/n

2
1 D2AB/n1

D2BA/n1 D2BB

)
(5.77)

and

x1 =




x2

xC1

xL1


 (5.78)

where xC1 =
√
C1vC1 , xL1 =

√
L1iL1 and ν1 = (ν12, . . . , ν1N)T ; u1A is the current

into the first port of the subnetwork N1 in Fig. (5.12) and u1B is the vector holding
the currents at the remaining ports (ports 2−N) of the subnetwork N1. Similarly
y1A is the voltage across the first port of the subnetwork N1 and y1B is the vector
holding the voltages across the remaining ports (ports 2 − N) of the subnetwork
N1. {A1,B1,C1,D1} is then a realization for the impedance Z1 (s) seen at the
ports of the network N1.
Now we will state the multiport version of the fundamental lemma stated in

Section (4.2.3) to show how to transform state-space equations given for a minimal
realization of the impedance Z1 into the form in Eqs. (5.72) and (5.73). For details
refer to [122].
The Multiport Synthesis Lemma
Let {Aa,Ba,Ca,Da} be a minimal realization corresponding to the positive-real

impedance Z1 (s) satisfying Z1,11 (jω0) + Z1,11 (−jω0) = 0 for some frequency ω0,
Z1,11 is the (1, 1) entry of the impedance matrix Z1 (We also assume that jω0 is
not an eigenvalue of Aa). Then there exists a coordinate transformation matrix T
such that A1 = TAaT

−1, B1 = TBa, C1 = CaT
−1 and D1 = Da are of the form

given in Eqs. (5.74-5.77).
To compute T we will follow the algorithm described in Fundamental Lemma

in Section (4.2.3). Before applying the algorithm we set

ba = Bae1 (5.79)
cTa = CT

a e1 (5.80)

and apply the one-port algorithm described in the Fundamental Lemma in Chapter
(4.2.3) to the set {Aa,ba, ca,Da} where e1 =

(
1 0 . . . 0

)T ; that is we apply
the one-port algorithm by picking up the first columns of Ba and CT

a matrices.
To see why {A1,B1,C1,D1} is an equivalent realization for the impedance Z1 (s)

see Chapter (4.2) or Theorem (3.3.9) in [111].
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Port 1→

Ports
{2, · · · , N} →

← T1

r1 u1A

+

y1A

−

N1

N

u2A

+

y2A

−
N2

C1
+
vC1−

u1B

+

y1B

−

u2B

+

y2B

−

Figure 5.13: Extraction of the multiport capacitive denegenerate stage in the mul-
tiport Brune circuit when ω1 =∞ in Eq. (5.59). We observe that the
ν-type transformer is not necessary in that case.

5.4.2.1 The Multiport Capacitive Degenerate Stage

Similar to our discussion in Chapter (4.2.3.1) it is possible that the minimum in
Eq. (5.59) occurs at infinity, ω1 = ∞. Such a case needs the extraction of the
degenerate reactive stage shown in Fig. (5.13). As in the one-port case the reactive
Brune stage doesn’t involve any inductive part. Note also that we don’t have the
ν-type transformer coupling the first port to the remaining ports.

To synthesize such a stage we need to modify our treatment in Chapter (5.4.2).
Assuming that the subnetwork N2 in Fig. (5.13) is described by Eqs. (5.65)-(5.71),
the network N1 is described by

(
ẋ2

ẋC1

)
=

(
A2 − B2AC2A

D2AA

B2A

D2AA

√
C1

C2A

D2AA

√
C1

− 1
D2AAC1

)(
x2

xC1

)
+

(
0 B2B − B2AD2AB

D2AA
1√
C1

D1AB

D2AA

√
C1

)(
u1A

u1B

)

(5.81)
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(
y1A

y1B

)
=

(
0 1√

C1

C2B − D2BAC2A

D2AA

D2BA

D2AA

√
C1

)(
x2

xC1

)
+

(
0 0
0 D2BB − D2BAD2AB

D2AA

)(
u1A

u1B

)

(5.82)
from which we identify

A1 =

(
A2 − B2AC2A

D2AA

B2A

D2AA

√
C1

C2A

D2AA

√
C1

− 1
D2AAC1

)
(5.83)

B1 =

(
0 B2B − B2AD2AB

D2AA
1√
C1

D1AB

D2AA

√
C1

)
(5.84)

C1 =

(
0 1√

C1

C2B − D2BAC2A

D2AA

D2BA

D2AA

√
C1

)
(5.85)

D1 =

(
0 0
0 D2BB − D2BAD2AB

D2AA

)
(5.86)

and

x1 =

(
x2

xC1

)
(5.87)

where xC1 =
√
C1vC1 ; u1A is the current into the first port of the subnetwork N1

in Fig. (5.12) and u1B is the vector holding the currents at the remaining ports
(ports 2 − N) of the subnetwork N1. Similarly y1A is the voltage across the first
port of the subnetwork N1 and y1B is the vector holding the voltages across the
remaining ports (ports 2 − N) of the subnetwork N1. {A1,B1,C1,D1} is then a
realization for the impedance Z1 (s) seen at the ports of the network N1.
One needs to modify also the Multiport Synthesis Lemma as follows:
The Multiport Synthesis Lemma (multi-port capacitive degenerate case)
Let {Aa,Ba,Ca,Da} be a minimal realization corresponding to the positive-real

impedance Z1 (s) satisfying Z1,11 (jω0) + Z1,11 (−jω0) = 0 for some ω0 =∞, Z1,11

is the (1, 1) entry of the impedance matrix Z1. Then there exists a coordinate
transformation matrix T such that A1 = TAaT

−1, B1 = TBa, C1 = CaT
−1 and

D1 = Da are of the form given in Eqs. ((5.83)-(5.86)).
To compute T we will follow the algorithm described in The Fundamental

Lemma (one-port capacitive degenerate case) in Section (4.2.3.1). Before applying
the algorithm we set
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ba = Bae1 (5.88)
cTa = CT

a e1 (5.89)

and apply the one-port algorithm described in The Fundamental Lemma (one-port
capacitive degenerate case) in Chapter (4.2.3.1) to the set {Aa,ba, ca,Da} where
e1 =

(
1 0 . . . 0

)T ; that is we apply the one-port algorithm by picking up the
first columns of Ba and CT

a matrices.
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Port 1 →

PortN →

I
(L)
Tj ,1

I
(L)
Tj ,N

I
(R)
Tj ,1

I
(R)
Tj ,N

rj 1 : nj

Lj

I
(L)
Tj+1,1

1 : νj

bj

aj

Cj

aj,N

νj,N

bj,N

I
(L)
Tj+1,N

I
(R)
Tj+1,1

I
(R)
Tj+1,N

Tj︷ ︸︸ ︷
Tj+1︷ ︸︸ ︷

Figure 5.14: Multiport Brune stage. Tree branches are shown in black and chord
branches are shown in blue. Note that the Belevitch transformers Tj

and Tj+1 are reflected compared to the Fig. (5.2).

5.5 Quantization of the multiport Brune circuit

The multiport Brune circuit contains ideal transformers. In this section we show
that one can eliminate transformer branch variables and write a set of effective
Kirchhoff relations for the rest of the branch currents and voltages. The effective
Kirchhoff relations are given by the loop matrix Feff involving turn ratios which we
define below. The treatment here is similar to the analysis done in Chapter (4.3)
for the one-port state-space Brune circuit. However as we will see the addition of
Belevitch transformers and ν-type transformers makes the analysis more involved.
We note that we replace the shunt resistors Rj’s in the last stage by capacitors
CRj

’s for 1 ≤ j ≤ N as shown in Fig. (5.17) to do the dissipation analysis as
discussed in detail in Appendix (6.2.2).
We will follow the same approach of Chapter (4.3). We write again the Kirch-

hoff’s laws (Eqs. (6.38), (6.39)) for the multiport Brune circuit in Fig. (5.11)
whose jth stage is shown in detail in Fig. (5.14)

FIch = −Itr (5.90)

FTVtr = Vch (5.91)

where we have again assumed that there is no external flux bias. We note that the
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relations in Eqs. (5.90) and (5.91) are derived from a graph theoretical analysis
[18] of the multiport Brune network.

Itr and Ich are the tree and chord branch current vectors in Fig. (5.11) respec-
tively partitioned as follows

Itr =
(
IJ , IL, IZ , I

(tr)
T

)
(5.92)

Ich =
(
IC , I

(ch)
T

)
(5.93)

and tree and chord branches’ voltages are partitioned respectively as

Vtr =
(
VJ ,VL,VZ ,V

(tr)
T

)
(5.94)

Vch =
(
VC ,V

(ch)
T

)
(5.95)

Here labels J , L, Z, C, T correspond to Josephson junction, inductor, resistor,
capacitor and ideal transformer branches, respectively.
Our aim here is to write an effective set of Kirchhoff relations as

FeffIeffch = −Iefftr (5.96)

(
FT
)eff

Veff
tr = Veff

ch (5.97)

where transformer branches are eliminated such that

Iefftr = (IJ , IL, IZ) (5.98)
Ieffch = IC (5.99)

Veff
tr = (VJ ,VL,VZ) (5.100)

Veff
ch = VC (5.101)

Here we will do this effective loop matrix analysis for the Kirchhoff’s current law
to get the matrix Feff in Eq. (5.96). It is important to note that one should also
do a similar analysis for the Kirchhoff’s voltage law to get an effective

(
FT
)eff in

Eq. (5.97) and verify that

(
FT
)eff

=
(
Feff

)T (5.102)

holds. This we do in the Appendix (6.5.2). Eq. (5.102) is important to keep
the various matrices of interest like the capacitance C and stiffness M0 matrices
symmetric.
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To show how one can find such a Feff matrix we will further partition trans-
former current vectors I

(tr)
T and I

(ch)
T in Eqs. (5.92) and (5.93). We first note that

left branches of all transformers in the circuit in Fig. (5.14) are chord branches
(colored in blue) and that right branches of all transformers are in the tree (shown
in black in Fig. (5.14)). Hence we can write

I
(tr)
T =

(
I(R)
n , I

(R)
T , I(R)

ν

)
(5.103)

I
(ch)
T =

(
I(L)
n , I

(L)
T , I(L)

ν

)
(5.104)

where

I(R)
n =

(
I(R)
n1
, . . . , I(R)

nM

)
(5.105)

I
(R)
T =

(
I

(R)
T1
, . . . , I

(R)
TM+1

)
(5.106)

I(R)
ν =

(
I(R)
ν1
, . . . , I(R)

νM

)
(5.107)

and

I(L)
n =

(
I(L)
n1
, . . . , I(L)

nM

)
(5.108)

I
(L)
T =

(
I

(L)
T1
, . . . , I

(L)
TM+1

)
(5.109)

I(L)
ν =

(
I(L)
ν1
, . . . , I(L)

νM

)
(5.110)

with

I
(L)(R)
Tj

=




I
(L)(R)
Tj ,1
...

I
(L)(R)
Tj ,N


 (5.111)

I(R)
νj

=




I
(R)
νj ,2
...

I
(R)
νj ,N


 (5.112)

where I
(L)(R)
Tj

are vectors of length N for 1 ≤ j ≤ M + 1 and I
(R)
νj are vectors of

length (N − 1) for 1 ≤ j ≤M .
Before moving further in the analysis we beriefly review the relations between the

currents through left and right branches of the three different types of transformers
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Cj

I
(L)
νj

1 :

bj,2

νj,2

aj,2
I
(R)
νj ,2

bj,N

νj,N
I
(R)
νj ,N

aj,N

Figure 5.15: ν-type transformer circuit at jth multiport Brune stage in Fig. (5.14).
We also show the connection of the transformer to the capacitor Cj
to make the correpondence to the Fig. (5.14) more clear.

in the multiport Brune circuit. We also give voltage relations for completeness
although we don’t need them for the analysis in this section. However we will
refer to the voltage relations in the Appendix (6.5.2).

I
(L)(R)
Tj

is the vector of currents through the left(right) branches of the Belevitch
multiport transformer appearing at the jth multiport Brune stage, 1 ≤ j ≤M + 1
as shown in Fig. (5.14). Hence by Eqs. (5.10) and (5.11) we have

I
(L)
Tj

= TjI
(R)
Tj

(5.113)

V
(R)
Tj

= TT
j V

(L)
Tj

(5.114)

where V
(L)(R)
Tj

is the vector of voltages across the left(right) branches of the Bele-
vitch multiport transformer appearing at the jth multiport Brune stage, 1 ≤ j ≤
M + 1 in Fig. (5.14).
The turns ratio vector of the ν-type transformer νj at the jth multiport Brune

stage is given by

νj =




νj,2
...

νj,N


 (5.115)

The detailed circuit representation of the ν-type transformer at the jth stage is
given in Fig. (5.15). The current on the left branch is related to the currents on
the right branches by
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Lj

I
(L)
nj

1 : nj

I
(R)
nj

Figure 5.16: Conventions for the direction of currents for the n-type transformer of
jth stage in the multiport Brune circuit in Fig. (5.14). The inductive
branch Lj is shown for orientation purposes with Fig. (5.14).

I(L)
νj

= νTj




I
(R)
νj ,2
...

I
(R)
νj ,N


 (5.116)

and the voltages across the right branches of the ν-type transformer are related
to the voltage across its left branch by the following formula




V
(R)
νj ,2
...

V
(R)
νj ,N


 = νjV

(L)
νj

(5.117)

The detailed circuit diagram with current direction conventions for the n-type
transformer is shown in Fig. (5.16). For this type of transformer the relations
between currents and voltages are given by

I(L)
nj

= njI
(R)
nj

(5.118)

V (R)
nj

= njV
(L)
nj

(5.119)

Now we can begin our analysis. We will proceed from the last(rightmost) stage
to the first(leftmost) in Fig. (5.11) by relating the currents of consecutive stages.
Starting at the last stage we have (see Fig. (5.17))

I
(R)
TM+1

= −ICR
(5.120)

where ICR
are the currents through the capacitors(substituted for the shunt resis-

tors) of the last stage.
The currents of inter-stage transformers are given by Eq. (5.113)

I
(L)
Tj

= TjI
(R)
Tj

(5.121)
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Port 1 →

PortN →

I
(L)
TM+1,1

I
(L)
TM+1,N

I
(R)
TM+1,1

I
(R)
TM+1,N CRN

CR1

TM+1︷ ︸︸ ︷

Figure 5.17: Last stage of the multiport Brune circuit. Tree branches are shown
in black and chord branches are shown in blue.

for 1 ≤ j ≤ M + 1, where Tj is the (N ×N) Belevitch transformer matrix of the
jth stage. The currents of consecutive inter-stage transformers are related by

I
(R)
Tj

= −e1ICj
+ AjI

(L)
Tj+1

(5.122)

for 1 ≤ j ≤M , where

Aj =




1 −νj,2 · · · −νj,N
1 0

0
. . .

1


 (5.123)

Aj is a (N ×N) matrix and e1 is the unit vector e1 = (1, 0, . . . , 0)T of length N .
We note that in the case of a degenerate stage as in Fig. (5.13) for the jth stage
we have νj,k = 0 for 2 ≤ k ≤ N , hence Aj is the identity matrix in such a case.
The current ILj

through the inductor Lj at the jth multiport Brune stage can
be written

ILj
= −ICj

+ υjI
(L)
Tj+1

(5.124)

where υj is a row vector of length N :

υj =
(

(1− nj) −νj2 · · · −νj,N
)

(5.125)
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Using the Eqs. (5.120), (5.121), (5.122) and (5.124) we can iterate over the
index j backwards starting at j = M + 1:

I
(L)
TM+1

= TM+1I
(R)
TM+1

= −TM+1ICR

ILM
= −ICM

+ υMI
(L)
TM+1

= −ICM
− υMTM+1ICR

I
(R)
TM

= −e1ICM
+ AMI

(L)
TM+1

= −e1ICM
−AMTM+1ICR

I
(L)
TM

= TMI
(R)
TM

= −TMe1ICM
−TMAMTM+1ICR

ILM−1
= −ICM−1

+ υM−1I
(L)
TM

= −ICM−1
− υM−1TMe1ICM

− υM−1TMAMTM+1ICR

I
(R)
TM−1

= −e1ICM−1
+ AM−1I

(L)
TM

= −e1ICM−1
−AM−1TMe1ICM

−AM−1TMAMTM+1ICR

I
(L)
TM−1

= TM−1I
(R)
TM−1

= −TM−1e1ICM−1
−TM−1AM−1TMe1ICM

−TM−1AM−1TMAMTM+1ICR

ILM−2
= −ICM−2

+ υM−2I
(L)
TM−1

= −ICM−2
− υM−2TM−1e1ICM−1

− υM−2TM−1AM−1TMe1ICM
+

−υM−2TM−1AM−1TMAMTM+1ICR
(5.126)

...
...

...

Hence we conclude that one can write

IL = −Feff
LC IC (5.127)

with for 1 ≤ j ≤M :





Feff
LC (j, k) = 0 for k < j

Feff
LC (j, k) = 1 for k = j

Feff
LC (j, k) = υjTj+1e1 for k = j + 1, and j < M

Feff
LC (j, k) = υjTj+1Aj+1 . . .Tk−1Ak−1Tke1 for j + 2 ≤ k ≤M

Feff
LC (j, k) = υjTj+1Aj+1 . . .TMAMTM+1ek−M for j < M and M + 1 ≤ k ≤M +N

Feff
LC (j, k) = υMTM+1ek−M for j = M and M + 1 ≤ k ≤M +N

(5.128)
where ek is the unit vector of length N non-zero only at its kth entry such that
ek (j) = 0 for j 6= k and ek (k) = 1. We assumed the following ordering for the
capacitors

{C1, . . . , CM , CR1 , . . . , CRN
} (5.129)

To compute Feff
ZC we note the following
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← T1

ILJ1

LJ1

LJN

ILJN

Figure 5.18: To compute Feff
JC , for simplicity, we assume that all the ports of

the multiport Brune circuit are shunted by Josephson junctions
LJ1 , . . . , LJN .

Irj = I
(R)
Tj ,1

(5.130)

= eT1 I
(R)
Tj

(5.131)

for 1 ≤ j ≤M .
Referring back to the iteration in Eqs. (5.126) and using Eq. (5.131) we can

write

IZ = −Feff
ZC IC (5.132)

with for 1 ≤ j ≤M :





Feff
ZC (j, k) = 0 for k < j

Feff
ZC (j, k) = 1 for k = j

Feff
ZC (j, k) = eT1 AjTj+1 . . .Tk−1Ak−1Tke1 for j + 1 ≤ k ≤M

Feff
ZC (j, k) = eT1 AjTj+1 . . .TMAMTM+1ek−M for M + 1 ≤ k ≤M +N

(5.133)
To compute Feff

JC we will assume for simplicity that all the ports are shunted by
Josephson junctions as shown in Fig. (5.18) so that all the junctions belong to the
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spanning tree. Later we will allow for resistors and voltage sources shunting the
ports of the multiport Brune network. We note the following

IJ = I
(L)
T1

(5.134)

Hence referring back to the iteration in Eq. (5.126) we deduce using Eq. (5.134)

IJ = I
(L)
T1

= −T1e1IC1 −T1A1T2e1IC2 . . .−T1A1 . . .TM−1AM−1TMe1ICM
+

−T1A1 . . .TMAMTM+1ICR
(5.135)

Hence for 1 ≤ j ≤ N





Feff
JC (j, k) = eTj T1e1 for k = 1

Feff
JC (j, k) = eTj T1A1 . . .Tk−1Ak−1Tke1 for 1 < k ≤M

Feff
JC (j, k) = eTj T1A1 . . .TMAMTM+1ek−M for M + 1 ≤ k ≤M +N

(5.136)
where Feff

JC is defined by

IJ = −Feff
JC IC (5.137)

Now that we derived effective loop matrices we will follow the Appendix (6.2.1)
and (6.2.2) to compute Hamiltonian matrices and to do dissipation analysis due
to the resistors in the multiport Brune circuit. We will repeat here some of the
definitions - which will be used with the effective loop matrices- of the Appendix
(6.2.1) for convenience.
With the effective loop matrix

F effC =

(
Feff
JC

Feff
LC

)
(5.138)

we can compute the capacitance matrix C defined in Eq. (6.46)

C =

(
CJ 0
0 0

)
+ F effC C

(
F effC

)T
(5.139)

where we have the following partitioning to identify the submatrices C0 and CR

corresponding to ordinary capacitances and capacitances to be replaced by shunt
resistors in the last stage of the multiport Brune circuit, respectively

C =

(
C0 0
0 CR

)
(5.140)
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with

C0 =




C1 0
. . .

0 CM


 (5.141)

and

CR =




CR1 0
. . .

0 CRN


 (5.142)

and the matrix CJ in Eq. (5.139) for the Josephson junction capacitances is

CJ =




CJ1 0
. . .

0 CJN


 (5.143)

Partitioning also F effC according to the partitioning in Eq. (5.140) as in Eq.
(6.72)

F effC =
(
F effC0

F effCR

)
(5.144)

we can decompose C in Eq. (5.139) as in Eq. (6.75)

C =

(
CJ 0
0 0

)
+ F effC C

(
F effC

)T
(5.145)

= C0 + CR (5.146)

where we defined as we did in Eqs. (6.76) and (6.77)

C0 =

(
CJ 0
0 0

)
+ F effC0

C0

(
F effC0

)T
(5.147)

CR = F effCR
CR

(
F effCR

)T
(5.148)

C0 is the capacitance matrix that appears in the system Lagrangian and Hamil-
tonian for the multiport Brune circuit whereas CR is a dissipative term which we
will treat later below by making the substitution CR ← (iω)−1 R−1 as described
in Eq. (6.70) for the shunt resistors in the last stage.

L−1
t and G matrices defined in Eqs. (6.66), (6.67) are simply
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L−1
t =




1/L1 0
. . .

0 1/LM


 (5.149)

G =

(
0
IL

)
(5.150)

since there are no chord inductors in the circuit. Hence we have by Eq. (6.64)

M0 = GL−1
t GT (5.151)

=




0J 0
1/L1

. . .
0 1/LM


 (5.152)

where 0J is a NJ × NJ zero matrix. Here since we assumed that all ports are
shunted by Josephson junctions NJ = N .
Using the Eq. (6.127) we have the following Hamiltonian for the multiport

Brune circuit

HS =
1

2
QTC−1

0 Q+ U (Φ) (5.153)

where

U (Φ) = −
(

Φ0

2π

)2

L−1
J cos (ϕJ) +

1

2
ΦTM0Φ (5.154)

To treat the dissipation we first note that the diagonal tree impedance matrix

Z =




r1 0
. . .

0 rM


 (5.155)

consists of in-series resistances r1, . . . , rM of the multiport Brune circuit in Fig.
(5.11). However, as we noted in Appendix (6.2.2) we will treat each in-series
resistor rj separately for 1 ≤ j ≤ M . So instead of using the full Feff

ZC matrix
defined in Eq. (5.133) we will use its rows Feff

rj ,C0
’s corresponding to the in-series

resistors rj’s for 1 ≤ j ≤M , in our dissipation treatment below.
We compute the coupling m̄j of the bath due to the resistor rj for 1 ≤ j ≤ M

to the circuit degrees of freedom using Eq. (6.101) with the effective row vector
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Feff
rj ,C0

(since we treat resistors one at a time Feff
rj ,C0

is the jth row of the matrix
Feff
ZC0

defined in Eq. (6.92) corresponding to the resistor rj)

m̄j = F effC0
C0

(
Feff
rj ,C0

)T
(5.156)

=

(
m̄j,J

m̄j,L

)
(5.157)

and using Eq. (6.113)

C̄Z,rj (ω) = −iωrj
[
1 + iωrjF

eff
rj ,C0

C0

(
Feff
rj ,C0

)T]−1

(5.158)

which is related to the kernel as derived in Eq. (6.111) (we note that C̄Z,rj (ω) is
a scalar)

Kj (ω) = −ω2C̄Z,rj (ω) (5.159)

and the spectrum of the bath due to the resistor rj is given by Eq. (6.114)

Jj (ω) = Im [Kj (ω)] (5.160)

=
ω3rj

1 + ω2r2
j

[
Feff
rj ,C0

C0

(
Feff
rj ,C0

)T]2 (5.161)

The contribution of the resistor rj to the relaxation rate is given by the formula
in Eq. (6.115)

1

T1,rj

=
4

~
|〈0 |m̄j ·Φ| 1〉|2 Jj (ω01) coth

(
~ω01

2kBT

)
(5.162)

where ω01 is the qubit frequency.
To compute the dissipative contribution of the resistors {R1, . . . , RN} shunting

the last stage we make the substitution CR ← (iω)−1 R−1 done in Eq. (6.70) to
get the resistance matrix defined in Eq. (6.81)

R−1 = F effCR
R−1

(
F effCR

)T
(5.163)

where R is defined as

R =




R1 0
. . .

0 RN


 (5.164)
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We again treat the shunt resistors {R1, . . . , RN} one at a time, that is, to com-
pute the contribution of the resistor Rj to the relaxation rate we set Rk = ∞ for
1 ≤ k ≤ N and k 6= j and we short circuit in series resistors by setting rk = 0 for
1 ≤ k ≤ M . The coupling vector m̄Rj

which couples the bath due to Rj to the
circuit degrees of freedom is given in Eq. (6.87) as

m̄Rj
= F effRj ,CR

(5.165)

where F effRj ,CR
is the jth column of the matrix F effCR

and the dissipation kernel due
to Rj is given in Eq. (6.88) as

KRj
(ω) =

iω

Rj

(5.166)

and the spectral density JRj
of the bath due to Rj is given by Eq. (6.89)

JRj
(ω) = Im

[
KRj

(ω)
]

(5.167)

=
ω

Rj

(5.168)

Hence by Eq. (6.91) we compute the contribution of the resistor Rj to the relax-
ation rate as

1

T1,Rj

=
4

~
∣∣〈0
∣∣m̄Rj

·Φ
∣∣ 1
〉∣∣2 JRj

(ω01) coth

(
~ω01

2kBT

)
(5.169)

5.5.1 Resistors shunting the ports
One can also think of shunting some of the ports in Fig. (5.18) by resistors. For
simplicity let’s assume that we shunt only the jth port of the multiport Brune
circuit by a resistor Rx

j and the rest of the ports by Josephson junctions as shown
in Fig. (5.19). The branch of the resistor Rx

j belongs to the spanning tree hence
its treatment will be similar to the treatment of the in-series resistors rj in the
previous section. We will derive an effective loop row-vector Feff

Rx
j ,C

corresponding
to Rx

j . Before doing this we note that the jth row of the effective loop matrix
Feff
JC derived in Eq. (5.136) above needs to be dropped since we replaced the jth

Josephson junction in Fig. (5.18) by the resistor Rx
j .

We first note the following

IRx
j

= I
(L)
T1,j

(5.170)

Hence from the iteration in Eq. (5.126) we conclude
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← T1

ILJ1

LJ1

Rx
j

IRx
j

LJN

ILJN

Figure 5.19: The multiport Brune circuit shunted by a resistor at its jth port and
by Josephson junctions at the remaining ports.

IRx
j

= eTj I
(L)
T1

= −eTj T1e1IC1 − eTj T1A1T2e1IC2 . . .− eTj T1A1 . . .TM−1AM−1TMe1ICM
+

−eTj T1A1 . . .TMAMTM+1ICR
(5.171)

From which we conclude that

IRx
j

= −Feff
Rx

j ,C
IC

where Feff
Rx

j ,C
is a row vector of length (M +N) with





Feff
Rx

j ,C
(k) = eTj T1e1 for k = 1

Feff
Rx

j ,C
(k) = eTj T1A1 . . .Tk−1Ak−1Tke1 for 1 < k ≤M

Feff
Rx

j ,C
(k) = eTj T1A1 . . .TMAMTM+1ek for M + 1 ≤ k ≤M +N

(5.172)

So one then needs to append Feff
Rx

j ,C
to Feff

ZC defined in Eq. (5.133) as its last
row. Also Rx

j will appear at the last diagonal entry of the tree impedance matrix
Z defined in Eq. (5.155)
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Z =




r1 0
. . .

rM
0 Rx

j


 (5.173)

To compute the contribution of Rx
j to the dissipation rate we follow the same

procedure done for the resistors rj, 1 ≤ j ≤ M in Eqs. (5.156)-(5.162) above and
compute the coupling m̄Rx

j
of the bath due to the resistor Rx

j to the circuit degrees
of freedom using Eq. (6.101) with the effective matrix Feff

Rx
j ,C0

m̄Rx
j

= F effC0
C0

(
Feff
Rx

j ,C0

)T
(5.174)

=

(
m̄j,J

m̄j,L

)
(5.175)

where we assume the following partitioning for Feff
Rx

j ,C

Feff
Rx

j ,C
=
(

Feff
Rx

j ,C0
Feff
Rx

j ,CR

)
(5.176)

where Feff
Rx

j ,C0
and Feff

Rx
j ,CR

are row vectors of length M and N , respectively.
Using Eq. (6.113)

C̄Z,Rx
j

(ω) = −iωRx
j

[
1 + iωRx

jF
eff
Rx

j ,C0
C0

(
Feff
Rx

j ,C0

)T]−1

(5.177)

which is related to the kernel as derived in Eq. (6.111)

KRx
j

(ω) = −ω2C̄Z,Rx
j

(ω) (5.178)

and the spectrum of the bath due to the resistor Rx
j is given by Eq. (6.114)

JRx
j

= Im
[
KRx

j
(ω)
]

(5.179)

=
ω3Rx

j

1 + ω2
(
Rx
j

)2
[
Feff
Rx

j ,C0
C0

(
Feff
Rx

j ,C0

)T]2 (5.180)

And by Eq. (6.115) the contribution of Rx
j to the loss rate

1

T1,Rx
j

=
4

~

∣∣∣
〈

0
∣∣∣m̄Rx

j
·Φ
∣∣∣ 1
〉∣∣∣

2

JRx
j

(ω01) coth

(
~ω01

2kBT

)
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← T1

ILJ1

LJ1

−
Vs(t)

+

Rs IRs

LJN

ILJN

Figure 5.20: Voltage source Vs (t) in series with a resistance Rs shunting the jth
port of the multiport Brune circuit.

If we have several resistors shunting the multiport Brune circuit the analysis is
straightforward. One then needs to drop the rows in the Feff

JC matrix corresponding
to the ports shunted by resistors and repeat the dissipation analysis above for each
Rx
j . A full Feff

ZC is obtained by appending the rows Feff
Rx

j ,C
corresponding to each

Rx
j which are appended to Z.

5.5.2 Voltage sources shunting the ports

Now we consider shunting one of the ports by a possibly time-dependent voltage
source Vs (t) as shown in Fig. (5.20). We also assume that the voltage source has
an in series resistance Rs. Assuming also that Vs and Rs shunt the jth port the
treatment of the resistor Rs follows the same analysis we did above for the resistor
Rx
j . To treat the voltage source we first note the following

IVs = IRs = I
(L)
T1,j

(5.181)

Hence with the same loop analysis we did for the resistor Rx
j above we can derive

an effective loop matrix Feff
Vs,C

such that

IVs = −Feff
Vs,C

IC (5.182)

where Feff
Vs,C

= Feff
Rx

j ,C
with Feff

Rx
j ,C

being defined in Eq. (5.172).
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Now Feff
Vs,C

will appear as one of the rows of the FV C matrix. One can then
use FV C to first compute m̄V defined in Eq. (6.53) and then the coupling vectors
CV and CV defined in Eqs. (6.47) and (6.58), respectively, in Appendix (6.2.1).
Making the substitution CR ← (iω)−1 R−1 in Eq. (6.70) and following the analysis
at the end of Appendix (6.2.1) we get the following Hamiltonian derived in Eq.
(6.127) for the multiport Brune circuit shunted by the voltage source at one of its
ports

HS =
1

2
(Q− (CV,0 + CV,R (t)) ∗VV (t))T C−1

0 (Q− (CV,0 + CV,R (t)) ∗VV (t))+U (Φ)

(5.183)
where the voltage source vector VV (t) has Vs (t) at its corresponding entry. The
matrices CV,0 and CV,R (t) are defined, respectively, in Eqs. (6.118) and (6.125) in
Appendix (6.2.3) which we repeat here for convenience

CV,0 = F effC0
C0

(
Feff
V C0

)T
(5.184)

CV,R (ω) = CV,R (ω) + CV (ω) (5.185)

where in the definition of the frequency-independent coupling matrix CV,0 we as-
sumed the following partitioning for Feff

V C as in Eq. (6.116)

Feff
V C =

(
Feff
V C0

Feff
V CR

)
(5.186)

For the definitions of the matrices appearing CV,R (ω) and CV (ω) in Eq. (5.185)
we refer the reader to Eqs. (6.119) and (6.124), respectively, in Appendix (6.2.3).
We recall that effective loop matrices should be used in those definitions.

5.6 Example

Here we illustrate the method described in the previous section with a generic
2-port 1-stage Brune circuit.

5.6.1 2-port 1-stage generic Brune circuit
We consider a generic 2-port 1-stage Brune circuit shown in Fig. (5.21). The 2-
port Brune circuit is shown in the dotted box. This 2-port Brune circuit is shunted
by two Josephson junctions LJ1 and LJ2 at each of its ports. There is only one
reactive stage which corresponds to a single pole at a finite frequency in the partial
fraction expansion for the impedance fit in Eq. (3.1).
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LJ1

← T1

r1 1:n1

L1

← T2
b1

1:ν1 a1

C1

LJ2

a1
ν12 b1

R1

R2

N

Figure 5.21: 2-port 1-stage multiport Brune circuit. The part of the circuit labeled
N contained in the dotted box is the 2-port Brune circuit shunted by
two Josephson junctions at each of its ports.

LJ1

I
(L)
T1,1

I
(L)
T1,2

LJ2

t21

t11

r1I
(R)
T1,1

t22

t12

I
(R)
T1,2

1 : n1

L1

I
(L)
T2,1

1 : ν1

b1

a1

C1

a1

ν12

b1

I
(L)
T2,2

CR1

u21

u11

I
(R)
T2,1

CR2

u22

u12

I
(R)
T2,2

T1︷ ︸︸ ︷ T2︷ ︸︸ ︷

Figure 5.22: Modified 2-port Brune circuit. Chord branches are shown in blue,
tree branches are shown in black.
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First we need to replace the resistors R1 and R2 in the last stage by capacitors
CR1 and CR2 as shown in Fig. (5.22). We will later make the substitutions CR1 ←

1
iωR1

and CR2 ← 1
iωR2

for the dissipation analysis.
There are three capacitors in the circuit in Fig. (5.22). All the capacitors are

in chord branches. The currents through those capacitors are given by the vector

IC =




IC1

ICR1

ICR2


 (5.187)

As described in the previous section we will eliminate transformer branches and
write the currents through tree branches as functions of capacitor currents. This
way we will compute effective loop matrices Feff

JC , Feff
LC and Feff

ZC .
As we see in Fig. (5.22) the two Belevitch transformers T1 and T2 are given by

the turns ratios matrices

T1 =

(
t11 t12

t21 t22

)
(5.188)

T2 =

(
u11 u12

u21 u22

)
(5.189)

We can now write

I
(L)
T2

= T2I
(R)
T2

= −T2ICR
(5.190)

= −
(
u11 u12

u21 u22

)(
ICR1

ICR2

)
(5.191)

where we used I
(R)
T2

= −ICR
. The current IL1 through the inductor L1 is given by

IL1 = −IC1 + υ1I
(L)
T2

(5.192)

= −IC1 − ((1− n1) ,−ν12)

(
u11 u12

u21 u22

)(
ICR1

ICR2

)
(5.193)

= −IC1 − ((1− n1)u11 − u21ν12, (1− n1)u12 − u22ν12)

(
ICR1

ICR2

)

from which we identify

Feff
LC = (1, (1− n1)u11 − u21ν12, (1− n1)u12 − u22ν12) (5.194)

where Feff
LC is defined by the relation
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IL1 = −Feff
LC IC (5.195)

We now move to the transformer T1 and write

I
(R)
T1

= −IC1e1 + A1I
(L)
T2

(5.196)

= −IC1

(
1
0

)
+

(
1 −ν12

0 1

)
I

(L)
T2

(5.197)

= −IC1

(
1
0

)
−
(

1 −ν12

0 1

)(
u11 u12

u21 u22

)(
ICR1

ICR2

)
(5.198)

and

I
(L)
T1

= T1I
(R)
T1

(5.199)

= −IC1T1e1 + T1A1I
(L)
T2

(5.200)

= −IC1

(
t11

t21

)
−
(
t11 t12

t21 t22

)(
1 −ν12

0 1

)(
u11 u12

u21 u22

)(
ICR1

ICR2

)

= −IC1

(
t11

t21

)
+ (5.201)

−
(
t11u11 + u21 (t12 − t11ν12) t11u12 + u22 (t12 − t11ν12)
t21u11 + u21 (t22 − t21ν12) t21u12 + u22 (t22 − t21ν12)

)(
ICR1

ICR2

)

Using the relation IJ = I
(L)
T1

and the Eqs. (5.199)-(5.201) above we identify

Feff
JC =

(
t11 t11u11 + u21 (t12 − t11ν12) t11u12 + u22 (t12 − t11ν12)
t21 t21u11 + u21 (t22 − t21ν12) t21u12 + u22 (t22 − t21ν12)

)
(5.202)

where Feff
JC is defined by the relation IJ = −Feff

JC IC .
Using Eqs. (5.194), (5.202) and making the partitioning in Eq. (5.144) we get

F effC0
=




t11

t21

1


 (5.203)

and hence by Eq. (5.147)

C0 =

(
CJ 0
0 0

)
+ F effC0

C0

(
F effC0

)T
(5.204)

=




CJ1 + t211C1 t11t21C1 t11C1

t21t11C1 CJ2 + t221C1 t21C1

t11C1 t21C1 C1


 (5.205)
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where we noted that C0 = C1 and assumed that CJ =

(
CJ1 0
0 CJ2

)
. We also

note that a non-zero CJ is necessary here to have a non-singular C0 matrix.
M0 is given by Eq. (5.152) as

M0 =




0 0 0
0 0 0
0 0 1

L1


 (5.206)

Noting also Ir1 = I
(R)
T1,1

we identify by Eq. (5.198)

Feff
ZC =

(
1 u11 − u21ν12 u12 − u22ν12

)
(5.207)

Feff
ZC is defined by Ir1 = −Feff

ZC IC . We note

Feff
r1,C0

= 1 (5.208)

and using Eq. (5.156) and Eqs. (5.203), (5.208) we compute

m̄1 = F effC0
C0

(
Feff
r1,C0

)T
(5.209)

=




t11

t21

1


C1 (5.210)

Using Eq. (5.158) and (5.208) we compute

C̄Z,r1 (ω) = − iωr1

[
1 + iωr1F

eff
r1,C0

C0

(
Feff
r1,C0

)T]−1

(5.211)

= −iωr1 [1 + iωr1C1]−1 (5.212)

and by Eq. (5.159) we have

K1 (ω) = −ω2C̄Z,r1 (ω) (5.213)
= iω2r1 [1 + iωr1C1]−1 (5.214)

hence by Eq. (5.161) we get the spectral density of the bath due to the resistor r1

as

J1 (ω) = Im [K1 (ω)] (5.215)

=
r1ω

3

1 + r2
1C

2
1ω

4
(5.216)
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Contribution of r1 to the loss rate is computed then by using the formula in Eq.
(5.162).
To do the dissipation analysis for the last two shunt resistors R1 and R2 we first

note the following, using Eqs. (5.194), (5.202) and making the partitioning in Eq.
(5.144)

F effCR
=




t11u11 + u21 (t12 − t11ν12) t11u12 + u22 (t12 − t11ν12)
t21u11 + u21 (t22 − t21ν12) t21u12 + u22 (t22 − t21ν12)

(1− n1)u11 − u21ν12 (1− n1)u12 − u22ν12


 (5.217)

In Eq. (5.165) m̄R1 is defined as the first column of F effCR
and m̄R2 is defined as

the second column of F effCR
so that

m̄R1 =




t11u11 + u21 (t12 − t11ν12)
t21u11 + u21 (t22 − t21ν12)

(1− n1)u11 − u21ν12


 (5.218)

and

m̄R2 =




t11u12 + u22 (t12 − t11ν12)
t21u12 + u22 (t22 − t21ν12)

(1− n1)u12 − u22ν12


 (5.219)

The spectral densities JR1 and JR2 of the baths due to the resistors R1 and R2,
respectively, are given by the formula in Eq. (5.168) as

JR1 (ω) =
ω

R1

(5.220)

and

JR2 (ω) =
ω

R2

(5.221)

Contributions of the shunt resistors R1 and R2 to the loss rate are then computed
using the formula in Eq. (5.169).

5.6.2 3-port data for the 3D-Transmon in Chapter (3.4)
Number of ports N = 3, number of stages M = 12. Three degenerate stages,
namely stages 1, 11, 12.

T1 =



−1.0000 −0.0001 −0.0010
0.0008 −0.7148 −0.6993
0.0007 0.6993 −0.7148


 (5.222)
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j rj (Ω) Lj (nH) Cj (nF ) tj = 1/nj νj,2 νj,3

1∗ 0.0923 0 1.1953× 10−4 0 0 0
2 0.0471 7.1890× 102 2.4523× 10−7 0.9478 −0.0008 −0.0259
3 0.0973 2.7674 7.7198× 10−4 0.0986 −0.0002 0.2050
4 0.1063 2.7113 7.8675× 10−4 0.0971 0.0003 −0.0020
5 0.2136 3.0283× 103 1.7701× 10−7 0.9915 0.0037 0.0018
6 20.7896 2.7344× 102 1.0464× 10−6 0.7657 0.0002 0.3708
7 21.4619 2.7500× 102 1.0416× 10−6 0.7508 0 −0.0222
8 26.6330 2.4557× 104 6.2335× 10−9 0.9959 9.65× 10−5 −2.311× 10−4

9 4.7957 4.9851× 102 2.0961× 10−7 0.8408 0.0002 0.0122
10 30.5600 4.6115× 102 2.2697× 10−7 0.8409 0.0007 −0.0623
11∗ 84.5207 0 2.4178× 10−7 0 0 0
12∗ 88.4419 0 2.2673× 10−7 0 0 0

R1 = 1.0837× 107, R2 = 1.1306× 107, R3 = 7.7537× 107

Table 5.1: 3-port Brune circuit parameter values for the dataset corresponding to
the setup in Figs. (3.13) and (3.14) in Chapter (3.4). Stages marked
with ∗ are capactive degenerate stages. We note that in degenerate
stages there are no n-type and ν-type transformer couplings.

T2 =




0.8933 −0.0132 −0.4493
−0.0132 −0.9999 0.0032
−0.4493 0.0030 −0.8934


 (5.223)

T3 =




0.4315 0.0060 −0.9021
0.0127 0.9998 0.0127
0.9020 −0.0169 0.4314


 (5.224)

T4 =




0.0000 −1.0000 0.0030
1.0000 0.0000 0.0000
0.0000 0.0030 1.0000


 (5.225)

T5 =




0.0000 0.4254 −0.9050
0.0403 −0.9043 −0.4250
−0.9992 −0.0365 −0.0171


 (5.226)

T6 =



−0.0416 0.0024 −0.9991
0.9299 0.3659 −0.0378
0.3655 −0.9306 −0.0174


 (5.227)
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T7 =



−0.0006 −0.9994 −0.0342
1.0000 −0.0006 −0.0000
0.0000 −0.0342 0.9994


 (5.228)

T8 =




0.9975 0.0341 −0.0615
−0.0308 0.9981 0.0538
0.0632 −0.0517 0.9967


 (5.229)

T9 =



−0.9976 0.0011 −0.0685
0.0032 0.9995 −0.0299
0.0685 −0.0301 −0.9972


 (5.230)

T10 =



−0.0011 −0.9999 −0.0109
1.0000 −0.0011 0.0003
−0.0003 −0.0109 0.9999


 (5.231)

T11 =



−0.9775 −0.1067 −0.1820
−0.1088 0.9941 0.0015
0.1808 0.0212 −0.9833


 (5.232)

T12 =



−0.0081 0.9876 −0.1566
−1.0000 −0.0080 0.0013

0 0.1566 0.9877


 (5.233)

T13 =



−0.0978 0.9951 −0.0116
0.9952 0.0978 −0.0001
0.0011 −0.0116 −0.9999


 (5.234)

We note that all the Belevitch transformer matrices above are orthogonal up to
numerical noise.

5.7 Non-reciprocal Brune stage

The multiport Brune’s Algorithm described in Chapter (5.3) produces reciprocal
stages for a reciprocal impedance response Z (s). If the response is non-reciprocal
the multiport Brune circuit extracted at each stage is slightly modified as shown in
Fig. (5.23), [122]. In Fig. (5.23) we see that a multiport gyrator with a gyration
vector γ is extracted right after the resistance r1. The circuit symbol for this
multiport gyrator is shown in Fig. (5.24). It has a single port on the left and
(N − 1) ports on the right with the following constitutive relations, [122]:

(
V1

V2

)
=

(
0 −γT
γ 0

)(
I1

I2

)
(5.235)
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← T1

r1 u1A

+
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−

γ
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N

1:n1

iL1

L1

u2A

+

y2A

−
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+
vC1−

u1B

+

y1B

−
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ν1 b1 u2B

+

y2B

−

Figure 5.23: Multiport Brune stage circuit in the case of a non-reciprocal response.
We observe the appearance of a multiport gyrator coupling the first
port to the remaining ports with a gyration vector γ as shown in
[122].

where V1, I1 are the voltage and the current of the left port and V2, I2 are vectors
of length (N − 1) holding the voltages and currents of the ports on the right,
respectively.
The network N1 has the same time-evolution description as in Eq. (5.72). How-

ever the input-output relation is slightly different with the appearance of the gy-
ration vector γ in the D1 matrix:

D1 =

(
D2AA/n

2
1 −γT + D2AB/n1

γ + D2BA/n1 D2BB

)
(5.236)

That is γ is extracted by taking the anti-symmetric part of D1.

γ

+

V1

−

I1

+

V 2

−

I2

Figure 5.24: The multiport gyrator appearing in the non-reciprocal Brune stage in
Fig. (5.23). The gyration ratios are given by the vector γ.
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5 Multiport Brune Quantization

We note that the quantization of the multiport Brune circuit with gyrators - in
the most general non-reciprocal case - is an open problem.
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CHAPTER 6

Appendix

6.1 Fidelity Analysis for the Direct Parity
Measurement

In this Appendix we will compute fidelities between output signals for the case of
a finite bandwidth probe.
We compute the fidelity between output signals corresponding to two different

qubit states |s〉 and |s′〉 . We first construct the creation operator â†pulse corre-
sponding to a finite bandwidth probe pulse as a linear combination of a densely
spaced, discrete set of harmonic modes â†ωi

[90]:

â†pulse =
∑

i

Ciâ
†
ωi

(6.1)

with

Ci =

√
δωe−(ωi−ωp)2/4W 2

(2πW 2)1/4
, (6.2)

where ωp is the center frequency, W the bandwidth of the probe signal, ωi is the
frequency of mode i, and δω is the difference between frequencies of successive
modes. In the above expression the weight Ci of each term is chosen such that in
the limit of a continuum of modes (δω → 0) the unitarity constraint is satisfied
[90]:

∑
|Ci|2 ≈

1√
2πW 2

ˆ ∞
−∞

dωe−(ω−ωp)2/2W 2

(6.3)

= 1 +O(δω). (6.4)

Now we define a coherent state of amplitude α for probe pulse:

|α〉 = e−|α|
2/2eαâ

†
pulse |0〉 . (6.5)
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If we define an amplitude αi for mode i as follows:

αi ≡ αCi = α

√
δωe−(ωi−ωp)2/4W 2

(2πW 2)1/4
(6.6)

using the fact

lim
δω→0

∑

i

|αi|2 = |α|2 lim
δω→0

∑

i

|Ci|2 = |α|2 (6.7)

we can rewrite the coherent probe state |α〉 in Eq. (6.5) in the continuum modes
limit as:

|α〉 = e−|α|
2/2eαâ

†
pulse |0〉 (6.8)

= e
− 1

2

∑
i
|αi|2

e
α
∑
i
Ciâ
†
ωi |0〉 (6.9)

=
∏

i

e−|αi|2/2eαiâ
†
ωi |0〉 (6.10)

=
∏

i

|αi〉 (6.11)

where we have defined a coherent state for each mode i as

|αi〉 = e−|αi|2/2eαiâ
†
ωi |0〉 . (6.12)

Now if the qubits are in state |s〉 the coherent component |αi〉 of the input probe
at frequency ωi will get a phase shift of θs (ωi) and go to the state

∣∣αieiθs(ωi)
〉
. If we

call |βs〉 the state of the output signal when qubits are in state |s〉 we can compute
the fidelity

F = 〈βs|βs′〉 (6.13)

=
∏

i

〈
αie

iθs(ωi)|αieiθs′ (ωi)
〉

(6.14)

=
∏

i

exp
{
− |αi|2 (1− e−i(θs(ωi)−θs′ (ωi)))

}
(6.15)

= exp

{
−
∑

i

|αi|2 (1− e−i(θs(ωi)−θs′ (ωi)))

}
. (6.16)

Expanding the phases around the center frequency of the probe ωi = ωp + ∆ωi
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θs (ωi) = θs (ωp) + θ
′

s (ωp) ∆ωi +O
(
(∆ωi)

2) , (6.17)

θs′ (ωi) = θs′ (ωp) + θ
′

s′ (ωp) ∆ωi +O
(
(∆ωi)

2) . (6.18)

Now, we consider the case when s and s’ have the same parity. Then θs (ωp) =
θs′ (ωp) mod(2π), and we get to the first order in ∆ωi

F = exp

{
−
∑

i

|αi|2 (1− e−ib∆ωi)

}
(6.19)

where we have defined
b ≡ θ

′

s (ωp)− θ
′

s′ (ωp) . (6.20)

Using the expression for αi in Eq. (6.6) and taking the limit of continuum of modes
the sum in the exponent of the above expression becomes an integral

F = exp

{
− |α|2√

2πW 2

ˆ ∞
−∞

dωe−(ω−ωp)2/2W 2

(1− e−ib(ω−ωp))

}
(6.21)

= exp
{
− |α|2

(
1− e−b2W 2/2

)}
. (6.22)

If bW � 1 then 1− e−b2W 2/2 ' b2W 2

2
so that

F ' e−|α|
2b2W 2/2. (6.23)

If we further assume that |α| bW � 1 we get

F ' 1− |α|
2 b2W 2

2
. (6.24)

The fidelity between odd and even states is given by a simpler calculation:

Feven/odd =
〈
αeiθeven |αeiθodd

〉
(6.25)

= e−|α|
2(1−cos ∆θ) ≈ e−2|α|2 . (6.26)

The final expression is a consequence of the fact that ∆θ ≈ π.
Another case we look at, relevant for the alternative scheme of [35], is the case

of matching linear dispersion (i.e. b = 0) but finite quadratic dispersion mismatch

b′ ≡ d2θs (ω)

dω2

∣∣∣∣
ωp

− d2θs (ω)

dω2

∣∣∣∣
ωp

. (6.27)
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Then the fidelity, for the case of the same parity, is

F =

∣∣∣∣∣exp

{
−
∑

i

|αi|2 (1− e−ib′(∆ωi)
2

)

}∣∣∣∣∣ . (6.28)

Again in the limit of continuum of modes F becomes

F =

∣∣∣∣∣exp

{
− |α|2√

2πW 2

ˆ ∞
−∞

dωe−(ω−ωp)2/2W 2

(1− e−ib′(ωi−ωp)2)

}∣∣∣∣∣ (6.29)

=

∣∣∣∣exp

{
− |α|2

(
1− 1√

1 + 2ib′W 2

)}∣∣∣∣ (6.30)

= exp

{
Re

[
− |α|2

(
1− 1√

1 + 2ib′W 2

)]}
(6.31)

= exp



− |α|

2


1−

√
1 +
√

1 + 4b′2W 4

2 + 8b′2W 4





 (6.32)

' 1− 3 |α|2 b′2W 4

2
+O

(
|α|4

(
b′W 2

)4
)

(6.33)

where we assumed that b′W 2 � 1 and |α| b′W 2 � 1.
To get an estimate for the power of the measurement signal we assume that the

signal contains |α|2 = 5 photons and that it has duration T = 1µs so that the
peak power P will roughly be P = |α|2~ωp

T
= −135 dBm.
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6.2 Review of lumped element circuit quantization methods

6.2 Review of lumped element circuit quantization
methods

In this chapter we will review two formalisms [17, 18] developed for the quantization
of the lumped element superconducting circuits. We won’t attempt to do a full
review of each formalism. We will rather content ourselves with describing how to
combine parts of each formalism for the purpose of quantizing Brune circuits. In
the following we will refer to [17] as “BKD” and to [18] as “Burkard”; “KCL” stands
for Kirchhoff’s current law and “KVL” stands for Kirchhoff’s voltage law.
Both methods derive classical equations of motions for the lumped element cir-

cuits and identify canonical variables. They both start with a graph theoretical
analysis by choosing a spanning tree in the circuit to write KCL and KVL re-
lations involving current and voltage variables in the circuit. We will follow the
graph analysis done in Burkard. This will allow us to write an equation of motion
and to identify the canonical degrees of freedom of the circuit. We will need to
make slight modifications to the theory to be able to treat Brune circuits. Once
we have the equation of motion, we will interpret it as an equation of motion of
BKD to do a dissipation analysis and compute relaxation rates.

6.2.1 Derivation of the equation of motion by Burkard’s
method

The first step in Burkard is to find a spanning tree containing all the Josephson
junctions, voltage sources and impedances in the circuit. One can also put linear
inductors in the tree. However there should be no capacitors in the tree so that
all capacitors are in the chord branches. Linear inductors are also allowed to be
in the chord branches. Burkard assumes that there is no loop containing only
Josephson junctions, voltage sources and impedances which is physically justified
since in reality each loop would have a finite self-inductance.
With the choice of such a spanning tree we can partition the current and voltage

vectors as follows

Itr = (IJ , IL, IV , IZ) (6.34)

Vtr = (VJ , VL, VV , VZ) (6.35)

Ich = (ICJ
, IC , IK) (6.36)

Vch = (VCJ
, VC , VK) (6.37)
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where Itr and Ich are the vectors holding the currents through the tree and chord
branches and Vtr and Vch are vectors holding the voltages across the tree and
chord branches, respectively. Labels J , L, K, V , Z, CJ , C correspond to Josephson
junctions, tree inductors, chord inductors, voltage sources, impedances, Josephson
junction capacitances and ordinary capacitances, respectively. In terms of those
loop variables Kirchhoff’s laws can be written as

FIch = −Itr (6.38)

FTVtr = Vch − Φ̇x (6.39)

where we have introduced the loop matrix F defined in Eq. (3) of Burkard.
Φx = (Φ1, . . . ,ΦF ) is the flux bias vector holding the external fluxes threading
F fundamental loops of the circuit, each fundamental loop being defined by a
chord branch. The loop matrix F can be partitioned as

F =




I FJC FJK

0 FLC FLK

0 FV C FV K

0 FZC FZK


 (6.40)

The first column is due to Josephson junction capacitances CJ ’s shunting only the
Josephson junctions.
Burkard further assumes that the voltage sources and the impedances are not

inductively shunted in the sense that

FV K = FZK = 0 (6.41)

Then by writing KCL for Josephson junctions and tree inductors and KVL for
chord capacitors Burkard derives the first-order equation of motion (Eq. (19) in
Burkard - we fixed a sign typo)

CΦ̇ = Q−CV VV + FCCZ ∗VC (6.42)

where the vector Φ holds the flux degrees of freedom corresponding to the fluxes
across the Josephson junctions (J) and tree inductor branches (L)

Φ =

(
ΦJ

ΦL

)
(6.43)

with ΦJ = Φ0ϕJ/2π, ϕJ being the vector of phases across the Josephson junctions.
The canonical charge variables are given by the vector Q
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Q = −
(

QJ

QL

)
−FKQK (6.44)

with

FK =

(
FJK

FLK

)
(6.45)

FC =

(
FJC

FLC

)

and the capacitance matrices in Eq. (6.42) are given by

C =

(
CJ 0
0 0

)
+ FCCFTC (6.46)

CV = FCCFT
V C (6.47)

CZ (ω) = (iω) CFT
ZCZ (ω) FZCC (6.48)

where C is the diagonal matrix of ordinary capacitances in the circuit except
Josephson junctions’ capacitances such that

QC = CVC (6.49)

The last term FCCZ ∗VC in Eq. (6.42) is the dissipative term. This term can
also be written in frequency domain as

FCCZ (ω) VC = −FCCFT
ZCZ (ω) IZ (6.50)

IZ can be written as function of flux degrees of freedom Φ and voltage sources VV

as

IZ = − (iω)
[
I + (iω) FZCCFT

ZCZ (ω)
]−1

FZCCFTC Φ̇

− (iω)
[
I + (iω) FZCCFT

ZCZ (ω)
]−1

FZCCFT
V CVV (6.51)

If we define

m̄ = FCCFT
ZC (6.52)

m̄V = FV CCFT
ZC (6.53)

and as in Eq. (28) of Burkard
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C̄Z (ω) = − (iω) Z (ω)
[
I + (iω) FZCCFT

ZCZ (ω)
]−1 (6.54)

We can rewrite Eq. (6.51) in terms of the newly defined quantities in Eqs. (6.52),
(6.53) and (6.54) as

IZ = Z−1 (ω) C̄Z (ω) m̄T Φ̇ + Z−1 (ω) C̄Z (ω) m̄T
V VV (6.55)

Replacing the solution for IZ in Eq. (6.55) in Eq. (6.50) we get

FCCZ (ω) VC = −m̄C̄Z (ω) m̄T Φ̇− m̄C̄Z (ω) m̄T
V VV (6.56)

Defining also

CZ (ω) = m̄C̄Z (ω) m̄T (6.57)

and

CV (ω) = m̄C̄Z (ω) m̄T
V (6.58)

We can write the dissipative term in Eq. (6.56) in terms of the quantities in
Eqs. (6.57) and (6.58) as

FCCZ (ω) VC = −CZ (ω) Φ̇− CV (ω) VV (6.59)

Note that we have extracted an additional non-dissipative term CV (ω) VV in the
equation above.
Plugging the dissipative term in Eq. (6.59) back in the equation of motion in

Eq. (6.42) we get in time domain

(C + CZ (t)) ∗ Φ̇ = Q− (CV + CV (t)) ∗VV (t) (6.60)

Note that the Eq. (6.60) is more general than Burkard’s equation of motion in
Eq. (25) of [18] since we allow a general voltage source term VV (t) with possible
frequency components both at DC and AC. The vector CV (t) is due to AC com-
ponents of VV (t). In the case of a DC voltage source term VV , CV (ω) VV (ω) = 0
for ω 6= 0 and CV (ω) = 0 for ω = 0 so we recover Burkard’s equation of motion.
Eq. (6.60) will lead to the more general Hamiltonian in Eq. (6.83) below.
It is interesting to note here that since the vector Φ̇ is equal to the vector of

voltages across the Josephson junction branches and tree inductors, the factor
(C + CZ (ω)) in Eq. (6.42) is an admittance matrix and the Eq. (6.42) is the KCL
for the tree branches.
Taking the time derivative of both sides in Eq. (6.60) we obtain

(C + CZ) ∗ Φ̈ = Q̇− ĊV ∗VV (6.61)
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Taking the dissipative term CZ ∗ Φ̈ to the right-hand side by noting the identity

CZ ∗ Φ̈ = C̈Z ∗Φ (6.62)

And using the Eq. (29) Q̇ = − ∂U
∂Φ

of Burkard with the potential U

U (Φ) = −L−1
J cosϕ+

1

2
ΦTM0Φ + ΦTNΦx (6.63)

where

M0 = GL−1
t GT (6.64)

N = GL−1
t

(
0 IK

)T (6.65)

with L−1
t being the inverse inductance matrix such that

(
IL
IK

)
= L−1

t

(
ΦL

ΦK

)
(6.66)

and

G =

(
0 −FJK

IL −FLK

)
(6.67)

we get

C ∗ Φ̈ = −Icsinϕ−M0Φ− C̈Z ∗Φ− ĊV ∗VV −NΦx (6.68)

where Ic = Φ0

2π
L−1
J is the diagonal matrix of critical currents.

6.2.2 Treatment of resistors and relaxation rate calculations
using BKD method

Before writing a Hamiltonian for the equation of motion in Eq. (6.68) we have
one more step to do. We again need to stretch Burkard theory slightly to include
the resistors {R1, . . . , RN} shunting the last stage of the multiport Brune circuit
in our analysis. The trick we used for that purpose as described in the main text
for the one-port Brune circuit was to replace those resistors by capacitors and to
make the substitution Cj ← 1

iωRj
for 1 ≤ j ≤ N after we obtained the equation of

motion. To do a similar analysis for the multiport Brune circuit, here we extend
Burkard’s method to include chord resistors.
We start by partitioning the matrix C
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C =

(
C0 0
0 CR

)
(6.69)

where C0 and CR are diagonal matrices of size M ×M and N ×N , respectively.
Diagonal entries of C0 hold the values of ordinary capacitors in the circuit whereas
CR is an auxiliary matrix which will be substituted later as

CR ← (iω)−1 R−1 (6.70)

where R is theN×N diagonal matrix holding the values of the resistances shunting
the last stage

R =




R1 0
. . .

0 RN


 (6.71)

We also partition FC respecting the partitioning of C in Eq. (6.69) as follows

FC =
(
FC0 FCR

)
(6.72)

where FC0 , FCR
are submatrices with M and N columns, respectively.

Now we can decompose the capacitance matrix C in Eq. (6.46) using Eqs. (6.69)
and (6.72) as

C =

(
CJ 0
0 0

)
+ FCCFTC (6.73)

=

(
CJ 0
0 0

)
+ FC0C0FTC0

+ FCR
CRFTCR

(6.74)

= C0 + CR (6.75)

where we defined

C0 =

(
CJ 0
0 0

)
+ FC0C0FTC0

(6.76)

CR = FCR
CRFTCR

(6.77)

Making the substitution in Eq. (6.70) we get the following dissipative term on
left-hand side of the equation of motion in Eq. (6.68)
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CR ∗ Φ̈ = ĊR ∗ Φ̇ (6.78)
=

(
FCR

R−1FTCR

)
∗ Φ̇ (6.79)

= R−1Φ̇ (6.80)

where in the first line we used differentiation property of the convolution operator,
in the second line we used the Eqs. (6.70) and (6.77) and in the third line we
defined

R−1 = FCR
R−1FTCR

(6.81)

which is frequency independent, justifying dropping the convolution operator in
Eq. (6.80). Now taking the dissipative term in Eq. (6.80) due to the last shunt
resistors R to the right-hand side of the equation of motion in Eq. (6.68) and
noting also the decomposition in Eq. (6.75), we re-write the equation of motion
(6.68)

C0 ∗ Φ̈ = −Icsinϕ−R−1Φ̇−M0Φ− C̈Z ∗Φ− ĊV ∗VV −NΦx (6.82)

Following Burkard we can write the following Hamiltonian for the lossless part
of the dynamics described by the Eq. (6.82)

HS =
1

2
(Q− (CV + CV ) ∗VV (t))T C−1

0 (Q− (CV + CV ) ∗VV (t))+U (Φ) (6.83)

A point to note here is that although CV defined in Eq. (6.47) is frequency inde-
pendent, after the substitution in Eq. (6.70) it will acquire frequency dependence
which we will analyze further down below in Chapter (6.2.3).
Comparing again the equation motion in Eq. (61) of BKD with the Eq. (6.82)

above we identify

R−1
BKD ↔ R−1 (6.84)

where RBKD is now the resistivity matrix defined in Eq. (25) of BKD. We note
however that R−1

BKD is diagonal whereas R−1 is in general non-diagonal.
To compute the contribution of the shunt resistor Rj alone to the relaxation rate

we set Rk =∞ for 1 ≤ k ≤ N and k 6= j to write the term R−1Φ̇ in the equation
of motion in Eq. (6.82) in the frequency domain as

(iω)R−1Φ
∣∣
Rk→∞,k 6=j

= (iω)R−1
j FRj ,CR

FTRj ,CR
Φ (6.85)
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where FRj ,CR
is the jth column of the matrix FCR

corresponding to the resistor Rj

(or the capacitor CRj
). Comparing now

Md (ω)↔ (iω)R−1
j FRj ,CR

FTRj ,CR
(6.86)

where Md (ω) is the dissipation matrix defined in Eq. (72)-(75) of BKD we identify
the coupling vector

m̄Rj
= FRj ,CR

(6.87)

and the dissipation kernel is given by

KRj
(ω) =

iω

Rj

(6.88)

Using Eq. (93) of BKD we define the spectral density of the bath corresponding
to the resistor Rj as (correcting the sign and dropping the scale factor)

JRj
(ω) = Im

[
KRj

(ω)
]

(6.89)

=
ω

Rj

(6.90)

Hence the contribution of Rj to the relaxation rate is given by the formula in Eq.
(124) of BKD as

1

T1,Rj

=
4

~
∣∣〈0
∣∣m̄Rj

·Φ
∣∣ 1
〉∣∣2 JRj

(ω01) coth

(
~ω01

2kBT

)
(6.91)

where ω01 is the qubit frequency. Here we used flux variable Φ and m̄Rj
since

we dropped the scale factor in Eq. (6.114) (BKD uses phase variable ϕ and the
normalized vector m).
We need to also consider the effect of last shunt resistors on the matrices C̈Z

and ĊV appearing in the equation of motion in Eq. (6.82) above. For this we first
make the following partitioning for the matrix FZC

FZC =
(

FZC0 FZCR

)
(6.92)

where the submatrices FZC0 and FZCR
have M and N columns, respectively.

Then using also the partitioning in Eq. (6.69) and the substitution Eq. (6.70)
we can re-write the matrix C̄Z (ω) defined in Eq. (6.54) as C̄Z,R (ω)

C̄Z,R (ω) = C̄Z (ω)
⌋

CR←(iω)−1R−1 (6.93)

= − (iω) ZR (ω)
[
I + (iω) FZC0C0F

T
ZC0

ZR (ω)
]−1 (6.94)
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where we have defined

ZR (ω) = Z
[
I + FZCR

R−1FT
ZCR

Z
]−1 (6.95)

with

Z =




r1 0
. . .

0 rM


 (6.96)

being the diagonal matrix of in-series resistances r1, . . . , rM in the circuit.
Since we will consider resistors one at a time we will take the limit R → ∞

(which corresponds to open circuiting the last stage in the Brune circuit) in Eq.
(6.95) above to define

C̄Z,r (ω) = C̄Z,R (ω)
⌋

R→∞ (6.97)

= − (iω) Z
[
I + (iω) FZC0C0F

T
ZC0

Z
]−1 (6.98)

We will see later below that C̄Z,r (ω) is proportional to the dissipation kernel due
to in-series resistors.
We need to also update the coupling matrix m̄ defined in Eqs. (6.52) above

to account for the effect of shunt resistors on the terms due to in-series resistors.
First we again make a partitioning

FC =
(
FC0 FCR

)
(6.99)

Then using this partitioning and Eqs. (6.52), (6.69), (6.70) and (6.92) we can
write the decomposition

m̄ = m̄0 + m̄R (ω) (6.100)

where we defined

m̄0 = FC0C0F
T
ZC0

(6.101)

m̄R (ω) = (iω)−1FCR
R−1FT

ZCR
(6.102)

Here, however, we will only use the zeroth order term in Eq. (6.101) to define

CZ,r (ω) = m̄0C̄Z,r (ω) m̄T
0 (6.103)
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Note that the frequency dependent factors (iω)−1 appearing in higher orders terms
due to the coupling matrix m̄R (ω) in Eq. (6.102) above can be absorbed in the
corresponding C̄Z (ω) matrices if one wants to investigate higher order effects.
Comparing Eq. (6.82) with the equation of motion of BKD (Eq. (61) in [17])

we make the following identification

Md ↔ C̈Z,r (6.104)
Md (ω) ↔ −ω2CZ,r (ω) (6.105)

where on the left we have the dissipation matrix defined in BKD and on the right
we have the dissipation matrix appearing in Eq. (6.82). The capacitance matrix C0

in Eq. (6.82) maps directly to the capacitance matrix C in BKD and the stiffness
matrices M0 appearing in Eq. (6.82) and BKD map to each other.
To do a dissipation analysis we will treat the Eq. (6.82) as an equation of motion

of BKD and we will do a Caldeira-Leggett analysis using the identification in Eq.
(6.105). By Eq. (64) in BKD we have

Md (ω) = m̄L̄−1
Z (ω) m̄T (6.106)

And by Eq. (6.103)

CZ,r (ω) = m̄0C̄Z,r (ω) m̄T
0 (6.107)

Hence by using Eq. (6.105) we further identify

L̄−1
Z (ω)↔ −ω2C̄Z,r (ω) (6.108)

Coupling matrices m̄ and m̄0 map to each other directly

m̄↔ m̄0 (6.109)

To compute the contribution of each resistor to the relaxation rate 1/T1 we will
treat each resistor seperately. In that case by Eq. (73) in BKD we have

K (ω) = L̄−1
Z (ω) (6.110)

where K (ω) is a scalar. Hence by Eq. (6.108) we get

Kj (ω) = −ω2C̄Z,rj (ω) (6.111)

for the equation of motion in Eq. (6.82), where we defined
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C̄Z,rj (ω) = C̄Z,r (ω)
∣∣
rk=0, for k 6=j (6.112)

= −iωrj
[
1 + iωrjFrj ,C0C0F

T
rj ,C0

]−1

(6.113)

where Frj ,C0 is the jth row of the matrix FZC0 defined in Eq. (6.92). We note
that C̄Z,rj (ω) is a scalar. That is we are treating only the in-series resistor rj by
short circuiting the other in-series resistors setting rk = 0 for k 6= j. Note that
shunt resistors R are already open circuited by taking the limit of R → ∞ in
the definition of C̄Z,r (ω) in Eq. (6.97). We also define the coupling vector m̄j of
the bath due to the resistor rj to the circuit degrees of freedom by taking the jth
column of the coupling matrix m̄0 in Eq. (6.107).
Using Eq. (93) of BKD we define the spectral density of the bath corresponding

to the resistor rj as (again correcting the sign and dropping the scale factor)

Jj (ω) = Im [Kj (ω)] (6.114)

We can now write the contribution of the resistor rj to the relaxation rate using
the formula in Eq. (124) of BKD as

1

T1,rj

=
4

~
|〈0 |m̄j ·Φ| 1〉|2 Jj (ω01) coth

(
~ω01

2kBT

)
(6.115)

where ω01 is the qubit frequency. Here we again used flux variable Φ and m̄j since
we dropped the scale factor in Eq. (6.114).

6.2.3 Analysis of voltage source couplings
Now we will update the CV and the CV matrices to account for the effect of the
resistors R shunting the last Brune stage. Making first the partitioning

FV C =
(

FV C0 FV CR

)
(6.116)

Then using the definition for CV in Eq. (6.47) together with partitionings (6.69),
(6.99) and (6.116) we can decompose CV as

CV = CV,0 + CV,R (ω) (6.117)

where we have defined

CV,0 = FC0C0F
T
V C0

(6.118)

and
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CV,R (ω) = (iω)−1FCR
R−1FT

V CR
(6.119)

We note the frequency dependence of CV,R.
A similar analysis can be done also for the m̄V matrix defined in Eq. (6.53).

Then again using the partitioning in Eq. (6.116) and Eqs. (6.53), (6.69), (6.70)
and (6.92) we can write the decomposition

m̄V = m̄V,0 + m̄V,R (ω) (6.120)
where we defined

m̄V,0 = FV C0C0F
T
ZC0

(6.121)

m̄V,R (ω) = (iω)−1 FV CR
R−1FT

ZCR
(6.122)

Now using the definition for CV in Eq. (6.58) together with the decompositions
Eq. (6.100), (6.120) and the updated C̄Z (ω) defined as C̄Z,R (ω) in Eq. (6.93) we
can re-write CV as

CV (ω) = m̄ C̄Z (ω)
⌋

CR←(iω)−1R−1 m̄T
V (6.123)

= (m̄0 + m̄R (ω)) C̄Z,R (ω) (m̄V,0 + m̄V,R (ω))T (6.124)

Unlike the dissipation matrix CZ we will keep the full expression for the term
CV (ω) since it is not a dissipative term. However we will combine the frequency
dependent term CV,R (ω) defined in Eq. (6.119) with CV (ω) in Eq. (6.124) to
define

CV,R (ω) = CV,R (ω) + CV (ω) (6.125)
Using the matrices defined in Eq. (6.103) and (6.125) above we write again the

equation of motion in Eq. (6.82) as

C0 ∗ Φ̈ = −Icsinϕ−R−1Φ̇−M0Φ− C̈Z,r ∗Φ− ĊV,R ∗VV −NΦx (6.126)

The Hamiltonian of the system described by the equation of motion in Eq.
(6.126) is given by

HS =
1

2
[Q− (CV,0 + CV,R (t)) ∗VV (t)]T C−1

0 [Q− (CV,0 + CV,R (t)) ∗VV (t)]+U (Φ)

(6.127)
This time-dependent Hamiltonian is the extension of the Hamiltonian given in

Eq. (36) of Burkard to a time-dependent voltage source vector VV (t).
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C L R

Figure 6.1: Generic shunt resonant stage in lossy Foster circuit

6.3 Lossy Foster Method

Foster’s Theorem can be extended to responses with small loss [93]. We start with
the partial fraction expansion for Z (s)

Z (s) =
∑

k

Rk

s− sk
(6.128)

where Rk’s are residues and sk’s are poles. Residues and poles come in complex
conjugate pairs. If we define

sk = ξk + jωk (6.129)
Rk = ak + jbk (6.130)

Collecting terms corresponding to conjugate pairs

Zk (s) = Rk

s−sk
+

R∗k
s−s∗k

(6.131)

= 2aks−(akξk+bkωk)

s2−2ξks+ξ
2
k+ω2

k
(6.132)

One can show that for physical circuits with small loss ξk and bk are both small
quantities [94]. Hence we can approximately write

Zk (s) ∼= 2aks

s2 − 2ξks+ ω2
k

(6.133)

The impedance function of the shunt-resonant circuit as depicted in Fig. (6.1) is

Z (s) =

ω0R
Q
s

s2 + ω0

Q
s+ ω2

0

(6.134)
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with

ω2
0 =

1

LC
(6.135)

Q = ω0RC (6.136)

Hence we see that we can realize the function Zk (s) in Eq. (6.133) by a circuit as
in Fig. (6.1) with

R = −ak/ξk (6.137)
ω0 = ωk (6.138)
Q = −ωk/2ξk (6.139)

and the impedance in Eq. (6.128) can be realized as in Fig. (6.2) by a series
connection of stages in Fig. (6.1).

C1

R1

L1

CM

RM

LM

Figure 6.2: Lossy Foster Circuit
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Ci Cj

γk

Figure 6.3: A gyrator shunted by tree capacitors Ci and Cj connected to the rest of
the circuit. To treat a circuit that contains such an arrangement in the
BKD formalism [17] we should assume that there exists a tree which
contains the capacitors Ci and Cj and none of the gyrator branches.

6.4 Treatment of capacitor shunted gyrators in
BKD formalism

In this section we show how to deal with gyrators in BKD formalism [17]. We
assume that every gyrator in the circuit is shunted by two tree capacitors at both
of its ports as shown in Fig. (6.3). We also assume that it is possible to choose
a tree that contains all the capacitors in the circuit including Ci and Cj and that
contains none of the gyrator branches. We will treat gyrator branches as resistive
branches. Such a treatment will give us an anti-symmetric resistance matrix G
with Gij = γk and Gji = −γk to be compared to the resistance matrix R in the
equation of motion Eq. (61) of BKD [17]

G↔ R (6.140)

Note that we can assume that the matrix R corresponds only to gyrator branches
such that R = G since as noted in BKD [17] one can absorb pure resistances into
the dissipation matrix Md. We will then have the gyration term −G−1ϕ̇ in the
equation of motion which will correspond to an additional term 1

2

(
Φ0

2π

)2
ϕ̇TG−1ϕ

in the Lagrangian in Eq. (76) of BKD [17] such that

L0 =

(
Φ0

2π

)2(
1

2
ϕ̇TCϕ̇+

1

2
ϕ̇TG−1ϕ− U (ϕ)

)
(6.141)

and a shift of −1
2

(
Φ0

2π

)
G−1ϕ in the momentum in the Hamiltonian in Eq. (78) of

BKD [17] such that

HS =
1

2

(
QC −

1

2

(
Φ0

2π

)
G−1ϕ

)T
C−1

(
QC −

1

2

(
Φ0

2π

)
G−1ϕ

)
+

(
Φ0

2π

)2

U (ϕ)

(6.142)
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C C

γ

Figure 6.4: A gyrator shunted by two capacitors of the same value C whose Hamil-
tonian is equivalent to the Hamiltonian of an electron in a uniform
magnetic field.

This is to be compared to the Hamiltonian of an electron in a uniform magnetic
field; recall

He =
1

2me

(p− eA (r))T (p− eA (r)) + V (r) (6.143)

where me and e are the mass and charge of an electron, respectively and V (r) and
A (r) are electric and vector potentials, respectively.
For a magnetic field B = Bzẑ in the z-direction we can choose the vector

potential A (r) = −1
2
Bzyx̂ + 1

2
Bzxŷ such that B = ∇ × A . Hence A (r) =

−1
2
Bz

(
0 1
−1 0

)
r. If we also assume a zero electric potential V (r) = 0 then the

Hamiltonian in Eq. (6.143) is equivalent to the Hamiltonian of the circuit in Fig.
(6.4).
The circuit in Fig. (6.4) has the Hamiltonian

Hs =
1

2

(
QC −

1

2

(
Φ0

2π

)
G−1ϕ

)T
C−1

(
QC −

1

2

(
Φ0

2π

)
G−1ϕ

)
(6.144)

with C =

(
C 0
0 C

)
and G =

(
0 γ
−γ 0

)
. Hence if we make the correspondence

for the canonical variables

QC ↔ p (6.145)(
Φ0

2π

)
ϕ ↔ r (6.146)

then we can relate

C ↔ me (6.147)
γ−1 ↔ eBz (6.148)
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6.5 Derivation of the effective Kirchhoff’s voltage
law

6.5.1 Effective Kirchhoff’s voltage law for the one-port
state-space Brune circuit

Here we present the effective Kirchhoff analysis for the Kirchhoff’s voltage law for
the one-port state-space Brune circuit in Fig. (4.4). The treatment here will be
along similar lines with the analysis we did in Chapter (4.3) to get the effective
Kirchhoff’s current law.
We start by writing the Kirchhoff’s voltage law for the circuit in Fig. (4.4)

FTVtr = Vch

where the voltages are partitioned as

Vtr =
(
VJ ,VL,VZ ,V

(tr)
T

)
(6.149)

Vch =
(
VC ,V

(ch)
T

)
(6.150)

and the loop matrix matrix FT is partitioned by Eq. (4.68) as

FT =

(
FT
JC FT

LC FT
ZC FT

TC

FT
JT FT

LT FT
ZT FT

TT

)

We will show that we can get an effective Kirchhoff’s voltage law

(
FT
)eff

Veff
tr = Veff

ch

for some effective loop matrix
(
FT
)eff partitioned as

(
FT
)eff

=
( (

FT
JC

)eff (
FT
LC

)eff (
FT
ZC

)eff )

by eliminating the transformer branches’ voltage variables

Veff
tr = (VJ ,VL,VZ) (6.151)

Veff
ch = VC (6.152)

First we note the following in the circuit in Fig. (4.4)

V
(ch)
T = −VL (6.153)
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Hence by the transformer voltage relations we have

V
(tr)
T = NV

(ch)
T (6.154)

= − NVL (6.155)

where N is the diagonal turns ratio matrix defined in Eq. (4.79).
Now writing voltages of the chord capacitors as a function of voltages of tree

branches in the circuit in Fig. (4.4) we get

VC = FT
JCVJ + FT

LCVL + FT
ZCVZ + FT

TCV
(tr)
T (6.156)

with

FT
JC =




1
...
1


 (6.157)

FT
LC =




1
1 1 0
...

... . . .
1 1 · · · 1
1 1 · · · 1




(6.158)

FT
ZC =




1
1 1 0
...

... . . .
1 1 · · · 1
1 1 · · · 1




(6.159)

FT
TC =




0 0

1
. . .

... . . . 0
1 · · · 1


 (6.160)

where FT
JC is a vector of length (M + 1) and FT

LC , FT
ZC , FT

TC are matrices of size
(M + 1)×M .
Using Eqs. (6.155) and 6.156 we get

VC = FT
JCVJ + (FT

LC − FT
TCN)VL + FT

ZCVZ (6.161)

from which we conclude
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(
FT
JC

)eff
= FT

JC (6.162)
(
FT
LC

)eff
= FT

LC − FT
TCN (6.163)

(
FT
ZC

)eff
= FT

ZC (6.164)

and the effective Kirchhoff’s voltage law

(
FT
)eff

Veff
tr = Veff

ch (6.165)

Comparing above Eqs. (6.162)-(6.164) with (4.84), (4.86) and (4.89) of Section
(4.3) we conclude

(
FT
JC

)eff
=

(
Feff
JC

)T
(6.166)

(
FT
LC

)eff
=

(
Feff
LC

)T
(6.167)

(
FT
ZC

)eff
=

(
Feff
ZC

)T
(6.168)

Hence

(
FT
)eff

=
(
Feff

)T (6.169)

6.5.2 Effective Kirchhoff’s voltage law for the multiport
Brune circuit

In this section we will derive an effective Kirchhoff’s voltage law for multiport
Brune circuit in Fig. (5.11). We write Kirchhoff’s voltage law

FTVtr = Vch (6.170)

with partioning in Eqs. (5.94) and (5.95) for voltage vectors Vtr and Vch respec-
tively. We note that the relation in Eq. (6.170) derives from a graph theoretical
analysis [18] of the multiport Brune network.
We will further partition voltage vectors V

(tr)
T and V

(ch)
T for the transformer

branches as follows

V
(tr)
T =

(
V(R)
n ,V

(R)
T ,V(R)

ν

)
(6.171)

V
(ch)
T =

(
V(L)
n ,V

(L)
T ,V(L)

ν

)
(6.172)
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where

V(R)
n =

(
V (R)
n1

, . . . , V (R)
nM

)
(6.173)

V
(R)
T =

(
V

(R)
T1
, . . . ,V

(R)
TM+1

)
(6.174)

V(R)
ν =

(
V(R)

ν1
, . . . ,V(R)

νM

)
(6.175)

and

V(L)
n =

(
V (L)
n1

, . . . , V (L)
nM

)
(6.176)

V
(L)
T =

(
V

(L)
T1
, . . . ,V

(L)
TM+1

)
(6.177)

V(L)
ν =

(
V (L)
ν1

, . . . , V (L)
νM

)
(6.178)

with

V
(L)(R)
Tj

=




V
(L)(R)
Tj ,1
...

V
(L)(R)
Tj ,N


 (6.179)

V(R)
νj

=




V
(R)
νj ,2
...

V
(R)
νj ,N


 (6.180)

where V
(L)(R)
Tj

are vectors of length N for 1 ≤ j ≤ M + 1 and V
(R)
νj are vectors of

length (N − 1) for 1 ≤ j ≤M .
We will move in the opposite direction to the direction we have chosen in Section

(5.5) through the multiport Brune circuit while deriving effective loop matrices.
That is we will start at the leftmost part of the multiport Brune circuit in Fig.
(5.11) and move to the right. For simplicity we again assume that all of the ports
of the multiport Brune circuit are shunted by Josephson junctions as shown in Fig.
(5.18); we get the relation

V
(L)
T1

= VJ (6.181)

where VJ is the vector holding the voltages across the Josephson junctions shunting
the ports of the multiport Brune circuit.
The voltages of inter-stage transformers are given by Eq. (5.114)
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V
(R)
Tj

= TT
j V

(L)
Tj

(6.182)

for 1 ≤ j ≤ M + 1, where Tj is the (N ×N) Belevitch transformer matrix of the
jth stage. The voltages of consecutive inter-stage transformers are related by

V
(L)
Tj+1

= AT
j e1Vrj + υTj VLj

+ AT
j V

(R)
Tj

(6.183)

for 1 ≤ j ≤M , where e1 =
(

1 0 . . . 0
)T is the unit vector, Aj is the (N ×N)

matrix defined in Eq. (5.123) and υj is the row vector defined in Eq. (5.125).

We can write the voltage VCj
across the capacitor Cj at the jth stage as

VCj
= VLj

+ Vrj + eT1 V
(R)
Tj

(6.184)

We are now going to iterate over the index j starting at j = 1 through the stages
in the multiport Brune circuit using the Eqs. (6.181), (6.182), (6.183) and (6.184)
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V
(R)
T1

= TT
1 V

(L)
T1

= TT
1 VJ

V
(L)
T2

= AT
1 e1Vr1 + υT1 VL1 + AT

1 V
(R)
T1

= AT
1 e1Vr1 + υT1 VL1 + AT

1 TT
1 VJ

VC1 = VL1 + Vr1 + eT1 V
(R)
T1

= VL1 + Vr1 + eT1 TT
1 VJ

V
(R)
T2

= TT
2 V

(L)
T2

= TT
2 AT

1 e1Vr1 + TT
2 υ

T
1 VL1 + TT

2 AT
1 TT

1 VJ

V
(L)
T3

= AT
2 e1Vr2 + υT2 VL2 + AT

2 V
(R)
T2

= AT
2 TT

2 AT
1 e1Vr1 + AT

2 e1Vr2 + AT
2 TT

2 υ
T
1 VL1 + υT2 VL2 +

+AT
2 TT

2 AT
1 TT

1 VJ

VC2 = VL2 + Vr2 + eT1 V
(R)
T2

= eT1 TT
2 AT

1 e1Vr1 + Vr2 + eT1 TT
2 υ

T
1 VL1 + VL2 +

+eT1 TT
2 AT

1 TT
1 VJ

V
(R)
T3

= TT
3 V

(L)
T3

= TT
3 AT

2 TT
2 AT

1 e1Vr1 + TT
3 AT

2 e1Vr2 +

+TT
3 AT

2 TT
2 υ

T
1 VL1 + TT

3 υ
T
2 VL2 + TT

3 AT
2 TT

2 AT
1 TT

1 VJ

V
(L)
T4

= AT
3 e1Vr3 + υT3 VL3 + AT

3 V
(R)
T3

= AT
3 TT

3 AT
2 TT

2 AT
1 e1Vr1 + AT

3 TT
3 AT

2 e1Vr2 + AT
3 e1Vr3 +

+AT
3 TT

3 AT
2 TT

2 υ
T
1 VL1 + AT

3 TT
3 υ

T
2 VL2 + υT3 VL3 + AT

3 TT
3 AT

2 TT
2 AT

1 TT
1 VJ

VC3 = VL3 + Vr3 + eT1 V
(R)
T3

= eT1 TT
3 AT

2 TT
2 AT

1 e1Vr1 + eT1 TT
3 AT

2 e1Vr2 + Vr3 +

+eT1 TT
3 AT

2 TT
2 υ

T
1 VL1 + eT1 TT

3 υ
T
2 VL2 + VL3 +

+eT1 TT
3 AT

2 TT
2 AT

1 TT
1 VJ (6.185)

...
...

...

Hence from the above relations we define the following for 1 ≤ j ≤ M and 1 ≤
k ≤M





(
FT
LC

)eff
(j, k) = 0 for j < k ≤M(

FT
LC

)eff
(j, k) = 1 for k = j(

FT
LC

)eff
(j, k) = eT1 TT

k+1υ
T
k for k = j − 1(

FT
LC

)eff
(j, k) = eT1 TT

j AT
j−1T

T
j−1 . . .A

T
k+1T

T
k+1υ

T
k for 1 ≤ k ≤ j − 2

(6.186)
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



(
FT
ZC

)eff
(j, k) = 0 for j < k ≤M(

FT
ZC

)eff
(j, k) = 1 for k = j(

FT
ZC

)eff
(j, k) = eT1 TT

j AT
j−1T

T
j−1 . . .A

T
k+1T

T
k+1A

T
k e1 for 1 ≤ k ≤ j − 1

(6.187)
and for 1 ≤ k ≤ N

{(
FT
JC

)eff
(j, k) = eT1 TT

1 ek for j = 1(
FT
JC

)eff
(j, k) = eT1 TT

j AT
j−1T

T
j−1 . . .A

T
1 TT

1 ek for 1 < j ≤M
(6.188)

To compute effective loop submatrices for j > M we note from Eq. (6.185) the
following

V
(L)
TM+1

= AT
MTT

M . . .AT
2 TT

2 AT
1 e1Vr1 + . . .+ AT

Me1VrM +

+AT
MTT

M . . .AT
2 TT

2 υ
T
1 VL1 + . . .+ υTMVLM

+

+AT
MTT

M . . .AT
1 TT

1 VJ (6.189)

Writing also the voltage relations for the last stage transformer using Eq. (6.182)

V
(R)
TM+1

= TT
M+1V

(L)
TM+1

(6.190)

And noting

VCR
= V

(R)
TM+1

(6.191)

= TT
M+1V

(L)
TM+1

(6.192)

We conclude using Eq. (6.189)

VCR
= TT

M+1A
T
MTT

M . . .AT
2 TT

2 AT
1 e1Vr1 . . .+ TT

M+1A
T
Me1VrM +

+TT
M+1A

T
MTT

M . . .AT
2 TT

2 υ
T
1 VL1 . . .+ TT

M+1υ
T
MVLM

+

+TT
M+1A

T
MTT

M . . .AT
1 TT

1 VJ (6.193)

From Eq. (6.193) above we define for 1 ≤ k ≤M

{(
FT
LC

)eff
(j, k) = eTj−MTT

M+1A
T
MTT

M . . .AT
k+1T

T
k+1υ

T
k for k < M and M + 1 ≤ j ≤M +N(

FT
LC

)eff
(j, k) = eTj−MTT

M+1υ
T
M for k = M and M + 1 ≤ j ≤M +N

(6.194)
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{(
FT
ZC

)eff
(j, k) = eTj−MTT

M+1A
T
MTT

M . . .AT
k+1T

T
k+1A

T
k e1 for M + 1 ≤ j ≤M +N

(6.195)
And for 1 ≤ k ≤ N

{(
FT
JC

)eff
(j, k) = eTj−MTT

M+1A
T
MTT

M . . .AT
1 TT

1 ek for M + 1 ≤ j ≤M +N

(6.196)
Hence from Eqs. (6.186), (6.187), (6.188) and (6.194), (6.195), (6.196) we con-

clude

(
FT
)eff

Veff
tr = Veff

ch (6.197)

with

(
FT
)eff

=
( (

FT
JC

)eff (
FT
LC

)eff (
FT
ZC

)eff ) (6.198)

and comparing Eqs. (6.186), (6.187), (6.188) and (6.194), (6.195), (6.196) to Eqs.
(5.128), (5.133) and (5.136) of Section (5.5) we conclude

(
FT
)eff

=
(
Feff

)T (6.199)
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6.6 State-space equations for Burkard type linear
circuits with FZK 6= 0 and FV K 6= 0

Here we show how to derive state-space equations for Burkard [18] type circuits
with relaxed conditions FZK 6= 0 and FV K 6= 0. This allows us to bypass fitting
process and directly arrive at the state-space description for this specific class of
circuits.

Let the state vector be x =




IL
IK
VC


.

Writing KVL for VC

VC = FT
LCVL + FT

V CVV + FT
ZCVZ

= FT
LCΦ̇L + FT

V CVV + FT
ZCZIZ

= FT
LCLİL + FT

V CVV − FT
ZCZFZCCV̇C − FT

ZCZFZKIK

where we have assumed LLK = 0 (which in general non-zero in Burkard). Rear-
ranging

FT
LCLİL − ZCCCV̇C = ZCKIK + VC − FT

V CVV (6.200)

where we defined

ZCC = FT
ZCZFZC

ZCK = FT
ZCZFZK

Writing KCL for IL

IL = −FLCIC − FLKIK

= −FLCCV̇C − FLKIK

Rearranging

FLCCV̇C = −IL − FLKIK (6.201)

Writing KVL for VK

VK = FT
LKVL + FT

V KVV + FT
ZKVZ

= FT
LKΦ̇L + FT

V KVV + FT
ZKZIZ

= FT
LKLİL + FT

V KVV − FT
ZKZFZCCV̇C − FT

ZKZFZKIK
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Rearranging

− FT
LKLİL + LK İK + ZKCCV̇C = −ZKKIK + FT

V KVV (6.202)

where we defined

ZKK = FT
ZKZFZK

ZKC = FT
ZKZFZC

We can now write the time evolution of the state x using Eqs. (6.200), (6.201)
and (6.202)




FT
LCL 0 −ZCCC
0 0 FLCC

−FT
LKL LK ZKCC


 ẋ =




0 ZCK I
−I −FLK 0
0 −ZKK 0


x +



−FT

V C

0
FT
V K


VV

(6.203)
For the input-output relations we write KCL for IV

IV = −FV CCV̇C − FV KIK (6.204)

We can write state-space matrices

A =




FT
LCL 0 −ZCCC
0 0 FLCC

−FT
LKL LK ZKCC



−1


0 ZCK I
−I −FLK 0
0 −ZKK 0


 (6.205)

B =




FT
LCL 0 −ZCCC
0 0 FLCC

−FT
LKL LK ZKCC



−1

−FT

V C

0
FT
V K


 (6.206)

Matrices C and D are to be determined after solving Eq. (6.203) for V̇C and
substituting it in Eq. (6.204).
Note that

{
A, B, C, D

}
gives an admittance description. The impedance

description is given by
{

(A−BD−1C) , BD−1, −D−1C, D−1
}
.
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