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Chapter 1

Introduction

A trend towards technological mobility has emerged over the past few years, driven

by the necessity of improved global access to communication, productivity and enter-

tainment services and applications. This challenge has been addressed by a variety

of mobile devices, such as smartphones, tablets and laptops, each tailored to different

uses, which tend to increasingly overlap as the technology evolves. These devices

share the tendency to remove the limitation represented by cables, in agreement with

the definition of mobility as “the ability to move or be moved freely and easily” [117].

Historically, devices used to require wired connections for two reasons: power supply

and communication.

The power supply issue has been dealt with by integrating a battery in the devices,

providing a source of energy which is however limited and still restricts mobility

when it needs to be recharged. Wireless charging is currently starting to appear on the

consumer market as a promising, emerging technology, to the point that the Institute

of Electrical and Electronics Engineers (IEEE) dedicated a recent special issue of its

proceedings to its history, current status and future perspectives [174]. Although this

solution removes the need for a cable, at present it does not improve mobility since

the device has to be very close to the charger in order for the power transfer to take

place. Therefore, the limited energy budget remains a major constraint on the design

of every subsystem of a mobile device.

On the other hand, the fast advances of communication technologies have enabled

wireless connectivity to become a truly viable option for replacing wired communi-

cation links, particularly for consumer electronics. A variety of solutions are available

to address different requirements and uses in terms of range, degree of mobility, data

rate, latency and power consumption. For instance, personal area networks (PANs)

generally require low power consumption with a short-range low data rate communi-

cation. A standard addressing these characteristics is Bluetooth [28], typically used to

interface a set of peripherals with a main device. When the nature of the network is

more decentralised, as in the case of a wireless sensor network (WSN) used to sense

the environment, a more suitable option is provided by the Zigbee protocol [184].

At the other end of the requirement spectrum, when large amounts of data have

to be transferred over a local area network (LAN) or the longer distances of a cellu-

lar network, high data rates can be supplied by rapidly evolving standards such as

WiFi [78, 80] and third/fourth-generation (3G/4G) mobile technologies (UMTS [133],

HSPA+ [76], WiMax [79], LTE [55]). All these solutions target different degrees of

mobility, with an increasing data rate as the speed and distance between the end-user

device and the access point or basestation decrease.

1



2 Chapter 1. Introduction

Wireless communication technology is not only used for bidirectional data trans-

fers but also for more specialised unidirectional applications, such as geographical

localisation (GPS [85]) and television (DVB-H [90]). This wide variety of standards,

or a subset of them, have to be supported and hence coexist in a modern mobile de-

vice. A report of the United States (US) Federal Communications Commission (FCC),

which has the task of certifying and approving new wireless devices for the US mar-

ket, states that in 2010 more than 50 % of the authorised devices already include three

or more different types of wireless transceivers, with a 700 % increase since 2007 [57].

This trend towards high integration poses significant design challenges, both in the

analog/radio-frequency (RF) frontend and in the digital baseband signal processing,

which is the main target of this thesis.

The following sections set the context by first giving a brief overview of the key

issues and of their most prominent solutions in present wireless communication sys-

tems, particularly for high data rates. The implications on the design of digital signal

processing (DSP) integrated circuits (ICs) in the receivers of such systems are then

examined. The digital baseband receiver is a particularly critical component. On the

one hand, its complexity in terms of computational requirements undergoes a contin-

uous and rapid increase. On the other hand, the limited energy available in mobile

devices requires a highly efficient implementation. Furthermore, the DSP algorithms

employed in the receiver can make a significant difference for the communication

performance of the system but they are not specified by the communication stan-

dards. This degree of freedom creates an important opportunity for the designer to

differentiate an implementation from others.

A unified and consistent design flow is key to fully exploit this opportunity and

properly evaluate the resulting implementation. Therefore, an overview of the flow

utilised throughout this thesis is also given in this chapter. Its individual steps do not

significantly differ from the typical development of baseband receiver components.

Nevertheless, the importance of the complete process, from the initial algorithm spec-

ification to the evaluation of the fabricated silicon prototype, cannot be overlooked.

1.1 High Data Rate Wireless Communication

1.1.1 History and Trends

A recent survey published on the website of the Wall Street Journal [14] has investi-

gated how the availability and usage of 4G mobile connectivity, namely LTE, impacts

the amount of data consumed by users not only on mobile networks but also on wire-

less LANs (WLANs). Not surprisingly, users with access to 4G have a mobile data

volume 2.1 times higher than 3G subscribers. More remarkable is the result concern-

ing WiFi traffic: 4G users also consume twice as much data as 3G users on WLAN

connections. This increase is explained by the authors of the survey [14] by looking

at studies of the behaviour of consumers: when the connection is faster and more

consistent, the user experience improves and therefore people are more likely to use

their device more intensively in all circumstances.
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In other words, a positive feedback loop originates, where the technology im-

proves the user experience leading to its more widespread usage, which in turn

pushes a further development of the technology. This mechanism is at the core of

the evolution of wireless technology, which initially targeted communication based

on short text messages and voice, first with pagers and then with GSM [111], i.e., the

first global standard for digital cellular networks. This initial application of wireless

technology accounts nowadays for a mere 10 % of the total mobile traffic1 [15].

Thanks to increasing connection speeds, new applications which were previously

confined to personal computers (PCs) have conquered large shares of the mobile data

traffic, with web browsing and social networking currently at 10 % each [15]. The

fastest growing segment is however video, which currently accounts for 35 % of the

traffic and is expected to rise to 50 % by 2019 [15], driven by the increasing size and

quality of the displays integrated in mobile devices. Furthermore, the spreading of

cloud-based services to overcome the storage capacity limitations of portable devices

is an additional contribution to the increase of the amount of transferred data. In

2017 cloud applications are expected to account for 84 % of the total mobile data

traffic [13]. In summary, even if the aforementioned numbers are mostly predictions,

there is a clear trend towards an increase in both the number of mobile subscriptions

and the traffic per subscription. The latter is forecast to lead to a tenfold growth of

smartphone-generated monthly traffic between 2013 and 2019 [15].

Similar tendencies can be expected for the amount of data consumed in local

wireless networks, since an increasing number of domestic appliances come with

communication capabilities. In particular, home entertainment device manufacturers

are quickly replacing cables with wireless connections, exploiting either dedicated so-

lutions or the WLAN infrastructure already present in many homes. This technology

is already mature enough for sound applications and is starting to become a viable

option for video transmission as well, despite the very high amount of data that needs

to be transferred for high-definition content.

This rapid growth of the amount of information exchanged by a variety of devices

over wireless interfaces drives the continuous increase of the data rates of different

wireless standards. This evolution is captured by Edholm’s law of bandwidth [45],

which is to telecommunications as Moore’s law [108] is to the semiconductor industry.

Edholm’s law categorises telecommunication technologies into wireless, nomadic and

wireline based on their varying degree of mobility. For instance, cellular phones fall

in the wireless category because they can be used anywhere, while WiFi belongs to

the nomadic class since the mobility is limited. The data rates supported by these

three categories follow analogous exponential growths over the years, although with

different slopes.

When the law was formulated, in 2004, a forward extrapolation pointed to a con-

vergence of wireless and nomadic data rates in around 2030. However, if the obser-

vation interval is restricted to the last 15 years, starting from 1997, then the trend

towards the convergence of WLAN and mobile wireless data rates is much accel-

1 Data based on the first three quarters of year 2013.
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Figure 1.1: Evolution of the theoretical peak data rates of telecommunication stan-
dards since 1997.

erated, as shown in Figure 1.1, to the point that the alignment of the data rates is

already happening. The latest standards in each category, i.e., IEEE 802.11ac [80] and

LTE advanced [55], both break the Gigabit barrier.

It should be noted that the points in Figure 1.1 correspond to the peak data rates

foreseen at the moment the standard was published. Two key issues have to be care-

fully considered when analysing these points. First of all, peak data rates are only

achievable in ideal conditions, especially for mobile standards where a larger number

of users are competing for the same bandwidth and the mobility and distance are

generally higher than in a typical WLAN scenario. Therefore, even though the LTE

advanced standard specifies a theoretical peak throughput of 3 Gbit/s, operators do

not expect the actual data rates to be significantly above 1 Gbit/s even in case of low

mobility.

The second issue is the delay between the standard specification and its actual

implementation and deployment. Typically, the first systems which appear on the

market shortly after standardisation only implement a subset of the standard, while

the more challenging specifications which enable the peak data rates follow several

months or even years later. For instance, the IEEE 802.11n standard of 2009 [78] speci-

fies a maximum data rate of 600 Mbit/s, achieved by using a 4× 4 spatial-multiplexing
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multiple-input multiple-output (MIMO) transmission scheme, i.e., by transmitting

four independent data streams in parallel over multiple antennae. As of the end

of 2013, four years after the standard was published, only one consumer product [9]

supports four MIMO streams and just a handful of chipsets [8, 10] are available on

the market with this feature, to the best of the author’s knowledge. This delay is

a direct consequence of the increasingly challenging complexity of communication

protocols, of the analog/RF MIMO frontend design and of the digital baseband pro-

cessing. All of these aspects must be considered very carefully to ensure that the

unavoidable losses occurring on every level of the practical implementation do not

void the advantages of the new standard specifications.

Another consequence of the trends identified by Edholm’s law is that the data

rates of wireless and nomadic technologies are going to approach wireline connec-

tions sometime in the future. According to Edholm, the need for higher and higher

speeds is going to cease when a further increase is not going to make a difference

for the human perception: for instance, an increase in the resolution or frame rate

of a video that cannot be perceived by the human eye. Once the wireless technol-

ogy reaches such data rates, all connections to end-user devices could potentially rely

on it. However, the limit is still unknown and certainly far from being achieved. It

should also be noted that, on the other hand, the network infrastructure will still re-

quire higher data rates to handle multiple users at the same time without slowdowns.

1.1.2 Achieving High Spectral Efficiency

The key problem that every new generation of wireless technology strives to solve is

how to increase data rates, as motivated in the previous section. A rather straight-

forward solution is to use a wider bandwidth, as done by both IEEE 802.11ac and

LTE advanced with respect to their predecessors. Although still commonly used,

nowadays this option is becoming decreasingly viable due to the overcrowding of the

frequency spectrum, which is already fully allocated between 9 kHz and 275 GHz [58].

In particular, the spectrum region under 6 GHz, where most of the current commu-

nication standards operate, is heavily exploited [180]. As a consequence, bandwidth

is a rather scarce and hence expensive resource which must be used as efficiently as

possible. This requirement is captured by the spectral efficiency, which measures the

amount of useful information that is successfully transferred per time and bandwidth

unit in bit/s/Hz. Maximising this metric is an important goal for a communication

system.

A first solution to increase spectral efficiency consists of using high-order modu-

lation schemes, which allow the mapping of an increasing number of bits to a single

complex modulated symbol, which is then transmitted over the channel. The cur-

rent IEEE 802.11ac standard [80] employs quadrature amplitude modulation (QAM)

with up to eight bits per symbol, corresponding to a 256-QAM constellation and rep-

resenting an eightfold increase with respect to the Gaussian minimum shift keying

(GMSK) modulation used in the GSM standard of 1990 [111]. Larger constellations

typically result in a decreased communication performance and a higher demodula-
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Figure 1.2: Basic block diagram of a MIMO communication system.

tion complexity for a given channel and transmitted power, since the receiver has to

distinguish between a higher number of possible transmitted symbols.

Another technique to increase the number of bits per channel use without im-

pacting the bandwidth is spatial-multiplexing MIMO [121], which gained popularity

in many recent standards. A basic block diagram of such a MIMO communication

system is shown in Figure 1.2. The basic idea is to multiplex the data over multiple

parallel streams, transmitted by MT different antennae. The receiver, equipped with

MR antennae, can then separate the streams, demodulate and finally combine them

to reconstruct the original bitstream [119]. As for high-order modulations, employing

MIMO therefore entails an increased receiver complexity. In order for the demod-

ulation to be possible, the spatial channels traversed by the different streams must

be (quasi-)independent, a condition that can be achieved, for instance, by sufficiently

spacing the transmit and receive antennae or by using polarised antennae.

Since the different streams are transmitted over the same bandwidth and time

slot, spatial-multiplexing MIMO can increase spectral efficiency by a factor equal to

the minimum between MT and MR. Accordingly, the data rate also scales linearly

with the number of antennae. Therefore, MIMO is regarded as a key enabler for the
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continuation of the trend described by Edholm’s law and is already part of the latest

WLAN and mobile wireless standards [55, 80].

Increasing the data rates by introducing new communication technologies is only

one side of the wireless evolution. Equally important is to enable such high spectral

efficiency techniques in practical scenarios that suffer from poor channel conditions,

with a low signal-to-noise ratio (SNR) at the receiver. One way of achieving this goal

is to improve the capability of the receiver to correct the errors introduced by the

channel and retrieve the transmitted bitstream. If not corrected, such errors cause

data packet retransmissions, thus decreasing the spectral efficiency of the system. As

a result, over the years more and more advanced algorithms have been introduced to

process the signal at the receiver.

A good example of this trend is provided by forward error-correcting (FEC) tech-

niques, also known as channel coding, which encode the bits that have to be transmit-

ted by adding redundant information. In principle, this redundancy entails a reduced

spectral efficiency. However, it can be exploited by the receiver to retrieve the origi-

nal message even when this is partially corrupted by the channel, thus enabling the

communication at low SNR values, where an uncoded system would be completely

unusable. First invented in the 1950s, channel coding saw significant developments in

the 1990s with the invention of turbo codes [26] and the rediscovery of the low-density

parity-check (LDPC) codes originally designed by R. Gallager in the 1960s [61]. These

codes enable substantial performance gains in a wireless system and were therefore

integrated in wireless standards (turbo codes around 2000 with the UMTS [54, 162]

and CDMA2000 [160] standards for mobile wireless communication and LDPC codes

in 2003 with the DVB-S2 standard for satellite television [110]). Nowadays, advanced

codes like turbo and LDPC have reached a solid position within communication stan-

dards, gradually taking over less powerful techniques such as convolutional channel

coding [52].

Both turbo and LDPC codes are typically decoded in an iterative manner in order

to find the optimal solution of the decoding problem with high probability while

maintaining the complexity of the algorithm manageable. This approach was later

extended to other receiver components, which iteratively exchange information about

the received data until they converge to the correct solution, i.e., the original bitstream

input in the transmitter. Particularly beneficial is the introduction of a feedback loop

between the channel decoder and the detector, i.e., the component responsible for

recovering the transmitted signal and demodulating it into a sequence of estimates of

the coded bits2, which represent the input of the channel decoder. This solution [96],

commonly known as iterative detection and decoding (IDD) and visualised in Figure 1.2,

achieves a much improved performance with respect to a non-iterative receiver, thus

enabling one more step towards the theoretical capacity of the wireless channel as

defined by C. Shannon [140].

2 It should be noted that, to achieve the best communication performance, such estimates are not binary
values but rather real numbers which provide information about the probability of the bits to be 0
or 1 (see later Section 2.1).
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Figure 1.3: Qualitative picture of how spectral efficiency improves with the advances
in communication and baseband signal processing technologies.

The effects of the advances of communication technologies and receiver algo-

rithms on the spectral efficiency of wireless systems are qualitatively shown in Fig-

ure 1.3. Only the techniques mentioned in the previous paragraphs are considered

since they are the subject of this thesis. The figure visualises how the combination of

high-order modulations, spatial-multiplexing MIMO and advanced FEC and IDD re-

ceiver techniques not only boosts the maximum spectral efficiency achievable at high

SNR but also pushes the limits of the system usability at low SNR.

1.1.3 Implementation Considerations

The success of increasingly advanced algorithms is not simply driven by their supe-

rior performance. Many of them have been known for several decades and yet they

are only now finding practical application. The reason for this late success is the di-

rect correlation between communication performance and complexity: the better the

former, the higher the latter. For instance, LDPC codes were too complex to be de-

ployed in an actual system at the time of their invention in the 1960s. More than four

decades later however, technology has evolved to the point that a decoder for LDPC
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codes can be efficiently implemented in silicon, making such codes a viable option for

wireless communication systems.

Similarly, the application of IDD to spatial-multiplexing MIMO systems has been

an issue from the implementation standpoint. This thesis mainly focuses on finding a

viable solution to this problem.

The applicability of advanced coding and signal processing techniques for high

spectral efficiency at low SNR can ultimately be traced back to a hardware implemen-

tation challenge. This issue is not as critical at high SNR, where simplified algorithms

can be exploited to design highly efficient implementations, since an acceptable com-

munication performance is easier to achieve than at low SNR.

The previous considerations mainly focus on the benefits of complex signal pro-

cessing from the individual receiver point of view. However, the whole wireless net-

work takes advantage of the improved performance of its components. An important

metric from a mobile network standpoint, besides the overall cell throughput, is the

average data rate across all users, which is mainly determined by the connections

at the edge of the range of the basestation rather than by the peak rate that can be

achieved in ideal conditions. A recent survey [15] based on a few major worldwide

cities shows that in 90 % of the cases the downlink speed that a user observes differs

from the peak rate by orders of magnitude, with the average rate between 20 % and

30 % of the peak.

The foreseen solution to this problem is to increase the number of basestations

for a more widespread coverage. Currently, the cost of such an approach is unman-

ageable [179], partly due to energy consumption [93]. Future basestations therefore

need to become more compact and consume less power than today, facilitating the

deployment of micro-, pico- and femto-cells. The advancements in signal processing

algorithms and implementations allow a significant reduction in the transmit power

of the basestations, since an acceptable performance can be maintained at a lower

SNR. Again, hardware implementation has a major role in enabling this evolution,

facing increasing data rate requirements on the one hand and shrinking power and

energy constraints on the other hand. The next section describes the challenges of de-

signing integrated circuits for signal processing in present wireless receivers in more

depth.

1.2 Integrated Circuits for Baseband Signal Processing

Two major trends have been identified in the previous section by observing the evolu-

tion of wireless technology: on the one hand, the push to continuously increase data

rates; on the other hand, the need to integrate advanced signal processing techniques

in the receiver to increase the overall spectral efficiency of the system. Both trends

significantly impact the hardware design of the baseband receiver, which must con-

tinuously upscale its throughput while incorporating the increasing complexity of the

implemented algorithms.
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The progress of silicon technology is only a partial answer to this challenge, even

if Moore’s law [108, 109] still applies today. This law states that the number of tran-

sistors that can be integrated on a chip doubles every two years. By considering

the increasing operating frequency, this trend results in a silicon performance that

doubles every 18 months [113]. It is interesting to compare this growth to the data

rate trends of wireless standards shown in Figure 1.1: over the past 15 years, WLAN

speeds have doubled every 15 months, while mobile rates have doubled every year.

Although comparisons of such different trends should be conducted with caution, it

appears clear that simply relying on silicon technology to cope with the increasing

requirements of wireless systems is not going to remain sufficient.

This conclusion is even more apparent when factoring in the slowdown of Moore’s

law. This has been foreseen for many years and is now starting to happen with

technology nodes below 65 nm, which show diminishing returns in terms of area,

frequency and power consumption scaling. Furthermore, the increasing complexity of

the baseband processing algorithms is not accounted for by the higher data rates and

hence can be expected to widen the gap between what is specified by the standards

and what can be actually implemented.

Nowadays however, the main obstacle to the advancement of wireless systems

and, more generally, of many embedded applications is neither the cost of silicon nor

the number of devices that can be integrated in a chip. Power consumption is a more

stringent issue, due to the fact that supply voltage cannot be scaled down at the same

pace as the feature size of the silicon technology. The reason is that the threshold

voltage of transistors cannot be decreased to avoid high leakage currents and hence

the supply voltage cannot be reduced in order to maintain the performance [124,130].

This trend leads to a higher power density on a chip with an increasing number of

transistors [31], which ultimately becomes unmanageable. This issue has been cir-

cumvented in recent years by limiting the operating frequency growth, thus reducing

power consumption, and at the same time increasing the degree of parallelism in

the hardware architecture to make up for the lacking frequency scaling in terms of

performance. Even with this solution, nowadays most chips cannot be fully active

and have to power down large sections of the architecure to keep power consumption

under control. As a result, a large portion of the silicon is heavily underutilised, giv-

ing rise to the so-called “dark silicon” phenomenon [53]. These observations clearly

show that area, albeit important in determining the cost of a design, is currently a

secondary constraint for hardware designers with respect to power.

Mobile devices are characterised by an additional limitation, since they are pow-

ered by a battery with limited capacity. In this case, the energy consumed for a given

task becomes the key concern, since it is typically subject to more stringent constraints

than power. Therefore, it is interesting to observe the trends related to energy con-

sumption.

In 2011, J. G. Koomey analysed the evolution of the energy efficiency in computers,

i.e., the number of computations per energy unit, to find out that this metric doubles

every 18 to 19 months. This is a similar rate to that predicted by Moore’s law and again

slower than the growth of the computational requirements of wireless technologies.
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Figure 1.4: Diverging trends of algorithmic complexity, silicon performance and bat-
tery capacity (based on [125] and [38]).

Further observations that support the statement that “Shannon’s theorem outpaces

Moore’s law” [126] are reported in [125] and [126], among others.

Furthermore, at present little help can be expected from the evolution of battery

technology, which is only able to double the energy density every ten years [47]. This

trend, combined with the shrinking form factor of mobile devices, results in a nearly

constant battery capacity over time. For instance, a well-known smartphone such as

the Apple iPhone® has seen a capacity increase of only 12 % from its introduction on

the market in 2007 throughout seven generations of the device [11].

Figure 1.4 summarises the diverging trends of the computational complexity of

baseband signal processing algorithms, of Moore’s law and of the energy provided

by batteries. Clear gaps are observed between the increasingly challenging require-

ments of wireless devices, in terms of spectral and energy efficiency, and the advances

of silicon and battery technologies. The figure shows that the most severe issue is

to enhance the energy efficiency of the implementation to cope with the increasing

computational demands while maintaining an acceptable battery life. The area effi-

ciency gap cannot be neglected either, especially in view of the diminishing returns

of Moore’s law.
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In order to close these gaps, it is necessary to take a step back from the technology

level and reconsider the whole design process, starting from the algorithm definition

and optimisation down to the architecture specification and implementation. The

reduction of complexity must be tackled at every level of abstraction that leads to

the silicon prototype, especially considering that the largest returns are typically ob-

tained at the highest levels. Even though much has been done towards the co-design

of algorithms and architectures in the past years, the intrinsic connection between

these two aspects is not always examined, especially when analysing implementation

results. Works such as [148], [87] and [169] prove that this connection and the asso-

ciated tradeoffs between communication performance and implementation efficiency

metrics are of fundamental importance and cannot be overlooked.

This thesis follows and extends this theme, by first presenting the design pro-

cess from the algorithmic level down to the silicon implementation of a MIMO IDD

receiver and by then comprehensively analysing the resulting communication vs. im-

plementation efficiency tradeoffs. Particularly important is the link between energy

consumption and communication performance. If the hardware implementation al-

lows a “graceful” energy vs. quality of service (QoS) tradeoff [106], this connection

enables the device to decide whether it makes sense to spend additional energy to

improve the communication performance or not.

Furthermore, when evaluating the hardware components of a wireless receiver,

it is interesting to extend the perspective to the overall communication system. For

instance, an increase in the latency and energy consumption of the receiver, due to

a higher signal processing complexity, is not costly for the system overall if it avoids

packet retransmissions. Another example is a mobile device whose battery is almost

empty. In such a case, the device could extend the battery life by decreasing the

bandwidth and hence the energy it uses. Besides, the freed bandwidth could be

reallocated to another user.

These two simple examples hint at the potential benefits of exploiting the interac-

tion between hardware, algorithms and communication protocols to optimise system-

level metrics, as is similarly proposed in [105] in the case of wireless microsensors.

Although such an optimisation is out of the scope of this thesis, insight is given into

how system-level metrics are affected by the receiver implementation.

In view of the challenges presented in this section, a comprehensive approach to

the design process is required. The next section is hence dedicated to describing the

development flow applied in this thesis. The aim is to enable not only a consistent

design and implementation of the hardware components but also a proper evaluation

of the results in the context of the complete communication system. The individual

steps described in the following section are well known. It should nevertheless be

emphasised that their integration into a unified flow, from the initial algorithmic de-

velopment to the final evaluation of the silicon prototype, is of the utmost importance.
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1.3 Design and Evaluation Flow

The development of baseband processing elements for wireless receivers is a complex

process, which starts from the formal description of the algorithm in a mathematical

form and goes all the way to the testing and analysis of the silicon prototype. Such a

procedure requires the interaction of a variety of tools that cover different steps and

levels of abstraction. A unified and consistent design flow is necessary to ensure a

smooth transition between the different phases and to simplify the verification that

must be performed within each one of them. This flow, shown in Figure 1.5, is a key

enabler of any research and development activity in the field of wireless baseband

receiver design and therefore the next sections are dedicated to its description. The

main principles behind the approach used in this thesis are similar to those presented

in [131] and [65].

1.3.1 Algorithmic Testbed

The starting point of the development is the mathematical description of the target

algorithm, which is first implemented as a floating-point high-level model using lan-

guages such as C++ or, in the case of this thesis, Matlab/Simulink [3]. This model

is the reference for the development and hence its behaviour needs to be carefully

verified. For wireless receiver components, this verification is typically performed by

characterising the communication performance and comparing it to existing literature

references. This characterisation implies that the complete communication system is

modelled, since it is otherwise impossible to observe the communication performance.

Furthermore, error-rate curves usually result from Monte Carlo simulations [51] since

an analytical computation is typically unfeasible, implying that the simulator has to

be fast enough to allow extensive runs in a reasonable time span. Based on these

observations, a Matlab/Simulink testbed was developed in the context of the work

presented by E. M. Witte in [169], including the complete transmitter/receiver chain

of a MIMO communication system.

When focusing on the receiver, which is the main target of this thesis, the structure

and the information which is exchanged by components such as the detector and the

channel decoder are precisely defined by the IDD principle mentioned in Section 1.1.

On the other hand, the internal algorithm used to implement the functionality of

the individual components may vary, either because multiple options are available or

because the algorithmic exploration itself is part of the development.

Accordingly, the structure of the simulator is fixed, with well-defined interfaces

among its building blocks, whose inner implementations can be easily exchanged.

The main advantage of this approach is that the designer only operates on a single

component at a time. This ensures that his/her modifications do not affect the rest

of the system and thus facilitates not only the verification and evaluation of his/her

own work but also the simultaneous usage of the simulator by other designers. Addi-

tionally, after the initial algorithmic exploration and optimisation of the target compo-
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Figure 1.5: Overview of the design and evaluation flow used in this thesis, from
the algorithmic specification down to the analysis of the post-fabrication
results (for simplicity, the iterations that occur between different steps
for the sake of verification and design optimisation are not shown).

nent, its floating-point model can be converted to the fixed-point arithmetic required

by most hardware implementations independently of the rest of the system.

The fixed-point conversion is performed in Matlab, using an efficient Matlab/C++

library developed in [169]. The outcome of this operation represents the golden ref-

erence for subsequent hardware development and verification. Depending on the

method used for verification, the fixed-point model can be more or less close to the

hardware. If a white-box approach is chosen, the inputs and outputs and importantly

also the intermediate values have to be computed in the same way as in the architec-
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ture and hence the fixed-point model must mimic its behaviour, with a consequent

slowdown of the simulation speed and a deteriorated code readability. While this

option is very helpful in the early stages of the architectural debugging, later verifi-

cation phases can be greatly sped up by using a black-box testing approach which is

restricted to inputs and outputs. To cover both options, the simulator offers the ability

to dump any internal variable in a text file. This trace can be easily imported by other

tools, for example when simulating the hardware architecture.

Another important feature of the simulator is its configurability. All communi-

cation (e.g., the number of MIMO streams and the modulation), environmental (e.g.,

the channel model and the SNR) and receiver (e.g., the detection and decoding algo-

rithms and their settings) setup parameters are specified in a single configuration file

which is used to initialise the simulator. In this way, all the control variables of the

testbed are accessible from a single location, with obvious benefits for a productive

use of the framework.

Finally, the simulator is compatible with computing cluster systems that can be

used to efficiently parallelise the execution. This solution is particularly suitable for

Monte Carlo-based simulations, in which different sets of input data are totally in-

dependent of each other and hence can be easily run concurrently on different CPU

cores. The testbed includes the necessary facilities to distribute the simulations and

then aggregate the results of different runs in a single output data set.

1.3.2 Hardware Development Flow

Starting from the fixed-point model of the algorithm, the designer can derive the

control and data paths that make up the hardware architecture. It should be noted

that only application-specific integrated circuits (ASICs) are targeted in this thesis due

to the high complexity of the algorithms and to the challenging throughput and en-

ergy requirements on the implementation, as explained in Section 1.2. However, the

described design flow works equally well for programmable architectures, as shown

in [169]. The ASIC architecture is specified in a hardware description language (HDL),

such as VHDL or Verilog, on the register-transfer level (RTL).

The RTL model is simulated using dedicated tools such as Mentor Graphics Mod-

elsim [5] or Synopsys VCS [7]. The HDL testbench developed to this end requires in-

put data to be fed into the model and reference output data to verify that the hardware

computes the correct results. This I/O data is provided by the Matlab testbed using

the dumping facilities mentioned in the previous section. Assertion-based mecha-

nisms are exploited to spot errors and bugs in the HDL simulation. Although not

highlighted in Figure 1.5 for simplicity, verification is a fundamental operation that

has to be performed after every single development step to ensure that its outcome is

correct.

Once verified, the RTL model is ready to be implemented. Although not strictly

necessary, hardware components are often first prototyped on a field-programmable

gate array (FPGA) platform, which not only provides the basis for further verification

but can also be exploited as a simulation accelerator. A common problem in the
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Figure 1.6: FPGA-based emulation platform.

wireless communication field is the low speed of software models compared to the

extremely high amount of data that needs to be simulated in order to obtain reliable

statistical information, such as error-rate curves, following the Monte Carlo approach.

Therefore, critical components that represent the bottleneck of the simulator can be

accelerated by moving them to an FPGA-based emulator. In a hardware-in-the-loop

approach such as this, the inner functionality of the corresponding component in the

Matlab simulator is reduced to the interface that transfers I/O data over the network

to and from the emulator, which performs the actual computations.

The speedup achievable with this technique can reach three orders of magnitude

when complex MIMO receiver components are considered [32]. This is illustrated in

Figure 1.7 for the MIMO detector presented later in Chapter 3. The figure compares

different versions of the component, namely floating- and fixed-point software-only

models and an FPGA-emulated one running on a Xilinx Virtex II Pro-based board [2],

shown in Figure 1.6. The plots show the simulation speed of these models as a func-

tion of the number of concurrent simulator instances. A computing cluster with 135

CPU cores is used. Since the execution time of the MIMO detection algorithm in

question and hence the overall simulation runtime vary depending on the operating

conditions, two cases are presented in the figure: the upper plot refers to a low-SNR

scenario, corresponding to the worst-case complexity, while the lower plot shows a

high-SNR example where the complexity approaches its minimum value.

The first interesting observation is the slowdown of the fixed-point model with

respect to the initial floating-point reference, due partly to the overhead cost of em-

ulating the fixed-point operations in software and partly to the necessity of adapt-

ing the fixed-point model to mimic the architecture for white-box verification. This

penalty varies from a factor of two in high SNR to an order of magnitude in low SNR.

Both software models show a linear speed increase with the number of available CPU

cores, since concurrent Monte Carlo runs have no dependencies among each other.
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Figure 1.7: Simulation speed as a function of the model and of the number of parallel
MIMO detector instances running on a computing cluster.

On the other hand, FPGA-accelerated simulations share access to the same em-

ulator. This acts as a server by accepting connections over the network from the

individual simulation instances running on the computing cluster. Therefore, their

speed does not scale indefinitely but tends to saturate when the emulator is fully

loaded. In the high-complexity low-SNR regime, ten or even fewer simulations are

sufficient to reach the full load. This limit can be shifted further by increasing the

number nemu of concurrent instances of the MIMO detector implemented in the emu-

lator. When nemu = 4, the saturation is reached with four times as many simulations

as for nemu = 1. This saturation effect cannot be seen in the high-SNR case because,
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even when using the highest number of CPU cores available (135), the emulator is

never fully loaded and hence its acceleration potential is not completely exploited.

Aside from these considerations about scalability, a maximum speedup of 1000

is achieved by using FPGA-based emulation with respect to a fixed-point software

model. If a cluster with 100 CPU cores is assumed, the time for the verification of a

fixed-point setup in a single SNR point can be brought down from two weeks to one

and a half hours with the help of a hardware emulator [32].

This acceleration is particularly important since a detailed exploration of the fixed-

point word lengths of all intermediate values throughout the computation yields sig-

nificant efficiency improvements in the final implementation, in terms of both area

and maximum frequency. Therefore, this key design step, notoriously one of the

most time-consuming for signal processing hardware, is herein performed after the

RTL model of the architecture and its emulator become available, rather than on the

algorithmic level as typically done.

Once the fixed-point and architectural exploration is complete, a suitable I/O

interface has to be defined for the ASIC to be tested after fabrication. Such an inter-

face includes both the definition of the pad frame and the implementation of a finite

state machine (FSM) that handles the communication to and from the chip. Further-

more, the interface should enable not only functional testing but also reliable power

measurements for the characterisation of the implementation. To this end, specific

functional modes are designed that process the same set of input data multiple times,

in an “infinite-loop” manner without external I/O operations in between. In this way,

the power consumption of the processing core is averaged over multiple executions

and can be reliably measured once it stabilises. If the contributions of different ar-

chitectural blocks have to be measured separately, clock gating is used to disable all

components except the one of interest, which in turn operates in the aforementioned

“infinite-loop” mode.

After integrating the interface with the processing core, the HDL model is fi-

nalised and ready for the final gate-level and physical implementation. In this thesis,

Synopsys Design Compiler [6] is used for RTL logic synthesis, while Cadence SoC

Encounter [1] performs the place-and-route step. Once the outcome of this process

meets the requirements in terms of area and timing and passes the final design-rule

check (DRC) and layout-vs.-schematic (LVS) verification, the design is ready to be

taped out and shipped to the foundry for fabrication.

1.3.3 Chip Testing and Power Measurement Setup

The silicon prototypes presented throughout this thesis were tested at the Integrated

Systems Laboratory of ETH Zurich, with the support of the Microelectronics Design

Center [4]. An industrial-grade Agilent (HP) 83000 tester was used, greatly facilitating

the I/O interfacing with the chip. This machine allows the definition of cycle-accurate

traces that are automatically loaded at the input pins and compared with the outputs

produced by the device under test. This feature was exploited by dumping the I/O
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data directly from the Matlab testbed using the FPGA-based emulator. A specific

software tool was developed to translate these traces to comply with the chip interface.

The testing procedure typically consists of three phases:

1. Input loading: the necessary input data is written into the internal memory of the

chip by the tester, possibly at a slower clock frequency than the normal operating

one in order to keep an extra safety margin for I/O operations.

2. Processing: the actual computation is performed on the previously loaded in-

put data. This is the relevant phase for power consumption measurements. As

mentioned in the previous section, the computation is repeated multiple times

until the current drawn by the chip stabilises, at which point its value is mea-

sured. Using this method, it is ensured that only the power consumed by the

core processing is sampled, without contributions from the I/O interface.

3. Output verification: once the current has been measured, the processing iterations

can be stopped and the output results stored in the internal memory of the chip

can be read out and compared with the reference data generated from the mixed

Matlab/FPGA simulation. This final check ensures that the measurement points

are valid in terms of functional correctness.

A manual repetition of this procedure is tedious and highly inefficient, severely

limiting the number of test cases that can be checked. Therefore, scripting languages

were exploited to automate not only the generation of the I/O data in a format compli-

ant to the tester and chip requirements but also the aforementioned testing procedure.

This solution enabled the measurement of tens of thousands of different test cases in

a matter of days. Such a database can then be used to extrapolate an accurate power

consumption model of the design and of its components as a function of multiple

communication, environmental and receiver parameters, as later shown in Chapters 3

and 4. Given the wide range of variability of the power consumption with respect

to these parameters, such a model is extremely valuable for a proper evaluation of

the design and represents a significant improvement with respect to the single power

consumption value that is typically reported in academic publications.

1.3.4 Data Consolidation and Analysis

The design process can be considered successfully complete once the silicon proto-

type has been proven to work correctly. However, this is only the starting point for

the subsequent evaluation phase, which is equally important as the pre-fabrication de-

velopment. For a wireless receiver component, a proper evaluation must combine the

typical hardware measurements, such as the maximum clock frequency, the area and

the power consumption, with algorithmic metrics like the error rate. For instance,

achieving a high architectural throughput is pointless if the error rate is very high,

which would render the communication system unusable.

As shown in Figure 1.5, this final phase is based on the data produced by two

rather independent steps. Firstly, the testing and measurement of the silicon proto-
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type provides all the necessary physical data. Secondly, the statistical characterisation

of the design in the context of the communication system is performed to obtain error-

rate curves and other metrics that require Monte Carlo simulations. For instance, the

runtime of a hardware component might not be deterministic and therefore its aver-

age value has to be evaluated based on simulations. The statistical characterisation

can be performed as soon as the final HDL model of the architecture is available, since

it only requires a cycle-accurate simulation and not the finished silicon prototype. To

this end, the mixed Matlab/FPGA testbed can be effectively exploited.

By combining the measured maximum frequency and the cycle count, the first

metric that is derived is the throughput of the architecture. Factoring in the error

rate leads to the so-called goodput, i.e., the correctly received amount of information

per time unit. Further steps allow the derivation of the key quantities for a wireless

receiver implementation, i.e., its spectral, area and energy efficiencies. While these

metrics are quite well known, a precise definition of their meaning and of the way

they are computed in this thesis is later given in Chapter 5.

Finally, since modern communication standards include several modulations and

MIMO transmission schemes, multiple cases corresponding to different communica-

tion setups have to be considered. It is particularly interesting to observe how the

system behaviour changes when the setup used in a given scenario is chosen to opti-

mise one of the aforementioned efficiency metrics. Therefore, the evaluation process

is not limited to the computation of such metrics for a number of different cases but

includes an additional constrained optimisation step, which is also described in detail

in Chapter 5.

1.4 Contributions

The main goal and contribution of this thesis is the first complete architecture and

silicon implementation of MIMO iterative detection and decoding reported in the

literature to the best of the author’s knowledge. The designed very large scale in-

tegration (VLSI) architecture can be easily and effectively scaled to the requirements

imposed by the communication system on the receiver. Furthermore, it provides

enough flexibility to support multiple modulation and coding schemes, a common

feature in present and upcoming wireless communication standards, with little hard-

ware overhead. Therefore, the multi-mode capability of the receiver does not entail

the large area and energy efficiency penalties that would affect a programmable base-

band processor [169].

The silicon prototype of this architecture proves that MIMO IDD is feasible and

could already be beneficially applied to practical communication systems, despite the

margin that remains for improving the algorithms and the implementation of this

technique. A thorough analysis of the implementation results, with a focus on power

and energy consumption, is carried out in this thesis, providing measurement-based

data to evaluate the practical costs of MIMO IDD and its current applicability.
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A second important contribution is the analysis of the implemented receiver in

the context of a communication system with adaptive modulation and coding. The

interdependencies between the performance metrics of the receiver implementation

itself and those of the overall system are fully characterised. This key aspect is often

overlooked. The focus of the investigation is typically set on either the algorithmic

performance, hence ignoring the implementation costs, or on the mere hardware met-

rics in one or few specific operating points, neglecting their actual relevance in the

context of the communication system. This thesis shows that the usage of adaptive

modulation and coding can radically change the outcome of the analysis of a hard-

ware implementation.

Furthermore, a fair evaluation of the overhead introduced by complex signal-

processing elements should be performed on a system level. Latency is a good exam-

ple in the case of MIMO IDD, since it might increase within the receiver but decrease

for the overall system if packet retransmissions are avoided due to the improved com-

munication performance. Similar considerations apply to energy consumption. This

system-level view is applied to MIMO IDD in this thesis, showing that its costs are

in fact relatively lower than estimated by just looking at the baseband receiver in

isolation.

This thesis also presents the first silicon implementation of a soft-input soft-output

MIMO detector with max-log maximum a posteriori (MAP) optimal performance, based

on the depth-first sphere-decoding algorithm. As for the MIMO IDD receiver, mea-

surements were extensively analysed to derive a model of the power consumption of

the sphere decoder prototype.

This sphere-decoding implementation was then extended with several new heuris-

tic complexity-reduction techniques to be the core of the MIMO detector component

in the IDD receiver design. Furthermore, a double stopping criterion named selective

IDD was devised which avoids unnecessary computations on two levels: symbol-

wise, to prevent the repeated processing of received symbol vectors that have already

been detected with sufficient reliability, and codeword-wise, to exit the IDD loop as

soon as a codeword has been correctly decoded.

1.5 Outline

The flow of this thesis follows the development of the MIMO IDD receiver ASIC from

the algorithm to the analysis of the data collected in the post-fabrication measure-

ments. Chapter 2 introduces the framework of MIMO IDD from a theoretical point

of view and presents the main algorithms suitable for the two major components of

such a system, i.e., the MIMO detector and the channel decoder. The analysis of

these algorithms motivates the choice of sphere decoding and LDPC decoding for the

subsequent implementation.

Chapter 3 then describes the first silicon implementation reported in the literature

of a sphere decoding-based soft-input soft-output MIMO detector, which proves the

feasibility of max-log MAP optimal detection and enables an assessment of its area
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and energy costs based on measurements. A model of the power consumption de-

pending on all relevant communication and configuration parameters is derived in

order to accurately estimate the energy efficiency of the design in different operating

conditions.

Building on this work, Chapter 4 deals with the design of a MIMO IDD receiver

composed of a multicore detector and an LDPC channel decoder. After introducing

several heuristics that enable the significant reduction of the complexity of the receiver

on the algorithmic level, a multi-mode VLSI architecture is proposed, which targets

high throughput and is able to exploit the tradeoff between area/energy efficiency

and communication performance over a wide range. Finally, post-fabrication mea-

surements are reported for the 65 nm prototype, with particular focus on the power

consumption.

The results presented in Chapter 4 are further analysed in Chapter 5 including the

requirements and constraints set by the communication system, in which the MIMO

IDD receiver operates. The main purpose of this chapter is to move away from the

common narrow view that considers only the receiver implementation results, to-

wards a broader system-wide perspective that analyses how the receiver characteris-

tics influence the overall communication system and vice versa.

Finally, Chapter 6 summarises the work presented in this thesis and draws the

corresponding conclusions, with particular focus on the applicability of MIMO IDD

to the mobile devices on the market at the time of writing. An outlook which shows

possible future research directions concludes the thesis.



Chapter 2

Algorithms for MIMO Iterative
Detection and Decoding

With spatial-multiplexing MIMO becoming a key technique to increase data rates in

wireless communication standards, in recent years a great deal of research has gone

into extending advanced signal processing techniques to multi-antenna applications.

In particular, bit-interleaved coded modulation with iterative decoding (BICM-ID) [96] is

considered as fundamental to approach the full potential of MIMO in increasing the

spectral efficiency.

This communication scheme requires a receiver that supports iterative detection

and decoding (IDD), i.e., a detector and a decoder capable of exchanging soft infor-

mation about the received bits and exploiting it to improve the results of the overall

decoding process. As a consequence, much work has been done to develop suitable

algorithms, especially for soft-input soft-output MIMO detection. While the channel

decoder works on a block of bits and hence it is in principle MIMO agnostic, de-

tection is severely hit by the introduction of multiple parallel data streams, with an

exponential increase of the complexity required to achieve the optimal communica-

tion performance.

After a brief description of the IDD framework, the most prominent soft-input

soft-output MIMO detection algorithms are introduced in the following. Subsequently,

suitable channel decoding algorithms for IDD are reviewed, bearing in mind that the

selection of the error-correcting codes is not arbitrary but defined by communication

standards. Channel decoding is therefore more strongly influenced by standards than

MIMO detection, which only has to support the required modulations and spatial-

multiplexing schemes. Finally, different combinations of detection and decoding al-

gorithms are analysed from a communication performance standpoint.

2.1 The MIMO IDD Framework

The focus of this thesis is on the core of the digital signal processing that takes place in

a MIMO receiver, i.e., the subsystem composed of the MIMO detector and the channel

decoder. However, this subsystem cannot be studied in isolation since its performance

highly depends on the rest of the communication system as well as on the operating

context. Therefore, this section describes the spatial-multiplexing MIMO baseband

model used throughout this thesis and shown in Figure 2.1.

First of all, a coherent communication system is assumed, with perfect time and

frequency synchronisation and channel estimation in the receiver. Non-idealities in

23
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Figure 2.1: MIMO baseband system model.

these components, together with possible imperfections in the RF frontend, play an

important role in the actual behaviour of the transceiver in a real-world scenario.

However, their precise modelling requires to know the specific implementation of

each component, which is out of the scope of this thesis. Furthermore, the previ-

ous assumption allows the analysis to focus on the effects that the detector/decoder

subsystem has on the overall performance.

The information is transmitted according to the bit-interleaved coded modulation

(BICM) scheme [182]. The input bitstream b is encoded to add redundancy that en-

ables the receiver to detect and correct errors which occur during the transmission

over the channel. The amount of redundancy is quantified by the code rate R, which

corresponds to the ratio between the number of information bits entering the encoder

and the number of coded bits at the output (R < 1). The functionality of the encoder

depends on the error-correcting code (ECC) in use, which is typically dictated by com-

munication standards. Among the most common FEC techniques in use nowadays are

convolutional [52], turbo [26] and low-density parity check (LDPC) [61] codes. Some

codes, such as LDPC ones, operate on a block of bits of finite length, named codeword,

and are therefore commonly referred to as block codes. Others, such as convolutional

codes, work on a continuous bitstream.
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An additional step that can increase the effectiveness of FEC codes is interleav-

ing, i.e., shuffling the coded bits in a pseudo-random fashion so that burst errors on

the channel do not affect adjacent bits after deinterleaving the sequence in the re-

ceiver. In practical systems, interleaving is applied to finite-length sequences of bits,

named interleaver blocks. For certain codes, such as the LDPC codes foreseen by the

IEEE 802.11n standard [78], interleaving can be conveniently merged with the en-

coding process, hence reducing the corresponding overhead. For this reason, in this

thesis interleaving is considered as part of the FEC step rather than as a separate

one. Furthermore, the symbols Ni and Nc refer to the length in terms of, respectively,

information and coded bits of an interleaver block, for the codes that explicitely em-

ploy interleaving, or of a codeword, for block codes such as LDPC without explicit

interleaving.

The outcome of the previous encoding process is the coded bitstream c, ready to

be modulated and transmitted over the channel. For a spatial-multiplexing MIMO

system employing MT transmit antennae and a QAM modulation of order 2Q (as-

sumed to be the same for every antenna), c is grouped into chunks of MTQ bits, each

one defining a label vector x whose elements xi,b (with i = 1, ..., MT and b = 1, ..., Q)

equal +1, respectively −1, if the corresponding coded bit is 1, respectively 0. Vector x

is then equally partitioned over the MT antennae and finally modulated into complex

symbols si belonging to the QAM constellation O. The vector s = [s1, ..., sMT
]T is the

output of the transmitter in the baseband model.

The channel that the symbol vector s travels through is assumed to be flat fading

so that the MIMO channel between a transmitter with MT antennae and a receiver

with MR antennae can be described by the complex-valued matrix H ∈ CMR×MT .

Each element of H is drawn according to an independent and identically distributed

(i.i.d.) Rayleigh-fading model. In this thesis, two channel models are considered:

• Fast Rayleigh-fading channel: a new channel matrix H is independently extracted

for each transmitted symbol vector s.

• Quasi-static (block) Rayleigh-fading channel: the channel matrix H is constant for

all the symbol vectors that belong to a codeword or to an interleaver block.

The second case is typically undesired since the lack of diversity negatively affects the

performance of the system and several techniques can be used to counteract its effects.

Nevertheless, observing the behaviour of a system in these two opposite extreme cases

allows the assessment of its robustness to different operating conditions.

Besides the amplitude and phase shifts modelled by the matrix H, the channel

disturbs the transmission with noise, herein modelled as i.i.d. circularly symmetric

complex Gaussian noise with variance No. The noise is added on each antenna, form-

ing an MR-dimensional vector n ∈ CMR×1. As a result, the baseband transmission

model of the MIMO system is:

y = Hs + n (2.1)

where y ∈ CMR×1 is the received symbol vector that represents the input of the base-

band model of the receiver.
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The SNR of the system is defined as:

SNR =
MTEs

No
(2.2)

where Es is the energy per symbol. The transmitted symbols are normalised so that

E
[

|si|
2
]

= Es. Definition (2.2) corresponds to the average SNR per receive antenna.

At the receiver side, the received symbol vector y is fed directly into the detector,

since perfect synchronisation and channel estimation are assumed. In this thesis, the

word detection refers to the joint operation of estimating the transmitted symbol vector

ŝ and demapping the estimated symbols to the corresponding bit-wise information.

In the context of IDD processing, the output of the detector for each coded bit is

not a binary decision but a real number quantifying the reliability of the estimation.

The best performance is achieved when these values correspond to the a posteriori

probabilities of the detected bits, computed as a posteriori log-likelihood ratios (LLRs):

λ
p
i,b = log

(

P [xi,b = +1|y, H]

P [xi,b = −1|y, H]

)

(2.3)

for each bit in label x, where P [xi,b = ±1|y, H] is the conditional probability of bit xi,b

given y and H. In the following, the symbol λ
p
k is also used to refer to the a posteriori

LLR for coded bit ck, with k = 1, ..., Nc. The sign of λ
p
k can be interpreted as a hard

decision on the bit, i.e., if λ
p
k is positive, respectively negative, bit ck is most likely 1,

respectively 0. On the other hand, the magnitude of λ
p
k expresses the reliability of

such a decision.

As detailed in [74] and [69], assuming white Gaussian noise and statistically in-

dependent bits xi,b, expression (2.3) can be computed as:

λ
p
i,b = log









∑

s∈X
(+1)
i,b

exp

(

−
‖y − Hs‖2

No

)

P [s]









− log









∑

s∈X
(−1)
i,b

exp

(

−
‖y − Hs‖2

No

)

P [s]









(2.4)

with X
(+1)
i,b , respectively X

(−1)
i,b , being the set of all possible symbol vectors with the

label bit of indices i and b equal to +1, respectively −1. The term P [s] accounts for

the soft input, i.e., the a priori information coming from the decoder in the form of

a priori LLRs:

λa
i,b = log

(

P [xi,b = +1]

P [xi,b = −1]

)

. (2.5)
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Based on the a priori LLRs, P [s] is computed as:

P [s] =
∏

i,b:xi,b=+1

exp
(

λa
i,b

)

1 + exp
(

λa
i,b

)

∏

i,b:xi,b=−1

1

1 + exp
(

λa
i,b

) . (2.6)

An exact computation of (2.4) is very complex from a practical point of view. A

common solution, which is at the foundation of several algorithms with manageable

complexity, is to apply a max-log approximation [127] to (2.4), yielding the following

simpler expression:

λ
p
i,b ≈ min

s∈X
(−1)
i,b

{

‖y − Hs‖2

No
− log P [s]

}

− min
s∈X

(+1)
i,b

{

‖y − Hs‖2

No
− log P [s]

}

. (2.7)

Computing λ
p according to the approximation in (2.7) results in a moderate commu-

nication performance loss with respect to the optimum definition in (2.4).

In an iterative system, the different components typically exchange only the new

information computed in the current iteration, represented by the extrinsic LLRs:

λe
i,b = λ

p
i,b − λa

i,b. (2.8)

The output of the MIMO detector is therefore the vector of extrinsic LLRs for all the

coded bits in a codeword or in an interleaver block, herein labelled λ
e,det to denote

the source of the information. It should be noted that some algorithms show better

performance when using a posteriori LLRs as input rather than extrinsic LLRs; such

an example for MIMO detection can be found in Section 2.2.3.

The following step is channel decoding, preceded by deinterleaving if required by

the code. The decoder computes its own LLR estimates of the received coded bits, so

that the soft information can be used by the detector in the successive IDD iteration.

The operating principle is similar to the one previously described in regard to the

detector. Taking into consideration that the a priori LLRs from the decoder point of

view coincide with the extrinsic LLRs output by the detector (i.e., λ
a,dec ≡ λ

e,det), the

decoder first computes the a posteriori LLRs as:

λ
p,dec
k = log





P
[

ck = 1|λa,dec
]

P
[

ck = 0|λa,dec
]



 (2.9)

for k = 1, ..., Nc. The way the decoder actually computes the vector of a posteriori

LLRs λ
p,dec highly depends on the code and on the decoding algorithm in use. Based

on λ
p,dec and λ

a,dec, the output extrinsic LLRs λ
e,dec are then computed as in (2.8).

Applying the IDD principle requires that the LLR vector λ
e,dec is fed back to the

detector, which can update its estimates based on the new a priori information and

hence provide more accurate soft input to the decoder. This iterative process continues

until a certain number of iterations is reached or another stopping criterion is met (see
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for instance [64]). The total number of IDD iterations Iidd is defined as the number

of times the detector/decoder chain is run, meaning that Iidd = 1 corresponds to a

non-iterative system. Furthermore, in the following the symbol iidd denotes which

IDD iteration is currently being executed.

Besides the LLRs, the decoder also computes binary estimates b̂ for the Ni infor-

mation bits of a codeword, which are then forwarded to the upper protocol level once

the baseband processing in the physical layer is complete.

2.2 Soft-Input Soft-Output MIMO Detection

A number of algorithms for soft-input soft-output MIMO detection are reported in

the literature. A detailed mathematical description of all of them is out of the scope

of this thesis, which rather focuses on the silicon implementation aspects. Therefore,

the following sections give an overview of the most prominent options available in the

literature, with the purpose of describing the basic principles and the corresponding

advantages and disadvantages of each of them. Special attention is paid to sphere

decoding (SD), which is the algorithm of choice for the subsequent implementation.

Many of the algorithms can be classified as tree search based, meaning that they

rely on representing the set of candidate received symbol vectors as a tree with

(MT + 1) levels, where every node is a possible received symbol associated with a

non-negative metric. Such a representation can be obtained by means of a prepro-

cessing step, such as Cholesky or QR decomposition, which transforms the channel

matrix H into an upper triangular matrix [59]. As explained in the following sections,

based on this transformation and on the max-log approximation [127] of the LLRs

defined in (2.7), these algorithms search the tree for the paths with the smallest total

metrics, corresponding to the most likely received symbol vectors. To achieve optimal

performance, these candidates must coincide with the maximum a posteriori hypoth-

esis (i.e., the path with the smallest metric overall) and its bit-wise counter-hypotheses.

This goal can be achieved by depth-first sphere decoding [151], at the cost of a vari-

able complexity which rapidly increases in low SNR. Therefore, several heuristics

were developed to tackle the complexity issue, both by reducing it and by making it

fixed, with the consequence that the set of candidates found by the tree search may

no longer be max-log optimal.

An alternative way to reduce the complexity is provided by (quasi-)linear meth-

ods. The most prominent of them applies minimum mean square error (MMSE) equalisa-

tion to the received signal, after including the information computed by the decoder.

MMSE-based detection has a fixed complexity, independent of the channel realisa-

tion, making it attractive for hardware implementation. At the time of writing this

thesis, only two silicon implementations of soft-input soft-output MIMO detection

are available in the literature: the one developed in the context of this thesis and the

MMSE-based detector presented in [145]. (Quasi-)linear approaches suffer from their

suboptimality, which in many practical cases translates into a wide communication

performance gap with respect to tree search-based algorithms.
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2.2.1 Depth-First Sphere Decoding

The most prominent tree search-based MIMO detection algorithm is depth-first sphere

decoding. The base algorithm was developed by M. Pohst and U. Fincke [59, 122]

in the early 1980s and later applied to the domain of wireless communication by

E. Viterbo [165, 166]. B. M. Hochwald and S. ten Brink then extended it to iterative

MIMO detection [74]. The following sections describe sphere decoding starting from

the basic hard-output algorithm to introduce the working principle, which is also

common to the soft output-only and soft-input soft-output versions of the algorithm.

The extensions required to output soft information and include a priori input from

the decoder are presented subsequently.

2.2.1.1 Maximum-Likelihood Detection

The first VLSI implementation of depth-first sphere decoding, reported in [36], tar-

geted maximum-likelihood (ML) hard-output detection, which corresponds to estimat-

ing the most likely received symbol vector:

sML = arg min
s∈OMT

{

‖y − Hs‖2

No

}

. (2.10)

The precondition to use sphere decoding is to look at the set of all possible re-

ceived symbol vectors as a tree with MT + 1 levels, where each node represents a

possible received symbol si ∈ O for antenna i and a path from the root (level MT + 1)

to a leaf (level 1) represents a candidate received symbol vector s ∈ OMT . This re-

quires the application of QR decomposition (QRD) to the channel matrix H, resulting

in H = QR where Q is a unitary (i.e., QHQ = I) MR × MT matrix and R is an

upper-triangular MT × MT matrix with real-valued non-negative terms on its main

diagonal. By multiplying both sides of (2.1) by QH, the ML detection problem can be

formulated as:

sML = arg min
s∈OMT

{

‖ỹ − Rs‖2

No

}

(2.11)

with ỹ = QHy. This definition is equivalent to (2.10) because the resulting noise

vector QHn has the same statistics as the original vector n.

QRD enables the association of a metric to each node in the tree, which is non-

negative and only depends on the current and upper levels of the tree. Thanks to

these properties, the detection problem can be treated as a tree search1. In particular,

the metric is the Euclidean distance between the received vector ỹ and the candidate

symbol vector s:

MC(s) =
‖ỹ − Rs‖2

No
. (2.12)

1 The root node of the tree is only inserted for formal reasons but does not play a role in the compu-
tations. Therefore, no symbol is associated to it and its metric is null.
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MT 4 QAM 16 QAM 64 QAM

2 16 256 4 096

3 64 4 096 262 144

4 256 65 536 16 777 216

Table 2.1: Total number of possible transmitted symbol vectors for different modu-
lation orders and numbers of transmit antennae.

On tree level i, the partial metric M
(i)
C , also non-negative, can be computed as:

M
(i)
C =

1

No

∣

∣

∣

∣

∣

∣

ỹi −

MT
∑

j=i

Ri,jsj

∣

∣

∣

∣

∣

∣

2

. (2.13)

Summing up the partial metrics yields the Euclidean distance of the partial symbol

vector s(i) = [si, ..., sMT
] on level i:

MC

(

s(i)
)

=

MT
∑

j=i

M
(j)
C . (2.14)

At the bottom of the tree (i = 1), the total Euclidean distance of the symbol vector

s = s(1) = [s1, ..., sMT
] is computed as:

MC(s) = MC

(

s(1)
)

=

MT
∑

i=1

M
(i)
C . (2.15)

Under these conditions, the problem defined in (2.11) is equivalent to finding the

leaf with the minimum metric MC(s). The total number of leaves equals 2MTQ and,

as shown in Table 2.1, it quickly increases for high modulation orders and numbers of

transmit antennae, potentially leading to a complexity that cannot be managed by a

hardware implementation. In such cases, particularly when MTQ > 10, an exhaustive

search over the complete symbol vector set becomes impractical [30,62] and alternative

techniques with a reduced complexity must be employed.

Depth-first sphere decoding traverses the tree sequentially, starting from the root

down to the first leaf, which is used to initialise sML and the corresponding metric

MML
C = MC(s

ML). Successively, the search proceeds to the next leaves in a sequential

manner. Every time a leaf s is reached, if its metric MC(s) is smaller than the current

MML
C , the ML solution sML and its metric MML

C are updated by the current leaf.

This procedure has a lot of potential for complexity reduction. A first step in this

direction is to exploit the property that M
(i)
C ≥ 0, which means that the Euclidean

distance of a vector s can only increase when going down the tree. As a consequence,
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if the partial metric MC

(

s(i)
)

of a node on tree level i is already larger than the

current MML
C the complete subtree that originates from that node can be ignored since

it cannot lead to an improvement in the current ML solution. This property enables

the pruning of large portions of the tree, thus significantly reducing the complexity

of the search.

Additionally, the tree search can be constrained with a radius [135], typically re-

ferred to as r2 in the literature, so that if a partial metric MC

(

s(i)
)

exceeds it the

corresponding subtree can be pruned. As soon as a leaf with MC(s) < r2 is reached,

the radius constraint is tightened by updating it with the leaf metric. The initial ra-

dius value should be chosen large enough to allow the search to reach at least one

leaf and at the same time small enough to yield a significant complexity reduction. In

the remainder of this thesis, the radius is always initialised to +∞, meaning that from

the moment the first leaf is reached the radius always coincides with the current ML

solution, in the case of hard-output sphere decoding.

The comparison of the current node metric MC

(

s(i)
)

against the radius is re-

ferred to as constraint check or pruning-criterion check and every node that undergoes a

constraint check is considered an examined node. Given the fundamentally sequential

behaviour of depth-first sphere decoding, a common measure of complexity for this

algorithm is the total number of nodes examined throughout the tree search, denoted

by Nen.

Figure 2.2 shows an example of depth-first sphere decoding in the hard-output

ML case, for a 3 × 3 4-QAM setup. By following how the algorithm traverses the tree

its working principles can be observed, particularly the sequential behaviour and the

efficient pruning of the search space.

Further complexity savings can be obtained by noting that, on a given level of the

tree, the nodes with the smallest M
(i)
C are the most likely to lead to an improved ML

solution [135]. Therefore, checking such nodes and the corresponding subtrees first

typically enables the search to find sML more quickly, thereby pruning most of the

irrelevant branches of the tree at an early stage. This property can be exploited by

going through the children of a node in order of increasing M
(i)
C , known as Schnorr-

Euchner (SE) order. For i = 1, in the case of ML detection only the best node needs to

be checked.

Although the complexity reduction in terms of number of examined nodes is

significant, a new step is now necessary to compute the examining order of the

nodes. This operation is commonly referred to as enumeration and in principle re-

quires to compute the 2Q metrics of the children that originate from a given node

and then sort them in increasing order. Such a solution quickly becomes impracti-

cal from a hardware implementation standpoint. For this reason, several enumera-

tion techniques were developed which exploit the geometric properties of QAM con-

stellations to tackle the computational effort; some relevant examples can be found

in [36, 72, 95, 103].



32 Chapter 2. Algorithms for MIMO Iterative Detection and Decoding

Figure 2.2: Example of ML tree search for a 3 × 3 4-QAM setup.

Finally, a further improvement can be achieved by considering first the antennae

which receive the strongest signal, since the most reliable decisions can then be taken

early in the tree search, resulting in a more efficient pruning. This idea corresponds

to sorting the rows of matrix R so that the diagonal elements Ri,i are in increasing

order, i.e., R1,1 is the minimum and RMT,MT
is the maximum. In this way, the top

level of the tree (i = MT) entails the most reliable decision. This order is achieved by

replacing the basic QRD algorithm used to preprocess the channel matrix with sorted

QRD [176]. In the remainder of this thesis, sorted QRD is applied to the receiver input

data whenever sphere decoding is employed for MIMO detection. QRD is not part of

the hardware architectures and implementation results presented in the later chapters

because it only needs to be executed when the channel changes, unlike the detection

task, which must be performed at symbol rate.

2.2.1.2 Extensions to Compute Soft-Output Information

The use of a channel decoder capable of exploiting reliability information rather than

the simple binary estimate of the detected bits allows a gain of several dB in terms

of communication performance. To enable this, the detector is required to compute
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the extrinsic LLRs defined in (2.8). The sphere-decoding algorithm introduced in the

previous section was extended with this feature in [154] and later implemented in

hardware in [152] by C. Studer.

By exploiting the max-log approximation and applying QRD, without a priori

information the extrinsic LLRs can be computed as:

λe
i,b ≈ min

s∈X
(−1)
i,b

{

‖ỹ − Rs‖2

No

}

− min
s∈X

(+1)
i,b

{

‖ỹ − Rs‖2

No

}

. (2.16)

Practically, this formula requires to find for each bit of indices i and b the two symbol

vectors that minimise the metric MC assuming the bit is respectively −1 and +1. By

definition, the ML solution sML is always one of these two vectors. Therefore, the

problem is equivalent to finding sML and its MTQ bit-wise counter-hypotheses, i.e.,

the vectors sML
i,b defined as:

sML
i,b = arg min

s∈OMT∧xi,b 6=xML
i,b

{MC(s)} (2.17)

where xML
i,b represents the label bit associated to vector sML for indices i and b.

Each counter-hypothesis vector sML
i,b can be computed in the same way as sML,

with the exception that the search space is confined to the vectors with xi,b 6= xML
i,b . A

straightforward approach is to perform (MTQ + 1) tree searches to find sML, the bit-

wise sML
i,b and the respective metrics, which are then subtracted to compute the LLRs

as in (2.16). However, when considering hardware implementation, this approach,

named repeated tree search in [154], is inefficient since the different searches often go

through the same parts of the tree, repeating multiple times the same computations.

In order to avoid this unnecessary overhead, a single tree-search (STS) sphere-

decoding algorithm is presented in [154] which computes both the ML solution and

all counter-hypotheses in the same tree traversal. Throughout the search, the algo-

rithm stores the current ML solution sML, its bit label xML, its metric MML
C and the

counter-hypothesis metric MC

(

sML
i,b

)

for each bit. Every time a new leaf s with bit

label x is reached by the depth-first search, three different cases can occur:

1. Vector s is the new ML solution, i.e., MC(s) < MML
C . Therefore, sML, xML and

MML
C are updated by the new vector and its metric respectively. The old value

of MML
C is used to update the counter-hypothesis metrics MC

(

sML
i,b

)

for all the

bits in x that differ from the old xML.

2. Vector s does not improve the ML solution but improves one or more counter-

hypothesis metrics. Hence, MC(s) is used to update all the metrics MC

(

sML
i,b

)

which are larger than MC(s) and correspond to bits in x that differ from xML.

3. Vector s does not improve either the ML solution or any counter-hypothesis. No

update is needed and the tree search proceeds to the next node.
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In a mathematical form, when leaf s is reached the following update rules apply:

sML =

{

s, if MC(s) < MML,old
C

sML,old, otherwise;
(2.18)

xML =

{

x, if MC(s) < MML,old
C

xML,old, otherwise;
(2.19)

MML
C =

{

MC(s), if MC(s) < MML,old
C

MML,old
C , otherwise;

(2.20)

MC

(

sML
i,b

)

=















MML,old
C , if MC(s) < MML,old

C ∧ xi,b 6= xML,old
i,b

MC(s), if MML,old
C ≤ MC(s) < Mold

C

(

sML
i,b

)

∧ xi,b 6= xML,old
i,b

Mold
C

(

sML
i,b

)

, otherwise.

(2.21)

Applying the single tree-search approach to soft-output sphere decoding requires

a more sophisticated constraint check as well, since a subtree can be pruned only if

neither the ML solution nor any of the counter-hypotheses can be improved. First of

all, in order to go to the next lower level in the tree the following condition [169] must

apply:

MC

(

s(i)
)

< max
{

MC

(

sML
j,b

)∣

∣

∣ j < i ∨ xj,b 6= xML
j,b , ∀b

}

. (2.22)

If this is not the case, the next option is to examine the next best sibling of the current

node in case the following constraint is satisfied:

MC

(

s(i)
)

< max
{

MC

(

sML
j,b

)∣

∣

∣
j ≤ i ∨ xj,b 6= xML

j,b , ∀b
}

. (2.23)

If neither (2.22) nor (2.23) are satisfied, the tree search goes up to level (i + 1) and the

next best sibling on that level is examined. In case that the enumeration outputs the

exact SE order the aforementioned pruning criteria preserve the max-log optimality of

the results.

In view of the previous considerations, the extension of sphere decoding with soft-

output computation mainly results in a more complex control of the tree traversal,

since more information has to be stored and considered when deciding on the next

step. On the other hand, no modification is required to the enumeration process with

respect to the hard-output case, since the metrics that have to be computed are the

same.

2.2.1.3 Extensions to Include Soft-Input Information

A further step towards the channel capacity limit can be made by including a priori

information in the tree search and iterating the detection/decoding process multiple

times. The extension of the depth-first sphere decoding algorithm with soft input was

presented in [150] and [151]. The algorithm no longer searches for the ML solution



2.2. Soft-Input Soft-Output MIMO Detection 35

defined in (2.11) in the absence of a priori information but rather for the maximum

a posteriori (MAP) symbol vector, defined as:

sMAP = arg min
s∈OMT

{

‖ỹ − Rs‖2

No
− log P [s]

}

. (2.24)

The MAP solution sMAP corresponds by definition to one of the two minima re-

quired for the computation of the a posteriori LLRs λ
p according to (2.7). Similarly to

the ML problem treated in the previous section, the other minimum corresponds to

the MTQ bit-wise counter-hypotheses sMAP
i,b :

sMAP
i,b = arg min

s∈OMT∧xi,b 6=xMAP
i,b

{

‖ỹ − Rs‖2

No
− log P [s]

}

. (2.25)

This formulation is analogous to the description of the soft-output problem in Sec-

tion 2.2.1.2. In order to apply the same single tree-search approach to solve the new

soft-input soft-output problem, the term log P [s] must depend only on the current

and upper tree levels. This condition is verified under the assumption that the sym-

bols si, with i = 1, ..., MT, are statistically independent, which is realistic in practice

and results in:

P [s] =

MT
∏

i=1

P [si] . (2.26)

As this thesis targets hardware implementation, the computation of log P [si] is

impractical, because of the logarithmic and exponential functions involved in (2.6).

The term (− log P [si]) can be replaced by:

M
(i)
A =

Q
∑

b=1

1

2

(

−xi,bλa
i,b + |λa

i,b|
)

(2.27)

to simplify the computation for statistically independent bits. As detailed in [150], this

substitution does not compromise either the max-log optimality of the output LLRs

or the applicability of sphere decoding to the problem, since the term is non-negative.

At the same time, it leads to a complexity reduction in terms of number of examined

nodes.

The a priori contribution M
(i)
A defined in (2.27) is equivalent to MA(si), while the

total metric on level i, including both the new a priori term M
(i)
A and the channel-

based term M
(i)
C previously defined in (2.13), is:

M
(i)
P = M

(i)
C +M

(i)
A . (2.28)
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Similarly to MC

(

s(i)
)

, the total metric of the partial symbol vector s(i) can be com-

puted recursively as:

MP

(

s(i)
)

=

MT
∑

j=i

(

M
(j)
C +M

(j)
A

)

=

MT
∑

j=i

M
(j)
P (2.29)

leading, at the tree leaves, to:

MP(s) = MC(s) +MA(s) = MP

(

s(1)
)

=

MT
∑

i=1

M
(i)
P . (2.30)

In view of the previous definitions, soft-input soft-output sphere decoding aims

at finding the MAP solution sMAP, with its corresponding bit label xMAP and mini-

mum overall metric MMAP
P = MP(s

MAP), and the MTQ counter-hypothesis metrics

MP

(

sMAP
i,b

)

. Throughout the tree search, which proceeds similarly to the soft-output

case described in Section 2.2.1.2, the following update rules apply when a leaf is

reached:

sMAP =

{

s, if MP(s) < MMAP,old
P

sMAP,old, otherwise;
(2.31)

xMAP =

{

x, if MP(s) < MMAP,old
P

xMAP,old, otherwise;
(2.32)

MMAP
P =

{

MP(s), if MP(s) < MMAP,old
P

MMAP,old
P , otherwise;

(2.33)

MP

(

sMAP
i,b

)

=



























MMAP,old
P , if MP(s) < MMAP,old

P ∧ xi,b 6= xMAP,old
i,b

MP(s), if MMAP,old
P ≤ MP(s) < Mold

P

(

sMAP
i,b

)

∧xi,b 6= xMAP,old
i,b

Mold
P

(

sMAP
i,b

)

, otherwise.

(2.34)

The pruning criteria introduced in (2.22) and (2.23) also need to be modified [169]

respectively to:

MP

(

s(i)
)

< max
{

MP

(

sMAP
j,b

)∣

∣

∣
j < i ∨ xj,b 6= xMAP

j,b , ∀b
}

(2.35)

and:

MP

(

s(i)
)

< max
{

MP

(

sMAP
j,b

)∣

∣

∣ j ≤ i ∨ xj,b 6= xMAP
j,b , ∀b

}

. (2.36)

Finally, the presence of non-zero a priori LLRs means that the extrinsic LLRs

required by the channel decoder do not coincide with the a posteriori LLRs output by

the tree search and hence they have to be computed according to (2.8).
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The extensions introduced in this section to support the additional soft-input in-

formation do not appear like an extreme complexity increase. However, the key issue

of soft-input soft-output sphere decoding is the enumeration process. In the absence

of a priori information this task can be greatly simplified by exploiting the geometric

properties of QAM constellations. On the contrary, these properties do not apply for

enumerating nodes based on the metric M
(i)
P when M

(i)
A 6= 0. Hence, the only way

to obtain the exact SE order is to compute M
(i)
P for all the 2Q QAM symbols and then

look for the minimum M
(i)
P among the nodes that have not been examined yet. Such

an exhaustive search is very inefficient from a hardware point of view.

A viable alternative is provided by the hybrid enumeration approach presented

in [97]. This heuristic splits the problem into two concurrent enumeration processes,

based respectively on M
(i)
C and M

(i)
A . For the MC-based enumeration all the methods

developed to work without soft input and mentioned in Section 2.2.1.1 can be reused.

On the other hand, the MA-based enumeration can be highly optimised by exploiting

the properties of (2.27) and the independence of the metric M
(i)
A from the rest of

the symbol vector [169]. At every step of the tree search, each enumeration process

outputs one node, the best one in terms of M
(i)
C and M

(i)
A respectively. These two

nodes are then compared in terms of M
(i)
P to select the next one to be examined.

Although not exact, the examining order resulting from this hybrid enumeration

approximates closely enough the SE order. However, to preserve the optimality of the

SD algorithm without the SE order a modification is required to the pruning criterion

defined in (2.36). At any given enumeration step k, with k = 1, ..., 2Q, on level i

the metric MP

(

s
(k)
i

)

selected by the hybrid enumeration may not be the minimum

among not yet examined symbols and hence applying (2.36) may result in the pruning

of the MAP solution or of the counter-hypotheses. Therefore, the metric MP

(

s
(k)
i

)

on the left-hand side of (2.36) is replaced by:

MP

(

s(i+1)
)

+MC

(

s
(k)
C,i

)

+MA

(

s
(k)
A,i

)

< max
{

MP

(

sMAP
j,b

)∣

∣

∣ j ≤ i ∨ xj,b 6= xMAP
j,b , ∀b

}

(2.37)

with s
(k)
C,i and s

(k)
A,i being the symbols selected respectively by the MC-based and by

the MA-based enumerations at step k on tree level i. This sum represents a lower

bound for the remaining metrics M
(i)
P and hence guarantees that no ill-advised prun-

ing occurs. On the other hand, this modification results in an increased number of

examined nodes with respect to the exact SE order.

2.2.1.4 Computational Complexity vs. Communication Performance Tradeoff

The sphere-decoding algorithm introduced in the previous sections yields max-log

optimal LLRs. However, a few issues must be addressed on the path to hardware im-

plementation. First of all, the extrinsic LLRs output by the algorithm are in principle

unbounded and hence not suitable for a fixed-point implementation.
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A simple solution is to clip their magnitude to a maximum value Λe after sphere

decoding. This constraint on the LLR magnitude can be embedded in the tree search

since it practically corresponds to setting a finite value for the radius r2 [177], with the

advantage that the number of nodes examined by the tree search can be significantly

reduced. This idea was applied to STS sphere decoding first in [154] for the soft-

output algorithm and then in [150] for the soft-input soft-output case.

In practice, LLR clipping requires that the update rule (2.34) for the counter-

hypothesis metrics is subject to:

MP

(

sMAP
i,b

)

=

max
{

MMAP
P + λa

i,bxMAP
i,b − Λ

e, min
{

MMAP
P + λa

i,bxMAP
i,b + Λ

e,MP

(

sMAP
i,b

)}}

.

(2.38)

This formulation is equivalent to the one described in [169], which makes use of ex-

trinsic counter-hypothesis metrics. By varying Λe from +∞ to 0 the complete perfo-

mance range from soft-input soft-output max-log MAP to hard-output ML optimality

can be covered and complexity can be traded off against performance according to

what is required. The LLR clipping technique is hence a key contribution to the

scalability of the depth-first sphere-decoding algorithm.

Even though the average number of examined nodes E[Nen] can be tuned by

means of LLR clipping, the problem of the extreme worst-case complexity of sphere

decoding remains open. To address this issue, Nen can be constrained to a maximum

number Nen,max so that the tree search is terminated as soon as Nen,max is reached.

This solution works best in combination with LLR clipping. If no maximum value is

set for the extrinsic LLRs, some of them may turn out to be +∞ or −∞, not because

the reliability of the corresponding bits is very high but simply because the search is

terminated before a valid counter-hypothesis is found for those bits.

These techniques, together with a few additional solutions introduced later in

Section 4.1.1, allow the adjustment of the communication performance vs. complexity

tradeoff over a very wide range, ensuring that in any operating point the MIMO

detector spends only the effort required to achieve the target error rate and nothing

more. Even though challenging for the hardware implementation, this property is

very beneficial from an efficiency standpoint and represents one of the key reasons

why depth-first sphere decoding is the MIMO detection algorithm of choice for the

IDD receiver implemented later in this thesis.

2.2.2 Suboptimal Tree Search-Based Algorithms

The worst-case complexity of depth-first sphere decoding, even after applying all the

complexity-reduction techniques mentioned in Section 2.2.1, is O
(

2MTQ
)

. Moreover,

its inherently sequential nature and its variable runtime are significant hurdles on the

way to hardware implementation. Therefore, much effort has been spent on reduc-

ing and possibly fixing the complexity of sphere decoding and on transforming the
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algorithm to enable the application of hardware design techniques such as paralleli-

sation and pipelining. As a result, a multitude of tree search-based MIMO detection

algorithms are available in the literature. The remainder of this section attempts to

summarise the most relevant results for hardware implementation.

The first approach that drew attention as a hardware-friendly alternative to a

depth-first tree search is breadth-first sphere decoding, whose most relevant example

is the K-best algorithm [172]. This method traverses the tree only once, from the root

to the leaves, and at every level only considers the K children with the lowest partial

metrics. As a consequence, only K nodes have to be extended at any step in the

tree search. K-best sphere decoding is characterised by a fixed complexity, since the

number of candidate symbol vectors is decided a priori by fixing K, and it is easier

to parallelise and pipeline than a depth-first search due to the one-way traversal and

to the fewer dependencies among the nodes. Examples of hardware implementations

can be found in [167], [139], [118] and [67], the latter being the only one to support

iterative detection and decoding.

On the other hand, since the number of considered leaves is artificially restricted

and the search only goes in the forward direction, the optimal solution may not be

found, resulting in a communication performance penalty. In practice, especially at

low SNR and for large QAM constellations, in order to include the optimal solution

many candidates have to be considered and the complexity advantage with respect

to depth-first sphere decoding decreases quickly. This issue gets worse when soft-

output information has to be computed and hence many more candidates have to be

considered to have good counter-hypotheses. Therefore, in the context of an iterative

system the K-best algorithm achieves very limited performance gains over the IDD

iterations, unless K is very large [67].

A similar approach to K-best is fixed-complexity sphere decoding (FSD), first intro-

duced in [22] to target hard-output detection. While K-best sphere decoding considers

the overall K best children on any given level, FSD extends from each node the same

predefined number of its best children. For instance, near-ML hard-output perfor-

mance can be achieved by considering all the 2Q nodes on the top tree level MT and

then only the best child of each of them from level (MT − 1) down to level 1, resulting

in a total of 2Q candidate leaves [22].

FSD has similar properties to K-best SD when looking at hardware implementa-

tion, with the additional advantage that it does not need a global sorting to find the

subset of K nodes among all the
(

K 2Q
)

children that K-best SD considers on each

level. On the other hand, the communication performance is degraded since the al-

gorithm is more prone to missing the global optimal solution than K-best SD. FSD

was extended in [23] to support iterative detection and decoding, with further im-

provements in [44] and a first VLSI architecture in [43]. Similarly to K-best SD, the

soft-input version of the algorithm suffers from a limited performance gain in the con-

text of an iterative receiver, requiring a very large number of candidates to generate

reliable soft information.

In order to overcome the drawbacks of breadth-first searches, a hybrid method

was proposed in [102] and [104] under the name of tuple search; a corresponding
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architecture, with gate-level results, was later described in [19]. The basic idea is to

traverse the tree in a depth-first manner and save a list, or tuple, of the T leaves with

the smallest overall metrics, instead of the bit-wise counter-hypotheses required for

the max-log MAP performance. The largest metric among those stored in the tuple is

used as the radius for tree pruning. The resulting algorithm requires a smaller list of

candidates than the previously described breadth-first approaches due to the better

quality of the search results. At the same time, complexity is reduced with respect

to max-log MAP STS sphere decoding because the tree is pruned more quickly. This

complexity advantage comes at a non-negligible performance loss [19].

Another algorithm that has led to a hardware implementation is trellis-based MIMO

detection, which has many similarities with tree search-based detection. This approach

represents the search space as a trellis rather than a tree, with each stage correspond-

ing to an antenna and containing the 2Q nodes in the constellation. Developed in [156]

for soft-output detection and later extended in [155] to include soft input, the algo-

rithm searches the trellis for a list of candidates to compute the LLR values, similarly

to the previously described sphere-decoding variants. Several heuristics are employed

to reduce the search complexity, which is fixed. Although suboptimal, trellis-based

detection shows a sightly better performance than K-best approaches.

To summarise, all the algorithms described in this section aim to approach the

max-log MAP performance with a lower complexity than the STS sphere decoder in-

troduced in Section 2.2.1. However, the performance gap is typically relevant unless

the effort of the tree search is significantly increased, e.g., by substantially enlarging

the set of considered candidates. As a consequence, the complexity of these subopti-

mal algorithms approaches or even exceeds a max-log MAP depth-first tree search as

the communication performance limit gets closer.

Moreover, in high SNR a depth-first search converges to the solution relatively

quickly. Therefore, when targeting the same error-rate performance in the same op-

erating point, the methods introduced in this section do not necessarily bring an

advantage over depth-first sphere decoding. Furthermore, the efficiency of their im-

plementation can be expected to be relatively low since many candidates that do

not contribute to the final solution have to be included in the search not to miss the

relevant ones. Intuitively, this property results in many unnecessary computations,

which may affect significantly the energy efficiency of a hardware implementation

even when parallelisation and pipelining can hide them from the throughput point of

view. For these reasons, depth-first sphere decoding was herein preferred to breadth-

first and other hybrid algorithms.

2.2.3 MMSE Detection

The main alternative to approaches that look for the MAP solution is represented by

linear detectors, which transform MIMO detection into MT independent single-stream

detection problems. In this class of algorithms, the received signal goes through a

linear filter, which for instance inverts the channel matrix (zero-forcing algorithm) or

minimises the mean square error of the estimated symbols (MMSE filtering). MMSE
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detection is particularly relevant for this thesis since its soft-input soft-output vari-

ant can approach the communication performance of max-log MAP detection while

enabling an efficient hardware implementation, as proven in [144, 145].

In the presence of a priori information, the MMSE algorithm [148] includes a first

step to compute estimates ŝ of the transmitted symbols based on the a posteriori LLRs

computed by the decoder. For each antenna i, the interference of the other streams is

then cancelled by exploiting ŝ as follows:

ŷi = y −
∑

j 6=i

hj ŝj (2.39)

where hj is column j of the channel matrix H. This step can be performed in parallel

for the different antennae and it is hence named parallel interference cancellation (PIC).

Successively, the algorithm computes and applies the filter vectors which minimise

the minimum square error between ŷi and the scalar transmitted symbol si. The

outcome of this operation, combined with the a priori information provided by the

channel decoder, can be used to compute the output LLRs.

It should be noted that this version of the algorithm, known as MMSE-PIC and im-

plemented in hardware in [144,145], uses as a priori information the a posteriori LLRs

computed by the decoder rather than the extrinsic LLRs. This solution was shown to

yield the best communication performance for this specific algorithm. However, this

is unusual in the context of iterative systems which operate according to the turbo

principle [68] and typically exchange only the incremental information in terms of

extrinsic LLRs. In [137], an improved iterative MMSE algorithm is derived by apply-

ing the mathematical framework of expectation propagation (EP) [107]. This EP-MMSE

detector makes use of extrinsic a priori LLRs and can outperform MMSE-PIC and,

in some situations, even max-log MAP algorithms, thus proving to be an interesting

candidate for future developments in the MIMO detection area.

All MMSE-based algorithms, however, have a common weakness in that they can-

not fully exploit the diversity available in a certain scenario. In general, diversity is a

way to improve performance by ensuring that the information bits go through several

different “paths” before reaching the receiver, so that the chance of a successful com-

munication is high as long as enough of these “paths” are reliable [161]. Diversity can

be introduced in different dimensions:

• Time: by channel coding and interleaving, the information bits are spread and

shuffled over time so that they experience different fading when the coherence

time of the channel is shorter than the duration of the codeword.

• Frequency: the information can be distributed among different subcarriers at

different frequencies, so that in a frequency-selective channel each subcarrier

experiences a different fading. This is achieved by techniques such as orthogonal

frequency division multiplexing (OFDM) [41].

• Space: with MIMO transmission schemes, if the antenna spacing is sufficient

different streams go through different channels.
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The degree to which a receiver is able to exploit diversity is expressed by the

diversity gain [161], i.e., the slope of the error-rate curve Pe(SNR) for SNR → +∞, as

defined in [148]:

d = − lim
SNR→+∞

log Pe(SNR)

log SNR
. (2.40)

This metric is particularly relevant in scenarios with low diversity, for instance in the

presence of a high code rate or of a quasi-static channel which does not vary signifi-

cantly over the duration of a codeword. In such cases, the performance advantage of

a max-log MAP detection algorithm with d = MR [120], like depth-first sphere decod-

ing, over a linear detector with d = MR − MT + 1 [120] grows very large [27]. On the

other hand, if the operating conditions offer enough diversity, soft-input soft-output

MMSE detection can approach the performance of max-log MAP algorithms after a

few detector/decoder iterations.

2.2.4 Markov Chain Monte Carlo Detection

Besides tree search-based and linear techniques, another interesting class of MIMO

detection algorithms is based on Monte Carlo statistical methods [56]. Similarly to

tree-search algorithms, the basic idea is to find a set of suitable candidates for the

MAP hypothesis and counter-hypotheses and then use them to compute the LLR val-

ues. However, these candidates are not found by a tree search but rather generated ac-

cording to their probability distribution, computed from the available channel-based

and a priori information [138].

A Markov chain Monte Carlo (MCMC) method, such as Gibbs sampling, can be

applied to draw the candidate vectors as samples of their probability distribution.

Gibbs sampling is an iterative algorithm which updates the state of the Markov chain

according to the marginal distribution of each of its nodes, corresponding to the MTQ

bits in the symbol vector, eventually converging to the target distribution. Given a

total number of samples Ns, the MCMC algorithm computes the a posteriori LLRs as:

λ
p
k = log

(

P [ck = 1|y, H, λ
a]

P [ck = 0|y, H, λ
a]

)

≈ log





∑Ns
s=1 P

[

ck = 1, c
(s)
\k

∣

∣

∣
y, H, λ

a
]

∑Ns
s=1 P

[

ck = 0, c
(s)
\k

∣

∣

∣
y, H, λ

a
]



 (2.41)

where c
(s)
\k

is the s-th sample output by the Gibbs sampler.

MCMC detection has interesting properties for hardware implementation, since

Gibbs sampling can be easily parallelised and its number of iterations (i.e., samples)

Ns adjusted to trade off performance vs. complexity. Furthermore, the max-log ap-

proximation can be applied to (2.41) to additionally reduce the complexity, which is

fixed for a given choice of Ns. However, the initial synthesis results presented in [49]

show that additional research is required to enable the usage of soft-input soft-output

MCMC detection in high throughput receivers.
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2.3 Error-Correcting Codes and Soft-Input Soft-Output

Decoding

The channel decoder is one of the two major components of a MIMO IDD receiver,

together with the MIMO detector. Its inner functionality strongly depends on the

error-correcting code defined by the communication standard in use. This tight de-

pendency is an important difference with respect to detection algorithms, which de-

pend on more generic parameters such as the number of streams and the modulation.

Present communication standards typically employ linear binary codes, meaning

that a codeword, i.e., the outcome of the encoding of an information bit sequence, is

a binary string from the Galois field F2 and that a linear combination of two arbitrary

codewords is still a codeword. The set of all possible codewords defines the code-

book C and the error-correcting capabilities of a given code directly depend on the

minimum Hamming distance among all codewords [71].

Linear codes are widely used in practice because they are relatively simple to

encode and decode. Three main types are currently employed in wireless communi-

cation standards:

• LDPC codes: they belong to the class of block codes, which assumes that the in-

formation bit sequence is split into blocks of fixed length Ni, meaning that there

exist 2Ni possible messages. Each of these messages is encoded into a different

codeword of length Nc = Ni/R, where the code rate R is the ratio between the

number of information bits in the original message (Ni) and the number of bits

in the corresponding codeword (Nc). Exploiting the linearity property, a mes-

sage can be encoded by multiplying it with a Ni × Nc generator matrix, whose

rows correspond to a subset of Ni linearly independent codewords [132].

• Convolutional codes: the information bit sequence is encoded in a stream-based

manner, typically by passing it through two discrete-time finite-impulse-response

filters, whose transfer functions are defined by the generator polynomials of the

code, and then combining it with the outputs of these filters. The encoding pro-

cess is rather simple to implement and can be represented as a trellis diagram.

This representation is the basis of the algorithms that can decode convolutional

codes with optimal performance: Viterbi decoding [163] to find the ML solution

and BCJR decoding [20] to generate bit-wise a posteriori information.

• Turbo codes: the most recently discovered among the codes considered in this

thesis, they are formed by multiple concatenated convolutional codes interfaced

by interleavers [26].

The following sections give an overview of these popular codes, with particu-

lar focus on the receiver side of the problem, i.e., the channel decoding algorithm.

Specific attention is dedicated to LDPC codes since they are the target of the design

implemented in the scope of this thesis.
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2.3.1 LDPC Decoding

Low-density parity-check (LDPC) codes, invented by R. Gallager in 1962 [61], are emerg-

ing as one of the top FEC techniques for present [78–80] and future communication

standards. This is due on the one hand to their powerful error-correction capabilities

and on the other hand to the suitability of the encoding and decoding algorithms for

hardware implementation.

LDPC codes belong to the category of linear block codes. As mentioned in the

previous section, the encoding process is described by a Ni × Nc generator matrix Gb.

Another matrix Hb of size (Nc − Ni)× Nc can be defined such that:

GbHb
T = 0Ni,Nc−Ni

(2.42)

where 0Ni,Nc−Ni
is a Ni × (Nc − Ni) matrix with all entries equal to 0. Hb is called

parity check matrix and any codeword c of length Nc belongs to the codebook C if

and only if the following condition is verified:

cHb
T = 01,Nc−Ni

(2.43)

where 01,Nc−Ni
is a null vector of length (Nc − Ni). This condition is at the basis of the

decoding process of any block code. The peculiarity of LDPC codes is the sparsity of

the parity check matrix Hb, which only contains a few entries set to 1.

Modern standards such as IEEE 802.11n and IEEE 802.16e employ a specific kind

of LDPC codes particularly suited for an efficient implementation. These codes are

named quasi cyclic (QC) [112] and are compactly represented by an Mp × Np matrix

prototype Hp. The parity check matrix Hb is obtained by expanding each entry of Hp

to a Z × Z cyclic-shift matrix Pc defined as:

Pc =
c
∏

i=1

P1 (2.44)

where P1 is a Z × Z matrix whose element (i, j) is 1 if (i mod Z) + 1 = j and 0 oth-

erwise. The index c is specified by the corresponding entry in the matrix prototype

Hp. Therefore, the resulting parity check matrix Hb has dimensions MpZ × NpZ. In

the IEEE 802.11n standard, three different codeword lengths Nc are defined, namely

648, 1296 and 1944 bits, corresponding to a sub-block size Z of 27, 54 and 81 respec-

tively [78]. Np is constant and equal to 24.

The following is an example of the matrix prototype Hp for the IEEE 802.11n code

with R = 5/6 and Z = 27:

Hp =













17 13 8 21 9 3 18 12 10 0 4 15 19 2 5 10 26 19 13 13 1 0 − −

3 12 11 14 11 25 5 18 0 9 2 26 26 10 24 7 14 20 4 2 − 0 0 −

22 16 4 3 10 21 12 5 21 14 19 5 − 8 5 18 11 5 5 15 0 − 0 0

7 7 14 14 4 16 16 24 24 10 1 7 15 6 10 26 8 18 21 14 1 − − 0












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Figure 2.3: Example of Tanner graph for an irregular LDPC code (based on [82]).

where each entry marked with ‘−’ is to be expanded to a Z × Z null matrix.

The IEEE 802.11n codes are systematic, meaning that the codeword c is formed

by the Ni original information bits concatenated with the (Nc − Ni) parity check bits

computed so that condition (2.43) is fulfilled. No additional interleaving is required.

Before treating the decoding problem, it is useful to introduce a common way to

represent LDPC codes as graphs, which is at the basis of many decoding algorithms.

This representation is named after R. M. Tanner, who introduced it in [158]. A Tanner

graph is a bipartite graph with two types of nodes: Nc variable nodes (VNs), one for

each bit in the codeword, and (Nc − Ni) check nodes (CNs), one for each parity check.

VN j is connected to CN i by an edge when the entry (i, j) in the parity check matrix

Hb is 1. An exemplary Tanner graph is shown in Figure 2.3.

The decoding process can be described as an iterative information exchange, in

the form of probabilistic information such as LLRs, between VNs and CNs along the

existing edges. The density of matrix Hb has to be low to avoid short cycles in the

Tanner graph. Such cycles would degrade the decoding performance because the

iterative algorithm would easily get stuck locally rather than evenly improving the

reliability of all nodes.

The iterative decoding of LDPC codes is based on the message-passing (MP) prin-

ciple, that is: every node in the graph receives a message from its neighbours, adds

its own bit of information and finally passes on to the neighbours a message con-

taining the new extrinsic information, i.e., the result of the node update minus the

information that the neighbours already knew. This iterative exchange of extrinsic

information is also known as the turbo principle in the context of iterative decoding.

MP decoding algorithms do not achieve optimal performance on graphs containing

cycles, but they can approach it closely if the code is designed carefully [132].

The most popular MP decoding algorithm for LDPC codes, known as the sum-

product algorithm (SPA), was proposed by R. Gallager himself in [61]. In the Tanner-

graph representation, each VN v corresponds to a coded bit and is initialised with the
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corresponding LLR λa
v previously computed by the detector, as shown in Figure 2.3.

A CN c receives this information, denoted by qv,c, from all the neighbouring VNs and

computes the new message for VN v as [132]:

rc,v = 2 tanh−1





∏

v′∈Nvn(c)\{v}

tanh

(

1

2
qv′,c

)



 (2.45)

where Nvn(c) is the set of neighbouring VNs to CN c. This information is then passed

back to the VNs and each VN v sums up all the incoming messages and the initial

LLR to provide updated extrinsic information to CN c as:

qv,c = λa
v +

∑

c′∈Ncn(v)\{c}

rc′,v (2.46)

where Ncn(v) is the set of neighbouring CNs to VN v. This message exchange is

repeated until a predefined number of iterations Idec is reached or another stopping

criterion is met. At the end, each VN computes its a posteriori LLR as:

λ
p
v = qv = λa

v +
∑

c∈Ncn(v)

rc,v. (2.47)

The sign of this LLR corresponds to a binary estimate of the coded bit. Based on this

output, condition (2.43) can be computed to check the success of the decoding and

hence stop the iterative process. The SPA algorithm can achieve MAP optimality if

the Tanner graph is cycle-free.

When considering hardware implementation, the complexity of the SPA algorithm

is high, especially in the computation of (2.45) by the CNs. A significant complexity

reduction can be obtained by converting expression (2.45) in the logarithmic domain

and then approximating the resulting summation with a minimum operation (min-

sum algorithm [91]) so that:

rc,v ≈





∏

v′∈Nvn(c)\{v}

sign (qv′,c)



 min
v′∈Nvn(c)\{v}

{|qv′,c|} . (2.48)

This approximation leads to a performance loss, which can be reduced by sub-

tracting a fixed offset β from the overly optimistic message rc,v, yielding [42]:

rc,v ≈





∏

v′∈Nvn(c)\{v}

sign (qv′,c)



max

{

min
v′∈Nvn(c)\{v}

{|qv′,c|} − β, 0

}

. (2.49)

This offset min-sum (OMS) algorithm is later on used in the hardware implementa-

tion presented in this thesis due to its favourable tradeoff between complexity and

communication performance. However, many other variants of the SPA and min-sum
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algorithms are available in the literature; a fairly complete survey of these methods

can be found in [132].

Besides the arithmetic operations for computing the information exchanged be-

tween the nodes, an important aspect of LDPC decoding is how and when this ex-

change happens, i.e., the schedule. The classical version of the algorithm works ac-

cording to a flooding schedule [91], meaning that all messages are passed at the same

time. In this way, all VNs, respectively all CNs, are updated at the same time. This

schedule suffers from a slow convergence to the solution and from high error floors,

besides resulting in high memory requirements [142].

A more efficient schedule updates the check nodes serially [142]: for a given CN,

all the messages for its neighbouring VNs are updated so that this set of VNs can in

turn update the corresponding qv,c and pass it back to their neighbouring CNs; at this

point, the procedure is repeated for the next CN and so on until all CNs have been

updated, marking the completion of an iteration. This method enables the algorithm

to converge in fewer iterations than the flooding schedule and also saves a significant

amount of memory since the messages qv,c can be computed on the fly without having

to be stored [42].

The apparent drawback of such a serial policy is its lack of parallelism, as opposed

to the flooding schedule that allows the computation of all CNs in parallel. However,

in practice the CNs can be split into sets, such that nodes from the same set are not

connected with each other via the same VN. The nodes belonging to one set are hence

independent and their update can be parallelised. Furthermore, if there are enough

sets, even if there are connections within a set, a parallel update has a negligible

impact on the performance. This idea is at the basis of layered decoding [42, 73],

which considers the different rows (i.e., the layers) of the parity check matrix as sets

of independent nodes.

The LDPC decoder architecture utilised in this thesis is based on the layered OMS

algorithm, with a few additional optimisations to further reduce memory require-

ments by value reuse [66] and by clipping the messages rc,v, thus limiting the dynamic

range of the computations [146]. A step-by-step description of the implemented algo-

rithm can be found in [146] and [128].

2.3.2 Convolutional Decoding

Convolutional codes, invented by P. Elias in 1955 [52], are a popular and established

FEC technique used by most modern wireless communication standards. Even though

valid alternatives such as LDPC and turbo codes have emerged recently, convolutional

codes are still of practical interest, especially in the context of iterative detection and

decoding, where they have a high potential for performance gain over iterations, as

shown for instance in [148].

From the receiver point of view, convolutional codes can be optimally decoded by

the Viterbi algorithm [163], which finds the ML binary bit sequence, or by the BCJR

algorithm [20], which computes the a posteriori probability of each coded bit in the

form of an LLR value. The latter is the algorithm of interest for an iterative receiver.
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As mentioned previously, convolutional codes can be represented as trellis dia-

grams. The basic principle of BCJR decoding is to compute the probabilities required

in (2.9) as summations of the probabilities of all the trellis state transitions concerning

a given bit. Each transition probability is the product of three terms: first, the for-

ward metric, quantifying the probability of being in a certain state of the trellis given

the a priori information computed by the detector; second, the branch metric, corre-

sponding to the probability of transitioning to the next state given the current one;

third, the backward metric, identifying the probability of the remaining bit-wise LLRs

given the current trellis state. These metrics can be efficiently computed recursively

by traversing the trellis twice, first in the forward and then in the backward direction.

Several techniques can be applied to reduce the complexity of the algorithm, at the

cost of a communication performance loss. Among others, the max-log approximation

can be used to simplify the computation of the different metrics [164] and windowing

can be applied to the traversal to reduce the memory requirements if the trellis is very

long [60]. When considering modern high data rate standards, the implementation of

BCJR decoders was mainly studied in the context of turbo decoding and hence only

few stand-alone designs able to sustain high throughput figures are available in the

literature (e.g., [98], [178], [157], [143] and [153]).

2.3.3 Turbo Decoding

A major breakthrough in the field of ECCs is represented by turbo codes, first intro-

duced by C. Berrou in 1993 [26]. Turbo codes are generated by the concatenation

of two or more convolutional encoders, connected either serially (serially concatenated

convolutional code, SCCC) or in parallel (parallel concatenated convolutional code, PCCC).

In order to improve the performance, a pseudo-random interleaver is placed at the

interface between the encoders to make them independent.

The presence of the interleaver makes the ML decoding of such a code practically

unfeasible. However, a near-optimal decoder can be designed by concatenating two

or more BCJR decoders which match the encoders and are interfaced by interleavers.

The decoders operate according to the turbo principle, iteratively exchanging soft

information about the coded bits and ultimately converging to a solution.

While achieving near-capacity communication performance, turbo codes are chal-

lenging to implement, particularly on the decoding side. Most available decoder

implementations target low data rates. The major bottleneck from the throughput

perspective is represented by the interleaver, typically realised with memories, which

tend to be inefficient for highly parallel and interleaved access schemes.

Recently, with the growing usage of turbo codes in modern standards such as

WiMAX and LTE, implementations which support throughputs above 100 Mbit/s

were presented, for instance in [89], [171], [149] and [81]. Based on the results re-

ported in the literature, turbo decoders show a lower inclination towards hardware

implementation than LDPC decoders. While the communication performance of the

two classes is comparable, LDPC decoder architectures tend to be more efficient, scal-

able and adaptable to different codes than turbo decoder designs [148].
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2.4 Communication Performance Analysis

The main algorithmic options for the detector and the decoder components of a

MIMO IDD receiver have been summarised throughout this chapter, together with

a qualitative overview of the advantages and disadvantages of each of them. An ac-

curate complexity comparison cannot be carried out on this level of abstraction, since

a fair analysis requires detailed knowledge of each hardware implementation, when

available, and of the operating conditions in which each algorithm is characterised.

Therefore, the key choice of which algorithms to implement in a MIMO IDD receiver

is mainly based, from the complexity standpoint, on the general observations men-

tioned in the previous sections.

On the other hand, the communication performance of the different algorithms

can be consistently evaluated even if a corresponding hardware design is not avail-

able. The remainder of this section analyses and compares the performance of several

detector/decoder combinations in different scenarios, motivating the choice of the

STS SD algorithm in conjunction with LDPC decoding for the implementation car-

ried out in the context of this thesis. The MIMO transmission scheme herein employs

4 × 4 spatial multiplexing and a 64-QAM constellation, corresponding to the highest

spectral efficiency setup specified by the IEEE 802.11n standard [78].

The MIMO detector is evaluated first. Besides STS SD (see Section 2.2.1), the

alternative candidate considered for this task is MMSE-PIC (see Section 2.2.3), which

has proven to be suitable for high data rate communication while attaining close-

to-optimal performance. Suboptimal tree search-based approaches are not part of

the comparison because they cover a smaller range than STS SD in the performance-

complexity tradeoff space, even though in certain operating points they can provide

a locally better compromise.

In order to have a comprehensive overview of the behaviour of different MIMO

detectors, the analysis cannot be restricted to a single scenario. For instance, modern

communication standards foresee the possibility of switching among different code

rates and modulation schemes in order to maximise the spectral efficiency in a given

operating point.

Figure 2.4 shows the communication performance in terms of block2 error rate

(BLER) of STS SD and MMSE-PIC in combination with the IEEE 802.11n LDPC codes3,

including the four different code rates that are part of the standard. The channel

model is the fast Rayleigh-fading one introduced in Section 2.1. The curves show

the increasing performance loss of a linear detection algorithm such as MMSE-PIC

with respect to the max-log MAP optimal SD as the code rate increases. This loss

is significant, to the point that an SD detector at a given code rate can outperform

an MMSE detector with a lower code rate. For instance, SD with R = 3/4 reaches a

lower SNR than MMSE-PIC with R = 2/3. The gap is even larger when comparing

2 A block is assumed to correspond to a codeword.
3 The maximum sub-block size Z = 81 is considered and the SPA decoding algorithm described in

Section 2.3.1 is used, with 15 internal decoding iterations.
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Figure 2.4: BLER after one (top) and six (bottom) IDD iterations for STS SD and
MMSE-PIC detectors with IEEE 802.11n LDPC codes at different rates in
a fast Rayleigh-fading channel.
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SD with R = 5/6 and MMSE-PIC with R = 3/4. The performance gap is only slightly

reduced after six IDD iterations (Iidd = 6).

These observations prove the importance of including different practical setups

when comparing different algorithms. Considering a single setup, such as a fixed

code rate R = 1/2, can lead to the conclusion that the performance gap between STS

SD and MMSE-PIC is negligible, which is not always the case.

A similar remark applies when considering different channel scenarios. The de-

fault channel model used in this thesis and in the case shown in Figure 2.4 is a fast

Rayleigh-fading one. However, as mentioned in Section 2.1, another case is consid-

ered where the channel stays constant for the duration of a codeword, instead of

changing for every transmitted symbol. Similarly to using a high code rate, such a

quasi-static scenario exposes the limited diversity gain achievable by linear detection

algorithms, which results in a very large SNR penalty with respect to an STS SD de-

tector for practical error rates. Figure 2.5 shows that the performance of MMSE-PIC

is disrupted by a quasi-static channel4. Modern communication systems can increase

diversity in a channel with slow fading, for instance by employing OFDM. Neverthe-

less, the behaviour of the receiver should be carefully considered at both extremes of

the diversity range.

The analysis has been centered so far around the MIMO detector component of the

receiver, with a comparison of the two most prominent algorithms, which highlights

the communication performance advantage of STS SD over the linear MMSE-PIC al-

gorithm. The second component of a MIMO IDD receiver, i.e., the channel decoder,

and its implementation aspects have been more extensively studied in the literature.

All the three options presented in Sections 2.3.1, 2.3.2 and 2.3.3 are prominent candi-

dates for the target of this thesis. Therefore, the following analysis includes not only

the IEEE 802.11n LDPC code [78] and SPA decoder already used for the previous

detector comparison but also a convolutional and a turbo code.

For better comparability, the same code rate R = 1/2 and a similar length Ni were

chosen for all the different codes. In particular, the IEEE 802.11n LDPC code and the

convolutional code operate with 1944 bit codewords, while the turbo code works with

1968 coded bits.

The convolutional code is non-systematic with constraint length 7, generator poly-

nomials [133o, 171o], which maximise the minimum free distance and thus the error-

correcting capabilities of the code [94], and random interleaving. The decoder uses the

BCJR algorithm with the max-log approximation and assuming perfect knowledge of

the termination state of the trellis.

The turbo code is a parallel concatenated code similar to the one used in [74], with

four states, feedforward polynomial 5o and feedback polynomial 7o. The puncturing

pattern, besides all systematic bits, picks one of the two bits output by the two par-

allel convolutional encoders in an alternated manner. The turbo decoder is based on

4 The IEEE 802.11n LDPC code with code rate 1/2 already used in Figure 2.4 is employed here. The
shape of the error-rate curves of the two detectors is similar even with a different choice of ECC. For
instance, an analogous behaviour to Figure 2.5 is observed in [33] for a convolutional code.
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tors with a rate 1/2 IEEE 802.11n LDPC code in a quasi-static Rayleigh-
fading channel.

two max-log BCJR decoders with perfect termination knowledge and interfaced by

S-random interleavers [50]; eight iterations are performed within the turbo decoder.

Figure 2.6 compares the error-rate performance of the aforementioned codes in

combination with both the STS SD and the MMSE-PIC detectors after an increasing

number of IDD iterations. In a non-iterative system (Iidd = 1, top plot) the more

powerful ECCs show a clear advantage over the convolutional code, outperforming it

by roughly 2 dB when max-log MAP detection is used and by up to 4 dB when com-

bined with MMSE detection. The picture changes significantly when iterating over

the detection/decoding process. For Iidd = 2 (middle plot), all curves are grouped

in the same operating range, with a slight advantage for the convolutional code over

LDPC. This gain increases to roughly 1 dB after six IDD iterations (Iidd = 6, bottom

plot), while the turbo code is almost 2 dB away from the convolutional code when

combined with STS SD.

Therefore, while the LDPC and turbo codes are significantly better in a non-

iterative system, convolutional codes can benefit the most from the application of IDD,

in agreement with the observations reported in [148]. Furthermore, a direct compar-

ison between LDPC and turbo codes shows a small but consistent performance edge

of the former over the latter. Hence, an exclusively algorithmic analysis seems to

suggest that the most suitable candidate for an IDD receiver is the BCJR decoder, fol-
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lowed by the LDPC option. However, implementation-related considerations cannot

be disregarded.

First of all, as the number of iterations grows the cost in terms of latency and

energy increases, making more than two iterations impractical in most cases [169].

As a consequence, LDPC codes become more attractive since they can achieve a sig-

nificantly better performance than convolutional codes with a single iteration, while

paying only a gap of 0.2 dB to 0.3 dB after two iterations.

Furthermore, BCJR decoders are typically expensive to implement in silicon, es-

pecially when targeting high data rates and codes with long constraint lengths, and

their architecture is difficult to extend with the necessary flexibility to support differ-

ent block lengths and code rates [148]. This feature, which can be effectively included

in LDPC decoders, is particularly important in modern standards which provide the

option to adapt the code rate to the conditions of the channel. These remarks have led

to the choice of targeting IEEE 802.11n QC-LDPC codes for the IDD receiver designed

in the context of this thesis.

As a final note, it is important to keep in mind that the previous comparison

of the different channel codes applies to the specific codes and decoding algorithms

selected for this analysis. These are valid examples widely used in the literature

and in communication standards but clearly they do not cover all available options.

Furthermore, if the design targets a specific communication standard, the choice of

the channel decoder might be fixed or at least significantly restrained by the standard

itself.

Such a restriction does not apply to the detector component, whose algorithm

can be chosen with much more freedom. Based on the analysis presented in this

section and on its capability to trade off complexity vs. communication performance

according to the requirements of the given operating scenario, STS SD is the MIMO

detection algorithm of choice for the later IDD receiver design.
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Soft-Input Soft-Output MIMO
Detection Implementation

The first step towards a hardware prototype of MIMO IDD processing is the silicon

implementation of max-log MAP optimal MIMO detection. To this end, the soft-input

soft-output STS SD algorithm was chosen, as explained in Chapter 2. A corresponding

VLSI architecture, named Caesar, was developed with tunable design-time parameters

(e.g., a maximum number of spatially-multiplexed streams and a maximum QAM

constellation order) and runtime-configurable settings (e.g., the number of antennae

MT and the modulation order 2Q in use, alongside with soft and hard runtime con-

straints such as LLR clipping and the maximum number of examined nodes Nen,max).

This chapter focuses on the main contribution of this thesis with respect to the

practical realisation of soft-input soft-output STS SD: the physical implementation of

the aforementioned architecture in 90 nm CMOS technology, first reported in [33]. The

RTL design, introduced in [170] and described in detail in the Ph. D. dissertation of

E. M. Witte [169], is briefly reviewed in Section 3.1.

The fabricated chip, also referred to with the name Caesar in the following, con-

tains three sphere decoders, supporting respectively up to 4, 16 and 64 QAM. The goal

of instantiating multiple times the same RTL design, optimised for different modula-

tions, is to evaluate the implementation costs associated to the constellation size. The

power consumption and the area and energy efficiencies of the different SD cores are

analysed in Section 3.2 based on the post-fabrication measurements. A comparison

with other state-of-the-art MIMO detectors is included.

3.1 VLSI Architecture Overview

The VLSI architecture implemented in the context of this thesis realises the STS SD

algorithm described in Section 2.2.1, employing the hybrid method introduced in [97]

to solve the enumeration problem in the presence of a priori information. Due to

the sequential nature of depth-first SD, parallelisation is only beneficial to a limited

degree. In fact, it would be possible to partition the search tree into multiple re-

gions to be processed concurrently, with a final step to merge the results. However,

this would result in many additional examined nodes which are not relevant to the

optimal solution, with a significant computational overhead.

The best results in terms of area and energy efficiency can be achieved by fol-

lowing a one-node-per-cycle (ONPC) principle, as introduced by the first hard-output

depth-first SD architecture in [36]. Such a design aims at checking one tree node

55
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Figure 3.1: Example of the working principles of the Caesar architecture for a 3 × 3
4-QAM setup.

against the pruning criteria in each clock cycle; in this way, the total number of exam-

ined nodes Nen, introduced in Section 2.2.1 as a complexity measure, directly corre-

sponds to the cycle count for detecting a received symbol vector. The ONPC strategy

is optimal for depth-first SD from the efficiency point of view.

In order to achieve the ONPC target, while the current node is examined, i.e.,

undergoes the pruning-criteria check, the architecture must concurrently identify the

possible next nodes. In this way, in the next cycle one of these candidates can be selected

based on the result of the previous pruning-criteria check and then examined. The

current node is referred to as s
(k)
i , with (k − 1) being the number of nodes that have

already been examined on the current level i. The next node can be either the best

child s
(1)
i−1 or the next sibling s

(k+1)
i of the current node, but also the next sibling of one

of the upper-level nodes in the partial symbol vector s(i).
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Two enumeration units are required for performing this procedure:

• Vertical step: computes the best child on level (i − 1) of the current node s
(k)
i as

s
(1)
i−1 = arg min

s∈O
{MP(si−1)} . (3.1)

• Horizontal step: computes the next sibling of the current node s
(k)
i on the same

level i; with hybrid enumeration, s
(k+1)
i is the symbol with the smallest M

(i)
P

between s
(k+1)
C,i and s

(k+1)
A,i , which minimise respectively the partial channel-based

metric M
(i)
C and the partial a priori metric M

(i)
A among the nodes that have not

been examined yet.

Since the tree search first proceeds downwards, the results of the horizontal step

can be stored for later usage when the search goes back to the upper levels, saving

the overhead of redundant recomputations. Therefore, the combination of the two

aforementioned enumeration units with a small set of registers to store (MT − 1)
horizontal-step results ensures the availability of all the nodes that could be examined

next at any point of the tree traversal. Figure 3.1 shows the working principles of the

vertical- and horizontal-step units by means of a simple example for a 3 × 3 4-QAM

setup.

The actual decision on the next direction of the search is taken in the pruning-

criteria check unit, which implements the two conditions for pruning the tree in the

vertical and horizontal directions. This unit also computes the output extrinsic LLRs

λ
e and applies clipping as required.

The Caesar architecture, shown in Figure 3.2, additionally includes a control state

machine, which steers the different computational units, and the necessary registers

to store configuration (i.e, the number of transmit antennae MT, the modulation order

2Q and the clipping and maximum runtime constraints), input (i.e., the channel matrix

R, the received vector ỹ and the a priori LLRs λ
a) and output (i.e., the extrinsic LLRs

λ
e) data.

Most modern standards allow the system to switch the configuration of the com-

munication scheme to cope with varying operating conditions. As a consequence, the

MIMO detector is required to support multiple modulation schemes and numbers of

streams and to switch among them at runtime. The maximum number of antennae

MT,max and modulation order 2Qmax are specified at design time when the architecture

is instantiated; the resulting implementation can support any number of antennae

MT ≤ MT,max and modulation order with Q ≤ Qmax.

This minimum required degree of flexibility comes at a negligible area and timing

overhead. Qmax mainly influences the implementation of the enumeration. However,

since low-order constellations (e.g. 4 and 16 QAM) are subsets of larger ones (e.g.

64 QAM), the enumeration units can work with all Q < Qmax by simply masking

out the symbols which lie outside of the constellation in use. On the other hand,

MT,max has a negligible influence on the enumeration units, which operate on the
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Figure 3.2: High-level block diagram of the Caesar architecture.

single tree levels, and mainly determines the required amount of storage. In order

to support a configurable MT, a flexible computation of the addresses of the registers

used throughout the tree search is required.
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3.1.1 Hybrid-Enumeration Architecture

Enumeration is a key issue in the implementation of soft-input soft-output sphere

decoding, since the a priori information scrambles the geometric properties of the

QAM constellation which are typically exploited to simplify the computation of the

examining order of the nodes. The only way currently known to obtain the exact

Schnorr-Euchner order is to compute the metric M
(i)
P of all the 2Q nodes on a given

level i and then find the minimum one among the nodes that have not been examined

yet. Due to the complex arithmetic operations involved in the computation of M
(i)
P

and to the depth of a full minimum search over a set of 2Q metrics, such an approach

is ill-suited for hardware implementation.

As mentioned in Section 2.2.1, a much more efficient solution, named hybrid enu-

meration, separately determines in each clock cycle the two best nodes s
(k+1)
C,i and

s
(k+1)
A,i , based respectively on M

(i)
C and M

(i)
A . This split results into two concurrent

enumerations solely relying on either the channel-based metric or the a priori infor-

mation, with a much lower combined complexity than a joint M
(i)
P -based enumera-

tion. The next enumerated node s
(k+1)
i is then selected by a simple compare-select

operation as the one with the minimum M
(i)
P between s

(k+1)
C,i and s

(k+1)
A,i .

The actual implementation of the two enumerations varies between the vertical-

and the horizontal-step units. The vertical step is only concerned with finding the two

minima among the
{

M
(i−1)
C

}

and
{

M
(i−1)
A

}

on the next level (i − 1). Both tasks can

be accomplished with neither metric computations nor sorting operations. On the one

hand, the channel-based enumeration reduces to a quantisation of the received symbol

to the nearest QAM symbol, thus requiring only a handful of comparisons [170]. On

the other hand, the minimum M
(i−1)
A corresponds to the symbol with bit label equal

to the signs of the a priori LLRs, i.e., xi−1,b = sign
(

λa
i−1,b

)

, ∀b with b = 1, ..., Q; the

partial a priori metric M
(i−1)
A of this symbol is by definition (2.27) equal to zero [170].

Once the two minima have been determined, their metrics M
(i−1)
P are computed and

compared to identify the best child.

In the horizontal step, all the nodes besides the best ones may have to be enumer-

ated and hence an extreme simplification like in the vertical-step unit is not possible.

However, hybrid enumeration enables the reuse of the simplified methods mentioned

in Section 2.2.1.1 for the channel-based step, as in the case of a non-iterative detector.

In particular, the Caesar architecture employs a column-wise partitioning of the QAM

constellation into 2Q/2 groups of symbols with constant real part (i.e., the columns of

the complex constellation O) [72]. Within each group, the enumeration order follows

a predefined zig-zag pattern and hence no computation is required other than the

initial quantisation, already performed in the vertical-step unit.

The selection across the different groups is based on the comparison of the channel

metrics, thus requiring the concurrent availability of 2Q/2 M
(i)
C metrics. However,

only one metric is selected and used for the tree search in each cycle, while the other
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ones do not change and hence do not need to be updated. Furthermore, the first

symbols to be examined are picked from the closest columns to the received symbol

and only in later cycles the enumeration moves to the outer columns. Based on these

observations, only two concurrent M
(i)
C computation units are required, connected to

a small set of registers which save their results for later reuse.

The a priori-based enumeration of the horizontal-step unit is implemented as a

minimum search over all the 2Q symbols on the current tree level. This search requires

the availability of the M
(i)
A metrics, which do not depend on the path followed by the

tree search and hence can be efficiently computed in parallel to the tree traversal in

the first 2MT cycles and stored in the MA storage (see Figure 3.2).

The properties of definition (2.27) are very helpful in reducing the complexity of

the minimum search, which would dominate the critical path if implemented straight-

forwardly as a full compare-select tree. A more detailed description of this and the

other enumeration units can be found in [170], [33] and [169].

3.1.2 Pruning-Criteria Check

The pruning-criteria check unit uses the outcome of the enumeration process to decide

how to continue the tree search. The first option is to proceed downwards. To this

end, the vertical pruning criterion in definition (2.35) has to be checked. While the left-

hand side of condition (2.35) is provided by the enumeration units, the right-hand side

depends on the current MAP solution and on the counter-hypothesis metrics, which

are stored and maintained in the pruning-criteria check unit.

The same applies to the horizontal pruning criterion, used to determine whether

the siblings of the current node and of its parents are valid. Hybrid enumeration

outputs either the node with the minimum channel metric M
(i)
C or the node with the

minimum a priori contribution M
(i)
A among the ones that have not been examined

yet, not necessarily corresponding to the minimum total metric M
(i)
P . As mentioned

in Section 2.2.1, this results in the conservative horizontal pruning criterion of defini-

tion (2.37).

In practice, the pruning criteria checked by the architecture are up to (MT + 1):
firstly, condition (2.35) for the best child on the next level (i − 1); secondly, condi-

tion (2.37) for the next sibling of each symbol in the partial vector s(i), on levels i to

MT. Each of these nodes represents a candidate for the continuation of the search in the

next cycle. In case a step down fails, concurrently checking the pruning criteria for all

antennae enables the detector to jump back to the uppermost level of the tree which

contains a valid node for continuing the search. On the contrary, if condition (2.37)

were only checked on the current level i, it would be necessary to go up the tree by

one level per clock cycle until a valid node is found, with a corresponding overhead

in the execution time.

All pruning criteria consist of comparing one of the candidate metrics with the

largest one in a set of up to MTQ. A first straightforward solution to implement

this functionality is to find the required maximum for each check by means of a full
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Figure 3.3: Pruning-criteria check architecture; each max search is implemented as a
tree of (Q − 1) compare-select units (masking is applied as necessary to
exclude the irrelevant metrics for the check [169]).

compare-select tree with MTQ inputs and then compare the outcome with the candi-

date metric. Unfortunately, such a structure would negatively affect the timing of the

design. A second option, which avoids this drawback, is to concurrently compare,

for each pruning criterion, the candidate metric with all the MTQ stored metrics and

subsequently combine only the relevant single-bit comparison results with a simple

stage of logic. However, this second solution becomes expensive in terms of area when

(MT + 1) pruning criteria have to be checked concurrently, since the candidate metrics

are different and hence a complete set of MTQ comparators needs to be instantiated

for each pruning criterion.

The alternative implemented in the Caesar design, shown in Figure 3.3, is a com-

promise between the two aforementioned solutions which requires a small area with-

out affecting the timing. First, the relevant metrics for the checks are selected on a

per-antenna basis by means of 2MT maximum searches over Q stored metrics, cor-

responding to 2MT(Q − 1) compare-select units. These components are shared by
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Figure 3.4: Caesar chip micrograph.

all pruning criteria and hence grouped in the stage named shared max searches in Fig-

ure 3.3. Only MT comparators and a stage of simple bit-combining logic are then

needed to finalise the check of each of the (MT + 1) pruning criteria, as shown by

the final compare and combine stage in Figure 3.3. For additional details the interested

reader is referred to [170], [33] and [169].

3.2 Silicon Implementation Results

The soft-input soft-output STS SD architecture described in the previous section was

implemented in a 90 nm CMOS technology using a standard-performance standard

cell library. Shown in Figure 3.4, the ASIC includes three distinct instances of the

architecture, highlighted in Figure 3.5, with the same MT,max = 4 but differing in the

maximum modulation order that they support. The smallest 4-QAM core supports

only Qmax = 2, with an area of 0.27 mm2 at 67 % utilisation, corresponding to 57 kGE1.

The second core can detect up to 16-QAM signals and occupies 0.54 mm2 at 66 % area

1 One gate equivalent GE corresponds to a 2-input drive-1 NAND gate.
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Figure 3.5: Floorplan of the Caesar chip, highlighting the three different SD cores.

utilisation, equivalent to 113 kGE. Finally, the third and main core supports up to

64-QAM detection and requires an area of 0.97 mm2 at 69 % utilisation, corresponding

to 212 kGE.

The chip also includes an I/O interface for writing the input data and reading

out the results during testing. This interface, which only occupies 13 kGE, is shared

among the three cores since they are designed to be active only one at a time, while

the two unused ones are clock gated. This solution enables an independent measure-

ment of the maximum clock frequency and of the dynamic power consumption of the

different SD instances.

The maximum frequencies are respectively 330 MHz, 244 MHz and 193 MHz for

the 4-, 16- and 64-QAM cores. As a side remark, given the rather low cell density, the

area could be shrunk further without significantly affecting the maximum frequency.

However, since this chip was fabricated within a multi-project wafer (MPW) run [48]

the assigned area was fixed and therefore it was fully exploited for the implementa-

tion.

By looking at the implementation results, the dependency of each SD instance

on Qmax can be identified. A 2 bit increase of Qmax doubles the area requirements,
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value Re{Ri,j}, Im{Ri,j} Re{ỹi}, Im{ỹi} MP,MC,MA λa
i,b, λ

p
i,b, λe

i,b

signed yes yes no yes

4-QAM core a 3.7 3.7 7.6 6.5

16-QAM core a 3.7 5.7 9.6 6.5

64-QAM core a 3.7 6.7 10.6 6.5

a The format Int.Frac corresponds to Int integer and Frac fractional bits; the sign bit is not
included and hence needs to be added if the format is signed.

Table 3.1: Fixed-point word lengths used in the different Caesar cores.

meaning that the total hardware complexity grows as O
(

2Qmax/2
)

, although the in-

dividual architectural units scale differently. In particular, the MA storage grows as

O
(

2Qmax
)

, the channel-based enumeration for the horizontal step as O
(

2Qmax/2
)

and

the pruning-criteria check as O (Qmax), whereas other units, such as the vertical-step

one, are nearly constant. At the same time, the maximum frequency degrades only by

20 % to 25 % since Qmax only affects tree-structured parts of the critical path, whose

depth scales as O (log2 Qmax).
The average information throughput of the design is defined by the following

equation:

Θcaesar =
QMTR

E[Nen,c] + Iidd
fclk (3.2)

where E[Nen,c] is the average total number of examined nodes after Iidd iterations. The

additional cycle per iteration, accumulated at the denominator in the term Iidd, is due

to the pipelining scheme of the architecture [169]. The minimum cycle count required

to have a valid solution, corresponding to the first leaf found by the tree search, is

equal to (MT + 1) and it can be obtained by constraining Nen to MT nodes2. Under

these considerations, the maximum uncoded throughput (Θcaesar/R) of the 64-QAM

Caesar core is 926 Mbit/s (corresponding to an information throughput of 463 Mbit/s

for R = 1/2), while the 16- and 4-QAM instances achieve 780 Mbit/s and 528 Mbit/s

respectively.

The fixed-point word lengths of each core are individually optimised for the cor-

responding Qmax, contributing significantly to the area and frequency differences

among the SD instances. The word lengths, summarised in Table 3.1, are chosen

to keep the performance loss with respect to floating-point operations negligible af-

ter six IDD iterations. A rate 1/2 convolutional code was used for the fixed-point

exploration since it reaches the lowest SNR region where the detector may operate

in combination with any of the channel decoders examined in Sections 2.3 and 2.4.

With this choice, the results are more general since the implemented detector can be

2 In [33], the minimum cycle count was defined as (MT + 2), which applies if no runtime constraint
is set and hence the architecture needs a cycle to check that there is no other valid node available. In
such a case, the output LLRs are the same as if computed with a runtime constraint of MT.
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combined with different channel decoders without noticeable implementation losses.

Additionally, a fair comparison with other implementations based on convolutional

codes is possible. In the subsequent iterative receiver implementation presented in

Chapter 4, a further fixed-point optimisation is performed to better suit the chosen

LDPC decoder, which tolerates a lower precision for the LLR values than the BCJR

decoder. In this way, significant area savings can be achieved in the detector.

Before analysing the efficiency characteristics of the detector implementation, the

next section describes the results of the extensive power consumption measurements

conducted on the fabricated chip. The outcome of these measurements is a model of

the power as a function of the different communication parameters (e.g., the number

of MIMO streams and the modulation order) and configuration settings (e.g., runtime

constraints), which can be used to study the energy efficiency of the design.

3.2.1 Power Consumption Analysis

The Caesar chip was accurately characterised with respect to power consumption by

means of extensive measurements taking into account operating conditions (SNR),

communication system parameters (number of antennae and modulation scheme)

and the receiver configuration (number of IDD iterations and LLR clipping value).

Each possible combination of these parameters defines a test case. For each test case,

the power consumption was measured with 30 different input symbol vectors (i.e.,

channel realisations) to obtain a reliable average. Overall, the chip was tested with

more than 100 000 test vectors.

The following discussion concerns the dynamic power consumption at the nomi-

nal supply voltage of 1.0 V and the maximum operating frequency of the core under

consideration. The static power amounts to 5.61 mW for the whole Caesar chip and

does not vary noticeably with the test case. Since no special techniques (e.g., power

gating or multi-Vth standard cell libraries) are applied to tackle the leakage current, it

is fair to assume that the static power is directly proportional to the die area. There-

fore, the leakage contribution of each SD core on the Caesar chip can be computed

as:

Ps,core ≈ Ps,chip ×
Acore

Achip
= 5.61 mW ×

Acore

395 kGE
(3.3)

with Acore being the area of the SD core of interest expressed in kGE.

Before proceeding with the analysis of the power measurements, it should be

noted that in general a variation of the power due to a certain parameter does not

necessarily result in a directly proportional change in the energy consumption. The

reason is that the energy is computed by multiplying the average power by the exe-

cution time, which can vary over orders of magnitude in the case of sphere decoding.

Figure 3.6 shows the dynamic power consumption of the 64-QAM core detecting

4 × 4 64-QAM symbol vectors. Each subplot shows the power versus several LLR

clipping and SNR values during a different IDD iteration of index iidd, respectively the

first (left plot), second (middle plot) and sixth (right plot). Throughout this chapter,
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Figure 3.6: Power consumption vs. LLR clipping value Γcaesar for detecting a 4 × 4
64-QAM signal on the Caesar 64-QAM core (the markers identify the
measurements whereas the dashed lines show the interpolated trends).

the LLR clipping values shown in the plots are normalised according to the definition

used in [169]:

Γcaesar =
NoΛe

MTEs
. (3.4)

By this definition, the magnitude of the clipped LLRs Λe is directly proportional to

the clipping value Γcaesar.

A first observation is that the power exhibits an inversely exponential relationship

with the clipping value, i.e., the consumption increases steeply when tight clipping

is applied. As mentioned in [169], this behaviour is due to the increasing rate of

level changes through the search tree with tight clipping values; as a consequence,

the switching activity of the hardware, particularly of the vertical-step unit, is higher,

resulting in a higher power consumption. However, from the energy point of view,

the power increase is negligible with respect to the large reduction (by several times

or even orders of magnitude) of the execution time associated to tight clipping values.

The analysis of a complete IDD baseband design from the energy standpoint, which is

the most relevant for battery-powered mobile devices, is discussed later in Chapter 5.

The influence of the SNR operating point on the power consumption varies with

the IDD iteration. In the first iteration (Figure 3.6, left), without a priori information,

the power curve stays the same over the complete SNR range considered in the mea-

surements. In the second iteration (Figure 3.6, middle), the power curves for different

SNR values spread out over a range of almost 20 mW, with a higher SNR correspond-
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Figure 3.7: Power consumption vs. LLR clipping value Γcaesar for detecting a 4 × 4
signal modulated by different QAM orders on the Caesar 64-QAM core
(the markers identify the measurements whereas the dashed lines show
the interpolated trends).

ing to a higher consumption. Finally, in the sixth iteration (Figure 3.6, right) all curves

group again at a level which is roughly 55 % higher than in the first iteration.

The reason why the power consumption tends to saturate to an upper bound over

iterations is the growing magnitude of the a priori LLRs, which become more reliable

and hence approach saturation at high SNR and in later IDD iterations. Since the

magnitude of the internal sphere decoding metrics increases accordingly, the overall

result is a higher switching activity which noticeably impacts the power consumption.

A deeper analysis shows that the a priori LLR magnitude saturates to its maximum at

the same SNR values and iteration numbers as the power curves, in agreement with

the previous explanation.

A 4 × 4 64-QAM setup has been considered thus far. When looking at lower-

order QAM constellations, the power consumption does not necessarily decrease as

it might be expected. As shown in Figure 3.7, a more complex modulation requires

more power only for very low clipping values. Conversely, as the clipping gets looser,

detecting a 4-QAM signal consumes more power than a 64-QAM signal. This be-

haviour relates again to the activity of the vertical enumeration unit, which is higher
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Figure 3.8: Power consumption vs. LLR clipping value Γcaesar for detecting 2× 2 and
4 × 4 16-QAM signals on the Caesar 64-QAM core (the markers iden-
tify the measurements whereas the dashed lines show the interpolated
trends).

for smaller constellations since there are fewer symbol candidates on a given tree level;

this factor is dominant for loose clipping values. Since small constellations result

in high switching activities independently of the clipping, their power characteristic

tends to become flat, as visible for the 4-QAM plots in Figure 3.7. A tighter clipping,

on the other hand, forces many vertical jumps in the tree search independently of the

constellation and hence the activity rate of the hardware is at its maximum anyway. In

such a case, the larger magnitude of the internal sphere decoding metrics associated

to a larger constellation determines a higher power consumption.

Figure 3.7 also includes the comparison between the first and the sixth IDD it-

erations, showing that soft-input processing is relatively cheaper for low-order mod-

ulations from a power consumption standpoint: power increases by up to 56 % due

to a priori information for a 64-QAM signal but only by up to 10 % for a 4-QAM

signal. A first explanation for this observation is that the a priori metrics computed

according to definition (2.27) are smaller for low-order constellations, since fewer bits

per symbol are used. As a result, the arithmetic units involved in the a priori-based

enumeration are not utilised to their full fixed-point range. Furthermore, the same
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Figure 3.9: Power consumption vs. LLR clipping value Γcaesar for detecting a 4 × 4
16-QAM signal on the different Caesar cores (the markers identify the
measurements whereas the dashed lines show the interpolated trends).

underutilisation occurs in the minimum search unit of the a priori-based enumera-

tion in the horizontal step, since the number of input metrics for the search is equal

to 2Q and hence decreases with smaller constellations.

The number of MIMO streams also has an impact on the power consumption, as

shown in Figure 3.8. With a 16-QAM constellation, 4× 4 spatial multiplexing requires

up to 38 % more power than 2 × 2 in the first IDD iteration and 46 % in the sixth

one. As already observed with reference to clipping, a small difference in power does

not directly correspond to a small energy variation, since the runtime might change

exponentially with the number of antennae and the constellation size.

Among the purposes of fabricating the Caesar chip is the assessment of the silicon

costs for supporting several modulation schemes on the same design. Figure 3.9

shows the power consumption for detecting a 4 × 4 16-QAM signal both on the 16-

and 64-QAM cores of the Caesar chip. The hardware support for a higher-order

modulation requires less than 14 % more power in the first IDD iteration and 22 %

in the sixth one. These numbers directly correspond to the energy costs, under the

assumption that the two cores run at the same frequency3.

The penalty in terms of power and energy for the modulation flexibility is low

when compared to the corresponding silicon area overhead, which amounts to 88 %.

3 Since the 16-QAM core supports a higher frequency than the 64-QAM core, voltage scaling could be
applied in this case to reduce the power consumption. For simplicity, this option is not considered
here. A detailed description of voltage scaling and how to apply it is given later in Section 4.3.1.4.
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Figure 3.10: Power consumption vs. LLR clipping value Γcaesar for detecting a 4 × 4
4-QAM signal on the different Caesar cores (the markers identify the
measurements whereas the lines dashed show the interpolated trends).

A similar observation can be made based on Figure 3.10, which compares the de-

tection power consumption for a 4-QAM signal on the 4-, 16- and 64-QAM cores

respectively. The power increases by up to 130 % when the same signal is processed

on the 64-QAM core instead of the dedicated 4-QAM one. This increase is relatively

small in comparison with the area overhead of 270 % that comes with the support for

the larger constellation. The different scaling of power and area is due to the under-

utilisation of the arithmetic units and particularly of the a priori-based enumeration

in the horizontal step that occurs when Q < Qmax.

3.2.2 Area and Energy Efficiency Characteristics

The typical way of evaluating a hardware implementation is based on area and energy

efficiencies. Area efficiency is computed as the ratio between the hardware informa-

tion throughput and the area, measured in bit/s/GE, and quantifies the normalised
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silicon cost of an architecture so that it can be fairly compared to other implementa-

tions. Energy efficiency is given by the hardware information throughput divided by

the average power consumption and is measured in bit/nJ; this metric quantifies the

amount of energy that has to be spent to process one information bit.

In the overall communication system, only the useful information, represented by

the correctly received bits, matters, while the detection effort that leads to erroneous

results is wasted. This characteristic must be reflected in the efficiency metrics, which

are therefore multiplied by a factor (1 − BLER). In this way, when the error rate

tends to one the efficiency of the detector goes to zero. This solution is equivalent to

considering as relevant metric the goodput, denoted by Gcaesar, instead of the hardware

information throughput Θcaesar previously defined in (3.2):

Gcaesar = Θcaesar(1 − BLER). (3.5)

Accordingly, the area and energy efficiencies used in this section are defined as

ηa,caesar =
Gcaesar

Acaesar
(3.6)

and

ηe,caesar =
Gcaesar

Pcaesar
(3.7)

where Acaesar and Pcaesar represent respectively the area and the average total power

consumption of the Caesar architecture. Based on the measurements, these metrics

can be computed for each of the cores implemented in the chip.

Figures 3.11, 3.12 and 3.13 show these area and energy efficiency characteristics,

alongside with the corresponding number of IDD iterations, for different modulation

orders detected on different cores. Each point of each curve is selected as the one with

the highest goodput, corresponding to the highest area efficiency, among all possible

setups in terms of LLR clipping value and number of IDD iterations.

This analysis is meant to characterise the maximum efficiency achievable by the

presented implementation in each operating point for the given channel code4 and

therefore it does not include system-level constraints such as the bandwidth of the

communication link. In this way, the mere hardware characteristics can be studied.

Chapter 5 later shows how to comprehensively analyse receiver components in the

context of a complete communication system.

An important aspect that can be observed by comparing the detection of the same

signal on different cores (Figures 3.11 and 3.12) is the hardware cost associated to

supporting a higher modulation order. The area efficiency decreases by a factor be-

tween 2.3 and 2.7 for each increase in the maximum modulation order supported by

the detector. For instance, processing a 4-QAM signal on the specialised 4-QAM core

is 2.7 (respectively 6.4) times more area-efficient than on the 16-QAM (respectively

64-QAM) core, as visible in Figure 3.11. The difference in terms of energy efficiency

4 The same rate 1/2 convolutional code and BCJR decoder introduced in Section 2.4 are used here.
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Figure 3.11: Area and energy efficiency curves for detecting a 4 × 4 4-QAM signal
on the 4-, 16- and 64-QAM Caesar core.

is lower than a factor 2 between the 4- and 16-QAM cores and in the range of 20 % to

30 % between the 16- and 64-QAM cores.

Another very significant observation based on the plots is the wide numerical

range over which the efficiency characteristics vary depending on the SNR, spanning

over four orders of magnitude. At the low-SNR extreme, the variable complexity

of the STS SD algorithm means that the communication performance gains come at

a high price in terms of area and energy. However, when the channel conditions

are favourable the energy consumption can be considerably reduced. In contrast

with STS SD, fixed-complexity algorithms, such as linear methods, can only trade off
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Figure 3.12: Area and energy efficiency curves for detecting a 4 × 4 16-QAM signal
on the 16- and 64-QAM Caesar cores.

communication performance vs. area and energy efficiency by varying the number of

IDD iterations. As a result, at a given Iidd an increased SNR cannot be exploited to

significantly improve the efficiency of the implementation, with only minor benefits

due to the decreased error rate. In other words, reducing the detection complexity at

a constant error rate across the SNR range, as allowed by STS SD, is more effective,

in terms of energy efficiency, than decreasing the error rate at a constant complexity,

as in the case of linear detectors. In analogy with a concept from the general-purpose

computing domain, the behaviour of the sphere decoder can be described as energy

proportional [24], meaning that the energy spent is proportional to the work that has
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Figure 3.13: Area and energy efficiency curves for detecting a 4 × 4 64-QAM signal
on the 64-QAM Caesar core.

to be done. If the task is easy (i.e., MIMO detection at high SNR) little effort needs

to be spent (i.e., the detector finds the optimal solution very quickly and achieves

a high efficiency), whereas a difficult assignment (i.e., MIMO detection at low SNR)

results in a much higher effort (i.e., the detector needs multiple iterations to find a

good solution). Although every IDD system is coarsely energy proportional since the

number of iterations can be adjusted, the effort of an SD detector can be tuned on a

fine granularity and across a wide range, by varying the LLR clipping value and the

runtime constraints.
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3.3 Comparison to State of the Art

Since the appearance of the first VLSI architectures for soft-input soft-output detec-

tion in [144] and [170] several other designs have been proposed in the literature to

perform the same task. At the time of writing this dissertation, only one other stand-

alone silicon prototype has been presented besides the Caesar chip (first described

in [33]), namely the MMSE-PIC ASIC in [144, 145]. This implementation is hence

taken as the main term of comparison for the results presented in this thesis. The

tuple-search architecture presented in [19] has also been recently integrated in a large

software-defined radio (SDR) silicon platform [116]. However, since this chapter fo-

cuses on MIMO detection, in the following comparison the original results from [19]

are used. The baseband implementation presented in [116], which includes the afore-

mentioned tuple-search detector, is later considered in Section 4.4 when comparing

IDD receivers. Aside from this remark, all the other gate-level and post-layout re-

sults reported for soft-input soft-output detectors in the literature to the author’s best

knowledge are included in the following comparison.

A key premise to such a comparison is that the figures of merit of the different

detectors highly depend on the chosen setup, in terms of channel model, SNR, num-

ber of streams, modulation scheme, ECC and channel decoder. The results reported

in the literature are typically very heterogenous from this point of view, practically

hindering a fair and comprehensive comparison, which would require a full charac-

terisation of each detector in the same setup over the complete operating range. As

a viable alternative, in the following all different designs are compared in terms of

peak efficiency and then only the STS SD and the MMSE-PIC5 ASICs are considered

in more detail in different scenarios. The peak efficiency case corresponds to the

high-SNR regime, where no IDD iterations are used and the error rate is negligible.

In this way, a fair comparison is possible even if the full communication performance

characterisation of all the considered implementations is not available. The drawback

of such a comparison is that the different potential of each algorithm to improve the

performance at low SNR is not captured.

3.3.1 Peak Efficiency

At high SNR, the error rate of the communication is negligible and all detectors, in-

cluding the variable-runtime ones, achieve their maximum goodput. For the SD cores

in the Caesar chip, such a scenario corresponds to approaching the minimum num-

ber of cycles (MT + 1). For 4 × 4 spatial multiplexing and a code rate of 1/2, the

64-QAM instance achieves a maximum information throughput, as defined in (3.2),

of 463 Mbit/s, while the 16- and 4-QAM cores reach respectively 390 Mbit/s and

264 Mbit/s at the nominal supply voltage of 1.0 V. The maximum area and energy ef-

ficiencies are also achieved in this operating regime, as shown in the previous section.

5 The Matlab simulation model of the MMSE-PIC algorithm is available online at [147] and was inte-
grated in the simulation framework used in this thesis to obtain consistent results. Since the available
model employs floating-point arithmetic, the fixed-point implementation loss is herein neglected.
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In particular, the 4-QAM core reaches an area efficiency of 4.63 kbit/s/GE, followed

by the 16-QAM core at 3.45 kbit/s/GE and the 64-QAM instance at 2.18 kbit/s/GE.

The energy efficiency varies less across the different cores, with values of 5.53 bit/nJ,

5.00 bit/nJ and 5.58 bit/nJ respectively for the 4-, 16- and 64-QAM designs.

The results obtained for the 64-QAM core are compared to other soft-input soft-

output detectors available in the literature in Table 3.2. All the results in the table refer

to information bits and hence include the same code rate of 1/2 used to compute the

Caesar efficiency. The main observation is that the implementation described in this

thesis is very competitive in terms of maximum efficiency (evaluated after applying

technology scaling to improve the fairness of the comparison).

This achievement is obtained while preserving the capability of approaching the

max-log MAP performance at low SNR. On the contrary, all the other detectors in

Table 3.2 compromise the optimal performance for the sake of a more efficient hard-

ware implementation. Furthermore, when extending the comparison to non-iterative

detectors, as shown in [33], a relatively small efficiency degradation is observed in

exchange for the large performance gain enabled by soft-input support.

The actual performance gap of the different designs varies over a large range

depending on the channel model, the ECC and the channel decoder employed in the

system. The MMSE-PIC [145] and the MCMC [49] are the only detectors that can reach

the max-log MAP performance limit in specific cases (e.g., after several IDD iterations

with a low-rate ECC and a fast channel), while the other algorithms involved are

typically simplified derivatives of sphere decoding and hence they are bound to show

some gap from the performance of the optimal STS SD.

Another important remark is that all the designs referenced in Table 3.2, with the

exception of MMSE-PIC, are only implemented to the gate-level synthesis or layout

stage and therefore their simulated results, especially in terms of maximum frequency

and power consumption, can be considered relatively optimistic with respect to the

measurements reported for the Caesar implementation.

As for the MMSE-PIC ASIC, the power measurements published in [145] refer to

a 16-QAM setup, while a 64-QAM modulation might use a wider dynamic range for

the internal computations of the algorithm, resulting in a higher switching activity

and an increased power consumption. However, due to the lack of more accurate

data it is herein assumed that the results in [145] also apply to a 64-QAM setup.

Finally, a key aspect for modern communication standards is the ability to support

multiple modulation schemes and numbers of MIMO streams, which enables the sys-

tem to switch among different modes at runtime. The scalable complexity of sphere

decoding is particularly suitable for this use and the Caesar architecture is designed

to be configurable at runtime, as mentioned in Section 3.1. The only other detector

in Table 3.2 with such capabilities is the MCMC design from [49]. This runtime con-

figurability raises the interesting question of how efficiency varies depending on the

communication mode. This aspect, partially considered in this chapter for the Caesar

detector, is comprehensively analysed later in Chapter 5 for the MIMO IDD receiver

prototype presented in Chapter 4.
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this thesis [145]

SNR [dB] 16 20 24 16 20 24

IDD iterations Iidd 4 1 1 3 1 1

area efficiency [kbit/s/GE] 0.005 0.09 0.84 0.30 0.70 0.92

energy efficiency [bit/nJ] 0.012 0.22 2.15 0.64 1.51 2.00

Table 3.3: Comparison between STS SD and MMSE-PIC ASICs in a fast
Rayleigh-fading channel at different SNR values for a 4 × 4 64-
QAM setup with a rate 1/2 convolutional code.

3.3.2 Average Efficiency

Due to the variable complexity of STS SD and, more generally, of an iterative system,

the analysis of the peak efficiency region carried out in the previous section only of-

fers a limited perspective. A full characterisation of all the detectors mentioned in

Table 3.2, which is necessary for a comprehensive comparison, is out of the scope of

this thesis. The focus of this section is therefore on comparing the Caesar implemen-

tation with the MMSE-PIC ASIC in a few representative operating scenarios.

First, a fast Rayleigh-fading channel is considered, corresponding to the most

favourable scenario for the MMSE-PIC. Under these conditions the MMSE-PIC can

match the max-log MAP performance over the iterations thanks to the low-rate con-

volutional code and to the high degree of time diversity of the channel. Table 3.3

summarises the efficiency metrics of the two detectors for a 4 × 4 64-QAM setup in

three different operating points, where the number of IDD iterations and the run-

time constraints of STS SD are chosen to maximise the goodput in the given point.

As mentioned previously, both the area and the energy efficiencies include a factor

(1−BLER) to only account for the computations that lead to a correct decoding result.

The operating points are chosen as follows: the first one is in the low-SNR regime,

namely at 16 dB, where iterations are required to keep the system operational; the

second point at 20 dB is around the operational limit of a non-iterative system, while

the third point at 24 dB is where a hard-output detector becomes usable.

In the first two points, the SD detector suffers from its very high low-SNR com-

plexity and is therefore significantly outperformed by the MMSE-PIC. The efficiency

of the Caesar implementation, however, grows roughly by an order of magnitude in

each higher SNR point considered in Table 3.3, matching the MMSE-PIC results at

24 dB and ultimately reaching a more than twice as high efficiency in the high-SNR

regime considered in the previous section.

The second part of the comparison, shown in Table 3.4, concerns a quasi-static

Rayleigh-fading channel, where the three operating points (20 dB, 24 dB and 28 dB)

are chosen according to similar considerations to the previous case. The results in this

scenario are more favourable to the STS SD detector, which is only outperformed by
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this thesis [145]

SNR [dB] 20 24 28 20 24 28

IDD iterations Iidd 1 1 1 1 1 1

area efficiency [kbit/s/GE] 0.36 1.40 1.92 0.67 0.96 1.06

energy efficiency [bit/nJ] 0.91 3.56 4.89 1.46 2.08 2.31

Table 3.4: Comparison between STS SD and MMSE-PIC ASICs in a quasi-
static Rayleigh-fading channel at different SNR values for a 4 ×
4 64-QAM setup with a rate 1/2 convolutional code.

MMSE-PIC in the lowest considered SNR point but achieves overall better efficiency

numbers.

An important aspect that should be considered is that, even in the low-SNR region,

iterations are not used in this particular scenario. The reason is that a non-iterative

setup, despite the worse error rate, still results in a higher goodput than an iterative

one, whose throughput is divided by the number of iterations, which more than com-

pensates the improved error rate in the overall goodput computation. This behaviour

applies to this specific case, where the channel conditions are so poor that the gain

provided by IDD is sufficient to make a real difference from the goodput standpoint.

Overall, the comparison carried out in this section leads to a key conclusion, which

can be extended to other detectors and system setups: there is not a single algorithm/

implementation that is generally better than all the others. The outcome of the com-

parison depends very much on the target scenario and on the selected configuration

of the communication system. As a consequence, drawing conclusions based on a

single or even a few operating points can lead to erroneous decisions. Even if the

effort to fully characterise different solutions in all relevant cases can quickly become

challenging, such a comprehensive analysis is required to ensure a correct choice.
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Chapter 4

MIMO Iterative Detection and
Decoding Implementation

The main focus of this thesis is on the silicon implementation of MIMO iterative

detection and decoding. Chapter 2 motivated the choice of depth-first sphere decod-

ing and LDPC decoding, while Chapter 3 presented the silicon implementation of

soft-input soft-output STS SD, whose assessment was a prerequisite for any further

development.

Given this background, this chapter describes the design and implementation of

a MIMO IDD receiver architecture, in the following referred to as IteRX. First, the key

algorithmic issues are considered, with the main goal of improving the performance

of the hardware implementation while reducing the challenging complexity of such

a system. The VLSI architecture of the IDD receiver is then described in its three

major components: a multicore detector, which integrates multiple instances of the

sphere decoder presented in Chapter 3; a flexible IEEE 802.11n LDPC decoder, whose

design was first introduced in [128] and [129]; a shared memory architecture, which

enables a seamless communication between the detector and the decoder. Finally, the

results of the implementation in a 65 nm low-leakage CMOS technology are shown,

thus proving the practical feasibility of MIMO IDD and providing measurements for

evaluating its cost in terms of area and energy.

4.1 Algorithmic Aspects

Several important aspects have to be considered when interfacing two independently

designed hardware components. The first step is to ensure that the algorithmic pa-

rameters and the fixed-point word lengths are chosen properly to minimise the per-

formance loss with respect to the ideal floating-point block error-rate curve. In this

thesis, this ideal target corresponds to the communication performance of a max-log

MAP STS SD, without any runtime constraints, combined with an LDPC decoder

based on the SPA algorithm (see Section 2.3.1), run with 15 internal iterations; no fur-

ther noticeable gain is observed with more decoding iterations. The resulting curves

for one and six IDD iterations are shown in blue in Figure 4.1.

The complexity of the SPA algorithm, however, makes it impractical for hardware

implementation, as explained in Section 2.3.1. The OMS algorithm is therefore pre-

ferred for the LDPC decoding component of the receiver. In this way, the communica-

tion performance highly depends on the choice of the offset β applied to the message

computation defined in (2.49). Figure 4.1 compares the results by using β = 0.15 (as

81
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10−2

10−1

100
B

L
E

R

SPA

OMS (β = 0.15)
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Figure 4.1: Performance comparison between the SPA and the OMS (with different
β offsets) decoding algorithms with max-log MAP STS SD, after one and
six IDD iterations (4 × 4 64-QAM setup with R = 1/2).

suggested in [148]) and β = 1.00, assuming a 4 × 4 64-QAM setup with code rate

1/2. While in the first iteration β = 0.15 is the better choice, after six IDD iterations

β = 1.00 wins the comparison by more than 1 dB, approaching the ideal SPA perfor-

mance for low error-rate targets. Therefore, in the following β is set to 1.00. Further

optimisations would be possible, such as selecting a different value in each iteration.

Once the algorithmic parameters are defined, the floating-point model has to be

converted to fixed-point operations. To identify the proper word lengths, extensive

software simulations were performed, leading to the main result that the LLR values

exchanged between the detector and the decoder can be represented by 5 bit integers

(including the sign bit). This representation entails a major reduction with respect

to the 12 bit format necessary when the sphere decoder is used in combination with

a BCJR decoder, as shown in Section 3.2. This yields significant area savings in the

detector with respect to the Caesar implementation. The complete list of the fixed-

point word lengths used in the IteRX design can be found in Section 4.3, Tables 4.1

and 4.2.

Another key design goal is to ensure that the system achieves a good communica-

tion performance even in the presence of runtime constraints on the sphere-decoding

algorithm, such as LLR clipping. To this end, a postprocessing correction step is ap-

plied to the extrinsic LLRs output by the detector. The main issue with clipping is
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that the magnitude of the output LLRs is typically forced to a smaller value, i.e., the

clipping constraint, than it would be in an unconstrained tree search. Therefore, some

bits appear less reliable to the decoder than they actually are [136]. At the same time,

when the runtime of the tree search is constrained to a maximum number of exam-

ined nodes, the counter-hypotheses of certain bits might not be found at all. This

situation results again in a clipped LLR, which could be an overestimation of the ac-

tual value [151], as opposed to the previous case. In both cases, correcting the LLR

computation error brings significant gains in terms of performance.

An analytical computation of the LLR correction functions is typically impractical

and hence the methods proposed in the literature resort to approximations based on

Monte Carlo simulations [83, 136, 151]. Furthermore, the correction functions highly

depend on the operating environment and system setup. Therefore, the hardware

implementation of this functionality must be flexible to allow the usage of different

correction functions.

In this thesis, an approach based on programmable look-up tables is followed.

Given their 5 bit fixed-point format, the magnitude of the extrinsic LLRs
∣

∣

∣λe
i,b

∣

∣

∣ can only

take integer values in a range between 0 and 15. To allow full flexibility, a correction

vector Λ̂
e

containing 16 values, one for each possible value of the LLRs output by the

detector, is used to implement the correction function. In mathematical terms, given

the extrinsic LLR at the output of the detector with magnitude
∣

∣

∣
λe

i,b

∣

∣

∣
= 0, ..., 15, the

corrected version
∣

∣

∣λ̂e
i,b

∣

∣

∣ = 0, ..., 15 is computed as

λ̂e
i,b = sign

(

λe
i,b

)

Λ̂
e

|λe
i,b|

, (4.1)

meaning that
∣

∣

∣λe
i,b

∣

∣

∣ is used to index the correction vector Λ̂
e

to find the proper cor-

rected LLR value1.

The correction vector depends on the maximum runtime constraint Nen,max and

on the clipping value Γ, i.e.:

Λ̂
e
= f (Nen,max, Γ) . (4.2)

The maximum clipped LLR is herein defined as:

Λ
e =

2WlInt{λe}

No2Γ
(4.3)

where WlInt{λe} is the integer word length (including the sign bit) of the LLRs

output by the sphere decoder and the factor 1/No stems from the fact that the SD

1 The LLRs output by the detector do not necessarily use the full range allowed by the fixed-point
format, due for instance to the application of clipping. Therefore, in order to fully exploit the dynamic
range of the decoder and avoid a loss of precision, the extrinsic LLRs are first scaled to use the full
range of their fixed-point format and then corrected.
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architecture scales the input LLRs by No and hence the output LLRs by 1/No [169].

Therefore, the LLR clipping value is:

Γ = WlInt{λe} − log2 (NoΛ
e) . (4.4)

It should be noted that by this definition the magnitude Λe of the clipped LLRs is

inversely proportional to the clipping value Γ, as opposed to the definition (3.4) of

Γcaesar used in the previous Chapter 3.

Storing a correction vector for each possible combination of Nen,max and Γ is overly

expensive in terms of memory. Therefore, clipping is restricted to seven possible val-

ues, besides the no-clipping case. Moreover, correction vectors are defined for ranges

of Nen,max rather than for a specific value: for instance, all cases with Nen,max ≤ 8 share

the same correction vectors; the same applies for all the runs with 8 < Nen,max ≤ 16,

16 < Nen,max ≤ 32, 32 < Nen,max ≤ 64, 64 < Nen,max ≤ 128 and Nen,max > 128 re-

spectively. An additional case is the absence of a maximum runtime constraint, i.e.,

Nen,max = ∞. Furthermore, the tree search is not considered to be early terminated

if Nen,max is set but not actually reached; when this occurs, the LLRs are treated as

if Nen,max = ∞. In total, the number of possible cases generated by different Nen,max

constraints is seven. All possible combinations of Nen,max and Γ result in 7 × 8 = 56

correction vectors containing 16 4 bit unsigned values each, with a total memory re-

quirement of 3584 bits.

While the hardware costs of such a solution are relatively low, from an algorithmic

standpoint the number of simulation runs required to exhaustively optimise each of

the 56 correction vectors is impractical. Therefore, a reduced set of simulations was

conducted following two rules of thumb: first, within a symbol vector, the clipped

LLRs should be magnified with respect to the unclipped ones by scaling the former

up or, equivalently, by scaling the latter down; second, tighter clipping and/or run-

time constraints generate less reliable outputs and therefore the magnitude of the

corresponding LLRs should be decreased with respect to an unconstrained search.

Figure 4.2 shows the benefits of LLR correction for two different clipping settings,

after six IDD iterations and without early termination. For a loose clipping value

(Γ = 1, red curves), a gain of almost 1 dB is observed after introducing LLR correction,

shifting the error-rate curve very close to the fixed-point performance limit achieved

without applying clipping. The latter is shown by the blue curve, which is close to

the floating-point performance shown in Figure 4.1 for OMS decoding with β = 1.00.

The benefits are even more evident with a tight clipping constraint (Γ = 4, green

curves); in such a case, the performance gain surpasses 3 dB. These results prove

that, even though there is additional room for optimisations, the described hardware-

oriented LLR correction technique is very effective in recovering the performance loss

associated to clipping.

For the algorithmic analysis in Figures 4.1 and 4.2, a 64-QAM setup with R = 1/2

was chosen. Firstly, 64 QAM is the largest constellation considered in this thesis and

entails both the highest spectral efficiency and the highest receive complexity. Sec-

ondly, the code rate of 1/2 is the lowest foreseen by the IEEE 802.11n LDPC codes
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Figure 4.2: Fixed-point communication performance with and without LLR correc-
tion for Γ = 1 and Γ = 4 (4 × 4 64-QAM setup with R = 1/2, Iidd = 6).

and hence enables the system to work in the lowest achievable SNR regime for a

given modulation. Therefore, this is an interesting scenario to verify that the commu-

nication performance loss due to implementation aspects is acceptable. Additionally,

this setup is typically used in the literature as a reference.

Despite these valid reasons, when a system that can switch its modulation scheme

and code rate is considered, a 16-QAM setup with R = 2/3 can provide the same spec-

tral efficiency at a reduced receive complexity (see later Section 5.2) and is therefore

preferable. The aforementioned 64-QAM configuration with R = 1/2 thus becomes

of low practical interest. For this reason, the next higher code rate of 2/3 is chosen in

conjunction with 64 QAM for the following sections, which are more concerned with

complexity reduction rather than the mere communication performance.

4.1.1 Detection Complexity Reduction

The implementation presented in Chapter 3 proves that soft-input soft-output MIMO

detection by depth-first sphere decoding is feasible. However, the complexity of the

algorithm is still relatively high in the low-SNR regime, penalising the efficiency of

the implementation. Therefore, in the next two sections two heuristic solutions are

presented that address the complexity issue of the original STS SD algorithm imple-

mented in Chapter 3.
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Figure 4.3: Performance comparison between detection without and with an
antenna-wise runtime constraint of [2, 3, 6, 64] for Γ = 1, Nen,max = 1024,
one and two IDD iterations and R = 2/3.

4.1.1.1 Antenna-Wise Runtime Constraint

The typical way of constraining the runtime of the depth-first sphere decoder is by

setting a maximum number of examined nodes Nen,max, causing the termination of the

tree search as soon as Nen,max is reached. Unfortunately, with this solution the algo-

rithm often spends a relatively long time examining only a few parts of the tree, using

up most of the available runtime to improve a small subset of LLRs while dedicating

a much shorter time to the others. As a consequence, some LLRs are unreliable and

deteriorate the overall communication performance. To avoid this degradation, the

constraint Nen,max must be set to a much higher value than the average runtime in the

given operating point. As a result, the constraint Nen,max only plays a very marginal

role in a few extreme cases, without noticeable benefits on the average runtime.

A viable approach, which is orthogonal to the aforementioned maximum runtime

constraint Nen,max, is to constrain the number of nodes examined on a given level of

the tree. The basic idea is to restrict the number of children of a parent node that can
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Figure 4.4: Performance comparison between detection without and with an
antenna-wise runtime constraint of [1, 2, 4, 64] for Γ = 4, Nen,max = 128,
one and two IDD iterations and R = 2/3.

be examined by the tree search on each level. This constraint is specified as a vector

of MT antenna-wise runtime constraints
[

N
(1)
en,max, ..., N

(MT)
en,max

]

, where N
(i)
en,max = 1, ..., 2Q.

Assuming a 64-QAM constellation and four transmit antennae, a constraint vector

[1, 1, 4, 64] means that all the 64 nodes at the top level MT are examined (N
(4)
en,max = 64),

then for each of them only four children at most are examined (N
(3)
en,max = 4) and only

the best child on the two bottom levels is considered (N
(2)
en,max = N

(1)
en,max = 1). Such

a constraint corresponds to restricting the search space to
∏MT

i=1 N
(i)
en,max leaves (256 in

the previous example). Since the pruning criteria used in STS SD are still applied

in combination with this technique, the actual number of leaves examined by the

algorithm may be lower.

The benefits of the antenna-wise constraint are highlighted by Figures 4.3 and 4.4.

If the maximum runtime limit is loose (Figure 4.3, with Γ = 1 and Nen,max = 1024),

by introducing the new constraint the average number of examined nodes cumulated
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over iterations E

[

∑Iidd
i=1 Nen,i

]

can be effectively cut by 30 % up to 40 %. At the same

time, the error rate is noticeably improved, as it can be seen by comparing the BLER

curves in Figure 4.3. A similar performance gain can be observed for tighter clipping

constraints (Figure 4.4, with Γ = 4 and Nen,max = 128), although with more limited

runtime savings. A further complexity reduction can be achieved by setting more

stringent antenna-wise constraints, at the price of a lower performance gain.

In summary, this technique can be seen as an additional way to trade off com-

plexity vs. communication performance, similarly to LLR clipping but with a better-

defined runtime upper bound. From the hardware point of view, the cost of imple-

menting such a technique into the architecture described in Chapter 3 is negligible

since only a number MT of Q bit counters and comparators are required to keep track

of the current number of nodes examined on each level and check if the constraint

has been exceeded. No timing penalty is associated to this extension.

4.1.1.2 Single Metric for the Pruning-Criteria Check in Soft-Input SD

One of the key enablers for the implementation of soft-input soft-output SD is the

hybrid enumeration method described in Section 2.2.1.3. As introduced previously,

in order to preserve the max-log MAP optimality of the algorithm, the metric used

to check the horizontal pruning criterion is not the actual MP

(

s(i)
)

of the current

node but rather a lower bound, as specified in (2.37), which leads to a conservative

outcome when pruning is applied. As a result, in the presence of soft input, hybrid

enumeration entails an overhead in terms of number of examined nodes with respect

to the ideal Schnorr-Euchner order (see Section 2.2.1.3).

Simulation results show that the performance loss due to the original pruning cri-

terion (2.36), which means that the same metric MP

(

s(i)
)

is used for both pruning

criteria, instead of the optimal (2.37) is negligible. Moreover, not only the complexity

overhead due to (2.37) is cancelled out but there is an additional reduction in the num-

ber of examined nodes with respect to the Schnorr-Euchner enumeration, since the

enumerated node is not necessarily the one with the minimum MP

(

s(i)
)

anymore.

Figure 4.5 compares the optimal horizontal pruning-criterion check (2.37) with

the herein introduced heuristic. While the error-rate curves obtained with the two

methods are nearly indistinguishable, the heuristic pruning criterion saves 15 % to

30 % of the complexity in terms of number of examined nodes.

This heuristic is added to the STS SD architecture as a runtime-configurable op-

tion, by inserting a multiplexer that, based on a configuration bit, forwards to the hor-

izontal pruning-criterion check either the same metric MP

(

s(i)
)

used for the vertical

check or the lower bound MP

(

s(i+1)
)

+MC

(

s
(k)
C,i

)

+MA

(

s
(k)
A,i

)

specified in (2.37)

and required for optimality. At a nearly null implementation cost, this configurable

solution allows the choice between giving the priority to a lower complexity or to the

optimal performance.
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Figure 4.5: Performance comparison after two and four IDD iterations between de-
tection with optimal and heuristic horizontal pruning criterion (the de-
tector is set to Γ = 1, Nen,max = 1024 and an antenna-wise runtime
constraint of [2, 3, 6, 64], while the code rate is 2/3).

In the remainder of this thesis, the heuristic horizontal pruning criterion is ap-

plied, in conjunction with all the other complexity-reduction methods mentioned thus

far (i.e., LLR clipping, maximum runtime constraint Nen,max and antenna-wise run-

time constraint), to achieve the best tradeoff between communication performance

and complexity.

4.1.2 Selective IDD

The enhancements to the STS SD algorithm introduced in Section 4.1.1 target the

reduction of the complexity on a per-iteration basis. Further improvements can be

achieved by taking a more comprehensive approach which looks at how the detection

complexity is distributed across the IDD iterations. To this end, Figure 4.6 shows how

the communication performance (top) and the number of examined nodes (bottom)
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Figure 4.6: Performance and number of examined nodes over iterations (the detector
is set to Γ = 1, Nen,max = 1024 and an antenna-wise runtime constraint
of [2, 3, 6, 64], while the code rate is 2/3).

evolve over four IDD iterations for an exemplary setup. The following observations

nevertheless apply to different runtime constraint settings as well.

The first interesting aspect is that the effort spent in the first iteration shows a very

mild dependency on the SNR, decreasing only by a few nodes per dB (up to five in the

case shown in Figure 4.6). The behaviour changes in the second and further iterations,

where the complexity varies within a wider range over the SNR and can be directly

related to the achieved error rate: if the system achieves a BLER approaching 10 % or

less with a given number of iterations (e.g., one iteration at 21 dB, two iterations at

20 dB), any further iteration requires a much reduced detection effort.

On the other hand, if the error rate cannot be decreased significantly by IDD due to

poor channel conditions, every iteration entails roughly the same complexity, which

increases with a decreasing SNR. This operating region is however not particularly

interesting since the system is practically unusable due to the high error rate.
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Looking at the distribution of the complexity across iterations and its relationship

with the achieved error rate leads to the conclusion that most symbol vectors are al-

ready sufficiently reliable after the initial iterations, whereas only a few unreliable

ones require the detection to be repeated with high effort. Intuitively, this observation

means that if the reliability of the detection of a symbol vector is high the correspond-

ing LLRs do not need to be updated anymore and their computation can be therefore

skipped in the next detection iteration. Furthermore, this computational time can be

then reallocated to improve the estimation of the few unreliable LLRs by relaxing the

runtime constraints on the detector in later iterations.

On a higher level, which considers the whole receiver, a typical issue of any iter-

ative system is how to avoid needless computations by stopping the iterative process

as soon as the correct result is achieved. For instance, in the scenario depicted in

Figure 4.6 at 20 dB, the BLER curve shows that statistically 20 % of the frames are

correctly decoded already after a single iteration, another 60 % of them after the sec-

ond iteration and only the remaining 20 % need three or more iterations. In a system

where the number of iterations is fixed, achieving a target BLER of 10 % would re-

quire three iterations, resulting in a significant waste of computations since 80 % of

the frames are already correctly decoded after two iterations. This overhead must be

addressed to improve the efficiency of an IDD implementation.

Based on these remarks, two techniques were developed in the context of this

thesis:

• Symbol-wise on-demand detection introduces a criterion to decide whether a sym-

bol vector should go through the detection process or should be skipped in

the second and further iterations, so that the detector focuses on improving the

unreliable bits rather than the estimates that are already good enough.

• Codeword-wise on-demand detection and decoding automatically stops the IDD pro-

cess as soon as the codeword is considered correctly decoded; this stopping

criterion is adaptive in the sense that the decision is taken on a codeword-by-

codeword basis rather than according to a preset maximum number of iterations.

The next sections detail the working principles of these complexity-reduction meth-

ods, which are referred to under the name of selective IDD.

4.1.2.1 Symbol-Wise On-Demand Detection

The idea of reducing the complexity of soft-input soft-output MIMO detection by

avoiding redundant recomputations in the second and further iterations is rather re-

cent. In [183] and [115], two similar approaches are proposed to decrease the com-

plexity of STS SD. In both cases, individual bits that do not need further iterations

are identified based on the magnitude of their LLRs. The corresponding radius con-

straints, which are assumed to be set independently for each bit, are then initialised to

zero, thereby excluding those bits from the tree search. Since the LLRs of the skipped

bits are not recomputed, it is necessary to store their old values in a memory and then

restore them in the new vector output by the detector.
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A different approach was followed in this thesis to minimise the implementation

overhead in terms of control and extra memory requirements. The proposed method

does not make assumptions on the inner functionality of the detector and hence can

also be combined with algorithms other than STS SD. The selection of what needs to

go through an additional detection run happens at a coarser granularity on a symbol-

vector basis rather than bit-wise.

To this end, the a posteriori LLRs λ
p,dec computed by the decoder are considered

for all the MTQ bits that compose a symbol vector. If all those LLRs have a magnitude

larger than or equal to a given threshold Λp, the symbol vector can be skipped alto-

gether. On the other hand, if at least one of the LLRs is smaller than Λp, the detector

has to process the whole symbol vector once more. In other words, the condition for

a symbol vector s, with bit label x, to be skipped is:

∣

∣

∣
λ

p,dec
i,b

∣

∣

∣
≥ Λ

p, ∀xi,b ∈ x. (4.5)

When condition (4.5) applies, the old extrinsic LLRs λ
e,det
old computed by the detec-

tor in the previous iteration would have to be restored. However, in order to reduce

the memory overhead only the signs of λ
e,det
old are saved, resulting in a storage require-

ment of one bit per LLR. The skipped LLRs are then replaced by new values with the

correct sign from the previous iteration and a predefined magnitude Λe, equal for all

bits:

sign
(

λe,det
i,b

)

= sign
(

λe,det
i,bold

)

∣

∣

∣λ
e,det
i,b

∣

∣

∣ = Λ
e. (4.6)

Assuming the 5 bit format (including the sign) of the LLRs used in this design,

this solution reduces the extra memory requirements by 80 %, while preserving the

communication performance of the system, as shown by Figure 4.7. For a setup with

Λp = 3 and Λe = 6, no significant performance degradation is observed after four

IDD iterations, with a complexity reduction in the SNR points with an acceptable

BLER ranging from 20 % at 20 dB to 60 % at 21 dB, as it can be seen in the bottom plot

of Figure 4.7. Additional complexity savings can be achieved by further decreasing

the parameters Λp and Λe, respectively to 1 and 2, at a small SNR loss (see green

curves in Figure 4.7). In the following, the near-optimal setup with Λp = 3 and

Λe = 6 is used.

Combining symbol-wise on-demand detection with the other complexity-reduction

techniques introduced in Section 4.1.1 yields an overall decrease of the detector run-

time by 62 % at 20 dB and 80 % at 21 dB, for a configuration with Γ = 1, Nen,max = 1024

and Iidd = 4. At the same time, if Nen,max is limited the performance can be even im-

proved by the introduction of a proper antenna-wise runtime constraint.
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Figure 4.7: Performance and complexity comparison of full iterative detection vs.
symbol-wise on-demand detection after four IDD iterations (the detector
is set to Γ = 1, Nen,max = 1024 and an antenna-wise runtime constraint
of [2, 3, 6, 64], while the code rate is 2/3).

4.1.2.2 Codeword-Wise On-Demand Detection and Decoding

A common issue for any iterative system is how to decide when to stop iterating

over the same set of data. The straightforward solution of executing a predefined

number of iterations, independently of the outcome, results in a significant waste of

computations and hence energy, as highlighted in Section 4.1.2 and Figure 4.6 for the

MIMO IDD receiver case.

Two different situations can be distinguished for the system considered in this

thesis:

• Low SNR: most codewords cannot be correctly decoded no matter how many

iterations are performed; therefore, the system should realise that the conver-

gence to a valid solution is not possible and stop quickly enough to minimise

the waste of computations.
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• High SNR: the convergence is typically fast and hence the detection/decoding

process should stop as soon as the codeword is correctly decoded to avoid ad-

ditional useless iterations.

Most of the criteria for early termination described in the literature are concerned

with iterative channel decoders, such as turbo decoders. In the high-SNR scenario,

these solutions can be extended seamlessly to terminate IDD processing as well, since

they typically aim at understanding if the codeword has been correctly decoded. If

this is the case, not only the inner decoding iterations but also the IDD iterations can

be stopped.

The first class of methods targeting early termination relies on cross entropy [69],

which measures how much the LLRs change from one iteration to the next: once

the cross entropy is low enough, meaning that there is no significant change in the

LLRs anymore, the decoding process can stop. Based on the same principle, the cross-

entropy criterion can be simplified in several ways. For instance, the sign-change ratio

criterion [141] looks at the percentage of extrinsic LLRs that switch their sign over

two consecutive iterations and stops the decoding as soon as this quantity is small

enough. The analogous sign-difference ratio criterion [175] looks at the sign changes

between the a priori and the extrinsic LLRs instead, with savings in terms of mem-

ory requirements with respect to the sign-change ratio. Alternatively, hard decisions

based on the a posteriori LLR sign can be used, according to the hard decision-aided cri-

terion presented in [141] and extended in [114]: once there is no change in any of the

hard decisions across iterations the decoding is assumed to have reached convergence

and therefore stopped.

Another class of stopping criteria considers the magnitude of the LLRs computed

by the decoder, based on the observation that a large LLR value equals to a high

reliability and therefore the corresponding bit can be assumed to be correctly decoded.

For instance, the solution introduced in [92] looks at the mean absolute value of the

extrinsic LLRs and assumes the decoding has converged when the mean does not

change across iterations. This idea is modified in [63] by considering the sum of

all the LLRs rather than the mean, thereby avoiding the division operation and the

consequent hardware implementation cost. Another alternative [100] looks at the

minimum LLR and stops the decoding if this is larger than a given threshold, similarly

to the technique previously introduced in Section 4.1.2.1 in regard to MIMO detection.

Alternatively, the success of the decoding process can be assessed by applying a

cyclic-redundancy check (CRC) to the codeword. This approach naturally suits LDPC

codes, since the code itself is based on a set of parity checks. In such a case, when

all the parity checks are fulfilled the decoding can be deemed successful. Since veri-

fying all the parity checks in each iteration is inefficient from a hardware standpoint,

there is a delay of a few decoder iterations between the computation of the correct

solution and the recognition of the decoding completion [86]. The decoding can also

be stopped after a predefined number of consecutive partial parity checks, named

early-termination window size (ETWS), have been correctly completed [128, 129]. By in-

creasing the ETWS parameter the error floor introduced at high SNR can be pushed

down. This solution is also used in this thesis and ETWS is chosen to be equivalent
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Figure 4.8: Comparison of the average number of IDD iterations needed for a system
without selective IDD to match or surpass the performance of a selective
IDD receiver (the detector is set to Γ = 1, Nen,max = 1024 and an antenna-
wise runtime constraint of [2, 3, 6, 64], while the code rate is 2/3).

to two LDPC iterations; in other words, the decoder terminates when all the parity

checks have been passed for two consecutive LDPC iterations. For the IEEE 802.11n

codes, such a setting corresponds to

ETWS = 2Np (1 − R) (4.7)

and introduces an error floor below BLER = 10−4, which can be considered acceptable

in a wireless system.

This technique is extended in this thesis to the whole detector/decoder system,

by stopping the IDD iterations as soon as the decoder meets the early-termination

criterion. The implementation described later in this chapter takes advantage of this

solution to avoid redundant computations. Figure 4.8 compares two systems with

(red curves) and without (green curves) selective IDD, which combines both symbol-

and codeword-wise on-demand detection and decoding. It can be seen that selective
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IDD enables the receiver to approach the reference performance limit curve, obtained

with Iidd = 6, while automatically minimising the number of IDD iterations in each

SNR point for each codeword. Additionally, the blue curves in the figure refer to a

system where Iidd is predefined in each SNR point to match or outperform the error

rate of the selective IDD receiver. Such a system cannot change Iidd on a codeword-by-

codeword basis, which results in a noticeably higher average number of IDD iterations

than the selective IDD receiver. It should also be noted that the control overhead due

to selective IDD is negligible, since the proper number of LDPC and IDD iterations is

automatically set and adapted to each received codeword.

Concerning the low-SNR regime, no early-termination technique for undecod-

able codewords is used in this thesis and therefore predefined maximum numbers of

LDPC and IDD iterations still need to be set to limit the runtime in such cases. The

implementation of a low-SNR stopping criterion would be an interesting extension to

this thesis. Several algorithmic solutions exist, mostly extending to IDD receivers the

techniques previously listed in the context of channel decoding [25, 64].

4.2 VLSI Architecture

From a high-level point of view, the MIMO IDD receiver consists of two main pro-

cessing elements (PEs), namely the MIMO detector and the channel decoder, intercon-

nected by a shared memory to exchange information in the form of extrinsic LLRs.

After an overview of the system-level design aspects, the next sections give a detailed

description of each of the three components, i.e., the two PEs and the shared memory

architecture.

4.2.1 System-Level Design

The granularity of the basic set of working data differs between the two PEs, since the

detector operates on symbol vectors while the decoder processes an entire codeword

at a time. The typical schedule used on the algorithmic level assumes that the infor-

mation between the two components is exchanged codeword-wise. In other words,

first the detector processes all the symbol vectors that belong to a codeword, then

channel decoding is applied to the result and once the decoding process is complete

the detector can start the next iteration. Figure 4.9 shows this working principle under

the name of sequential IDD.

Such an approach has two main advantages from a hardware implementation

point of view. Firstly, the memory that stores the LLRs is accessed in a mutually

exclusive manner by either PE and therefore no conflict occurs, with the beneficial side

effect that no expensive arbitration logic is required. Secondly, since at any time one of

the two PEs is idle waiting for the other one to complete its task, different codewords

can be processed concurrently by the two PEs in a pipelined interleaved way. This

processing scheme, named ping-pong IDD [123] and shown in Figure 4.9, requires to

double the shared memory to accomodate the LLRs of the second codeword. The
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Figure 4.9: Different schedule options for an IDD receiver.

main advantage is that both the detector and the decoder can be active all the time

and the throughput of the system increases accordingly.

Both sequential and ping-pong IDD show a linearly increasing latency with the

number of IDD iterations. A viable alternative which specifically tackles latency was

proposed in [123] under the name of layered detection and decoding (LDD), also shown

in Figure 4.9. The basic idea is to remove the concept of IDD iteration, by letting the

detector and the decoder work simultaneously on the same codeword. The result is

similar to the layered message-passing approach to LDPC decoding (see Section 2.3.1),

with the LLRs being updated on a finer granularity than a whole codeword and more
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Figure 4.10: System architecture with ping-pong schedule.

frequently. Since the exchange of reliability information between the two PEs hap-

pens at a higher rate, the detection/decoding process converges faster than in the

conventional scheme with codeword-wise communication and hence the latency can

be significantly reduced. However, both PEs are occupied by the same codeword

and no interleaved schedule is possible, thus bounding LDD to a lower efficiency.

Furthermore, the overhead to control and resolve memory access conflicts is problem-

atic to deal with, especially when the access patterns are not fixed due to runtime-

configurable number of antennae and modulation order or to the variable runtime of

one of the two PEs.

In this thesis, the ping-pong schedule shown in Figure 4.9 is employed, with

a codeword-wise information exchange and the interleaving of two different code-

words to fully exploit the available PEs. Figure 4.10 shows the resulting high-level

architecture, with two blocks of shared memory, one for each codeword processed

concurrently. Once the detector has filled in the LLRs related to the first codeword

in the first memory block, the decoder takes over and processes that codeword. In

the meantime, the detector can start working on the second codeword independently,

by using the second memory block. When both PEs have completed their tasks, the

detector goes back to the first codeword for the second iteration while the decoder

processes the second codeword. This pipeline interleaving scheme enables the full

utilisation of the two PEs, assuming their execution times match.

In order to support this working principle, the access to the two LLR-memory

blocks, denoted as Cwa and Cwb, is swapped transparently between the two PEs at

the completion of each detection/decoding step. Since only one PE at a time accesses

Cwa and Cwb, the memory ports can be shared between the two PEs over the different

computational phases. To this end, a crossbar switch is used to interconnect the two

PEs to the memory, as shown in Figure 4.10. This time multiplexing avoids doubling

the access ports, which would result in a significant hardware overhead.
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Figure 4.11: Three-stage synchroniser for a single-bit signal crossing from the do-
main of Clocksrc to the domain of Clockdest.

An important aspect of the system hardware design is that the detector and the

decoder are clocked at different asynchronous frequencies to achieve their maximum

efficiency. Otherwise, the decoder would be penalised if forced to run at the slower

frequency of the detector. Therefore, a globally asynchronous locally synchronous (GALS)

approach [84] was followed to design the IteRX architecture, with two independent

clock domains.

The number of signals crossing the domain boundary was kept to the minimum

to reduce the overhead due to synchronisation, which is realised by means of three-

stage synchronisers [84] for single-bit control signals, as shown in Figure 4.11. A more

sophisticated solution is required for the shared LLR memory, whose blocks Cwa and

Cwb have to interface alternatively with the two PEs at different frequencies. The so-

lution proposed to solve this issue in this thesis is described in Section 4.2.4.1 and has

the peculiarity that parts of the design, namely Cwa and Cwb, do not statically belong

to one clock domain but periodically switch at runtime between the two domains.

4.2.2 MIMO Detector Architecture

The basic building block of the MIMO detector is represented by the sphere-decoding

architecture previously described in Chapter 3 and extended with the algorithmic

enhancements presented in Section 4.1, which do not affect the critical path and only

negligibly increase the area. Given the implementation results presented in Chapter 3,

multiple parallel STS SD instances are required to sustain a sufficient throughput

across a wide SNR range. The exact number of instances Nsd highly depends on the

target throughput and SNR operating point. Since the goal of this thesis is a proof

of the feasibility of MIMO IDD rather than a highly optimised solution for a specific

use case, Nsd is kept as a design-time parameter, which can be set in the RTL code

depending on the implementation target, and the detector is designed to be scalable

over a large range of Nsd.

A major challenge in such a multicore detector concerns the schedule: special

care needs to be taken in handling the variable runtime of the depth-first sphere

decoders that compose the detector. This aspect also influences the interface between
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Figure 4.12: Multicore SD-based MIMO detector.

the detector and the rest of the system, for instance in the way the shared LLR memory

is accessed.

Based on these considerations, the three-stage architecture shown in Figure 4.12

was designed. The processing stage is the core of the detector, where the SD instances

are and most of the actual computations are performed. On the other hand, I/O

operations are carried out by the input and output stages, which are designed to min-

imise the number of cycles spent by the sphere decoders waiting for input data to be

available or output data to be consumed.

The proposed architecture follows a dataflow model, where each stage starts ex-

ecuting as soon as input data is available and writes the outputs to the next stage
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as soon as this is ready to receive. In this way, the global control overhead is min-

imised and the execution is self-synchronised by simple handshake signals between

consecutive stages.

The entry point of the architecture is the dispatcher, which is in charge of loading

data (ỹ and R) from the input memory2 and, if necessary, the a priori LLRs λ
a from

the shared LLR memory. The complete data set needed to detect one symbol vector is

loaded in a single cycle. The dispatcher transfers the data to the first available input

buffer Innew,i, with i = 1, ..., Nsd, and repeats this operation every time that a buffer

Innew,i becomes ready. As soon as Innew,i contains valid input data, the corresponding

SD instance i copies the data in its internal input buffer Incur,i and starts the detection

process, while Innew,i becomes ready to receive a new data set.

During normal operation, the output of buffer Innew,i is only connected to the

respective SD instance. However, as shown in Figure 4.12, the architecture also sup-

ports the connection of the input buffers as a ring so that the data can be shifted from

Innew,i to Innew,i+1. This functionality, controlled by a dedicated shuffler unit, is only

exploited in a special case, which is explained later in this section.

Once the symbol vector has been detected, the SD core copies the resulting LLR

vector λ
e from the internal output buffer Outcur,i to the external one Outold,i and

immediately moves on to the next symbol vector, if this is available at the input. The

collector takes care that the data stored in the output buffers Outold,i is read out and,

after applying LLR correction, written back to the shared LLR memory. Similarly to

the dispatcher, the collector can process the data corresponding to one symbol vector

in a single cycle.

The throughput of both the dispatcher and the collector is chosen to minimise

the idle waiting time of the SD cores while avoiding excessive requirements on the

memory. The input memory is split into multiple combined banks to serve the band-

width required by the dispatcher. An address generation unit (AGU) computes the

physical addresses for each bank based on the requested symbol vector, indexed by

iỹ = 1, ..., Nỹ with Nỹ = Nc/ (MTQ), and on the configuration parameters MT, Q and

Nc. The outputs of the different banks are then aggregated in a single packet that is

forwarded to the dispatcher and subsequently to a free buffer Innew,i.

Multiplexing overhead is avoided by directly connecting the dispatcher output to

all the buffers Innew,i with separate mutually-exclusive write enable signals for each of

them. The double-buffered I/O of the SD cores allows the dispatcher and the collector

to perform their respective tasks during the processing time, without interfering with

the detection.

From the I/O point of view, the most demanding case corresponds to a high-SNR

operating point, where the SD cores approach their minimum runtime and hence

consume and produce data at the highest rate. As long as Nsd is not larger than

the minimum number of cycles (MT + 1) required by STS SD, no waiting time is

2 The arrival rate of the input data is defined by the receiver stages that precede the detector. Since
these are not implemented in the context of this thesis, it is assumed that the input data is available
in the memory when the dispatcher tries to access it.
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introduced by the I/O logic, except for the initial cycles needed to fill up all the input

buffers Innew,i at the very beginning of the detection of a codeword.

At low SNR, on the other hand, a special situation occurs when the last Nsd symbol

vectors of a codeword are dispatched to the input buffers. Due to the variable runtime

of STS SD, the last vectors are occasionally buffered in front of a busy core while at

least one other core has finished processing its own vectors and is therefore available.

To solve this issue, which can cause an unforeseen throughput and latency penalty,

the input buffers Innew,i are connected in a ring so that the queued data can be shifted

from busy to ready cores. The shuffler unit, which is a dedicated extension to the

dispatcher, detects when the issue occurs and activates the shift operation as needed.

Another consequence of the variable STS SD runtime can be observed at the out-

put of the SD cores, where the results are often delivered in a different order than they

were dispatched. Therefore, the output stage can write the LLR vectors back to the

memory out of order, based on the index iỹ assigned to the vector at dispatch time,

avoiding impractical and expensive reordering operations.

Before the writeback, the LLR vectors are postprocessed by the LLR correction

unit, which implements the look-up table-based method described in Section 4.1 to

improve the communication performance in the presence of runtime constraints. The

required information about LLR clipping and early termination is passed on by the

SD cores along with the LLR vector.

The herein described architecture is designed for scalability and manages the

scheduling issues due to the variable runtime of SD detection. These aspects are

analysed in more depth in the next sections. Firstly, the scalability of the multicore

detector with respect to Nsd is examined in terms of area and timing. Secondly, the

issue of scheduling the processing across multiple sphere decoders and ensuring that

runtime constraints are met is discussed.

4.2.2.1 Scalability Analysis

The scalability of the proposed detector architecture is illustrated by Figure 4.13,

which shows how the area varies with the number of SD instances. The plot is

based on gate-level results3 with the same low-power 65 nm CMOS technology and

standard-cell library used later on for the silicon implementation of the receiver.

The major contribution comes from the SD cores, whose total area obviously scales

linearly. On the other hand, the logic for handling input and output data has a

sublinear dependency on the number of cores since some of its components (e.g., the

LLR correction unit) do not vary, whereas others (e.g., the dispatcher, the collector

and the I/O buffers) increase roughly linearly.

The most important observation, however, concerns timing: no slowdown in the

maximum clock frequency is observed even with 64 SD instances. This ideal scala-

3 In order to keep the synthesis runtime within reasonable limits, the single SD core was synthesised
first and then instanciated without allowing further internal optimisations for the synthesis of the
complete multicore detector. The loss in terms of area and timing with respect to a fully flattened
synthesis is negligible (7 % longer clock period and 4 % larger area for five SD instances) in comparison
with the synthesis runtime reduction.
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Figure 4.13: Detector area dependency on the number of instanciated SD cores. The
sphere-decoding area is the sum of all the SD instances in the detector
whereas the input/output contribution includes the remaining logic.

bility is only partly due to the efficient design of the data distribution and collection

logic, since the long critical path of the sphere decoder can hide rather long delays

in the surrounding circuitry. It is worth mentioning that this behaviour might still

change after placement and routing because of the increasing I/O wire density, po-

tentially resulting in the critical path moving from the SD core to the I/O logic for a

lower number of SD instances than on gate level.

For the prototype presented in this thesis, Nsd was set to five. This is the maximum

number of SD cores that can be served without delays by the I/O interface when the

minimum cycle count of (MT + 1) is reached by every symbol vector, assuming a 4× 4

MIMO setup. Therefore, the scheduling analysis presented in the next section and the

implementation results shown in Section 4.3 are based on the choice of Nsd = 5.

4.2.2.2 Scheduling Aspects

The implementation of a multicore SD-based detector poses a scheduling problem,

particularly due to the runtime that can vary for each symbol vector. The ideal

speedup achievable by parallelisation is equal to the number Nsd of SD cores in-

stantiated concurrently. In such a case, the ideal detector runtime, measured in clock
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cycles, can be defined as the total cumulated number of examined nodes for a whole

codeword divided by Nsd:

CCdet
c, ideal =

∑Nỹ

iỹ=1

(

Nen,c

(

iỹ

)

+ Iidd

)

Nsd
. (4.8)

This definition is equivalent to a perfectly linear scaling of the sphere-decoder through-

put in (3.2) with the number of cores Nsd.

The multicore detector architecture is designed to achieve this goal by minimising

the waiting time due to I/O operations. However, a few non-idealities come into play

in determining the actual cycle count. First of all, at the very beginning only one SD

core per cycle can be started, since the dispatcher can fill the input buffers at a rate

of one per cycle. Therefore, the last core starts processing with a delay of Nsd cycles

with respect to the first one. On the other hand, at the end of a codeword not all the

cores finish at the same time, resulting in unfortunate cases with one core running

for a relatively long time after the other ones are done. Simulations show that the

average overhead due to these non-idealities is around 10 % with respect to CCdet
c, ideal

in the case of Nsd = 5 and loose runtime constraints (Γ = 1, Nen,max = 1024 and an

antenna-wise runtime constraint of [2, 3, 6, 64]).
The main issue, however, remains how to limit the maximum runtime for de-

tecting a complete codeword, which can be much longer than the average one. The

vector-wise maximum runtime constraint Nen,max is ineffective to this end. The result-

ing runtime constraint on the detection of a complete codeword can be computed as

Nen,maxNỹ/Nsd for each iteration: in the case of a 4 × 4 64-QAM system with LDPC

sub-block size Z = 81, resulting in Nỹ = 81, a constraint Nen,max = 1024 implies a

limit of 16 589 cycles per codeword per iteration, which surpasses by several times the

average CCdet
c, ideal and even the maximum cycle count actually observed for a single

iteration. As a matter of fact, the constraint imposed by Nen,max does not play an

active role in limiting the overall detection runtime for a codeword.

A significant improvement can be achieved by enforcing a direct constraint CCdet
max

on the number of cycles CCdet that the detector can use to execute one IDD iteration on

a codeword. In other words, CCdet
max represents a deadline for the detector execution.

This solution, which is necessary to guarantee the fulfillment of a real-time constraint,

opens the question of how to internally schedule the SD cores in the detector so that

the deadline is met without overly degrading the communication performance of the

system. This issue can be addressed by properly setting the individual constraints of

each detected symbol vector ỹ at runtime.

A first solution is represented by the recursive maximum-first (MF) policy [39],

which ensures that every symbol vector is allocated enough cycles to find a valid tree-

search solution, corresponding to (MT + 1) in this design (see Section 3.2). The rule

to set the maximum runtime constraint for the iỹ-th symbol vector is:

Nen,max

(

iỹ

)

= CCdet
max − CCdet

cur −
(

Nỹ − iỹ

)

(MT + 1) (4.9)
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with CCdet
cur being the elapsed cycles from the beginning of the current codeword de-

tection. In a multicore detector, this rule tends to overconstrain the tree search, since it

does not consider that the remaining
(

Nỹ − iỹ

)

vectors are shared among the different

SD instances. A possible solution to tackle the overconstraining issue is to correct the

factor
(

Nỹ − iỹ

)

in (4.9) to
(

Nỹ − iỹ

)

/Nsd to account for the parallelism. However,

this modification has the side effect of compromising the guarantee of meeting the

deadline. Therefore, the original rule (4.9) was used for investigating MF scheduling.

An alternative scheduling approach, which does not have to take the parallelism

degree into account, is to simply constrain a vector with the full remaining time before

the deadline, i.e.,

Nen,max

(

iỹ

)

= CCdet
max − CCdet

cur. (4.10)

This greedy policy does not ensure that all the received symbol vectors are detected,

possibly resulting in the last few vectors of the codeword to be completely skipped. In

the initial IDD iteration the LLRs corresponding to the skipped vectors are set to zero,

whereas in the later iterations they are updated according to rule (4.6), exploiting the

symbol-wise on-demand detection technique. It should be noted that in the presented

hardware implementation this operation takes one cycle per vector, thus introducing

a few additional cycles after the deadline equal to the number of skipped vectors.

The fundamental difference between the greedy schedule and the MF policy is in

the degradation of the LLR quality as time approaches the deadline: while the former

provides very reliable estimates for most bits and no information at all for a few of

them, the latter has a more graceful degradation from high to low reliability. As it

turns out, both techniques perform very similarly, with a small edge in favour of the

greedy algorithm, as shown in Figure 4.14. While the communication performance

of the unconstrained ideal multicore detector is preserved, the maximum cycle count

observed per iteration (bottom plot) is limited by the deadline to 2800 cycles and

hence reduced by more than 40 %.

Interestingly, despite this significant decrease in the observed maximum number

of cycles per iteration, the average runtime cumulated over all the IDD iterations CCdet
c

still sees a small gap, for the relevant operating points with BLER < 0.1, between the

ideal detector and the constrained scheduling algorithms, in favour of the former.

This effect is due to the slightly higher average number of IDD iterations that the

constrained system has to perform to compensate the error-rate degradation caused

by the introduction of a deadline. This observation points to the fact that for a given

target performance the total detection complexity stays the same, even if distributed

differently over the IDD iterations.

For the same reason, if the deadline is too tight, to the point of noticeably affect-

ing the communication performance, the average cumulated CCdet
c tends to further

increase instead of going down as the lower CCdet
max would suggest. In such a case, the

performance can be partially recovered by adjusting the detector soft constraints (i.e.,

Γ and the antenna-wise runtime constraint) as well, depending on the remaining time

before the deadline. The basic idea of this adaptive algorithm is to tighten the soft

constraints together with the hard runtime limit Nen,max. Figure 4.15 compares the



106 Chapter 4. MIMO Iterative Detection and Decoding Implementation

10−2

10−1

100
B
L
E
R

0

5000

10000

15000

av
g
.
to
t.
#c
y
cl
es

C
C
d
et

c ideal (no deadline)

CCdet
max = 2800 w. MF

CCdet
max = 2800 w. greedy

18 19 20 21 22

SNR [dB]

0

1000

2000

3000

4000

5000

m
ax

.
#c
y
cl
es

p
er

it
.
C
C
d
et

Figure 4.14: Performance and runtime comparison of MF and greedy policies with
a deadline of 2800 cycles and five SD cores (detector set to Γ = 1,
Nen,max = 1024 and an antenna-wise runtime constraint of [2, 3, 6, 64];
the code rate is 2/3 and selective IDD is applied with the settings spec-
ified in Section 4.1.2).

greedy algorithm with and without this adaptive extension for a deadline of 2000 cy-

cles, showing the performance improvement achieved at the cost of a slight runtime

increase.

In terms of hardware implementation, all the aforementioned scheduling tech-

niques do not entail a significant overhead. The individual runtime constraints for
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Figure 4.15: Performance and runtime comparison of the basic and adaptive greedy
policies with a deadline of 2000 cycles and five SD cores (detector set
to Γ = 1, Nen,max = 1024 and an antenna-wise runtime constraint of
[2, 3, 6, 64]; the code rate is 2/3 and selective IDD is applied with the
settings specified in Section 4.1.2).

each symbol vector can be easily computed by the SD cores when the corresponding

processing starts, according to (4.9) or (4.10).

In the remainder of this thesis, all results are based on the ideal scaling described

by (4.8) to avoid the number of test cases that need to be simulated becoming unfeasi-

ble. As shown in Figure 4.14, the imprecision introduced by this simplification in the

runtime measurement is very small.
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4.2.3 LDPC Decoder Architecture

The core architecture of the LDPC decoder used in this thesis and shown in Fig-

ure 4.16 was first introduced by C. Roth in [128] and [129]. This design is specialised

to decode the IEEE 802.11n LDPC codes [78], which are also utilised in the WiMAX

standard [79]. The structure and properties of these quasi-cyclic codes are described

in Section 2.3.1. In summary, three different sub-block sizes Z ∈ {27, 54, 81} and four

code rates R ∈ {1/2, 2/3, 3/4, 5/6} are supported. Each of these twelve possible

codes corresponds to a different matrix prototype Hp.

The basic computational entity of the decoder is the node computation unit (NCU),

which implements the message update according to the layered OMS algorithm intro-

duced in Section 2.3.1. Z parallel NCU instances are required to process one element

of the matrix Hp per cycle. To this end, first the corresponding Z LLR values are

read in parallel from the internal LLR memory and cyclically shifted by the value

specified in the Hp entry. Then, the NCU applies the OMS algorithm and stores the

new messages rc,v and the temporary updates for the variable nodes into dedicated

memories. Once all the columns in one row of Hp have been processed, the updated

LLRs λ
p
v = qv are written back to the internal LLR memory.

The schedule of the decoding process goes through the matrix Hp row by row, at

a rate of one element per cycle. To increase the throughput, the message update is

split into two phases, named MIN and SEL respectively; for details about the actual

steps included in these two phases the reader is referred to [128]. The MIN and

SEL operations can be computed in parallel within the NCUs. To minimise the data

dependencies, the MIN phase operates on the subsequent Hp row with respect to the

SEL step; the remaining dependencies are dealt with by stalling the MIN operation

when necessary.

The detailed schedule of these operations, which depends on the entries of Hp,

is optimised at design time to minimise the total cycle count by avoiding as many

dependencies as possible, possibly by processing the columns of Hp out of order. The

precomputed execution sequence is then loaded into a small memory located in the

control unit of the decoder and is simply stepped through sequentially at runtime.

By loading the proper schedule, the decoder can process any quasi-cyclic LDPC code

that fits into the available hardware resources.

The main challenge in the implementation of LDPC decoding is the design of

an efficient memory subsystem, since large amounts of data are frequently moved

to/from the computational units, which on the other hand involve rather simple com-

binational logic. This issue is first addressed by optimising the execution sequence

to reduce the memory accesses. Secondly, to achieve the required bandwidth while

keeping the power consumption low, all the memories are split into three banks,

which are selectively activated depending on the parameter Z currently in use. If

Z = 81 all the three banks are active whereas for Z = 54 and Z = 27 respectively

one and two banks are turned off by means of clock gating; the same technique is

applied to the NCUs. Furthermore, all the memories are standard-cell based [101]

so that the clock gating can be extended to the granularity of a single bit. Finally,
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Figure 4.16: LDPC decoder and writeback unit architecture.

sign-magnitude arithmetic is extensively used in the decoder to reduce the switching

activity and hence the power consumption.

Around this core architecture, a suitable interface was designed to fit the LDPC

decoder in the IDD receiver. The main issue that has to be considered at this level is

that the decoder computes the a posteriori LLRs λ
p,dec instead of the extrinsic LLRs

λ
e,dec required by the SD-based detector to optimise the communication performance.

For this reason, the shared LLR memory between the detector and the decoder is not

used to store intermediate decoding results, so that the a priori LLRs λ
a,dec are not

overwritten and can be used to compute the extrinsic LLRs λ
e,dec once the decoding is

complete. Therefore, in the initial decoding iteration the read operations requested by

the NCUs are redirected to the shared LLR memory to fetch the λ
a,dec values, while

the internal memories of the decoder are subsequently used to store temporary re-

sults. In the last iteration, the a posteriori LLRs output by the NCUs are picked up by

the LDPC writeback unit. This component, also shown in Figure 4.16, first undoes the

cyclic shift introduced at the input of the NCUs and requests the corresponding a pri-

ori LLRs λ
a,dec from the shared LLR memory. In the following two clock cycles, the

extrinsic LLRs are first computed by subtracting λ
a,dec from λ

p,dec and then written

back to the shared LLR memory.

Although not shown in Figure 4.16 for simplicity, the LDPC writeback unit also

takes care of most operations related to selective IDD (see Section 4.1.2). Each a pos-

teriori LLR output by the decoder is compared with the threshold Λp set for symbol-

wise on-demand detection and the single-bit result is stored in a dedicated memory.

The signs of the a priori LLRs λ
a,dec, which are the old extrinsic LLRs λ

e,det
old from the
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detector point of view, are also saved in a separate memory before being overwritten

by the new extrinsic LLRs λ
e,dec computed by the decoder. Later on, the detector reads

the result of the comparison for all the bits belonging to the symbol vector that is cur-

rently being processed. If condition (4.5) is verified, SD is not applied to the symbol

vector and the new LLRs are computed according to (4.6) and output after a single cy-

cle. Therefore, the hardware costs of symbol-wise on-demand detection amount to Z

5 bit comparators in the LDPC-writeback unit and two memories of 1944 bits (i.e., the

maximum Nc specified by the IEEE 802.11n LDPC codes [78]) each, which represent

a small area overhead in the context of the MIMO IDD receiver.

4.2.4 Shared LLR Memory Architecture

The data exchange between the detector and the decoder takes advantage of a spe-

cialised shared LLR memory, split into two independent blocks Cwa and Cwb corre-

sponding to the two codewords that are processed concurrently. Since Cwa and Cwb

are never accessed at the same time by both PEs, each of them has only one read and

one write port, shared by the two PEs by means of time multiplexing.

The key design challenge in the shared LLR memory is that the two PEs work

with entirely different and unrelated basic data units and access patterns, originating

significant alignment issues. In particular, the decoder transfers vectors of Z LLRs,

while the detector operates on sets of MTQ LLRs. To further complicate matters,

all the parameters Z, MT and Q are runtime configurable, resulting in a total of 27

possible setups. Moreover, the detector and the decoder LLR vector sizes, i.e., MTQ

and Z respectively, are not generally integer multiples of each other.

The maximum bandwidth requirement is set by the LDPC decoder, since the

smallest Z = 27 is larger than the biggest MTQ = 24 (for a 4 × 4 64-QAM setup).

Since the main design goal of the shared LLR memory is to avoid slowing down the

two PEs, Cwa and Cwb are structured to serve the maximum throughput needed by

the decoder. To this end, the three-banked organisation of the decoder internal LLR

memory is reused, each bank with a word width of 27 LLRs and a total of Np = 24

words. For Z = 27 all the LLRs are stored in the first bank. For Z = 54 and Z = 81

the LLRs fill respectively two and three banks, whose words are combined together to

satisfy the requirements. For Z < 81, the unused banks are turned off by clock gating

to save power. Some examples of how the decoder accesses the memory for different

values of Z can be found in Figure 4.17. Due to the matching structure between the

shared and the internal LLR memories, no alignment issues arise from the decoder

accesses.

From the decoder standpoint, the requirement in terms of ports is determined by

the writeback phase, during which the LDPC writeback unit reads a vector of a priori

LLRs from the memory and simultaneously writes the resulting extrinsic LLRs at a

different address. Therefore, two separate access ports, respectively read-only and

write-only, are sufficient. Since by design no conflict between the read and the write

accesses can occur, the memory does not have to handle this special case.
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Figure 4.17: Structure of the shared LLR memory and sample access patterns by the
detector and the decoder.

Conceptually, the same port requirement applies on the detector side, since in the

worst case the collector writes back one LLR vector while the dispatcher is loading a

different one. However, since the configurable LLR vector size MTQ is not generally

an integer divisor of the memory word width of Z LLRs, severe alignment issues arise,

as shown by the detector sample accesses in Figure 4.17 as well as by the example in

Figure 4.18, which depicts the distribution of the LLRs belonging to the received

symbol vectors within the first bank for a 4 × 4 64-QAM setup with Z = 27.

Furthermore, the LLRs associated to one symbol vector are often spread not only

across two different banks but also across two different memory words. For Z = 54

and Z = 81 this results into different word addresses being input to different memory

banks. On the other hand, for Z = 27 a multiple-word access involves two distinct

words of the same bank, namely the first one, as shown by Figure 4.18. Satisfying

the requirement of one LLR vector per cycle with this kind of access would normally
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Figure 4.18: Example of how the LLRs associated to the detected symbol vectors
are distributed in the first bank of the shared LLR memory for a 4 × 4
64-QAM setup with Z = 27 (the indices of the symbols λe on the left-
hand side denote the position of the corresponding bit within the code-
word).

mean adding one read and one write port to the first bank. This straightforward

solution roughly doubles the area of the bank, both for an SRAM macrocell and for a

standard cell-based approach. The latter, however, enables the designer to customise

the internal structure of the memory bank and thus take advantage of the properties

of the specific use case.

Therefore, the standard cell-based memory approach [101] used for the LDPC

decoder and exploiting latches was applied to the shared LLR memory as well. The

second and third memory banks are designed according to the schematic shown in

Figure 4.19. This architecture extends the one presented in [101] with the support for

an LLR-wise write mask. The additional feature is required since only a subset of

the LLRs which belong to the same memory word are written by the detector in each

access, as visualised by Figure 4.17.
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Figure 4.19: Latch-based memory architecture with one read and one write port,
each accessing a single word of 27 LLRs, used for the second and third
banks of the shared LLR memory.

This single-word access architecture used for the second and third banks is not

suitable for the first bank, which has to support simultaneous double-word access.

Such a capability can be efficiently implemented by observing Figure 4.18, which

shows how the LLR vectors are distributed in the first bank for a 4× 4 64-QAM setup

with Z = 27. It can be seen that, even if an access is spread across two words, each

column of the memory is only involved at most once, since the maximum detector

vector size of 24 LLRs is smaller than the bank width of 27 LLRs. In other words,

only one cell per column has to be read/written in each cycle, although not all the

cells are necessarily on the same row. As a consequence, the overhead can be lim-

ited to the address decoding logic, avoiding the expensive multiplexers on the data

inputs and outputs that would be necessary to implement two additional ports for a

full double-word access. The proposed solution, shown in Figure 4.20, extends the
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Figure 4.20: Latch-based memory architecture with one read and one write port,
each accessing multiple words combining for a total of 27 LLRs, used
for the first bank of the shared LLR memory.

basic memory architecture used for the second and third bank (Figure 4.19) to sup-

port a different read and write address for each column4. Although this approach

requires a dedicated write-address one-hot decoder for each column instead of a sin-

gle global one, the overhead is small, with an increase of the total gate-level area of

the memory bank by only 12 % with respect to the single-word access memory shown

in Figure 4.19. This solution, which in fact still has one read and one write port, is

therefore significantly more efficient than a straightforward extension with twice as

many ports, which nearly doubles the total area.

While the described memory architecture can deal with read/write operations

involving multiple words, the alignment issue for the detector accesses remains open.

This is addressed by first introducing an LLR address generation unit (LLR AGU) to

4 The clock-gating cell in Figures 4.19 and 4.20 latches the enable signal when the clock is high and
outputs a logic ‘1’ when the enable is low (see [101]).



4.2. VLSI Architecture 115

compute the memory word(s) involved in the access and the displacement of the MTQ

LLR vector within the word. This calculation depends on the index iỹ which identifies

the symbol vector within the codeword and on runtime-configurable parameters such

as MT, Q and Z. The auxiliary variables m = 0, ..., 1944 − 1 and n = 0, ..., 1944 − 1

(where 1944 is the maximum codeword length defined for the IEEE 802.11n LDPC

codes and supported by the receiver), which correspond respectively to the start and

end positions of the current LLR vector within the codeword, are first defined as:

m = MTQ(iỹ − 1) (4.11)

and:

n = m + MTQ − 1. (4.12)

Then, the word address of the first LLR in the vector that needs to be accessed is

computed as:

Addrstart = floor (m/Z) (4.13)

while the word address of the last LLR is:

Addrend = floor (n/Z) . (4.14)

Finally, the displacement within the word is computed as:

Offset = m mod Z. (4.15)

The division and modulo operations, which are very expensive in hardware, are

avoided by comparing m with the address ranges corresponding to all possible mem-

ory words; since there are only 24 possible words this solution is rather cheap. Once

Addrstart is available in this way, Addrend and Offset can be easily derived.

Subsequently, a cyclic shifter aligns the LLR vector properly based on the displace-

ment Offset. A barrel shifter could be used to this end, at high hardware implemen-

tation costs since five 81 bit barrel shifters would have to be deployed, one for each bit

of the fixed-point LLR format.

A more efficient solution is to realise the required functionality as the combination

of two non-cyclic shifters, respectively 24 bit and 81 bit wide, instantiated five times

to process the complete LLRs. The outputs of the two shifters are then combined

to form the requested data word. The resulting cyclic-shift architecture needs to be

instantiated twice, with a few small modifications, to deal with the simultaneous read

and write accesses.

Figure 4.21 shows the architecture of the double cyclic shifter distinguishing the

write (on the left-hand side) and the read (on the right-hand side) operations. More-

over, the figure includes an example to illustrate how the hardware unit works, cor-

responding to an access spread across two memory words. It should be noted that

this use case sets the requirement for a cyclic shifter, whereas the accesses involving

a single memory word could be dealt with by a single unidirectional shifter.
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Figure 4.21: Architecture of the cyclic shifter which aligns the write (left-hand side)
and read (right-hand side) accesses of the MIMO detector to the shared
LLR memory.

The unit combining the aforementioned LLR AGU and the cyclic shifters com-

putes all the address and data information required for the read/write accesses of the

detector to the shared LLR memory. By doing so, this unit hides the internal structure

of the memory, making it independent from the detector, and sustains the throughput

of one read and one written LLR vector per cycle which ensures that at high SNR the

detector is not slowed down by the memory accesses. Even though the internal struc-

ture of the combined AGU/alignment unit is rather complex, no internal pipelining

is required to achieve the detector clock frequency, which is limited by the relatively

long critical path of the SD cores.

4.2.4.1 Clock Domain Switching

While the architecture of the system is complete with the shared memory subsystem

herein introduced, one last implementation issue remains to be solved. As mentioned

in Section 4.2.1, the two memory blocks Cwa and Cwb have to interface with two

different clock domains, defined by the detector and the decoder respectively, and

switch between them at the end of every iteration.
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Figure 4.22: Clock switching circuit for the shared LLR memory blocks.

A first solution would be setting the memory clock to the faster of the two and

adding a synchronisation interface to the slower clock domain. However, such an

interface typically introduces some extra latency, especially given the non-integer ra-

tio between the two clock frequencies, resulting in an undesired overhead on every

memory access. Furthermore, with this approach the memory would always work at

the faster frequency, thus wasting power.

A more efficient alternative, implemented in this design, is to switch the complete

memory block to the clock of the PE that is currently accessing it. In other words,

if Cwa is connected to the detector it is clocked by the detector clock signal, while

Cwb interfaces with the decoder and hence works on its clock. At the end of the IDD

iteration, the crossbar interconnections between the two PEs and the two memory

blocks are swapped, as are the clock signals of Cwa and Cwb.

The circuit depicted in Figure 4.22 is used to realise the proposed switching

scheme by selecting the proper clock signal. A control unit ensures that the sig-

nals selecting the memory block connected to each PE (respectively, CwSeldet and

CwSeldec) are complementary and only toggle when both PEs have finished process-

ing, i.e., when both signals Runningdet and Runningdec are low and hence the clock

inputs of both Cwa and Cwb are switched off. This approach guarantees the absence

of glitches in the clock signals fed to the memory and confines the synchronisation

latency to a few cycles around each switching event, which only occurs once in each

IDD iteration.
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4.3 Silicon Implementation Results

The MIMO IDD architecture described in the previous sections was implemented in

a 65 nm low-power CMOS technology. The fabricated chip is shown in Figure 4.23

and occupies a total core area of 2.78 mm2, corresponding to 1.58 MGE. The detector

includes five SD cores and clock gating can be individually applied to each of them

to save power when the total throughput exceeds the requirements at high SNR.

The area occupied by the MIMO detector amounts to 55 % of the total, i.e., 872 kGE.

Each SD core takes between 140 kGE and 145 kGE, while the other main detector units

are the input memory with 70 kGE, the collector and LLR correction unit with 23 kGE

and the AGU/alignment unit described in Section 4.2.4 with 23 kGE. The area of the

SD cores is reduced by more than 30 % with respect to the Caesar implementation

described in Chapter 3. As mentioned in Section 4.1, this decrease mainly stems from

the optimisation of the fixed-point word lengths allowed by the LDPC decoder; a

complete list of the fixed-point formats used in this implementation can be found in

Tables 4.1 and 4.2 for the detector and the decoder respectively. The LDPC decoder

together with the LDPC writeback unit occupies 447 kGE, corresponding to 28 % of

the total core area, while the shared LLR memory takes 210 kGE, i.e., 13 %.

The maximum clock frequencies were measured independently for the two PEs.

At the nominal supply voltage of 1.2 V, the detector achieves 135 MHz. This measure-

ment is 20 % lower than the post-layout estimation of 169 MHz as a consequence of

the IR drop caused by the lack of power supply pads on one side of the chip. The

absence of I/O pads on the right-hand side of the ASIC (see Figure 4.23) is necessary

to fit the design in the area constraint imposed by the MPW run [48] used for the

fabrication. When the maximum frequency of the detector is measured with only one

of the cores active, the result matches the post-layout estimation since the IR becomes

negligible. This issue does not affect the LDPC decoder, which can be clocked up

to 299 MHz. It can be noted that, due to the low-power option chosen for the 65 nm

CMOS technology employed for the IteRX design, both PEs achieve a slightly lower

maximum frequency than their respective implementations [33] and [129] in 90 nm

standard-performance CMOS technology.

As discussed in Section 4.2.2.2, the exact throughput of the multicore detector

depends on the deadline set for the task and on the scheduling policy. For simplicity,

in the following the average information throughput of the detector is defined, based

on the ideal cycle count from (4.8), as:

Θdet =
Ni fmax,det

E

[

CCdet
c, ideal

] =
Ni fmax,detNsd

E

[

∑Nỹ

iỹ=1

(

Nen,c

(

iỹ

)

+ Iidd

)

] . (4.16)

The cycle count of the LDPC decoder for one IDD iteration, on the other hand,

can be exactly specified as:

CCdec = 28 + CCdec
it Idec (4.17)
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Figure 4.23: IteRX chip micrograph.

where the term 28 accounts for the initialisation of the decoder, CCdec
it varies between

80 and 92 depending on Z and R and Idec is the number of internal LDPC iterations.

If the early termination mechanism based on the success of several consecutive parity

checks is used (see Section 4.1.2.2), Np = 24 additional cycles are required for writing

back the output LLRs to the shared memory. Otherwise, if Idec is fixed a priori this

operation is performed concurrently to the last LDPC iteration. Based on (4.17), the

information throughput of the decoder can be defined as:

Θdec =
Ni fmax,dec

CCdec Iidd
=

Ni fmax,dec
(

28 + CCdec
it Idec

)

Iidd

. (4.18)

The exact numbers depend on multiple parameters related to the chosen LDPC

code and to the operating point. However, both PEs are capable of information

throughputs above 1 Gbit/s. The proposed receiver implementation, designed as a

proof of concept of MIMO IDD processing, is therefore capable of dealing with the

requirements of modern communication standards.
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value Re{Ri,j}, Im{Ri,j} Re{ỹi}, Im{ỹi} MP,MC,MA λa
i,b, λ

p
i,b, λe

i,b

signed yes yes no yes

format a 3.6 6.4 10.6 4.0

a The format Int.Frac corresponds to Int integer and Frac fractional bits; the sign bit is not included
and hence needs to be added if the format is signed.

Table 4.1: Fixed-point word lengths used in the IteRX MIMO detector.

value qv rc,v β λa
i,b, λ

p
i,b, λe

i,b

signed yes yes no yes

format a 4.0 4.0 3.0 4.0

a The format Int.Frac corresponds to Int integer and Frac fractional bits; the sign bit is not included
and hence needs to be added if the format is signed.

Table 4.2: Fixed-point word lengths used in the IteRX LDPC decoder.

The next sections discuss the power consumption of the prototype and the cor-

responding model and then present the area and energy efficiency characteristics in

different communication setups.

4.3.1 Power Consumption Model

A complex design that supports multiple modes of operation and setup parameters,

such as the IteRX chip, requires extensive power measurements to characterise its

behaviour accurately. A single value is not sufficient when the power consumption

can vary by tens or even hundreds of mW depending on the test case. A power

consumption model of the IteRX chip was derived from the post-silicon measurements

on nearly 50 000 different codewords, describing the dependency of power on the

different communication and setup parameters. This model is the basis to derive the

energy efficiency characteristics presented in Section 4.3.2 and in Chapter 5.

The detector and the decoder are influenced by different parameters, particularly

because they process the data in units of different granularity: received symbol vec-

tors for the MIMO detector and codewords of bits for the LDPC decoder. For instance,

the modulation scheme and the number of antennae significantly impact the detec-

tion effort and power, but they are transparent to the decoding process. Similarly,

the length of the codeword is a major factor in determining the decoder power con-

sumption but from the detector perspective its influence is negligible5. Moreover, the

5 This observation is true for the power consumption but not for the runtime and hence the energy
consumption of the detector.
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two PEs have different runtime constraints which can be set independently, such as

the LLR clipping value for the detector and the number of internal iterations for the

decoder.

In order to separate and identify the power contributions of the two PEs, the IteRX

chip supports two specific modes of execution besides the normal operation:

• MIMO detection-only “infinite” loop: detection is performed endlessly on the same

set of received symbol vectors, belonging to one codeword; the decoder is shut

down by clock gating.

• LDPC decoding-only “infinite” loop: the same codeword is decoded repeatedly

while the detector clock is gated off.

These special test modes ensure that there is no dynamic power consumption by

other components than the one of interest and that the uncertainty of the measure-

ment is minimised by averaging over many executions of the same task.

From the design point of view, additional read/write access to the shared LLR

memory from the outside is required so that the input LLRs can be loaded at the

beginning and the results can be read out at the end for verification purposes. Since

these accesses happen at different times with respect to the normal operating mode,

the external I/O operations are multiplexed over the existing memory ports, avoid-

ing the introduction of additional ones. Moreover, the power measurements are not

affected by these I/O operations since they are not part of the execution loop. On the

contrary, the shared LLR memory accesses by the detector and the decoder at runtime

are included in the respective measurements. Since the two components only access

one codeword in the memory at a time, it is possible to compute the total dynamic

power of the chip simply as the sum of the detector and the decoder contributions.

The following sections describe in more detail how the dynamic power model

is extrapolated for both the detector and the decoder and summarised as a set of

multidimensional tables, shown in Appendix A.

As for the static power consumption, the chip dissipates 726 µW at the nominal

supply voltage of 1.2 V. This contribution is added to the dynamic power to obtain

the total power consumption of the IteRX chip.

4.3.1.1 MIMO Detector Contribution

A power consumption model was introduced in Section 3.2.1 for the silicon implemen-

tation of sphere decoding as a stand-alone block. The different technology, fixed-point

word lengths and multicore architecture of the IteRX chip make a direct comparison

of the measurements difficult. However, the same trends observed for the Caesar chip

still apply for the IteRX multicore detector and hence they are briefly summarised.

The main factors influencing the sphere decoder power consumption are on the

one hand the extent to which the width of the inner arithmetic units is exploited

and on the other hand the frequency of tree-level changes. These two factors mainly

depend on the number of antennae, the modulation order, the presence of a priori

information and the LLR clipping value. For instance, a small constellation does
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not fully utilise the numeric precision of the computational units but results in more

frequent jumps across the search tree than a high-order modulation. A similar ob-

servation applies to the number of MIMO streams. Therefore, a setup with a large

constellation and a high MT does not necessarily consume more power than one with

a lower number of bits per symbol vector.

Unlike the modulation and the number of antennae, the presence of soft input

and the LLR clipping value have a univocal effect on the power. In the second and

later IDD iterations, the power consumption is always higher than in the first one due

to the additional soft input which requires a full utilisation of the internal fixed-point

ranges. As for clipping, a tight constraint results in more frequent tree-level changes

than a loose one, without significantly affecting the exploitation of the fixed-point

ranges. Therefore, the power consumption increases as the clipping gets tighter.

These observations are in agreement with the measurement campaign performed

on the Caesar chip. In the previous case, described in Section 3.2.1, a power model

was derived in the form of mathematical formulae by running a regression analysis

on the measured data. For the IteRX design, to further improve the precision of the

model, equations are replaced by look-up tables containing the average power con-

sumption for every combination of the parameters of interest, namely MT, Q, iidd

and Γ. These tables are shown in Appendix A and contain values ranging between

104 mW and 243 mW. Each entry corresponds to a measurement averaged over sev-

eral codewords, with the exception of odd clipping values: these points are obtained

by linearly interpolating the measurements for the two closest clipping values. For

instance, for a given combination of MT, Q and iidd, the power for Γ = 1 is computed

as the mean between the measurements for Γ = 0 and Γ = 2. This solution was

adopted to reduce the required number of measurement runs.

Finally, there is an obvious linear dependency of the power on the number of

active SD cores. Performing the same measurements while turning off a variable

number of SD cores by clock gating allows the quantification of the constant off-

set associated to the Nsd-independent I/O tasks, which amounts to 20 mW at the

nominal supply voltage of 1.2 V and the maximum frequency of 135 MHz. Since

the Nsd-dependent term of the power consumption increases linearly, isolating this

constant offset enables the extension of the model to designs with Nsd 6= 5 with rea-

sonable reliability, as shown later in Chapter 5.

4.3.1.2 LDPC Decoder Contribution

The main goal of the LDPC decoder measurements is to identify the dependency of

the power consumption on the LDPC-related parameters. All possible combinations

of sub-block sizes Z ∈ {27, 54, 81} and code rates R ∈ {1/2, 2/3, 3/4, 5/6} were

tested, each one at different SNRs and for different numbers of LDPC and IDD itera-

tions. For each test case, 30 distinct codewords resulting from the detection of 4 × 4

64-QAM symbols were used as input data and tested separately to have a reliable

average power measurement.
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The most relevant factor in determining the decoder power consumption is the

sub-block size Z. As described in Section 4.2.3, the decoder architecture is designed

to save power whenever the codeword is shorter than the maximum, i.e., when Z

is either 27 or 54, by gating off the units which are not used. In this way, stepping

from Z = 81 to Z = 54 saves roughly 25 mW and moving further to Z = 27 saves an

additional 30 mW.

On the other hand, the range of the power consumption variation due to different

code rates is limited to a few mW. For the sake of a better accuracy, the code rate R

is anyway considered as an input variable in determining the decoder consumption

in the later analysis in Chapter 5, which employs Tables A.4, A.5 and A.6 shown in

Appendix A. Overall, the decoder ranges between 74 mW and 137 mW at the nominal

supply voltage of 1.2 V and the maximum frequency of 299 MHz.

Other parameters, namely the SNR and the numbers of LDPC and IDD iterations,

have an even weaker impact on the power consumption. An increasing SNR or num-

ber of IDD iterations leads to a slightly reduced power. This behaviour can be directly

related to the convergence of the decoding process to the correct solution: when the

input LLRs are accurate due to favourable channel conditions or to a high detec-

tion/decoding effort, the codeword can be decoded quickly and hence the switching

activity in the decoder is lower, particularly in the memory accesses. However, the

variations are not sufficient to justify the inclusion of these parameters in the power

consumption model.

4.3.1.3 Power Consumption Cross Effects Between Detector and Decoder

The discussion conducted in Sections 4.3.1.1 and 4.3.1.2 showed the dependencies of

the power consumption of the two PEs on the respective related parameters. Ad-

ditionally, a specific set of measurements was performed to identify possible cross

effects between the MIMO detector and the LDPC decoder.

First of all, no significant correlation was observed between the power consump-

tion of the detector and the parameters that relate to the LDPC decoder, such as the

codeword length, the code rate and the number of LDPC iterations.

As for the decoder, the measurements show a weak dependency of its power

consumption on the detector configuration. The power slightly decreases when the

runtime constraints on the detector are loose, hence enabling a more accurate compu-

tation of the LLRs which are fed to the decoder. The explanation of this behaviour is

the same given in Section 4.3.1.2 in regard to the dependency of the decoder power

consumption on the SNR and on the number of IDD iterations. More accurate input

LLRs lead to a faster convergence and hence to a reduced switching activity in the

decoder. Even though this trend is visible, the range of variation of the power due

to the detector configuration is relatively small. Aside from requiring a very high

number of measurement runs, separating the single effects would lead to an overly

complex power model in spite of only a small accuracy improvement. Therefore, the

final power model of the decoder, summarised in Appendix A, is averaged over the

detector-related parameters.
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4.3.1.4 Voltage and Frequency Scaling

One of the most popular techniques to reduce power consumption is voltage scaling.

Due to the quadratic dependency of the dynamic power on the supply voltage, sig-

nificant savings can be achieved in this way. Downscaling the supply voltage also

affects the delays in the circuit, which depend on Vdd
(Vdd−Vth)2 [40]. If Vdd ≫ Vth, the re-

lationship between the maximum frequency that the circuit can operate at and Vdd is

approximately linear. This observation is confirmed by the measurements performed

on the IteRX chip for 0.95 V ≤ Vdd ≤ 1.40 V (with a step of 0.05 V), as shown by the top

plot in Figure 4.24. In this supply voltage interval, which is relatively far from Vth for

the technology under consideration, the following equations apply for the maximum

achievable frequencies of the MIMO detector and the LDPC decoder:

fmax,det ≈ 250.28α− 114.50 [MHz] (4.19)

fmax,dec ≈ 553.53α− 256.70 [MHz] (4.20)

with α = Vdd
Vdd,n

and nominal supply voltage Vdd,n = 1.20 V.

Under the assumption that the design always works at its maximum frequency,

scaling the voltage by α scales the operating frequency of both the detector and the

decoder by a factor ν ≈ 1.85α− 0.85. As a result, the dynamic power consumption

is scaled by να2 (∝ α
3). This behaviour, which is well known from the literature, was

observed also in the measurements performed on the IteRX chip.

On the contrary, modelling the dependency of the leakage power on the supply

voltage is not straightforward. The static power consumption results from the sum

of several contributions which highly depend on technological and transistor-level

design parameters [130]. As shown by the bottom plot in Figure 4.24, measurements

for 0.95 V ≤ Vdd ≤ 1.40 V show a quadratic increase of the leakage current with the

supply voltage, well approximated by:

Is ≈ 15.6771α2 − 25.3807α+ 10.3485 [mA] . (4.21)

This behaviour is due to physical effects such as drain-induced barrier lowering

(DIBL), which mostly determine the leakage in short-channel devices when Vdd ≫ Vth.

Overall the static power consumption is hence proportional to α
3.

Since the execution time for a certain task scales by a factor ν−1, the energy, which

is the most relevant quantity for battery-operated mobile devices and corresponds to

a power-delay product, can be reduced quadratically by decreasing Vdd. Dynamic

energy consumption is most often the dominating contribution. However, if the de-

sign is heavily underutilised (i.e., it completes its task much faster than required and

then becomes inactive) and Vdd cannot be decreased further to take advantage of this,

static energy comes into play and determines a lower bound for the overall energy

consumption. Even though this particular use case is not in the main interest of this

thesis, commercial devices need to tackle this issue by using low-power technologies

as well as specific design techniques, such as power gating [130].
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Figure 4.24: Dependency of the maximum detector and decoder frequencies and of
the chip static current on the supply voltage (the markers identify the
measurements whereas the lines show the interpolated trends).

4.3.2 Area and Energy Efficiency Characteristics

The many configuration parameters of the IteRX design make it impossible to sum-

marise the performance of the implementation in a single number. Therefore, the

same approach followed for the MIMO detector presented in Chapter 3 is applied

here to extract the area and energy efficiency characteristics of the proposed IDD

receiver over SNR.

In each SNR operating point, the receiver configuration is chosen that yields the

highest goodput or, in case of comparable goodput values, the highest energy effi-

ciency. The goodput is herein defined as:

Giterx = min {Θdet, Θdec} (1 − BLER) . (4.22)

This selection process only optimises over the receiver configuration parameters, such

as the runtime constraints of the detector, the number of inner iterations of the de-
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coder and the number of IDD iterations. However, the optimisation can be extended

to the overall setup of the communication system, for instance in terms of modulation

scheme and code rate. Such an extension is the subject of Chapter 5, while this section

strictly focuses on the IDD receiver implementation.

Figures 4.25, 4.26 and 4.27 show the area and energy efficiency characteristics of

the IteRX design for all the supported modulation schemes, i.e., 64, 16 and 4 QAM

respectively, and code rates. Each figure is completed by a third plot depicting the av-

erage number of IDD iterations to identify the low-SNR region where IDD processing

becomes necessary. All the efficiency curves show an initial roughly linear increase

when moving away from the capacity limit towards better channel conditions, tending

to saturate to their maximum in the high-SNR regime.

The computation of 4.22 and of the efficiency characteristics requires the know-

ledge of the communication performance of the system in terms of BLER, which is

obtained by simulations. It should be noted that among the many possible receiver

configurations (e.g., in terms of detector runtime constraints) 20 of them were selected

and simulated for each curve, in order to have a feasible total simulation time. In some

cases, the difference between the “best” configuration and all the others is quite large,

resulting in relatively large steps in the plotted curves. For instance, the mode with

the tightest detection constraints is significantly more efficient than the others but can

only be used at a very high SNR, where its BLER becomes negligible. This is the rea-

son why many curves present a large step at high SNR. Smoother transitions could

be obtained by extending the subset of simulated receiver settings.

As expected, crossing points can be identified where one communication setup,

in terms of modulation scheme and code rate, becomes more efficient than the oth-

ers. The crossing points identifiable in the area efficiency plot are generally different

from those defined by the energy efficiency curves, originating an interesting trade-

off between the two metrics. The corresponding discussion is however postponed

to Chapter 5 since it requires additional considerations which involve the complete

communication system.

Within the receiver, it is interesting to observe how the two PEs influence the

overall efficiency. The upper plot in Figure 4.28 shows the individual information

throughput of the detector and of the decoder for the case of a 4 × 4 64-QAM setup

with code rate 2/3, corresponding to the red curves in Figure 4.25. In the low-SNR re-

gion where IDD iterations are necessary, the MIMO detector limits the overall system

goodput due to its information throughput, which is one order of magnitude lower

than the decoder throughput at the lowest achievable SNR of 18 dB and roughly five

times lower between 19 dB and 21 dB. Similarly, at low SNR the energy consumption

is dominated by the detector, which consumes 70 % to 95 % (at the lowest SNR of

18 dB) of the total energy spent in the MIMO IDD receiver, as shown in the lower plot

of Figure 4.28.

The situation changes around the 23 dB mark, where the average number of IDD

iterations tends to one (see Figure 4.25). From this point on, the detector and the

decoder have similar throughput figures, thereby achieving a good matching and a



4.3. Silicon Implementation Results 127

0

1

2

3

4

5

6

en
er
g
y
ef
fi
ci
en

cy
[b
it
/
n
J]

15 20 25 30 35 40 45

SNR [dB]

0

1

2

3

4

5

6

av
g
.
#I
D
D

it
s.

0

200

400

600

800

1000

1200
ar
ea

ef
fi
ci
en

cy
[b
it
/
s/

G
E
]

4× 4, 64 QAM

R = 1/2

R = 2/3

R = 3/4

R = 5/6

Figure 4.25: Area and energy efficiency curves for a 4 × 4 64-QAM setup and differ-
ent code rates.



128 Chapter 4. MIMO Iterative Detection and Decoding Implementation

0

1

2

3

4

en
er
g
y
ef
fi
ci
en

cy
[b
it
/
n
J]

10 15 20 25 30

SNR [dB]

0

1

2

3

4

5

6

av
g
.
#I
D
D

it
s.

0

100

200

300

400

500

600

700

800
ar
ea

ef
fi
ci
en

cy
[b
it
/
s/

G
E
]

4× 4, 16 QAM

R = 1/2

R = 2/3

R = 3/4

R = 5/6

Figure 4.26: Area and energy efficiency curves for a 4 × 4 16-QAM setup and differ-
ent code rates.



4.3. Silicon Implementation Results 129

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

en
er
g
y
ef
fi
ci
en

cy
[b
it
/
n
J]

5 10 15 20 25 30

SNR [dB]

0

1

2

3

4

5

6

av
g
.
#I
D
D

it
s.

0

100

200

300

400

500

ar
ea

ef
fi
ci
en

cy
[b
it
/
s/

G
E
]

4× 4, 4 QAM

R = 1/2

R = 2/3

R = 3/4

R = 5/6

Figure 4.27: Area and energy efficiency curves for a 4× 4 4-QAM setup and different
code rates.



130 Chapter 4. MIMO Iterative Detection and Decoding Implementation

20 25 30 35 40

SNR [dB]

0

20

40

60

80

100

d
y
n
.
en

er
g
y
b
al
an

ce
[%

]

0

500

1000

1500

2000
co
d
ed

th
ro
u
g
h
p
u
t
[M

b
it
/
s]

MIMO detector

LDPC decoder

system goodput

Figure 4.28: Coded (i.e., information) throughput and energy contribution in % of
the two PEs (4 × 4 64-QAM setup with code rate 2/3).

highly efficient utilisation of both PEs. In this regime, the energy consumption is

more evenly distributed, with a slight prevalence of the detector at 60 %.

An important observation can be made around the 40 dB mark. From this point

on, the detector is constrained to its minimum runtime of (MT + 1) cycles per symbol

vector, thereby achieving its maximum throughput, as shown by the upper plot in

Figure 4.28. However, this results in a poorer communication performance, which has

to be compensated by the decoder by increasing the number of LDPC iterations. For

this reason, at 40 dB the decoder throughput slightly decreases with respect to the

lower SNR points. This compensation mechanism is an additional demonstration of

the necessity of evaluating the two PEs in a joint manner. In fact, a separate analysis

might lead to erroneous considerations. For instance, by neglecting how the detector

performance affects the decoder, it could be concluded that the detector can switch to

its maximum throughput mode at a lower SNR than observed in Figure 4.28, which

would not be the optimal strategy to maximise the overall receiver goodput.
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Since the throughput of the IDD receiver is determined by the slowest PE, addi-

tional energy savings could be achieved by applying voltage scaling to the PE that

works at the highest throughput in the given operating point. However, this solution

requires two separate power domains for the detector and the decoder and interfacing

them with the shared LLR memory; this extension is left to future developments.

The behaviour observed in Figure 4.28, with a detector-dominated low-SNR re-

gion and a matched-system high-SNR region, occurs for other code rates as well. For

lower-order modulations than 64 QAM, however, the detector throughput decreases

correspondingly by up to a factor Q/6. This observation can be better understood

by considering the minimum SD runtime, which equals to (MT + 1) cycles indepen-

dently of the modulation. Even though a symbol vector requires the same runtime,

a lower-order modulation has fewer bits per vector, resulting in a lower throughput.

The decoder, on the other hand, is not affected. Therefore, the detector tends to be-

come the determining factor for the system goodput across the complete SNR range.

4.4 Comparison to State of the Art

Besides the IteRX design, only one other implementation has been recently reported

in the literature which supports MIMO IDD. The SDR platform described in [116]

includes specialised cores for MIMO detection and channel decoding which can per-

form iterations. The detector is based on the tuple-search algorithm and architecture

presented in [19] and already mentioned in Sections 2.2.2 and 3.3.1. The decoder is

a flexible core which supports convolutional, turbo and LDPC codes and was previ-

ously used for the non-iterative baseband receiver presented in [168].

Only few figures of merit are reported in [116] for the two stand-alone PEs, with-

out a joint analysis of the baseband receiver in terms of communication performance

and hardware efficiency. Furthermore, the scenario and the SNR operating points in

which the individual results were obtained are not completely specified. Therefore,

a comprehensive comparison with the IteRX implementation is unfeasible. As ex-

plained in Section 3.3.1 in regard to MIMO detection, a fair alternative in the absence

of a consistent communication performance characterisation is to observe the imple-

mentations at high SNR without IDD iterations (Iidd = 1), where the error rate is low

enough to be neglected. In this scenario, the designs reach their peak throughput

and hence efficiency. Unfortunately, such a comparison does not show the differ-

ent performance gains enabled by the different algorithms at low SNR. For instance,

the receiver from [116] employs a suboptimal detector and a decoder that supports

shorter codeword lengths than the IteRX design. As a consequence, a performance

gap is expected between the two implementations, which the one from [116] could

partially decrease by resorting to a higher number of IDD iterations, at the cost of a

reduced efficiency.

Table 4.3 shows the results of the peak efficiency comparison. In [116] the highest

channel decoder throughput is reported when using an LDPC code with ten internal

decoder iterations. The same setup is therefore chosen for computing the efficiency
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This thesis [116]

CMOS technology [nm] 65 65

variant low leakage low leakage

supply voltage [V] 1.2 1.2

area [mm2] 2.78 1.68

de
te

ct
or

algorithm STS SD tuple search

performance max-log MAP suboptimal

antennae ≤ 4 × 4 ≤ 4 × 4

modulation ≤ 64 ≤ 64

maximum frequency [MHz] 135 445

de
co

de
r

codes LDPC
LDPC, turbo,

convolutional

maximum frequency [MHz] 299 500

peak system efficiency

(achieved at high SNR with Iidd = 1 and a 4 × 4 64-QAM setup)

code setup a R = 5/6, Nc = 1944 b R = 3/4, Nc = 768 c

de
te

ct
or info. throughput [Mbit/s] 2700 2002 d

power [mW] 218 87

energy efficiency [bit/nJ] 12.38 23.02

de
co

de
r info. throughput [Mbit/s] 585 155

power [mW] 122 360

energy efficiency [bit/nJ] 4.79 0.43

sy
st

em

info. throughput [Mbit/s] 585 155 e

area efficiency [Mbit/s/mm2] 210.43 92.26

energy efficiency [bit/nJ] f 3.46 0.42

a Peak efficiency case for LDPC decoding with Idec = 10.
b Maximum code rate and codeword length supported by the IteRX design.
c Maximum code rate and codeword length reported for LDPC decoding in [116].
d Derived by scaling the maximum throughput of [19] to the frequency of [116],

since the architecture is the same.
e Assuming no penalties due to communication or scheduling.
f Assuming null power consumption when the PEs are idle.

Table 4.3: Implementation results and comparison with [116].

of the IteRX design in Table 4.3. Similarly, the highest code rate and codeword length

supported by the implementation are used. For the IteRX decoder this means R = 5/6

and Nc = 1944, whereas the highest R and Nc reported in [116] for LDPC decoding

are 3/4 and 768 respectively.

Given these setups, the decoder information throughputs are 585 Mbit/s and

155 Mbit/s for the IteRX implementation and for the design in [116] respectively. In
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both cases, the detectors have a significantly higher maximum throughput. There-

fore, in this instance the overall system information throughput of both designs is

determined by the channel decoder, which is the slowest PE. As a result, albeit 65 %

bigger, the IteRX receiver is more than twice as area efficient as its counterpart in the

analysed case.

In terms of energy, the efficiency of the different PEs can be computed by dividing

their information throughput by their average power consumption. The peak energy

efficiency of the detector in [116] is almost twice as high as that of the IteRX detector,

as shown by Table 4.3. On the other hand, the decoder of the IteRX design is an order

of magnitude more energy efficient than its counterpart. This is a consequence of the

flexible architecture used in [116], which can decode not only LDPC codes but also

turbo and convolutional codes. In fact, similar observations on the efficiency costs of

flexibility for channel decoders were reported by F. Kienle in [87].

The energy efficiencies of the detector and the decoder can then be combined to

obtain the overall system figure, under the assumption that the PEs do not consume

power when they are idle. This is reasonable for the low-leakage technologies used in

both the IteRX implementation and [116]. In such a case, the total energy required by

the receiver to process one bit is equal to the sum of the energy per bit consumed by

each PE, i.e., the inverse of the PE energy efficiency. Subsequently, inverting the total

energy per bit yields the overall energy efficiency of the system, which tends to be

dominated by least efficient PE. The results of this computation show that the IteRX

implementation is more than eight times as energy efficient as the receiver in [116].

Due to the lack of other analogous implementations or related data in the lit-

erature, further comparisons of the IteRX receiver with other existing designs are

not possible. For a comparison of the single PEs with corresponding state-of-the-art

designs the reader is referred to Section 3.3, to [34] and to [129]. Additional consider-

ations on how the proposed implementation relates to alternative detection/decoding

systems can be found later in Section 5.6.
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Chapter 5

Wireless Communication and
Implementation Efficiency Tradeoffs

Implementation results are often presented merely from a hardware point of view,

listing the metrics commonly used to assess a silicon implementation, such as area,

maximum frequency, throughput and power consumption. However, this perspective

is not sufficient to evaluate the strengths and the weaknesses of a design, particularly

for communication-related applications. What really matters is how implementation

aspects affect both the network operator’s interests (e.g., how efficiently the avail-

able spectrum is used) and the end user’s experience (e.g., how quickly a file can be

downloaded and how long the battery of the mobile terminal lasts).

To this end, more elaborate metrics need to be considered that directly corre-

spond to the perception of the parties involved in the communication. Examples of

such metrics are goodput, spectral and energy efficiency, which reflect how efficiently

the available time, bandwidth and energy respectively are utilised to transfer use-

ful (i.e., error-free) information. These characteristics have to be evaluated after the

implementation to quantify how hardware limitations and non-idealities affect the

complete system and its performance. This kind of analysis, partially conducted in

Chapters 3 and 4 for the Caesar and the IteRX designs respectively, requires the com-

bination of the silicon implementation results with the algorithmic metrics typically

used in the wireless communication domain, like error-rate curves.

Furthermore, the behaviour of the system has to be observed over the complete

operating range, from the lowest SNR where the system starts to be operational to the

high-SNR region where the maximum spectral and energy efficiencies are achieved.

Any conclusion based on the observation of a single or only a few SNR points is

partial, if not misleading, as already highlighted in Chapters 3 and 4.

This comprehensive approach enables first of all a fair and consistent comparison

of all possible operating modes for a given hardware implementation. For instance,

the influence of communication parameters such as the modulation scheme and the

code rate on the efficiency metrics can be studied; the same applies for the runtime

settings of the receiver, such as the sphere decoding runtime constraints. Such a com-

parison enables the selection of the communication and receiver parameter set that

optimises a given target metric (e.g., spectral or energy efficiency) in each operating

point. The results of this optimisation process can be used by the system to dynami-

cally adapt to a changing environment and set of requirements with a minimum loss

with respect to the ideal efficiency.

Moreover, different hardware designs and implementations can be comprehen-

sively compared based on the outcome of the previous optimisation, performed in-

135



136 Chapter 5. Wireless Communication and Implementation Efficiency Tradeoffs

dividually on each of them. Such a comparison is only fair if the metrics of interest

are examined over the complete operating range. This analysis is likely to show that

the “best” design changes depending on the operating point, reflecting the tradeoff

between communication performance and hardware complexity which is typical of

the communication domain.

In summary, the methodology described in the next sections, similar to [169], is

key both to optimise the behaviour of a particular implementation and to identify

which hardware option is preferable in a given scenario. Due to the lack of compara-

ble implementations or sufficient related data, the remainder of this chapter focuses

on the IteRX chip. In the following, after stating the necessary assumptions, the met-

rics of interest and the procedure to derive them from measurement and simulation

results are defined in Section 5.1. Some of these metrics, such as goodput, area and

energy efficiency, were already subject of the analyses presented in Section 3.2.2 for

the Caesar chip and in Section 4.3.2 for the IteRX chip.

A further step is taken in this chapter by considering the requirements and con-

straints of the communication system that the receiver is part of, mainly in terms of

bandwidth. Subject to these restrictions, Sections 5.2 and 5.3 describe how the com-

munication and receiver setup, including modulation scheme, code rate, number of

IDD iterations and detector/decoder runtime constraints, can be selected to optimise

one of the aforementioned metrics. Moreover, interesting tradeoffs can be observed

when the optimisation is performed with different targets, as illustrated later in Sec-

tion 5.3.

Such an analysis shows how the IDD principle can be exploited to enhance the

spectral efficiency of the system. The subsequent step is to quantify the costs of this

improvement in terms of latency and energy, which are reported in Section 5.4. These

costs are also estimated relatively to the overall communication system. In such a

high-level perspective, IDD appears to be less expensive than if the point of view is

limited to the receiver.

The aspects mentioned so far are analysed assuming the IteRX chip as the de-

tection/decoding component of the receiver. Under this assumption, IDD processing

can only be exploited up to a certain symbol rate, limited by the hardware throughput

achieved by the implementation. However, based on the IteRX chip results, the area

and energy requirements for the receiver to support even higher symbol rates, for

instance by instantiating multiple IteRX designs in parallel, can be reliably derived.

The scalability analysis presented in Section 5.5 focuses on this subject.

To conclude the chapter, in the absence of fully comparable hardware implemen-

tations, the IteRX design is compared from an algorithmic point of view in terms of

maximum achievable spectral efficiency with two hypothetical alternatives: firstly, the

non-iterative counterpart of the IteRX receiver; secondly, an IDD system composed of

an MMSE-PIC detector and the same LDPC decoder used in the IteRX design.
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5.1 Assumptions, Evaluation Metrics and Methodology

The methodology applied in this thesis is rather elaborate, since some of the met-

rics analysed in the following are not typically considered in the context of hardware

implementation and several steps are required to derive them from the direct mea-

surements. The following sections detail the bases (i.e., the assumptions), the targets

(i.e., the output metrics) and the intermediate steps of the procedure.

5.1.1 Assumptions

The following assumptions apply to the remainder of this chapter:

• Transmission at Nyquist rate: one modulated symbol per second per Hertz is

transmitted over the channel (Nyquist rate). Therefore, in the following the

bandwidth B is equivalent to the transmitted symbol rate Bs and to the rate of chan-

nel uses per second, although each of these quantities has its own measurement

unit and they should not be confused.

• Symbol rate constraints: the system operates between two transmitted symbol

rate constraints, corresponding to the minimum and maximum spectrum that

can be allocated to the communication link. The minimum requirement Bs,min

determines whether the receiver can operate at all in the given scenario, since

its throughput must be sufficiently high to serve Bs,min. On the other hand,

the maximum constraint Bs,max sets an upper bound for the data rate. If the

receiver supports a higher throughput than this bound, the spectral efficiency

can be increased (e.g., by switching to a higher modulation order or code rate)

or energy can be saved (e.g., by downscaling the supply voltage).

In most cases, the symbol rate is fixed and hence the two constraints coincide.

However, modern communication systems employ techniques such as orthogonal

frequency-division multiple access (OFDMA) which enable the dynamic allocation

of bandwidth resources to the end users, within certain limits [29]. At present,

the allocation policy is typically decided by the basestation based on the channel

state and possibly on the priority of the different links. However, the allocation

scheme could be extended to enable the end-user receiver to request additional

bandwidth if its processing power can support it. In such a scenario, Bs,min and

Bs,max diverge. The actual symbol rate in use is referred to as Bs in the following.

• Packet size: a frame or block, i.e., the basic unit of data sent over the physical

layer, herein corresponds to a codeword, whose length is defined by the error-

correcting code in use. Therefore, the block error rate (BLER) is equivalent to the

frame error rate (FER) and to the codeword error rate (CWER) in the following. This

choice simplifies the analysis and it is consistent with the focus of this thesis,

which is on the physical layer processing, whereas the selection of the packet

size is typically dealt with on higher protocol layers. Throughout this chapter, a

codeword length of 1944 bits is used, corresponding to the longest one specified

by the IEEE 802.11n LDPC codes.
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• Automatic repeat-request (ARQ) scheme: in order to enable efficiency estimations

on the system level and thus evaluate the impact of baseband components on

the complete system, a simple Type I hybrid ARQ scheme with selective retrans-

mission [46] (or selective repeat ARQ) is employed. In such a system, the receiver

acknowledges the correctly decoded frames with an ACK and signals with a

negative acknowledgement (NAK) the frames that cannot be decoded. In re-

sponse to a NAK, the transmitter resends the single frame that failed. With this

mechanism, a frame requires in average 1
1−BLER transmissions to be transferred

successfully.

• Channel model: all the results presented throughout this chapter are obtained for

the fast Rayleigh-fading channel model introduced in Section 2.1.

5.1.2 Metrics

• Goodput: the average number of correctly received information bits per time

unit. Goodput is measured in bit/s and, assuming transmission at Nyquist rate

and selective repeat ARQ, computed as:

G = BsQMTR(1 − BLER). (5.1)

If the communication is error-free (i.e., BLER = 0) it is possible to achieve the

ideal information throughput:

Θi = BsQMTR. (5.2)

Hence:

G = Θi(1 − BLER). (5.3)

In the context of the following analysis, whenever a hardware implementation is

involved all the metrics are subject to the processing capabilities of the receiver.

As a consequence, definition (5.1) only applies if the receiver can serve the given

symbol rate Bs. This condition can be formulated as:

Θidd ≥ Θi (5.4)

with Θidd being the average hardware information throughput supported by

the receiver. For example, for a 4 × 4 64-QAM configuration with R = 5/6 and

Bs = 20 Msym/s, Θi = 20 × 6 × 4 × 5/6 Mbit/s = 400 Mbit/s; if the average

hardware throughput of the receiver Θidd is lower than 400 Mbit/s, this setup

is considered to be unusable and a less computationally demanding one (e.g.,

with a lower modulation order) is chosen which complies with condition (5.4).

In case condition (5.4) is not verified, the goodput drops to zero since the sys-

tem is considered to be in an invalid operating point. Recalling the dual symbol

rate constraint introduced in Section 5.1.1 and defining Θi,min = Bs,minQMTR
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and Θi,max = Bs,maxQMTR, the constrained average information throughput sup-

ported by the receiver is defined as:

Θidd,c =











0 if Θidd < Θi,min,

Θidd if Θi,min ≤ Θidd ≤ Θi,max,

Θi,max if Θidd > Θi,max.

(5.5)

For Θi,min < Θidd < Θi,max, the symbol rate is assumed to be adjusted to

match Θidd. Therefore, when an implementation is considered, the hardware-

constrained goodput is computed as:

Gc = Θidd,c(1 − BLER). (5.6)

• Spectral efficiency: the number of correctly received information bits per time and

bandwidth unit, measured in bit/s/Hz and, assuming transmission at Nyquist

rate, computed as:

ηs = QMTR(1 − BLER). (5.7)

As for the definition of the goodput, if hardware components are involved, spec-

tral efficiency is subject to the limitations of the implementation and hence com-

puted as:

ηs,c =
Θidd,c

Bs
(1 − BLER). (5.8)

Definitions (5.7) and (5.8) obviously coincide if Bs,min ≤ Bs ≤ Bs,max.

• Area efficiency: the goodput per silicon area unit, measured in bit/s/GE and

computed as:

ηa,idd =
Gc

Aidd
(5.9)

where Aidd is the area of the receiver expressed in GE.

With the present silicon technology, area is typically not the main concern for

the designer, especially as compared to throughput, power and energy con-

sumption. For this reason, in this thesis area is not constrained to a limit that

would be merely arbitrary but rather considered as a result of the implementa-

tion. Area efficiency is still one of the key metrics to compare different hardware

implementations.

• Energy efficiency: the inverse of the energy consumed to correctly decode one

bit, measured in bit/J. For a single hardware component this quantity can be

computed simply as the throughput divided by the average power consumption.

However, for multiple cascaded components with non-matching throughputs

this definition does not apply anymore since only the block with the lowest

throughput is always active, while the others are idle for a certain percentage of

the time, with a corresponding decrease of the average power consumption.

Furthermore, the system goodput is the relevant quantity for computing energy



140 Chapter 5. Wireless Communication and Implementation Efficiency Tradeoffs

efficiency rather than the hardware throughput. The goodput is constrained

by the symbol rate to a value which is lower than or equal to the hardware

throughput, as specified by (5.4), meaning that at times both the detector and

the decoder may operate at a lower throughput than they can support. Such a

situation corresponds to underutilising the hardware components; the utilisation

ratio of a processing element is defined as:

ρpe =
Θidd,c

Θpe
(5.10)

where Θpe is the information throughput supported in hardware by the PE.

In view of the previous considerations, the energy efficiency of the MIMO IDD

receiver is computed as the ratio between the total number of correctly decoded

information bits and the energy consumed in the process:

ηe,idd =
NiNf

Eidd
(1 − BLER) (5.11)

where Nf is the total number of received frames and Eidd is the energy dissipated

to detect and decode those Nf frames.

By separating the individual dynamic and static consumptions of the different

components, the previous definition can be written as:

ηe,idd =
NiNf

Ed,det + Ed,dec + Es,idd
(1 − BLER) (5.12)

=
NiNf

Pd,detTdet + Pd,decTdec + Ps,iddTidd,c
(1 − BLER) (5.13)

where Tdet and Tdec are the total active times of the detector and the decoder

respectively; Tidd,c is the total time necessary to receive Nf, also computed as
NiNf
Θidd,c

. Since both the detector and the decoder are clock gated when not used,

their dynamic power consumption is null outside of their active times Tdet and

Tdec. If Θidd > Θi,max, Tidd,c includes some idle time since the receiver processes

the data at a faster rate than it receives them.

By replacing throughputs in the previous equation, the original definition of the

energy efficiency as the ratio between throughput and power is recovered for

the single contributions:

ηe,idd =

(

Pd,det

Θdet
+

Pd,dec

Θdec
+

Ps,idd

Θidd,c

)−1

(1 − BLER). (5.14)
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Equivalently, by introducing the utilisation ratios of the components, the defini-

tion becomes:

ηe,idd =

(

Pd,detρdet

Θidd,c
+

Pd,decρdec

Θidd,c
+

Ps,idd

Θidd,c

)−1

(1 − BLER) (5.15)

=
Θidd,c

Pd,detρdet + Pd,decρdec + Ps,idd
(1 − BLER). (5.16)

In the following sections, the energy consumed by the receiver for detection

and decoding is computed based on the IteRX chip measurements. Only in

Section 5.4 energy is considered on the system level and hence corresponds to

an estimate of the complete communication system including the full transmitter

and receiver chains; the corresponding definitions are given in Section 5.4.

• Latency: the delay between a frame being ready to be processed at the detector

input and the completion of its decoding, denoted by the symbol Lidd and mea-

sured in s (see later Figure 5.1 for a visual example of what latency is). As in the

case of energy efficiency, in the system-level perspective of Section 5.4 latency

includes all communication system components and frame retransmissions; a

more precise definition of latency for this specific case is given in Section 5.4.

The common characteristic of all the aforementioned metrics is their dependency

on the hardware implementation. Even those typically considered only from an ideal

algorithmic point of view, such as spectral efficiency and goodput, are subject to the

processing capabilities of the actual implementation. As a consequence, the behaviour

of the metrics analysed in the following sections is not always obvious; for instance,

in certain scenarios a higher spectral efficiency does not necessarily result in a higher

data rate (see Section 5.3.1). This observation stresses the importance of including all

hardware constraints in the analysis of a wireless communication system.

5.1.3 Metric Derivation

The metrics listed in Section 5.1.2 are computed by combining communication sys-

tem parameters (e.g., number of antennae, QAM modulation order, code rate, code-

word length, etc.), results of algorithmic simulations (e.g., error rates, complexity, etc.)

and characteristics of hardware implementations (e.g., silicon area, clock frequency,

power consumption, etc.). Therefore, the first step is to obtain algorithmic and hard-

ware characteristics by applying the methodologies described in Section 1.3 to a large

number of relevant test cases, each defined by a specific choice of:

• Operating conditions: SNR, channel model;

• Communication system parameters: number of transmit and receive antennae,

QAM modulation order, codeword length, code rate;

• Receiver configuration: runtime constraints, early-termination settings.
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The resulting massive amount of data represents the starting point for the eval-

uation of the metrics herein introduced. The steps to extract these metrics starting

from the directly measurable results are listed in the following, together with the

algorithmic and hardware information required at each stage.

1. For every test case, compute the detector and decoder runtimes of each IDD

iteration for every simulated codeword. The cycle count of the decoder is com-

puted according to (4.17).

As for the detector, an exact equation is not available. For the reasons explained

in Section 4.2.2.2, its cycle count is computed according to (4.8) as the total num-

ber of examined nodes per iteration for one frame divided by the number of

instantiated SD cores.

• Required algorithmic information: total number of nodes examined by the

sphere decoder for every simulated codeword and IDD iteration, number

of LDPC iterations for every simulated codeword and IDD iteration.

• Required hardware information: number of sphere decoder cores, maximum

clock frequencies.

2. For every test case, build the execution trace of the sequence of all the simulated

codewords by composing the runtimes computed in the previous step according

to the ping-pong schedule of the detector and the decoder (see Section 4.2.1). An

example of such a trace is shown in Figure 5.1.

• Required algorithmic information: number of IDD iterations for every simu-

lated codeword.

3. After extracting the latency Liddi
of each frame i and the total execution time

Tidd of the Nf simulated frames from the execution trace (see Figure 5.1), derive

the average latency and throughput of the IDD receiver respectively as:

Lidd =

Nf
∑

i=1

Liddi

Nf
(5.17)

and

Θidd =
NfNi

Tidd
. (5.18)

4. Apply the symbol rate constraints Bs,min and Bs,max and compute the constrained

throughput Θidd,c according to (5.5).

5. Compute the goodput, the spectral efficiency and the area efficiency according

to (5.6), (5.8) and (5.9), respectively.

• Required algorithmic information: BLER.

• Required hardware information: silicon area of the receiver.
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Figure 5.1: Example of execution trace.

6. Extract the power consumption of both the detector and the decoder from the

models introduced in Section 4.3.1 and detailed in Appendix A and the times

Tdet, Tdec and Tidd from the execution trace. Compute the energy efficiency ac-

cording to (5.13). It should be noted that the execution trace is built without

considering symbol rate constraints; therefore, Tidd must be corrected by divid-

ing it by the utilisation rate of the receiver, as defined in (5.10), to obtain Tidd,c.

This step is required when Θidd > Θi,max to account for idle times and hence

properly estimate the static energy consumption.

• Required algorithmic information: BLER.

• Required hardware information: power consumption.
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5.1.4 Optimisation Targets and Methodology

The previous section illustrated the procedure to extract all relevant evaluation metrics

for a single test case. The subsequent step is to select the “best” communication

system parameters and receiver configuration among the many available options in a

given operating point. This selection can target the optimisation of either one of the

metrics introduced in Section 5.1.2.

Although similar, this step is more sophisticated than the procedure used in Sec-

tions 3.2.2 and 4.3.2 to obtain the area and energy efficiency characteristics of the

Caesar and IteRX implementations. The latter only targeted goodput, did not take

into account any symbol rate constraints and did not optimise over the communica-

tion system parameters but only over the receiver configuration.

The optimisation process utilised in the following starts from the data computed

as described in Section 5.1.3 and consists of three steps:

1. For each SNR point, identify the valid configurations based on the specified

constraints (e.g., the information throughput of the system must be high enough

to serve the minimum required symbol rate, as explained in Section 5.1.2).

2. For each SNR point, apply an exhaustive search among the valid configurations

to select the best one according to the primary optimisation target, which in this

thesis can be either spectral efficiency, goodput or energy efficiency1. A sec-

ondary optimisation goal (e.g., energy efficiency, latency) is defined to resolve

the configurations that are equivalent from the primary target point of view.

Although this procedure is in principle correct, in practice several configurations

differ only by a negligible percentage from the best one in terms of the primary

optimisation target. Therefore, the optimisation tool developed in the context of

this thesis first selects the valid configurations that lie within 5 % from the best

one and then applies the secondary optimisation target for the final decision.

An example of how this solution improves the optimisation results is a high-SNR

scenario with spectral and energy efficiency as primary and secondary target, re-

spectively. In such a case, loose runtime constraints on the detection only enable

an infinitesimal improvement of the BLER with respect to very tight constraints,

thus resulting in a spectral efficiency figure which is negligibly better at a very

high cost in terms of energy efficiency. The aforementioned procedure avoids

unwise decisions in such cases, leading to more balanced results.

3. Join the results obtained separately for the single SNR points and thus charac-

terise the system behaviour over the complete operating range.

As described in Section 5.1.1, the optimisation process takes into account two

symbol rate constraints, since the receiver must be able to serve a minimum symbol

rate on the one hand and it is not allowed to exceed a maximum spectrum allocation

on the other hand. Two different scenarios are considered in the following:

1 It should be noted that the choice of which metrics to optimise and which ones to use as constraints
is not indisputable. For instance, energy efficiency may become a constraint if a precise energy budget
is defined a priori. Similarly, latency may have to comply to a hard limit in certain systems.
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• Fixed symbol rate (Bs,min = Bs,max): the allocated symbol rate is fixed, meaning

that the receiver has to serve the corresponding throughput and cannot request

additional symbol rate, even if it supports it.

• Variable symbol rate (Bs,min < Bs,max): the symbol rate can be changed depending

on the communication requirements, from Bs,min up to Bs,max; the receiver can

therefore request an increased symbol rate, up to Bs,max, in case it supports it.

In the first case, maximising the spectral efficiency is equivalent to maximising the

goodput since the two metrics only differ by a constant factor, i.e., the symbol rate. If

the receiver exceeds the throughput allowed by the symbol rate, energy efficiency can

be optimised as a secondary target by low-power techniques such as voltage scaling.

In the second case, additional bandwidth can be allocated if the receiver is able to

process the increased symbol rate. As a consequence of the limited receiver process-

ing power, the optimisations based respectively on spectral efficiency and goodput

give different results. For instance, a low modulation order, with a corresponding

low receive complexity, potentially allows the receiver to support a high symbol rate,

whereas a higher modulation order, with much more demanding processing require-

ments, may be supported by the receiver only at a very low symbol rate. Therefore, a

goodput-oriented system may profit from using a low modulation order in conjunc-

tion with a high symbol rate. On the other hand, a spectral-efficiency optimisation

chooses the highest modulation order for which the minimum symbol rate can be

served, possibly resulting in an overall lower data rate.

In both cases, an optimisation which primarily targets energy efficiency tends to

favour the least complex configurations and might therefore yield different choices.

The outcome of the optimisation can also be used in a real-time system, e.g.,

by storing the SNR switching points between different configurations for different

channel scenarios as look-up tables in the receiver and selecting at runtime the most

suitable configuration given the current channel state.

The herein introduced methodology is applied in the remainder of this chapter

to extensively analyse the IteRX implementation and consequently highlight more

general aspects that are proper to wireless communication systems. Except for Sec-

tion 5.3.1, which studies how a variable symbol rate impacts the optimisation results,

fixed symbol rate scenarios are considered.

5.2 Adaptive Modulation and Coding

Modern communication standards, such as IEEE 802.11n/ac [78, 80] and LTE [55],

define multiple modulation and coding schemes (MCSs) to allow the system to operate in

a wide range of conditions. Therefore, a receiver must support a number of different

MCSs. Furthermore, the ability to dynamically switch among MCSs, referred to as

adaptive modulation and coding (AMC), enables the system to choose the optimal setup

for a given operating point. This decision depends on the selected optimisation target,

such as goodput, spectral efficiency or energy efficiency, and can be taken leveraging

the procedure described in the previous Section 5.1.4.
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Figure 5.2: Fixed 64-QAM modulation and adaptive coding for a 4 × 4 system
(Bs = 5 Msym/s).

A first consequence of AMC is that the analysis of a system needs to consider all

MCSs instead of being restricted to a single setup. This extended analysis might lead

to different observations since a specific MCS is only used in a limited operating range

and hence its behaviour becomes irrelevant elsewhere. In this regard, Figure 5.2 shows

the behaviour of a 4 × 4 system with fixed Bs = 5 Msym/s, adaptive code rate and a

fixed 64-QAM modulation scheme; the switching points between different MCSs are

selected to maximise spectral efficiency. The spectral-efficiency plot shows a large gap

of 3 dB between the ideal curve, computed according to (5.7), and the one achieved

by the IteRX chip in the low-SNR operating regime, where the complexity of the IDD

processing is at its highest.

Figure 5.3 shows the results for the same setup extended with an adaptive mod-

ulation scheme, with {4, 16, 64} QAM, and leads to very different observations. The

combination of 64 QAM and R = 1/2, commonly taken as a reference case in the

literature, is never used. This setup is completely replaced by 16 QAM-based modes,

which have the same (R = 3/4) or higher (R = 5/6) spectral efficiency but signifi-
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Figure 5.3: Adaptive modulation and coding for a 4 × 4 system (Bs = 5 Msym/s).

cantly simplify the receiver task, with a much decreased detection complexity and a

lower numer of IDD and LDPC iterations. As a result, the IteRX chip approaches the

ideal spectral-efficiency curve over the whole operating range.

This example stresses the importance of a comprehensive analysis to avoid focus-

ing on test cases that may actually be irrelevant. AMC is employed throughout the

remainder of this chapter, with {4, 16, 64 } QAM and R = {1/2, 2/3, 3/4, 5/6}.

5.3 Points of View: Spectral Efficiency, Goodput and

Energy Efficiency

The flexibility of AMC can be effectively exploited to achieve in every operating point

the highest spectral efficiency enabled by the system, as shown in the previous sec-

tion. However, such flexibility can also be used to optimise any other of the targets

mentioned in Section 5.1.4. Different goals yield different choices in terms of MCSs,

resulting in different efficiency characteristics and thus originating interesting trade-
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offs. Particularly relevant is the tradeoff between, on the one hand, making the best

use of such an expensive resource as bandwidth and, on the other hand, providing a

good user experience in terms of high data rates and a long mobile-terminal battery

life. The next two sections examine these different points of view by comparing the

results of optimisations driven by different targets.

5.3.1 Goodput Optimisation with Adaptive Symbol Rate

A key point of this thesis is that, in the context of wireless communications, the out-

come of the analysis of single hardware components highly depends on the complete

system, subject to the actual real-world constraints. Among these, the symbol rate

is particularly relevant in determining hardware design requirements as well as the

efficiency of the implementation in the successive analysis phase.

The ability of the receiver to request an increased symbol rate, as supported by its

processing power, can significantly affect the choice of the MCS for a given operating

point. In order to visualise this effect, in this section a 4× 4 AMC system is considered

which supports a minimum symbol rate Bs,min = 5 Msym/s and can request up to

Bs,max = 40 Msym/s. Figure 5.4 compares the results of two different optimisations

which target spectral efficiency (red lines) and goodput (blue lines) respectively.

Given the limited availability and the high cost of spectrum resources, an effective

utilisation of the bandwidth is important and hence an optimisation of the commu-

nication link in terms of spectral efficiency is of great interest. This criterion leads

to the selection of the MCS with the highest number of information bits per channel

use which is usable in the given operating point and which typically corresponds to

the highest effort for the receiver. As a consequence, in such a scenario the receiver

cannot support the maximum symbol rate over the complete SNR range. This is il-

lustrated by the third plot from the top of Figure 5.4: the red line shows the symbol

rate usage of a system optimised for spectral efficiency, which is often far from Bs,max.

The symbol rate which is not exploited could be reallocated by the network operator

to other users.

The opposite behaviour can be observed if the optimisation target is the end user’s

goodput. In this scenario, the MCSs that require the lowest detection/decoding effort

in each operating point are favoured because they enable a higher hardware and

hence communication throughput. The higher goodput comes at the cost of using

the maximum symbol rate almost all the time to compensate for the low spectral

efficiency of the selected MCSs. Even though such a scenario is usually impractical

for economic reasons, goodput maximisation may be relevant for special high-priority

links and the associated tradeoffs are therefore interesting, especially in comparison

with the spectral-efficiency optimisation.

The bottom plot in Figure 5.4 shows the average number of IDD iterations used

by the receiver in the two cases. This plot highlights the benefits of IDD, which is

often applied to approach the ideal spectral efficiency when this is the optimisation

target. On the other hand, IDD obviously affects the throughput of the receiver and it

is therefore rarely used in a goodput-optimised system.
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Figure 5.4: Comparison between different optimisation targets: goodput vs. spectral
efficiency (IteRX, 4 × 4 AMC, 5 Msym/s ≤ Bs ≤ 40 Msym/s).
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5.3.2 End User’s Battery Lifetime Optimisation

A key metric for evaluating the receiver is the energy efficiency, particularly if the end

user is a mobile terminal running on a battery. This metric, as defined in Section 5.1.2,

is usually considered as the outcome of a measurement rather than an optimisation

target. However, if battery life is a primary concern, a specific optimisation of the

system setup for energy efficiency can lead to large gains, as estimated by [169].

Figure 5.5 compares the results of the optimisations driven by spectral efficiency (red

lines) and energy efficiency (blue lines) respectively, for the IteRX chip with a fixed

5 Msym/s symbol rate2.

The spectral efficiency plot at the top of Figure 5.5 highlights how MCSs which

entail a relatively low detection/decoding complexity are always preferred when

maximising energy efficiency (similarly to what was observed for goodput in Sec-

tion 5.3.1). Moreover, in such a case IDD is typically not advantageous: as mentioned

in Section 5.3.1 and as also visible in Figure 5.5, the main application of IDD is en-

hancing the spectral efficiency of the system.

The key observation on Figure 5.5 is that energy efficiency gains of up to an order

of magnitude can be obtained with a specific optimisation, at a spectral efficiency loss

of less than 50 % with respect to a spectral efficiency-optimised system.

These numbers suggest that there is a great chance for energy savings in the base-

band implementation of mobile devices. Such a potential can be realised by designing

scalable receivers, able to adapt their signal processing effort to the operating scenario,

and by taking into account, at the basestation side, the capabilities and possibly the

preferences of the end-user device. In such a scenario, the mobile terminal could re-

quest to switch to a more energy-efficient mode when its battery is almost empty or

stay by default in an energy-efficient mode and request a high-goodput mode only

when the application requires it, thereby adapting the optimisation target to the spe-

cific situation.

5.4 IDD Costs in a Communication System Perspective

The previous analysis showed under which conditions iterative detection and decod-

ing can be beneficial, especially for spectral efficiency. However, IDD techniques are

not always applicable due to the increased latency and energy consumption of the

receiver, which represent the main drawbacks.

Throughout this thesis, latency is regarded as an outcome of the analysis rather

than a hard constraint on the optimisation process. The latency budget allocated

to the receiver baseband processing is typically derived from the wireless standard

requirements rather than specified directly. As a consequence, it is difficult to find

precise and unambiguous latency constraints in the literature. One of the few exam-

ples is [75], which assumes a physical layer processing budget of 6 µs for IEEE 802.11n

2 Since the symbol rate is fixed, in this case a goodput-driven optimisation would lead exactly to the
same results as the one targeting spectral efficiency.
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Figure 5.5: Comparison between different optimisation targets: energy efficiency vs.
spectral efficiency (IteRX, 4 × 4 AMC, Bs = 5 Msym/s).
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and 500 µs for IEEE 802.16e. Obviously, if the latency requirements in a given situation

are very stringent on the baseband processing, IDD can hardly be applied.

From a system-level point of view, however, it is interesting to look at the latency

and energy metrics for the entire communication chain, including both the transmitter

and the receiver and also the media access control (MAC) protocol, which decides on

the retransmission of packets.

This approach changes the perspective on the latency and energy overhead asso-

ciated with IDD. If the receiver does not support IDD, when a frame is not correctly

received there are two options: first, requesting a retransmission, at the cost of dou-

bling the energy and latency spent by the system; second, switching to a lower mod-

ulation order or code rate, at the cost of a spectral efficiency loss. In the first case, an

IDD receiver can avoid a large share of retransmissions by applying additional IDD

iterations; this processing overhead is much cheaper than a complete retransmission

from the system point of view. In the second case, which occurs more frequently, IDD

provides a spectral efficiency gain at the cost of a latency and energy increase. This

overhead, which is localised in the receiver, is examined in the next paragraphs in a

system-level context.

The following analysis considers a communication system with selective repeat

ARQ, as described in Section 5.1.1. The focus is on the downlink but a similar analysis

would apply to the uplink as well. The metrics of interest in this analysis are the

system latency and energy, which include all contributions from the moment a data

packet is passed to the MAC layer in the transmitter to the successful reception of that

packet at the other end of the communication link.

These contributions include MAC and physical layer processing in both the trans-

mitter and the receiver, besides air propagation delays in the case of latency, and their

magnitude highly depends on the specific standard, implementation and operating

conditions. Therefore, in order to quantify the impact of IDD from the system point

of view, a few assumptions are necessary.

First of all, the average downlink system latency is expressed as:

Ldl = OWDdl + RTD

(

1

1 − BLER
− 1

)

(5.19)

where:

• OWDdl is the one-way delay between the data frame being passed to the MAC

layer in the transmitter and the completion of the MAC processing in the re-

ceiver;

• RTD is the round-trip delay between the data frame entering the MAC layer in

the transmitter and the reception of an ACK/NAK frame by the transmitter; this

delay is usually constrained by the standard.

The factor 1
1−BLER in (5.19) corresponds to the average number of tries necessary to

complete a frame transmission successfully in a selective repeat ARQ system (see
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Section 5.1.1). By defining OWDul as the uplink one-way delay, the round-trip delay

can be written as RTD = OWDdl + OWDul. Equation (5.19) can then be written as:

Ldl = OWDdl
1

1 − BLER
+ OWDul

BLER

1 − BLER
. (5.20)

Employing IDD in the receiver introduces a tradeoff between increasing OWDdl

and decreasing BLER. In order to quantify this tradeoff, it is herein assumed that the

only variable is Lidd, whereas the rest of the downlink delay (OWDdl − Lidd) and the

uplink delay OWDul are constant and both equal to ∆.

Therefore, definition (5.20) becomes:

Ldl ≈ (∆ + Lidd)
1

1 − BLER
+ ∆

BLER

1 − BLER
=

Lidd + ∆ (1 + BLER)

1 − BLER
. (5.21)

Since practically OWDul is often larger than OWDdl [77], it should be noted that

the previous assumption is pessimistic in that it makes the influence of Lidd on the

system latency relatively stronger. In the following, two different values of ∆, namely

20 µs and 200 µs, are used to cover a range of reasonable scenarios.

The system energy for successfully communicating one frame is herein modelled

by the following equation:

Esys = (Etx,data + Erx,data + Etx,ack + Erx,ack)
1

1 − BLER
(5.22)

where Etx,data and Erx,data define the energy consumed respectively for transmitting

and receiving the data packets and, similarly, Etx,ack and Erx,ack represent the energy

consumed respectively for transmitting and receiving ACKs/NAKs.

Due to the difficulty of finding measured data about the different terms in (5.22)

in the literature, a few rough assumptions are required to quantitavely analyse the

impact of IDD on the system energy. Firstly, the energy for transmitting and receiving

ACK frames is neglected (Etx,ack ≈ 0, Erx,ack ≈ 0) since their length is typically much

shorter than the data packets and they require little processing.

Moreover, the transmission and the reception are assumed to consume the same

energy (Etx,data ≈ Erx,data). Although this balance varies significantly from case to

case, often the transmission consumes more energy due to the RF power that has to

be emitted [70]. This implies that in most cases the previous assumption is pessimistic

from the receiver point of view. The transmitted power and hence Etx,data are assumed

to be constant at any SNR.

Finally, when looking at the receiver side, it is assumed that at a reference SNR,

denoted as SNRref, half of the energy is dissipated in the detection/decoding pro-

cess and half in the remaining tasks (including RF frontend, MIMO preprocessing

and MAC-layer processing), which means Erx,data ≈ 2Eidd,ref at SNR = SNRref. For

SNR 6= SNRref, the IDD processing energy Eidd varies and can be computed from the

measurements on the IteRX chip, whereas the rest of the receiver is assumed to con-
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Figure 5.6: Spectral and energy efficiencies of the communication system with and
without employing IDD (IteRX, 4 × 4 AMC optimised for spectral effi-
ciency, Bs = 5 Msym/s); in the energy efficiency plot, the dashed lines
refer to the IteRX receiver only and the solid lines to the complete com-
munication system.

sume the same energy Eidd,ref independently of the SNR. Therefore, the total receiver

energy at any SNR is computed as Erx,data ≈ Eidd + Eidd,ref.

This conjecture appears reasonable if not overly conservative based on the few

related measured data available in the literature: for instance, in [181] a complete

IEEE 802.11n transceiver SoC supporting 2× 2 spatial-multiplexing MIMO is reported

where the RF and analog frontend consumes 45 % of the total power; in [35] the power
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Figure 5.7: Latency of the communication system with and without employing IDD
for ∆ = 20 µs (IteRX, 4 × 4 AMC optimised for spectral efficiency,
Bs = 5 Msym/s); the dashed lines refer to the IteRX receiver only and
the solid lines to the complete communication system.

breakdown of a typical IEEE 802.11a transceiver shows that FEC consumes 35 % of the

receive power and baseband/MAC processing only 25 %.

Based on the previous assumptions and considering the energy consumed by the

IteRX chip to decode a 4 × 4 64-QAM frame at SNRref = 25 dB as the base reference

(Eidd,ref = 0.8 µJ), equation (5.22) can be written as:

Esys ≈ (2Eidd,ref + Eidd,ref + Eidd)
1

1 − BLER
= (2.4 µJ + Eidd)

1

1 − BLER
. (5.23)

These assumptions help to coarsely quantify and visualise the points introduced

at the beginning of this section. Figure 5.6 shows on the one hand the benefits

of IDD, which basically shifts the hardware-constrained spectral-efficiency curve to-

wards lower SNRs by 1 dB; the red curve for a non-IDD system is obtained by limiting

the IteRX chip to a single detector/decoder iteration3. On the other hand, there is a

noticeable energy efficiency cost for the receiver (Figure 5.6, bottom plot, dotted lines):

in the operating points where IDD is employed extensively, the spectral efficiency gain

3 The detector architecture could be significantly optimised in the absence of a priori information, as
shown in [169], thus reducing the latency and improving the energy efficiency. The spectral efficiency,
however, would still be limited by the light gray curve in Figure 5.6.
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Figure 5.8: Latency of the communication system with and without employing IDD
for ∆ = 200 µs (IteRX, 4 × 4 AMC optimised for spectral efficiency,
Bs = 5 Msym/s); the dashed lines refer to the IteRX receiver only and
the solid lines to the complete communication system.

is obtained at the expense of a receiver energy-efficiency drop by up to an order of

magnitude. However, from a higher-level perspective, the overall energy efficiency

of the communication system (Figure 5.6, bottom plot, solid lines) drops by less than

three times in the same operating points, under the aforementioned assumptions.

A similar observation applies to latency. Figures 5.7 and 5.8 compare the receiver

(dotted lines) and system (solid lines) latencies with and without IDD for ∆ = 20 µs

and ∆ = 200 µs respectively. The maximum receiver latency increase that can be

observed due to IDD is around one order of magnitude. From the system point of

view, however, this penalty decreases to a factor of two for ∆ = 20 µs and to less than

10 % for ∆ = 200 µs.

Therefore, when looking at a complete wireless system rather than at the detec-

tion/decoding processing in isolation, the costs of MIMO IDD are significantly amor-

tised while its spectral efficiency gain is unchanged. Regardless of the exact numbers

shown in this section, which are based on coarse system-level assumptions, the con-

clusion is clear: the individual components of a communication system have to be

characterised and evaluated in a comprehensive system setup to judge them properly

and avoid conclusions based on an incomplete picture.
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5.5 IDD Hardware Requirements vs. Symbol Rate

The IteRX chip is a proof of the MIMO IDD concept and enables a first quantifi-

cation of its implementation costs based on post-fabrication measurements. These

results were used in the previous sections to study the tradeoffs that can be found

in a modern communication system. Such an analysis was mostly conducted for a

given symbol rate, within the limits of the throughput achievable by the IteRX im-

plementation. However, the data obtained from the chip can also be used to estimate

with good accuracy how the efficiency metrics vary for different numbers of sphere

decoder cores (Nsd) instantiated within the IteRX architecture and for multiple in-

stances of the complete IDD receiver (Nidd). Such a model enables the identification

of how much silicon area and energy have to be invested to achieve the target spectral

efficiency and data rate for any given symbol rate.

For the estimations shown in this section, the following assumptions apply:

• Nsd is defined as the number of sphere decoder cores instantiated within the

IteRX architecture. As shown in Section 4.2.2, the detector area increases lin-

early with Nsd. Since the maximum clock frequency is independent of Nsd and

the cycle count of the detector is inversely proportional to Nsd, the detector exe-

cution time scales with 1/Nsd. Therefore, the detection throughput and latency

are, respectively, directly and inversely proportional to Nsd and they are com-

puted as described in Section 5.1.3.

• When a number Nidd of concurrent IteRX instances are considered, they process

different independent frames in parallel. Given this operating principle, the area

and throughput of a single instance are simply multiplied by Nidd, whereas the

latency is not affected by Nidd.

• The total area of the receiver is computed as:

Aidd = (830 + 150Nsd)Nidd [kGE] (5.24)

where 150 kGE is approximately the area of one SD core and 830 kGE is the area

of the other components in the IteRX design, i.e., mostly the LDPC decoder and

the shared LLR memory, which do not scale with Nsd. The clock frequencies are

independent of Nsd and Nidd.

• The receiver employs AMC optimised for spectral efficiency.

Given this model, the first question that has to be considered is how to choose Nsd

and Nidd to serve a certain symbol rate occupying the smallest area. The analysis of

the results hints that the priority should be given to first increasing Nsd. This is shown

in Figure 5.9 by comparing two architectural configurations with (Nidd, Nsd) = (1, 16)
and (Nidd, Nsd) = (2, 6) respectively in a 4 × 4 AMC setup with a fixed symbol rate

of 5 Msym/s. The two options have a comparable silicon area (respectively 3.23 MGE

and 3.46 MGE) and achieve nearly identical spectral and energy efficiencies. However,
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Figure 5.9: Efficiency and latency comparison between two architectural options
with comparable area costs (for a symbol rate of 5 Msym/s and AMC
optimised for spectral efficiency).
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Bs [Msym/s] 1 2 5 10 20 40

2 × 2

Nidd 1 1 1 1 2 3

Nsd 1 1 3 5 5 7

3 × 3

Nidd 1 1 1 1 2 4

Nsd 2 3 6 12 12 12

4 × 4

Nidd 1 1 2 3 5 9

Nsd 4 7 8 11 13 15

Table 5.1: Requirements to achieve the ideal spectral efficiency (within 10 %) for dif-
ferent symbol rates.

the latency of the configuration (Nidd, Nsd) = (2, 6) is often more than twice as long

because the detector is the bottleneck of the system at the spectral efficiency limit.

A further analysis shows that practically no additional benefit in terms of spec-

tral efficiency comes from increasing Nsd beyond a certain limit, which is typically

between 16 and 24 cores depending on the scenario. At this boundary, the LDPC

decoder becomes the limiting factor and the spectral efficiency can only be further

improved by instantiating multiple IteRX designs, i.e., by increasing Nidd.

Based on these initial observations, the hardware requirements to serve different

symbol rates and numbers of MIMO streams are analysed. For each case, the mini-

mum (Nidd, Nsd) combination is selected that approaches the ideal spectral-efficiency

curve over the complete SNR range (starting from 3 dB) within a 10 % margin. The

goal is to quantify how the area, power and energy requirements vary4.

The top plot in Figure 5.10 shows the silicon area required for the IteRX receiver to

serve up to 40 Msym/s for 2 × 2, 3 × 3 and 4 × 4 MIMO setups. Predictably, the area

increases linearly with the symbol rate and roughly exponentially with the number of

MIMO streams. This behaviour is directly related to the exponential dependency of

the SD runtime on MT since this is the only metric that varies with MT among those

affecting the area requirements (see Footnote 4).

The exact (Nidd, Nsd) configurations for each symbol rate constraint are sum-

marised in Table 5.1. The taped-out (1, 5) configuration of the IteRX architecture

4 The numbers for the cases with MT < 4 are based on the IteRX implementation, which supports
up to 4 × 4 spatial-multiplexing MIMO. Obviously the detector area could be reduced noticeably by
optimising the architecture for the lower MT; the clock frequency, on the other hand, would only
slightly benefit from such an optimisation, as shown in [169].
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Figure 5.10: Area requirements, energy and power consumption for different sym-
bol rates and numbers of MIMO streams.
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Figure 5.11: Spectral efficiency and average number of IDD iterations for 4 × 4 an-
tennae with a 1 Msym/s symbol rate and AMC optimised for spectral
efficiency.

can only approach the ideal spectral efficiency in every SNR point for a symbol rate

of 1 Msym/s for the maximum 4 × 4 spatial-multiplexing setup, as shown by Fig-

ure 5.11. This value increases to 4 Msym/s and 10 Msym/s for the 3 × 3 (Figure 5.12)

and 2 × 2 (Figure 5.13) cases respectively. However, it should be noted that the IteRX

chip outperforms its unconstrained non-iterative counterpart for up to 5 Msym/s for

4× 4, 15 Msym/s for 3× 3 and 29 Msym/s for 2× 2 spatial multiplexing. These results

clearly show that the last few percentage points approaching the ideal IDD spectral

efficiency are the most expensive from the hardware point of view.

The middle and bottom plots in Figure 5.10 show respectively the energy effi-

ciency and the power consumption of the different configurations, averaged over a

30 dB operating range (from the minimum achievable SNR of 3 dB up to 33 dB). The

energy efficiency grows until a further increase of Nsd does not provide any relevant

gain and it is necessary to have multiple parallel IteRX instances. At that point, dou-
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Figure 5.12: Spectral efficiency and average number of IDD iterations for 3 × 3 an-
tennae with a 4 Msym/s symbol rate and AMC optimised for spectral
efficiency.

bling Nidd corresponds to doubling both the power consumption and the throughput,

resulting in an unchanged efficiency.

Interestingly, for large symbol rates the energy efficiency slightly decreases for

a higher MT, despite the higher communication throughput. This is due to the in-

creased hardware requirements and, correspondingly, power consumption, which

more than compensates the throughput increase. A side effect of this observation

is that, from the receiver point of view, the most energy-efficient way, even if only

by few percentage points, to achieve a target goodput is using fewer antennae and a

wider bandwidth, in analogy to the remarks in Sections 5.3.1 and 5.3.2 concerning the

usage of smaller QAM constellations to optimise goodput and energy efficiency.

While energy efficiency is usually the primary evaluation metric for mobile de-

vices, power consumption may become the main limiting factor in deciding how

many IteRX instances can be used. If the power dissipation is too high, a cooling

system is required which may not be compatible with the device under consideration
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Figure 5.13: Spectral efficiency and average number of IDD iterations for 2 × 2 an-
tennae with a 10 Msym/s symbol rate and AMC optimised for spectral
efficiency.

(e.g., a smartphone or a tablet). Although the average power over the complete oper-

ating range is below 1 W for all the analysed setups, there are single SNR operating

points where the power reaches peaks up to five times higher than the values shown

in Figure 5.10 (with a maximum of 5 W for the 4 × 4 case at 40 Msym/s). Therefore,

the application of high-end setups might be currently limited to larger devices, such

as laptops, or even mains-powered units, such as wireless access points. A way to mit-

igate this issue is using power consumption as the target of the optimisation process

described in Section 5.1.4, thus trading off spectral efficiency for power.

5.5.1 Supply Voltage Scaling Benefits

Dynamic supply voltage scaling (DVS) [124] is nowadays a widely applied technique not

only in general-purpose processors but also in embedded systems. On the one hand,

DVS enables energy savings by reducing the supply voltage Vdd when the circuit is

not fully utilised and there is room for slowing down its clock frequency. On the
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other hand, applying a higher Vdd than the nominal value, within the technology

limits, extends the operating range of the design when the requirements exceed the

nominal performance. The goal of the following analysis is to observe how the area,

power and energy requirements identified in the previous section to serve different

symbol rates change when DVS is applied to the IteRX design.

In the particular case considered in this thesis, DVS can be used in two ways:

• Vdd downscaling: the IDD receiver supports a higher rate than the maximum

specified symbol rate Bs,max, for instance due to good channel conditions or

to a low-complexity MCS; instead of idling the circuit, its frequency can be

decreased to match the maximum symbol rate requirement by downscaling the

supply voltage, thus saving a significant amount of energy.

• Vdd upscaling: the IDD complexity is too high for the silicon implementation to

support the minimum required symbol rate Bs,min; upscaling the supply voltage

and increasing the clock frequency can compensate the complexity overhead

and extend the operating range of the receiver.

The quantitative benefits of DVS for IDD processing are analysed in this sec-

tion based on the post-silicon measurements of the IteRX chip. The dependency

of frequency, power and energy on the supply voltage is modelled as described in

Section 4.3.1.4. Both the supply voltage and the clock frequency are assumed to be

continuously variable, with 0.95 V ≤ Vdd ≤ 1.40 V. Clearly this capability comes at

the price of a more sophisticated circuitry to regulate the voltage and generate the

clock signal compared to a non-DVS system. Furthermore, an additional power man-

agement block is needed to dynamically decide how Vdd should be scaled and steer

the voltage regulator and the clock generator blocks accordingly. In this section, the

silicon area overhead associated with DVS is neglected since the focus is on the digital

signal processing subsystem implemented in the IteRX chip.

DVS is herein applied according to the two cases previously described. If the

symbol rate supported by the receiver at the nominal supply voltage of 1.20 V lies

between the minimum and the maximum requirements, no scaling is applied. If

Bs,min cannot be served, the clock frequency and hence the throughput of the design

can be increased by upscaling Vdd by up to 30 % (i.e., a factor 1.308 at Vdd = 1.40 V)

with respect to the nominal values. If this increase is still not sufficient to support

Bs,min, the setup is considered unusable and discarded by the optimisation process.

At the other end of the supply voltage range, energy savings of up to 37 % (i.e., a

factor 0.627 at Vdd = 0.95 V) are possible when the receiver capabilities exceed Bs,max.

The twofold advantage of DVS can be observed in Figure 5.14, which considers

the IteRX chip in a 4 × 4 AMC scenario with a 20 Msym/s symbol rate. On the one

hand, by increasing Vdd DVS shifts the spectral-efficiency curve towards the limit

in several cases by 1 dB, especially for 16- and 64-QAM modes. In all the other SNR

points where spectral efficiency cannot be upgraded, significant energy savings can be

achieved, with an efficiency increase of 60 % whenever Vdd can be reduced to 0.95 V.

An important aspect of the IteRX design can be observed in the third plot from the

top in Figure 5.14. This plot shows the utilisation of the hardware, as defined in (5.10)
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Figure 5.14: Benefits of DVS for a 4× 4 AMC system optimised for spectral efficiency
with a 20 Msym/s symbol rate.
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and here converted to a percentage. This metric is equivalent to the percentage of time

during which receiver is actively processing data. Due to the nature of the algorithms

implemented by the design, particularly for the MIMO detection, the utilisation varies

over a large range, dropping to 20 % in high SNR if no DVS is applied.

This characteristic is the evidence that the hardware implementation is dimen-

sioned for the few operating points with the highest complexity. Although it could be

regarded as a disadvantage, this property results in plenty of room for energy savings

by downscaling Vdd in most operating points. This solution is not possible with fixed-

complexity algorithms, whose hardware implementations are typically designed for a

100 % utilisation throughout the complete operating range. Such a system can have a

higher efficiency in the points where a variable-complexity one has its runtime peaks.

However, over the complete SNR range the lack of scalability can be an issue.

The utilisation plot in Figure 5.14 also shows that, without DVS, the design may

never reach a 100 % utilisation. The reason is that finding a receiver setup which

exactly matches the required throughput is difficult. Moreover, among the setups that

achieve the same spectral efficiency, the optimisation process selects the most energy-

efficient one, which typically corresponds to the lowest utilisation. In such cases, DVS

can be used to either enable the usage of a setup capable of a higher spectral efficiency

(e.g., with more IDD iterations) or, alternatively, save energy.

As the utilisation decreases in high SNR or with a lower symbol rate, the average

dynamic power gradually decreases as well. However, energy efficiency does not

increase indefinitely due to the static power consumption, which determines an upper

bound. In the case depicted in Figure 5.14, this upper bound corresponds to the ratio

between the maximum throughput of 400 Mbit/s (for a 4× 4 64-QAM setup with code

rate 5/6 and symbol rate 20 Msym/s) and the static power consumption of 76.8 µW (at

Vdd = 0.95 V), which yields 5210 bit/nJ. Clearly this upper bound does not play a role

in the IteRX chip due to the low-leakage technology employed for the implementation.

However, static power may become a limiting factor for more advanced technology

nodes and in that case it needs to be addressed by specific techniques, such as power

gating [130].

The benefits of voltage scaling can be extended to the scalability analysis presented

in Section 5.5. The higher efficiency of a system with DVS enables the receiver to serve

the same symbol rate with fewer hardware resources, while achieving a higher overall

energy efficiency. This point is shown by Figure 5.15, which compares area, energy

efficiency and power consumption metrics for serving different symbol rate require-

ments with (solid lines) and without (dotted lines, same as shown in Figure 5.10) DVS.

The usage of DVS, even in the limited range between 0.95 V and 1.40 V, enables area

savings of 20 % and an increase of the average energy efficiency by nearly 70 % (for a

4 × 4 setup with 40 Msym/s symbol rate). The (Nidd, Nsd) configurations required to

sustain the different symbol rates in the presence of DVS are reported in Table 5.2.

To summarise, voltage scaling is particularly beneficial for a design with variable

runtime, whose performance can be upgraded in the critical operating points while

improving the average energy efficiency over the full operating range. In the IteRX

design, given the different runtimes of the detector and decoder, there is additional
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Figure 5.15: Area requirements, energy and power consumption for different sym-
bol rates and numbers of MIMO streams with and without DVS.
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Bs [Msym/s] 1 2 5 10 20 40

2 × 2

Nidd 1 1 1 1 1 2

Nsd 1 1 2 4 8 8

3 × 3

Nidd 1 1 1 1 2 3

Nsd 1 2 5 9 9 12

4 × 4

Nidd 1 1 1 2 4 7

Nsd 3 5 13 13 13 15

Table 5.2: Requirements to achieve the ideal spectral efficiency (within 10 %) for dif-
ferent symbol rates with DVS.

room for improvement which could be exploited by implementing two separate power

domains. Since the detector dominates the runtime near to the spectral efficiency

bound, leaving the decoder idle for relatively long times, separate power domains

would allow extra energy savings especially in the decoder. Such benefits come at the

price of a more complex power supply circuitry and level shifters for the inter-domain

signals, which entail an increased design and verification effort.

5.6 Comparisons

A thorough analysis of the IteRX design has been carried out throughout this chap-

ter. A consistent comparison to other similar implementations is unfortunately not

possible due to several reasons. First of all, only one other MIMO IDD silicon im-

plementation has been reported in the literature so far, to the best of the author’s

knowledge. However, the data provided by [116] is limited to a few operating points

and relates to the single PEs, rather than the joint baseband processing. Therefore,

this design could only be compared to the IteRX chip in terms of peak efficiency, as

shown in Section 4.4.

Similarly, a number of complete non-iterative MIMO receivers are reported in the

literature (a fairly exhaustive list can be found in [169]). However, the implementation

results are given either for the complete baseband and RF (if included) as a whole or

for the single isolated components (e.g., in [168]), making a consistent comparison

with the results presented in this thesis problematic. Furthermore, hardware imple-

mentation results typically refer to a single setup and operating point, which is a very

limited perspective for a modern communication system, as shown in this thesis.
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Several implementations of the single MIMO IDD components, i.e., the detector

and the channel decoder, are available for comparison; relevant references are listed in

Section 3.3 for the detector and in [34] and [129] for the decoder. Based on the single

components, a few attempts were made to provide initial estimations for a complete

IDD receiver (e.g., in [88], [148], [169] and [123]).

In view of these issues, the next sections compare the spectral efficiency of the

IteRX implementation with the spectral efficiency that can be ideally achieved by

relevant alternative algorithms. Firstly, the benefits of selective IDD with respect to

non-iterative detection and decoding are highlighted. Secondly, the IteRX receiver is

compared to an MMSE-PIC-based IDD system. The comparisons also list the hard-

ware requirements for the IteRX design to outperform the alternative algorithms.

5.6.1 Selective IDD vs. Non-Iterative Detection and Decoding

An important goal of this thesis is to assess the hardware implementation costs of

MIMO IDD, particularly in comparison with existing non-iterative schemes. Since a

consistent comparison with literature data is not possible due to the aforementioned

reasons, in this section the maximum spectral efficiency achievable by a non-iterative

receiver composed of a soft-output SD detector and the same LDPC decoder used in

the IteRX design is taken as the base reference. This case corresponds to the upper-

bound performance of the IteRX system limited to a single IDD iteration.

Table 5.3 summarises the minimum hardware requirements for the IteRX design

to match or outperform the non-iterative reference spectral efficiency over the com-

plete operating range, for different symbol rate constraints. The area savings with

respect to a receiver capable of approaching the ideal IDD spectral efficiency (see Ta-

ble 5.1) are very significant, reaching 68 % for a 4× 4 setup with a 40 Msym/s symbol

rate. Reversing the point of view, these area savings correspond to the area overhead

required to move the spectral-efficiency curve from the non-iterative case towards the

ideal IDD performance. These numbers confirm that the increase of the implementa-

tion costs becomes steeper as the system approaches the channel capacity limit.

5.6.2 SD-Based IDD vs. MMSE-PIC-Based IDD

Sphere decoding is not necessarily an obvious choice when selecting which detection

algorithm to implement in a MIMO IDD receiver, due to its rapidly increasing com-

plexity at low SNR and to its variable runtime. The main motivation to opt for sphere

decoding, as explained in Chapter 2, is its superior communication performance to-

gether with its robustness to different channel conditions and error-correcting codes.

This observation stems from the algorithmic comparison in Chapter 2, mostly based

on classical error-rate curves.

A more comprehensive approach is to look at the spectral-efficiency curves achiev-

able by the algorithms, computed according to (5.7) without taking into account the

limitations of the hardware implementation. Figure 5.16 shows such curves for a

floating-point MMSE-PIC detector combined with an LDPC SPA (blue curve) and an
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Bs [Msym/s] 1 2 5 10 20 40

2 × 2

Nidd 1 1 1 1 1 1

Nsd 1 1 1 2 4 7

3 × 3

Nidd 1 1 1 1 1 2

Nsd 1 1 2 3 7 7

4 × 4

Nidd 1 1 1 1 2 3

Nsd 1 2 5 10 10 14

Table 5.3: Requirements for the IteRX architecture to match or outperform its non-
iterative counterpart for different symbol rates.

LDPC OMS (red curve) decoder after six IDD iterations; it should be noted that no

further noticeable performance gain is observed with Iidd > 6. Interestingly, both

curves are derived from floating-point algorithms without any hardware implemen-

tation loss and yet they suffer a significant penalty with respect to the IteRX limit

curve, up to 3 dB for 16- and 64-QAM modes. This gap is due to the inferior per-

formance of MMSE-PIC with respect to STS SD, especially in combination with high

code rates, as observed in Section 2.4.

In many operating points, particularly when the code rate is higher than 2/3,

MMSE-PIC-based IDD cannot even outperform a non-iterative SD-based receiver.

Only for 4-QAM modes the gap among the different curves tends to close. In [148]

it is shown that for an IEEE 802.11n LDPC code with R = 1/2, MMSE-PIC needs

three IDD iterations to outperform non-iterative soft-output sphere decoding, in a

fixed 4 × 4 64-QAM setup. The previous observations on Figure 5.16 confirm that the

benefits of MMSE-PIC over non-iterative SD are limited to very few operating points

whereas the drawbacks are visible on a wider range. It should be noted that this con-

clusion does not necessarily apply to other channel codes with a worse non-iterative

performance but a higher gain over iterations (e.g., convolutional codes).

Table 5.4 summarises the hardware requirements for the IteRX design to match or

outperform over the complete SNR range the ideal spectral efficiency of MMSE-PIC

detection in combination with LDPC-OMS decoding (red curve in Figure 5.16) at

different symbol rates. These requirements are shown for the sake of completeness.

In practice, based on the previous analysis, if the design goal is achieving the spectral

efficiency of MMSE-PIC, a more efficient choice is to design a non-iterative system

based on soft-output SD.
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Figure 5.16: Spectral efficiency comparison between the IteRX design and two ideal
MMSE-PIC-based IDD receivers for a 4 × 4 AMC setup; the symbol
rate is unconstrained, meaning that each curve represents the spectral
efficiency upper bound of the corresponding receiver.

Bs [Msym/s] 1 2 5 10 20 40

4 × 4 AMC using all available MCSs

Nidd 1 1 1 2 3 6

Nsd 2 4 11 11 14 14

4 × 4 AMC using only MCSs with ηs ≥ 8 bit/s/Hz

Nidd 1 1 1 1 2 3

Nsd 1 2 5 10 10 14

Table 5.4: Requirements for the IteRX architecture to match or outperform an ideal
IDD receiver based on MMSE-PIC detection and LDPC OMS decoding for
different symbol rates (4× 4 AMC setup optimised for spectral efficiency).
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Furthermore, if only high spectral efficiency MCSs with ηs ≥ 8 bit/s/Hz are con-

sidered, the requirements drop significantly, as shown by the lower half of Table 5.4.

In fact, in this case the (Nidd, Nsd) setups are the same needed by the IteRX design

to outperform a non-iterative SD-based receiver (see Table 5.3). This occurs because

in such MCSs the communication performance advantage of the IteRX design over

an MMSE-PIC-based receiver is relatively larger than in low spectral efficiency modes

and hence there is much room to constrain the computational effort.

5.7 Concluding Remarks

The analysis presented in this chapter aimed at proving the importance of a com-

prehensive view on the evaluation of single components or subsystems of a wireless

communication system. To this end, the definition of the proper relevant metrics and

of realistic scenarios applicable to modern systems is key. In the first part of the chap-

ter, efficiency metrics were specified to enable the evaluation of various aspects of the

component behaviour in a system context, taking into account the capabilities and

limitations of both the algorithm and its silicon implementation. The main considera-

tions relate to the data rate, to the efficient use of the available bandwidth and to the

energy consumption.

The communication setup and the receiver settings can be adapted to optimise

any of these targets, exploiting the capabilities of the system to switch among differ-

ent modulation schemes, code rates and, possibly, symbol rates. If a high spectral ef-

ficiency is the priority, large constellations and high code rates are used as extensively

as possible. On the other hand, energy can be saved in the receiver by using modes

with a lower number of bits per channel use. Similarly, for a variable-complexity

receiver, high data rates (i.e., goodputs) are achieved more easily by combining low-

order modulations with high symbol rates than by using higher spectral efficiency

modes, with more bits per channel use, and a lower symbol rate.

Aside from these general remarks, throughout the chapter it has been shown how

the usage of iterative detection and decoding can improve the performance of the

system, particularly in terms of spectral efficiency, even taking into account the lim-

itations of the hardware implementation. The costs of this advanced technique were

analysed, showing that from a system perspective the energy and latency overhead is

relatively small. Subsequently, the hardware requirements to support MIMO IDD for

different numbers of spatially-multiplexed streams and symbol rates were derived.

This analysis showed that IDD can be already beneficially applied to a high data

rate MIMO system, especially when factoring in the potential of techniques that are

nowadays standard in commercial silicon implementations, such as supply voltage

scaling.
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Conclusions and Outlook

Spatial-multiplexing MIMO has been adopted in recent wireless communication stan-

dards to boost the data rate and to effectively exploit the limited resources available

in today’s crowded frequency spectrum. Applying iterative detection and decoding

to a MIMO system enables the further enhancement of the spectral efficiency. This

signal processing approach has been studied extensively on an algorithmic level and,

more recently, also in the perspective of hardware implementation.

This thesis described the process of implementing a MIMO IDD receiver in sil-

icon, from the initial algorithmic analysis to the characterisation of the fabricated

prototype, which is the first one of its kind reported in the literature, to the best of the

author’s knowledge. In this final chapter, the main steps and contributions are first

summarised and then a few concluding remarks based on the implementation results

are given. Finally, a number of suggestions for possible future research directions are

listed, that build upon the ideas presented in this thesis.

6.1 Summary

The implementation of any wireless receiver component always follows a preliminary

analysis of the available options from an algorithmic standpoint. MIMO IDD pro-

cessing consists of the interaction of two components, i.e., the MIMO detector and the

channel decoder. Accordingly, in Chapter 2 the most prominent soft-input soft-output

algorithms suitable to realise the two functionalities were surveyed and compared in

terms of communication performance. A key point of such an analysis is that it can-

not be limited to a single isolated component and operating scenario, which gives

an incomplete perspective. Therefore, in order to avoid misguided design decisions,

several detector/decoder combinations were tested under different conditions.

Although the algorithmic analysis is very valuable, hardware-related considera-

tions must be included in the process of selecting the algorithms for the implementa-

tion. To this end, Chapter 3 described the first silicon implementation of a soft-input

soft-output depth-first sphere decoder. While this max-log MAP optimal algorithm

provides the best all-round communication performance for MIMO detection, its sil-

icon feasibility and area/energy implementation costs had not been previously as-

sessed by post-fabrication measurements. The complexity of SD can be tuned to the

channel conditions and to the target error rate, which enables its hardware imple-

mentation to achieve the max-log MAP optimal performance while reaching very

competitive efficiency figures at high SNR.

173
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This ability to trade off efficiency vs. performance is a distinguishing trait of

sphere decoding, making it the algorithm of choice for the MIMO detection func-

tionality in the MIMO IDD receiver prototype presented in Chapter 4. On the other

hand, channel decoding was realised by an IEEE 802.11n-compliant LDPC decoder,

characterised by good error-correcting capabilities and at the same time well-suited

for a high-throughput multi-mode hardware implementation. Similarly to sphere de-

coding, LDPC decoding can span the efficiency vs. performance tradeoff by varying

the number of its inner iterations. After finalising the choice of the two algorithms,

several heuristic techniques were introduced in Chapter 4 to reduce the complexity of

the MIMO IDD receiver, without compromising its communication performance.

After optimising the system on the algorithmic level, a MIMO IDD architecture

was introduced based on a ping-pong interleaved schedule between the detector and

the decoder, which maximises the throughput. While the basic sphere decoding and

LDPC decoding components mostly built upon formerly existing architectures, the

challenges of assembling them into an efficient system were tackled in Chapter 4.

First of all, multiple SD instances were put together to form a high-throughput

detector. In order to approach the ideal speedup achievable by parallelisation, the

I/O logic was designed to load and store one received symbol vector per cycle. Fur-

thermore, several scheduling policies were analysed to enable the detector to meet

real-time deadlines with a minimum impact on the communication performance. The

resulting architecture is highly scalable and was proven on gate level not to suffer

from any penalty in terms of maximum clock frequency for up to 64 SD instances.

The second main challenge in the MIMO IDD receiver implementation is the

design of a shared LLR memory accessible by both processing elements without

throughput penalties. This goal was achieved by a custom standard cell-based mem-

ory architecture capable of serving the high bandwidth required by the LDPC de-

coder. In conjunction with a specialised address generation and alignment unit, this

architecture can also deal with the varying access patterns of the MIMO detector. The

implementation issue of interfacing the memory with different clock domains at dif-

ferent times was solved by switching its clock to that of the connected PE, rather than

introducing extra latencies by synchronising the data signals at the interface.

The receiver architecture was implemented in a 65 nm low-power CMOS technol-

ogy with five SD instances. The prototype can achieve throughput figures well above

1 Gbit/s and is capable of approaching the max-log MAP performance at low SNR, by

trading off efficiency vs. performance. An extensive exploration of this tradeoff was

presented in Chapter 5. The analysis takes into account the communication system

constraints, such as the symbol rate, and how they relate to the hardware implemen-

tation metrics. The many parameters that can be configured in the receiver and in the

communication system were optimised with respect to different targets, such as the

spectral efficiency, the goodput and the energy efficiency of the system. The results

show that significant gains can be achieved in the specific metric targeted by the opti-

misation. Furthermore, the benefits of MIMO IDD were shown in Chapter 5 and the

costs for deploying it in a modern communication system were quantified based on

the measurements performed on the silicon prototype.
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6.2 Conclusions

The key target of this thesis is to assess the feasibility of iterative detection and de-

coding in multi-antenna systems and quantify not only the implementation costs in

terms of area and energy efficiency but also the advantage in terms of spectral effi-

ciency with the current silicon technology. As shown by the results in Chapter 5, the

spectral efficiency characteristic of a 4 × 4 MIMO system moves by 1 dB to 2 dB closer

to the channel capacity by introducing detector/decoder iterations, depending on the

modulation order and code rate. This gain can be exploited to increase the data rates

at a given transmit power or to reduce the transmit power and maintain the same

spectral efficiency.

The area and energy overhead associated to the more complex signal processing

in the receiver was extensively analysed in Section 5.5. In particular, the requirements

for the receiver to serve a given symbol rate and number of spatially-multiplexed

data streams were listed. These results lead to an interesting question: how would

the deployment of a MIMO IDD receiver impact the characteristics of current mobile

wireless devices?

To answer this question, the battery life of the current (at the time of writing

this dissertation) devices is considered based on publicly available tests, such as [16]

and [18]. Of special interest are the tests concerning the lifetime achieved by web

browsing over a WiFi connection, which for instance amounts to approximately 10 h

for a typical smartphone. By dividing the capacity of the battery (which is usually

specified in Wh in the datasheet of the device) by the lifetime, the average power

consumption of the device, including all its components, can be derived:

battery lifetime =
battery capacity

device power
. (6.1)

It is herein assumed that including the MIMO IDD receiver would simply increase

the power consumption by the amount dissipated by the IteRX design with dynamic

voltage scaling averaged over the full SNR operating range, as shown in Figure 5.15,

which yields:

battery lifetime w. IteRX =
battery capacity

device power + IteRX power
. (6.2)

To derive a constraint on the power allowed for the IDD receiver component, the

maximum acceptable decrease in the battery lifetime due to IDD processing is set to

10 %, i.e.,

battery lifetime w. IteRX > 0.9 × battery lifetime. (6.3)

This condition results in:

IteRX power <
device power

9
. (6.4)
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This constraint, combined with the data plotted earlier in Figure 5.15, enables the

identification of the maximum number of MIMO streams and symbol rate that can be

supported by a mobile IDD device with a given power consumption, at a maximum

battery lifetime reduction of 10 %.

Figure 6.1 summarises the results of this survey. The dotted lines correspond

to the power consumption boundaries. The most recent smartphones, for instance,

have battery capacities ranging up to 9 Wh and achieve a lifetime of around 10 h in a

typical WiFi Internet usage scenario, resulting in a power constraint of 100 mW on the

MIMO IDD component. The maximum symbol rates that can be served by the IteRX

design with such a power limit are around 5 Msym/s for 4 × 4, 12 Msym/s for 3 × 3

and 26 Msym/s for 2 × 2 antennae. The maximum data rates corresponding to these

points, achieved with a 64-QAM modulation and a code rate of 5/6, are 100 Mbit/s,

180 Mbit/s and 260 Mbit/s respectively and they are annotated in the plot1.

As the physical size of the device grows, its battery size and capacity increase

accordingly, while the lifetime tends to stay constant or even decrease. Therefore,

the power constraint on the receiver becomes less restrictive. Six main categories of

devices that can be identified in the current market are considered:

• Smartphones, intended for a primary use as a mobile phone but also capable of

performing more advanced tasks such as web browsing, email and navigation.

The power constraint is set to 100 mW.

• Phablets, which have all the functionalities of a smartphone but have a larger dis-

play (typically between 5 in and 7 in) to facilitate the tasks that require intensive

user interaction. The maximum power constraint grows to 200 mW.

• Small tablets, mainly intended for highly interactive tasks, including gaming,

and designed to be portable (with a screen size around 7 in to 8 in) but not to be

carried around in a pocket. The maximum power constraint is 300 mW.

• Large tablets, similar to small tablets but less portable due to the larger screen

size of 9 in to 10 in. The maximum power constraint is 400 mW.

• Ultrabooks, which are light-weight highly-portable laptops, with screen sizes

from 11 in to 13 in. The maximum power constraint is 800 mW.

• Laptops, which are the least portable devices in this list, with a display larger than

13 in, and can be used to fully replace a desktop computer. The IDD receiver is

allowed a power consumption above 800 mW.

As the power constraint becomes more relaxed, higher symbol rates can be supported

by the MIMO IDD receiver without excessively impacting the battery lifetime, which

is a key factor in the user experience of a mobile device. Therefore, while small devices

such as smartphones can only support data rates up to a few hundred Mbit/s, the

larger devices with a keyboard can operate above the 1 Gbit/s threshold.

1 It should be noted that, for simplicity, the computation of these data rates does not consider any
overhead due for instance to pilot symbols to estimate the channel, guard bands to reduce inter-
symbol interference or redundancy inserted by the upper protocol layers.
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Figure 6.1: Applicability of the MIMO IDD implementation presented in this thesis
to current mobile devices.

An interesting aspect that emerges from Figure 6.1 is that, for a given power con-

straint, the highest data rates are achieved with the lowest number of MIMO streams.

For instance, 2 × 2 configurations more than double the maximum data rate of 4 × 4

setups, mostly due to the exponential increase of the MIMO detection effort with the

number of streams. Of course a higher data rate can only be achieved in modes with

fewer streams by a much increased symbol rate. If bandwidth is a major concern,

higher spectral efficiency modes with more streams are therefore the best choice. As

an example, for a given symbol rate of 25 Msym/s, increasing the number of antennae

from 2× 2 to 3× 3 raises the data rate from 250 Mbit/s to 375 Mbit/s; a further exten-

sion to 4 × 4 antennae results in a data rate of 500 Mbit/s. The faster communication

comes at the cost of roughly doubling the power consumption with each additional

MIMO stream.

It should be noted that the previous considerations are entirely related to the base-

band processing and do not take into account the issues arising from the integration
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of more than two antennae on devices with a small form factor and the increasing RF

overhead for higher numbers of antennae.

Furthermore, the area of the MIMO IDD receiver is not constrained. This as-

sumption stems from the observation that the size of the IteRX implementation is

very small compared to the area occupied by the application processors deployed in

current smartphones. For instance, in 28 nm CMOS technology the Apple A7® and

the Qualcomm Snapdragon 800® processors, which are two of the currently most

advanced chips that can be found in a smartphone, have a die size of 102 mm2 and

118 mm2 respectively [12, 17]. These areas correspond to 37 and 42 IteRX chips re-

spectively, when fabricated using 65 nm technology, and to 198 and 229 IteRX chips

respectively, when technology scaling to 28 nm is applied to the IteRX design. It is

therefore reasonable to assume that power and energy are the major limiting factors

in the implementation of the baseband processor rather than area.

Even if meant to provide orders of magnitude rather than exact numbers, Fig-

ure 6.1 gives a good indication of the current applicability of MIMO IDD to different

mobile devices. It shows that this signal processing technique is not only feasible but

already beneficial for the communication setups of up to 4× 4 antennae and 64-QAM

modulation which are considered in this thesis.

At the basis of this result is the approach to the design process. A tight integra-

tion of the algorithmic and hardware development is necessary to enable an efficient

silicon implementation. Hardware-related aspects must be already considered in the

initial algorithmic analysis. In view of this observation, scalable algorithms were

chosen, with a tunable complexity vs. performance tradeoff. The resulting imple-

mentation can on the one hand approach the optimal communication performance, at

a certain efficiency cost, and on the other hand achieve high efficiency figures when

the SNR allows suboptimal configurations of the algorithm to be used.

This energy-proportional characteristic, which spends only as much effort as re-

quired by the use case, is particularly important because the operating points where

the maximum effort is needed are relatively few compared with the wide range of

channel conditions that the receiver has to face, as shown in Chapter 5. Therefore, a

high efficiency in the presence of favourable operating conditions is very important

in the average use of the receiver.

Including hardware-related considerations from the very beginning is only the

first part of the algorithm/architecture co-design process. Once the algorithms have

been selected, their complexity can be addressed more specifically and reduced in

view of the hardware implementation. Having at least a preliminary idea of the

architecture helps in the devising of techniques that can reduce the runtime at neg-

ligible implementation costs in terms of area and frequency. This design approach

enabled, for instance, the reduction of the detector runtime by more than 60 % in rel-

evant operating points, as shown in Section 4.1. Furthermore, the component under

development must be analysed in the context of the communication system to which

it belongs. As an example, the detector fixed-point formats can be minimised dif-

ferently depending on the channel decoder, with relevant repercussions on the final

silicon area, as shown in Chapter 4.
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Once the design and implementation process is complete, a thorough evaluation

of the results has to be carried on. Following on from the analyses presented in [148]

and [169], the importance of combining algorithmic and hardware metrics is shown

throughout this thesis. Looking at these two highly correlated kinds of metrics sep-

arately only provides a partial picture of the actual behaviour of a communication

component. Hardware efficiency results are, for example, only meaningful if the cor-

responding error-rate performance is acceptable.

A comprehensive analysis of all possible operating modes and conditions, even if

very time consuming, is essential for a correct judgement on the hardware implemen-

tation results. Such an analysis often shows that the “best” implementation varies

depending on the use case, due to the large efficiency vs. performance tradeoffs that

characterise the wireless communication domain.

6.3 Outlook

The baseband receiver prototype designed and fabricated in the context of this thesis

shows the applicability of the IDD principle to current wireless MIMO communica-

tion systems. However, the costs of this solution in terms of silicon area and energy

consumption can still be rather high. The first natural step is to improve the hard-

ware implementation presented in this dissertation. For instance, the on-chip power

distribution could be optimised. Splitting up the detector and the decoder into two

separate power domains would enable independent voltage scaling for the two PEs,

with relevant energy savings primarily on the decoder side. Even though technology

scaling gives diminishing returns below 90 nm, using the latest CMOS technology

(e.g., 28 nm or 22 nm) would further extend the applicability of MIMO IDD in the

mobile device landscape shown in Figure 6.1.

Additional optimisations on the architectural level would be possible by restricting

the flexibility of the proposed design, for instance in terms of the number of antennae,

or by fixing the symbol rate requirement for the receiver. Such optimisations are out

of the scope of this thesis since its intent is to cover a wide range of different modes,

as required by modern communication standards.

On a higher level of abstraction, several interesting questions remain open to fur-

ther investigations. From the detector standpoint, sphere decoding is not the only

option available and might become impractical as the number of MIMO streams and

the QAM constellation size grow. IEEE 802.11ac has, for example, already intro-

duced 8 × 8 256-QAM setups [80]. In such cases, the complexity of linear detection

algorithms, such as MMSE-PIC or the improved EP-MMSE introduced in [137], is

expected to scale more mildly. Achieving good communication performance with a

manageable detection complexity is regarded as one of the main challenges in the

design of modems for future standards such as LTE advanced [21].

Another potentially interesting approach is a hybrid detector which uses different

algorithms depending on the use case. For instance, when a low-order modulation

such as 4 QAM is chosen, MMSE detection can provide very similar spectral efficiency
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to a max-log MAP detector, as shown in Figure 5.16. Even an exhaustive search

can be a valid option when MTQ ≤ 8, as shown in [37] for ML detection. More

generally, the detector comparison in Chapter 3 has proven how different algorithms

and implementations offer advantages in different use cases. Therefore, integrating

two different architectures and using the one that at any given time provides the

highest efficiency while shutting down the other might be beneficial. Moreover, the

switching could be activated not only when changing mode and operating conditions

but also between different IDD iterations.

As for the channel decoder, the LDPC option provides a very good tradeoff be-

tween communication performance and implementation efficiency, both in terms of

throughput and energy. However, other options are also viable, such as convolutional

codes that can outperform the IEEE 802.11n LDPC codes over multiple IDD itera-

tions, as shown in Chapter 2. This raises two interesting questions, firstly concerning

how an IDD receiver based on BCJR decoding would compare to the IteRX design

and secondly concerning the possibility of designing LDPC codes optimised for IDD

receivers, as described in [159], and including them in communication standards.

A further possible extension to the proposed MIMO IDD receiver would be to

include a channel estimator in order to observe the behaviour of the receiver in a

more realistic setup. Such a component could also make use of the soft information

computed by the channel decoder, as proposed in [134], resulting in an additional

iterative loop within the receiver.



Appendix A

IteRX Chip Power Consumption

The results of the power consumption measurements performed on the IteRX chip

are synthesised into multidimensional tables which take into account the different

parameters affecting power, as explained in Section 4.3.1. These tables are listed in

the following, first for the detector and then for the decoder.

A.1 MIMO Detector Measurements

The data reported in this section refer to the dynamic power consumption, measured

in mW, of the MIMO detector with all five sphere decoder cores active at nominal Vdd

(1.2 V) and maximum clock frequency (135 MHz). The considered input variables are:

• Number of MIMO streams, equal to MT under the assumption that MT = MR;

• Modulation order |O|;

• Clipping value Γ, as defined in (4.4);

• IDD iteration index iidd.

MT = 2

|O| = 4 |O| = 16 |O| = 64

Γ
iidd

Γ
iidd

Γ
iidd

1 ≥ 2 1 ≥ 2 1 ≥ 2

0 130.31 145.73 0 115.28 140.77 0 104.08 148.93

1 134.67 148.54 1 123.60 147.94 1 116.58 156.89

2 139.03 151.36 2 131.92 155.12 2 129.08 164.85

3 151.80 163.47 3 155.90 178.27 3 160.22 192.17

4 164.57 175.58 4 179.88 201.42 4 191.36 219.50

5 159.20 171.51 5 174.17 193.78 5 184.05 209.97

6 153.84 167.45 6 168.46 186.14 6 176.74 200.44

Table A.1: MIMO detector power consumption in mW (MT = 2).
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MT = 3

|O| = 4 |O| = 16 |O| = 64

Γ
iidd

Γ
iidd

Γ
iidd

1 ≥ 2 1 ≥ 2 1 ≥ 2

0 146.09 164.65 0 136.64 173.11 0 123.10 185.25

1 153.33 170.35 1 147.95 180.04 1 140.54 190.07

2 160.57 176.06 2 159.26 186.97 2 157.98 194.89

3 174.85 188.09 3 179.76 203.77 3 184.10 214.57

4 189.14 200.12 4 200.26 220.57 4 210.23 234.26

5 191.97 205.98 5 203.01 222.04 5 213.45 237.89

6 194.81 211.85 6 205.77 223.52 6 216.68 241.53

Table A.2: MIMO detector power consumption in mW (MT = 3).

MT = 4

|O| = 4 |O| = 16 |O| = 64

Γ
iidd

Γ
iidd

Γ
iidd

1 ≥ 2 1 ≥ 2 1 ≥ 2

0 156.66 177.94 0 153.74 189.23 0 140.58 179.05

1 163.47 181.25 1 161.20 196.61 1 160.19 198.03

2 170.28 184.56 2 168.66 203.99 2 179.81 217.02

3 179.43 194.94 3 185.52 214.89 3 192.17 225.31

4 188.58 205.33 4 202.38 225.79 4 204.53 233.60

5 191.35 207.86 5 207.18 229.99 5 211.34 238.55

6 194.12 210.40 6 211.98 234.20 6 218.16 243.50

Table A.3: MIMO detector power consumption in mW (MT = 4).
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A.2 LDPC Decoder Measurements

The dynamic power consumption data of the LDPC decoder refers to the nominal

case of Vdd = 1.2 V and maximum clock frequency 299 MHz. The input variables are:

• Sub-block size Z;

• Code rate R.

Z = 27

R

1/2 2/3 3/4 5/6

79.27 77.53 76.70 74.55

Table A.4: LDPC decoder power consumption in mW (Z = 27).

Z = 54

R

1/2 2/3 3/4 5/6

112.65 108.42 107.22 104.53

Table A.5: LDPC decoder power consumption in mW (Z = 54).

Z = 81

R

1/2 2/3 3/4 5/6

137.52 134.35 134.87 121.61

Table A.6: LDPC decoder power consumption in mW (Z = 81).
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Glossary

Acronyms

3G third generation

4G fourth generation

I/O input/output

AGU address generation unit

AMC adaptive modulation and coding

ARQ automatic repeat-request

ASIC application-specific integrated circuit

BCJR Bahl, Cocke, Jelinek, Raviv

BICM bit-interleaved coded modulation

BICM-ID bit-interleaved coded modulation with iterative decoding

BLER block error rate

CDMA code division multiple access

CMOS complementary metal oxide semiconductor

CN check node (in a Tanner graph)

CPU central processing unit

CRC cyclic-redundancy check

CWER codeword error rate

DIBL drain-induced barrier lowering

DRC design-rule check

DSP digital signal processing

DVB-H Digital Video Broadcasting - Handheld

DVB-S2 Digital Video Broadcasting - Satellite - Second Generation

DVS dynamic supply voltage scaling

ECC error-correcting code

EDGE Enhanced Data Rates for GSM Evolution

EP expectation propagation

ETWS early-termination window size

FCC Federal Communications Commission

FEC forward error correction (or correcting)
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FER frame error rate

FPGA field-programmable gate array

FSD fixed-complexity sphere decoding

FSM finite state machine

GALS globally asynchronous locally synchronous

GDSII Graphic Database System II

GMSK Gaussian minimum shift keying

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile Communications

HDL hardware description language

HSDPA High-Speed Downlink Packet Access

HSPA+ Evolved High-Speed Packet Access

i.i.d. independent and identically distributed

IC integrated circuit

IDD iterative detection and decoding

IEEE Institute of Electrical and Electronics Engineers

LAN local area network

LDD layered detection and decoding

LDPC low-density parity check

LL low leakage

LLR log-likelihood ratio

LTE Long Term Evolution

LVS layout vs. schematic

MAC media access control

MAP maximum a posteriori

MCMC Markov chain Monte Carlo

MCS modulation and coding scheme

MF maximum first

MIMO multiple input multiple output

ML maximum likelihood

MMSE minimum mean square error

MP message passing

MPW multi-project wafer

NCU node computation unit

OFDM orthogonal frequency division multiplexing

OFDMA orthogonal frequency division multiple access

OMS offset min-sum
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ONPC one node per cycle

PAN personal area network

PC personal computer

PCCC parallel concatenated convolutional code

PE processing element

PIC parallel interference cancellation

QAM quadrature amplitude modulation

QC quasi cyclic

QoS quality of service

QRD QR decomposition

RF radio frequency

RTL register transfer level

SCCC serial concatenated convolutional code

SD sphere decoder (or decoding)

SDR software-defined radio

SE Schnorr-Euchner

SNR signal-to-noise ratio

SoC system on a chip

SP standard performance

SPA sum-product algorithm

SRAM static random-access memory

STS single tree search

UMTS Universal Mobile Telecommunications System

US United States

VHDL very high speed integrated circuit hardware description language

VLSI very large scale integration

VN variable node (in a Tanner graph)

WiMAX Worldwide Interoperability for Microwave Access

WLAN wireless local area network

WSN wireless sensor network
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Notation – Signal Processing

d diversity gain

MT number of transmit antennae

MR number of receive antennae

O set of all the complex scalar symbols belonging to a given constellation

OMT set of all the complex symbol vectors originating from a given constel-

lation

Q number of coded bits per complex modulated scalar symbol

Es normalised average energy per complex scalar transmit symbol

No power spectral density of the additive white Gaussian noise

b information bitstream, input to the encoder on the transmitter side

c coded bitstream, output by the encoder on the transmitter side

s transmit symbol vector

H MIMO channel matrix

n additive noise vector

y received symbol vector

yi complex received symbol on receive antenna i

ŝ estimated transmit symbol vector, output by the detector on the receiver

side

b̂ estimated information bitstream, output by the decoder on the receiver

side

Iidd total number of IDD iterations, defined by the number of detector/

decoder runs

iidd index of the current IDD iteration

λ
a vector of a priori LLRs

λ
a,det vector of a priori LLRs input to the detector

λ
a,dec vector of a priori LLRs input to the decoder

λ
p vector of a posteriori LLRs

λ
p,det vector of a posteriori LLRs computed by the detector

λ
p,dec vector of a posteriori LLRs computed by the decoder

λ
e vector of extrinsic LLRs

λ
e,det vector of extrinsic LLRs computed by the detector

λ
e,dec vector of extrinsic LLRs computed by the decoder

λ
p
i,b a posteriori LLR for the b-th bit on antenna i

λa
i,b a priori LLR for the b-th bit on antenna i

λe
i,b extrinsic LLR for the b-th bit on antenna i

R MIMO channel matrix after QRD

Ri,j element (i, j) of the MIMO channel matrix after QRD

ỹ received symbol vector after QRD
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ỹi complex scalar received symbol after QRD on antenna i

si complex modulated scalar symbol on transmit antenna i

s(i) partial transmit symbol vector from antenna i to antenna MT

xi,b binary label for the b-th bit of the complex modulated scalar symbol si

on antenna i

xi bit label for the complex modulated scalar symbol si on antenna i

x bit label for the complex modulated transmit symbol vector s

X
(±1)
i,b set of symbol vectors with the b-th bit on antenna i set to ±1

sML ML symbol vector output by the detector

xML
i,b binary label for the b-th bit on antenna i of sML

xML bit label for the ML symbol vector sML

sML
i,b counter-hypothesis symbol vector for the b-th bit on antenna i of sML

sMAP MAP symbol vector output by the detector

xMAP
i,b binary label for the b-th bit on antenna i of sMAP

xMAP bit label for the MAP symbol vector sMAP

sMAP
i,b counter-hypothesis symbol vector for the b-th bit on antenna i of sMAP

M
(i)
C partial channel-based metric for the scalar symbol si on antenna i

MC(s) channel-based metric for symbol vector s

MC

(

s(i)
)

channel-based metric for partial symbol vector s(i)

MML
C channel-based metric of the ML solution sML

M
(i)
A partial a priori-based metric for the scalar symbol si on antenna i

MA(s) a priori-based metric for symbol vector s

MA

(

s(i)
)

a priori-based metric for partial symbol vector s(i)

M
(i)
P partial general metric for the scalar symbol si on antenna i

MP(s) general metric for symbol vector s

MP

(

s(i)
)

general metric for partial symbol vector s(i)

MMAP
P general metric of the MAP solution sMAP

s
(k)
i symbol candidate selected by enumeration on antenna i at step k, i.e.,

after (k − 1) nodes have been examined on antenna i

s
(k)
A,i symbol candidate selected by MA-based enumeration on antenna i at

step k, i.e., after (k − 1) nodes have been examined on antenna i

s
(k)
C,i symbol candidate selected by MC-based enumeration on antenna i at

step k, i.e., after (k − 1) nodes have been examined on antenna i

r2 sphere radius constraint for the tree search

Λe maximum absolute value allowed for clipped extrinsic LLRs

Γ clipping value, normalised from Λe according to definition (4.4)
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Γcaesar clipping value, normalised from Λe according to definition (3.4)

Nen number of examined nodes in a single detector run

Nen,i number of examined nodes (same as Nen) in the i-th IDD iteration

Nen,c number of examined nodes cumulated over multiple detector runs, i.e.,

over multiple IDD iterations

Nen,max maximum number of examined nodes allowed in a single detector run

N
(i)
en,max maximum number of examined nodes allowed on antenna i

Λ̂
e

correction vector for clipped extrinsic LLRs

Λ̂e
i k-th entry of the correction vector Λ̂

e

λ̂e
i,b corrected extrinsic LLR for the b-th bit on antenna i

Λp LLR threshold for symbol-wise on-demand detection

Λe magnitude of the new LLR for symbol-wise on-demand detection

iỹ index of a given symbol vector within all the vectors in a codeword

Nỹ number of symbol vectors in a codeword

C codebook of an error-correcting code

Ni number of information bits in a codeword

Nc number of coded bits in a codeword (i.e., codeword length)

R code rate

Gb LDPC code generator matrix

Hb LDPC code parity-check matrix

Z sub-block size of IEEE 802.11n LDPC codes

Mp number of rows of an IEEE 802.11n LDPC matrix prototype

Np number of columns of an IEEE 802.11n LDPC matrix prototype

Hp IEEE 802.11n LDPC matrix prototype

Pc cyclic-shift matrix

ck k-th coded bit in the codeword

λ
p
k a posteriori LLR for the k-th bit in the codeword

qv,c Message from variable node v to check node c

rc,v Message from check node c to variable node v

Nvn(c) set of neighbouring variable nodes to check node c

Ncn(v) set of neighbouring check nodes to variable node v

β offset for correcting the messages rc,v in the OMS decoding algorithm

Idec number of LDPC iterations

B bandwidth in Hz

Bs symbol rate in sym/s

Bs,min minimum symbol rate requirement in sym/s

Bs,max maximum symbol rate constraint in sym/s

G goodput in bit/s
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Θi ideal information (or coded) throughput achievable in the absence of

errors, in bit/s

Θi,min minimum ideal information (or coded) throughput achieved at symbol

rate Bs,min, in bit/s

Θi,max maximum ideal information (or coded) throughput achieved at symbol

rate Bs,max, in bit/s

ηs spectral efficiency in bit/s/Hz

Nf total number of decoded codewords (or frames)

Notation – Integrated Circuits

nemu number of parallel instances of a certain component implemented in a

given FPGA-based emulator

MT,max maximum number of transmit antennae supported by a given architec-

ture

Qmax maximum number of coded bits per complex modulated scalar symbol

supported by a given architecture

CC cycle count for a given task

fclk operating clock frequency in Hz

fmax maximum clock frequency in Hz

Vdd operating supply voltage in V

Vdd,n nominal supply voltage in V

Vth threshold voltage in V

Is average static current in A

Ps average static power in W

Pd average dynamic power in W

S feature size ratio between two silicon technologies

U nominal supply voltage ratio between two silicon technologies

Acore area occupied by one SD core in the Caesar chip in GE

Achip core area occupied by the Caesar chip in GE

Ps,core average static power consumed by one SD core in the Caesar chip in W

Ps,chip average static power consumed by the Caesar chip in W

Θcaesar information (or coded) throughput of the Caesar architecture in bit/s

Gcaesar goodput of the Caesar architecture in bit/s

Acaesar area occupied by the Caesar architecture in GE

ηa,caesar area efficiency of the Caesar architecture in bit/s/GE

Pcaesar average total power consumed by the Caesar architecture in W

ηe,caesar energy efficiency of the Caesar architecture in bit/J

CCdet cycle count for detecting a complete codeword (single IDD iteration)
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CCdet
c cycle count for detecting a complete codeword (cumulated over IDD

iterations)

CCdet
c, ideal ideal cycle count for detecting a complete codeword on a multicore

detector (cumulated over IDD iterations)

CCdet
max maximum cycle count allowed for detecting a complete codeword (sin-

gle IDD iteration)

CCdec
it cycle count for one internal decoding iteration

CCdec cycle count for decoding a complete codeword (single IDD iteration)

Aidd area of the IDD receiver in GE

fmax,det maximum clock frequency of the MIMO detector in Hz

fmax,dec maximum clock frequency of the LDPC decoder in Hz

Θpe information (or coded) throughput of a processing element in bit/s

Θdet information (or coded) throughput of the MIMO detector in bit/s

Θdec information (or coded) throughput of the LDPC decoder in bit/s

Θidd information (or coded) throughput supported by the IDD receiver hard-

ware implementation in bit/s

Θidd,c information (or coded) throughput constrained by hardware imple-

mentation and bandwidth requirements, in bit/s

Giterx goodput of the IteRX architecture in bit/s

Gc goodput constrained by hardware implementation and bandwidth re-

quirements in bit/s

ηs,c spectral efficiency constrained by hardware implementation and band-

width requirements in bit/s/Hz

ηa,idd area efficiency of the receiver in bit/s/GE

Ps,idd static power consumed by the receiver in W

Pd,det dynamic power consumed by the detector in W

Pd,dec dynamic power consumed by the decoder in W

ρpe utilisation ratio of a processing element

ρdet utilisation ratio of the MIMO detector

ρdec utilisation ratio of the LDPC decoder

Es,idd static energy consumed by the IDD receiver while processing Nf code-

words, in J

Ed,det dynamic energy consumed by the detector for processing Nf code-

words, in J

Ed,dec dynamic energy consumed by the decoder for processing Nf code-

words, in J

Eidd total energy consumed by the IDD receiver for processing Nf code-

words, in J

Tdet total detector execution time for processing Nf codewords, in s

Tdec total decoder execution time for processing Nf codewords, in s
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Tidd total receiver execution time for processing Nf codewords, in s

Tidd,c total receiver execution time for processing Nf codewords, taking into

account bandwidth constraints, in s

ηe,idd IDD receiver energy efficiency in bit/J

Lidd IDD receiver latency in s

α supply voltage scaling factor

ν frequency scaling factor when using voltage scaling

Nsd number of parallel sphere decoder instances

Nidd number of parallel IDD receiver instances

Ldl downlink latency in s

OWDdl downlink one-way delay in s

OWDul uplink one-way delay in s

RTD round-trip delay in s

Esys energy consumed by a communication system to successfully deliver a

data frame, in J

Etx,data energy consumed to transmit a data frame in J

Erx,data energy consumed to receive a data frame in J

Etx,ack energy consumed to transmit an ACK/NAK in J

Erx,ack energy consumed to receive an ACK/NAK in J
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