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Abstract

Sensor fusion is a growing field within the medical sig-
nal processing community. Traditionally, it is performed
implicitly by the physician when diagnosing the state of a
patient from various measurement modalities such as elec-
trocardiography (ECG), arterial blood pressure (ABP) or
photoplethysmography (PPG). These may represent differ-
ent physical quantities like voltage, pressure or scatter-
ing properties and are modulated by various physiological
conditions and artifacts. Still, they originate from a single
source, the heart. In signal processing, this is known as
a single-input-multiple-output (SIMO) system and several
approaches to estimate the source are known. In this pa-
per, a blind deconvolution approach is chosen and adapted
for physiological signals. The feasibility and robustness is
shown using simulated data. Moreover, the approach is
validated on real data recorded in a polysomnography set-
ting, fusing PPG and Ballistocardiography (BCG).

1. Introduction

The purpose of cardiac monitoring in general is, tech-
nically speaking, to infer the “state” of the heart or, more
general, the state of the patient. Typical parameters are the
heart rate (HR), the heart rate variability (HRV) or stroke
volume (SV), to name only a few. Various modalities ex-
ist, ranging from classical clinical methods like electro-
cardiography (ECG), invasive blood pressure (IBP) mea-
surements or photoplethysmography (PPG) to unobtrusive
monitoring techniques like ballistocardiography (BCG),
capacitive electrocardiography (cECG) or photoplethys-
mography imaging (PPGI). Especially those of the latter
category are very sensitive to noise and motion artifacts,
but even the classical modalities can be severely contam-
inated with artifacts. To overcome this, single- [1] and
multi-modal [2,3] sensor-fusion is seeing increasing atten-
tion, another example being the current “PhysioNet/CinC
Challenge 2014”.

In this article, we propose to interpret the generation of
physiological signals related to the cardiac activity as a

source-filter problem. In speech processing, such a model
is very common [4], where the vocal chords can be con-
sidered as a time-varying quasi-periodic signal generator
and the vocal tract as a time-varying filter. The signal gen-
erator in this single-input single-output model creates an
actual physical signal (air pressure variations) that is mod-
ulated with a physical filter (acoustic impedance of the
vocal tract). In contrast, the source signal considered in
our model can be purely virtual, see Figure 1: The single
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Figure 1. Source-Filter Model for cardiac signals: The
heart creates a (virtual) impulse train that is delayed, fil-
tered and contaminated with noise to create observed sen-
sor outputs.

source, i.e. the heart, generates a quasi-periodic signal, in
this example a train of impulses. In the case of m sensor
channels, this signal is filtered with m delay- and trans-
fer functions that generate the actual physical representa-
tions or (including the sensor transfer functions and adding
noise) the sensor outputs. In the general case, these trans-
fer functions will be non-linear and time-varying. How-
ever, in this proof-of-concept, we will consider the linear,
time-invariant case. This will allow us to apply techniques
from the domain of blind deconvolution used for single-
input-multiple-output (SIMO) systems to this problem. In
[5], an algorithm was presented that allows the estimation
of a source signal and m transfer functions from m ob-
servations without imposing limitations on the source sig-
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nal. In this paper, this algorithm is adapted and its fea-
sibility is analyzed. The paper is structured as follows:
In Section 2, the original algorithm and our modifications
are presented. In 3, it is demonstrated on synthetic data.
The algorithm’s performance is tested on an example of a
polysomnographic dataset in Section 4. The paper is con-
cluded with results and conclusions drawn in Section 5.

2. SIMO Deconvolution Algorithm

The general idea of the algorithm presented in [5] is
to perform the deconvolution process iteratively in the
Fourier domain, where the time-domain convolution is rep-
resented by a multiplication: Let ~x(t) ∈ Rm×1 be the
observed, discrete-time signal, where m is the number of
channels and t ∈ {1, ..., T}. If s(t) is the source signal
and ~n(t) ∈ Rm×1 signifies additive noise,

~x(t) =

q∑
τ=0

~a(τ)s(t− τ) + ~n(t). (1)

Here, ~a(τ) ∈ Rm×1 are the filter coefficients, i.e., the im-
pulse response of each of the m channels, q is the order of
the filters. Transforming into the Fourier domain results in

~X(ω) =

q∑
τ=0

~a(τ)S(ω)e−j2πωτ/T + ~N(ω) (2)

where ~X(ω), S(ω) and ~N(ω) are the Fourier transforms
of their time-domain counterparts. Note that the filter co-
efficients are not transformed but the delay is expressed
explicitly by the term e−j2πωτ/T . This can be rewritten in
matrix notation as

~X(ω) = A · ~E(ω) · S(ω) + ~N(ω), (3)

with the Fourier-domain delay-vector

~E(ω) =
(
1, e−j2πω/T , ..., e−j2πωq/T

)T
(4)

and the matrix of filter coefficients

A = (~a(0),~a(1), ...,~a(q)) . (5)

Let (·)T be the transpose, (·)H the Hermitian transpose
and (·)∗ the conjugation operator. If the filter coefficients
were known and the noise is zero-mean Gaussian, a source
signal that minimizes a quadratic cost function can be ob-
tained through

Sest(ω) =
(
~EH(ω)ATA ~E(ω)

)−1
~EH(ω)AT ~X(ω).

(6)

If the source signal was known, the optimal filter coeffi-
cients could be determined accordingly with

Aest =
(
X∗ ·EST +X ·ESH

)
· (7)(

ES∗ ·EST +ES ·ESH
)−1

with the matrices

ES =
(
~E(1) · S(1), ~E(2) · S(2), ..., ~E(T ) · S(T )

)
(8)

and

X =
(
~X(1), ~X(2), ..., ~X(T )

)
. (9)

For the derivation of Equations 6 and 7, see [5]. In the
original algorithm, the matrix of filter coefficients Aest is
randomly initialized, and an optimal source signal Sest is
determined. Iteratively, filter coefficients and source sig-
nal are optimized, a process called Successive Substitution
Method. This approach was demonstrated to converge,
granted that T � q and m ≥ 2. However, the original
demonstration showed some properties that do not transfer
to our case: First, the source signal S used for demonstra-
tion was a “woman’s voice [...] sampled at 65536 points
with the frequency 22050 Hz”, which, judging from the
figures provided, was non-stationary. Here, we assume
the source to be quasi-periodic, which results in a much
more sparse spectrum. Next, the observed signal ~x(t) with
T = 65536 were created from the source with random fil-
ters of order q = 2, representing an impulse response of
only 1.3605 · 10−04 seconds duration. While this is prob-
ably reasonable for some technical systems, considering,
for example, the ECG to be an “impulse response” to a
train of impulses, a much higher filter order q has to be as-
sumed. To keep the ratio of T and q, a much longer signal
had to be considered in consequence. This would increase
computational cost dramatically and stands in contrast to
the assumption of local time invariance.

To improve convergence in our less well-posed sce-
nario, the random initialization step was performed mul-
tiple (here 100) times and two iterations of the algorithm
were conducted. The best result was then chosen as the
starting point for the final iterations. This improved con-
vergence speed significantly. To increase efficiency, the
symmetry of the spectrum was exploited, cutting compu-
tational cost approximately in half.

A significant factor when examining real cardiac sig-
nals obtained by different sensors is delay: If, for exam-
ple, ECG and ABP are considered, there is a delay of
roughly 200 ms between the QRS-peak and the peak in
the pulse wave. If this is to be represented by an FIR-filter,
the order of filter has to be increased accordingly, wors-
ening the condition of the problem. To overcome this, a
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pre-alignment step is introduced. One of the input signals
is arbitrarily chosen as reference and the cross-correlation
between it and the remaining signals is computed. The lag-
index of the maximum absolute cross-correlation is used
for alignment with the reference signal.

3. Simulative Demonstration

To evaluate the algorithm, a synthetic test was con-
ducted. The source signal s(t) was created as a train of
80 impulses of unit height with varying distances. The dis-
tance between pulses was normally distributed with a mean
of 25 and a variance of 5 samples, simulating a mean heart-
rate of 60 beats per minute sampled at 25 Hz. The number
of channels was set tom = 5 and the order of the filter was
set to q = 13. Next, the matrix A was randomly initialized
and normalized such that

q∑
j=0

A(i, j) = 1 for i ∈ (1...m). (10)

Via convolution, the observed signals ~x(t) are calculated.
Next, normally distributed noise with variance σ = 0.5
was added to each channel. To mimic an outlier affecting
all channels simultaneously, a single sample at a random
position was altered,

~x(654) = (10, 10, 10, 10, 10)T . (11)

Figure 2 shows the first 800 samples of s(t) and the first
two observed channels x1(t) and x2(t). Without pre-
alignment, deconvolution is performed. Figure 3 shows
the resulting estimated source signal sest(t) and the origi-
nal source. It can be seen that the impulses of the original
source are recovered well via deconvolution. One can also
see that sest shows more noise in the vicinity of the outlier.
However, the position of the actual impulse at t = 650 is
not altered and no additional impulse with high amplitude
is introduced.

4. Application to Polysomnographic Data

Next, the concept was tested on real multimodal patient
data. For this, a 160 second excerpt from a polysomnog-
raphy recording was used. For computational reasons the
data was re-sampled to 25 Hz. The channels PPG and BCG
were selected as observed signals x1(t) and x2(t). The sig-
nals were pre-filtered to be mean-free and of unit variance,
the aforementioned pre-alignment was performed. Experi-
mentally, the filter-order was determined to q = 20, corre-
sponding to an impulse-response duration of 0.84 seconds.
In Figure 4, the first 20 seconds of the observed signals and
the estimated source signal are shown. It can be noticed
that not an impulse-train but a smooth, almost sinusoidal
signal was estimated, seemingly containing a respiratory
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Figure 2. Synthetic Example: Original source signal and
first two observed channels containing Gaussian noise and
a random outlier at t = 654.
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Figure 3. Reconstructed (synthetic) source signal.

and a cardiac component. As a most simple approach, the
signal was split into a high-pass (HP, f > 1 Hz) and a low-
pass (LP, f < 0.5 Hz) component. In Figure 5, these com-
ponents are shown together with their respective reference
signals ECG and nasal flow. Via peak-detection, the beat-
to-beat and breath-to-breath intervals were analyzed. For
the cardiac components, the results are presented in Fig-
ure 6: A close match of both curves (RMSE = 42.9 ms) can
be examined, showing beat-to-beat accuracy. Very promis-
ing results were obtained for the breath-to-breath interval
analysis as well (RMSE = 265.7 ms).

5. Results and Conclusion

First of all, the general feasibility of the approach could
be demonstrated. Even though the spectrum of the source
signal was relatively sparse and the ratio of filter coeffi-
cients and signal length was worse, a general deconvolu-
tion strategy [5] could be adapted to a medical instrumen-
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Figure 4. Real Data: BCG channel, PPG channel and
estimated source signal.
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Figure 5. Real Data: Cardiac and respiratory component
of the estimated source signal with respective reference
signals, ECG and nasal flow.

tation problem, thereby supporting the presented source-
filter model for physiological signals. For simulated data,
the approach proved to be robust to Gaussian noise and
even outliers of high amplitude affecting all channels. This
is reasonable since the deconvolution is performed in the
spectral domain, where a single time-domain impulse is
represented by a flat spectrum. At the same time this is a
realistic scenario in unobtrusive sensing, where motion ar-
tifacts can affect multiple channels. Finally, the feasibility
could be demonstrated on real polysomnography data as
well, even in the presence of two sources (heart and lung)

0 20 40 60 80 100 120 140 160
1

1.05

1.1

1.15

1.2

B
ea
t-
to
-B

ea
t
In
te
rv
a
l

[s
]

Time [s]

ECG Reference
Estimation from sest

Figure 6. Real Data: Beat-to-Beat analysis of ECG signal
and estimated source signal, RMSE = 42.9 ms

in the observed signals.
As a next step, the approach has to be tested extensively

on various measurement modalities and medical condi-
tions. Also, the separation of individual sources from the
estimated source signal has to be improved. Hereby, one
has to keep in mind that scaling and even the sign of source
signal and filters are not unique. Still, the analysis of the
filter coefficients over time could provide diagnostic in-
formation. Moreover, using the estimated source signal
and filter coefficients, one can predict individual observed
channels. This could be used for data compression or, in
the event of a large residual as an “event-indicator”, high-
lighting interesting segments in the data that could hint at
medical conditions or artifacts.
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