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In the present work, a new WO3 nanostructure has been obtained by anodization in a 

H2SO4/NaF electrolyte under controlled hydrodynamic conditions using a Rotating Disc 

Electrode (RDE) configuration. Anodized samples were analyzed by means of Field 

Emission Scanning Electronic Microscopy (FE-SEM), Confocal Raman Microscopy 

and photoelectrochemical measurements. The new nanostructure, which consists of 

nanoplatelets clusters growing in a tree-like manner, presents a very high surface area 

exposed to the electrolyte, leading to an outstanding enhancement of its 

photoelectrochemical activity. Obtained results show that the size of nanostructures and 

the percentage of electrode surface covered by these nanostructures depend strongly on 

the rotation velocity and the electrolyte composition.  
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1. Introduction 

 

Tungsten trioxide (WO3) is an n-type semiconductor which has attracted considerable 

attention for the last decades due to its remarkable electrical, optical and structural 

properties and to its high resistance against photocorrosion in aqueous acidic solutions 

[1-9]. WO3 has an ample range of applications: it has been widely used in 

electrochromic devices [10, 11], sensors [12-14], photoelectrochemical water splitting 

[4, 6, 7, 15-19], dye-sensitized solar cells [3, 5] and treatment of polluted aqueous 

systems using solar (or artificial) light [4, 7, 8, 20]. Nanostructured WO3 layers have 

been developed to enhance the efficiencies of these processes, by increasing the surface 

area in contact with the electrolyte, enhancing effective light harvesting and reducing 

the charge transfer resistance [1, 3, 7, 8, 16, 21, 22]. 

 

Anodization of tungsten is a fast and simple method to synthesize WO3 nanostructures 

[3, 4, 6, 9-13, 15, 19-25], in which surface morphology can be designed by adequately 

controlling several parameters, such as the anodization potential, duration, electrolyte 

composition and temperature, etc. [3, 9, 15, 25]. Moreover, WO3 nanostructures formed 

by anodization can be grown directly on the substrate (the back metal collector), 

providing the basis for efficient charge collection. 

 

In 2008, Widenkvist et al. [26] reported the formation of high surface area WO3 

nanostructures with a regular plate-like shape by immersing W samples in 1.5M HNO3 

at 50º C for 3 hours. This type of nanostructure has also been reported to form by 

immersing W in boiling 1.5M HNO3 for several hours [27]. WO3 nanoplatelets were 

also obtained by anodization at 20V for 4 hours in the same nitric acid electrolyte [3, 
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13]. A similar morphology (flower-like nanoplatelets) was produced by anodizing W at 

50 V for 1 hour in a 1M H2SO4 electrolyte with 0.5 wt% NaF, at room temperature [9, 

19]. An acidic treatment in 1M H2SO4 solution after anodizing W in 0.2 wt.% NH4F 

aqueous solution also resulted in WO3 nanoplatelets [28]. According to the literature, 

this type of nanostructure is formed in acid media by the precipitation of WO4
2-

 to 

WO3·H2O [26] or by the precipitation of WO2
2+

 to WO3·2H2O [9, 28, 29], after 

reaching supersaturation conditions, with the soluble WO4
2-

 and WO2
2+

 ions being 

formed previously by dissolution of the substrate. In these works, it was also observed 

that when stirring the electrolyte during the reaction, the dimensions and/or morphology 

of the nanostructures changed, indicating the involvement of soluble species in their 

formation [9, 26]. However, no studies have been found dealing with WO3 nanoplatelets 

growing under controlled hydrodynamic conditions, in which the mechanical 

convection of the solution near the electrode surface is reproducible, for example using 

a rotating disk electrode (RDE).  

 

Recently we showed, anodizing Ti in glycerol/water electrolytes with fluoride ions and 

using a rotating electrode configuration, that under specific hydrodynamic conditions a 

transition from TiO2 nanotubes to TiO2 nanosponges took place [30]. Hence, the main 

goal of this study is to investigate the changes induced in the morphology of WO3 

nanostructures by altering, in a controlled way, the hydrodynamic conditions during 

anodization of W in H2SO4 electrolytes in the absence and presence of F
-
 ions, and the 

potential applications of the new obtained nanostructures for photoelectrochemical 

water splitting. WO3 nanostructures were characterized by Field Emission Scanning 

Electronic Microscopy (FE-SEM), Confocal Raman Microscopy and 

photoelectrochemical measurements. 
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2. Experimental procedure 

 

A Teflon coated tungsten rod (8 mm in diameter, 0.5 cm
2
 of area exposed to the 

electrolyte) was used as a working electrode during anodization, and a platinum mesh as 

a counter electrode. Prior to anodization, tungsten surface was abraded with 220 to 4000 

silicon carbide (SiC) papers, degreased by sonication in ethanol for 2 minutes and dried 

in a N2 stream. A rotating electrode was used to perform anodization under controlled 

hydrodynamic conditions. Different rotation velocities were used: 0, 500 and 2000 rpm. 

Anodization was carried out in 1.5M H2SO4 solutions, without and with 0.1M NaF, at 

20 V for 4 hours and at 50º C. Current densities were continuously measured during 

anodization. After anodization, the samples were annealed at 400º C for 4 hours in an 

air atmosphere. 

 

The crystalline microstructure of WO3 was examined by means of Confocal Raman 

Laser spectroscopy (“Witec Raman microscope”). For these measurements, a 632 nm 

neon laser with 420 W was used. The morphology of the obtained nanostructures was 

characterized by using Field Emission Scanning Electron Microscopy (FE-SEM).  

 

Photoelectrochemical water splitting tests were performed in an electrochemical cell 

with an Ag/AgCl 3M KCl reference electrode and a platinum tip counter electrode. The 

area of the WO3 nanostructures (working electrode) exposed to the test solution was 

0.13 cm
2
 due to the electrochemical cell design. The photoelectrochemical 

measurements were conducted in a 0.1M H2SO4 solution using an Autolab 

PGSTAT302N potentiostat under simulated sunlight condition AM 1.5 (100 mW cm
-2

). 

Photocurrent vs. potential curves were recorded by scanning the potential from −0.24 
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VAg/AgCl to 1 VAg/AgCl with a scan rate of 2 mV s
-1

. Photocurrent transients as a function 

of the applied potential were recorded by chopped light irradiation (60 s in the dark and 

20 s under illumination). 

  

3. Results and discussion 

 

3.1. Composition of the formed nanostructures. 

 

Raman spectroscopy is a technique used to analyze the structure, phase and components 

of materials such as tungsten oxides, as well as to detect intercalated H2O molecules in 

these oxides. Figure 1 shows the Raman spectra of the as-anodized samples (Figure 

1a) and after the heat treatment at 400º C for 4 h (Figure 1b). In the as-anodized 

samples, several common bands can be discerned. The band around 950-960 cm
1
 is 

attributed to the symmetric stretching mode of a short terminal W
6+

=O bond (νs(W=O)) 

[2, 3, 9, 14, 20, 27, 28, 31-34]; this terminal stretching is typical of dangling WO double 

bonds in weak interaction with water molecules, which are adsorbed at the free surface 

of internal grains and micro-void structures in the film, so it acts as a spectral marker for 

the amorphous WO3·n(H2O) hydrated oxide [3, 9, 20, 32, 35-39]. The broad band 

between 600-700 cm
-1

 corresponds to the symmetric stretching vibrations of (O-W-O) 

bonds (νs(O-W-O) [2, 3, 28, 32]; in this case, since the band appears as a doublet (~660 

cm
-1

 and ~680 cm
-1

), the material can be identified as WO3·2H2O [2, 3, 9, 27]. The band 

between 190-280 cm
-1

, where several peaks can be observed (at ~195 cm
-1

, ~210 cm
-1

, 

~232 cm
-1

, ~260 cm
-1

 and 270-280 cm
-1

), is associated with the antisymmetric 

stretching vibration of (W-O-W) bonds (νa(W-O-W) [34]; concretely, the peaks around 

195 cm
-1

 and 260 cm
-1

 indicate the presence of WO3·H2O [34], the peaks at ~210 cm
-1
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and ~270 cm
-1

 indicate the presence of WO3·2H2O [34], and the peak centered at ~ 235 

cm
-1

 is related to the presence of both hydrous species [34]. On the other hand, the peak 

at ~810 cm
-1

 that appears clearly in the spectrum of the sample anodized at 2000 rpm 

without F
-
 (and to a lesser extent in the other samples) can be attributed to the existence 

of some crystalline monoclinic phase, with the feature at ~810 cm
-1

 being assigned to 

symmetric stretching vibrations of (O-W-O) bonds in the WO6 octahedral units [8, 27, 

32, 33]. These results, therefore, are indicative of amorphous WO3·2H2O with the 

presence of minor WO3·H2O and some crystalline monoclinic phase. 

 

The oxidation of W in a F
-
-free electrolyte takes place according to the following 

reaction [28, 40]: 

                                              6e6HWOO3HW 32                                        (1) 

 

In acid solutions, WO3 can undergo chemical dissolution, which is favored with 

increasing temperatures and results in the formation of cationic species such as WO2
2+

 

[9, 28, 29]:  

 

                                             O2HWO2HWO 2

2

23  
                                         (2) 

 

 Subsequently, upon reaching supersaturation conditions, the soluble species WO2
2+

 

precipitates on the electrode surface, according to the following reactions [9, 28, 29]: 

 

                                           
  2HO·2HWOOH3WO 232

2

2                                  (3) 

                                           
  2HO·HWOOH2WO 232

2

2                                    (4) 
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The relative kinetics of reactions (3) and (4) will determine the composition of the 

precipitate layer. According to the Raman spectra of the as-anodized samples discussed 

above, the main constituent of the hydrated WO3 film is WO3·2H2O, so under the 

present anodization conditions, reaction (3) is kinetically favored over reaction (4).  

 

The Raman spectra of the anodized samples (Figure 1b) show different features. The 

band at around 950-960 cm
-1

 disappears and the broad band centered at ~660 cm
-1

 

observed in the as-anodized spectra splits in two narrower bands, one centered at ~715 

cm
-2

 and the other at ~806 cm
-1

. Besides, three new peaks develop at ~190 cm
-1

, ~276 

cm
-1

 and ~330 cm
-1

. This spectral change is related to the loss of water molecules by the 

oxide [38], and all the new peaks are typical of crystalline monoclinic WO3: the strong 

peaks located at 806 and 715 cm
-1

 correspond to the symmetric stretching vibration of 

(O-W-O) bonds (νs(O-W-O)) [8, 14, 27, 31, 32, 34-36, 41-43]; the peaks at 276 and 330 

cm
-1

 are associated with bending vibration of (O-W-O) bonds (δ(O-W-O)) [3, 8, 14, 27, 

31, 32, 34, 42, 43]; and the lower frequency peak (190 cm
-1

) can be assigned to lattice 

modes of monoclinic WO3 [34]. The small shoulder located at ~640 cm
-1

 cannot be 

assigned to monoclinic WO3 and has been attributed to the O-W-O symmetric 

stretching vibration of the bridging oxygen in the residual hydrated WO3 [32], similar to 

the band observed for WO3·2H2O (Figure 1a). Hence, after subjecting the samples to a 

heat treatment at 400º C for 4 hours, the hydrated species, mainly WO3·2H2O, will 

convert into crystalline monoclinic WO3 through dehydration of hydroxyl groups [27, 

28]. 
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3.2. Morphological characterization of the formed nanostructures. 

 

Figure 2 shows the FE-SEM images of the samples anodized in 1.5M H2SO4 solution at 

0 and 2000 rpm, in the absence and presence of fluoride anions, and Table 1 gathers the 

main dimensions of the nanostructures obtained under different conditions.  In all cases, 

the nanostructures formed on the W surface present nanoplatelet morphology, as other 

authors reported when anodizing in similar acid electrolytes [3, 9, 12, 13, 19]. In the 

electrolyte without 0.1M NaF and 0 rpm (Figure 2a), nanoplatelets grew quite orderly 

and almost orthogonal to the electrode surface.  

 

In the same electrolyte (without F
-
) but under hydrodynamic conditions (2000 rpm, 

Figure 2b) it can be observed that nanoplatelets lost their perpendicularity and ordered 

distribution, growing in a quite random way; besides, the dimensions of these 

nanoplatelets also changed as a consequence of rotation (Table 1), with their length 

slightly decreasing and the thickness of the nanoplatelet layer increasing significantly. 

Hydrodynamic conditions can influence the growth of nanoplalets in two opposite 

ways: on the one hand, mechanical convection (stirring) reduces the concentration of 

soluble species close to the electrode surface, hence decreasing the nanoplatelets growth 

rate by precipitation [9, 26]; on the other hand, hydrodynamic conditions enhance mass 

transfer towards the electrode surface, thus favoring the formation of soluble species 

responsible for the formation of nanoplatelets. In this case, according to the data shown 

in Table 1, it is the second factor (the enhancement of mass transfer) that had more 
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influence on the formation and growth of nanoplatelets, since the thickness of the WO3 

layer is higher at 2000 rpm. 

 

In the presence of 0.1M NaF under stagnant conditions (Figure 2c), the surface was 

also covered with ordered nanoplatelets, although multiple cracks going crisscrossed the 

whole surface (Figure 2d). On the other hand, it can be observed that all the dimensions 

of nanoplatelets were larger than those obtained without F
-
 at 0 rpm (Table 1). This fact 

can be explained taking into account that, apart from the acid dissolution of WO3 to 

give WO2
2+

 (reaction (2)), in the presence of F
-
 these anions also attacked the tungsten 

surface, leading to the localized dissolution of WO3 into soluble fluoride complexes, 

according to [4, 28, 40]: 

 

                                       
O3HWFnF6HWO 2

6n

n3 
                                   (5) 

 

The combination of reactions (2) and (5) resulted in an increase of the concentration of 

soluble species released from the electrode surface, contributing to the enhancement of 

the nucleation and growth rate of nanoplatelets (by precipitation, reaction (3)). This, in 

turn, led to an increase in nanoplatelets size [9, 26], since formation of nanoplatelets 

involves the nucleation of primary particles induced by supersaturation conditions 

followed by their aggregation [9]. Therefore, the higher the amount of soluble species 

accumulating near the electrode surface, the larger the dimensions of the nanoplatelets 

formed by precipitation of these soluble species. 

 

In the same electrolyte solution (with F
-
) but under hydrodynamic conditions (2000 

rpm, Figure 2e), the distribution of nanoplatelets clearly changed: in this case, 
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nanoplatelets grew in a very peculiar manner, forming clusters between them 

resembling trees, which made this new nanoplatelet configuration expose much more 

active area to the electrolyte than normal nanoplatelets described above. Nanoplatelets 

dimensions also changed in this case (Table 1): their length slightly decreased with 

respect to the test in the same F
-
 electrolyte but at 0 rpm, and the overall layer thickness 

increased significantly. This increase in the nanoplatelet layer thickness is directly 

related to an increase in the growth rate, as explained above. Although stirring could 

reduce the concentration of soluble species near the electrode surface, in this case the 

presence of F
-
, together with the enhancement of mass transfer towards the surface, 

resulted in higher amounts of soluble species released from the substrate. Nevertheless, 

due to the characteristics of the flow velocity in the radial direction close to the surface 

of an RDE, this type of nanostructure was only formed in an approximately circular 

region located at the center of the electrode (the covered area was ~2 mm in diameter, 

which represents only the 6.3% of the total surface).  

 

In an RDE, its rotational motion drives the electrolyte from the bulk towards the 

electrode along the y-axis perpendicular to the surface and, due to centrifugal force, 

flings the electrolyte outward from the center radially across the electrode surface. Near 

the surface of the rotating electrode, the flow velocities in the direction normal to the 

surface, υy, and in the radial direction, υr, are given by [44]: 

 

                                                     2212351.0 yy

                                                  (6)                                

                                                      ryr

212351.0                                                     (7) 

 



 11 

where ω is the angular velocity, ν the kinematic viscosity of the fluid, and y and r are, in 

cylindrical coordinates, the distance from the electrode surface in the normal direction 

and the distance from the rotation axis in the radial direction, respectively. It can be 

observed that both υy and υr increase (in absolute value) with increasing the rotation 

velocity (ω). Besides, for given values of y and ω in a certain electrolyte, υy is constant 

but υr still depends on r and increases with increasing distance from the electrode 

rotation axis. Hence, the centrifugal forces of the rotation lead to a constant increase of 

the electrolyte velocity towards the outer edge of electrode surface.  

 

As explained above, for nanoplatelets to form on the electrode surface, supersaturation 

conditions of the soluble species near the electrode must be reached. These 

supersaturation conditions, with the electrode rotating at 2000 rpm, were only achieved 

in a more or less circular area around the rotation axis (low values of r in eq. (7)), where 

the fluid velocity in the radial direction was low enough to prevent soluble species from 

being completely swept away from the vicinity of the electrode surface. 

 

Figure 3 shows FESEM images of the peripheral region of the surface of the sample 

anodized in the presence of F
-
 at 2000 rpm (Figures 3a and 3b), which is clearly 

different from that observed in the central region (Figure 3c). In the peripheral region, 

craters or pores of different dimensions can be observed on the electrode surface 

(Figure 3a), most of them being more than 1 µm in diameter. This morphology is a 

consequence of localized WO3 dissolution by the action of fluoride anions (see eq. (5)), 

without the subsequent precipitation of soluble species to form WO3·2H2O due to the 

impossibility of reaching supersaturation conditions at distances from the rotation axis 

of r > ~1 mm. Hence, nanoplatelets were not formed in the outer region of the surface, 
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although some small but well defined nanoplatelets can still be observed at the bottom 

of the deepest craters or pores (Figure 3b). The formation of these nanostructures inside 

deep craters can also be explained in terms of the supersaturation conditions necessary 

for soluble species to precipitate. These conditions, far from the rotation axis, could 

only be established at the bottom of these craters, where high concentrations of soluble 

species released from the surface were locally maintained without the influence of flux 

velocity. 

 

With the aim of decreasing the velocity of the electrolyte in the radial direction, and 

hence of increasing the extent of the electrode surface covered by the new 

nanostructure, without altering its morphology (i.e. tree-like nanoplatelets clusters), 

anodization of W was also carried out reducing the rotation velocity to 500 rpm, in the 

same solution (1.5M H2SO4 with 0.1M NaF at 50º C) and keeping the same conditions 

of applied potential and anodization time. Figure 4 shows FESEM images of the 

electrode surface after anodization under the new hydrodynamic conditions (500 rpm). 

In this case, the dimensions of the circular area covered with nanoplatelets was 

quantified to be ~6.5 mm in diameter, the 66% of the total surface, which is 

significantly higher than the 6.3% of covered surface obtained at 2000 rpm. Therefore, 

by decreasing the electrode rotation velocity, the fluid velocity in the radial direction 

was also reduced (eq. (7)), which favored the creation of supersaturation conditions of 

soluble species at longer distances r from the rotation axis. 

 

In the outermost region of the electrode surface, craters or pores of different size can be 

observed (Figure 4a), but their number is notably lower than at 2000 rpm, as well as 

their depth (see Figure 3a to compare). This fact is also a consequence of reducing the 
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rotation speed, since at 2000 rpm the diffusion layer thickness was reduced with respect 

to 500 rpm. Hence, at 2000 rpm, F
-
 ions were permitted to diffuse to the electrode 

surface more rapidly, thus enhancing the dissolution of the WO3 layer via reaction (5) 

and increasing the number and size of craters or pores resulting from that dissolution. In 

the outer region of the surface, the formation of small nanoplatelets can also be 

observed at the bottom of craters or pores (Figure 4b). 

 

Concerning the morphology of the nanostructures formed on the covered region of the 

surface, it is similar to that observed at 2000 rpm (see Figure 2e), where nanoplatelets 

grew in a tree-like fashion, forming compact clusters that resemble a coniferous forest 

seen from above or some coral reef (Figure 4c and Figure 4d). Nevertheless, at 500 

rpm, this new nanostructure is more compact and the size of nanoplatelets clusters is 

larger than at 2000 rpm (compare Figure 4c (at 500 rpm) with Figure 3c (at 2000 

rpm)). Besides, the nanoplatelets layer is also thicker in this case (Table 1), so the 

active area in contact with the electrolyte is even higher than at 2000 rpm. The thickness 

of this layer can be observed in the cross sectional view shown in Figure 4e. 

 

The question that now arises is why the influence of fluid velocity in the radial direction 

on the dissolution/precipitation process leading to the formation of WO3·2H2O 

nanoplatelets does not appear in the F
-
-free electrolytes where the whole electrode 

surface was covered with nanoplatelets at 2000 rpm. To answer this question, the joint 

action of F
-
 and flowing conditions must be taken into account. Due to the rotation of 

the electrode, formation of nanoplatelets on the outer part of the electrodes was more 

difficult under hydrodynamic conditions, as explained above; on the other hand, the 

smaller number of nanoplatelets formed at a certain distance r from the rotation axis 
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underwent dissolution by the action of F
-
 (reaction (5)). Hence, anodization without the 

influence of F
-
 did not result in different nanoplatelet distribution or different extent of 

covered surface depending on the hydrodynamic conditions, i.e., the extent of surface 

covered by nanoplatelets in the absence of fluoride anions was 100% at 0 and 2000 rpm. 

 

3.3. Analysis of the current density transients during anodization. 

 

The current density transient recorded during anodization provides useful information 

on the electrochemical processes taking place on the electrode surface. Current density 

transients for all the samples are presented in Figure 5. In all cases, current density 

sharply decreased during the first seconds of anodization, indicating the formation of a 

WO3 layer on the surface [16, 23, 40].  

 

In the electrolytes without F
-
 ions, current density started increasing again after 

approximately 18 minutes (at 0 rpm) and 13 minutes (at 2000 rpm), due to the 

dissolution of the WO3 layer (reaction (2)). Besides, current densities recorded at 2000 

rpm were higher than at 0 rpm, indicating that the dissolution of the substrate via 

reaction (2) was faster under hydrodynamic conditions. This fact can be related to an 

enhancement in the mass transfer with increasing rotation velocity. Subsequently, 

current density started decreasing after reaching a maximum peak (at 0 rpm) or after 

remaining more or less constant for more than 1 hour and 30 minutes (2000 rpm). This 

region of maximum current density and the following decrease is directly associated 

with the formation and growth of hydrated WO3 in form of nanoplatelets on the 

electrode surface, according to reactions (3) and (4). As the precipitated layer became 

thicker and blocked the electrochemical active area, the rate of substrate oxidation 
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(reaction (1)) and dissolution (reaction (2)) decreased, and hence current density also 

decreased. Finally, current density reached a constant value until the end of the 

anodization process, indicating that a steady-state between substrate 

oxidation/dissolution and WO3·2H2O nanoplatelets formation by precipitation was 

established. 

 

In the presence of 0.1M NaF and at 0 rpm, after the initial drop due to the formation of a 

WO3 layer, current density rapidly increased, reached a maximum peak and decreased 

again. Finally, it reached a constant and relatively low value until the end of the process. 

The overall shape of this curve is quite similar as that observed before for the 

electrolytes without fluorides, so the explanations are the same: while the W substrate 

underwent oxidation to form WO3, WO2
2+

 and other soluble species were continuously 

released from the electrode by the reaction of H
+
 and F

-
 with the oxide (reactions (2) 

and (5), respectively); afterward these soluble species precipitated on the electrode 

surface, upon reaching supersaturation conditions, in form of hydrated WO3 

nanoplatelets. Eventually, a steady-state between dissolution/precipitation was attained. 

It is worth mentioning that in the presence of F
-
 ions, current densities during the 

dissolution process were higher than in the absence of F
-
 ions, which is consistent with 

an enhancement of soluble species formation and with the larger size of nanoplatelets 

formed in the electrolyte with 0.1M NaF (Table 1). 

 

In the F
-
-containing electrolytes under hydrodynamic conditions (500 and 2000 rpm), 

the initial decrease in current density and the subsequent peak indicating the formation 

of nanoplatelets can also be discerned. However, after the peak in current density, the 

features of the transients are considerably different from those commented above. In 
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both cases, current densities were very high during the 4 hours of anodization, and the 

signals were markedly noisy. These fluctuations in the current density signal are similar 

to those widely observed for stainless steels and other metals and alloys in the presence 

of halides and other aggressive anions, ascribed to the occurrence of metastable pits on 

the electrode surface [45-51], which are small pits that nucleate and rapidly repassivate 

[52]. In this case, these fluctuations are associated with a competition between the local 

dissolution of the oxide via reactions (2) and (5) (especially due to the action of F
-
), 

which exposes bare W surface to the electrolyte, and the continuous formation of WO3 

via substrate oxidation at these local sites (reaction (1)) and via precipitation of soluble 

species (reactions (3) and (4)). In the electrolyte without F
-
, at 2000 rpm, smaller 

fluctuations can also be observed, indicating that the acidic dissolution of the substrate 

(reaction (2)) also took place locally and that this dissolution was enhanced under 

hydrodynamic conditions. 

 

3.4. Photoelectrochemical measurements. 

 

Figure 6 shows the photocurrent density transients of the different annealed WO3 

nanostructures as a function of the applied potential. It can be observed that for the 

samples anodized without NaF, hydrodynamic conditions positively affected their 

photoelectrochemical performance, since photocurrents recorded upon illumination 

were visibly higher at 2000 rpm than at 0 rpm. This can be ascribed to the higher 

thickness of the nanoplatelets layer formed at 2000 rpm without F
-
 (Table 1). Therefore, 

in spite of nanoplatelets growing more ordered and perpendicular to the surface at 0 

rpm, it seems that the increase in WO3 layer thickness observed at 2000 rpm may 
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enhance the exposed surface area of this sample, resulting in higher 

photoelectrochemical activity. 

 

On the other hand, for samples anodized in the presence of F
-
, it can be seen that at 0 

rpm, photocurrent densities were similar as those obtained in the absence of F
-
 under the 

same static conditions. Hence, although nanoplatelets formed in the F
-
-containing 

electrolyte were larger and the thickness of the WO3 nanoplatelets layer was higher than 

in the F
-
-free electrolyte (Table 1), it is evident that the irregularity of the surface at 0 

rpm with F
-
, where deep cracks could be discerned throughout the electrode surface 

(Figure 2d), negatively contributed to the photoelectrochemical response of the sample. 

As a consequence, in spite of the higher surface area of nanoplatelets formed in the 

solution with F
-
, photocurrent densities did not follow the same pattern. 

 

In the presence of F
-
 at 2000 rpm, the photoresponse of the electrode was very low, 

compared with the rest of samples. This fact is directly related to the small surface area 

covered by nanoplatelets, which was quantified to be ~ 0.03 cm
2
, while the total area 

exposed to the electrolyte in the photoelectrochemical tests was 0.13 cm
2
. This means 

that a portion of the uncovered area with craters or pores (see Figure 3a) was also in 

contact with the electrolyte and irradiated, so the photoresponse of this sample had two 

contributions: one of the active area covered by nanoplatelets (~ 0.03 cm
2
) and another 

of the quite inactive area (compact WO3 layer) uncovered by nanoplatelets and with 

craters or pores (~ 0.1 cm
2
). 

 

In contrast, photocurrent densities for the sample anodized in the presence of F
-
 at 500 

rpm were very large. In this case, the area covered by nanoplatelets was ~ 0.33 cm
2
, 
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higher than the area exposed to the electrolyte (0.13 cm
2
). Hence, the photoresponse of 

this sample corresponded only to the surface covered by nanoplatelet clusters associated 

in a tree-like fashion. With this morphology, as explained above, the active area in 

contact with the electrolyte was extraordinarily large, which is reflected in the very high 

photocurrent densities. 

 

Conclusions 

 

As-anodized samples consisted of hydrated WO3, mainly WO3·2H2O. After annealing 

the samples, monoclinic WO3 phase was obtained. 

 

WO3 nanoplatelets were obtained in all the cases, regardless of the electrolyte and the 

rotation velocity used during anodization. Nevertheless, the morphology, dimensions 

and distribution of these nanoplatets strongly depended on the electrolyte composition 

and hydrodynamic conditions, since the formation and growth of WO3 nanoplatelets 

followed a dissolution/precipitation mechanism.  

 

Hydrodynamic conditions enhanced mass transfer towards the electrode, thus favoring 

the dissolution of the W substrate. In the presence of F
-
 and under electrode rotation, 

this dissolution was greatly enhanced, and novel tree-like nanoplatelets clusters with 

very large surface area were obtained. 

 

The active area of the new nanostructure growing in a tree-like fashion in contact with 

the electrolyte was extraordinarily large, so photocurrent densities obtained for this 
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morphology were very high compared with the rest of the samples. Future work must be 

carried out to optimize the synthesis of the new nanostructure. 
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Table caption 

 

Table 1. Main dimensions of the nanostructures obtained under different conditions. 

 

 

Figures captions 

 

Figure 1. Raman spectra of the (a) as-anodized samples, and (b) after the heat treatment 

at 400º C for 4 h. 

 

Figure 2. FESEM images of nanostructures formed upon anodization of W in a 1.5M 

H2SO4 electrolyte at 50º C, imposing a potential of 20V for 4 hours, under different 

hydrodynamic conditions and fluoride concentration: (a) and (c) 0 rpm without and with 

0.1M NaF, respectively; (b) and (e) 2000 rpm without and with 0.1M NaF, respectively; 

(d) general view of the sample anodized at 0 rpm with 0.1M NaF. 

 

 

Figure 3. FESEM images of the sample surface after anodization in a 1.5M H2SO4 with 

0.1M NaF electrolyte at 50º C, imposing a potential of 20V for 4 hours, and under a 

rotation speed of 2000 rpm. (a) Image of the outer part of the electrode surface showing 

many craters or pores of different size; (b) detail of a deep crater (or pore) in whose 

bottom nanoplatelets could form; (c) image of the covered part of the electrode (which 

represents the 6.3% of the total surface area). 
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Figure 4. FESEM images of the sample surface after anodization in a 1.5M H2SO4 with 

0.1M NaF electrolyte at 50º C, imposing a potential of 20V for 4 hours, and under a 

rotation speed of 500 rpm. (a) Image of the outer part of the electrode surface showing 

some craters or pores of different size; (b) detail of the outer part surface, where the 

formation of small nanoplatelets can be observed; (c) image of the covered part of the 

electrode (which represents the 66% of the total surface area); (d) detail of the formed 

nanostructure in the covered part; (e) cross sectional view of the WO3 nanoplatelets 

layer. 

 

Figure 5. Current density transient recorded during anodization for all the samples. 

  

Figure 6. Photocurrent density transients of the different annealed WO3 nanostructures 

measured in a 0.1M H2SO4 solution under AM1.5 illumination, as a function of the 

applied potential. 
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Anodization conditions Platelet thickness/nm Platelet length/nm WO3 layer thickness/nm 

0 rpm without NaF 32 ± 6 389 ± 74  435 ± 35 

2000 rpm without NaF 30 ± 3 339 ± 64 1943 ± 166 

0 rpm with 0.1M NaF 36 ± 3 615 ± 71 1929 ± 114 

2000 rpm with 0.1M NaF 40 ± 4 523 ± 58 3481 ± 170 

500 rpm with 0.1M NaF 42 ± 6 555 ± 88 7644 ± 374 
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