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Abstract: Iron oxide nanostructures are promising materials to be used as 10 
photocatalysts in different photoelectrochemical applications. There are different 11 
techniques in order to synthesize these nanostructures, but one of the most 12 
inexpensive and simple method is electrochemical anodization. This method can lead 13 
to different nanostructures by controlling its parameters. Anodization time is one of 14 
the most critical parameters since it considerably affects the properties of the obtained 15 
nanostructures. In this work, different anodization times (5, 10, 15, 30 and 60 min) 16 
were studied. The resulting nanotubes were characterized by field emission scanning 17 
electron microscopy, Raman laser confocal microscopy, water splitting measurements, 18 
Mott-Schottky analysis and electrochemical impedance spectroscopy, in order to test 19 
their viability for being used as photocatalysts in photoelectrochemical applications. 20 
Results showed that the best photocurrent density values in water splitting tests 21 
(0.263 mA · cm-2) were achieved for the sample anodized for 10 min under 22 
hydrodynamic conditions. 23 
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1. Introduction 27 

Energy demand in the entire world is increasing continuously due to modern life 28 
and electrical necessities [1,2]. Most of this electrical demand is supplied by fossil fuels, 29 
which are responsible for environmental deterioration. One of the alternatives that are 30 
taking advantage is the use of renewable energy sources since they are 31 
environmentally friendly. In particular, among all the available clean energies, 32 
hydrogen as an energy vector obtained by renewable solar energy is presented as one 33 
of the best options as an alternative to fossil fuels [1–7]. Hydrogen has high energy 34 
efficiency [8] and could satisfy the mounting energy demand [9–11]. Solar-driven water 35 
splitting via photoelectrochemical processes is one of the technologies used to obtain 36 
hydrogen from water leading to a clean process without toxic emissions [12–14]. In this 37 
way, one of the scientific challenges in the field of energy is to obtain a suitable 38 
photocatalyst for the solar-driven water splitting [15–18].  Different metal oxides are 39 
being studied as photoanodes for this purpose [1,4,17,19–23]. Among them, iron oxide, 40 
in particular in its hematite form, is one of the most promising materials due to its 41 
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properties. First, iron is one of the most common materials of the world and hematite is 42 
its most thermodynamically stable oxide, then it is a low cost material. Furthermore, 43 
hematite is non toxic, environmentally friendly and it has a band gap of 2.1 eV for solar 44 
energy harvesting. This means that its theoretical solar-to-energy (STH) efficiency is 45 
around 15 %. Despite this, hematite has some drawbacks such as poor carrier mobility 46 
and short hole diffusion lengths that need to be overcome [18,24–29]. One of the ways 47 
to avoid these drawbacks is by nanostructuring the material [17,30,31]. Nanomaterials 48 
can be obtained by different methods, such as electrochemical anodization, which is a 49 
simple, low cost and easily controllable process [32–35]. The control of the anodization 50 
process is related to the control of its parameters. Anodization time is a key parameter 51 
in the process since it determines the morphological and photoelectrochemical 52 
properties of the obtained nanomaterials. In this work, electrochemical anodization 53 
time is studied in order to analyze its influence in the formation of hematite 54 
nanostructures for being applied as photocatalyst in water splitting. Times of 5, 10, 15, 55 
30 and 60 minutes were studied and the synthesized nanostructures were 56 
characterized by structural methods: Field Emission Scanning Electron Microscopy 57 
(FE-SEM) and Laser Confocal Microscopy with Raman Spectroscopy, and by means of 58 
electrochemical and photoelectrochemical methods: density current versus potential 59 
measurements (water splitting tests) and Mott-Schottky analysis. 60 

2. Materials and Methods  61 

Iron rods (99.9 % pure) were used as anodes (with an exposed area of 1.13 cm2) in 62 
the electrochemical cell and a platinum tip was used as the counter electrode. Prior to 63 
anodization, iron rods were abraded with different SiC papers in order to obtain a 64 
mirror finish, and then they were sonicated in ethanol for 2 min, rinsed with distilled 65 
water and dried in a N2 stream. For the electrochemical anodization, an ethylene glycol 66 
based solution with 3 %vol. of distilled water and 0.1 M NH4F was used as electrolyte. 67 
The process was carried out at 50 V [36] and 25 ⁰C [37], both under static and 68 
hydrodynamic conditions (in particular, with a rotation speed of 1000 rpm since it was 69 
reported as the best stirring condition for iron anodization [38]). Anodization time was 70 
varied from 5 to 60 minutes in order to study its effect on the nanostructures 71 
properties. 72 

During anodization process current density values versus time were registered in 73 
order to have information about the nanostructures morphology. Then, the as-74 
synthesized nanostructures were annealed in a tubular furnace at 500 ⁰C for 1 hour 75 
with a heating rate of 15 ⁰C·min-1 and in argon atmosphere [39]. 76 

The morphology of the nanostructures was evaluated by field emission scanning 77 
electron microscopy with operating extra high tension of 3 keV, and the crystalline 78 
structure was checked by means of a laser confocal scanning microscope with Raman 79 
spectroscopy with a neon laser of 632 nm at approximately 750 μW. 80 

Electrochemical and photoelectrochemical characterizations were carried out in a 81 
three-electrode configuration with KOH 1 M as electrolyte. The iron oxide 82 
nanostructure was used as working electrode (0.26 cm2 as exposed area), a Pt tip as 83 
counter electrode and an Ag/AgCl electrode as the reference. The electrodes were 84 
immersed in the electrolyte and connected to a potentiostat (Autolab). Light conditions 85 
were performed using a solar simulator with AM 1.5 illumination (100 mW · cm-2). 86 
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Photocurrent versus applied potential measurements (water splitting) were obtained 87 
by chopped light irradiation. Thus, photocurrent density was measured by the 88 
potentiostat in a potential range from -0.4 to +0.6 V at a scan rate of 2 mV · s-1, being 89 
0.02 V in the dark and 0.02 V in the light. Mott-Schottky analyses were peformed using 90 
the same configuration and by sweeping the potential from the Open Circuit Potential 91 
(OCP) in the negative direction, with an amplitude signal of 0.01 V at a frecuency value 92 
of 5 kHz. 93 

3. Results 94 

3.1. i vs. t registers 95 

Figure 1 shows current density versus time registers during anodization at 96 
different times. All the registers showed the behavior of tubular nanostructures during 97 
the first steps: (i) a pronounced decrease of the current density during the firsts 98 
seconds of the process (according to the iron oxide compact layer formation), then (ii) a 99 
slight increase of the current density (because of the formation of tiny pits in the 100 
compact layer due to the action of both applied potential and fluoride ions of the 101 
electrolyte), and finally (iii) the steady state was reached (indicating an equilibrium 102 
between formation and dissolution of the compact layer, so the tubular formation 103 
stopped) [32,40,41]. 104 

 105 

Figure 1. Current density versus time registers of the samples anodized in EG + 3 %vol. H2O + 106 
0.1 M NH4F during different times: (a) 5 min, (b) 10 min, (c) 15 min, (d) 30 min and (e) 107 

60 min. 108 
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It is noticeable that the current density values reached during the first seconds of 109 
anodization were higher for the nanostructures synthesized under hydrodynamic 110 
conditions due to the improvement in the diffusion process [42]. Furthermore, 111 
equilibrium was maintained for about 15 min, but at longer times the current density 112 
increased considerably, which means that the equilibrium was broken. In particular, at 113 
times higher than 30 min the current density increasesd abruptly, suggesting that the 114 
nanotubular formation was disrupted. 115 

3.2. Structural characterization 116 

3.1.1. Field emission scanning electron microscopy 117 

Figure 2 shows the FE-SEM images obtained for the samples anodized for 5 min. It 118 
can be seen that anodizing under static conditions (Figures 2 a) and b)) led to a 119 
heterogeneous surface of the nanostructure. In particular, there were some areas with a 120 
compact porous layer and some others without nanostructures. This is due to the fact 121 
that anodizing that time was not enough in order to form well defined nanotubular 122 
structures. Furthermore, the process of anodizing led to the formation of bubbles, and 123 
if the anodization takes place under static conditions they could cover the surface 124 
obstructing the formation of the nanotubes. 125 

 126 
Figure 2. FE-SEM images of the samples anodized for 5 min under static (a-b) and 127 
hydrodynamic (c-d) conditions, acquired at magnifications of 10,000x and 30,000x. 128 

The samples anodized under hydrodynamic conditions (Figure 2 c) and d)), 129 
presented a more homogeneous surface because spinning the electrode during 130 
anodization enhanced the diffusion of the fluoride ions, made the process more 131 
homogeneous and avoided the formation of bubbles in the surface. However, the 132 
compact porous layer also appeared in the surface, but the diameters of the porous 133 
compact layer were higher (of the order of 75 ± 12 nm) than in the case of the samples 134 
anodized under static conditions (of the order of 51 ± 9 nm), which enhanced the 135 
accessibility of light. 136 

Figure 3 shows that the samples anodized for 10 min presented nanotubular 137 
morphologies without any initiation layer over them. This morphology favored the 138 
accessibility of the light inside the tubes and improved the photoelectrochemical 139 
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behavior of the samples. Moreover, the sample anodized under hydrodynamic 140 
conditions was more homogeneous because of the diffusion improvement. 141 

 142 

Figure 3. FE-SEM images of the samples anodized for 10 min under static (a-b) and 143 
hydrodynamic (c-d) conditions, acquired at magnifications of 10,000x and 30,000x. 144 

The samples anodized for 15 min (Figure 4) also presented nanotubular 145 
morphologies very similar to the ones anodized for 10 min. Furthermore, 146 
hydrodynamic conditions (Figures 4 c) and d)) also favored the formation of more 147 
homogeneous surfaces in comparison to the ones anodized under static conditions 148 
(Figures 4 a) and b)). 149 

 150 

Figure 4. FE-SEM images of the samples anodized for 15 min under static (a-b) and 151 
hydrodynamic (c-d) conditions, acquired at magnifications of 10,000x and 30,000x. 152 

Figures 5 a) and b) show the morphology of the samples anodized for 30 min 153 
under static conditions, and it is noticed that the nanotubes started to collapse. This is 154 
in agreement with i vs. t registers that indicated an equilibrium breakdown at times 155 
higher than 15 min. On the other hand, nanostructures that were anodized under 156 
hydrodynamic conditions also started to collapse due to the long time, but the surface 157 
was more homogeneous. 158 
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 159 

Figure 5. FE-SEM images of the samples anodized for 30 min under static (a-b) and 160 
hydrodynamic (c-d) conditions, acquired at magnifications of 10,000x and 30,000x. 161 

Finally, Figure 6 shows the samples anodized for 60 min. On the one hand, 162 
samples that were anodized under static conditions (Figures 6 a) and b)), presented a 163 
collapsed morphology without tubular nanostructures. Only a few tube mouths were 164 
present, but the morphology was completely collapsed. This is in agreement with i vs t 165 
registers that showed an abrupt increase in current density, indicating that the 166 
equilibrium was broken and then the tubular morphology disappeared. On the other 167 
hand, nanostructures anodized under hydrodynamic conditions (Figure 6 c) and d)), 168 
exhibited a partially collapsed morphology, but part of the nanotubular structure can 169 
still be seen. The morphology of samples anodized for 60 min was similar to the ones 170 
anodized for 30 min. 171 

 172 

Figure 6. FE-SEM images of the samples anodized for 60 min under static (a-b) and 173 
hydrodynamic (c-d) conditions, acquired at magnifications of 10,000x and 30,000x. 174 

Figure 7 shows FE-SEM cross images of the different nanostructures and Table 1 175 
shows their lengths according to the anodization time. In order to have the cross 176 
sections of the nanotubes and measure them, little cuts in zigzag were done with a 177 
blade on the surface of the samples. 178 
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 179 

Figure 7. FE-SEM cross section images of the samples anodized under static conditions for 180 
5 (a), 10 (c), 15 (e), 30 (g) and 60 (i) min, and under hydrodynamic conditions for 5 (b), 10 (d), 15 181 

(f), 30 (h) and 60 (j) min. 182 

The samples anodized between 10 and 30 min had the same length (~ 800-950 nm). 183 
However, samples anodized for 5 min were shorter because this time was not enough 184 
in order to form well defined nanotubes. In particular, when anodization was 185 
performed for 5 min and under hydrodynamic conditions the nanostructures only had 186 
500 nm in length. 187 

Table 1. Length measuremens of the different iron oxide nanostructures synthesized 188 
at different anodization times under both static and hydrodynamic conditions. 189 

Rotation 
speed / rpm 

Anodization 
time / min Length / nm 

0 
5 

700 
1000 500 

0 
10 

950 
1000 900 

0 
15 

800 
1000 900 

0 
30 

900 
1000 800 

0 
60 

500 
1000 900 



8 
 

 190 

Samples anodized for 60 min under static conditions had also a length of 500 nm 191 
(much shorter than the rest of the samples). In this case, the reason is that 60 min was 192 
too much time for the formation of nanotubular structures of iron oxide, and the 193 
nanotubes were collapsed. However, when the anodization took place under 194 
hydrodynamic conditions, the diffusion of the process was improved and the collapse 195 
of the samples was much lower. 196 

3.1.2. Raman spectroscopy 197 

Raman spectroscopy of the samples was performed and all the spectra were very 198 
similar with the same Raman peaks. Figure 8 shows, as an example, the spectrum of 199 
one of the samples. Most of the peaks corresponded to the hematite phase, i.e. 229 cm-1 200 
(A1g), 249 cm-1 (Eg), 295 cm-1 (Eg), 414 cm-1 (Eg), 500 cm-1 (A1g), 615 cm-1 (Eg) and 1317 cm-1 201 
(2⁰ order). Additionally, some peaks corresponding to the magnetite phase appeared 202 
at: 554 cm-1, 672 cm-1 y ~820 cm-1 [43–45]. This means that the samples were composed 203 
mainly by hematite with some amount of magnetite. 204 

 205 

Figure 8. Raman spectra of the nanostructure synthesized for 5 min in EG + 3 %vol. 206 
H2O + 0.1 M NH4F under static conditions. 207 

 208 

3.3. Electrochemical and photoelectrochemical characterization 209 

3.3.1. Photocurrent density versus applied potential measurements 210 

Iron oxide nanotubes can be used as photocatalyst in different 211 
photoelectrochemical applications, such as the splitting of the water molecule 212 
[25,26,35,46]. In this case, nanostructures were evaluated by registering photocurrent 213 
density versus applied potential in order to evaluate their suitability as photocatalysts 214 
for water splitting. The reactions occurring in the electrochemical cell during 215 
photocurrent density versus applied potential tests were the followings [3,4,47]: 216 

4 H+ + 4 e-  2 H2  (Reduction reaction occurring in the cathode). (1) 

2 H2O + 4 h+  4 H+ + O2  (Oxidation reaction occurring in the anode). (2) 
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Therefore, the global reaction in the system is: 2 H2O  O2 + 2 H2. According to 217 
these reactions, the photocurrent density values are related to the oxidation reaction 218 
occurring in the anode (the nanostructure). Then, the higher the oxidation rate in the 219 
anode, the higher the reduction rate in the cathode. Thus, higher values of 220 
photocurrent density lead to higher values of hydrogen production. Figure 9 shows the 221 
plots obtained for the different samples. 222 

Samples obtained under hydrodynamic conditions exhibited higher current 223 
density values for all the times. Furthermore, Figure 9 a) indicated that the sample 224 
anodized for 30 min reached the highest photocurrent density values under static 225 
conditions. However, the dark line (current density without illumination) was slightly 226 
higher than those of the other samples. This can be detrimental for the photocatalyst 227 
since some reaction is occurring on the surface in the absence of light. On the other 228 
hand, when the samples were anodized under hydrodynamic conditions (Figure 9 b)) 229 
the dark lines were lower. 230 

 231 

 232 

Figure 9. Photocurrent density versus applied potential measurements for the samples 233 
anodized at different times under static (a) and hydrodynamic conditions (b). Solar 234 
simulated light AM 1.5 (100 mW · cm-1) was used for light conditions and 1 M KOH as 235 
electrolyte. 236 

Samples anodized under hydrodynamic conditions reached higher photocurrent 237 
density values than the ones anodized for the same time but under static conditions. 238 
Table 2 shows the photocurrent density values obtained at 0.5 V (vs. Ag/AgCl) for all 239 
the samples. 240 

Table 2. Current density values measured at 0.5 V (vs. Ag/AgCl) for the different 241 
synthesized iron oxide nanostructures. 242 
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Rotation 
speed / rpm 

Anodization 
time / min i / mA · cm-2 

0 

5 0.125 
10 0.150 
15 0.150 
30 0.238 
60 0.15 

1000 

5 0.140 
10 0.263 
15 0.193 
30 0.140 
60 0.140 

 243 

In particular, the sample that exhibited the highest values of photocurrent density 244 
was the one anodized for 10 min under hydrodynamic conditions, achieving 0.263 mA 245 
· cm-2 (at 0.5 V vs. Ag/AgCl). These results are of the order of the ones obtained in 246 
literature for hematite nanostructures [33,48–50]. This is in agreement with FE-SEM 247 
results which indicated that the sample anodized for 10 min under hydrodynamic 248 
conditions presented well-defined nanotubes distributed homogeneously throughout 249 
the entire surface, leading to higher absorption of sunlight for the generation of 250 
electron-hole pairs, better diffusion of the holes to the electrode-electrolyte interface 251 
and better electron transport to the metallic substrate [51,52]. 252 

 253 

3.3.2. Mott-Schottky 254 

Figures 10 and 11 show the Mott-Schottky plots under both dark and light 255 
conditions, for all the nanotubes synthesized at the different anodization times. 256 
Simulated solar light AM 1.5 (100 mW · cm-1) was used for the light conditions. On the 257 
one hand, all the plots indicated an n-type semiconductor with electrons as majority 258 
carriers since the slopes of the straight lines of the plots were positives [34,48]. 259 
Moreover, the higher the slopes, the lower the donor density (ND) values. 260 
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 261 

Figure 10. Mott-Schottky plots under dark conditions of the samples anodized at 262 
different anodization times under static (a) and hydrodynamic (b) conditions. 263 

 264 

Figure 11. Mott-Schottky plots under light conditions of the samples anodized at 265 
different anodization times under static (a) and hydrodynamic (b) conditions. 266 

The numerical values of donor density (ND) for each analyzed nanostructure were 267 
calculated according to the following equation [53–55].  268 
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σεε ⋅⋅⋅
=

r
D e

N
0

2 , (3) 

where e is the electron charge (1.60 · 10-19 C), ԑ0 the vacuum permittivity (8.85 · 10-14 F · 269 
cm-1), ԑr the dielectric constant (according to literature, 80 is assumed for the hematite 270 
[56–58]) and σ is the slope. Furthermore, values of the flat band potential of each 271 
sample can also be calculated by extrapolating the straight lines of the plots to the x-272 
axis. Results of both donor density and flat band potential values are shown in Table 3. 273 

Table 3 ND and EFB values of the different synthesized iron oxide nanostructures. 274 

Anodization 
time / min 

Electrode 
rotation 

speed / rpm 
Conditions ND / cm-3 EFB / V vs. 

Ag/AgCl 

5 

0 
Dark 6.45 · 1020 -0.62 

Light 7.33 · 1020 -0.62 

1000 
Dark 1.23 · 1020 -0.59 

Light 2.05 · 1020 -0.63 

10 

0 
Dark 3.93 · 1019 -0.66 

Light 7.30 · 1019 -0.71 

1000 
Dark 4.24 · 1019 -0.70 

Light 6.28 · 1019 -0.75 

15 

0 
Dark 5.06 · 1019 -0.72 

Light 1.52 · 1020 -0.80 

1000 
Dark 1.02 · 1019 -0.75 

Light 2.21 · 1019 -0.77 

30 

0 
Dark 4.00 · 1020 -0.72 

Light 5.34 · 1020 -0.80 

1000 
Dark 3.25 · 1020 -0.81 

Light 3.69 · 1020 -0.82 

60 

0 
Dark 6.35 · 1020 -0.69 

Light 1.14 · 1021 -0.73 

1000 
Dark 2.48 · 1020 -0.72 

Light 3.20 · 1020 -0.81 
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It can be noticed that ND values were higher for the measurements performed 275 
under light conditions due to the photogenerated electron-hole pairs [34]. Additionally, 276 
in general terms, samples synthesized under hydrodynamic conditions presented 277 
lower values of ND. 278 

ND values of the samples anodized for 5 min were of the order of 1020 cm-3 which is 279 
a very high value. This is due to the fact that this time was not enough in order to form 280 
well-ordered nanotubes, and then the surface presented a lot of defects increasing ND. 281 
On the other hand, samples anodized for 30 and 60 min also had ND values of the order 282 
of 1020 cm-3, but in this case the reason was because this time is too high and the 283 
nanostructures started to collapse and to form a heterogeneous surface with a lot of 284 
defects. According to literature [38,58,59], values of hematite nanostructures are of the 285 
order of 1019 cm-3 since this density of defects improves the electrical conductivity of 286 
the nanostructures, which is one of the limitations of hematite [60]. However, too high 287 
defects values can be detrimental since they can act as recombination centers 288 
decreasing the nanostructures photoelectrochemical behavior [61]. 289 

Samples anodized for 10 and 15 min presented ND values of the order of 1019 cm-3, 290 
then these samples are more suitable for photoelectrochemical applications. This is in 291 
agreement with water splitting results, since the best results were achieved for the 292 
samples anodized under hydrodynamic conditions for 10 and 15 min, respectively.  293 

Regarding flat band potential, the values were very similar (between -0.7 and -0.8 294 
VAg/AgCl) for the samples anodized for 10 min or longer times, which is in agreement 295 
with literature [34,62]. 296 

4. Conclusions 297 

In this work, different times during the synthesis of iron oxide nanotubes by 298 
electrochemical anodization of iron were studied. In particular, anodization tests for 5, 299 
10, 15, 30 and 60 min were performed and the structural and photoelectrochemical 300 
properties of the nanotubes were studied. 301 

Results revealed that anodization time considerably affected the morphology of 302 
the obtained nanostructures, obtaining homogeneous surfaces with well-defined 303 
nanotubes for 10 and 15 min under hydrodynamic conditions. Moreover the 304 
composition of the samples was mainly hematite with some amount of magnetite. 305 

From a photoelectrochemical point of view, the sample that achieved the best 306 
results was the one anodized for 10 min under hydrodynamic conditions, since it 307 
achieved the highest photocurrent density in water splitting measurements (0.263 mA · 308 
cm-2 at 0.5 VAg/AgCl). Mott-Schottky analyses indicated that the donor density of the 309 
samples anodized for 10 min was lower than the rest (of the order of 1019), which 310 
favored its photoelectrochemical performance. 311 
 312 
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