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Abstract: Geometrical and material — i.e., external and internal — scaling symmetries are
exploited to obtain approximated analytical expressions for the mode effective index, group index,
and chromatic dispersion of a scaled fiber. Our results include material refractive index scaling
that changes the numerical aperture. First, the analytical expressions are successfully tested with
a conventional step index fiber in a broadband range of wavelengths, from 1 to 2 um. Then,
we establish a procedure to adapt the analytical expressions to photonic crystal fibers (PCFs)
and illustrate its application in a triangular PCF with circular holes. These adapted analytical
expressions show good agreement with a rigorous numerical solution of the fundamental fiber
mode. Finally, we demonstrate how powerful these expressions are for the design of PCFs. In
particular, we illustrate our approach designing, in four iterations or less, PCFs with flattened
dispersion profile over 300 nm or high dispersion slope over 40 nm, with different chromatic
dispersion values.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The design of waveguides and optical fibers is crucial for achieving high performance in
applications such as dispersion compensation [1], parametric amplification [2], wavelength
conversion [3,4], and supercontinuum generation in both anomalous [5,6] and normal dispersion
regimes [7,8]. One of the most important properties controlling the physical behavior of these
optical systems, in both the linear and nonlinear regimes, is chromatic dispersion. The waveguide
dispersion not only depends on its constituent materials, but also displays a high sensitivity to
changes in geometry (see, e.g., [9]).

Different approaches have been followed to control dispersion properties. They range from
the use of empirical relations involving the V-parameter, obtained for PCFs that consist of
triangular grids of air holes on a pure silica matrix [10,11] to guided test-and-trial procedures
based on, e.g., genetic algorithms [12] or topology optimization [13,14], which can become
time-consuming if the parameter space to be explored is not restricted judiciously [15]. In general,
the design process requires the minimization of a merit function. When the first derivatives
of the merit function are available, gradient-based algorithms are certainly the first choice in
multidimensional minimization, as they can dramatically reduce the number of evaluations of the
merit function [16,17]. Some of those methods rely on iterative strategies that produce a series
of local approximations of the merit function. It is worth noting here that the above methods are
compatible with the use of approximate analytical expressions for the waveguide dispersion [9],
as well as with any particular mode solver (for instance, [18,19]). Moreover, such theoretical
results offer opportunities to calculate the merit function in larger neighborhoods of given values
for the set of parameters and thus, to further reduce the number of iterations. In particular, the
geometrical scaling symmetry exhibited by guiding systems under certain conditions [20] opens
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the possibility to adjust their optical properties, and has been essential in the design of PCFs
[9,16].

In this paper, we generalize the geometrical — or external — scaling transformation presented
in Ref. [20] by introducing a material — or infernal — transformation by which the numerical
aperture is modified, taking advantage of invariants of the scalar wave equation in non-dispersive
media [21]. Next we derive a series of approximated analytical expressions that describe
the propagation constant, the group index and the group velocity dispersion in terms of their
counterparts in the unscaled system and the corresponding external and internal scale factors.
Thus, the calculation of these properties for a given waveguide suffices to obtain analytically
those corresponding to scaled versions of the initial waveguide, including both geometrical and
material scalings, as we show in conventional fibers and PCFs. Finally, we prove the power of
our new results to design photonic crystal fibers featuring different targeted dispersion curves,
such as flattened profiles or featuring a high slope, in four iterations or less. These results show
up the efficiency of our approach compared to pure brute-force strategies.

2. External and internal scaling symmetries in guiding systems

We start with the 2D wave equation in the weak-guidance approximation [22],

Vi + (%)an(xt,w) W (x, w) = B2 ()P (X, w), (1

where the subscript t indicates transverse components, n(X;, w) represents the spatial distribution
of the refractive index of a guiding system, ¥ denotes any of the transverse electric (or magnetic)
field components and S is its propagation constant. If the system only involves non-dispersive
media and the scaling transformation n?(x,) nﬁv] (x() = n*(x/s) is considered, a straight
comparison between Eq. (1) for the scaled system and the same equation for the unscaled
system with the variable changes x; — x;/s and w +— sw shows that the modes corresponding
to the scaled system, W[5, and their propagation constants, S5, meet the direct relationships
Wi (xe, w) = ¥(x¢/s, sw) and ﬂ[zs](w) = B*(sw)/s? with those of the unscaled system [9,20].

The solution for a more general transformation given by n(x;) > n[zsr] (x) = rn?(x/s), namely,
a simultaneous external and internal scaling transformation, is obtained just considering the
variable changes Xx; - X;/s and w — sVrw:

lP[Sr] (Xt’ (1)) = \P(Xt/s7 S\/;a))a (2)

Bl (@) = B*(sVrw)/s. 3)

Given a guiding system, hence a refractive-index spatial distribution, Eq. (3) determines the
propagation constant (and thus the chromatic dispersion) of any scaled system based solely on
the calculation of the propagation constant corresponding to the unscaled system. This result
can be of utmost importance for fiber design since it allows straightforwardly determining the
required scaling in a given fiber to obtain a target optical property.

In practice, the internal scaling transformation typically keeps unchanged the refractive index
of one of the constituent materials, the reference material, ns (e.g., the refractive index of the
cladding of a step-index fiber). This scaling transformation can be managed in the wave equation
subtracting the term (w/c)*n> .(w)¥ from both sides of Eq. (1),

ref

Vi+ (%)2 A”Z(xt)] P(xi, ) = AR ()P (X, w), Q)

where AB*(w) = BA(w) — B2 (w), and Brei(w) = (w/c)nret(w) is the propagation constant in the

T
reference material. Note that the scaling symmetry will still be valid within a spectral bandwidth
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where the constituent media present not so different dispersive behavior and, hence, the numerical
aperture be approximately constant, i.e., An*(x,) = n*(X;, ) — n%,(w). We will show at the end
of this section that such an approximation at least holds in the spectral range between 1 um and
2 um for a conventional fiber. To be precise, the scaling transformation An?(x,) — Anfsr] (xp) =
rAn?(x;/s) implies, along the lines of the derivation of Eq. (3), Aﬁﬁyr](w) = AB(s\rw)/s?, and
therefore

Braf@) = 5 1670 = B (sVTw)] + o). ®

For a conventional step index fiber, the silica cladding can be chosen as the reference [Fig. 1(a)].
For those systems with nontrivial claddings, as it is the case of photonic crystal fibers, the
reference can be the solid core material [Fig. 2(a)]. In both examples, the approximated constancy
of the numerical aperture can be noticed.

For guiding systems described within the weak-guidance approximation, Eq. (5) can be
simplified. According to the weak-guidance approximation, we can assume that 8(w) is similar
to Brer(w) [i.e., A,Bz(w) ~ 2Bref(w)AB(w)], and, in the same order of approximation, we can
consider that the reference propagation constant is weakly dispersive [Bref(aw) = afes(w)], in
such a way that the following expression is reached,

1/2

Bisn(@) x — [B(sVFw) = Brer(sVrw)] + Bres(w). (©)
Furthermore, this approximate result can also be of use within the framework of iterative design
strategies, as we will present in the next section, where the refractive-index spatial distribution is
progressively modified. By deriving Eq. (6) with respect to frequency once and twice, we obtain
the proper approximations for the group index coefficient, 51, and the group velocity dispersion
coeflicient, 3;,

Bigs(w) = 7 [Bi(sVrw) = Birer(sVrw)] + Birer(w), (7
ﬁZ[sr](w) ~ sr3/2 [BZ(S\/;‘L)) - B2,ref(s‘/;w)] + ﬁZ,ref("J) . (8)

Once the B(w), B1(w) and B, (w) functions are known for a specific guiding system within a given
spectral range, Eqgs. (6), (7) and (8) will allow us to obtain a very good estimation of the dispersive
behavior corresponding to any scaled version of that same system for the scaled spectral range.

For the sake of completeness, we can also show the equivalent quadratic expression for the
effective refractive index, nes,

anf[sr](w) =r [”sz(s‘/’_”‘”) - ”rzef(s‘/;‘“)] + ”3ef(‘”)’ )]

and the correspoding linear expressions for 7, the group index, ng, and the group velocity
dispersion, D:

Reftsr](W) * 1 [N (sVrw) = neeg(sVrw)| + nrer(w), (10)

ng[sr](a)) ~r [ng(s\/;w) - ng,ref(s‘/;w)] + ng,rcf(w)’ (1)
2

D[sr](“)) ~ % [D(S\/;w) - Dref(s\/;w)] + Dret(w) . (12)

In Fig. 1, we compare the analytical results provided by our Eqgs. (10), (11) and (8) (dotted
lines) with the numerical results provided by a mode solver (solid lines) for several scalings of a
standard step-index fiber (SMF-28). The correspondence between our theorical expressions and
the simulations is excellent for nef, ng and B, over a wide wavelength range between 1 um and
2 um. The agreement observed in Fig. 1 together with the simple form of Eqgs. (10), (11) and (8)
confer great potential to these scale relations for fiber design, as we will show in Section 4.
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Fig. 1. (a) Effective refractive index of the fundamental mode of a SMF-28 fiber (thin dashed
line), refractive index of the core (thin solid line) and the cladding (thick solid line). Variation
of negr (b), ng (c) and By (d) when several scalings (keeping the refractive index of the
cladding as the reference for internal scalings) are applied to the fiber: (s, r) = (0.9, 1) [blue],
(1.1, 1) [orange], (1,0.9) [green], and (1, 1.1) [red]; in all cases, both solving completely
the mode problem (solid lines) and using the approximated analytical expressions given
by Egs. (10), (11) and (8) (dotted lines). The subscripts sc and unsc refer to scaled and
unscaled, respectively.

It is worth mentioning that Eq. (12) proves theoretically and generalizes the expression for
global scaling in Ref. [16], and ultimately in Ref. [9]. What is more, the successful application
of these expressions to the design of photonic crystal fibers [9,16] reveals that our results might
be even valid beyond the weak-guidance approximation, in line with the dispersion estimate
considered in Ref. [23] for a high-index-contrast integrated waveguide.
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3. Scaling in photonic crystal fibers

To illustrate our approach in PCFs, here we will focus on triangular PCFs with circular holes,
although, unlike other methods [10,11], the procedure can be easily adapted to other geometries
with no extra computational effort. A triangular lattice is characterized by the hole radius, a,
and the lattice period, or pitch, A. A direct application of the external and internal scalings
parameterized by s and r to PCFs would lead to new PCFs with pitch s A, hole radius s a, and the
material refractive indices — typically, silica, air or both — scaled by a factor r [21]. However,
PCFs allow controlling both external and internal scalings only by means of their geometry,
which is in contrast to conventional fibers. This approach requires a careful application of the
formulas derived in the previous section. In particular, an effective step-index-fiber model for
PCFs [24,25] can be introduced to define the scaling parameters s and r properly. For such a
purpose, we parametrize the PCF by the pitch and the hole-filling fraction of the photonic crystal
cladding, f = (27/V3)(a/N)?.

Now, the changes considered in the PCF are a global geometrical scaling, s,, and a filling
fraction scaling, sy, in such a way that (A,f) = (s,A, s¢f). The relation between (s, sr) and
(s, r) can be determined by the homogenization of the photonic crystal cladding [24]. The core
radius of the equivalent step-index fiber can be approximated by ro = A — a, with its core index
being the same of the PCF matrix, n¢,, and its cladding index being a simple spatial average
of the photonic crystal cladding materials, n2, ~ (1 — f)nd, + fnf [24,25], where ny, is the
refractive index of the material filling the holes. In this way, the square of the numerical aperture,
NA? = n2 - n? ~ f(n2, — n?,) is proportional, at first order, to f and, therefore, the material
scale is just given by the change in the filling fraction:

r=s. (13)

To obtain the geometrical scale is enough to divide the radii of the equivalent step-index models
of the scaled and unscaled PCFs:

A —[sra
§ =S¢ (ﬁ) . (14)

As in Fig. 1, in Fig. 2 we compare the variation of neg, ny and S, due to several scalings, but
here of a PCF characterized by A = 2.3 um and a = 0.3 um. Note that both scale factors, s, and
sr, provide excellent estimations of the dispersive behavior of different optical properties for
the design of PCFs. Even though the precision of these estimates could be further improved by
means of a more accurate model for the effective step-index fiber [26,27], the results obtained in
the next section indicate that Eqs. (13) and (14) already allow designing PCFs with the desired
properties in four iterations or less.
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Fig. 2. (a) Effective refractive index of the fundamental mode of a PCF with A = 2.3 um
and a = 0.3 um (thin dashed line), refractive index of the solid core — and matrix of the
cladding — (thick solid line) and average index of the cladding (thin solid line). Variation of
nefr (b), ng (¢) and B, (d) when several scalings (keeping the refractive index of the solid
core as the reference for internal scalings) are applied to the fiber: (sg,s) = (0.9, 1) [blue],
(1.1, 1) [orange], (1,0.9) [green], and (1, 1.1) [red]; in all cases, both solving completely
the mode problem (solid lines) and using the approximated analytical expressions given by
Egs. (10), (11) and (8) and the auxiliary Eqgs. (13) and (14) (dotted lines). The subscripts sc
and unsc refer to scaled and unscaled, respectively.

4. Design of PCFs

The optimization of the chromatic dispersion of a family of fiber designs requires the definition of
a merit function evaluating the mismatch between the behavior that a particular structure presents
and a target behavior. For instance, if we are interested in the optimization of the group velocity
dispersion (GVD), a simple expression is the mean square difference in a certain frequency range
(Wi,...,wN,),

1 Nm target 2
o) = - [P0 - B @) (15)
@ k=1

where p is a set of parameters defining the fiber degrees of freedom. The optimum configuration
will correspond to the minimum of y?.

To reach that minimum, a series of approximations of y? can be sequentially built and
minimized [16,17]. To be more precise, in the case of optimizing PCFs with regular cladding,
and given a certain configuration defined by its pitch and hole radius, (A, a), its GVD in the
frequency range of interest must be calculated using any mode solver available (which is, in our
case, the one reported in [19]). Next, Eq. (8) provides excellent estimations of the GVD for
scaled configurations, B[4, around the unscaled one, and allows to define an approximation of
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the merit function,

1 Nw argel 2
Xioe(57+5¢) = N Z [ﬁz[sr](wk) - By t(wk)] , (16)
@ k=1

where r = sy and s = so(A — \/s7a)/(A —a) [Eqs. (13) and (14)]. The values of the scale factors s¢
and s, that minimize )(120 . determine the scalings that must be applied to the initial configuration
in order to get a new configuration: (A,a) — (A’,a’) = (sgA, sg+/sya). This new configuration is
expected to present a dispersion closer to the target and can be used as the starting point for a
new iteration of the design procedure.
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Fig. 3. (a) Dispersion of five optimized PCF designs [colored solid lines] achieved
considering as target dispersions five flattened dispersion profiles with 8, = 0, £30 and
+60 ps2km™!, respectively, in the wavelength range [1.4, 1.7] um [black dashed lines]. (b)
Evolution of the geometrical parameters during the optimization procedure of the examples
shown in (a) [marked with the same colors] (see details in the text). (c) Chromatic dispersion
curves [colored solid lines] obtained along the free-of-constraints optimization towards the
target 5, = —60 pSka_l [black dashed line]. Initial estimates based on Eq. (8) restricted to
s¢ = 1 (i.e., only sg is adjusted) [green dotted line] and unrestricted (i.e., both s and sy are
adjusted) [orange dotted line].

In order to illustrate our approach, we plot, in Fig. 3(a), five different examples of the design
processes of PCFs with flattened dispersion profiles over 300 nm, in the range 1.4 yum < A <
1.7 um [B2(w) = 0, +30 and +60 pszkm‘l; dashed lines in Fig. 3(a)]. For all five cases, we start
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from the same inital configuration, hence showing this choice is not particularly relevant. In our
calculations, we have used the Sellmeier coefficients for silica reported in Ref. [28]. In these
examples, 7 wavelengths in the above range are considered as the points used for evaluating the
approximation of the merit function [Eq. (16)]. In order to ensure that the procedure converges
properly, it is sometimes convenient to moderate the speed of convergence. In Fig. 3(b) [solid
lines], the evolution of the design parameters at each step along the procedure is shown, in which
we have allowed variations up to 30 % in each step and we consider the process has converged
when the predicted scalings (sr, sg) would imply changes for the next iteration smaller than 0.1 %.
Even so, in those cases with 8,(w) = 0, +30 and +60 ps>km™! as target, convergence is achieved
in four iterations or less.

Figure 3(b) also shows that, when ,(w) = —60 ps’km™! is targeted, the convergence process
do not initially approach the optimal configuration, which is in contrast to the other optimizations.
Although after eight iterations good convergence is still achieved, the evolution has not been
as fast as in our other designs. However, if no restrictions are imposed on the scale factors at
each iteration, convergence is achieved in less than four iterations, as shown in Figs. 3(b) [blue
dashed line] and 3(c) [colored solid lines]. To highlight the importance of the material scaling
transformation, we also compare in Fig. 3(c), for the first iteration, the estimated dispersion
profiles obtained through only geometrical scaling [green dotted curve] and both geometrical and
material scalings [orange dotted curve]. This example also points out the usefulness of our scaling
transformations in any waveguide design procedure for finding appropriate approximations.

Finally, we also apply our approach to triangular PCFs with a high and negative dispersion
slope, namely, one order of magnitude larger than in standard fibers. The potential applications
of these chromatic dispersion profiles range from third-order-dispersion compensation [29] or
spectral shaping [30] to dispersive wave emission in the normal [8,31] or anomalous dispersion
regime [32], or novel bound states in mode-locked fiber lasers [33]. Accordingly, we set
B> = £30ps’km~! at 1.55 yum and B3 = —1 ps’km™! in the range 1.53 yum < A < 1.57 um as
our new targets and repeated the process explained previously. The optimized designs present,
for the solutions with negative and positive dispersion at 1.55 um, a pitch and a hole radius
(A,a) = (1.212,0.555) um and (1.207,0.467) um, respectively. The results are plotted in Fig. 4.

60} §

3of - -

Ba(ps? /km)

_60 - -

1.50 1.52 1.54.1.56 1.58 1.60
wavelength (um)

Fig. 4. Dispersion of two optimized PCF designs [colored solid lines] achieved considering
as target two linear dispersion profiles in the wavelength range [1.53, 1.57] um [black dashed
lines] with 8, = +30 pszkm_1 and B3 = -1 ps3km_1 at 1.55 um (see details in the text).

5. Conclusions

The development of approximated analytical expressions for the mode effective index, the group
index and the chromatic dispersion of scaled fibers is a powerful tool. Once a rigorous solution is
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known for a given fiber, the reported expressions provide an accurate evaluation of the mode
parameters in the neighborhood defined by geometry and material scaling. Our results can
push forward the efficiency of the designing tools of special optical fibers and even integrated
waveguides, as we illustrate here with the design of a flattened dispersion PCF. In addition, our
analytical expressions can benefit other applications areas such as the comparison of specific
experimental results with a theoretical model that may require adjusting the geometry and
materials values of a given guiding system.
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