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Abstract—This article presents a generalized analysis to
explain current ripple of an m windings coupled inductor with
a given coupling factor k;; for each pair of windings and then
studies more in detail its use in the continuous conduction mode
and with pulsewidth modulated signals. To determine the current
ripple, a generalized expression of the equivalent inductance of
each winding is calculated, including the influence of voltage
unbalance. In the ideal case, the equivalent inductance shows
that the current ripple can only become m times smaller than
that with uncoupled inductors. But in the unbalanced case,
some divergences of the equivalent inductance appear that are
responsible for zero ripple current. The proposed generalized
expressions of the equivalent inductance also describe the current
ripple of the new appearing intervals due to out-of-phase signals.
An easy to design condition is proposed that achieves zero current
ripple in all windings but one. Experimental results are provided
that validate the presented theoretical expressions under the given
conditions.

Index Terms— Inductors, magnetic devices, mutual coupling.

I. INTRODUCTION
HE coupled inductor (CI) is a widely used magnetic
component in dc—dc converters.

Very common applications, such as desktop computer
power supplies, use CI. In addition, volume and mass critical
applications, such as aerospace and military, take advantage
of CI [1]-[4]. Current ripples close to zero, which has been
demonstrated to be an advantage for charging and discharging
batteries in order to extend their mean life [5], also need CI.
EMI reduction is also a benefit of CI as claimed in [6] and [7].
Stability of dc—dc converters is also improved when using
CI [8]-[10].

Its use is also widely extended for high gain converters,
but usually restricted to two winding topologies, where the
classical transformer model based on leakage and magnetizing
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inductance is used [11]. Even though the use of CI is so
extended, no generalized (more than two windings) expres-
sions can be found in the technical literature that explain zero
current ripple and sometimes their bizarre behavior (inverted
current ripple, appearance of new time intervals, unexpected
current slopes during these intervals, and so on).

Already, in [12]-[15], CI is used and optimized for a
dc—dc converter, using reluctance models among others. But,
no generalized (m windings) mathematical expressions are
provided. In [14], a zero current ripple condition is given
related to the coupling coefficient, k, and the turns’ ratio, but
the design approach is to adapt k to fulfill the zero-current
condition, what is usually not easy. A very interesting study,
that also includes a detailed literature review, applying a CI
to an input filter with zero current ripple can be found in
[16]. But, it is based on a two-winding case and the proposed
expressions are, therefore, not applicable to an m winding CI.

A study in [17] proposes a current ripple reduction based
on Faraday’s, Ampere’s, and Gauss’ laws, concluding that it
depends on the magnetizing and leakage inductance as well
as the turns’ ratio, but without providing any mathematical
expression.

Other studies, such as [7], [18], and [19], reduce the current
ripple, changing the duty cycle on a two-winding CI. In [20],
it is concluded that, although duty cycle does not reduce
current ripple, it is responsible for the sudden ripple change.
Unfortunately, the study is only applicable to two windings.

The study presented in [5] is much more detailed and ana-
lyzes multiple windings but all of equal inductance. It provides
expressions to find the optimum coupling to reach a zero
current ripple condition for this particular case. In the exper-
imental section, it proposes a CI with a coupling coefficient
of £k = 0.2 to reach zero current ripple. The CI will lose
many of its advantages with this low value of k. In any case,
the hereafter presented expressions are a general case of those
provided in [5].

In [21], a very interesting analysis is done, leading to a
reduced circuital model of a two-winding CI for interleaved
buck converters similar to the one proposed in [22]. A gener-
alization for more windings is also presented, but supposing
all self-inductances equal and all mutual inductances equal
and never overlapping the applied voltages. It also states
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that the current ripple is different when using CI instead
of uncoupled inductors, therefore suggesting the existence
of an equivalent inductance related to the coupling factor.
The general expressions deduced hereafter agree with the one
found in [21].

On the other side, in [6], [20], [23], and [24], some
expressions are given for the equivalent inductance, (Leg), but
only for the two-winding case, studying the influence of the
duty cycle.

In [6, Table II], a summary of the expressions of the
equivalent inductance for two-winding CI is given. But the
expressions do not show any dependence with the turns’ ratio,
as suggested in [14].

This article first explains the analysis that leads to a gen-
eralized equivalent inductance expression, which allows to
calculate the current ripple. Then, this expression is simplified
and a three-winding case is analytically studied in detail,
and the influence of duty, inductance ratio unbalance, and
coupling coefficient is shown. A simple zero current ripple
design procedure is proposed, and finally, experimental results
confirm the whole theoretical analysis.

The main contribution of this article is a generalized expres-
sion of the equivalent inductance for any type of CI (as long as
a common voltage can be factored out for each winding) that
allows to directly deduce the current ripple of an m-winding
CL. It is demonstrated that the voltage unbalance applied to the
CI can be translated into a nonideal turns’ ratio that explains
and allows to design an m-winding CI with zero ripple current.

The analysis assumes that the design of the CI is based on
a winding-voltage ratio that is equal to the square root of the
inductance ratio and any deviation from this condition will be
an unbalanced situation. Furthermore, it will be supposed that
the CI is in the continuous conduction mode (CCM) and that
its windings are excited by PWM voltage signals. Although out
of the scope of this article, some of the obtained expressions
could be used to extend the study to the discontinuous conduc-
tion mode (DCM). It is assumed that the dc—dc converters are
usually designed to stay in a given conduction mode, either
CCM or DCM. CCM is very popular among other reasons,
because it is usually more stable and the transfer function is
load-independent.

Parasitic resistance and capacitance will be neglected. It is
expected that the parasitic resistance of the CI does not affect
the study if its values are very small, which is usually the case.
A study on the influence of dc resistance of the windings
that justifies that it can be neglected will be presented in
Section II-G. On the other hand, parasitic capacitance will
limit the use of CI at high frequencies in any case and
has, therefore, to be kept very small [25]. The core material
is supposed to be chosen to avoid saturation and to keep
permeability constant at its operating point to avoid self- and
mutual-inductance change. Therefore, the study is applicable
to any dc—dc converter handling PWM signals keeping the
CI in CCM. Windings’ phase dots can be placed in any
position and this can be translated into negative coupling
coefficients, k;;, of the corresponding pair of windings. Out-
of-phase voltage signals can also be applied and are taken into
account as voltage unbalance.
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Fig. 1.  CI with m windings. All self-inductances (Lqq--- Lym), turns’
number (Nj; --- Ny, ), voltages across (v, ---vr, ), and currents through
each winding (ig, ---ig,,) are shown. All windings are wound in the same

sense on the same core.

II. ANALYSIS OF A GENERALIZED COUPLED INDUCTANCE
A. Review of the Inductance Matrix

The inductance matrix mathematically describes an m-
winding CI [26]

Ly Ly Linm
Ly Ly -+ Loy

L=| | ] ) R (1)
Lml Lm2 me

The diagonal elements are the self-inductances, Lqq, and the
rest of elements are the mutual inductances, Ly (Where from
here on 1 < g,r < m). The generalized Ohm’s law relates
currents and voltages applied to each inductance and can be
written in matrix form

L i )
v, = L—iL.
L dt L

The coupling coefficient matrix k is the normalized induc-
tance matrix and can be related to (1) (see [26])

L=L; k-Ly. 3)

Each coupling coefficient element, kg, of matrix k describes
the coupling of each pair of windings and the main diagonal
elements are all equal to one, kgq = 1.

L, is a diagonal matrix defined as

Ldz[ b 1177 “4)

0, if g #r.

B. Equivalent Inductance of Each Winding of a CI

As already explained in [17], [27], and [28], the equivalent
inductance of each winding of a CI can be larger or smaller
than the same winding alone on the core. This directly
determines the current ripple measured on this winding.

Fig. 1 presents a CI with m windings. All output inductors
are wound in the same sense on the same core (see phase
dots). Each winding has its own self-inductance, Lqq, and a
number of turns, qu. The voltage across each winding, VL,s
and current through it, i L, are also shown (1 < g < m).
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C. Quasi-Balanced Case

A generalized inductor voltage, v/L, can be factored out for
all windings related to their turns’ ratio. This will be called a
quasi-balanced case. For the gth winding, this voltage is

/ UL({
LTy, ©)

Sq

Now, (2) can be rewritten as

Ns, i
Ny, d | i

=L [ (6)
NSm iLm

Equation (6) can be written in the matrix form as

N v/Ldt =1L -dif. @)
A diagonal matrix of turns, Ny, can also be defined as
N, if g =
Ny={ o 7477 ®)
0, if g #r.

The general equivalent inductance of each CI winding
can be obtained, taking (7) to get a column vector on the
left side, by left multiplying both parts by L~! and again
left multiplying by N;l, dividing by v} dt, and taking into
account (5). The inverse of this result is also a column vector,
Leq, whose elements are the equivalent inductance of each
winding
- ©

This expression, in general, applies to any CI, and it holds
for any ideal and quasi-balanced case, as it already takes into
account the deviation of the turns’ ratio with respect to the
square root of the self-inductance ratio.

Current ripple can be directly calculated with the equivalent
inductance and the voltage applied in time.

L= (N;'-L7'-N)

D. Voltage Unbalance

Equation (7) stands for a quasi-balanced case. If a voltage
unbalance exists, (9) has to be redefined. Two cases will be
analyzed: in-phase and out-of-phase voltage unbalance.

1) In-Phase Voltage Unbalance: If the voltages applied to
each winding are in phase but deviate from the turns’ number,
Ny, (e.g., due to unwanted voltage drops), then VL, will
not fulfill (5). To keep a constant voltage, now called vZ",
multiplying each winding, we define a deviation factor 4, that
relates v, with o7 and Ns,

v, 1
q — x :
vy qu

(10)

Using (10), we can write oL, = iqv’L*qu and thus modify
the left-hand side of (6). The turns’ number vector can be
redefined as, N'*

Ny, A1
st j«2

N* = (11)

Ny, m
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Equations (7) and (9) are valid but using now v7", N,
and N/, where the elements of N/ correspond to (11) based
on (8).

2) Out-of-Phase Voltage Unbalance: If the voltages applied
to each winding are out-of-phase, v; of (7) is not common to
all windings anymore and will become viq. To calculate the
equivalent inductance, it is necessary to find again a common
voltage, now called vz‘, to all windings. In the case of PWM
signals, delayed or not, but all with the same period, and
supposing that the CI stays in CCM, the unbalance means that
one winding g could be ON (see a positive voltage vrox, ), and
another winding r OFF (see a negative voltage v orr, ), during
a time, f,. New time intervals appear, which will be called Ap,
where 0 < b < 2™ + 1. The number of intervals could be even
larger than 2" + 1 if the duty of any winding g, Dy, is split.
During each of these intervals, each winding will have its own
equivalent inductance, Leg, .

The volt-second balance of the whole period of each wind-
ing will still apply during each interval Ay

vron, Dg = _ULOFFq(l — Dy). (12)

To find a common voltage, Ut’ to all windings, two func-
tions, f(Dg) and g(Dy), that relate von, and VLoff, with o}
have to be found

= vi f(Dq)
l)Loppq = l)z g(Dq)

VLoN,

13)

Using (12), ULorr, Can be written as a function of VLoN, and
substituted in the second expression of (13). Then, dividing
both expressions in (13), the following equation is obtained:

g(Dq) _ _Dq

= . (14)
f(Dy) 1-Dy
Thus, a possible solution for both functions is
f(Dq) =1-D,
g(Dy) = —Dy. (15)

The functions f(D,) and g(D,) can be unified into a single
function, &, by adding another variable b, whose value is “1”
when ON voltage and “0” when OFF voltage is applied to
winding g at each interval A,. This new function is defined
as

h(by, Dg) = by — Dy. (16)

Therefore, each interval A, can be described by a unique
combination of m bits b,. For example, in the case of three
windings and three different duty cycles, Dj, D>, and D3,
one combination of four intervals could be defined by its own
combination of bits b; by by: Ay = by by by = 111, Ay =
by by b3 =011, A3 =b1 bp b3 =001, and Ay = by by b3 =
000. Fig. 2 shows these states for a three-winding case.

So, the voltage of each winding, vz,, becomes
v*L‘NSq Aq(by — Dy), where v} is the common factor of
all windings as in (7).



GILABERT et al.: ZERO RIPPLE CURRENT WITH CIs IN CCM UNDER PWM SIGNALS

1-D,

0 Dy Dy D3 1
Normalized Period
Fig. 2. Out-of-phase voltage unbalance can be caused by different ON or OFF
PWM voltages applied to each winding. New intervals, Aj, can be defined,
during which each winding has its own equivalent inductance, Leqq. In the
case of three windings and three different duty cycles, Dy, D>, and D3,

four intervals exist, each defined by its own combination of bits: A| = 111,
Ay =011, A3 =001, and A4 = 000.

The turns’ ratio N'* has to be redefined into N* as

Ny, A1(b1 — Dy)
N* Ny, A2 (b2 — D7)

A7)
Nsm /1m (bm - Dm)
The diagonal matrix Ny must also be redefined as N
N — Ny, Ag(bg — Dg), if g =r .
<7 o, ifqg#r

The equivalent inductances during each interval, A, of each
winding can now be obtained using

(18)

Leg= (N1 L7T.N9) 7L (19)

This new expression (19) of the equivalent inductances will
include any voltage and self-inductance unbalance and can be
applied not only to a distribution like in Fig. 2 but also to
out-of-phase voltages, like in interleaved PWM converters in
CCM.

Equation (19) reduces to (9) when A, = 1 and when
(by — Dy) is the same for all windings and equal to (b — D).
Factor (b — D) is then a common scalar to all elements of N*
and N} and is simplified in (19).

E. Approximate Equivalent Inductance L4

Supposing all coupling coefficients to be the same and equal
to k allows to analytically study the behavior of Leq. This
approximation introduces only a small error if all the elements
of matrix Kk are very similar (apart from the diagonal elements
which are all equal to one). Otherwise, a numerical analysis
of Leq using (19) has to be done.

First, the equivalent inductance of the ¢th output is normal-
ized [qu = (Leqq /Lqq)]. Then, after operating with (19),
the following simplified expression can be obtained:

_ lm— Dk + 11(1 — k)
[(m —2)k+ 11— kD0 Age
r#q

(20)

Leqq
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where Ay is the deviation between the gth and rth inductors
provoked by unbalances explained in Sections II-C and II-D.
Its ideal value is 1

|Lqq Ns, Ar(by — Dy)
Aqr =il 5 o L N
Lyt Ny, 2q(bg — Dyg)
If Agr =1 and using (20), the ideal equivalent inductance
will be

21

1<gq, r <m.

Leg, = (m — Dk + 1. (22)
If the coupling coefficient is one (k — 1)
k—1
Leg, = m. (23)

Thus, the ideal value of Leq, when k — 1 is the number of
windings, m, of the CI and this applies to all windings. This
means that the current ripple, when using CI, will ideally be
reduced by a factor m but will never become zero.

F. Zero Current Ripple

Zero current ripple happens when the equivalent inductance
given by (20) tends to infinity, therefore its denominator
becomes zero. This point is the pole of (20)

1

N it Ag+2-—m
r#q

kpoe, 24)

As 0 < k < 1, only the poles in this range are a real
solution. This condition can be written as

m
D Ag=m—1.
r=1

r#q

(25)

Thus, the deviation Ag is the parameter that controls the
zero current ripple condition. This parameter can be changed
to control the value of lzpoleq.

For example, if we suppose that the PWM signals applied
to all windings are synchronized in time, then (b, — D,) =
(by — D4). Knowing the voltage level applied to each winding
and their ratio [see (10)], we could deviate from this ratio to
the turns’ ratio (taking into account that Leg, st ), making
Agr > 1 and fulfilling (25). The simplified expression of Ag
applying the previous assumptions is

Lo _ vEaa [ VLx
L, oL,

Ln:v

UL,

qr =
ULq

(26)

If the ratio (L11)1/2/1)LI is smaller than (er)l/z/er for2 <
r<m,and (Ly)'/?/vop, = (Lgq)"/?/vr, forall2 < g, r <m,
then > Ay, <m —1for2<r <mand > Ag >m—1 for
2<qg<m,1 <r <m,and g # r. Thus, we have a pole on
all windings but the first winding and can expect zero current
ripple in all windings but the first winding.

If we know the coupling coefficient of all windings, we can
estimate how much larger the inductance ratios have to be
made to achieve the zero current ripple using (24).
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Fig. 3. Normalized resistance R/Lw with respect to coupling coefficient k

in a 2 x 2 CL This curve is for an error of 5% in the current slope. The
switching frequency is defined by @ = 27 f5y.

G. DC Resistance Influence

It is clear that parasitic elements can influence the behavior
of the CI unless they are kept very small. The parasitic
elements will add to all the elements of the inductance matrix
if they are ac or only the main diagonal if they are dc. The
influence of dc resistance of the windings will be estimated in
this section to confirm that, if their resistance is kept within
reasonable values (minimum losses), the presented study is
still valid.

The generalized Ohm’s law in matrix form with resistance
can then be written as

v, = Rig, + LiiL. 27)
dt

Due to the coupling effect, the resolution of the differential
equations of (27) becomes very difficult, even using numerical
tools.

Therefore, only the influence of the dc resistance for a
2 x 2 has been studied. This low order allows to calculate
the current analytically with the help of specialized software
tools. The deviation of the resulting current (exponential slope)
compared to the ideal current (linear slope) will be used to
evaluate the influence of dc resistance. A deviation of 5%
will be fixed as maximum error. Both currents (the ideal and
the real with a dc resistance) start at the same point (origin)
but they end up in different points and 5% current difference
has been used as error reference. Taking into account that
the exponential behavior depends on the normalized resistance
R/Lw, the influence of R/Lw in the current slope with respect
to the coupling coefficient, k, has been determined (w is the
switching frequency). Fig. 3 shows this influence.

Finally, to evaluate if a 5% deviation is large, the following
numerical example is given. For an inductance of 66uH,
a switching frequency of 100 kHz, and a coupling coefficient
of k = 0.8, the normalized resistance is R/Lw = 0.12, which
means a dc resistance of R =5 Q. This value is too large in
a usual design that wants to avoid copper losses.

Therefore, a design that minimizes losses (yielding high
efficiency) will already assure that the presented expressions
are applicable, because the resistances will be negligible. Fig. 3
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also shows that high coupling coefficients should be avoided
when using CI to reduce the influence of dc resistance.

III. THREE-WINDING EXAMPLE

In this section, the presented equations will be applied to
a three-winding case, first theoretically and, in Section IV,
experimentally. The ideal and the unbalanced case will be
studied. The coupling coefficient will be supposed to be the
same for all windings, k. The evolution of the equivalent
inductance with & and thus the current ripple will be analyzed.

For three windings and following (20), the equivalent induc-
tances, Leqq, for each winding are (28)—(30) and include the
deviation factors, Ag:

Qk + 1)(1 —k)

= ~ - (28)
U+ b - k(A + Ap)
Qk+1)(1 —k
- CE+n0-h 0
(1 +k) — k(A2 + A23)
2k +1)(1 —k
oo @rba-h 0
(1 +k) —k(A31 + A3z2)
A. Ideal Case: Agr =1
Taking (22) and substituting m = 3
Leg, =2k + 1. (31)

Knowing that 0 < k < 1, then it is clear that 1 < Leqq <3
as expected.

B. Unbalanced Case: Agr # 1

Now the equivalent inductance, qu, will be studied but
considering the unbalance introduced by Ag;. First, the poles’
evolution will be analyzed, because they will be responsible
for divergent values of Leq, - Based on (24), the pole of Leq,
(for the other two equivalent inductances, the poles will be
similar) is

1

S (32)
Az1 4+ Az — 1

kpole3 =

Fig. 4 shows how the pole [see (32)], defined by k, changes
with A3; and using the deviation A3z, as parameter.

As an example, inductance and voltage ratios, such
as ((Loa/Ln)V? = 181, ((Lsz/Ln)/? = 2,25,
((L33/Lx))"? = 1.26, (v12/v1,) = 1.82, (v1,/vr,) = 2.35,
and (vz,/v1,) = 1.31, have been supposed. The duty cycles
are supposed to be balanced (b, — D,) = (b; — D,). The
inductance ratio directly appears in (21), and the voltage ratio
as well, taking into account (10).

Now, all values of Ag using (21) are calculated

A = Ay =1.008
Az = A3l =1.047

Ay = A3y = 1.040. (33)

The poles appear for Leq, at ];polel = 0.947 and for Leq, at
kpole, = 0.970, where equivalent inductances diverge. They are
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Fig. 4. Coupling coefficient value, ];poleg, corresponding to the pole of Leqsy
and its variation with A3 using A3y as parameter. Values above 1 are not
physically feasible.

10 e

€dq
T
|
|
1
h
o
=

~ [

—10 |- 77" Leas
Legl SPICE

LBLZz SPICE

L

€43 SPICE

C L
0.7 0.75 0.8

Fig. 5. Evolution of Leqq with respect to k for m = 3. The deviations used

are given in (33). The poles appear at lzpolel = 0.947 and 12],0162 = 0.970.
Simulation results, depicted with dots, confirm the theoretical expressions.

clearly seen when depicting (28)—(30) (see Fig. 5) as a function
of k with the calculated values of Agr shown in (33). SPICE
simulations of circuit of Fig. 6 have been done, adding square
voltage sources, varying the coupling coefficient, unbalancing
as required, and then measuring the equivalent inductance
using the resulting current ripple. The curves are confirmed by
these SPICE simulations (shown by dots), which agree with
the calculated expressions.

Fig. 4 also shows that for A3; = 0.955, the poles are out
of the real range of k, because k € [0, 1]. This means that the
inductance Leq, would not have a pole in all the real range
of k (see in Fig. 5, the curve corresponding to Leg,). On the
other side, the inductances, Leq, and Leg,, have poles where
they tend to infinity and in these cases, their current ripple will
be zero. The poles of qu and qu appear at ]gpolel =0.947
and ];polez = 0.970. The pole of Leg, at lgpole3 = 1.090 is not
a real value.

Fig. 5 also shows that for k> 0.95, the values of Legq, and
Leq, can be smaller than the inductances for k = 0 or even
have negative values. Negative inductance results in negative
current ripple even though applying a positive voltage to the
winding. Having smaller inductances (like when k — 1) could
mean that the corresponding outputs change to DCM.
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Fig. 6. Three independent buck converters with a common CI used for the
experimental test.

For the particular value of k ~ 0.8 (see Fig. 5), the
equivalent inductance Leqq will be

Leq = 3.34
Leq, = 3.23
Leq = 1.97. (34)

In this case, the factor that increases the equivalent induc-
tance is greater than the maximum ideal factor which is 3
(because m = 3) for two inductances and one inductance is
smaller. The reason for the nonlinear behavior of Leqq are the
poles generated by Ag;.

IV. EXPERIMENTAL RESULTS

Two tests have been performed with the hereafter described
prototype. Both tests want to confirm that the derived expres-
sions (19) and (20) are valid, both under an unbalanced
in-phase situation yielding zero-ripple current (Section IV-A)
and under an unbalanced out-of-phase situation, that of course
does not yield zero-ripple current anymore (Section IV-B).

For the experimental test, three different buck converters,
which share a common CI, have been used.

The circuit shown in Fig. 6 shows the three buck converters
and they can have different input voltages and duty cycles
which allow to balance or unbalance the CI. Changing the
duty cycles will also allow to test the different time intervals,
Ap, and measure the resulting current slopes compared to the
theoretical prediction.

The selected nominal specifications of the 100-kHz switch-
ing frequency buck converters are given in Table 1. The
minimum current together with the current ripple allows to
determine the boundary between CCM and DCM. The nominal
duty cycle is D = 0.4.

L1 can be calculated using the values given for output 1
in Table I

L1 =66.0 uH. (35)
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TABLE I
SPECIFICATIONS OF BUCK CONVERTERS SHOWN IN FIG. 6

output | v; (V) [ vo (V) | Aip (A) [ imaz (A) | imin (A)

1 8.25 33 0.3 1.1 0.9
2 12.5 5 < 0.02 0.75 0.2
3 30 12 < 0.05 0.75 0.2

PWM signales connector,
provided by an external card

Fig. 7. Experimental prototype with the three buck converters and the
common CIL.

In an ideal case where Aq; = 1 and using (26), Ly> and
L33 can be calculated

Ly = 151.5 uH

L33 = 872.7 uH. (36)

But these two inductances do not fulfill the required current
ripple of Table I.

The CI manufactured is wound on a toroidal core
#55310-A2 of Magnetics, and as suggested in Fig. 5, a cou-
pling coefficient of k ~ 0.8 will be designed. To do so,
the three windings have been wound on the three different
sectors of the toroid, not overlapping the windings, to reduce
the coupling (see Fig. 8).

The built CI was measured using the network analyzer
Agilent E5061B. In case the operating point of the CI changes
the permeability of the core (for example, due to high dc cur-
rent), the measurement has to be modified to know the induc-
tance values under the real operating conditions (for example,
biasing the CI with dc current using Agilent 42841 while
measuring both self and mutual inductances). The coupling
coefficient matrix has also been measured [25]. All waveform
related magnitudes hereafter have been measured with oscil-
loscope Agilent DSO-X 3054A.

Fig. 7 shows the prototype with the three different buck
converters and the common CI. Connectors provide driving
PWM signals, additional loads, and input voltages.

A. Adjustment of the Inductance Ratio to Achieve an
Unbalanced Case That Yields Zero Current Ripple

Because the required current ripple is not reached with
the calculated inductances, a zero current ripple design is
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Fig. 8. CI used in the experimental setup. Notice that the three windings
have been wound on three different sectors to reduce the coupling coefficient
to achieve zero-ripple current.

proposed, as described in Section II-F. The selection criteria of
the inductance without zero-ripple current have been to choose
the inductance of the output with the smallest load variation
in order to assure CCM always. In our case, output 1 has the
smallest load variation; therefore, the “first” inductance will
be L. Other selection criteria to suit other design constraints
are also possible as long as CCM is preserved in all outputs.

Using the winding strategy of sector distribution that results
in a coupling coefficient of k ~ 0.8, Ly and L33 have been
increased in order to fulfill the following inequalities > Ay, <
m—1,> Ay >m—1,and > Az > m — 1, where m =3
(the number of windings). This means that L; will not have
any pole, but Lj> and L33 will have poles and therefore zero
ripple current. By increasing L2y and L33 using (29) and (30)
[an increase of approximately 35% with respect to the values
given by (36)], the divergence has moved down to k ~0.85.

The measured, already increased, self-inductances, (37), and
the coupling coefficient matrix, (38), are

Ly =677 uH

Ly = 2048 uH (37)
L33 = 1191.0 uH
1 079 08
k=079 1 08 (38)
08 08 1

Based on (19) and in an ideal case, the equivalent induc-
tances are expected to be

Leg, = 81 uH
Leg, = 1500 uH

Leq, = 8692 uH. (39)

To calculate the deviations, we take the mean value of all
coupling coefficients, except the diagonal values, and verify
that > Ay = 1.74, > Aoy = 2.14, and > A3, = 2.16. This
means that a divergence will appear for both Ly, and L33.

Testing this new CI, the equivalent inductances are mea-
sured (see Table II) using the applied voltages and current
ripple shown in the oscilloscope (see Figs. 9 and 10).
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TABLE 11
MEASURED EQUIVALENT INDUCTANCES

Interval A; Interval Ay
Legq, (nH) 59.4 £+ 3.7 64.3 £ 3.7
Legy, (WH) | 1451.4£123.5 | 1432.0 £ 123.5
Leg, (nH) 5745 + 662 5372 + 662
TABLE III

EQUIVALENT INDUCTANCES USING THE MATHEMATICAL MODEL

Eq. (19) Eq. (20)
A=Ay | Ay = Ay
Teq, (W) 66.0 65.4
Loy (WH) | 1168.7 1523.7
Leqs (nH) 5278 5894
i : -
— i A Ay i
=10
g i 4 -
= | -
S of .
5 | i
k3] L i
_g L
= —10 — Vi — Vo
= L —— Uiy — Vo,
| —— Vig — Vogy
I I I T 71 |
6 8 10 12 14 16 18 20
t (us)

Fig. 9. Voltage waveforms applied to the three windings of the CI. Only
two intervals, A; and Ay, exist. Interval A; is defined with digital word
b1byb3 = 111 and interval A4 with digital word b1bpb3 = 000. The digital
value 1 stands for a positive and O for a negative voltage vy, .

1.5 - — —
- Al A4 — L]]
s - —— Leg,
< - Laa
N i T ——Le
1 A — L332
(&)
g : \l/ k\ —*— Legy
@) I |
£ [ 4
2 09F T 1
3
] L |
ks
0 | | L L
6 8 10 12 14 16 18 20 22
t (us)
Fig. 10. Measured and calculated [dotted lines using Leq in (19)] current

waveforms of circuit shown in Fig. 6. Zero current ripple is almost achieved
in Ly and L33 and ripple of Lpj is larger because the value of Lo has
decreased.

Comparing the theoretical calculations of the equivalent
inductances of (19) and (20), see Table III, we see that they
are very similar and the approximate expression (20) is very
accurate.

Fig. 10 shows the corresponding current waveforms mea-
sured also with the oscilloscope. The current slopes have also
been calculated, using (19) and the value of the measured duty
cycle.

Zero ripple current can be observed for L2» and L33. Current
ripple of L33 seen in Fig. 10 is negative, which means that
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Fig. 11. Voltage waveforms with different duty cycles applied to the three

windings of the CI. Four different intervals, Ay, A2, A3z, and Ay, exist. Interval
A is defined by b1byb3 = 111, Ay by b1babz = 101, Az by bbbz = 001,
and A4 by bybyb3 = 000, where b; corresponds to vy, = v;; — voy, by to
VL, = Viy —Voy, and b3 10 v ; = vj3 — 3. The digital value 1 stands for
a positive and 0 for a negative voltage vy, .
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Fig. 12.  Measured and calculated [dotted lines using Leq in (19)] current

waveforms of all intervals of circuit of Fig. 6 excited with signals shown
in Fig. 11 corresponding to an unbalanced out-of-phase case.

the divergence appears at a value of k smaller than the real
coupling of the windings.

B. Adjustment of the Duty Cycle That Leads to an
Unbalanced Case

To confirm that the expressions that study the duty cycle
unbalance, derived in Section II-D2, are correct, the duty
cycles have been changed in this experiment in such a way
that an unbalance with four intervals, Aj—A4, appears. The
previous experimental setup has been used but, of course,
the resulting ripple will not fulfill the current-ripple specifica-
tions anymore. The three duty cycles have been made different
and are

DI =42 %
Dy =32 %
D3 = 50 %. (40)

As mentioned, the CI used is the same as the one described
in Section IV-A, having the inductances and coupling coeffi-
cients given in (37) and (38).

Fig. 11 shows the voltage waveforms applied to each
winding. Each interval will have an associated equivalent
inductance, as explained in Section II-D2.

Fig. 12 shows the corresponding current waveforms mea-
sured also with the oscilloscope. The current waveforms have
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TABLE IV

EQUIVALENT INDUCTANCES (a) MEASURED AND (b) CALCULATED
USING THE MATHEMATICAL MODEL

a)
Al As A3 Ay
Leq, (uH) 58.9 21 15.4 65.7
+2.3 +14 +1.1 +2.5
Leq, (WH) | 2459 20.1 65.3 158.4
+8.1 +14 +5.3 +6.5
Leqs (uH) | 967.1 499.2 155.3 | 1376.9
+73.7 | +113.2 | £38.5 | +78.1

b)
Al Ag Az Al
Leq, (uH) 64.9 19.6 15.5 59.4
Leq, (uH) | 236.4 20.4 56.5 138.8
Legs (uH) | 1059.0 | 484.6 174.8 | 1276.5

also been calculated based on the equivalent inductances and
shown in Table IV, using (19) and therefore taking into
account (17) and (18).

The reason for the difference between theoretical and mea-
sured values is mainly because the measurement of current,
time, duty cycle, and voltage has been done with the oscil-
loscope which has limited accuracy. Fig. 12 shows that the
theoretical waveforms (dotted lines) agree very well with the
measured ones.

V. CONCLUSION

A generalized analysis of CI has been presented and a more
detailed study when CI is in CCM and exposed to PWM
signals has also been done, including ideal and unbalanced
situations. Current ripple can be determined thanks to the
expression of the equivalent inductance.

It has been demonstrated that, under the supposed condi-
tions, any deviation can be reduced to a nonideal turns’ ratio.
Then, supposing the coupling coefficient among all windings
to be the same, the generalized expression of the equivalent
inductance has been simplified allowing to perform a study
that has unveiled the zero ripple current conditions of CI and
its relation to the described unbalance. In fact, zero ripple
current condition happens only in a nonideal case and due
to an unbalanced situation. General mathematical expressions
have been provided to predict zero ripple current through the
equivalent inductance. A design procedure to achieve zero
ripple current in all outputs but one has also been proposed.
This proposal that only needs to change the inductance ratio
(turns’ ratio) is more convenient than others found in the
literature that tried to change the coupling coefficient.

Then, a three-winding case has been studied with the new
approach and verified with SPICE simulation and experimental
results. The analysis and test results conclude that under a
balanced situation, the current ripple will be at most (k = 1)
m times less compared to uncoupled inductors (k = 0). For
out-of-phase unbalance, new time intervals appear, having all
of them different equivalent inductances. Under an unbalanced
situation, divergences can appear that can generate a zero
ripple current condition and a design proposal is given. Exper-
imental evidence confirms all analytical results.
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The proposed generalized expression of the equivalent
inductance agrees with other expressions found in the technical
literature, which usually are only applicable to particular cases
of two or three windings.

ACKNOWLEDGMENT

The authors would like to thank D. Osorno for his help in
the lab and J. L. Gasent-Blesa for his support.

REFERENCES

[1] P. Pérol, “An efficient low cost modular power system for fully regulated
bus in low earth orbit applications,” in Proc. 6th Eur. Space Power Conf.,
Porto, Portugal, vol. SP-502, May 2002, p. 375.

[2] G. E. Volpi, “Integrating power electronic system in space application:
Limitation due to a harsh environment,” in Proc. 4th Int. Conf. Integr.
Power Syst., Jun. 2006, pp. 1-6.

[3] H. Qunhai, Y. Jingyuan, W. Lixin, and W. Tongzhen, “Research on a new
bidirectional DC-DC topology for space applications,” in Proc. IEEE
Conf. Ind. Electron. Appl. (ICIEA), Jun. 2017, pp. 1686-1690.

[4] M. Santos, H. Ribeiro, M. Martins, and J. Guilherme, “Switch mode
power supply design constraints for space applications,” in Proc. Conf.
Telecommun., Peniche, Portugal, May 2007, pp. 157-160.

[5] T. Kang and Y. Suh, “Optimized coupling factor design of multiple-
phase coupled inductor for minimum inductor current ripple operation
in EV charger systems,” in Proc. IEEE 3rd Int. Future Energy Electron.
Conf. ECCE Asia (IFEEC-ECCE Asia), Jun. 2017, pp. 1178-1183.

[6] H. Kosai, S. McNeal, A. Page, B. Jordan, J. Scofield, and B. Ray,
“Characterizing the effects of inductor coupling on the performance of
an interleaved boost converter,” in Proc. CARTS USA, vol. 1, Mar. 2009,
pp. 1-15.

[7]1 H. Liu and D. Zhang, “Design approach for coupled inductor filter in
low-current-ripple input/output boost converter,” in Proc. IEEE Int. Conf.
Power Renew. Energy (ICPRE), Oct. 2016, pp. 165-171.

[8] L. Mohammadian and E. Babaei, “Investigating the effect of inductor
coupling on intrinsic stability of Cuk converter,” in Proc. 42nd Annu.
Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2016, pp. 1359-1364.

[9] E. Sanchis-Kilders et al., “Stability improvement of isolated multiple-
output DC/DC converter using coupled inductors,” IEEE Trans. Aerosp.
Electron. Syst., vol. 52, no. 4, pp. 1644-1653, Aug. 2016.

[10] Y. Yang, J. Ma, C. N.-M. Ho, and Y. Zou, “A New coupled-inductor
structure for interleaving bidirectional DC-DC converters,” [EEE J.
Emerg. Sel. Topics Power Electron., vol. 3, no. 3, pp. 841-849,
Sep. 2015.

[11] H. Liu, H. Hu, H. Wu, Y. Xing, and I. Batarseh, “Overview of high-
step-up coupled-inductor boost converters,” IEEE J. Emerg. Sel. Topics
Power Electron., vol. 4, no. 2, pp. 689-704, Jun. 2016.

[12] S. Cuk and R. D. Middlebrook, “Advances in switched-mode power
conversion part 1" IEEE Trans. Ind. Electron., vol. 1E-30, no. 1,
pp. 10-19, Feb. 1983.

[13] S. Cuk and R. D. Middlebrook, “Advances in switched-mode power
conversion part II” IEEE Trans. Ind. Electron., vol. IE-30, no. 1,
pp. 19-29, Feb. 1983.

[14] S. Cuk and Z. Zhang, “Coupled-inductor analysis and design,” in Proc.
17th Annu. IEEE Power Electron. Spec. Conf., Jun. 1986, pp. 655-665.

[15] S. Cuk, “A new zero-ripple switching DC-to-DC converter and integrated
magnetics,” IEEE Trans. Magn., vol. 19, no. 2, pp. 57-75, Mar. 1983.

[16] S. S. Nag, S. Mishra, and A. Joshi, “A passive filter building block
for input or output current ripple cancellation in a power converter,”
IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 2, pp. 564-575,
Jun. 2016.

[17] A. F. Witulski, “Introduction to modeling of transformers and coupled
inductors,” IEEE Trans. Power Electron., vol. 10, no. 3, pp. 349-357,
May 1995.

[18] P. Shamsi and A. Shen, “Design and analysis of a class of zero
fundamental ripple converters,” IEEE Trans. Power Electron., vol. 32,
no. 6, pp. 4543-4552, Jun. 2017.

[19] S. W. Lee and H. L. Do, “Zero-ripple input-current high-step-up boost—
SEPIC DC-DC converter with reduced switch-voltage stress,” [EEE
Trans. Power Electron., vol. 32, no. 8, pp. 6170-6177, Aug. 2017.

[20] M. S. A. Jafarian and H. R. Karshenas, “Current ripple reduction in
single-input, multiple-output converters using phase-shift and coupled
inductors,” in Proc. 24th Iranian Conf. Elect. Eng. (ICEE), May 2016,
pp- 816-821.



GILABERT et al.: ZERO RIPPLE CURRENT WITH CIs IN CCM UNDER PWM SIGNALS

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

G. Zhu, B. A. McDonald, and K. Wang, “Modeling and analysis of
coupled inductors in power converters,” IEEE Trans. Power Electron.,
vol. 26, no. 5, pp. 1355-1363, May 2011.

D. Maksimovic, R. W. Erickson, and C. Griesbach, “Modeling of cross-
regulation in converters containing coupled inductors,” IEEE Trans.
Power Electron., vol. 15, no. 4, pp. 607-615, Jul. 2000.

S. A. Wibowo, Z. Ting, M. Kono, T. Taura, Y. Kobori, and H. Kobayashi,
“Analysis of coupled inductors for low-ripple fast-response buck con-
verter,” in Proc. IEEE Asia—Pacific Conf. Circuits Syst. (APCCAS),
Nov./Dec. 2008, pp. 1860-1863.

P.-L. Wong, P. Xu, B. Yang, and F. C. Lee, “Performance improvements
of interleaving VRMs with coupling inductors,” IEEE Trans. Power
Electron., vol. 16, no. 4, pp. 499-507, Jul. 2001.

D. Gilabert-Palme et al., “Measuring coupling coefficient of windings
with dissimilar turns’ number or tight coupling using resonance,” IEEE
Trans. Power Electron., vol. 33, no. 11, pp. 9790-9802, Nov. 2018.

Y. Tokad and M. B. Reed, “Criteria and tests for readability of the
inductance matrix,” Trans. Amer. Inst. Elect. Eng., I, Commun. Electron.,
vol. 78, no. 6, pp. 924-926, Jan. 1960.

S. Cuk, “Coupled inductor and integrated magnetics techniques in power
electronics,” in Proc. 5th Int. Telecommun. Energy Conf. (INTELEC),
Oct. 1983, pp. 269-275.

J. Li, C. R. Sullivan, and A. Schultz, “Coupled-inductor design opti-
mization for fast-response low-voltage DC-DC converters,” in Proc.
17th Annu. IEEE Appl. Power Electron. Conf. Expo. (APEC), vol. 2,
Mar. 2002, pp. 817-823.

David Gilabert received the B.Sc. and M.Sc.
degrees in electronic engineering from the Univer-
sity of Valencia, Valencia, Spain, in 2014, where he
is currently pursuing the Ph.D. degree in complex
coupled inductors.

He is also a member of the Laboratory of
Industrial Electronics and Instrumentation, Univer-
sity of Valencia. His research interests include
high-frequency magnetics, coupled inductors, and
space power electronics.

Esteban Sanchis-Kilders (M’00-SM’14) was born
in Valencia, Spain, in 1967. He received the M.Sc.
and the Ph.D. degrees from the University of Valen-
cia, Valencia, in 1990 and 1997, respectively.

After two years with the Power Conditioning
Section, European Space Agency, Noordwijk, The
Netherlands, he joined the Laboratory of Indus-
trial Electronics and Instrumentation, University
of Valencia, in 1997, where he is currently a
Full Professor. His main research interests include
space power electronics, magnetism, and control

and industrial applications.

4269

Pedro J. Martinez was born in Villarrobledo, Spain,
in 1992. He received the B.Sc. and M.Sc. degrees in
electronic engineering from the University of Valen-
cia, Valencia, Spain, in 2014 and 2015, respectively,
where he is currently pursuing the Ph.D. degree
in reliability of gallium nitride (GaN) high-electron
mobility transistors (HEMTs).

Since 2014, he has been a member of the Labo-
ratory of Industrial Electronics and Instrumentation,
University of Valencia. His current research interests
include electronic power devices characterization,

reliability, and space power electronics.

Enrique Maset (M’00) was born in XA tiva, Spain,
in October 1965. He received the M.Sc. and Ph.D.
degrees in physics from the University of Valencia,
Valencia, Spain, in 1988 and 1993, respectively.

He is currently an Associate Professor with the
Department of Electronic Engineering, University of
Valencia, where he is also a member of the Labora-
tory of Industrial Electronics and Instrumentation.
His main research interests include space power
electronics and static and dynamic characterization
of electronic power devices.

Agustin Ferreres was born in Sant Mateu, Spain,
in 1963. He received the M.Sc. degree in physics and
the Ph.D. degree in electronic engineering from the
University of Valencia, Valencia, Spain, in 1993 and
1999, respectively.

For two years, he was a Power Electronics
Researcher with the Research and Development
Department, GH Industrial S.A., Valencia. In 1995,
he joined the Laboratory of Industrial Electronics
and Instrumentation, University of Valencia, where
he is currently an Associate Professor. His research

interests include space power electronics and industrial applications.

Vicente Esteve (M’03-SM’14) was born in Valen-
cia, Spain, in 1961. He received the M.Sc. and Ph.D.
degrees from the University of Valencia, Valencia,
in 1986 and 1999, respectively.

He is currently an Associate Professor with the
University of Valencia, where he is also a member of
the Laboratory of Industrial Electronics and Instru-
mentation. He is a consultant of several electronics
companies in these fields. His research interests
include high-frequency rectifiers and inverters for
industrial applications, and high-power inverters for
induction heating.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


