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Abstract

Speech recognition is the task of decoding an acoustic speech signal into a written text. Large vocabulary
continuous speech recognition (LVCSR) systems are able to deal with a large vocabulary of words, typically
more than 100k words, pronounced continuously in a fluent manner. Although most of the techniques
used in speech recognition are language independent, still different languages are posing different types
of challenges. Efficient language modeling is considered one of the hard challenges facing LVCSR of
morphologically rich languages. The complex morphology of such languages causes data sparsity and high
out-of-vocabulary rates leading to poor language model probability estimates. The traditional m-gram
language models estimated over the normal full-words are usually characterized by high perplexities and
suffer from the inability to model unseen words that are more likely to occur in open vocabulary speech
recognition tasks, like open domain dictation and broadcast news transcription.

This thesis addresses the problem of building efficient language models for morphologically rich langua-
ges. Alternative language modeling approaches are developed to handle the complex morphology of such
languages. This work extensively investigates the use of sub-word based language models using different
types of sub-words, like morphemes and syllables, and shows how to carefully optimize their performance
to minimize word error rate. In addition, the pronunciation model is combined with the language model
through the use of sub-words combined with their context dependent pronunciations forming a set of joint
units called graphones. Moreover, a novel approach is examined using extended hybrid language models
comprising multiple types of units in one flat model.

Although the sub-word based language models are successful in handling unseen words, still they suf-
fer from the lack of generalization with regard to unseen word sequences. To overcome this problem,
morphology-based classes are incorporated into the modeling process to support the probability estimati-
on for sparse m-grams. Examples of such models are the stream-based and class-based language models,
as well as the factored language models. A novel methodology is proposed, which uses morphology-based
classes derived on the level of morphemes rather than the level of full-words to build the language model.
Thereby, the benefits of both sub-word based language models and morphology-based classes are retained.

Moreover, the aforementioned approaches are combined with the efficient state-of-the-art language
modeling techniques, like the hierarchical Pitman-Yor language model which is a type of Bayesian language
model based on the Pitman-Yor process that has been shown to improve both perplexity and word error
rate over the conventional modified Kneser-Ney smoothed m-gram models. In this thesis, hierarchical
Pitman-Yor models are used to estimate class-based language models with sub-word level classes.

Recently, continuous space language models have shown significant performance improvements in LV-
CSR tasks. The continuous nature of such models allows for better levels of generalization due to the
inherent smoothing capabilities in continuous space. One of the successful continuous models used in pat-
tern recognition tasks is the feed-forward deep neural network with multiple hidden layers. This model
can capture higher-level and abstract information about the input features. Recently, feed-forward deep
neural networks have shown improved performance compared to shallow neural networks in many pat-
tern recognition tasks. In this work, the use of feed-forward deep neural networks is explored to estimate
sub-word based language models. In addition, word and sub-word level classes are used as inputs to the
neural networks in order to improve probability estimation in cases of morphological richness.

The methods applied in this work are tested on Arabic, German and Polish as good examples of
languages having rich morphology. Experiments are conducted using the state-of-the-art LVCSR systems
used by RWTH Aachen in GALE, Quaero, and BOLT research projects. The methods developed in
this thesis reduce the word error rate by up to 7% relative compared to heavily optimized traditional
approaches applied on very large vocabulary sizes, typically up to one million words.
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Zusammenfassung

Spracherkennung bezieht sich auf die Umwandlung eines akustischen Sprachsignals in einen geschriebe-
nen Text. Spracherkennungssysteme sind heute in der Lage, kontinuierliche Sprache mit einem großen
Wortschatz von in der Regel mehr als 100k Wörtern zu erkennen. Obwohl die meisten der in der Spra-
cherkennung verwendeten Techniken unabhängig von der Sprache sind, stellen verschiedene Sprachen in
der Regel dennoch weitere Herausforderungen. Insbesondere morphologisch reiche Sprachen stellen harte
Herausforderungen an eine effektive Sprachmodellierung. Eine komplexe Morphologie führt in der Regel
zu sehr großen Vokabularien bzw. zu einem erhöhten Maß nur selten oder gar nicht gesehener Wörter,
sog. out-of-vocabulary (OOV) Wörter und damit zu nicht robust schätzbaren Sprachmodellwahrscheinlich-
keiten. Die traditionellen m-gram Sprachmodelle über einem festgelegten Vokabular ganzer Wörter sind
in der Regel durch hohe Perplexitäten gekennzeichnet, und sind nicht in der Lage, ungesehene Wörter
vorherzusagen, wie es viele Spracherkennungsanwendungen, wie Diktiersysteme oder Transkription von
Nachrichtensendungen erfordern.

Diese Arbeit behandelt das Problem des Aufbaus effizienter Sprachmodelle für morphologisch reiche
Sprachen. Alternative Konzepte zur Sprachmodellierung werden entwickelt, um die Sprachen mit kom-
plexer Morphologie behandeln zu können. Diese Arbeit beinhaltet eine umfassende Untersuchung zur
Sprachmodellierung auf Basis von Teilwörtern, wie Morphemen oder Silben, und zeigt auf, wie mit Hilfe
dieser Ansätze die Fehlerraten bestehender Systeme verbessert werden können. Auch das Aussprach-
modell wird hier mitberücksichtigt, indem die Aussprachen von Teilwörtern kontextabhängig modelliert
werden. Der hybride Ansatz zur Sprachmodellierung wird zudem durch die Kombination unterschiedlicher
Teilworttypen erweitert.

Obwohl Teilwort-basierte Sprachmodelle nicht explizit im Vokabular enthaltene (OOV) Wörter erfolg-
reich behandeln, besteht immer noch ein Problem in Bezug auf Ihre Generalisierung auf im Training
nicht gesehene Wortfolgen. Zur Behandlung dieses Problems werden morphologisch motivierte Klassen
für die Sprachmodellierung herangezogen, um die Schätzung selten gesehener m-gramme zu verbessern.
Beispiele solcher Modelle sind Klassen- und Stream-Sprachmodelle, sowie faktorisierte Sprachmodelle. Ein
neuer Ansatz zur Verwendung morphologisch orientierter Klassen zur Modellierung auf Morphem-Basis,
anstatt auf Wortbasis wird vorgestellt. Dies erlaubt, die Vorteile von Teilwort-basierten Sprachmodellen
und morphologisch orientierten Klassen auszunutzen.

Die genannten Ansẗze werden zusätzlich mit aktuellen Ansätzen zur Sprachmodellierung kombiniert.
Dies beinhaltet hierarchische Pitman-Yor Sprachmodelle, einen Typus Bayes’scher Sprachmodelle auf
Basis des Pitman-Yor Prozesses, für die Verbesserungen in Perplexitẗ und Wortfehlerrate im Vergleich
zum konventionellen modifizierten Kneser-Ney Modell berichtet werden. In dieser Arbeit werden Pitman-
Yor Modelle zur Schätzung von Teilwortsprachmodellen herangezogen.

Seit einiger Zeit zeigen sog. continuous space Sprachmodelle signifikante Verbesserungen in der konti-
nuierlichen Spracherkennung bei großem Vokabular. Die kontinuierliche Natur dieser Sprachmodelle lässt
eine bessere Generalisierung aufgrund des kontinuierlichen Räumen eigenen Glättungsverhaltens erwarten.
Einen erfolgreichen Ansatz stellen hier die aufgeschaltete tiefe neuronale Mehrschichtennetze mit meh-
reren verborgenen Schichten dar. Dieses Modell erlaubt die Erfassung von übergeordeter Informationen
bzw. eine Abstraktion von den Eingabemerkmalen. Tiefe Netzwerke zeigen dabei seit kurzem in vielen
Mustererkennungsansätzen deutliche Verbesserungen gegenüber flacheren Netzwerken. In dieser Arbeit
werden aufgeschaltete tiefe neuronale Netze zur Sprachmodellierung auf Teilwortebene untersucht. Dies
beinhaltet ebenfalls die Verwendung von Wort- und Teilwortklassen als Eingabemerkmale dieser neu-
ronalen Netze, um eine verbesserte Wahrscheinlichkeitsschätzung für morphologisch reiche Sprachen zu
erreichen.

Die in dieser Arbeit verwendeten Methoden wurden für Spracherkennungsaufgaben in arabischer, deut-
scher und polnischer Sprache, als gute Beispiele morphologisch reicher Sprachen, getestet. Die Experimente
wurden mit Spracherkennungssystemen der RWTH Aachen durchgeführt, die dem aktuellen Stand der
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Technik entsprechen, und in Forschungsprojekten wie GALE, Quaero oder BOLT verwendet wurden. Die
in dieser Arbeit entwickelten Methoden reduzieren die Wortfehlerrate um bis zu 7% relativ im Vergleich zu
stark optimierten traditionellen Ansätzen bei sehr großem Wortschatz, d.h. in der Regel einem Vokabular
von bis zu einer Million Wörter.
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agement. His valuable advices helped me to make my decisions and to define my research goals.

I would also like to thank Prof. Dr. François Yvon for agreeing to review this thesis and for the interest
in my work.

This work would not have been possible without the never ending support and encouragement of my
lovely wife Hala Hassan and sons Zeyad, Ahmed and Yahia, all my deep love to them.

I would like to thank all my colleagues in the speech recognition group for the great teamwork in
performing evaluations, discussing ideas, and developing solutions. In no particular order, this includes
Mahaboob Ali Basha Shaik, Mahdi Hamdani, Martin Sundermeyer, Markus Nussbaum, Björn Hoffmeister,
Stefan Hahn, Christian Plahl, and David Rybach.

For the good times and the memorable moments I had at the Lehrstuhl für Informatik 6, I would like
to thank all my former and current colleagues including Muhammad Ali Tahir, Saab Mansour, Tamer
Alkhouli, Zoltán Tüske, Patrick Lehnen, Simon Wiesler, Saša Hasan, Georg Heigold, and Jonas Lööf.
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Chapter 1

Introduction

Speech is considered as the most natural way of communication among humans. This makes an automatic
speech recognition (ASR) system a natural choice for a human-machine interaction. In recent years, a
huge amount of audio and video data became available on the Internet. Most of this material use speech
as the natural form of communication. Therefore, ASR has been a goal of research for more than six
decades as it is very useful in many applications and environments. For example, in industrial applications,
mobile applications, telephone and communication applications, aviation and space applications and also
in personal computer applications. In fact, ASR is the first step to make the information contained in the
speech data available for machine processing.

The speech recognition problem is defined as the task of decoding an acoustic speech signal into a
written text (the recognized word sequence). The automatic speech recognizer serves as a human-machine
interface or it passes the input for further processing like machine translation. According to the given
task, an ASR system has to fulfill certain requirements, e.g. an ASR system which serves as a human-
machine interface has to work in real-time. The ASR systems considered in this thesis are large vocabulary
continuous speech recognition (LVCSR) systems. This means that, according to nowadays standards, the
system vocabulary consists of more than 100k words, and recognition is performed on complete natural
utterances (in contrast to the isolated or connected word recognition), while real-time is not required.
In modern LVCSR systems, a preprocessing step is performed by applying signal analysis to convert the
speech signal into a sequence of feature vectors. Then, a statistical approach is used to find the highest
probable sequence of words given the acoustic features. The standard evaluation measure for LVCSR
systems is the word error rate (WER). The goal of the ASR system is to minimize the WER measured
on the decoded output.

In recent years, the research on developing LVCSR systems has been extended to include an increasingly
wide range of languages. Different types of problems associated with the development of LVCSR systems
have received prominent research attention such as acoustic modeling, and language modeling. Although
the statistical approach to speech recognition is mainly language independent, still some language specific
properties are highlighting specific modeling challenges. Currently, there is a growing interest in language
modeling approaches that are suitable for morphologically rich languages. Languages falling in this
category are characterized by a huge lexical variety as a large number of distinct lexical forms can be
generated using various morphological processes like derivation, inflection and compounding. At the
same time, in many LVCSR tasks, systems are required to operate over open and constantly changing
vocabularies; like in the open domain dictation, broadcast news transcription, political debates translation,
etc. This means that the number of recognizable words is supposed to be unlimited. For languages with
a fairly poor morphology, language models (LMs) built on the word level are proven successful. Applying
the same approach to languages with rich morphology leads to high out-of-vocabulary (OOV) rates, and
poor LM probability estimates due to data sparsity. Hence, the LM fails to perform reliable generalization
or to model unseen words. Moreover, the LVCSR systems suffer from high resource requirements such as
CPU time and memory as a result of the huge lexicons and LMs that are usually required in such cases
to achieve a reasonable lexical coverage.

In this thesis, a major attention has been paid to develop improved approaches to deal with the problems
related to morphologically rich languages. The use of sub-lexical LMs has been extensively investigated
based on different types of sub-word units, like morphemes and syllables. At the same time, it has been
shown how to optimize the performance of such LMs to minimize the WER. In addition, novel types of
sub-lexical units are efficiently incorporated into LMs, where sub-words are combined with their context
dependent pronunciations to form a set of joint units. This can be viewed as a combination of language
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and pronunciation model, in which the context dependent pronunciations of the underlying sub-words
are taken into account. Moreover, a novel approach has been developed that uses extended hybrid LMs
comprising multiple types of units in a single flat model. In addition, a novel technique is proposed that
incorporates various morphology-based classes derived on the morpheme level into the LM estimation.
Thereby, the benefits of sub-lexical language modeling along with the advantages of morphology-based
modeling are retained together. To push the performance to the highest level, the above approaches
have been combined with the recent state-of-the-art language modeling techniques, like the hierarchical
Bayesian LMs based on the Pitman-Yor process and the continuous space LMs based on feed-forward
neural networks (NNs). Particularly, feed-forward deep neural networks (DNNs) have been explored to
estimate sub-lexical and morphology-based LMs. Our experiments are conducted using the state-of-the-art
LVCSR systems for Arabic, German and Polish as good examples of languages having rich morphology.

1.1 Challenges in ASR

The ultimate long-term goal of an ASR system is to act as a “hearing machine” in the sense that, for any
spoken utterance, it converts the acoustic signal into a sequence of written words. The major challenges
in unrestricted, continuous speech recognition are:

• In the acoustic signal, there is no indication of the word or sub-word boundaries.

• There is a large degree of variation in the speaking rates in continuous speech.

• words are pronounced less carefully in fluent speech specially the word endings.

• There is a great deal of inter-/intra-speaker variability due to gender, physiological and psychological
conditions.

• The quality of the speech signal is affected by environmental noise or the transmission system such
as microphone or telephone.

• The task-inherent syntactic/semantic constraints of the language should be exploited by the recog-
nition system in a way similar to human-to-human communication.

1.2 Statistical Speech Recognition

The statistical approach to ASR takes a sequence of acoustic feature vectors xT1 as input and searches
for the optimum word sequence wN1 that maximizes the posterior probability. This approach applies the
Bayes decision rule [Bayes 1763]:

[wN1 ]
opt

∶= argmax
wN

1

p(wN1 ∣xT1 )

= argmax
wN

1

p(xT1 ∣wN1 )p(wN1 ) (1.1)

The result is referred to as the maximum a-posterior (MAP) hypothesis. The equation defines two
stochastic models, the acoustic model p(xT1 ∣wN1 ) and the language model p(wN1 ). The acoustic model
computes the probability of observing the feature sequence xT1 given the word sequence wN1 . The language
model denotes the a-priori probability of the word sequence wN1 .

The extraction of the feature sequence xT1 from the continuous speech signal happens in a preprocessing
step using signal analysis techniques. Usually, the feature extraction models are based on models of the
human auditory system. The resulting features are further processed by data-driven approaches in order
to provide the sequence of feature vectors xT1 .

Figure 1.1 summarizes the interaction between feature extraction, acoustic model, and language model
during the ASR search. The search algorithm aims at finding the word sequences that fulfills Equation
(1.1). The search space for a LVCSR system consists of all possible word sequences over a (finite)
vocabulary. This is normally a huge search space which makes the complete exploration prohibitive
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Figure 1.1. Basic architecture of a statistical automatic speech recognition system according to [Ney 1990].

and thus pruning techniques are used to restrict the effective number of hypotheses. The subset of the
search space considered during the search process can be stored in a form of lattices or N-best lists and
used for applying sophisticated methods that are too complex to be applied to the full search space.

1.3 Feature Extraction

The feature extraction module of the ASR system is based on signal analysis and provides the statistical
model with a sequence of observations or acoustic vectors. The objective of this module is to keep only
the information from the speech signal that is relevant for finding the correct word sequence. Discarding
all the irrelevant information makes the acoustic model robust e.g. to the intensity of the speech, to
background noise and to speaker gender and identity. The state-of-the-art feature extraction used for
LVCSR systems works in the following three steps:

1. A first set of features is extracted from the speech signal based on models of the human auditory
system.

2. The features are transformed, augmented, and/or reduced by parametric models, where the model
parameters are estimated on the acoustic training data.

3. Speaker normalization steps are applied either to the feature space or to the acoustic model param-
eters in order to achieve speaker independence; usually the free parameters are estimated based on
the results of a preceding unadapted recognition run.

The most common signal analysis applied in the first step is based on a short term spectral analysis,
usually a fast Fourier transform (FFT) [Rabiner & Schafer 1979]. Widely used procedures for further
processing the FFT results yield the Mel-Frequency Cepstral Coefficients (MFCCs) [Davis & Mermelstein
1980] or the perceptual linear predictive (PLP) coefficients [Hermansky 1990]. Another commonly used
features by RWTH Aachen are the features based on Gammatone (GT) filter, which works in the time
domain [Aertsen & Johannesma+ 1980; Schlüter & Bezrukov+ 2007]. The recognition performance can
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be significantly improved by concatenating articulatory motivated acoustic features to the short-term
FFT-based features [Kocharov & Zolnay+ 2005; Zolnay & Schlüter+ 2005].

An alternative recent approach is the usage of phone posterior probability estimates as acoustic features.
In this approach, features from the first step are feed into a classifier, usually a multilayer perceptron
(MLP) neural network, which provides the posterior estimates at the output layer [Chen & Zhu+ 2004;
Hermansky & Ellis+ 2000; Valente & Vepa+ 2007]. The parameters of the classifier are estimated on the
training data.

Dynamic information can be included by augmenting the feature vector with the first and second
derivatives. A more general approach is to apply linear discriminant analysis (LDA) [Fisher 1936] or
heteroscedastic LDA (HLDA) [Kumar &Andreou 1998] to a window of usually 9 or 11 of the original feature
vectors. The result is a linear transformation which projects the original features into a lower dimensional
feature space such that the class separability is maximized, assuming that the data given a class follows a
normal distribution. The LDA/HLDA are also successfully used to combine acoustic features from several
feature extraction procedures, e.g. several short-term FFT features [Schlüter & Zolnay+ 2006].

The third step intends to focus on the gender and speaker independence of the acoustic features which
is hard to meet and usually not well achieved by the feature extraction procedures mentioned above.
For example, the MFCC and PLP features are affected by the gender of the speaker, and in fact they
are used for gender detection [Stolcke & Bratt+ 2000] or even for speaker identification [Doddington &
Przybocki+ 2000]. Several methods have been developed to reduce the speaker dependency of the acoustic
features. Two wide-spread approaches are the vocal tract length normalization (VTLN) and the maximum
likelihood linear regression (MLLR) transformation [Gales &Woodland 1996; Lee &Rose 1996; Leggetter &
Woodland 1995]. The MLLR approach consists of a speaker-dependent linear transformation of the model
parameters. A version of MLLR that can be applied to the feature space is called constrained MLLR
(CMLLR) or equivalently feature space MLLR (fMLLR). More specifically, CMLLR is a feature adaptation
technique that estimates a set of linear transforms for the features which reduces the mismatch between an
initial model set and the adaptation data. The effect of these transformations is to shift the feature vectors
in the initial system so that each state in the HMM system is more likely to generate the adaptation data.
A comprehensive comparison of speaker normalization and adaptation methods is given in [Pitz 2005].

1.4 Acoustic Model

The stochastic model that computes the probability of the acoustic features xT1 given a word sequence wN1
is called the acoustic model. For LVCSR systems, usually sub-word models like demisyllables, syllables,
phonemes, or allophones are used instead of full-word models. The pronunciation model p(aL1 ∣wN1 ) assigns
probabilities to sequences of sub-word units aL1 given a sequence of words wN1 . Most modern LVCSR
systems use a finite pronunciation dictionary to store the (weighted) mapping from words to sequences
of sub-word units. Assuming independence of the pronunciation of a word from adjacent words yields
Equation (1.2) where, ln is the length of the sequence of sub-word units used for word wn, ∑

N
n=1 ln = L

and l0 ∶= 0.

p(xT1 ∣wN1 ) = ∑
aL1

p(xT1 ∣aL1 )p(aL1 ∣wN1 )

= ∑
aL1

p(xT1 ∣aL1 )
N

∏
n=1

p(alnln−1+1∣wn) (1.2)

The advantage of using sub-word units is that they reduce the model complexity, which allows a reliable
parameter estimation. Since the set of sub-words is shared among all words, the search vocabulary does
not need to be equal to or a subset of the training vocabulary. The acoustic model for a new word
with known pronunciation is assembled from the corresponding sequence of sub-word units. Even if a
word is not in the pronunciation dictionary, i.e. a new word with unknown pronunciation, there exist
algorithms that compute the highest probable corresponding sequence of sub-word units [Bisani & Ney
2003, 2008]. The process of generating such sequence of sub-word units for a given word is usually called
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grapheme-to-phoneme (G2P) conversion.

Usually, the modern LVCSR systems use the so-called context-dependent phoneme models, which are
models of phonemes with some left and right context. For example, a triphone is a phoneme together
with its predecessor and successor. Other examples with larger context are quinphones, septaphones,
etc. This is the most common way to model allophones which represent the acoustic realization of a
phoneme. The motivation of using context-dependent phonemes is the observation that the articulation
of a phoneme highly depends on the adjacent phonemes. Normally, a two-stage mapping is used. First,
the pronunciation dictionary is looked-up to provide the weighted mapping from the word to a phoneme
sequence. Then, mapping is performed from phonemes to context-dependent phonemes. If the context
is considered across word boundaries, then the resulting acoustic model is called an across-word model
[Sixtus 2003].

A common approach to cope with the varying acoustic realization of sub-word units at different speaking
rates is the hidden Markov model (HMM) [Baker 1975; Rabiner & Juang 1986]. An HMM is a stochastic
finite state automaton, where the states represent (hidden) random variables that cannot be observed
directly. The output of an HMM is generated according to the probability distributions which depend on
the values sT1 of the hidden variables. The HMM is a generative model which represents an acoustic model
that generates feature sequences xT1 . For a hypothesized word sequence wN1 , we imagine a super HMM
that is obtained by concatenating the corresponding sub-word HMMs using the pronunciation lexicon.
By this process, we end up with a large number of copies for each sub-word, these copies should be kept
separate during the search in order to satisfy the constraints of the pronunciation lexicon. At sub-word
and word boundaries, we have to allow for transitions that link the terminal states of any predecessor
HMM to the initial states of any successor HMM. In such a way, we can compute the joint probability of
observing the sequence xT1 of acoustic feature vectors and the state sequence sT1 through this super HMM.
Thus, the acoustic probability for observing xT1 given word sequence wN1 is the marginal over all possible
state sequences of this joint probability:

p(xT1 ∣wN1 ) = ∑
sT1

p(xT1 , s
T
1 ∣wN1 )

= ∑
sT1

T

∏
t=1

p(xt, st∣x
t−1
1 , st−1

1 ;wN1 )

= ∑
sT1

T

∏
t=1

p(xt∣x
t−1
1 , st1;wN1 )p(st∣x

t−1
1 , st−1

1 ;wN1 ) (1.3)

The equation is simplified by applying the first order Markov assumption [Duda & Hart+ 2001], which
states that the probability of some observation at time t depends only on the current state; and the
probability of the current state depends only on the immediate previous state. Under these assumptions
Equation (1.3) simplifies to Equation (1.4):

p(xT1 ∣wN1 ) = ∑
sT1

T

∏
t=1

p(xt∣st;w
N
1 )p(st∣st−1;wN1 ) (1.4)

Using the so-called Viterbi or maximum approximation [Jelinek 1976], the sum is replaced by the maximum
producing Equation (1.5):

p(xT1 ∣wN1 ) = max
sT1

T

∏
t=1

p(xt∣st;w
N
1 )p(st∣st−1;wN1 ) (1.5)
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Figure 1.2. 6-state hidden Markov model in Bakis topology for the triphone sehv in the word “seven” and the
resulting trellis for a time alignment. The HMM segments are denoted by <1>, <2>, and <3>.

If we substitute Equation (1.5) into the Bayes decision rule of Equation (1.1), we come up with:

[wN1 ]
opt

∶= argmax
wN

1

p(wN1 ∣xT1 )

= argmax
wN

1

p(xT1 ∣wN1 )p(wN1 )

= argmax
wN

1

{p(wN1 ) ⋅max
sT1

T

∏
t=1

p(xt∣st;w
N
1 )p(st∣st−1;wN1 )} (1.6)

We should note that for the maximum approximation to work, we need only the assumption that the
resulting optimal word sequences remain the same, not necessarily that the maximum provides a good
approximation to the sum. According to Equation (1.5) two probability distributions are considered: the
emission probability p(xt∣st;w

N
1 ) and the transition probability p(st∣st−1;wN1 ). The emission probability

denotes the probability of observing an acoustic feature vector xt while being in state st. The transition
probability is the probability of moving from state st−1 to state st.

Equation (1.4) and Equation (1.5) are also referred to as the time alignment problem. The result
computed for a particular word sequence wN1 is called the forced acoustic alignment of wN1 . An efficient
algorithm for solving the time alignment problem based on dynamic programming (DP) [Bellman 1957;
Ney 1984; Viterbi 1967] is known as the forward-backward algorithm for HMMs [Baum 1972; Rabiner &
Juang 1986]. Figure 1.2 shows an example for a time alignment. For a part of the word “seven”, the
HMM is constructed using the Bakis topology [Bakis 1976], along which a sequence of acoustic feature
vectors to be aligned. The Bakis topology uses six state HMMs with skip transitions where, each two
successive states are identical. During the time alignment, the HMM is enrolled along the times axis and
the resulting graph is referred to as trellis. The trellis visualizes the complete search space for the time
alignment. If we used the Viterbi approximation in Equation (1.5), then the solution is the path from the
lower left corner to the upper right corner with the highest probability.

The emission probabilities p(xt∣st;w
N
1 ) of the HMM are usually modeled by Gaussian Mixture Models

(GMMs). Alternative approaches are discrete probabilities [Jelinek 1976], semi-continuous probabilities
[Huang & Jack 1989] or other continuous probability distributions like mixtures of Laplacians [Haeb-
Umbach & Aubert+ 1998; Levinson & Rabiner+ 1983]. Usually, GMMs are defined as in Equation (1.7).
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p(x∣s;wN1 ) =
Ls

∑
l=1

cslN (x∣µsl,Σsl;w
N
1 ) (1.7)

The emission probability for state s is described by a GMM of Ls Gaussian densities N (x∣µsl,Σsl;w
N
1 )

with mean vector µsl and covariance matrix Σsl and non-negative mixture weights csl, where the mixture
weights are subject to the constraint ∑

Ls

l=1 csl = 1.

At RWTH, triphone models are usually used in acoustic modeling. A triphone is usually modeled by a
linear HMM with three to six states. The possible transitions are the loop transition going from a state
back to itself, the forward transition connecting a state to the next one, and the skip transition, which
skips the next state and goes to the next to next state. In the RWTH Aachen systems, the transition
probabilities are replaced by the so-called time distortion penalties (TDPs). The TDPs depend only
on the transition type, but not on the state itself. A special case is the HMM for the silence model,
which consists only of a single state and has separate TDPs. The HMM for a sequence of words is
assembled by concatenating the HMMs of the corresponding triphone sequence. The LVCSR systems
at RWTH Aachen use only a single, globally pooled diagonal covariance matrix Σ. This choice is made
to avoid data sparseness problems in the acoustic model training. Using a diagonal covariance matrix
requires the components of the acoustic features to be decorrelated, which is ensured in the feature
extraction step by applying a discrete cosine transform. The free parameters of the acoustic model
µsl, csl, and Σ are estimated by applying maximum likelihood (ML) estimation in combination with
the expectation maximization (EM) algorithm [Dempster & Laird+ 1977]. In the state-of-the-art LVCSR
systems, the ML/EM training is followed by a discriminative refinement of the acoustic model parameters
[Bahl & Padmanabhan+ 1996; Schlüter 2000; Woodland & Povey 2002]. In the discriminative training
step, the objective is to maximize the a-posteriori probability of the correct sentence [Bahl & Brown+

1986; Normandin & Lacouture+ 1994] or to minimize the word or phoneme error rate on the training data
[Juang & Katagiri 1992; Kaiser & Horvat+ 2000; McDermott & Katagiri 2005; Povey & Woodland 2002a].

1.5 Language Model

The language model provides the a-priori probability p(wN1 ) for a word sequence wN1 . Ideally, it covers
the syntax, the semantics, and the pragmatics of the language and the underlying situation. In practice,
the m-gram model is the standard for the LVCSR systems. This model makes the assumption that the
probability of the current word wn depends only on the previous m − 1 words wn−1

n−m+1 [Bahl & Jelinek+

1983]. Equation (1.8) motivates the factorization of the a-priori probability under the assumption of the
(m−1)th order Markov process. Thus, the probability of the word sequence wN1 is expressed as a product
of the conditional probabilities of individual words given their m − 1 histories. Typically, histories are
approximated by a limited number of preceding words such as 1,2 or 3 words, resulting into bigram,
trigram or 4-gram language models respectively.

p(wN1 ) =
N

∏
n=1

p(wn∣w
n−1
1 ) (1.8)

=
N

∏
n=1

p(wn∣w
n−1
n−m+1) (1.9)

The consecutive sequence of m words is called an m-gram. In the general case, the history of a word wn
is a function of wn−1

n−m+1. For the standard m-gram model, this function is the identity function. Examples
for alternative history functions are found in the class-based language models [Brown & deSouza+ 1992]
or the trigger models [Martin 2000].

Normally, the language model attempts to reflect how frequently a string of words occurs as a sentence.
Therefore, the estimates of p(wn∣w

n−1
n−m+1) are usually based on relative frequencies computed on a large

training set of text (e.g. transcripts of speech) that contains typically many millions of running words.

In fact, the number of possible m-grams grows exponentially w.r.t. m; and for typical LVCSR tasks,
many m-grams are not seen in the training data or have very few observations. Thus, any word sequence
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of the test data containing a single unseen m-gram will have a probability of zero. This means that the
recognition system will never be able to recognize such sentences which is unaccepted behavior. Therefore,
the relative frequencies have to be smoothed such that all possible word sequences are assigned nonzero
probabilities. Common smoothing techniques are based on discounting followed by backing-off or inter-
polation [Generet & Ney+ 1995; Katz 1987; Ney & Essen+ 1994; Ney & Martin+ 1997]. In the discounting
step, the probability mass is removed from the relative frequencies. The backing-off or interpolation step
distributes the discounted probability mass over all unseen m-grams (backing-off) or over all m-grams
(interpolation). The name smoothing comes from the fact that this technique tends to make distributions
more uniform, by adjusting low probabilities such as zero probabilities upward, and high probabilities
downward. Not only do smoothing methods generally prevent zero probabilities, but they also attempt
to improve the accuracy of the model as a whole. Whenever a probability is estimated from few counts,
smoothing has the potential to significantly improve the estimation. A popular method to estimate the
parameters of a smoothed language model is the leaving-one-out [Ney & Essen+ 1994]. An extensive em-
pirical comparison of the most widely-used smoothing techniques, including those described by [Bell &
Cleary+ 1990; Jelinek & Mercer 1980; Katz 1987; Kneser & Ney 1995; Ney & Essen+ 1994], can be found in
[Chen & Goodman 1996].

The most common metric for evaluating a language model is the probability that the model assigns to
some test data, or the derivative measures called the cross-entropy and the perplexity. For a smoothed lan-
guage model probability distribution p and a test set T composed of a number of lT sentences (t1, ..., tlT ),
we can calculate the probability of the test set p(T ) as the product of the probabilities of all sentences in
the set:

p(T ) =
lT

∏
i=1

p(ti) (1.10)

The measure of cross-entropy can be motivated using the well-known relation between prediction and
compression [Bell & Cleary+ 1990; Cover & Thomas 1991]. In particular, given a language model that
assigns probability p(T ) to a text T , we can derive a compression algorithm that encodes the text T using
− log2 p(T ) bits. The cross-entropy Hp(T ) of the language model on data T is defined as:

Hp(T ) = −
1

WT
log2 p(T ) (1.11)

where WT is the number of words in the text T . This value can be interpreted as the average number of
bits needed to encode each of the WT words in the test data using the compression algorithm associated
with model p. In a different perspective, the cross-entropy can be interpreted as the average number of
different words that could follow any given history (average number of words per position). Sometimes
the cross-entropy is referred to as just entropy.

The perplexity PPp(T ) of a model p is the most widely-used evaluation measure for an m-gram language
model. It is defined as the reciprocal of the (geometric) average probability assigned by the model to each
word in the test set T as in Equation (1.12):

PPp(T ) = 2Hp(T )

= [p(T )]
−1/WT

= [
lT

∏
i=1

p(ti)]

−1/WT

=

⎡
⎢
⎢
⎢
⎢
⎣

lT

∏
i=1

Nti

∏
n=1

p(wn∣w
n−1
n−m+1)

⎤
⎥
⎥
⎥
⎥
⎦

−1/WT

(1.12)

As clear from the above definitions, it is always desirable that the cross-entropies and the perplexities
have lower values. Usually, in order to train a well-performing language model, the perplexity of that
model is minimized over some held-out text which should be close to the domain of the test data. As an
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example, typical perplexities yielded by m-gram models on English text range from about 50 to almost
1000 (corresponding to cross-entropies from about 6 to 10 bits/word), depending on the type of text
[Chen & Goodman 1996].

1.6 Search

The search problem in ASR consists of finding an efficient algorithm and appropriate approximations
for finding the word sequence wN1 which maximizes the a-posteriori probability p(wN1 ∣xT1 ) for a given
feature sequence xT1 , i.e. solving Equation (1.1). As shown in Figure 1.1, the search combines the different
knowledge sources: the acoustic model (including the pronunciation model) and the language model. If
the acoustic model is an HMM as described in Equation (1.4) and the language model is an m-gram model
following Equation (1.8), then Equation (1.13) describes the resulting optimization problem.

[wN1 ]
opt

= argmax
wN

1

⎧⎪⎪
⎨
⎪⎪⎩

[
N

∏
n=1

p(wn∣w
n−1
n−m+1)][∑

sT1

T

∏
t=1

p(xt∣st;w
N
1 )p(st∣st−1;wN1 )]

⎫⎪⎪
⎬
⎪⎪⎭

Viterbi
= argmax

wN
1

⎧⎪⎪
⎨
⎪⎪⎩

[
N

∏
n=1

p(wn∣w
n−1
n−m+1)][max

sT1

T

∏
t=1

p(xt∣st;w
N
1 )p(st∣st−1;wN1 )]

⎫⎪⎪
⎬
⎪⎪⎭

(1.13)

The optimization problem can be efficiently solved by using dynamic programming [Bellman 1957]. The
Markov assumptions and the Viterbi approximation yield a mathematical structure which divides the
global optimization problem in Equation (1.13) into sub-problems with local dependencies and allows
the application of dynamic programming. The search can be organized in two ways: depth-first search
or breadth-first search. Instances of the depth-first search (stack decoding algorithms) are the Dijkstra
[Dijkstra 1959] and the A∗ algorithm [Jelinek 1969; Paul 1991]. The hypotheses space is explored in a
time-asynchronous manner according to the stack organization. In the A∗ algorithm, the stack is sorted
by a heuristic estimate of the cost to complete a hypothesis. In the breadth-first search, all hypotheses
are expanded in a time-synchronous manner [Baker 1975; Ney 1984; Sakoe 1979; Vintsyuk 1971].

In typical LVCSR tasks, the search space is huge and thus the full exploration is impractical. Therefore,
modern recognizers use pruning techniques to keep only the promising parts of the search space thereby
avoiding search errors. In an A∗ decoder, pruning is applied by removing the least promising partial
paths from the stack. The quality of the pruning depends on the quality of the heuristic cost estimate. In
contrast, the standard pruning for breadth-first search decoders does not require an explicit heuristic. In
a breadth-first search implementation, the likelihoods for all hypotheses are computed at each time frame.
The so-called beam pruning compares the likelihoods at each time frame and keeps only those hypotheses
which have likelihoods that are sufficiently close to the likelihood of the current best hypothesis [Lowerre
1976; Ney & Mergel+ 1987; Ortmanns & Ney 1995]. A careful tuning of the pruning parameters yields a
considerable reduction in the search effort without having a significant number of search errors.

The beam search approaches for LVCSR are particularly effective in combination with lexical prefix trees
[Ney & Häb-Umbach+ 1992; Ortmanns & Eiden+ 1998]. The pronunciations that have common prefixes
are laid together in the lexical prefix tree. Pruning in the early stages of the tree removes whole sub-trees
and eventually discards large parts of the search space. Language model look-ahead techniques aim at
considering the language model probabilities in the early stages of the lexical prefix tree; which enables
the decoder to perform better pruning based on more accurate scores [Alleva &Huang+ 1996; Ortmanns &
Ney+ 1996; Steinbiss & Ney+ 1993].

Alternatively, weighted finite state transducers (WFSTs) provide a generic framework to optimize the
search space [Allauzen & Mohri+ 2004; Mohri & Riley 1997]. The acoustic model (HMM) and the lan-
guage model (m-gram model) have WFST representations that can be combined and minimized by using
generic algorithms. In particular, the lexical prefix tree and the language model look-ahead technique
are implicitly applied by a WFST decoder using a minimized static search space transducer [Kanthak &
Ney+ 2002]. Other methods to reduce the computational complexity of the search include the fast like-
lihood computation [Kanthak & Schütz+ 2000; Parihar & Schlüter+ 2009; Ramasubramansian & Paliwal
1992], several look-ahead techniques [Alleva & Huang+ 1996; Häb-Umbach & Ney 1994; Ortmanns & Ney+
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1996], and multi-pass approaches, where a fast first pass reduces the search space for the ultimate Viterbi
search [Ljolje & Pereira+ 1999; Murveit & Butzberger+ 1993; Ney & Aubert 1994; Ortmanns & Ney+ 1997;
Schwartz & Chow 1990].

1.7 Multi-Pass Search

The state-of-the-art LVCSR recognizers perform multiple recognition and/or re-scoring passes [Evermann &
Chan+ 2003; Hoffmeister & Fritz+ 2007; Prasad & Matsoukas+ 2005]. Supervised adaptation techniques
like standard VTLN, MLLR, CMLLR, and domain specific language model adaptation require a reference
transcription. In a multi-pass decoder the output of the first unadapted recognition run provides the
required transcription to the adaptation step, which is followed by a second recognition run with the
adapted models and/or adapted features.

Some models and techniques cannot be applied during the Viterbi search because of their complexity,
like the language models in [Arisoy & Sainath+ 2012; Bengio & Ducharme+ 2003; Bilmes & Kirchhoff 2003;
Brown &deSouza+ 1992; Emami &Papineni+ 2007; Kirchhoff &Vergyri+ 2006; Kombrink &Mikolov+ 2011],
the phoneme duration model in [Jennequin &Gauvain 2007], the Bayes risk decoding in [Hoffmeister 2011],
or the system combination approaches in [Hoffmeister & Schlüter+ 2008]. Therefore, these models and
techniques are applied to a restricted search space which results from a normal Viterbi search. Thus,
during the Viterbi search; instead of finding a single hypothesis; the search algorithm narrows the search
space by creating N -best lists or lattices containing the sets of hypotheses achieving the highest scores.
These N -best lists or lattices are then re-scored via the sophisticated models or techniques.

1.7.1 N-Best Lists and Lattices

The most common way to store a large number of speech recognition hypotheses is to use N -best lists
or lattices. The N -best list is a sorted list of the N sentences that are assigned the highest scores after
performing the ASR search. Whereas, the lattice is a more compact form which stores a large number of
hypotheses that can be much larger than the size of any feasible N -best list.

A lattice is a directed, acyclic graph with time stamps on the states and labels on the arcs. In a word
lattice, the label is usually the word together with its pronunciation, in a phoneme lattice the label is
simply a phoneme. In addition, each arc stores the acoustic and the language model scores from the
Viterbi decoding. An example of a word lattice is shown in Figure 1.3.

The properties of a lattice depend on the search algorithm used by the decoder, and on the subsequent
filter steps. The default Viterbi search of the RWTH Aachen LVCSR system is a time-synchronous word-
conditioned tree search implementation [Beulen & Ortmanns+ 1999]. A word lattice produced by this
decoder follows the word-pair approximation in which an assumption is made that the end time of a word
depends only on the current and the preceding word hypothesis [Ney & Aubert 1994; Ortmanns & Ney+

1997]. The word-pair approximation guarantees that at any time t and for any word w and predecessor
word v there exists only one lattice arc labeled with w. As a consequence the lattice is deterministic, i.e.
each word sequence exists only once, in particular the same word sequence cannot exist with different
word boundaries. This word-pair approximation helps creating a more compact lattice. However, the
only guaranteed property of a lattice produced by the RWTH Aachen decoder is that it contains the
best sentence hypothesis with the correct scores and correct word boundaries. Due to the word-pair
approximation, hypotheses competing with the best one may have inaccurate word boundaries and thus
overestimated acoustic scores. Furthermore, it is not guaranteed that a lattice of M hypotheses contains
the N -best list for 1 < N ≤M , i.e. the N best scored hypotheses. The constraints hold not only for the
RWTH Aachen decoder but for any popular LVCSR decoder.

The quality of a lattice is measured in terms of the graph error rate (GER)1 and the graph density
(GD). The goal of the lattice construction process is to achieve a low GER for a small GD. The GER of

a word lattice L is defined in Equation (1.14), where Lev(wN1 , w̃
Ñ
1 ) is the Levenshtein distance between

1Sometimes referred to the lattice error rate (LER) or as the oracle error rate (OER) of the lattice.
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Figure 1.3. An example of a word lattice (taken from [Schwenk 2007]). The lattice is produced using a trigram LM,
where each word has a unique bigram context. For simplicity, acoustic and language model scores are not shown on
arcs ([fw]: filler word; [breath]: breath noise).

the word sequence wN1 and the reference w̃Ñ1 , and Ñ is the number of reference words.

GER(L) ∶= min
wN

1 ∈L

Lev(wN1 , w̃
Ñ
1 )

Ñ
(1.14)

The GD is defined as the ratio between the number of arcs in the lattice ∣E(L)∣ and the number of words
in the reference Ñ , where E(L) is the set of arcs in the lattice L. If the reference is unknown, then the
GD can be approximated by using the number of words in the Viterbi decoding (1-best) result N̂ .

GD(L) ∶=
∣E(L)∣

Ñ
≈

∣E(L)∣

N̂
(1.15)

The lattices produced by the RWTH Aachen LVCSR decoder use the word-conditioned tree search decoder
and the word-pair approximation. The resulting lattices are referred to as word-conditioned lattices.

In a similar fashion, the N -best error rate (NER) is the minimum WER achieved by any word sequence
in the N -best list. Let B be a set of N -best sentences, then similar to Equation 1.14, the NER can be
defined as:

NER(B) ∶= min
wN

1 ∈B

Lev(wN1 , w̃
Ñ
1 )

Ñ
(1.16)

1.7.2 Confusion Networks

The lattice has usually a complex topology. Therefore, a common approximation of the lattice, called
a confusion network (CN), is sometimes used instead. A confusion network (CN) is a weighted directed
graph with the peculiarity that each path from the start node to the end node goes through all the other
nodes. Each edge is labeled with a word and a (posterior) probability. Additional scores can also be
provided. The total probability of all edges between two consecutive nodes sum up to 1. A path from
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Figure 1.4. An example of a confusion network (CN) derived from a lattice. The figure shows: the original lattice,
a derived CN, and an intermediate lattice in which all paths have the same length. The positions for the insertions
of the ε-arcs are derived from the CN according to the algorithm described in [Hoffmeister 2011]. The number that
appears on each arc corresponds to the CN slot to which the arc is assigned.

the start node to the end node is scored by multiplying the scores of its edges. If the previous constrain
is satisfied, the product represents the likelihood of the path, and the sum of the likelihoods of all paths
equals to 1. Between any two consecutive nodes, at most one special empty word (ε) can be inserted.
These empty words allow paths to have different lengths. Any path within a CN represents a realization
of the CN. Realizations of a CN can differ in terms of either the sequence of words or the total score. It is
possible that two or more realizations have the same sequence of words, but different scores. The number
of words can also differ due to presence of ε-arcs. A CN contains at least all the paths of the lattice from
which it is originated.

In the recent years, several methods have been proposed to build CNs directly from lattices [Hakkani &
Riccardi 2003; Hoffmeister & Schlüter+ 2009; Mangu & Brill+ 2000; Xue & Zhao 2005]. Figure 1.4 shows
an example of a CN derived from a lattice using the algorithm described in [Hoffmeister 2011]

1.7.3 Speaker Adaptation

Speaker adaptation requires a speaker label S for each speech utterance. All the utterances spoken by the
same speaker form a separate speaker cluster labeled by S. A common approach for unsupervised speaker
clustering is based on optimizing the Bayesian information criterion (BIC) on the acoustic features of
the clustered utterances [Chenand & Gopalakrishnan 1998; Tritschler & Gopinath 1999]. The commonly
applied speaker adaptation methods in the RWTH Aachen decoder are: vocal tract length normalization
(VTLN), maximum likelihood linear regression (MLLR), and constrained MLLR (CMLLR).

In VTLN approach, the warping factor for a speaker S is chosen by performing a grid search that aims
at maximizing the likelihood of the speaker cluster given the output of the previous recognition pass.
This approach is computationally expensive. Therefore, the RWTH Aachen decoder uses the fast-VTLN
implementation, where the warping factor is selected by a classifier [Lee & Rose 1996; Molau 2003].

In MLLR approach, the parameters of the GMMs are adapted to match the speaker by applying a
speaker-dependent linear transformation to the means and variances. Equation (1.17) shows the uncon-
strained form of MLLR, where s is the index of the state, and l is the index of the mixture density.

µ̂
(S)
sl = A(S)

s µsl + b(S)
s , Σ̂

(S)
sl = H(S)

s ΣslH
(S)T
s (1.17)

In the RWTH Aachen decoder, only the means are adapted but not the globally pooled diagonal covariance

matrix Σ. The state dependent transformation matrices A
(S)
s for a given speaker S and a state s are tied

according to a decision tree [Pitz 2005]. In the estimation step, those transformation matrices are chosen
so as to maximize the likelihood of the corresponding speaker cluster, where the output of the previous
decoding pass serves as a supervisor.
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In the CMLLR approach, a constrained form of MLLR is used, where the means and variances are
transformed by the same matrices. The RWTH Aachen decoder uses CMLLR for speaker adaptive
training (SAT), where only a single transformation per speaker is used. The resulting transformation is
shown in Equation (1.18).

µ̂
(S)
sl = A(S)µsl + b(S), Σ̂(S)

= A(S)ΣA(S)T (1.18)

The advantage of CMLLR is that it can be implemented as a feature transformation. This simplifies the
integration of CMLLR in LVCSR systems [Leggetter & Woodland 1995].

1.8 Model and System Combination

A successful approach to achieve less WER in ASR is to combine several models or systems together. In the
model combination approach, all the knowledge sources are combined into a single log-linear model from
which the posterior probability p(wN1 ∣xT1 ) is computed. The knowledge sources combined in the log-linear
model usually consist of several language models and acoustic models. In the cross-adaptation approach,
two or more independently trained systems are combined, where the interaction between the systems
takes place in the speaker adaptation step. The third and most common approach is to introduce the
system as a hidden variable and to compute the marginal over the resulting weighted, system-dependent
posteriors. Equation 1.19 expresses the combination of J LVCSR systems [Hoffmeister 2011].

p(wN1 ∣xT1 ) =
J

∑
j=1

p(wN1 , j∣x
T
1 ) =

J

∑
j=1

p(j∣xT1 )p(wN1 ∣j, xT1 ) (1.19)

1.8.1 Log-linear Model Combination

The standard approach in ASR is to use a model with only two knowledge sources: the acoustic model
and the language model. To achieve the optimal performance, LVCSR systems introduce a language
model scale which eventually turns Equation (1.1) into a log-linear model. The log-linear model can be
used explicitly for model combination by adding more knowledge sources to the model, usually additional
language models or acoustic models [Metze & Waibel 2002a,b; Zolnay 2006].

In the discriminative model combination (DMC), each of the knowledge sources combined in the log-
linear model gets its own scaling factor which is optimized for minimal WER [Beyerlein 1997, 1998; Vergyri
2000; Zolnay & Schlüter+ 2005]. In practice, a decoding process with many acoustic models is expensive
in terms of both time and memory. Therefore, a common approach is to generate lattices with a base
decoder and rescore these lattices with the additional knowledge sources. In the standard LVCSR training
procedures, the interaction between the several knowledge sources during search is not fully considered.
An approach to compensate for the short-coming of the model training is to capture the interactions
in the log-linear model combination using context-dependent scaling factors [Hoffmeister & Liang+ 2009;
Huang & Belin+ 1993; Vergyri & Tsakalidis+ 2000].

1.8.2 System Combination

An alternative to the log-linear model combination is the N -best list or lattice-based system combination,
where the output of several decoders is combined. In the log-linear model combination, all models are
combined into a single system, whereas in the system combination approach each model is used in a
separate system to produce a separate output. In the simplest case, only a single best hypothesis from
each system are combined like in the ROVER approach [Fiscus 1997]. The quality of the ROVER result
can be significantly increased by using confidence scores [Mangu &Brill+ 2000; Wessel &Schlüter+ 2001] or
by replacing ROVER’s decision rule by a classifier [Hillard & Hoffmeister+ 2007; Zhang & Rudnicky 2006].
Instead of a single hypothesis, N -best lists or confusion networks (CNs) can be combined [Evermann &
Woodland 2000; Mangu 2000; Ostendorf & Kannan+ 1991; Stolcke & Bratt+ 2000].
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1.8.3 Cross-Adaptation

An alternative method to perform system combination which became popular in the recent years is called
cross-adaptation [Soltau & Kingsbury+ 2005a; Stüker & Fügen+ 2006]. Instead of applying the system
combination as a post-processing step to the decoding process, the interaction between the systems is put
into the speaker adaptation step of a multi-pass decoder. In the cross-adaptation approach, the supervisor
for MLLR adaptation is the output of an alternative system. In [Guiliani & Brugnara 2006], the approach
is extended to multiple supervisors. The multiple supervisors are either reduced to a single supervisor
in a preprocessing step by applying system combination methods, or the ultimate adaptation statistics
are derived from the weighted average of the supervisor-dependent statistics [Guiliani & Brugnara 2007;
Hoffmeister & Fritz+ 2007; Rybach & Hahn+ 2007; Vergyri & Mandal+ 2008].

1.9 Morphologically Rich Languages

All the experiments in this thesis are performed on Arabic, German and Polish corpora since these
languages are good examples of morphologically rich languages. Therefore, in this section, we give a quick
overview of the main linguistic properties of these languages. We essentially highlight the morphological
properties that are closely related to our work.

1.9.1 Arabic

Arabic belongs to the family of Semitic languages containing Amharic, Aramaic and Hebrew. The standard
form of Arabic that is used in writing and in most formal speech is called modern standard Arabic (MSA).
Arabic is a highly inflected language. The Arabic words are derived from roots, which in most cases consist
of three consonants, by applying patterns to get stems and then attaching different affixes to obtain a large
number of word forms. Usually, affixes are used to indicate grammatical categories like person, number
and gender. We can think of a stem as being decomposed into a root and a pattern. The root holds the
basic meaning of the word; while the pattern adds secondary features like: voice, tense, or causality. The
root and the pattern are interspersed to give a typical word form. An example of having several words
derived from the same root is shown in Table 1.1.

Moreover, Arabic is a strongly consonantal language having only three vowels, each of which has a
short and long form. Some important pronunciation phenomena are indicated by special marks rather
than normal letters. These marks are called diacritics which are short strokes placed above or below the
consonant. These diacritical marks are used to indicate: short vowels, gemination (consonant doubling),
nunation (word-final adverbial mark) or sukun (vowel absence). A word with full diacritics is called a
diacritized word. Usually, Arabic words are written without diacritization, also referred to as vowelization,
which the reader should infer according to the context. In fact, very few text sources use explicit diacritics.
This is usually found in religious texts but not in the texts of the MSA. For more details about the Arabic
language, see e.g. [Bateson 2003].

Arabic is also characterized by a large number of colloquial spoken (usually not written) varieties called
dialects, such as Egyptian, Levantine, Moroccan, Iraqi, and Gulf Arabic. All the dialects can be categorized
into five regional groups: Egyptian, Syro-Lebanese, Maghrebi, Mesopotamian and Arabian Peninsula.
These dialects deviate from the MSA in different aspects, like the vocabulary, word ordering, the set
of affixes, word fusion, in addition to the way of pronunciation. In this work, we perform experiments
on the Egyptian colloquial Arabic (ECA) which is considered as the most widely understood colloquial
version of Arabic. ECA inherits all the basic characteristics of the MSA, like the complex morphology,
the high degree of inflection, and the rich derivation. However, like most of the other dialects, it shares a
large number of vocabulary words with the MSA. It is considered as a low-resource dialectal language for
which there are no widely available language resources such as written text, pronunciation dictionaries,
morphological analyzers, and so forth.
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Table 1.1. Different Arabic words derived from the same root “ktb”.

Arabic Buckwalter English
Word Transliteration Meaning

�
I.

��
J
�
» kataba he wrote

�
I.

�
J�

�
» kutiba it was written

�
H. ñ

�
Jº

�
Ó maktwbuN is written

�
I.

�
K� A

�
¿ kAtibuN a writer

�
H. A

��
J»� kitAbuN a book

��
é
�
K. A

��
J»� kitAbapuN writing

�
I.

��
J
�
» kutubuN books

�
I.

��
J»

�
@ >ktubu I write

�
I.

��
Jº

�
Ó maktabuN desk or office

1.9.2 German

German belongs to the family of Germanic languages like: Dutch, Norwegian, Danish and Swedish. It
is usually cited as an outstanding example of highly inflected languages, as a large number of words can
be derived from the same root. Like most Germanic languages, German uses noun compounds where the
first noun modifies the category given by the second, like in the word “Hundehütte : dog hut”2. Long
combinations of nouns are often written in a closed form without spaces, for example “Baumhaus : tree
house”. Also, the meaning of German verbs can be expanded, and sometimes radically changed, through
the use of prefixes. An example is the prefix zer- refers to the destruction of things, as in “zerbrechen :
to break apart”, or “zerschneiden : to cut apart”. Many German verbs have a separable prefix which can
be split off and moved to the end of the clause. For example, “mitgehen : to go along” which can be split
like in “Gehen Sie mit? : Are you going with?”. For more extensive overview of German morphology, see
e.g. [Fox 2005].

1.9.3 Polish

Polish is also considered as one of the morphologically rich languages. It belongs to the family of Slavic
languages like Russian, Czech, and Bulgarian. It is characterized by a high degree of inflection, having
seven cases and two number classes. Polish does not use definite or indefinite articles. It has a complex
gender system like almost all the other Slavic languages. This is due to the combination of three categories:
gender (masculine, feminine, neutral), personhood (personal versus non-personal) and animacy (animate
versus inanimate). Declensional endings depend on case, number and gender. In addition, declension
changes if the word is noun or adjective. Moreover, word stems are frequently modified by the addition
or absence of endings. Also, verbs are inflected according to gender as well as person and number. For
more detailed overview of Polish language, see e.g.[Swan 2002].

1.10 Language Modeling: the State of the Art

Over the last few decades, the backoff m-gram LM estimated over sequences of full-words has been
considered as the state of the art in the language modeling field. This is because of the strong recognition
performance of this model relative to its simplicity and low computational complexity. The major focus of
this thesis is to develop improved language modeling approaches suitable for dealing with morphologically

2For non-English words, we give the word and the English translation separated by “:”.
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rich languages. Recently, several advanced language modeling ideas have been proposed. Some of these
ideas have focused on the choice of the proper recognition unit, such as different types of sub-words.
Broadly speaking, these ideas produce a set of models called sub-word based LMs. Other ideas have
focused on incorporating word classes into the LM estimation process, such as morphology-based classes.
Other approaches have focused on the fundamental modeling and parameter estimation techniques such
as Bayesian LMs, and continuous space LMs.

The following sections give an overview of the most important research in these directions.

1.10.1 Sub-Word Based LMs

One approach to deal with morphologically rich languages is the sub-lexical language modeling. The
words of the underlying language are decomposed into some type of sub-words called sub-lexical units,
then m-gram LMs are estimated over sequences of these sub-words. Normally, the number of possible
sub-words in a given text corpus is smaller than the number of the full-words which leads to higher lexical
coverage. Also, the sub-words can be properly combined to produce a wide range of new words achieving
lower OOV rates. In addition, the average frequency of sub-words is larger than the average frequency of
full-words which helps to reduce the effect of data sparsity leading to more reliable probability estimates.
Possible types of sub-word units are: morphemes, syllables, phonemes, and graphones.

Morpheme-based LMs. An example of a sub-word based LM is the morpheme-based LM in which
the probability estimation is performed over sequences of morphemes rather than sequences of full-words.
Normally, morphemes are generated from the full-words by applying morphological decomposition based on
supervised or unsupervised approaches. The supervised approaches make use of linguistic knowledge, like
in [Lamel &Messaoudi+ 2008; Xiang &Nguyen+ 2006], where decomposition is performed for Arabic words
based on Buckwalter Arabic morphological analyzer (BAMA) [Buckwalter 2004] along with some added
constraints. In [Afify & Sarikaya+ 2006], a decomposition method starts with a fixed set of affixes and
decomposes Arabic words into stems and affixes based on pattern matching approaches. In [Choueiter &
Povey+ 2006; Lee & Papineni+ 2003], a LM based morpheme generator is used to perform decomposition
for Arabic words, along with a morpheme lattice constrainer to reject illegal sequences of morphemes. In
[Byrne & Hajič+ 2000], a carefully built morphological analyzers based on lexical and syntactic knowledge
is used for Czech language. However, in [Berton &Fetter+ 1996], a manually decomposed lexicon is used for
German speech recognition. Whereas, in [Adda-Decker & Adda 2000], a set of manual rules is developed
for German word decomposition. Although the supervised decomposition is normally optimized for high
performance, it requires labor-intensive work and still suffers from the so-called unknown word problem,
that is, words that are not explicitly coded into the system. On the other side, the unsupervised approaches
are statistical based data-driven approaches [Adda-Decker 2003; Ordelman & Hassen+ 2003; Rotovnik &
Maučec+ 2007]. In [Larson & Willett+ 2000], an algorithm is proposed that decomposes words according
to the statistical relevance of the resulting constituents. In [Ordelman & Hassen+ 2003], a compound
splitting algorithm is developed for Dutch language that uses sorting, word length, and word frequency
information. Other unsupervised methods are based on the minimum description length (MDL) principle
like in [Creutz 2006; Creutz & Hirsimäki+ 2007]. On the contrary, unsupervised approaches are language
independent as they do not require any language specific knowledge and can be applied to any language.

Syllable-based LMs. Another type of a sub-word based LM is the syllable-based LM in which the main
recognition unit is the syllable which consists of one or more written letters representing a unit of speech.
A syllable can also be recognized as a phonological building block of words. Syllables are generated from
the full-words by performing a process called syllabification. In most languages, syllabification can be
achieved by applying linguistic and phonetic rules. Syllable-based LMs have been used for languages like
Polish [Piotr 2008], and English [Schrumpf & Larson+ 2005]. In [Çarki & Geutner+ 2000], a sub-lexical
approach is proposed for Turkish language which starts by initially breaking up words into syllables using
syllabification rules and then merging syllables into larger units by defining syllable classes.
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Phoneme- and graphone-based LMs. A different type of unit makes use of the word pronunciation
and aims at combining the pronunciation model with the language model in one joint model. In [Bazzi &
Glass 2000; Creutz & Hirsimäki+ 2007], a phoneme-based model is augmented to a word model so that
any OOV word can be recognized as an arbitrary sequence of phonemes. In [Klakow & Rose+ 1999],
multi-phoneme fragments are automatically constructed and integrated into the lexicon and the LM, but
no attempt is made to convert phoneme sequences into proper words. Alternatively, in [Galescu 2003], a
set of automatically derived units based on joint grapheme-phoneme components, called graphones, are
augmented to a normal word model leading to small improvements in the WER for an English LVCSR
task. In [Bisani & Ney 2005], a set of fragment-based graphones are used for OOV words in order to
perform an English dictation task, where the graphones are constructed based on arbitrary fragments
with some length constraints but without any linguistic considerations. The choice of the set of graphones
is based on a grapheme-to-phoneme (G2P) conversion model as described in [Bisani & Ney 2008].

Criticism. Most of the previously cited work is either based on small vocabulary sizes or is lacking proper
optimization, like selecting the most suitable type of units, optimizing the overall vocabulary size, number
of different units, and OOV rates. In addition, the existing work on graphone units does not take into
consideration the optimization of the set of graphones as recognition units to achieve the best recognition
performance in a LVCSR system; rather, they are only optimized to provide the minimum phoneme error
rates (PERs) in G2P conversion tasks. In addition, the performance of graphone units has not been tested
on very large vocabulary systems.

1.10.2 Word Classes in LMs

Another approach to overcome the data sparseness and to reduce the dependence of the traditional word
based LMs on the discourse domain is to incorporate other word classes taken from different knowledge
sources into the LMs rather than only normal words. Usually, this approach yields better smoothing
and better generalization with regard to unseen word sequences. Word classes can be generated based
on linguistic methods as in [Kirchhoff & Vergyri+ 2006; Maltese & Bravetti+ 2001], or via data-driven
approaches as in [Brown & deSouza+ 1992; Kneser & Ney 1993a, 1991]. Examples of such classes are the
morphology-based classes. Possible types of LMs are: stream-based, class-based LMs, and factored LMs.

Stream- and class-based LMs. Possible approaches for incorporating word classes into LMs are the
stream-based LMs [Kirchhoff &Vergyri+ 2006], and the class-based LMs [Brown &deSouza+ 1992; Kneser &
Ney 1991]. Each of these two approaches treats every class stream separately without considering any
interaction among classes during the backoff process. The stream-based LM is a normal backoff m-
gram model built over of a stream of class assignments. Whereas, the class-based LM is a model that
combines the m-gram model over a stream of class assignments with the probability distribution of words
within classes in order to better estimate smoothed probabilities of word sequences. In [Kirchhoff &
Vergyri+ 2006], both stream- and class-based LMs are successfully used to obtain significant reductions
in WERs on a conversational Egyptian Arabic speech recognition task. In [Maltese & Bravetti+ 2001], a
combination of word-based LMs and different class-based LMs are used to perform LVCSR for French,
English, German, Italian, and Spanish leading to significant reductions in both perplexities (PPLs) and
WERs. In principle, the generation of word classes can be performed using linguistic or data-driven
approaches. The most important work on data-driven word clustering have been introduced by [Brown &
deSouza+ 1992; Kneser &Ney 1991, 1993b; Martin &Liermann+ 1998], where clustering is performed using
the criterion of perplexity improvement. In [Maltese & Bravetti+ 2001], a comparison is made between
different linguistic and data-driven classes based on manual and automatic word-clustering techniques. In
[Gao &Goodman+ 2001], a generalized version of the class-based LM called the cluster-based LM is utilized
for Japanese and Chinese languages. Therein, a major focus is given to investigate the best methods to
use the classes. Using these models, significant reductions in PPLs are obtained.

Factored LMs. A different model that is mainly used to incorporate morphology-based word classes
into LMs is the factored LM (FLM) [Bilmes & Kirchhoff 2003]. This model uses a complex backoff
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mechanism in a form of a predefined backoff graph in order handle different class streams jointly during
the backoff. The concept of the generalized parallel backoff (GPB) is introduced by [Bilmes & Kirchhoff
2003; Kirchhoff &Bilmes+ 2008] in which the model backs-off to multiple combinations of classes in parallel
during the training time, statistics are then collected and combined from every backoff path to estimate
the required probability. The FLMs have been successfully applied to Arabic and Amharic ASR tasks,
like in [Kirchhoff & Bilmes+ 2002; Tachbelie 2010; Tachbelie & Abate+ 2011]. However, no attempt has
been made to use such models in other morphologically-rich languages.

Criticism. Most of the previously cited work on class-based LMs is focused on the use of data-driven
classes. However, for morphologically rich languages, highly reliable morphology-based classes can be
efficiently derived based on existing morphological analyzers. In addition, factored LMs have not been
properly compared to interpolated class-based LMs. In fact, the use of factored LMs has not been tried
for languages beyond Arabic and Amharic, and most of the existing work does not consider the use of
very large vocabularies which is essential in typical tasks. Moreover, no trial has been made to use classes
for sub-word based LMs.

1.10.3 Novel LM Estimation

There has been a considerable amount of research aimed at improving the conventional backoff m-gram
LMs. Examples of such trials are: the hierarchical Pitman-Yor LM (HPYLM) and the continuous space
LMs based on neural networks.

Hierarchical Pitman-Yor LMs. Recently, the hierarchical Bayesian LMs [Blei & Ng+ 2003; Gelman &
Carlin+ 2003] have succeeded to achieve a comparable performance to the state-of-the art m-gram LMs
smoothed with the modified Kneser-Ney (MKN) smoothing [Chen & Goodman 1996]. A hierarchical
Pitman-Yor LM (HPYLM), initially introduced in [Teh 2006a], is a type of Bayesian LM based on the
Pitman-Yor (PY) process that has been shown to improve both the PPL and the WER over the modified
Kneser-Ney smoothed m-gram LMs [Huang & Renals 2007]. The Pitman-Yor (PY) process is a gener-
alization of the widely used Dirichlet distribution [Ishwaran & James 2001; Pitman 2002; Pitman & Yor
1997]. This PY process produces power-law distributions over word frequencies [Goldwater & Griffiths+

2006, 2011]. This means that few number of words occur with high frequencies, while most words occur
with low frequencies. This distribution has been found to be one of the most striking statistical properties
of word frequencies in natural languages.

Continuous space LMs. Recently, continuous space LMs have shown significant performance improve-
ments in LVCSR tasks. There is currently a growing research interest in such models because they allow
for higher levels of generalization as a result of the inherent smoothing capabilities in continuous space.
In fact, there is a large group of techniques that aim at estimating LMs in continuous space. This in-
cludes: the shallow neural network LM (SNNLM), investigated in [Bengio & Ducharme 2001; Bengio &
Sénécal 2003; Bengio & Ducharme+ 2003], which uses a single hidden layer feed-forward neural network
to estimate the LM. In [Arisoy & Sainath+ 2012], a deep neural network LM (DNNLM) is investigated,
where a feed-forward neural network employing multiple hidden layers is used as the probability estimator
in continuous space to perform speech recognition on a Wall Street Journal (WSJ) task. On the other
hand, in [Kombrink & Mikolov+ 2011; Mikolov 2012; Mikolov & Karafiát+ 2010], a different type of contin-
uous space LM is proposed that uses a recurrent neural network (RNN), this LM is called RNNLM. An
improved type of RNN that is recently used to estimate continuous space LMs is called the long short-
term memory (LSTM) RNN [Gers 2001; Graves & Schmidhuber 2005; Hochreiter & Schmidhuber 1997].
This LM is called LSTMLM [Sundermeyer & Schlüter+ 2012; Sundermeyer & Oparin+ 2013]. Using these
continuous space LM approaches, significant reductions in both PPLs and WERs are reported.

Criticism. The use of hierarchical Pitman-Yor LMs has not been sufficiently investigated on very large
vocabulary speech recognition tasks. In addition, no trial has been made to use hierarchical Pitman-Yor
models to estimate class-based LMs on sub-word level. On the other hand, although there exist many
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publications on recurrent neural network LMs, to the best of our knowledge, only one trial has been made
to investigate the use of feed forward deep neural network LMs [Arisoy & Sainath+ 2012]. This previous
work is performed on a small WSJ task with small vocabularies. Furthermore, no trial has been made to
use word classes with the neural network LMs.
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Chapter 2

Scientific Goals

The major interest of this thesis is to develop improved language modeling approaches to deal with
the problems related to the LVCSR of morphologically rich languages, like Arabic, German, and Polish.
Examples of such problems are: data sparsity, high OOV rates, poor LM probability estimates, and lack
of generalization to unseen word sequences. The first objective of this thesis is to investigate and extend
the use of sub-word based LMs using different types of sub-word units like, morphemes and syllables,
as well as combining the pronunciation model with the language model using graphonemic units. This
also includes the use of hybrid LMs containing a mixture of various sub-word units along with full-words
in one flat model. A major attention is paid to perform a careful optimization of the sub-word based
models as well as the competing full-word models in order to show the actual potential of this approach.
The second objective is to develop a novel methodology in which morphology-based classes are used for
LM estimation, where the classes are derived on sub-word level rather than full-word level. Thereby,
the benefits of sub-word based language modeling are retained simultaneously with the advantages of
using classes. The third objective is to explore the combination of the aforementioned approaches with
the recent state-of-the-art language molding techniques, like hierarchical Pitman-Yor LMs (HPYLMs),
and continuous space LMs based on feed forward deep neural networks (DNNLMs). Starting from these
objectives, a set of scientific goals are derived, which include:

Development of optimized sub-word based language models. A language modeling approach which is
more appropriate for morphologically rich languages is the sub-word based LMs, also known as sub-lexical
LMs. The words of the underlying language are decomposed into some type of sub-word units, called sub-
lexical units, then m-gram LMs are estimated over sequences of these sub-words. Normally, the number
of possible sub-words in a given text corpus is smaller than the number of full-words in the same corpus
which leads to higher lexical coverage. Also, sub-word units can be properly combined to produce a wide
range of previously unseen words achieving lower OOV rates. In addition, the average frequency of such
units is larger than the average frequency of full-words, which helps to reduce the effect of data sparsity
and leads to more reliable probability estimates. This approach has been successfully used for various
languages. However, most of the previous work is either based on small vocabulary sizes or is lacking
proper optimization, like selecting the most suitable type of units, optimizing the overall vocabulary
size, number of different units, and OOV rates. In this thesis, an extensive study is performed on the
use of carefully optimized sub-word based LMs for LVCSR of morphologically rich languages like Arabic
[El-Desoky & Gollan+ 2009], German [El-Desoky & Shaik+ 2010] and Polish [Shaik & El-Desoky+ 2011b].
Investigations are made on different types of sub-word units based on supervised and unsupervised word
decomposition. The proposed LMs are optimized over different types of units, like words, morphemes and
syllables using very large vocabulary sizes that go up to one million.

Joint language and pronunciation models. Joint language and pronunciation models are investigated in
oder to help improving the performance of LVCSR systems. This can be accomplished by incorporating
pronunciations into LMs using sub-word units combined with their context dependent pronunciations.
In a previous work, fragments of words are combined with their pronunciations to form a so called
fragment-based graphone units that are mainly used to model OOV words [Bisani & Ney 2005]. Therein,
sub-words are defined by arbitrary word fragments with some length constraints. These graphone units
are derived from a grapheme-to-phoneme (G2P) conversion model [Bisani &Ney 2008]. However, they are
not well optimized as recognition units to achieve the best recognition performance in a LVCSR system;
rather, they are only optimized to provide the optimum G2P conversion performance. In addition, the
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performance of such units has not been tested on very large vocabulary systems. In this thesis, novel types
of graphones are introduced, in which optimized morphemic or syllabic sub-words are combined with their
context dependent pronunciations. This serves as a combination of language and pronunciation models
in one joint probability distribution. To create such models, a modification procedure is proposed on
top of the conventional fragment-based graphones using letter-phoneme sequence alignment via dynamic
programing (DP) and expectation maximization (EM) [Shaik & El-Desoky+ 2011b]. These novel models
are called morpheme- or syllable-based graphone models and are tested on very large vocabulary systems.

Development of extended hybrid language models. Another novel approach is introduced, in which
the use of lexicons and LMs comprising mixed types of lexical and sub-lexical units is investigated like:
full-words, morphemes, syllables, morpheme-based graphones, and syllable-based graphones [Shaik & El-
Desoky+ 2011a]. For example: full-words, morphemes, and morpheme-based graphones; or full-words,
syllables, and syllable-based graphones are used in one hybrid lexicon and LM. This novel mixture of
units is forming a so called extended hybrid LMs suitable for open vocabulary LVCSR tasks, where
systems operate over open, constantly changing vocabularies. The numbers of the vocabulary items of
each type of unit are optimized so as to obtain the minimum WER.

Investigations on using morphology-based classes in language models. An approach to overcome the
data sparseness and to reduce the dependence of the traditional word-based LMs on the discourse domain
is to incorporate word classes into the LM estimation process rather than using only words or sub-words.
Usually, this approach yields better smoothing and better generalization with regard to unseen word
sequences. In principle, word classes can be generated based on linguistic or data-driven methods. Most
of the previous work has been focused on the use of data-driven classes in LMs. Whereas, less work has
been performed using linguistic classes. This thesis pays a major attention to the use of morphology-based
classes for LMs of morphologically rich languages. It shows how efficient morphology-based classes can
be generated based on existing morphological analyzers for Arabic and German languages.

Examples of LMs that operate on word classes are the stream-based LMs [Kirchhoff & Vergyri+ 2006]
and the class-based LMs [Brown & deSouza+ 1992; Kneser & Ney 1993a, 1991]. In these models, every
class stream is treated separately without considering any interaction among different classes during the
backoff process. Thus, a separate stream- or class-based LM is built over every individual class. In the
work of this thesis, multiple stream- and class based LMs are estimated over morphology-based classes
[El-Desoky & Schlüter+ 2012]. A combination of these models is accomplished via model interpolation or
N-best score combination.

Another approach that makes use of word classes is the factored LM [Bilmes &Kirchhoff 2003; Kirchhoff &
Bilmes+ 2002]. In this model, both words and their classes are viewed as generic factors. Every word is
considered as a vector consisting of a set of parallel factors over which the probability estimation is to be
performed. The factored LM uses a complex backoff mechanism in a form of a predefined backoff graph
in order handle different class streams jointly during the backoff. The main idea of the model is to backoff
to different combinations of classes when some word m-gram is not sufficiently observed in the training
data. Thereby, the probability estimates are improved by taking into account the joint interaction among
classes in training time. This thesis shows how optimized FLMs can be estimated over morphology-based
classes for different languages, namely Arabic and German [El-Desoky & Schlüter+ 2010; El-Desoky &
Shaik+ 2011]. A detailed comparison with interpolated word- and class-based LMs is performed.

Combining the benefits of sub-word based LMs and morphology-based classes. A novel approach
is introduced that retains the benefits of the sub-word based LMs along with the advantages of using
morphology-based classes. This is accomplished via generating classes on the sub-word level, namely the
morpheme level, rather than the level of full-words. Hence; stream-based, class-based, and factored LMs
are estimated over sequences of morphemes and their classes [El-Desoky & Schlüter+ 2010; El-Desoky &
Shaik+ 2011; El-Desoky & Schlüter+ 2012].

In case that language model interpolation is not directly possible, score combination is performed over N-
best sentences in order to benefit from different LMs during rescoring. Usually, for N-best rescoring, scores
used for re-ranking the N-best hypotheses are normally a weighted combination of several component
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scores representing the acoustic score, the LM score and the number of words. However, scores from
various LMs can be also added. The final score for each hypothesis is computed as a log-linear combination
of the invoked scores. The weights of this combination can be optimized to achieve the minimum WER
on the development set.

Investigations on hierarchical Pitman-Yor language models. A well known fact about the backoff m-
gram LM is that it is not based on an internally coherent Bayesian probabilistic model. This makes it
difficult to describe the advantages of the backoff m-gram model in terms of how closely it copes with
the inherent properties of natural languages. Among the approaches that aim at improving the m-gram
LM, hierarchical Bayesian LMs [Blei & Ng+ 2003; Gelman & Carlin+ 2003] have succeeded to achieve a
comparable performance to the state-of-the art m-gram LMs smoothed with the modified Kneser-Ney
smoothing [Chen & Goodman 1996]. A hierarchical Pitman-Yor LM (HPYLM) is a type of hierarchical
Bayesian LM that is based on a coherent Bayesian probabilistic model which explicitly declares prior
assumptions over the LM parameters [Huang &Renals 2007; Teh 2006a]. HPYLM is based on the Pitman-
Yor process which is a generalization of the widely used Dirichlet distribution [Pitman & Yor 1997]. The
resulting model is considered as a direct generalization of the hierarchical Dirichlet LM proposed by
[MacKay & Peto 1994]. The PY process produces power-law distributions over word frequencies. This
means that few number of words occur with very high probabilities, whereas most words occur with low
probabilities. This distribution has been found to be one of the most striking statistical properties of
word frequencies in natural languages.

In this thesis, hierarchical Pitman-Yor models are utilized to estimate class-based LMs on morpheme
level. In other words, the traditional modified Kneser-Ney smoothed models are replaced with the hier-
archical Pitman-Yor models. This is a novel approach that aims at combining the benefits of sub-word
based LMs and morphology-based classes with the advantages of the HPYLMs.

Investigations on continuous space language models using feed-forward deep neural networks. One
of the major disadvantages of the backoff m-gram LM is its poor modeling performance in cases of data
sparseness. In fact, data sparseness is an essential problem in morphologically rich languages. Even
when large training corpora are used, still extremely small probabilities can be assigned to many valid
word sequences. This is an inherent disadvantage of all LMs estimated in a discrete space. The discrete
nature of such models makes it difficult to reach high levels of generalization even after applying the most
efficient smoothing techniques, like the modified Kneser-Ney (MKN) smoothing of the backoff m-gram
models [Chen & Goodman 1996]. Actually, the main problem comes from the lack of a notion of word
similarity. Indeed, the use of morphology-based classes with discrete space LMs, like the stream-based;
class-based; and factored LMs, introduce a partial solution to this problem by supporting the probability
estimation process with word classes in cases of data sparseness.

In contrast, the neural network LM (NNLM) performs probability estimation in a continuous space using
a single hidden layer (shallow) feed-forward neural network [Bengio & Ducharme+ 2003; Schwenk 2007;
Schwenk & Gauvain 2005]. The projection of words into continuous space is done jointly with the neural
network training in a single process. This ensures the learning of the most suitable projection matrix that
best fits the probability estimation task. Thereby, words that are semantically or grammatically related
are mapped to similar locations in the continuous space. This is considered as a built-in smoothing
capability that enables the model to achieve better generalization to unseen m-grams.

On the other hand, deep neural networks (DNNs) with multiple hidden layers are able to capture high-
level and abstract information about the input data. Recently, DNNs have shown improved performance
compared to shallow networks with a single hidden layer across different tasks [Arisoy & Sainath+ 2012;
Bengio 2009; Dahl & Ranzato+ 2010; Mohamed & Dahl+ 2009; Seide & Li+ 2011].

In this thesis, the use of DNNs is explored for language modeling (DNNLMs). In addition, DNNs
are used to estimate sub-word based LMs rather than full-word based LMs. Moreover, the input of
the DNNs is augmented with morphology-based word and sub-word classes in order to estimate robust
LM probabilities for morphologically rich languages. To achieve the best performance, interpolation is
performed between the DNNLMs and the backoff LMs. This is a novel approach that combines the benefits
of sub-word based LMs and morphology-based classes with the improved modeling of the DNNLMs.
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The remainder of the thesis is organized as follows: Chapter 3 introduces the use of sub-word based
LMs as well as the combination of language and pronunciation models. It also introduces the extended
hybrid LMs. Chapter 4 introduces the use of stream-based, class-based, and factored LMs that make use
of various morphology-based classes. In addition, it presents the use of morphology-based classes with
sub-word based LMs. Moreover, this chapter also introduces the utilization of the hierarchical Pitman-
Yor approach to estimate class-based LMs. Chapter 5, introduces the use of continuous space LMs based
on feed-forward deep neural networks to estimate sub-word based LMs with morphology-based classes.
Chapter 6 concludes the thesis by a summary of the scientific contributions. An outlook is given in
Chapter 7. The appendix contains a detailed description of systems and corpora used throughout the
experiments conducted in this thesis.
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Chapter 3

Sub-Word Based Language Models

A sub-word based LM refers to this type of LM that is estimated over some fractions of the graphemic
word, called sub-word units or equivalently sub-lexical units, rather than full-words. However, it is also
possible that the graphemic sub-word unit is combined with some phonetic sequence representing its
pronunciation. The resulting sub-lexical unit in this case is called a graphone. A model estimated over
such units represents an implicit combination of language model and pronunciation model in one joint
probability distribution. Normally, the number of possible sub-words in a given text corpus is smaller
than the number of full-words which leads to higher lexical coverage. Besides that, these sub-words can be
properly combined to produce a wide range of unseen words achieving lower OOV rates. In addition, the
average frequency of sub-words is larger than the average frequency of full-words which helps to reduce
the effect of data sparsity leading to more reliable probability estimates. Previously used types of sub-
lexical units are: morphemes [Choueiter & Povey+ 2006; Creutz 2006; Creutz & Hirsimäki+ 2007; Lamel &
Messaoudi+ 2008; Lee &Papineni+ 2003; Xiang &Nguyen+ 2006], syllables [Piotr 2008; Schrumpf &Larson+

2005; Xu & Ma+ 1996], phonemes [Bazzi & Glass 2000; Creutz & Hirsimäki+ 2007; Klakow & Rose+ 1999]
and graphones based on arbitrary word fragments [Bisani & Ney 2005, 2008; Galescu 2003].

In this chapter, we perform an extensive study of the sub-word based language modeling approach
used to perform LVCSR for morphologically rich languages. We use different types of units; such as
full-words, morphemes, syllables, and graphones. We show how to carefully optimize both the sub-
word based models and the competing full-word based models. In addition to the previously known
fragment-based graphones, we propose novel types of graphones where morpheme or syllable sub-words
are combined with their context dependent pronunciation in order to effectively combine the language and
pronunciation model in one joint distribution. Another novel contribution comes in the use of extended
hybrid lexicons and LMs comprising multiple types of units in one flat model. The numbers of the used
vocabulary items of each type of unit are carefully optimized so as to achieve the minimum WER. The
recognition experiments are performed on Arabic, German, and Polish tasks. The approaches described
in this chapter have been introduced in [El-Desoky & Gollan+ 2009; El-Desoky & Shaik+ 2010], and further
investigated in [Shaik & El-Desoky+ 2011a,b].

Section 3.1 describes the sub-word based m-gram models and their perplexities. Section 3.2 introduces
different the types of sub-word units used in our work. Section 3.3 discusses the word decomposition
approaches used to generate different types of sub-words. Section 3.4 shows how these sub-words are
combined with pronunciations and incorporated into LMs. Section 3.5 presents experimental results
performed on different development and evaluation corpora. Whereas, Section 3.6 presents a summary of
recognition results recorded for external evaluation campaigns. Section 3.7 summarizes the chapter.

3.1 Sub-Word Based m-gram Models

As previously discussed in Section 1.5, a standard word-based statistical m-gram LM computes the proba-
bility of some text corpus T composed of a word sequence wN1 as a product of the conditional probabilities
of individual words given their histories. Histories are approximated by a limited number of preceding
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m − 1 words such as 1,2 or 3 words, resulting into bigram, trigram or 4-gram LMs respectively. Thus:

p(T ) = p(wN1 ) =
N

∏
n=1

p(wn∣w
n−1
1 )

=
N

∏
n=1

p(wn∣w
n−1
n−m+1) (3.1)

The conditioning part wn−1
n−m+1 is called the history which is composed of m − 1 previous words. The

conditional probabilities p(wn∣w
n−1
n−m+1) make up the LM.

A similar model as in Equation 3.1 can be built over a decomposed text, where words are replaced
by sub-word units. In this case, the resulting m-gram model is called a sub-word based m-gram LM.
Such a LM is used to model the regularities governing sequences of sub-word units such as sequences of
morphemes or syllables rather than sequences of words.

Usually, the quality of the LM is measured by its perplexity over some text corpus T = wN1 defined as:

PP (T ) = PP (wN1 ) = [
N

∏
n=1

p(wn∣w
n−1
n−m+1)]

−1/N

(3.2)

It is also widely common to compute the log perplexity, which takes the form:

logPP (T ) = logPP (wN1 ) =
−1

N

N

∑
n=1

log p(wn∣w
n−1
n−m+1) (3.3)

Character-level perplexity. In order to be able to compare perplexities across different types of recogni-
tion units; such as full-words, morphemes, syllables ... etc.; we define a so-called character-level perplexity
in which the conventional word or sub-word level perplexity is normalized on character level. Consider
a text corpus T having N words1, the word-level perplexity PP (T ) is computed as given in Equation
3.2. Assume that T consists of M characters2, then, to go from the word-level perplexity PP (T ) to the
character-level perplexity PPc(T ), we use the following equation:

PPc(T ) = [p(T )]
−1
M

= [PP (T )
−N ]

−1
M

= [PP (T )]
N
M (3.4)

Similar to Equation 3.3, the log character-level perplexity takes the form:

logPPc(T ) = logPPc(w
N
1 ) =

N

M
logPP (T ) (3.5)

Perplexity for in- and out-of-vocabulary text. It is usually a common practice during the computation
of the perplexity to replace all the unknown words that are not members of the LM vocabulary with a
fixed unk symbol that is explicitly assigned a probability during the model training. This normally leads
to some untruthful reduction in the overall perplexity when computed for some text corpus. For this
reason, it would be interesting to compute the perplexity after excluding this unk symbol. This is in fact
the perplexity of only the in-vocabulary region of the text corpus. To illustrate the relationship between
the perplexities in the in-vocabulary and the out-of-vocabulary regions, consider a text corpus T having
N words divided into two regions Tinv and Toov representing the in-vocabulary and the out-of-vocabulary
regions of the corpus respectively. Let Ninv and Noov be the number of words in every region respectively,
where N = Ninv +Noov, and let PP (T ) be the perplexity of the text T with probability p(T )3, then the

1The count of words includes the count of sentence end symbols (< /s >).
2The count of characters includes the count of word and sentence boundaries.
3Contexts of words are preserved while computing p(Tinv) and p(Toov) whether they fall into inv or oov regions.
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following relationship can be drawn:

PP (T ) = [p(T )]
−1
N

= [p(Tinv) ⋅ p(Toov)]
−1
N

= [PP (Tinv)
−Ninv ⋅ PP (Toov)

−Noov]
−1
N

= PP (Tinv)
Ninv

N ⋅ PP (Toov)
Noov

N (3.6)

In the log domain, the relationship takes the form:

logPP (T ) =
Ninv
N

logPP (Tinv) +
Noov
N

logPP (Toov) (3.7)

If T has M characters, Tinv has Minv characters, and Toov has Moov characters with M =Minv +Moov;
then a similar relationship can be deduced for the character-level perplexity, thus:

logPPc(T ) =
Minv

M
logPPc(Tinv) +

Moov

M
logPPc(Toov) (3.8)

3.2 Sub-Word Units

In this section, we define the types of sub-word units that we use in our LMs. A detailed description of
how these units are generated is given in the next section.

3.2.1 Morphemes

One possible type of unit is the morpheme defined as the smallest linguistic component of the word that
holds a semantic meaning. Normally, morphemes are generated from the full-words by applying morpho-
logical decomposition based on supervised or unsupervised approaches. The supervised approaches make
use of linguistic knowledge, like the knowledge provided by carefully designed morphological analyzers.
Whereas, the unsupervised approaches are statistical data-driven approaches that are essentially language
independent and can be applied to any language.

In our experiments on Arabic LVCSR, we use morphemes generated via supervised approaches based
on an available morphological analyzer called MADA [Habash & Rambow 2005, 2007]. However, for
both German and Polish LVCSR experiments, we use morphemes generated via unsupervised approaches
implemented in a tool called Morfessor [Creutz & Lagus 2005]. More details about generating morphemes
are given in Sections 3.3.1, and 3.3.2.

3.2.2 Syllables

Another type of sub-word unit is the syllable which consists of one or more written letters representing a
unit of speech. It can be also recognized as a phonological building block of words. Although the syllables
of a given word are more related to its pronunciation, they are still representing a set of written sub-words
that can be used for sub-word based language modeling. Usually, a syllable consists at least of a nucleus
that can either be a vowel or a diphthong. Consonant clusters can enclose the nucleus and must fulfill
the phonotactic4 restrictions to form a valid syllable [Kemp & Jusek 1996; Möbius 1998; Rubach & Booij
1990]. In most languages, syllabification can be achieved by applying linguistic and phonetic rules.

In this work, we use syllables for Polish LVCSR experiments. Syllables are generated using a rule based
tool. More details about syllabification are discussed in Section 3.3.3.

4phonotactics: the set of allowed arrangements or sequences of speech sounds in a given language.
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3.2.3 Graphones

A different type of unit is the graphone which is a combination of the graphemic sub-word with its
context dependent pronunciation forming one joint unit. Thus, a graphone consists of two components:
a graphemic component and a phonemic component. Using such units in LMs allows different context
dependent pronunciations of sub-words to be captured on the level of the LM rather than the lexicon level.
This is an implicit combination of pronunciation model and language model in one joint distribution. This
approach is mainly used to cope with high OOV rates. The traditional word model is augmented with a
specialized graphone-based model dedicated for modeling OOV words. The goal of this OOV modeling is
to be able to spell out new words as sequences of graphones. Usually, the presence of the OOV words can
also affect the adjacent words leading to mis-recognition of in-vocabulary words. According to [Bisani &
Ney 2005], each OOV word causes 1.5 to 2 errors on average. Therefore, the successful recognition of
OOV words can positively affect the recognition of the adjacent words. Usually, the type of the graphone
is determined according to the type of its graphemic component. In literature, like in [Bisani & Ney
2005; Galescu 2003], only fragment-based graphones are used, where the graphemic components are just
arbitrary fragments with some length constraints but without any linguistic considerations.

In this thesis, we investigate the use of fragment-based graphones in addition to a novel type of unit in
which we redefine the graphones so that the graphemic components represent morphemes or syllables with
the phonemic components kept correspondingly [El-Desoky &Shaik+ 2010; Shaik &El-Desoky+ 2011b]. We
call the resulting units morpheme-based and syllable-based graphones. Details are discussed in Section 3.4.

3.2.4 Arabic Diacritized Sub-Words

Due to the unique properties of Arabic language, a special treatment is usually applied for incorporating
pronunciations into Arabic LMs. As previously discussed in Section 1.9.1, Arabic script is usually written
without short vowels. If the short vowels are explicitly given, then they are indicated by diacritical marks
rather than normal letters. A word with full diacritics is called a diacritized word. For a non-diacritized
word, there are several possible pronunciations that may occur during speaking. The speaker infers the
suitable pronunciation based on the context. However, a completely diacritized word determines only one
possible pronunciation. This means that a diacritized word is in fact a combination of the word with its
pronunciation in one encapsulated unit. Hence, the diacritized sub-words can be used in place of graphones
to incorporate pronunciations into Arabic LMs. In traditional Arabic systems, the vowel information is
not captured in the LMs. Instead, a relatively high number of pronunciation variants are used during
the ASR search in order to fill the gap between the spoken and the written language. Recently, it has
been shown that modeling short vowels into Arabic LMs can improve performance [Afify & Nguyen+ 2005;
Messaoudi & Gauvain+ 2006].

In this work, we automatically generate diacritized Arabic words based on an MADA morphological
analyzer that performs both decomposition and diacritization in one process through full morphological
tagging [Habash & Rambow 2005, 2007]. More details are given in Section 3.3.1.

3.3 Word Decomposition

As mentioned in Section 3.2.1, morphemes can be generated from words by applying supervised or unsu-
pervised morphological decomposition approaches. For Arabic language, we used supervised decomposi-
tion based on linguistic knowledge. Fortunately, powerful morphological analyzers are freely available for
Arabic. For German and Polish experiments, we used unsupervised morphological decomposition based
on statistical approaches that follow the minimum description length (MDL) principle. For this purpose,
another powerful tool is also freely available. In addition to morphemes, we also used syllables for Ger-
man and Polish LVCSR systems. To generate syllables, we used a syllabification tool that applies a set
of linguistic and phonetic syllabification rules. The details are given in the following sections.
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3.3.1 Supervised Morphological Decomposition

In our Arabic LVCSR experiments, we generate morphemes from full-words by applying supervised mor-
phological decomposition based on linguistic knowledge provided by the morphological analyzer and dis-
ambiguator tool for Arabic (MADA)5 [Habash & Rambow 2005, 2007]. MADA is a tool that is built
on top of the Buckwalter Arabic morphological analyzer (BAMA) [Buckwalter 2004] in order to perform
morphological tagging, disambiguation [Habash &Rambow 2005], diacritization [Habash &Rambow 2007],
along with tokenization [Habash & Sadat 2006] of modern standard Arabic (MSA). First, BAMA is used
to generate all possible analyses for a word in a given sentence. Then, MADA applies a set of classifiers
to the word morphological features. Given the output of these classifiers, a combiner is used to rank the
potential word analyses returned by BAMA, and the highest ranked analysis is chosen for this word. At
the end, MADA is able to associate a complete set of morphological tags with each word with a reliable
accuracy score of around 95%. These tags are used to produce robust word diacritization and tokenization
along with stem orthographic normalization.

In our experiments, MADA tool is slightly modified in order to apply the following transformation to
all the words of the LM training corpora:

w → w̄/p1+ p2+ ... pn+ s +f

where w is the original non-diacritized word, w̄ is the diacritized word, p1+ p2+ ...pn+ is an optional
sequence of prefixes, where 0 ≤ n ≤ 2 is the number of prefixes, s is a mandatory stem of the word, +f is
an optional suffix, and “/” is a separator. The stem and affixes are also diacritized. A typical example is

the transformation of the word “ AêÊ
	

g@YK. ð : and inside it” using Buckwalter transliteration as:

wbdAxlhA→ wabidAxilihA/wa+ bi+ dAxili +hA

In case that MADA fails to obtain a proper analysis for a given word, the original word is written between

double at-marks “@@” without decomposition or diacritization. An example is the word “ ø



A m.
Ì'@ : the

coming” which is a dialectal word transformed to @@AljAy@@.

By applying this transformation, we obtain a flexible baseline text corpus which can be easily cus-
tomized. For example, the diacritical characters can be removed to obtain non-diacritized text, or pre-
fixes can be properly concatenated to obtain one prefix per word, or even we can backoff to the original
full-word under certain conditions. In our experiments, Two different sets of affixes are examined:

1. simple affixes:

• prefixes: {Al, b, f, k, l, ll, w}.

• suffixes: {h, hA, hm, hmA, hn, k, km, kmA, kn, nA}.

2. compound affixes:

• prefixes: {Al, b, bAl, f, fAl, fb, fbAl, fk, fl, fll, k, kAl, l, ll, w, wAl, wb, wbAl, wk, wkAl, wl, wll}.

• suffixes: {h, hA, hm, hmA, hn, k, km, kmA, kn, nA}.

Both sets have the same suffixes but different prefixes. Simple prefixes can not be further decomposed.
A word can have multiple simple prefixes. However, compound prefixes result from valid compounding of
simple prefixes. A word can not have more than a single compound prefix. We attach a “+” marker to
the end of each prefix and the start of each suffix, such as “b+” and “+h”, in order to allow for easy and
deterministic full-word recovery via attaching affixes to the corresponding stems. In order to get valid
full-words after recovery, the MADA stem orthographic normalization is resolved by applying a small set
of linguistic rules to recover the original form of the stem. Examples of applied transformations using

5In this work, MADA version 2.0 is used.
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simple affixes, and compound affixes for the word “Ñî
�
DªK. A

�
JÒJ.

	
¯ : and by following them” are:

fbmtAbEthm
simple affixes
ÐÐÐÐÐÐÐ→ f+ b+ mtAbEt +hm

fbmtAbEthm
compound affixes
ÐÐÐÐÐÐÐÐÐ→ fb+ mtAbEt +hm

A well known phenomenon in Arabic pronunciation occurs when a prefix that ends with “Al” or “ll”
is followed by a type of consonant called solar consonants (Table 3.1), then the final “l” of the prefix
is not pronounced and the solar consonant that comes after is geminated. Therefore, an “@” marker is
attached to the end of these prefixes to distinguish them from those followed by other consonants called
lunar consonants. Hence, for every prefix ending with “Al” or “ll”, we have indeed two versions, one with
“@” marker and one without, like “Al+” and “Al@+”. In Arabic phonology, the final “l” of the prefix is
called either a solar “l” or a lunar “l” according to the type of the following consonant. An example of a

solar “l” occurs in the word “�Ò
�

�Ë@ : the sun” transliterated as Al$ms, whereas an example of a lunar

“l” occurs in the word “QÒ
�
®Ë@ : the moon” transliterated as Alqmr.

In fact, the use of morphological decomposition and diacritization in Arabic ASR could lead to some
negative side effects. For example, the decomposition process could result into some very short and rare
morphemes that are difficult to recognize. Also, dividing the words into morphemes breaks down the LM
contexts, thus it could be useful to use larger LM contexts to cover the same word m-grams as in the
case of full-words. In addition, diacritizing words leads to a division in the LM probability mass among
different diacritized forms of the same word which could lead to performance degradation. For these
reasons, we need to rationalize the decomposition and the diacritization processes in order to counteract
such negative side effects. Therefore, we apply the following constraints while processing the transformed
MADA output:

1. Do not decompose words with stems of length ≤ 2 letters.

2. Do not decompose the top N most frequent decomposable words.

3. Do not diacritize the top M most frequent words.

The first constraint is used to avoid very short stems which are usually difficult to recognize specially when
surrounded by the high frequent affixes. The second constraint is found very useful, because recognizing
the top most frequent words is very important and highly effective on the final word error rate, therefore
it is not desired to divide the probability mass of those most frequent words given their contexts over
sequences of multiple morphemes. The third constraint is also used to avoid the division of the probability
mass of those most frequent words among multiple diacritized forms. Indeed, we focus the utilization of
the diacritized word forms in the region of less frequent words. The values of N and M in the last two
constraints are optimized over the development corpora.

3.3.2 Unsupervised Morphological Decomposition

As described in the previous section, Arabic has a limited and well known set of prefixes and suffixes.
Whereas, in German and Polish the number of morphemes per word is varying so much and not known
in advance. This is even more prominent in German language which allows arbitrarily long compounds
(review Section 1.9.2). This makes it difficult to rely on linguistic knowledge to perform word decom-
position for such languages. On the other hand, as per our knowledge, there are no reliable and readily
available linguistic based tools to perform word decomposition for German or Polish. Therefore, the use
of the unsupervised decomposition is considered a suitable choice.

For German and Polish, word decomposition is performed using unsupervised techniques implemented
by the Morfessor tool [Creutz & Lagus 2005]. It is a language independent tool that works in an unsuper-
vised manner, and autonomously discovers segmentations for the words observed in an unannotated text
corpus. It is considered as a general model for unsupervised induction of morphology from raw text. It is
mainly designed to cope with languages having a concatenative morphology and unrestricted number of
morphemes per word. The obtained morphemes often resemble linguistic morphemes [Creutz 2006].

The Morfessor tool follows the principle of the minimum description length (MDL), where the main
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Table 3.1. Arabic solar and lunar consonants (bw: using Buckwalter transliteration; ar: using Arabic script).

solar lunar
Buckwalter Arabic Buckwalter Arabic
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goal is to discover as compact a description of the input text data as possible. As described in [Creutz &
Hirsimäki+ 2007], substrings occurring frequently enough in several different words are proposed as morphs.
The words are then represented as a concatenation of morphs. An optimal balance is searched between
the compactness of the morph lexicon and the compactness of the corpus representation, where the morph
lexicon is a list of all distinct morphs, and the corpus is represented as a sequence of pointers to entries
in the morph lexicon. The morfessor model used in our work is the Morfessor Baseline model originally
introduced in [Creutz 2003; Creutz & Lagus 2002].

It is stated in [Creutz & Lagus 2005] that ignoring word counts and using only the corpus vocabulary
to train the Morfessor model, rather than the corpus itself, produces segmentations that are closer to
linguistic morphemes. Therefore, we train our Morfessor model using a vocabulary of distinct words that
occur more than five times in the training corpus. We do not include less frequent words in order to avoid
irregularities that are harmful to the training process. In addition, this implementation of Morfessor
allows to use the trained model to decompose unseen words. The resulting segmentations are modified so
as to remove very short and noisy morphemes, this is found helpful to improve the final WER. Moreover,
no decomposition is done for the top N most frequent decomposable full-words, where the value of N is
optimized over the development corpora [El-Desoky & Shaik+ 2010; Shaik & El-Desoky+ 2011b].

To allow for a deterministic recovery to full-words in the recognition output, we attach a “+” marker
to the end of every non-final morpheme. For example, the German word “aufmachen : to open”, and the
Polish word “niejednokrotnie : repeatedly” are decomposed as:

aufmachen→ auf+ machen

niejednokrotnie→ nie+ jedno+ krotnie

3.3.3 Syllabification

A Syllable is a phonologically motivated type of sub-word that aims at breaking down the word into a
sequence of speech sounds by breaking down its written form. Therefore, it is expected that syllables
perform well when used as units for speech recognition especially when combined with pronunciations in
graphone-based units (review Section 3.2.3). Since a syllable sub-word corresponds to one unit of sound,
it is expected that the mapping from word pronunciation to syllable pronunciation will be more natural
than for other types of sub-words. This is because the pronunciation symbols are supposed to align more
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naturally to the syllable boundaries.

Syllabification is the process of dividing words into syllables whether spoken or written. Usually, the
spoken syllables form the basis of the written syllables. This can be achieved by applying linguistic and
phonetic rules. In our German and Polish experiments, we perform syllabification using a rule based tool
called KombiKor v.8.0 6. As performed with other types of sub-words, the syllables are modified so as
to avoid very short syllables. For example, the syllabification of the German word “naturwissenschaft :
natural science”, and the Polish word “ ladunkowych : load” are:

naturwissenschaft→ nat+ ur+ wiss+ en+ schaft

Ladunkowych→ La+ dun+ ko+ wych

Moreover, no syllabification is performed for the top N most frequent words. The value of N is optimized
over the development corpora [Shaik & El-Desoky+ 2011b].

3.4 Sub-Word Units Combined with Pronunciations

In this section, we show how the pronunciations of words and sub-words are generated, and how different
types of sub-words are joint with pronunciations to form a new set of sub-lexical units that are used to
effectively combine pronunciation models with LMs.

3.4.1 Grapheme-to-Phoneme Conversion

Graphemes are defined as the fundamental units in a written language usually indicated by the alphabetic
letters. However, phonemes are the smallest segmental units of sound employed to form meaningful
contrasts between utterances. The process of generating a pronunciation for a word is the process of
converting a given sequence of graphemes to the corresponding sequence of phonemes. This is known
as grapheme-to-phoneme (G2P) conversion. Thus, for words or sub-words whose pronunciations are
unknown, a statistical G2P approach is used to generate the missing pronunciations. Our approach is
based on the joint-sequence models described in [Bisani & Ney 2008], where we search the most likely
pronunciation ϕ ∈ Φ∗ for a given orthographic form g ∈ G∗, where Φ and G are the sets of phonemes and
letters respectively:

ϕ(g) = argmax
ϕ́∈Φ∗

p(ϕ́, g) (3.9)

The joint probability distribution p(ϕ, g) is referred to as a graphonemic joint sequence model. It is
assumed that for each word, its orthographic form and its pronunciation are generated by a common
sequence of graphonemic units called graphones (review Section 3.2.3). Each graphone is a pair q taken
from the graphone inventory Q, where:

q = (g,ϕ) ∈ Q ⊆ G∗
×Φ∗ (3.10)

Thus, q is a pair of a letter sequence and a phoneme sequence of possibly different lengths. For example,
the sequence of graphones looks like:

“mixing”
[mIksIN]

=
m
[m]

i
[I]

x
[ks]

in
[IN]

g
—

The joint probability distribution p(ϕ, g) is reduced to a probability distribution over graphone sequences
p(q) which is modeled by a standard m-gram model:

p(qN1 ) =
N

∏
n=1

p(qn∣qn−m+1, ..., qn−1) (3.11)

6http://www.3n.com.pl/kombi.php
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This model has two parameters: the order m of the m-gram model, and the graphone size limit L which is
the maximum number of letters or phonemes per graphone. In other words, L is the permissible size of the
graphones, where the number of letters and phonemes of any graphone are allowed to vary between zero
and an upper limit L. As presented in [Bisani & Ney 2008], such a model can be trained using Maximum
Likelihood (ML) training via Expectation Maximization (EM) algorithm. To produce a pronunciation for
a given word, we maximize over the set S(g,ϕ) of all joint segmentations of g and ϕ:

p(ϕ, g) ≈ max
qN1 ∈S(g,ϕ)

p(q1, ..., qN) (3.12)

3.4.2 Graphones as Recognition Units

During G2P training, the graphone inventory Q is automatically inferred. The size of this inventory
depends on the graphone size parameter L. Normally, we optimize the value of L so as to achieve
the minimum phoneme error rate (PER) over some test dictionary. This guarantees the best possible
pronunciation for a given sequence of letters. The set of inferred graphones constitutes a graphone model
that can be integrated with the normal word or sub-word model to form a unified set of recognition units.
Yet, the graphemic components of the graphones are not representing any linguistic units; rather, they
are just fragments of a limited length [Bisani & Ney 2005]. These are called fragment-based graphones.

However, optimizing the set of graphones for the best PER does not guarantee to obtain the set of
graphones which achieves the best WER during ASR. Therefore, a novel approach is experimented by
which a modified set of graphones is generated by performing the following steps:

1. Estimate a normal set of graphones using the optimum value of L achieving the minimum PER.

2. Modify the letter sequences of graphones such that they represent morphemes or syllables of the
underlying words.

3. Realign phoneme sequences to letter sequences to obtain a novel set of graphones.

The new set of graphones are called morpheme- or syllable-based graphones according to the chosen type
of sub-word. To perform step (3), we need to perform letter-phoneme sequence alignment. This will be
discussed in the next section. The following are examples of graphone sequences for the German word
“naturwissenschaft : natural science”:

• Fragment-based graphones (L = 4):
→ [na:na] [tur:tUR] [wiss:vIs] [en:=N] [sch:S] [aft:aft]

• Morpheme-based graphones:
→ [natur:natUR] [wissenschaft:vIs=NSaft]

• Syllable-based graphones:
→ [nat:nat] [ur:UR] [wiss:vIs] [en:=N] [schaft:Saft]

3.4.3 Letter-Phoneme Sequence Alignment

As discussed in the previous section, the main step in building morpheme- or syllable-based graphone
model is to perform letter-phoneme sequence alignment. For this, we follow an approach based on dynamic
programming (DP), and expectation maximization (EM) as described in [Damper &Marchand+ 2004]. The
alignment process can be seen as a path-finding problem which can be solved by following a sequence of
locally optimal steps. Thus, we create a matrix A that is indexed by all letters and all phonemes that
occur in the alignment task. The matrix A holds the degrees of association between each letter and each
phoneme in the task. Then, we use two other matrices B and C that are both indexed by the letters of
the word and the phonemes of its pronunciation to be aligned to. The matrix B holds the accumulated
associations up to some point in the matrix (the alignment grid). The matrix C holds the trace-back
pointers indicating the cell from which the DP moves. The matrix B is filled out in a left-to-right, top-
to-bottom order according to the following recursive maximization equation [Needleman & Wunsch 1970]:
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Bi,j = max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Bi−1,j−1 +Al(i),p(j),
Bi−1,j ,
Bi,j−1

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

1 ≤ i ≥ L
1 ≤ j ≥ P

(3.13)

where L is the number of letters of the given word, and P is the number of phonemes in the given
pronunciation. The functions l(⋅) and p(⋅) provide the letter and phoneme identity at the given index
respectively. The entries of C are filled accordingly based on the chosen maximum. At the end, the matrix
B holds the maximum accumulated association for the complete word in its bottom-right cell, and the
best alignment is found by tracing pointers back from the bottom-right cell of the matrix C.

Estimating the association matrix. In order to estimate the association matrix A, we apply an expec-
tation maximization (EM) algorithm using the word-pronunciation pairs of an available pronunciation
dictionary as training examples. The EM algorithm works in the following steps:

1. Let k = 0; then initialize Ak such that, for every word-pronunciation pair in the dictionary, the entry
aklp is incremented if the letter l and phoneme p appear in the same pair.

2. Use Ak in DP to align all the word-pronunciation pairs of the dictionary, then increment k to
k = k + 1.

3. Compute Ak such that, for every word-pronunciation pair in the dictionary, the entry aklp is incre-
mented if the letter l and phoneme p appear in the same aligned position.

4. Go to step 2 until convergence indicated by having insignificant difference between Ak and Ak−1.

To illustrate the alignment process, the alignment of the word-pronunciation pair (phase,feIz) is shown
in Table 3.2. Table 3.2(a) shows a part of matrix A that stores the letter-phoneme associations only
for the letters and phonemes occurring in the pair (phase,feIz), where # and $ are treated as delimiters
that always align together. Table 3.2(b) shows a superposition of matrix B and matrix C that shows the
accumulative associations, filled out according to the recursive Equation 3.13, along with the trace-back
pointers. The trace-back pointers are indicated by cursors to determine the movement direction during
the trace-back. As described above, the process of tracing back starts from the bottom-right cell and
moves up to the top-left cell. Reading a diagonal cursor ↘ means to align the current letter and phoneme
together and then move to the previous diagonal cell. Reading a down cursor ↓ means to align the current
letter to an empty phoneme and move up. Whereas, reading a right cursor → means to align an empty
letter to the current phoneme and move left. The reading of the symbol ε means to stop the alignment
process always at the top-left cell. This is in fact a flexible alignment scheme that enables the alignment
of a letter or phoneme to nothing (empty symbol). The final alignment is given by:

“phase”
[feIz]

=
p
—

h
f

a
eI

s
z

e
—

3.5 Experimental Results

In this section, experimental results are presented on sub-word based LMs based on different types of
sub-word units that are discussed earlier in Section 3.2. The Experiments are performed using Arabic,
German, and Polish testing systems. A detailed description of these systems along with a description of
the development and evaluation corpora is given in Appendix A.

3.5.1 Experiments on Arabic

Table 3.3 summarizes the results of the recognition experiments performed on Arabic corpora using sub-
word based LMs that use supervised morphemes generated using MADA toolkit (see Section 3.3.1) along
with the baseline experiment. We follow the 3 passes recognition setup of the modern standard Arabic
(MSA) testing system described in Appendix A, where a bigram LM is used to produce lattices which are
then rescored using 4 to 7-gram LMs. The baseline experiment uses a traditional LM based on full-words
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Table 3.2. An example of the alignment process for the word-pronunciation pair (phase,feIz).

(a) A part of matrix A showing letter-phoneme
associations for the letters and phonemes oc-
curring in the pair (phase,feIz), where # and $
are delimiters.

$ f eI z $
# 0 0 0 0 0
p 0 9 0 0 0
h 0 2580 27 35 0
a 0 42 23098 937 0
s 0 79 3 45788 0
e 0 947 1732 2641 0
# 0 0 0 0 0

(b) A superposition of matrices B and C showing the accumulative as-
sociations and the trace-back pointers indicated by the cursor movement
during the Dynamic Programming.

$ f eI z $
# 0,ε 0,→ 0,→ 0,→ 0,→
p 0,↓ 9,↘ 9,→ 9,→ 9,→
h 0,↓ 2580,↘ 2580,→ 2580,→ 2580,→
a 0,↓ 2580,↓ 25678,↘ 25678,→ 25678,→
s 0,↓ 2580,↓ 25678,↓ 71446,↘ 71446,→
e 0,↓ 2580,↓ 25678,↓ 71446,↓ 71446,↘
# 0,↓ 2580,↓ 25678,↓ 71446,↓ 71446,↘

without any morphemes. For this initial set of experiments, the total vocabulary size is fixed to 70k. In
addition, the use of both simple and compound affixes is examined. The number of the most frequent
decomposable full-words retained without decomposition is optimized over the development corpus by
performing a series of recognition experiments using a gradually increased number of full-words (see
decomposition constraint (2), Section 3.3.1)). The objective of these experiments is to discover the best
number of full-words, the most suitable type of affixes, and the optimum order of the sub-word based LM.

Table 3.3. Recognition experiments on Arabic corpora using morpheme-based LMs with 70k vocabularies.

ar-dev07 ar-eval07
full- OOV WER OOV WER

experiment LM words morphemes [%] [%] [%] [%]

full-words 4-gram 70k - 3.7 16.2 4.8 18.5
simple affixes 4-gram - 70k 1.1 17.0 1.7 18.9
compound affixes 4-gram - 70k 1.1 17.0 1.7 18.7

5k 65k 1.2 15.0 1.8 -
10k 60k 1.3 14.6 1.9 -
20k 50k 1.4 14.5 2.0 16.5
30k 40k 1.7 14.7 2.5 -
40k 30k 2.0 14.9 2.8 -

6-gram 20k 50k 1.4 14.5 2.0 16.5
7-gram 20k 50k 1.4 14.5 2.0 16.5

It can be seen that the use of compound affixes is a little more beneficial than the use of simple
affixes. This is because the negative side effect of reducing the LM span as a result of using smaller units
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(morphemes) is less in case of compound affixes compared to the case of simple affixes. Also, during LM
training, the existence of multiple prefixes in LM training data rises the number of sequences of prefixes
giving them high probabilities which leads to observing high insertion rates in the recognition output.
Therefore, we continue the experiments using compound affixes.

Optimizing the number of full-words as a part of the sub-word based vocabulary has shown that the
best number of full-words is 20k given the experimental conditions. Thus, the minimum observed WERs
are achieved using 20k full-words + 50k morphemes. The WERs are reduced by [ar-dev07: 1.7% absolute
(10.5% relative); ar-eval07: 2.0% absolute (10.8% relative)] compared to the full-word baseline. Moreover,
significant reductions can be observed in the sub-word OOV rate compared to the full-word OOV rate.
In fact, the OOV rates recorded in Table 3.3 are the effective OOV rates7, where a word is considered an
OOV if and only if it is not found in the vocabulary and it is not possible to compose it using in-vocabulary
sub-words.

On the other hand, it is noted that using higher order LMs does not have a noticeable effect on the
WER. Although the use of sub-word based models counteracts the negative effect of data sparsity, still
much more training data is needed to feed the higher order models. In other words, increasing the LM
order brings the data sparsity problem again into picture leading to unimproved probability estimates.
For this reason, 4-gram LMs are used for the rest of experiments.

In order to examine the full potential of the sub-word based LMs compared to the full-word based
LMs, it is important to optimize the total vocabulary size of the full-words. This aims at finding the best
operating point to which the sub-word based LM should be particularly compared. Table 3.4 introduces
a set of experiments in which both full-word and sub-word vocabulary sizes are increased gradually up
to one million. In addition, an extended hybrid version of LM is experimented which includes mixed
types of units; namely, full-words, non-diacritized morphemes, as well as diacritized morphemes. In this
extended hybrid approach, full-words are the highest frequent units in the vocabulary; and non-diacritized
morphemes are less frequent units; whereas diacritized morphemes represent the least frequent part of the
vocabulary.

In the recognition lexicon, multiple pronunciation variants are provided for every non-diacritized unit,
whereas a single pronunciation is provided for every diacritized unit; this is the pronunciation that cor-
responds exactly to the diacritized form obtained by the MADA toolkit (review Sections 3.2.4, and
sec:chp3:word-decomp-supervised). Since they are very frequent, all the compound affixes are kept non-
diacritized with all their possible pronunciations included in the lexicon. The probabilities assigned by
the LM to the diacritized units can be recognized as a combination of pronunciation probability and LM
probability in one join distribution.

Table 3.4. Recognition experiments on Arabic corpora using full-words, morphemes, and diacritized morphemes for
LMs with very large vocabularies.

diacri- ar-dev07 ar-eval07
tized

voc. full- morph- morph- OOV WER (ins/del) CER (ins/del) OOV WER (ins/del) CER (ins/del)

size words emes emes [%] [%] [%] [%] [%] [%]

70k 70k - - 3.7 16.2 (3.0/1.7) 7.3 (2.6/3.2) 4.8 18.5 (2.6/1.7) 9.5 (2.2/4.9)

140k 140k - - 2.0 15.2 (2.8/1.6) 6.9 (2.5/3.0) 2.7 17.0 (2.5/1.4) 8.9 (2.2/4.5)

256k 256k - - 1.4 14.9 (2.7/1.6) 6.8 (2.5/2.9) 1.9 16.7 (2.3/1.4) 8.7 (2.2/4.4)

500k 500k - - 0.6 14.7 (2.7/1.5) 6.8 (2.5/2.9) 0.8 16.3 (2.2/1.4) 8.7 (2.1/4.4)

750k 750k - - 0.5 14.6 (2.7/1.5) 6.6 (2.5/2.7) 0.7 16.3 (2.3/1.4) 8.7 (2.2/4.3)

1M 1M - - 0.4 14.6 (2.7/1.4) 6.6 (2.6/2.7) 0.6 16.3 (2.3/1.4) 8.7 (2.2/4.3)

1.3M 1.3M - - 0.3 0.5
70k 20k 50k - 1.4 14.5 (2.5/1.5) 6.7 (2.5/2.8) 2.0 16.5 (2.2/1.6) 8.8 (2.1/4.5)

256k 20k 236k - 0.5 14.1 (2.4/1.6) 6.5 (2.5/2.7) 0.7 16.1 (2.1/1.5) 8.6 (2.1/4.4)

500k 20k 480k - 0.3 14.3 (2.4/1.6) 6.6 (2.5/2.8) 0.5 16.1 (2.0/1.5) 8.7 (2.0/4.4)

750k 20k 730k - 0.3 14.3 (2.4/1.6) 6.6 (2.5/2.8) 0.4 16.1 (2.0/1.6) 8.7 (2.0/4.4)

850k 20k 830k - 0.2 0.36
400k 20k - 380k 0.5 15.3 (2.8/1.6) 7.00 (2.5/3.0) 0.7 17.0 (2.5/1.4) 8.9 (2.2/4.5)

350k 20k 120k 210k 0.5 14.5 (2.5/1.6) 6.7 (2.5/2.7) 0.7 16.4 (2.1/1.5) 8.8 (2.1/4.4)

7This is how the OOV rate is computed throughout the experiments presented in this thesis.
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Table 3.4 shows that the best operating point for the full-word LM occurs at a vocabulary size of 750k
full-words. Whereas, the best operating point for the morpheme-based LM occurs at a vocabulary size
of 256k (20k full-words + 236k morphemes). Even if the OOV rates are similar for both full-word and
sub-word based vocabularies, improvements in WER can still be observed. Thus, using a morpheme-
based LM, WER reductions of [ar-dev07: 0.5% absolute (3.4% relative); ar-eval07: 0.2% absolute (1.2%
relative)] are achieved compared to the best full-word LM.

However, an extended hybrid LM containing 20k full-words + 120k morphemes + 210k diacritized
morphemes could only improve the WER over the 256k full-word LM for both ar-dev07 and ar-eval07
corpora [ar-dev07: 0.4% absolute (2.7% relative); ar-eval07: 0.3% absolute (1.8% relative)].

Table 3.5 shows the word- and character-level perplexities (PPLs) for the most important experiments
listed in Table 3.4. The perplexity is reported for both in-vocabulary text; where the probabilities of the
unk symbol are excluded from the perplexity computation; and for the whole text, where the probabilities
of the unk symbol are included. The character-level perplexity and the relationship between different
perplexities are previously discussed in Section 3.1.

Table 3.5. word- and character-level perplexities for full-word and sub-word based LMs on Arabic corpora (inv:
perplexity for in-vocabulary text excluding the unk symbol; all: perplexity for the whole text including the unk symbol).

voc. full- morph- diacritized word-level PPL char-level PPL
corpus size words emes morphemes inv (#units) all (#units) inv (#chars) all (#chars)

ar-dev07 750k 750k - - 502.6 (18920) 500.8 (19002) 3.084 (104489) 3.075 (105142)

256k 20k 236k - 392.8 (19600) 391.7 (19724) 3.051 (104967) 3.041 (105869)

350k 20k 120k 210k 397.7 (19655) 395.0 (19776) 3.061 (105173) 3.050 (106032)

ar-eval07 750k 750k - - 679.0 (29249) 673.9 (29430) 3.297 (159882) 3.280 (161384)

256k 20k 236k - 513.1 (30538) 509.7 (30752) 3.266 (161028) 3.248 (162719)

350k 20k 120k 210k 519.9 (30543) 514.6 (30790) 3.273 (161073) 3.253 (162976)

3.5.2 Experiments on German

Table 3.6 summarizes the results of the recognition experiments performed on German corpora using
sub-word based LMs that use unsupervised morphemes generated using the Morfessor tool (see Section
3.3.2) along with the baseline experiment. We follow the 2 passes recognition setup of the German testing
system described in Appendix A, where a 4 or 6-gram LM is used to construct the search space without
a subsequent lattice or N-best rescoring. In the baseline experiment, a traditional LM is used based
on full-words without any morphemes. For this initial set of experiments, the total vocabulary size is
fixed to 100k. The number of the most frequent decomposable full-words retained without decomposition
is optimized over the development corpus. Therefore, the number of full-words is increased gradually
starting from zero. The objective of these initial experiments is to discover the best number of full-words,
and the optimum order of the sub-word based LM.

Table 3.6. Recognition experiments on German corpora using morpheme-based LMs with 100k vocabularies.

gr-dev09 gr-eval09
OOV WER OOV WER

LM full-words morphemes [%] [%] [%] [%]

4-gram 100k - 5.0 33.9 4.8 29.7
- 100k 1.0 32.2 - -
2k 98k 1.2 31.8 - -
5k 95k 1.5 31.7 1.4 28.5
7k 93k 1.6 31.7 - -
10k 90k 1.8 31.8 - -
20k 80k 1.9 31.8 - -
30k 70k 2.1 31.9 - -

6-gram 5k 95k 1.5 31.6 1.4 28.5

Table 3.6 shows that the best number of full-words to retain in the sub-word based vocabulary is 5k.
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The minimum observed WERs are achieved using 5k full-words + 95k morphemes. Thereby, the WERs are
reduced by [gr-dev09: 2.2% absolute (6.5% relative); gr-eval09: 1.2% absolute (4.0% relative)] compared
to the full-word baseline. In addition, significant reductions can be observed in the sub-word OOV rates
compared to the full-word OOV rates. On the other hand, it is noted that using a 6-gram rather than
4-gram LM does not help as almost the same WERs are observed for both corpora.

Table 3.7 compares the previously known fragment-based graphones to the newly proposed morpheme-
based graphones. The generation of graphones is based on G2P models as discussed previously in Section
3.4.2. To train these G2P models, we use a base-lexicon containing pronunciations for about 118k words
divided into a training set of 112k words, and a test set of 6k words. Multiple G2P models are trained
using different model parameters. For each model, the phoneme error rate (PER) is measured on the test
set. The morpheme-based graphones are obtained by modifying a set of graphones based on a G2P model
trained with a graphone size parameter L = 4 since it gives the least PER (review Section 3.4.2). The size
of the baseline full-word vocabulary is set to 100k words on top of which different types of graphones are
added. It is worth noting that the used number of fragment-based graphones represents all the graphones
found in the training data other than the original 100k full-words. This interprets the very low OOV rates
observed in these cases. Nevertheless, we could not set the graphone size parameter L to a value more
than 4 as this increases the graphone inventory leading to impractically very large resource requirements
during the G2P model training.

Table 3.7. Recognition experiments on German corpora using 100k full-words as a baseline vocabulary and adding
different fragment-based and morpheme-based graphones.

gr-dev09 gr-eval09
voc. OOV WER OOV WER

experiment size graphones [%] [%] [%] [%]

full-words 100k - 5.0 33.9 4.8 29.7
fragment-based graphones

graphone size (L) = 2 102k 2k 0.1 34.2 - -
3 110k 10k 0.1 32.8 - -
4 124k 24k 0.1 32.4 0.1 29.4

morpheme-based graphones 177k 77k 2.8 32.5 2.6 29.5
300k 200k 1.0 32.1 1.1 29.3

It can be seen from Table 3.7 that the morpheme-based graphones outperform the fragment-based
graphones. Therefore, fragment-based graphones are going to be utilized in further experiments.

Similar to the experiments on Arabic, to find the best operating point for both the full-word and
sub-word based LMs, Table 3.8 introduces a set of experiments in which both full-word and sub-word
based vocabulary sizes are increased gradually up to one million. In addition, an extended hybrid LM is
experimented which includes full-words, morphemes, as well as morpheme-based graphones. Therein, full-
words are the highest frequent units in the vocabulary; and morphemes are less frequent units; whereas
morpheme-based graphones are the least frequent part of the vocabulary. In the recognition lexicon,
multiple pronunciation variants are provided for every unit except for graphones, where a single pronunci-
ation is provided that corresponds to the phonemic part of every graphone. The probability distribution
over graphones can be seen as a combination of pronunciation probability and LM probability in one join
distribution.

Table 3.8 shows that the best operating point for the full-word LM occurs at a vocabulary size of
750k full-words. Whereas, the best operating point for the morpheme-based LM occurs at a vocabulary
size of 500k (5k full-words + 495k morphemes). Using this morpheme-based LM, WER reductions of
[gr-dev09: 0.3% absolute (1.0% relative); gr-eval09: 0.2% absolute (0.7% relative)] are achieved compared
to the best full-word LM. At the same time, significant reductions in OOV rates are observed for the best
morpheme-based LM compared to the best full-word LM.

Using an extended hybrid LM containing 5k full-words + 295k morphemes + 200k morpheme-based
graphones, WER reductions of [gr-dev09: 0.3% absolute (1.0% relative); gr-eval09: 0.4% absolute (1.5%
relative)] are achieved compared to the best full-word LM. Table 3.9 shows the word- and character-level
perplexities (PPLs) for the most important experiments listed in Table 3.8.
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Table 3.8. Recognition experiments on German corpora using full-words, morphemes, and morphemic graphones for
LMs with very large vocabularies.

morph- gr-dev09 gr-eval09
emic

voc. full- morph- graph- OOV WER (ins/del) CER (ins/del) OOV WER (ins/del) CER (ins/del)

size words emes ones [%] [%] [%] [%] [%] [%]
100k 100k - - 5.0 33.9 (5.3/6.8) 15.1 (2.7/6.9) 4.8 29.7 (3.4/7.1) 13.8 (2.5/6.9)

200k 200k - - 3.8 32.7 (4.7/7.0) 14.7 (2.7/6.8) 3.5 28.8 (3.0/7.3) 13.5 (2.4/6.8)

300k 300k - - 3.3 32.2 (4.4/7.0) 14.6 (3.0/6.9) 3.0 28.4 (2.9/7.3) 13.2 (2.3/6.7)

500k 500k - - 2.7 32.0 (4.0/7.3) 14.7 (2.9/7.1) 2.4 28.6 (2.7/7.8) 13.4 (2.2/7.0)

750k 750k - - 2.3 31.3 (4.6/6.0) 14.3 (3.5/5.9) 2.1 27.4 (3.2/6.5) 12.8 (2.7/5.9)

1M 1M - - 2.2 31.4 (4.6/6.0) 14.3 (3.5/6.0) 1.9 27.5 (3.1/6.5) 12.7 (2.7/5.8)

2.5M 2.5M - - 1.7 1.4
100k 5k 95k - 1.5 31.7 (3.8/7.3) 14.6 (2.6/6.7) 1.4 28.5 (2.8/7.5) 13.3 (2.3/6.8)

500k 5k 495k - 0.9 31.0 (4.4/5.8) 14.2 (3.5/5.8) 0.7 27.2 (3.1/6.1) 12.5 (2.7/5.6)

750k 5k 745k - 0.8 31.0 (4.3/5.9) 14.2 (3.5/5.9) 0.7 27.2 (3.1/6.2) 12.5 (2.7/5.6)

1M 5k 995k - 0.8 31.2 (4.3/6.1) 14.3 (3.5/6.0) 0.7 27.2 (3.1/6.1) 12.5 (2.7/5.6)

2.1M 5k 2095k - 0.7 0.5
300k 100k - 200k 1.0 32.1 (4.4/7.0) 14.5 (3.0/6.8) 1.1 29.3 (3.2/7.1) 13.5 (2.4/6.8)

500k 5k 295k 200k 0.9 31.0 (4.7/5.8) 14.1 (3.5/5.8) 0.8 27.0 (3.3/5.9) 12.3 (2.7/5.6)

Table 3.9. word- and character-level perplexities for full-word and sub-word based LMs on German corpora (inv:
perplexity for in-vocabulary text excluding the unk symbol; all: perplexity for the whole text including the unk symbol).

voc. full- morphemic word-level PPL char-level PPL
corpus size words morphemes graphones inv (#units) all (#units) inv (#chars) all (#chars)

gr-dev09 750k 750k - - 509.0 (69548) 490.4 (71133) 2.818 (418447) 2.725 (439560)

500k 5k 495k - 403.9 (72391) 393.2 (73906) 2.799 (422086) 2.713 (442333)

500k 5k 295k 200k 398.5 (74650) 397.1 (76633) 2.889 (421293) 2.802 (445060)

gr-eval09 750k 750k - - 520.0 (35591) 503.3 (36319) 2.793 (216684) 2.713 (226395)

500k 5k 495k - 403.0 (37151) 393.8 (37845) 2.772 (218582) 2.697 (227921)

500k 5k 295k 200k 382.7 (38433) 382.5 (39288) 2.838 (219126) 2.769 (229364)
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3.5.3 Experiments on Polish

Table 3.10 summarizes the results of the recognition experiments performed on Polish corpora using
morpheme- and syllable-based LMs along with the baseline experiment. We follow the 3 passes recognition
setup of the Polish testing system described in Appendix A, where a 5-gram LM is used to construct the
search space without lattice or N-best rescoring. In the baseline experiment, a traditional LM is used
based on full-words without any morphemes or syllables. The total vocabulary size is fixed to 300k. The
objective of this initial set of experiments is to find out the best performing type of sub-word together
with the best number of full-words to retain in the sub-word based vocabulary for each type of sub-word.

Table 3.10. Recognition experiments on Polish corpora using morpheme- and syllable-based LMs with 300k vocab-
ularies.

pl-dev10 pl-eval10
OOV WER OOV WER

experiment full-words sub-words [%] [%] [%] [%]

full-words 300k - 1.7 22.7 1.9 26.8
morphemes 30k 270k 1.5 23.0 - -

50k 250k 1.5 22.8 - -
70k 230k 1.6 22.7 1.8 26.2
90k 210k 1.7 22.8 - -
100k 200k 1.7 22.8 - -

syllables 50k 250k 0.5 23.0 - -
70k 230k 0.5 22.6 - -
90k 210k 0.6 22.7 - -
110k 190k 0.6 22.5 - -
130k 170k 0.6 22.3 0.5 26.1
150k 150k 0.7 22.4 - -

Table 3.10 shows that WER improvements can be achieved by using either morphemes- or syllable-based
LMs. Nevertheless, the use of syllable-based LMs outperforms the use of morpheme-based LMs. The best
number of full-words to retain in the syllable-based vocabulary is 130k. The minimum observed WERs
are achieved using 130k full-words + 170k syllables. Thereby, the WERs are reduced by [pl-dev10: 0.4%
absolute (1.8% relative); pl-eval10: 0.7% absolute (2.6% relative)] compared to the full-word baseline. In
addition, significant reductions can be observed in the OOV rates. The reductions in OOV rates using
syllables are generally more than the reductions in OOV rates using morphemes. This is because syllables
are essentially smaller and more frequent units. The average morpheme length is around 6 letters, whereas
the average syllable length is around 4 letters.

Similar to previous experiments on Arabic and German, to find the best operating point for both the
full-word and sub-word based LMs, Table 3.11 introduces a set of experiments in which both full-word
and syllable-based vocabulary sizes are increased gradually up to one million. In addition, an extended
hybrid LM is experimented that includes full-words, syllables, as well as syllable-based graphones.

Table 3.11 shows that the best operating point for the full-word LM occurs at a vocabulary size of
750k full-words. Whereas, the best operating point for the syllable-based LM occurs at a vocabulary size
of 300k (130k full-words + 170k syllables). Using the syllable-based LM, WER reductions of [pl-dev10:
0.4% absolute (1.8% relative); pl-eval10: 0.7% absolute (2.6% relative)] are achieved compared to the 300k
full-word system. However, no improvements could be achieved compared to the best full-word system.

Using an extended hybrid LM containing 130k full-words + 70k syllables + 300k syllable-based gra-
phones, limited improvements in WERs are achieved [pl-dev10: 0.1% absolute (0.5% relative); pl-eval10:
0.1% absolute (0.4% relative)] compared to the best full-word system. However, comparing to the 300k
full-word system, WER reductions of [pl-dev10: 0.8% absolute (3.5% relative); pl-eval10: 1.3% absolute
(4.9% relative)] are obtained. Table 3.12 shows the word- and character-level perplexities (PPLs) for the
most important experiments listed in Table 3.11.
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Table 3.11. Recognition experiments on Polish corpora using full-words, syllables, and syllabic graphones for LMs
with very large vocabularies.

syll- pl-dev10 pl-eval10
abic

voc. full- syll- graph- OOV WER (ins/del) CER (ins/del) OOV WER (ins/del) CER (ins/del)

size words ables ones [%] [%] [%] [%] [%] [%]
100k 100k - - 4.5 5.2
300k 300k - - 1.7 22.7 (1.9/6.7) 10.3 (3.0/4.4) 1.9 26.8 (1.8/8.3) 20.0 (9.2/6.0)

500k 500k - - 1.1 22.1 (1.6/7.4) 10.4 (1.7/5.6) 1.2 25.6 (2.1/7.3) 19.0 (9.5/5.3)

750k 750k - - 0.8 22.0 (1.4/7.4) 10.2 (1.7/5.5) 0.9 25.6 (2.1/7.3) 18.6 (9.4/5.0)

1M 1M - - 0.7 22.0 (1.4/7.4) 10.2 (1.6/5.5) 0.8 25.6 (2.0/7.4) 18.6 (9.5/5.0)

2M 2M - - 0.5 0.6
3M 3M - - 0.5 0.6
300k 130k 170k - 0.6 22.3 (1.5/7.1) 10.0 (2.7/4.5) 0.5 26.1 (2.0/7.6) 19.0 (9.5/5.1)

500k 130k 370k - 0.5 22.4 (1.4/7.4) 10.2 (1.6/5.4) 0.3 26.2 (2.0/7.8) 19.2 (9.5/5.3)

750k 130k 620k - 0.4 22.4 (1.4/7.4) 10.2 (1.6/5.5) 0.2 26.2 (2.0/7.9) 19.2 (9.5/5.4)

1M 130k 870k - 0.4 0.2
300k 130k 70k 100k 0.7 22.2 (1.6/6.8) 10.2 (2.8/4.5) 0.6 25.8 (2.1/7.0) 18.9 (9.6/4.9)

500k 130k 70k 300k 0.4 21.9 (1.6/6.9) 10.1 (1.6/5.4) 0.3 25.5 (2.2/7.1) 19.0 (9.4/5.3)

Table 3.12. word- and character-level perplexities for full-word and sub-word based LMs on Polish corpora (inv:
perplexity for in-vocabulary text excluding the unk symbol; all: perplexity for the whole text including the unk symbol).

voc. full- syllabic word-level PPL char-level PPL
corpus size words syllables graphones inv (#units) all (#units) inv (#chars) all (#chars)

pl-dev10 750k 750k - - 716.0 (30732) 697.6 (31029) 2.881 (190932) 2.849 (194063)

300k 130k 170k - 591.3 (32797) 580.8 (33069) 2.949 (193552) 2.922 (196255)

500k 130k 70k 300k 693.5 (31150) 683.2 (31407) 2.892 (191904) 2.870 (194441)

pl-eval10 750k 750k - - 726.4 (31507) 710.4 (31771) 2.984 (189865) 2.952 (192722)

300k 130k 170k - 632.1 (32189) 617.3 (32542) 2.981 (190083) 2.947 (193493)

500k 130k 70k 300k 702.3 (31899) 691.1 (32151) 2.994 (190653) 2.970 (193102)
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3.5.4 Overview of Experimental Results

It is noted from the experimental results discussed in the previous sections that the most influential
factor to gain improvements in WER via sub-word based LMs is to optimize the number of different units
used in the recognition system. Since full-words fall into the highest frequency region of the recognition
vocabulary, optimizing the number of full-words is considered the most important task.

Figure 3.1 shows the change in WER on development corpora during the optimization of the number
of full-words as a part of the sub-word based vocabulary. It is noted that, by increasing the number
of full-words, the WER decreases rapidly until reaching an optimum value and then starts to increase
again. This U -shaped curve can be considered as a general behavior as it is true for all corpora and all
types of sub-words across different languages. The average reduction in the WER after performing this
optimization is around [1.0% absolute (6.0% relative)] compared to the use of zero full-words.
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Figure 3.1. Optimization of the number of full-words retained in the sub-word based vocabularies.

Another important factor that heavily influences the WERs of both full-word and sub-word based
systems is the overall vocabulary size. Optimizing the overall vocabulary sizes helps to discover the exact
potential of the sub-word based systems compared to the full-word based counterparts. Figure 3.2 shows
this optimization performed on development corpora. It can be seen that, in most cases, the whole curve
of the sub-word based systems is located under the curve of the full-word based systems. An exception
can be observed in Polish experiments.

Figure 3.3 shows a summary of the best achieved WERs, and the corresponding OOV rates on different
corpora for the best sub-word based systems compared to the best full-word based systems. Using a
bootstrap method of significance analysis described in [Bisani & Ney 2004], we can see that these WER
reductions are statistically significant. The probability of improvement (POIboot) ranges between 94%
and 97%, which indicates that we can be quite confident that this reflects a real superiority of sub-word
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Figure 3.2. Optimization of the overall vocabulary sizes for full-word and sub-word based experiments.
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based systems compared to full-word based systems.
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Figure 3.3. The best sub-word based experiments compared to the best full-word based experiments on Arabic,
German, and Polish corpora.

The WER of a given speech recognition system is measured as the sum of insertion, deletion, and
substitution rates after aligning the hypothesized sentences with the reference sentences. Any improvement
in the WER comes from reductions in any of these three factors. Normally, the inserted words in a given
hypothesized sentence are not related to any words from the reference sentence, i.e. they are aligned to
empty reference words. However, the deleted and the substituted words are aligned to usual words from
the reference sentence.

In order to analyze the WER improvement of a particular sub-word based system compared to a
given full-word baseline, we assume that, for the sub-word based system, every word in the reference is
marked as an out-of-vocabulary (OOV) or in-vocabulary (INV) word with respect to the full-word baseline
vocabulary. The sum of deletion and substitution rates is then redistributed over two different types of
errors, namely: (1) error rate by deletion or substitution of out-of-vocabulary words, (2) error rate by
deletion or substitution of in-vocabulary words.

Table 3.13 records the amount of reduction in OOV rate and WER when going from the best full-word
based system to the best sub-word based system for Arabic, German, and Polish experiments. The overall
amount of reduction in WER is divided into three types of error rate reductions:

1. Reduction in insertion rate

2. Reduction in deletion/substitution rate of OOV words
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3. Reduction in deletion/substitution rate of INV words

Here, it is worth noting that any negative value of reduction means an increase in the underlying rate.
Table 3.14 gives some examples of words for which recognition is improved by reducing the number of
deletions or substitutions using the best sub-word based systems.

Table 3.13. Analysis of improvements in the best sub-word based system compared to the best full-word based
system for Arabic, German, and Polish corpora. Amount of reduction in WER is divided into (ins: reduction in
insertion rate; OOV del/sub: reduction in deletion/substitution rate of OOV words; INV del/sub: reduction in
deletion/substitution rate of INV words). Note: a negative reduction means an increase.

absolute reduction in
OOV WER ins OOV del/sub INV del/sub

language corpus [%] [%] [%] [%] [%]

Arabic ar-dev07 0.0 0.5 0.3 0.0 0.2
ar-eval07 0.0 0.2 0.2 0.0 0.0

German gr-dev09 1.4 0.3 0.2 0.1 0.0
gr-eval09 1.4 0.4 -0.1 0.3 0.2

Polish pl-dev10 0.4 0.1 -0.2 0.2 0.1
pl-eval10 0.6 0.1 -0.1 0.1 0.1

Table 3.14. Examples of words for which recognition is improved using the best sub-word based systems.

Arabic German Polish

Aljmyl eigentlich dwudziestotrzylatkiem
Almst$Ar heimtrainer prezydentura
ystlhmh dreiecksungleichung wypracowana
yktnfh rückführungsrichtlinie terminowe

yHddhA justizkomitee zapunktować

3.6 External Evaluations

The approaches discussed in this chapter have been employed in the RWTH evaluation systems used in
many evaluation campaigns during the years from 2010 up to 2013. In those evaluations, RWTH has
achieved advanced positions among the participants, namely the first or the second position. This section
presents a summary of the recognition results achieved in those evaluations. Initially, Table 3.15 presents
a list of the participant sites.

3.6.1 Quaero German ASR Evaluation 2010

Table 3.16 shows the results of the Quaero8 evaluation on German ASR held in 2010. Two types of
evaluation data have been used, broadcast news (BN) and broadcast conversations, in a rough 50-50%
ratio. The RWTH system uses morpheme-based LMs. The first position has been achieved out of three
participants. A detailed description of the system is given in [Sundermeyer & Nußbaum-Thom+ 2011].

3.6.2 Quaero German ASR Evaluation 2011

Table 3.17 shows the results of the Quaero evaluation on German ASR held in 2011. Similar to the
year 2010, broadcast news (BN) and broadcast conversations data have been used in a rough 50-50%

8http://www.quaero.org
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Table 3.15. List of participants in different evaluation campaigns.

RWTH RWTH Rheinisch-Westfälische Technische Hochschule Aachen, Germany
KIT Karlsruhe Institute of Technology, Germany
CITLAB Computational Intelligence Technology Laboratory, University of Rostock, Germany
LIMSI Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur, France
VR Vocabia Resarch, France
A2IA Artificial Intelligence and Image Analysis, France
LITIS Laboratory for Computer Science, Information Technology and Systems, University of Rouen, France
UOB-TELE Telecom ParisTech research lab, France
UPV Universitat Politècnica de València, Spain
FBK Fondazione Bruno Kessler, Italy
UEDIN University of Edinburgh, UK

Table 3.16. Quaero German ASR evaluation 2010.

participant WER [%]

RWTH 16.94
KIT 24.14
LIMSI + VR 21.05

ratio. The RWTH system uses morpheme-based LMs. The second position has been achieved out of
four participants. The WER of the RWTH system is only 0.09% (absolute) higher than the best WER
achieved by KIT in this year.

Table 3.17. Quaero German ASR evaluation 2011.

participant WER [%]

RWTH 17.49
KIT 17.40
LIMSI + VR 18.04
VR 20.17

3.6.3 Quaero German and Polish ASR Evaluation 2012

Tables 3.18 and 3.19 show the results of the Quaero ASR evaluation on German and Polish ASR held
in 2012. The evaluation data was a mix of broadcast news and broadcast conversations/podcasts, with
an emphasis of the conversations. The RWTH German system uses morpheme-based LMs, whereas, the
Polish system uses syllable-based LMs. The first and second positions have been achieved out of three
participants for German and Polish respectively.

Table 3.18. Quaero German ASR evaluation 2012.

participant WER [%]

RWTH 18.71
KIT 19.38
LIMSI + VR 19.63
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Table 3.19. Quaero Polish ASR evaluation 2012.

participant WER [%]

RWTH 13.57
LIMSI + VR 12.67
VR 14.79

3.6.4 Quaero German ASR Evaluation 2013

Table 3.20 shows the results of the Quaero evaluation on German ASR held in 2013. In fact, two different
evaluation tracks have been considered. The first is based on lecture speech data, whereas the second is
based on a mix of broadcast news and broadcast conversations/podcasts data. The RWTH systems use
morpheme-based LMs. The first position has been achieved out of two participants in each domain.

Table 3.20. Quaero German ASR evaluation 2013.

lecture data BN + BC data
participant WER [%] WER [%]

RWTH 25.23 14.38
VR 31.86 -
KIT - 15.95

3.6.5 IWSLT German ASR Evaluation 2013

Table 3.21 shows the results of the IWSLT evaluation on German ASR held in 20139. This is the tenth
evaluation campaign organized by the IWSLT workshop. The 2013 evaluation has offered a track on
lecture transcription based on the TED Talks10 corpus. The RWTH system uses morpheme-based LMs.
The first position has been achieved out of four participants. A detailed description of the recognition
system is given in [Shaik & Tüske+ 2013].

Table 3.21. IWSLT German ASR evaluation 2013.

participant WER [%]

RWTH 16.94
KIT 24.14
LIMSI + VR 21.05

3.6.6 OpenHaRT Arabic Handwriting Recognition Evaluation 2013

Table 3.22 shows the results of the 2013 NIST open handwriting recognition and translation evaluation
(OpenHaRT 201311) performed on Arabic handwriting text. The RWTH system uses morpheme-based
Arabic LMs. The Arabic word decomposition is performed using MADA toolkit [Habash &Rambow 2005,
2007]. Two different evaluation tasks have been offered. The first is a constrained task, where only the
official OpenHaRT data have been used. The second is an unconstrained task, where all the available
data have been used. The second position has been achieved out of six participants in the constrained

9http://www.iwslt2013.org/59.php
10A collection of public speeches covering many different topics (http://www.ted.com).
11http://www.nist.gov/itl/iad/mig/hart2013.cfm
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task. Whereas, the first position has been achieved out of two participants in the unconstrained task. A
detailed description of the recognition system is given in [Hamdani & Doetsch+ 2014].

Table 3.22. OpenHaRT Arabic handwriting recognition evaluation 2013.

constrained task unconstrained task
participant WER [%] WER [%]

RWTH 23.91 16.15
A2IA 20.32 18.50
CITLAB 26.81 -
LITIS 78.40 -
UOB-TELE 48.66 -
UPV 30.01 -

3.7 Summary

In this chapter, a set of sub-word based language modeling approaches have been investigated in order
to deal with the challenges related to LVCSR of morphologically rich languages. Experiments have been
conducted on Arabic, German, and Polish corpora. Different types of units have been investigated like
full-words, morphemes, syllables and graphones. Novel graphones have been experimented based on
morphemes or syllables. Supervised and unsupervised word decomposition techniques have been used to
generate sub-word units. Trials have been made to use a mixture of multiple types of units in the same
lexicon and LM. A careful optimization of the proposed approaches has been performed.

It has been shown that a carefully optimized system that uses a mixture of recognition units could
achieve significant improvement in WER over the best traditional full-word based system. The most im-
portant optimizations are: the number of each type of unit, and the overall vocabulary size. Nevertheless,
the performance of the sub-word based approach depends on the language, the corpus, and the used types
of units. Usually, the best operating point for a sub-word based system occurs at a lower vocabulary size
compared to the best operating point for a full-word based system. The influence of the sub-word based
approach on the recognition performance is naturally higher when dealing with corpora having inherently
high OOV rates. In this case, reductions in OOV rates can not easily be achieved by simply increasing
the full-word vocabulary size.

The reason behind the success of sub-word based systems lies mainly in two important properties. The
first is their capability to model unseen words and thus recognize OOV words. The second is the more
reliable probability estimates obtained over more frequent units which leads to less mis-recognition of
in-vocabulary words. On the other side, the main drawback of the sub-word based approach is that the
degree of acoustic confusion among different recognition units becomes higher due to the shorter length
of the units.

Generally, it has been observed that morphemes perform better for both Arabic and German experi-
ments, whereas syllables perform better for Polish experiments. In most cases, the larger improvement
gain comes from the use of full-words combined with normal morphemes or syllables, while a smaller or
no gain is achieved by using graphones.
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Chapter 4

Language Modeling with Morphology-Based Classes

An approach that attempts to improve the language modeling of morphologically rich languages is to
incorporate morphology-based classes into the LM estimation process rather than using only words or
sub-words. Normally, word classes are used to define some sort of similarity between words that helps
to produce more knowledgeable estimates of probabilities of word sequences. In this chapter, we aim to
exploit the morphological richness of the underlying languages to define morphology-based classes that
can be used to estimate efficient LMs for such languages. This has been demonstrated as an effective way
to handle the problem of data sparseness and to reduce the dependence of the traditional word-based LM
on the discourse domain. In addition, this approach yields better smoothing and better generalization
with regard to unseen word sequences.

In general, word classes can be generated based on linguistic methods as in [Bilmes & Kirchhoff 2003;
Kirchhoff & Vergyri+ 2006; Maltese & Bravetti+ 2001; Tachbelie 2010; Tachbelie & Abate+ 2011], or via
data-driven approaches as in [Brown & deSouza+ 1992; Kneser & Ney 1991, 1993b; Martin & Liermann+

1998; Matsuzaki & Miyao+ 2003]. In this chapter, morphology-based classes are generated based on care-
fully designed and freely available morphological analyzers. Various models that utilize word classes
are investigated in this chapter, including stream-based LMs [Kirchhoff & Vergyri+ 2006], class-basedLMs
[Brown & deSouza+ 1992], and factored LMs [Bilmes & Kirchhoff 2003; Kirchhoff & Bilmes+ 2002]. In
stream- and class-based LMs, every class stream is treated separately without considering any interaction
among different classes during the backoff. Whereas, in factored LMs, classes are viewed as generic factors
and a so called backoff graph is used to define the backoff mechanism which handles different class streams
jointly during the backoff.

In addition, a novel approach is introduced that attempts to retain the benefits of sub-word based LMs
presented in Chapter 3 along with the advantages of using morphology-based classes. For this purpose,
classes are generated on sub-word level, namely the morpheme level, rather than the level of full-words.
Thus, stream-based, class-based, and factored LMs are estimated over morphemes and their classes,
and then utilized to perform rescoring of N-best lists generated by performing a recognition pass via a
traditional morpheme-based LM. Moreover, linear interpolation as well as log-linear score combination of
different LMs are experimented.

In order to improve the smoothness of the LMs, a recent language modeling approach is utilized based
on the hierarchical Pitman-Yor model (HPYLM) [Huang & Renals 2007; Teh 2006a]. It is a type of
hierarchical Bayesian LM based on a coherent Bayesian probabilistic model that explicitly declares prior
assumptions over the LM parameters. The HPYLM is used to estimate class-based LMs on morpheme
level as well normal morpheme-based LMs. Thus, the traditional modified Kneser-Ney (MKN) smoothing
is replaced with the hierarchical Pitman-Yor based estimation. This is a novel approach that aims at
combining the benefits of sub-word based LMs and morphology-based classes with the advantages of the
HPYLMs. The recognition experiments are performed on Arabic and German tasks. The approaches
described in this chapter have been introduced in [El-Desoky & Schlüter+ 2010; El-Desoky & Shaik+ 2011;
El-Desoky & Schlüter+ 2012; El-Desoky & Shaik+ 2012, 2013].

Section 4.1 shows how morphology-based classes are generated for Arabic and German words and
morphemes. In addition, it presents a data-driven clustering algorithm used to generate an additional
data-driven class for German words or morphemes. Sections 4.2, 4.3, and 4.4 introduce stream-based,
class-based, and factored LMs respectively. Section 4.5 illustrates the foundations of the hierarchical
Pitman-Yor LMs. Section 4.6 describes the methods of combining multiple LMs together. Experimental
results are presented in Section 4.7, followed by a summary in Section 4.8.
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4.1 Generating Classes

In this section, we show how to generate a set of reliable classes on both word and sub-word levels in order
to use them for both word and sub-word based LMs. Since classes are essentially language dependent, we
discuss the generation of Arabic and German classes separately.

4.1.1 Morphology-Based Classes for Arabic

For Arabic, we use the MADA morphological tags previously referred to in Section 3.3.1. Based on these
tags, we generate two different classes, namely lexeme and morph. Lexeme is defined as an abstraction
over the inflected word forms which represents all those forms that differ only in one of the morphological
categories such as number, gender, aspect, or voice [Habash & Rambow 2007]. In other words, lexeme can
be viewed as the canonical form of a word. Whereas, morph represents the morphological description of
the word; it includes the word part-of-speech (POS) tag and indicates whether a conjunction, particle,
article, or a clitic is agglutinated to the word. In addition to lexeme and morph, a third class called
pattern is derived by subtracting root letters from the word. The root is generated via the Sebawai tool
[Darwish 2002]. For more information about the root of the Arabic word, review Section 1.9.1.

The LM training corpus is preprocessed such that every word is replaced by a vector of classes including
the word itself. The components of the vector are separated by a colon character “:”. A single class is
written in the form of a “< tag >−< value >” pair, thus:

word→W−word ∶ M−morph ∶ L−lexeme ∶ P−pattern.

A sequence of individual vector components defines a class stream. This format of writing classes has
been adopted by [Bilmes & Kirchhoff 2003; Kirchhoff & Bilmes+ 2008] n the development of factored LMs.
Therefore, this format is called the factored word representation. For example, consider the Arabic word

“ AêÓ@Y
	

j
�
J�@ð : and using it” transliterated as wAstxdAmhA. The factored representation of this word is

given as:

W−wAstxdAmhA ∶ M−conj+N−3+clitic−FEM−SG−3 ∶ L−AstxdAm ∶ P−wAstCCAChA.

The morph class of the word that follows the tag “M” indicates that the word consists of a conjunction
prefix, followed by a third person noun, followed by a pronominal clitic which is feminine and third person
singular. The lexeme class following the tag “L” indicates that the canonical word form is AstxdAm.
Whereas, the pattern class of the word following the tag “P” is given the value wAstCCAChA, where:

Root(wAstxdAmhA) = xdm.

The three letters of the root xdm are replaced by the placeholder letter “C”. This means that other words
can be generated following the same pattern by inserting new root letters in the places of the “C” letters.
Now, given the morphemic decomposition of this word as:

wAstxdAmhA→ w+ AstxdAm +hA,

the factored representation can be readjusted by assigning classes to morphemes rather than to full-word.
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Thus, the following decomposed factored representation can be generated:

W−w+ ∶ M−conj ∶ L−w+ ∶ P−NUL
W−AstxdAm ∶ M−N−3 ∶ L−AstxdAm ∶ P−AstCCAC
W−+hA ∶ M−clitic−FEM−SG−3 ∶ L−+hA ∶ P−NUL

From this example, it can be seen that a careful handling of word morphological classes could help to
produce valid class assignments to morphemes. This is what we call morpheme-level classes.

4.1.2 Morphology-Based Classes for German

For German, classes are generated using the TreeTagger [Schmid 1994]. It is a probabilistic tool that
uses decision trees for annotating text with part-of-speech and lemma information. Lemma is defined as a
particular form of the lexeme that serves as the canonical or the citation word form. Since the concept of
lemma is closely related to the concept of lexeme, in this work, we refer to both terms as lexeme. In fact,
the TreeTagger has been successfully used to tag words of many languages including German [Schmid
1995]. Indeed, it is adaptable to other languages if a lexicon and a manually tagged training corpus are
available.

The LM training data is rewritten in a factored representation analogous to the one given in the Section
4.1.1, thus:

word→W−word ∶ P−POS−tag ∶ L−lexeme ∶ I−cluster−index

The class that follows the “I” tag is called a cluster index. It is a numeric class which is generated via
running a data-driven clustering algorithm over the German text corpus. In fact, this is the only data-
driven class used in our work. This class will be discussed in details in the following section. To illustrate
by an example, consider the word “eingeschlafen : [have] fallen asleep”. Its factored representation is
given as:

W−eingeschlafen ∶ P−V V PP ∶ L−einschlafen ∶ I−224,

where VVPP means past participle verb. One of the important properties of the TreeTagger is that
it operates successfully over morphemes as well as full-words provided that the input morphemes are
linguistically meaningful. For the experiments performed in these thesis, morphemes are generated for
German words using Morfessor [Creutz & Lagus 2005]. As mentioned in Chapter 3, the morphemes
obtained by Morfessor are almost linguistically meaningful [Creutz 2006] (review Section 3.3.2). Therefore,
the TreeTagger can be successfully used to generate valid part-of-speech tags and lexemes for German
morphemes. It is also worth noting that, in most of the cases, the decomposition process of German
words produces smaller valid words due to the abundance of compound words in German language. For
example, given the following morphemic decomposition:

eingeschlafen→ ein+ geschlafen,

the factored representation of this word can be readjusted such that classes are assigned to the morphemes.
Thus, the following decomposed factored representation can be generated, where ART ≡ article:

W−ein+ ∶ P−ART ∶ L−ein ∶ I−15
W−geschlafen ∶ P−V V PP ∶ L−schlafen ∶ I−192

4.1.3 Data-Driven Word Clustering

One additional class called cluster index is generated for German words. It is a numerical index assigned to
each word or morpheme after running a data-driven clustering procedure over the German text corpus. It
indicates the cluster to which the word or the morpheme belongs. In fact, the class assigned to some word
can be considered as a data-driven approximation to the real semantic class of the word. For generality,
the term word is utilized in this section to refer to a word or a morpheme.

To perform word clustering, all discrete vocabulary words are first mapped into a continuous space
in the form of vectors of real numbers using a method proposed in [Sarikaya & Afify+ 2009]. Then, this
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continuous space of vectors is clustered into some selected number of clusters via the standard K-means
clustering algorithm. Then, every word is assigned a cluster index which acts as a data-driven class of
the underlying word.

Discrete to continuous mapping. In order to map discrete words into a continuous space, an approach
inspired from latent semantic analysis (LSA) is used [Deerwester &Dumais+ 1990; Sarikaya &Afify+ 2009].
Starting from the text corpus, a word-pair co-occurrence matrix is created based on the bigram counts
extracted from the text. All the word bigrams are accumulated from the entire text corpus to fill in
the entries of a co-occurrence matrix C, where C(wi,wj) denotes the count of the bigram wjwi in
the text corpus. This forms a large but very sparse matrix, since typically a small number of words
follow a given word. The matrix dimension is M ×M , where M is the vocabulary size. Because of its
large size and sparsity, singular value decomposition (SVD) is a good choice to produce a reduced-rank
approximation of the matrix C. This co-occurrence matrix typically contains few high frequency events
and many low frequency events. Since SVD derives a compact approximation of the co-occurrence matrix
that is optimum in the least-square sense, it is normally over-fitted to the high frequency events which
may not be the most informative. Therefore, the entries of the co-occurrence matrix are log-smoothed
using to the following operation:

Ĉ(wi,wj) = log[C(wi,wj) + 1]. (4.1)

Then, using a similar approach as described in [Bellegarda 2000; Sarikaya &Afify+ 2009], SVD is performed
over the log-smoothed matrix Ĉ, such that :

Ĉ ≈ USVT . (4.2)

Assuming that an order of decomposition R ∶ R ≪ M is used, then U[M×R]
1 is a left singular matrix,

S[R×R] is a diagonal matrix of singular values, and V[M×R] is a right singular matrix. The continuous
space of words is defined as the space spanned by the column vectors of A[M×R] = US.

Now, assuming that a word wi is represented by an indication column vector w⃗i[M×1], where the ith

entry of w⃗i is equal to one and all the remaining M − 1 entries are equal to zero. Then, this indication
vector w⃗i[M×1] is mapped to a lower dimensional vector ŵi[R×1] after applying a dimensionality reduction
operation given by:

ŵi = AT w⃗i. (4.3)

In simpler words, a word wi is represented by the ith row vector of matrix A. These row vectors are called
latent word vectors which define the continuous space of the original discrete words.

4.2 Stream-Based m-gram Models

The first type of language model that utilizes word classes is called stream-based LM. This is a simplified
model in which a traditional m-gram model is built over sequences of classes assigned to words rather than
sequences of words themselves. The sequence of classes is called a class stream, like sequences of word
roots, stems, part-of-speech (POS) tags, ... etc. It completely ignores the use of words in the probability
estimation, rather it directly models the regularities governing sequences of class assignments. Thus, the
probability p(wn∣w

n−1
n−m+1) of a traditional word m-gram model is replaced with p(cn∣c

n−1
n−m+1), where cn is

the class assigned to wn at time n. Analogous to the traditional word m-gram model, given a sequence
of class assignments cN1 , the corresponding m-gram stream-based LM is given as:

p(cN1 ) =
N

∏
n=1

p(cn∣c
n−1
n−m+1) (4.4)

In order to train this model, the LM training corpus is preprocessed such that, for all sentences, word
sequences are replaced with class sequences. This type of model built over classes can be used for rescor-

1The subscript defines the dimensions of the matrix.
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ing N-best lists. To perform rescoring, the hypothesized N-best sentences are initially mapped to the
corresponding sequences of classes suitable for the applied stream-based LM. Usually, the preprocessing
of the N-best sentences follows the same steps of preprocessing the LM raining data.

4.3 Class-Based m-gram Models

The second type of language model that utilizes word classes is called class-based LM. The basic idea
of the class-based LMs are initially mentioned in [Derouault & Merialdo 1986] and later described in
[Brown & deSouza+ 1992; Kneser & Ney 1991]. This type of model combines the probability distribution
over sequences of classes with the probability distribution of words given classes in order to produce more
robust estimates of the probabilities of word sequences. In principle, to derive such a model, classes are
utilized for both the predicted and the conditional words.

Assigning a word wn to a class cn can occur in two different forms. In the first form, there is many-to-
one mappings from words and classes, i.e. a given word can only be uniquely mapped to one specific class.
In this case, the class is called a hard class and the relationship is called unambiguous class membership.
In the second more complex case, there may be many-to-many mappings from words to classes, i.e. a given
word may belong to more than one class, and a given class will typically contain more than one word.
In this case, the class is called a soft class and the relationship is called ambiguous class membership. In
this section, we will consider the derivation of the class-based LMs in cases of using both hard and soft
classes. In principle, hard classes can always be considered as a special case of soft classes.

Soft classes. Consider a trigram probability p(wn∣wn−1wn−2), where wn denotes the word to be pre-
dicted, wn−1 and wn−2 are the context words. Let cn denotes the class assigned to wn at time (position)
n, and assume that soft classes are used for both the predicted and the context words, then the following
derivation of a trigram class-based LM takes place:

p(wn∣wn−1wn−2) = ∑
cn,cn−1,cn−2

p(wncncn−1cn−2∣wn−1wn−2)

= ∑
cn,cn−1,cn−2

{p(wn∣cncn−1cn−2wn−1wn−2) p(cn∣cn−1cn−2wn−1wn−2)

p(cn−1∣cn−2wn−1wn−2) p(cn−2∣wn−1wn−2)} (4.5)

Some approximations can be used to simplify Equation 4.5. The first is to consider only the dependence
of wn on cn and ignore all the other complex dependencies. The second is to assume that the probability
of a class cn depends only on the classes of the previous words cn−1cn−2 ignoring the dependence on the
previous words wn−1wn−2 themselves. A third approximation is to assume that the probability of a class
at position n is independent on any word or class at different positions given the word at the same position
n. These approximations yield the following simplified form of a trigram class-based LM:

p(wn∣wn−1wn−2) = ∑
cn,cn−1,cn−2

p(wn∣cn) p(cn∣cn−1cn−2) p(cn−1∣wn−1) p(cn−2∣wn−2) (4.6)

Hard classes. In case that hard classes are used, then the summation of Equation 4.6 is removed consid-
ering only one exact class for each of wn,wn−1,wn−2. This can be described by a deterministic mapping
function ĉ(⋅) that maps words to the corresponding hard classes. Thus, given the Kronecker delta function
δ(⋅)2, the estimation takes on the form:

p(wn∣wn−1wn−2) = ∑
cn,cn−1,cn−2

p(wn∣cn) p(cn∣cn−1cn−2) δcn−1=ĉ(wn−1) δcn−2=ĉ(wn−2)

= p(wn∣ĉ(wn)) p(ĉ(wn)∣ĉ(wn−1)ĉ(wn−2)) (4.7)

2The Kronecker delta function used with a boolean subscript notation: δi=j = 1 iff i = j; otherwise δi=j = 0.
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Generalization. A generalization to Equation 4.5 for the m-gram case can be inductively derived as:

p(wn∣w
n−1
n−m+1) = ∑

cnn−m+1

p(wn∣cn) p(cn∣c
n−1
n−m+1)

n−1

∏
k=n−m+1

p(ck ∣wk) (4.8)

The probability p(wn∣cn) can be estimated using count statistics on the training data as follows:

p(wn∣cn) =
N(wn, cn)

N(cn)
, (4.9)

where N(wn, cn) is the count of occurrences of the word wn in the class cn, and N(cn) is the count of
occurrences of the class cn. The probability p(cn∣wn) can be written as follows:

p(cn∣wn) =
p(wn, cn)

p(wn)

=
p(wn, cn)

∑ci p(wn, ci)

=
p(wn∣cn) p(cn)

∑ci p(wn∣ci) p(ci)
(4.10)

Substituting Equation 4.10 into Equation 4.8, we get the form:

p(wn∣w
n−1
n−m+1) = ∑

cnn−m+1

p(wn∣cn) p(cn∣c
n−1
n−m+1)

n−1

∏
k=n−m+1

p(wk ∣ck) p(ck)

∑ci p(wk ∣ci) p(ci)
(4.11)

In Equation 4.11, we can see that there are only two distributions required to estimate the class-based
probability. The first is the probability distribution over sequences of classes, called class m-gram, at
different orders including the unigram order. The second is the probability distribution of words given
classes, called class membership distribution or classification probability.

4.4 Factored Language Models

The factored LM (FLM) is a general and flexible framework for incorporating classes into the LM estima-
tion process. The FLM was initially introduced by [Bilmes &Kirchhoff 2003; Kirchhoff &Bilmes+ 2002] for
incorporating various morphological information into Arabic LMs. Later, in [Tachbelie 2010; Tachbelie &
Abate+ 2011], it has been successfully used for Amharic LMs.

In FLMs, words and their classes are considered as generic factors. Every word in a text corpus is
replaced by a vector of parallel factors over which the probability estimation is to be performed. The
main difference between the FLM and the other models, like the stream- and class-based LMs, is that the
FLM uses a complex backoff mechanism to handle different class streams jointly during the backoff. Here,
the main idea is to backoff to different combinations of classes when some word m-gram is not sufficiently
observed in the training data.

Definition. The FLM views a word as a vector of K parallel factors, such that:

wn → f1
n, f

2
n, ..., f

K
n = f1∶K

n . (4.12)

A factor could be the word itself or any class assigned to the word such as a morphological or a data-driven
class. Hence, a sequence of words wN1 is viewed as a sequence of K parallel factors, such that:

wN1 → f1∶K
1 , f1∶K

2 , ..., f1∶K
N = f1∶K

1∶N . (4.13)
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The objective of the FLM is to produce a statistical model over these factors, in the form:

p(f1∶K
1∶N ) = p(f1∶K

1 , f1∶K
2 , ..., f1∶K

N ). (4.14)

Using an m-gram-like formula, the model takes the form:

p(f1∶K
1∶N ) ≈

N

∏
n=1

p(f1∶K
n ∣f1∶K

n−m+1∶n−1). (4.15)

Thus, the goal is to produce accurate models of the form:

p(f1∶K
n ∣f1∶K

n−m+1∶n−1).

This form opens up the possibility for many modeling option. Applying the chain rule, the conditional
probability used in Equation 4.15 can be expressed as:

p(f1∶K
n ∣f1∶K

n−m+1∶n−1) =∏
k

p(fkn ∣f
1∶k−1
n , f1∶K

n−m+1∶n−1) (4.16)

This is one possible chain rule ordering of the factors. Given the large number of all the possible chain
rule orderings and the number of all possible subsets of conditioning factors, it can be seen that this model
represents a large family of statistical LMs [Kirchhoff & Bilmes+ 2008].

Backoff strategy. In a typical FLM, the required distributions take the form:

p(f ∣f1, f2, ..., fM), (4.17)

which represents a conditional probability over a set of M + 1 random variables. It is not necessary
that all these variables are words nor they represent a certain chronological order3. In this case, the
application of a backoff procedure with a specific dropping order is not straightforward. There are in fact
quite a large number of possible orders. Each single dropping order is called a backoff path, and all the
possible backoff paths can be depicted in a so-called backoff graph in which each node corresponds to a
particular statistical model (see e.g. Figure 4.1) [Kirchhoff & Bilmes+ 2008]. In [Bilmes & Kirchhoff 2003],
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Figure 4.1. (a) An example of a general backoff graph showing all possible backoff paths from top to bottom. (b)
An example of a backoff graph where only a subset of the possible backoff paths are allowed.

two alternative approaches are introduced in order to select backoff paths, which are:

3Usually, the chronological order applies to sets of variables that are related to words at different times.
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1. Single path: Only one particular backoff path is chosen at run time to produce the probability,
depending on the particular sequence of factors for which the probability is estimated.

2. Multiple paths: Multiple backoff paths are used simultaneously at run time to produce the prob-
ability, where the set of the used multiple paths might change depending on the particular sequence
of factors for which the probability is estimated.

This methodology is called generalized backoff. It can be used to improve over the fixed backoff path, since
the paths can be designed to best suit the given instances of factors. The generalized backoff procedure
is a generalization of the standard Katz’s backoff, thus:

pBO(f ∣f1, f2, ..., fM) = {
d(f, f1, f2, ..., fM)pML(f ∣f1, f2, ..., fM) if N(f, f1, f2, ..., fM) > τM+1

γ(f1, f2, ..., fM)g(f, f1, f2, ..., fM) otherwise
(4.18)

where pML(f ∣f1, f2, ..., fM) is the ML distribution , τM+1
4 is a user specified threshold used to determine

when a language model hit occurs at the current level of the backoff path, or whether to backoff to the
next level. The function g(f, f1, f2, ..., fM) is the backoff distribution, which is only guaranteed to be a
non-negative function. The function γ(f1, f2, ..., fM) is selected such that the entire distribution is valid,
thus to be non-negative and sums to unity. In fact, the choice of the function g(f, f1, f2, ..., fM) determines
the used backoff strategy. In [Kirchhoff & Bilmes+ 2008], a number of possible forms of g(f, f1, f2, ..., fM)

are introduced that are implemented as a part of the SRILM toolkit [Stolcke 2002].

Parameter tuning. The following three types of parameters are required to fully define a FLM:

1. Initial conditioning factors: factors used in estimating the m-gram probabilities.

2. Backoff graph: order of visiting backoff nodes to apply a backoff procedure.

3. Smoothing options: smoothing technique applied at every node of the backoff graph.

It can be recognized that the parameter space of the FLM is extremely large. Usually, this space cannot be
searched exhaustively, and optimizing models by knowledge-based manual search procedures often leads
to suboptimal results. Therefore, it is very important to use automatic search procedures. In [Duh &
Kirchhoff 2004], an efficient genetic algorithm called GA-FLM is introduced to solve this problem.

4.5 Hierarchical Pitman-Yor Language Models

A hierarchical Pitman-Yor LM (HPYLM) is a type of hierarchical Bayesian LM based on a coherent
Bayesian probabilistic model that explicitly declares prior assumptions over the LM parameters [Huang &
Renals 2007; Teh 2006a]. The concept of statistical priors has been previously investigated using different
types of priors like in [Brand 1999; Chen & Rosenfeld 2000; Goodman 2004]. The HPYLM in particular
is based on the Pitman-Yor (PY) process which is a nonparametric generalization of the widely used
Dirichlet distribution [Ishwaran & James 2001; Pitman 2002; Pitman & Yor 1997]. The resulting HPYLM
is considered as a direct generalization of the hierarchical Dirichlet LM proposed by [MacKay &Peto 1994].

The PY process produces power-law distributions over word frequencies [Goldwater & Griffiths+ 2006,
2011]. This means that few number of words occur with very high probabilities, while most words occur
with low probabilities. This distribution has been found to be one of the most striking statistical properties
of word frequencies in natural languages.

Pitman-Yor process. Initially, as adopted by [Teh 2006b], the Pitman-Yor (PY) process [Pitman 1995;
Pitman & Yor 1997] can be described in the context of a unigram LM. Thus, Let W be a finite vocabulary
of V words. For each word w ∈W , let G(w) be the probability of w, and let G = [G(w)]w∈W be the vector
of word probabilities. We place a PY process prior on G, such that:

G ∼ PY (d, θ,G0), (4.19)

4The subscript of τ indicates the number of random variables at the current level of the backoff graph. Generally, M + 1
variables are considered in our equations (1 child variable + M parent variables).
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where the PY process is a distribution over distributions over words. The parameters of the process are:
a discount parameter 0 ≤ d < 1, a strength parameter θ > −d, and a mean vector G0 = [G0(w)]w∈W . G0(w)

is the prior probability of word w before observing any data. Usually, a uniform distribution is used for
G0, such that G0(w) = 1/V ∀ w ∈W .

We are interested in the distribution over sequences of words induced by the PY process. It can be
seen that both G and G0 are distributions over W , and word w ∈ W has probabilities G(w) and G0(w)

respectively. Let [xl] = x1, x2, ... be a sequence of words drawn from G. The PY process is described as
a generative procedure that iteratively produces [xl] with G marginalized out. This can be achieved by
relating [xl] to another separate sequence of draws [yk] = y1, y2, ... from the mean distribution G0.

The first word x1 is assigned the value of the first draw y1 from G0. Let t be the current number of draws
from G0 (currently t = 1), ck be the number of words assigned the value of draw yk (currently c1 = 1),
and c = ∑

t
k=1 ck be the current number of draws from G. For each subsequent word xc+1, we either assign

it the value of a previous draw yk with probability ck−d
θ+c (increment ck; set xc+1 ← yk), or we assign it the

value of a new draw from G0 with probability θ+dt
θ+c (increment t; set ct = 1; draw yt ∼ G0; set xc+1 ← yt).

This process has been shown to produce a so-called power-law distribution, where many unique words are
observed, most of them rarely.

Chinese restaurant process. The procedure for generating words from G is often referred to as the
Chinese restaurant process (CRP) [Pitman 2002]. Imagine a sequence of customers (corresponding to
draws from G) visiting a Chinese restaurant with an infinite number of tables (corresponding to draws
from G0), each of which can accommodate an infinite number of customers. The first customer sits at
the first available table, and each subsequent customer either joins an already occupied table (assign a
word to a previous draw from G0), or sits at a new table (assign a word to a new draw from G0). The
exact words drawn from G0 can be thought of as dishes served by tables, such that the customers sitting
at each table eat the dish served by this table [Teh 2006b]. Here, it should be noted that it is possible for
the same dish to be served on multiple tables.

Hierarchical Pitman-Yor process. A hierarchical Pitman-Yor LM (HPYLM) can be described based on
a hierarchical extension of the PY process described above. An m-gram LM defines probabilities over the
current word given contexts up to m − 1 words. Given a context u, let Gu(w) be the probability of the
current word taking on value w. We use a PY process as the prior for Gu = [Gu(w)]w∈W , thus:

Gu ∼ PY (d∣u∣, θ∣u∣,Gπ(u)), (4.20)

where π(u) is the suffix context of u after dropping the earliest word. The strength and discount pa-
rameters are functions of the length ∣u∣ of the context, while the mean vector is Gπ(u), the vector of
probabilities of the current word given all but the earliest word in the context. Since Gπ(u) is also un-
known, we recursively place a prior over Gπ(u) using 4.20, but with parameters θ∣π(u)∣, d∣π(u)∣, and a mean
vector Gπ(π(u)). This is repeated until reaching Gφ, which is the vector of probabilities over the current
word given the empty context φ. Then, we place a prior over Gφ as:

Gφ ∼ PY (d0, θ0,G0), (4.21)

where G0 is the global uniform mean vector, G0(w) = 1/V ∀ w ∈ W . This choice of the prior structure
expresses the common belief that earlier words in context have the least importance in modeling the
probability of the current word.

Starting from a posterior distribution over seating arrangements in a hierarchical Chinese restaurant,
the predictive probability of a word w after a context u can be inferred using Gibbs sampling [Neal 1993].
A detailed inference scheme is described in Teh [2006b].
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4.6 Combining Multiple Language Models

Normally, the standard word-based m-gram LMs perform betters than stream- and class-based LMs in
capturing the relationships between words for a text belonging to the same discourse domain as the
training text. Therefore, an effective way to retain the advantages of these types of LMs is to combine
them. The most common combination approaches may rely on: linear interpolation [Samuelsson & Reichl
1999], or N-best score combination [Kirchhoff & Vergyri+ 2006]. The following two sections discuss these
methods.

4.6.1 Linear Interpolation

Since word-based and class-based LMs are used to estimate the same target m-gram probability distribu-
tion p(wn∣w

n−1
n−m+1), they can be easily interpolated. The linear interpolation of multiple word-based and

class-based LMs is expressed as:

p(w∣h) =
I

∑
i=1

λi p
(i)
w (w∣h) +

J

∑
j=1

λj p
(j)
c (w∣h) (4.22)

where w is the word, h is the history, p
(i)
w (w∣h) is ith word-based conditional probability, p

(j)
c (w∣h) is the

jth class-based conditional probability, λi, λj are the interpolation weights optimized on some development

data, such that ∑
I
i=1 λi +∑

J
j=1 λj = 1, and (I + J) is the total number of the interpolated models. This is

considered a general interpolation formula which expresses the different linear interpolations performed
in this thesis. For instance, different class-based LMs could be estimated over different class streams (e.g.
lexemes, part-of-speech tags, ... etc.). Furthermore, different word-based LMs could be estimated using
different estimation models (e.g. backoff m-gram, hierarchical Pitman-Yor, neural network, ... etc.). The
neural network LMs are to be discussed in Chapter 5.

4.6.2 Score Combination

If the target probabilities are different among multiple LMs; such as in the case of word-based and stream-
based LMs; then the interpolation becomes not straight forward to perform. In this case, the N-best score
combination can be used. Thus, every LM is separately used to generate different scores for the N-best
sentences, then these scores are combined together to provide a single score used to re-rank the N-best
sentences and thus reselect the best hypothesis with the highest score.

During the LM rescoring of N-best lists, the scores used for re-ranking the N-best hypotheses are
normally a weighted combination of several component scores representing the acoustic score, the LM
score and the number of words. However, as mentioned before, scores from various LMs can be added.
The final score for each hypothesis can be computed as a log-linear combination of the invoked scores.
The weights of this combination can be optimized such that the word error rate (WER) is minimized on
some development data [Kirchhoff &Vergyri+ 2006]. This is similar to the framework of the discriminative
model combination described in [Beyerlein 1998]. Thus, assume that there are K different models pk(w

N
1 ),

where k = 1, ...,K. These models can be log-linearly combined into a distribution of the following form:

p{Λ}(w
N
1 ) = exp{log C(Λ) +

K

∑
k=1

λk log pk(w
N
1 )} (4.23)

The coefficients Λ = (λ1, ..., λK) can be considered as weights of the models pk within the model combina-
tion. The value C(Λ) is a normalization factor. The weights are optimized so as to achieve the minimum
WER over a development set. In this work, the weight optimization is performed using “Amoeba simplex”
search [Press & Flannery+ 1988] which is implemented as a part of the publicly available SRILM toolkit
[Stolcke 2002].

58



4.7 Experimental Results

4.7 Experimental Results

In this section, experimental results are presented on stream-based, class-based, and factored LMs esti-
mated using word and sub-word level classes presented in Section 4.1. In addition, results are reported
on using hierarchical Pitman-Yor LMs in the estimation of traditional word and sub-word models as well
as class-based models. The Experiments are performed using Arabic and German testing systems. A
detailed description of these systems along with a description of the development and evaluation corpora
is found in Appendix A. Before reporting the experimental results, we discuss the optimization of the
factored LMs over the given classes for both Arabic and German.

4.7.1 Optimization of Factored Language Models

Optimizing Arabic FLMs. Arabic FLMs are estimated over words and morphemes along with lexeme,
morph, and pattern classes presented in Section 4.1.1. In order to obtain a good performance via FLMs,
the FLM parameters are optimized using the GA-FLM tool [Duh & Kirchhoff 2004]. This tool can not
search all the possible FLM structures due to the design limitations of the backoff graph encoding (review
[Duh & Kirchhoff 2004]). Therefore, the GA-FLM optimization is followed by a manual optimization in
order to fine tune the FLM parameters. Because of memory limitations, factors up to only two previous
time slots are used (trigram-like models).

After performing the FLM parameter optimization, we come up with a set of competing FLMs having
comparably low perplexities. The exact topologies of those FLMs are given in Figure 4.2. In this figure,
we use the FLM format specifications adopted by the SRILM-FLM extensions [Kirchhoff & Bilmes+ 2008;
Stolcke 2002]. For a detailed description of these specifications, see [Kirchhoff & Bilmes+ 2008]. The
letters {W, M, L, P} refer to the factors {word, lexeme, morph, pattern} respectively. The first model
(AR−FLM1) represents the FLM equivalent of the standard trigram LM used as a reference baseline.
Whereas, the two FLMs (AR−FLM2,3) correspond to the model P (Wn∣Wn−1,Mn−1, Ln−1, Pn−1,Wn−2)

with only slight differences in the smoothing options. The last two FLMs (AR−FLM4,5) correspond to the
model P (Wn∣Wn−1,Mn−1, Ln−1,Wn−2,Mn−2, Ln−2) also with slight differences in the smoothing options.
The gtmin option refers to the count threshold that is sufficient to have a language model hit at some
node of the backoff graph. The backoff graphs of these FLMs are shown in Figure 4.3.

It is well known in the ASR community that there is a strong correlation between the perplexity of a
LM and its performance in a speech recognition system [Klakow & Peters 2002]. However, this correlation
is not so strict as might be thought [Clarkson & Robinson 1999, 2001]. This means that the LM which
achieves the minimum perplexity is not necessarily the one that yields the minimum WER in the real
ASR task. Therefore, the obtained Arabic FLMs that have the least perplexities need to be tested on a
real speech recognition experiment in order to discover the best performing FLM.

Table 4.1 shows the results of the recognition experiments performed on a small Arabic tuning corpus
ar-tune07 using the first pass of the modern standard Arabic (MSA) system described in Appendix A. A
small vocabulary of 70k full-words is used. The system performs one recognition pass that uses a bigram
LM to produce N-best lists (N = 1000) which are preprocessed such that the words are converted into the
factored word representation shown in Section 4.1.1. All the competing FLMs (AR−FLM2∶5) are used to
rescore these N-best lists. Here, only word-based FLMs are used to rescore word N-best lists in order to
test the performance of the corresponding topology. The resulting WERs are presented in Table 4.1.

Comparing the baseline perplexity with the perplexities of other FLMs, it can be seen that most of
the FLMs are able to improve the perplexity compared to the standard trigram model. The best WER
is obtained using AR−FLM4 although it is not the FLM that achieves the least perplexity. Therefore,
AR−FLM4 is selected for our recognition experiments.

Optimizing German FLMs. German FLMs are estimated over words and morphemes along with lex-
eme, POS-tag, and cluster-index classes presented in Section 4.1.2. Similar to Arabic FLMs, the FLM
parameters are optimized using the GA-FLM tool in addition to manual fine tuning. Also, due to memory
limitations, factors up to only two previous time slots are considered.

After performing the parameter optimization, a set of competing FLMs with comparably low per-
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## AR−FLM1 ≡ P (Wn∣Wn−1,Wn−2) [standard trigram]
W : 2 W(-1) W(-2) flm1.count.gz flm1.lm.gz 3

W1,W2 W2 kndiscount gtmin 1 interpolate
W1 W1 kndiscount gtmin 1 interpolate
0 0 kndiscount gtmin 1

## AR−FLM2 ≡ P (Wn∣Wn−1,Mn−1,Ln−1, Pn−1,Wn−2)
W : 5 W(-1) M(-1) L(-1) P(-1) W(-2) flm2.count.gz flm2.lm.gz 10

W1,M1,L1,P1,W2 W2 kndiscount gtmin 3 interpolate
W1,M1,L1,P1 W1 kndiscount gtmin 2 interpolate
M1,L1,P1 M1,L1,P1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
L1,P1 L1,P1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
M1,P1 M1,P1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
M1,L1 M1,L1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
M1 M1 kndiscount gtmin 3 kn-count-parent W1,M1,L1,P1
P1 P1 kndiscount gtmin 3 kn-count-parent W1,M1,L1,P1
L1 L1 kndiscount gtmin 1 kn-count-parent W1,M1,L1,P1
0 0 kndiscount gtmin 1 kn-count-parent W1,M1,L1,P1

## AR−FLM3 ≡ P (Wn∣Wn−1,Mn−1,Ln−1, Pn−1,Wn−2)
W : 5 W(-1) M(-1) L(-1) P(-1) W(-2) flm3.count.gz flm3.lm.gz 10

W1,M1,L1,P1,W2 W2 kndiscount gtmin 1 interpolate
W1,M1,L1,P1 W1 kndiscount gtmin 1 interpolate
M1,L1,P1 M1,L1,P1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
L1,P1 L1,P1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
M1,P1 M1,P1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
M1,L1 M1,L1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
M1 M1 kndiscount gtmin 1 kn-count-parent W1,M1,L1,P1
P1 P1 kndiscount gtmin 1 kn-count-parent W1,M1,L1,P1
L1 L1 kndiscount gtmin 1 kn-count-parent W1,M1,L1,P1
0 0 kndiscount gtmin 1 kn-count-parent W1,M1,L1,P1

## AR−FLM4 ≡ P (Wn∣Wn−1,Mn−1,Ln−1,Wn−2,Mn−2,Ln−2)
W : 6 W(-1) M(-1) L(-1) W(-2) M(-2) L(-2) flm4.count.gz flm4.lm.gz 9

W1,M1,L1,W2,M2,L2 W2 kndiscount gtmin 3 interpolate
W1,M1,L1,M2,L2 L2,M2 kndiscount gtmin 1000000 combine mean
W1,M1,L1,M2 M2 kndiscount gtmin 4 kn-count-parent 0b111111
W1,M1,L1,L2 L2 kndiscount gtmin 2 kn-count-parent 0b111111
W1,M1,L1 W1 kndiscount gtmin 2 interpolate
M1,L1 L1,M1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
M1 M1 kndiscount gtmin 3 kn-count-parent W1,M1,L1
L1 L1 kndiscount gtmin 1 kn-count-parent W1,M1,L1
0 0 kndiscount gtmin 1 kn-count-parent W1,M1,L1

## AR−FLM5 ≡ P (Wn∣Wn−1,Mn−1,Ln−1,Wn−2,Mn−2,Ln−2)
W : 6 W(-1) M(-1) L(-1) W(-2) M(-2) L(-2) flm5.count.gz flm5.lm.gz 9

W1,M1,L1,W2,M2,L2 W2 kndiscount gtmin 1 interpolate
W1,M1,L1,M2,L2 L2,M2 kndiscount gtmin 1000000 combine mean
W1,M1,L1,M2 M2 kndiscount gtmin 1 kn-count-parent 0b111111
W1,M1,L1,L2 L2 kndiscount gtmin 1 kn-count-parent 0b111111
W1,M1,L1 W1 kndiscount gtmin 1 interpolate
M1,L1 L1,M1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
M1 M1 kndiscount gtmin 1 kn-count-parent W1,M1,L1
L1 L1 kndiscount gtmin 1 kn-count-parent W1,M1,L1
0 0 kndiscount gtmin 1 kn-count-parent W1,M1,L1

Figure 4.2. Topologies of the Arabic FLMs using the format specifications of the SRILM-FLM extensions (W: word;
M: morph; L: lexeme; P: pattern).
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(c) AR−FLM4,5

Figure 4.3. Backoff graphs for AR−FLM1∶5, detailed topologies are given in Figure 4.2 (W: word; M: morph; L:
lexeme; P: pattern).

Table 4.1. Recognition experiments on Arabic ar-tune07 corpus using different factored LMs (vocabulary: 70k
full-words, OOV rate = 3.6%, N-best size = 1000, N-best error rate (NER) = 7.3%; W: word; M: morph; L:
lexeme; P: pattern).

ar-tune07
factored LM PPL WER[%]

P (Wn∣Wn−1,Wn−2)

AR−FLM1 302.6 20.4
P (Wn∣Wn−1,Mn−1, Ln−1, Pn−1,Wn−2)

AR−FLM2 306.2 20.2
AR−FLM3 290.9 20.4

P (Wn∣Wn−1,Mn−1, Ln−1,Wn−2,Mn−2, Ln−2)

AR−FLM4 300.2 19.9
AR−FLM5 294.5 20.3
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Chapter 4 Language Modeling with Morphology-Based Classes

plexities are obtained. The exact topologies of those FLMs are shown in Figure 4.4. The letters {W,
L, P, I} refer to the factors {word, lexeme, POS-tag, cluster-index} respectively. The first model
(GR −FLM1) represents the FLM version of the standard trigram LM. Whereas, the three FLMs
(GR−FLM2∶4) correspond to the model P (Wn∣Wn−1, Ln−1, In−1, Pn−1,Wn−2, Ln−2, In−2, Pn−2) with dif-
ferences in backoff graphs and smoothing options. The two FLMs (GR−FLM5,6) correspond to the
model P (Wn∣Wn−1, Ln−1, Pn−1,Wn−2, Ln−2, Pn−2) also with differences in backoff graphs and smoothing
options. The last FLM (GR−FLM7) corresponds to the model P (Wn∣Wn−1, In−1, Pn−1,Wn−2, In−2, Pn−2).
The backoff graphs of these FLMs are shown in Figure 4.5.

Table 4.2 shows the perplexities of all the FLMs measured on the German development corpus gr-dev09.
The FLMs are estimated on word and morpheme levels. The word-based FLMs are using a vocabulary of
100k full-words. Whereas, the morpheme-based FLMs are using a 100k vocabulary having 5k full-words
+ 95k morphemes. This particular choice of the number of full-words and morphemes is motivated by
the previous optimization presented in Section 3.5.2. It can be seen that most of the FLMs are able
to decrease the perplexity compared to the traditional trigram LM (GR−FLM1). The pattern of the
perplexity reduction is consistent for both word- and morpheme-based FLMs.

Table 4.2. Perplexities for the German FLMs GR−FLM1∶7 measured on the German gr-dev09 corpus. Exact
FLM topologies are given in Figures 4.4 and 4.5 (word-based: 100k full-words vocab; morpheme-based: 100k
morpheme-based vocab with 5k full-words + 95k morphemes; W: word; L: lexeme; I: class-index; P: POS-tag).

gr-dev09
word- morpheme-

factored LM based based

P (Wn∣Wn−1,Wn−2)

GR−FLM1 349.7 311.0
P (Wn∣Wn−1, Ln−1, In−1, Pn−1,Wn−2, Ln−2, In−2, Pn−2)

GR−FLM2 311.7 280.6
GR−FLM3 314.8 283.8
GR−FLM4 330.4 296.4

P (Wn∣Wn−1, Ln−1, Pn−1,Wn−2, Ln−2, Pn−2)

GR−FLM5 342.9 306.0
GR−FLM6 384.7 343.0

P (Wn∣Wn−1, In−1, Pn−1,Wn−2, In−2, Pn−2)

GR−FLM7 326.2 294.7

In order to select the best FLM, all the FLMs shown in Table 4.2 are directly employed in recognition
experiments. Table 4.3 shows the results of the recognition experiments performed on German corpora
using the German testing system described in Appendix A. A vocabulary of size 100k is used. The
system performs 2 recognition passes. The second pass uses a 4-gram LM to generate N-best lists (N =
1000) which are preprocessed and rescored using the FLMs GR−FLM2∶7 (see Figures 4.4 and 4.5). The
recognition results are shown for both word-based and morpheme-based systems. It can be seen that the
best results are obtained using GR−FLM5. Therefore, it is selected for our recognition experiments.

4.7.2 Experiments on Arabic

In order to compare the performance of stream-based LMs versus class-based LMs, Table 4.4 shows the
results of recognition experiments performed on the Arabic development corpus ar-dev07 using the modern
standard Arabic (MSA) testing system described in Appendix A. The system performs 3 recognition
passes, each of which uses a bigram LM to produce lattices which are then rescored using a 4-gram
LM. Additionally, in the third recognition pass, the system produces N-best lists (N = 1000) which are
rescored using different LMs. The results are shown for both word-based and morpheme-based systems.
The word-based system uses 70k full-words, whereas, the morpheme-based system uses 20k full-words
+ 50k morphemes. The configuration of the morpheme-based system is motivated by the optimization
performed in Section 3.5.1. In addition, class-based LMs are linearly interpolated with a traditional
word- or morpheme-based LM and used to perform the N-best rescoring. Since a direct interpolation is
not possible between stream-based LMs and traditional word- or morpheme-based LMs, log-linear score
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## GR−FLM1 ≡ P (Wn∣Wn−1,Wn−2) [standard trigram]
W : 2 W(-1) W(-2) flm1.count.gz flm1.lm.gz 3

W1,W2 W2 kndiscount gtmin 1 interpolate
W1 W1 kndiscount gtmin 1 interpolate
0 0 kndiscount gtmin 1

## GR−FLM2 ≡ P (Wn∣Wn−1,Ln−1, In−1, Pn−1,Wn−2,Ln−2, In−2, Pn−2)
W : 8 W(-1) L(-1) I(-1) P(-1 ) W(-2) L(-2) I(-2) P(-2 ) flm2.count.gz flm2.lm.gz 9

W1,L1,I1,P1,W2,L2,I2,P2 W2 kndiscount gtmin 3 interpolate
W1,L1,I1,P1,L2,I2,P2 L2 kndiscount gtmin 3 interpolate
W1,L1,I1,P1,I2,P2 I2 kndiscount gtmin 3 interpolate
W1,L1,I1,P1,P2 P2 kndiscount gtmin 3 interpolate
W1,L1,I1,P1 W1 kndiscount gtmin 1 interpolate
L1,I1,P1 L1 kndiscount gtmin 1 interpolate
I1,P1 I1 kndiscount gtmin 1 interpolate
P1 P1 kndiscount gtmin 1 interpolate
0 0 kndiscount gtmin 1

## GR−FLM3 ≡ P (Wn∣Wn−1,Ln−1, In−1, Pn−1,Wn−2,Ln−2, In−2, Pn−2)
W : 8 W(-1) L(-1) I(-1) P(-1) W(-2) L(-2) I(-2) P(-2) flm3.count.gz flm3.lm.gz 11

W1,L1,I1,P1,W2,L2,I2,P2 W2 kndiscount gtmin 3 interpolate
W1,L1,I1,P1,L2,I2,P2 L2 kndiscount gtmin 3 interpolate
W1,L1,I1,P1,I2,P2 I2,P2 kndiscount gtmin 1000000 combine max strategy bog_node_prob
W1,L1,I1,P1,P2 P2 kndiscount gtmin 3 kn-count-parent W1,L1,I1,P1,W2,L2,I2,P2
W1,L1,I1,P1,I2 I2 kndiscount gtmin 3 kn-count-parent W1,L1,I1,P1,W2,L2,I2,P2
W1,L1,I1,P1 W1 kndiscount gtmin 1 interpolate
L1,I1,P1 L1 kndiscount gtmin 1 interpolate
I1,P1 I1,P1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
P1 P1 kndiscount gtmin 1 kn-count-parent W1,L1,I1,P1
I1 I1 kndiscount gtmin 1 kn-count-parent W1,L1,I1,P1
0 0 kndiscount gtmin 1 kn-count-parent W1,L1,I1,P1

## GR−FLM4 ≡ P (Wn∣Wn−1,Ln−1, In−1, Pn−1,Wn−2,Ln−2, In−2, Pn−2)
W : 8 W(-1) L(-1) I(-1) P(-1) W(-2) L(-2) I(-2) P(-2) flm4.count.gz flm4.lm.gz 11

W1,L1,I1,P1,W2,L2,I2,P2 W2 kndiscount gtmin 3 interpolate
W1,L1,I1,P1,L2,I2,P2 L2 kndiscount gtmin 3 interpolate
W1,L1,I1,P1,I2,P2 I2,P2 kndiscount gtmin 1000000 combine mean
W1,L1,I1,P1,P2 P2 kndiscount gtmin 3 kn-count-parent W1,L1,I1,P1,W2,L2,I2,P2
W1,L1,I1,P1,I2 I2 kndiscount gtmin 3 kn-count-parent W1,L1,I1,P1,W2,L2,I2,P2
W1,L1,I1,P1 W1 kndiscount gtmin 1 interpolate
L1,I1,P1 L1 kndiscount gtmin 1 interpolate
I1,P1 I1,P1 kndiscount gtmin 1000000 combine mean
P1 P1 kndiscount gtmin 1 kn-count-parent W1,L1,I1,P1
I1 I1 kndiscount gtmin 1 kn-count-parent W1,L1,I1,P1
0 0 kndiscount gtmin 1 kn-count-parent W1,L1,I1,P1

## GR−FLM5 ≡ P (Wn∣Wn−1,Ln−1, Pn−1,Wn−2,Ln−2, Pn−2)
W : 6 W(-1) L(-1) P(-1) W(-2) L(-2) P(-2) flm5.count.gz flm5.lm.gz 9

W1,L1,P1,W2,L2,P2 W2 kndiscount gtmin 3 interpolate
W1,L1,P1,L2,P2 L2,P2 kndiscount gtmin 1000000 combine mean
W1,L1,P1,P2 P2 kndiscount gtmin 4 kn-count-parent W1,L1,P1,W2,L2,P2
W1,L1,P1,L2 L2 kndiscount gtmin 2 kn-count-parent W1,L1,P1,W2,L2,P2
W1,L1,P1 W1 kndiscount gtmin 2 interpolate
L1,P1 L1,P1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
P1 P1 kndiscount gtmin 3 kn-count-parent W1,L1,P1
L1 L1 kndiscount gtmin 1 kn-count-parent W1,L1,P1
0 0 kndiscount gtmin 1 kn-count-parent W1,L1,P1

## GR−FLM6 ≡ P (Wn∣Wn−1,Ln−1, Pn−1,Wn−2,Ln−2, Pn−2)
W : 6 W(-1) L(-1) P(-1) W(-2) L(-2) P(-2) flm6.count.gz flm6.lm.gz 9

W1,L1,P1,W2,L2,P2 W2 kndiscount gtmin 5 interpolate
W1,L1,P1,L2,P2 L2,P2 kndiscount gtmin 1000000 combine mean
W1,L1,P1,P2 P2 kndiscount gtmin 6 kn-count-parent W1,L1,P1,W2,L2,P2
W1,L1,P1,L2 L2 kndiscount gtmin 4 kn-count-parent W1,L1,P1,W2,L2,P2
W1,L1,P1 W1 kndiscount gtmin 4 interpolate
L1,P1 L1,P1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
P1 P1 kndiscount gtmin 5 kn-count-parent W1,L1,P1
L1 L1 kndiscount gtmin 1 kn-count-parent W1,L1,P1
0 0 kndiscount gtmin 1 kn-count-parent W1,L1,P1

## GR−FLM7 ≡ P (Wn∣Wn−1, In−1, Pn−1,Wn−2, In−2, Pn−2)
W : 6 W(-1) I(-1) P(-1) W(-2) I(-2) P(-2) flm7.count.gz flm7.lm.gz 9

W1,I1,P1,W2,I2,P2 W2 kndiscount gtmin 3 interpolate
W1,I1,P1,I2,P2 I2,P2 kndiscount gtmin 1000000 combine mean
W1,I1,P1,P2 P2 kndiscount gtmin 4 kn-count-parent W1,I1,P1,W2,I2,P2
W1,I1,P1,I2 I2 kndiscount gtmin 2 kn-count-parent W1,I1,P1,W2,I2,P2
W1,I1,P1 W1 kndiscount gtmin 2 interpolate
I1,P1 I1,P1 kndiscount gtmin 1000000 combine max strategy bog_node_prob
P1 P1 kndiscount gtmin 3 kn-count-parent W1,I1,P1
I1 I1 kndiscount gtmin 1 kn-count-parent W1,I1,P1
0 0 kndiscount gtmin 1 kn-count-parent W1,I1,P1

Figure 4.4. Topologies of the German FLMs using the format specifications of the SRILM-FLM extensions (W:
word; L: lexeme; I: class-index; P: POS-tag).
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(d) GR−FLM5,6
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(e) GR−FLM7

Figure 4.5. Backoff graphs for GR−FLM1∶7, detailed topologies are given in Figure 4.4 (W: word; L: lexeme; I:
class-index; P: POS-tag).
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Table 4.3. Recognition WERs [%] on German corpora using different factored LMs (N-best size = 1000; word-
based: 100k full-words, OOV rate = [gr-dev09: 5.0%, gr-eval09: 4.8%], N-best error rate (NER) = [gr-dev09: 23.6%,
gr-eval09: 21.4%]; morpheme-based: 5k full-words + 95k morphemes, OOV rate = [gr-dev09: 1.5%, gr-eval09:
1.4%], N-best error rate (NER) = [gr-dev09: 20.0%, gr-eval09: 18.8%]).

word-based morpheme-based
LM gr-dev09 gr-eval09 gr-dev09 gr-eval09

before rescoring:
4-gram 33.9 29.7 31.7 28.5

N-best rescoring:
GR−FLM2 34.1 29.5 31.8 28.5
GR−FLM3 34.0 29.6 31.7 28.4
GR−FLM4 34.0 29.6 31.7 28.5
GR−FLM5 33.8 29.4 31.4 28.4
GR−FLM6 33.9 29.5 31.5 28.4
GR−FLM7 34.0 29.6 31.7 28.4

combination is used. In all cases, the results are compared to the traditional 4-gram LM lattice rescoring.

Table 4.4. Recognition WERs [%] on Arabic ar-dev07 corpus using stream- and class-based LMs built over words
and morphemes (N-best size = 1000; word-based: 70k full-words, OOV rate = 3.7%, N-best error rate (NER) =
9.5%; morpheme-based: 20k full-words + 50k morphemes, OOV rate = 1.4%, N-best error rate (NER) = 8.2%).

ar-dev07
LM classes word-based morpheme-based

traditional 4-gram - 16.2 14.5
stream-based LM lexeme 16.0 14.5

morph 16.4 15.0
pattern 16.6 14.8

class-based LM lexeme 16.1 14.5
morph 16.1 14.6
pattern 16.2 14.9

linear interpolation:
traditional 4-gram
+ class-based LM lexeme 15.8 14.2

morph 15.9 14.3
pattern 15.9 14.3

log-linear score combination:
traditional 4-gram
+ stream-based LM lexeme 15.9 14.4

morph 16.3 15.0
pattern 16.5 14.7

Table 4.4 shows that the performance of class-based LMs is in general better than the performance
of stream-based LMs. The best results are obtained using interpolated class-based LMs with traditional
4-gram LMs. Combining the scores of stream-based LMs log-linearly with the scores of traditional 4-gram
LMs slightly improves the recognition performance compared to stream-based LMs alone. However, it
does not succeed to outperform the interpolated class-based with traditional 4-gram LMs. Therefore, in
our further experiments, class-based LMs are always interpolated with traditional 4-gram LMs.

Table 4.5 shows the results of recognition experiments performed on Arabic corpora using different word-
based LMs that utilize word-level classes. The recognition system uses a vocabulary of 750k full-words.
All class-based LMs are linearly interpolated with traditional word-based LMs. Both conventional and
hierarchical Pitman-Yor models are used in the estimation of word- and class-based LMs. The factored
LM uses the optimized topology of AR−FLM4 shown in Section 4.7.1, Figures 4.2 and 4.3.

Table 4.5 shows that the best recognition results are obtained using an extended interpolation of word-
based and class-based LMs over lexeme, morph, and pattern classes. For every LM, two different versions
are involved in the linear interpolation; one is estimated using conventional modified Kneser-Ney (MKN)
smoothing method, and the other is estimated based on hierarchical Pitman-Yor models. This achieves
WER improvements of [ar-dev07: 0.5% absolute (3.4% relative); ar-eval07: 0.4% absolute (2.5% relative)]
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Table 4.5. Recognition experiments on Arabic corpora using class-based LMs, factored LM (AR−FLM4), and
hierarchical Pitman-Yor LMs built over full-words (vocabulary: 750k full-words; OOV rate = [ar-dev07: 0.5%,
ar-eval07: 0.7%]; N-best size = 1000; N-best error rate (NER) = [ar-dev07: 7.6%, ar-eval07: 9.1%]).

ar-dev07 ar-eval07
WER (ins/del) CER (ins/del) WER (ins/del) CER (ins/del)

LM classes [%] [%] [%] [%]

4-gram - 14.6 (2.7/1.5) 6.6 (2.5/2.7) 16.3 (2.3/1.4) 8.7 (2.2/4.3)

+ HPYLM - 14.5 (2.7/1.4) 6.7 (2.6/2.7) 16.2 (2.3/1.4) 8.6 (2.1/4.3)

factored LM lexeme & morph 14.5 (2.2/2.0) 6.7 (2.3/3.1) 16.1 (1.9/1.7) 8.7 (2.0/4.6)

conventional lexeme 14.2 (2.4/1.5) 6.6 (2.3/2.9) 15.9 (2.1/1.5) 8.6 (2.0/4.6)

class LM morph 14.2 (2.5/1.6) 6.6 (2.3/2.9) 16.0 (2.1/1.4) 8.6 (2.0/4.5)

pattern 14.3 (2.5/1.5) 6.6 (2.3/2.9) 16.1 (2.1/1.5) 8.6 (2.0/4.6)

all 14.2 (2.4/1.6) 6.6 (2.3/3.0) 15.9 (2.0/1.5) 8.6 (2.0/4.6)

conventional lexeme 14.1 (2.5/1.6) 6.5 (2.3/2.9) 16.0 (2.2/1.4) 8.5 (2.0/4.4)

+ HPY morph 14.2 (2.5/1.6) 6.6 (2.3/2.9) 16.0 (2.0/1.5) 8.5 (2.0/4.6)

class LM pattern 14.2 (2.5/1.6) 6.6 (2.3/2.9) 16.0 (2.2/1.4) 8.5 (2.0/4.4)

all 14.1 (2.5/1.6) 6.5 (2.3/2.9) 15.9 (2.0/1.5) 8.5 (2.0/4.5)

compared to lattice rescoring via a traditional word-based 4-gram LM based on modified Kneser-Ney
smoothing. Table 4.6 shows the word- and character-level perplexities for the models listed in Table 4.5.

Table 4.6. Word- and character-level perplexities on Arabic corpora for LMs that utilize word-level classes (inv:
perplexity for in-vocabulary text excluding the unk symbol; all: perplexity for the whole text including the unk symbol).

word-level PPL char-level PPL
corpus LM inv (#words) all (#words) inv (#chars) all (#chars)

ar-dev07 full-words 502.6 (18920) 500.8 (19002) 3.084 (104489) 3.075 (105142)

factored LM 509.8 508.0 3.092 3.083
class LM 473.3 471.9 3.051 3.043
HPY LM 467.2 465.7 3.044 3.035
HPY class LM 448.3 447.1 3.021 3.013

ar-eval07 full-words 679.0 (29249) 673.9 (29430) 3.296 (159882) 3.280 (161384)

factored LM 667.2 663.2 3.286 3.270
class LM 631.3 627.2 3.253 3.237
HPY LM 630.3 620.2 3.252 3.230
HPY class LM 603.6 600.1 3.226 3.211

Similarly, Table 4.7 shows the results of recognition experiments performed on Arabic corpora using
different morpheme-based LMs that utilize morpheme-level classes. The recognition system uses a vocab-
ulary of 20k full-words + 236k morphemes. All class-based LMs are linearly interpolated with traditional
morpheme-based LMs. Both conventional and hierarchical Pitman-Yor models are used in the estimation
of morpheme- and class-based LMs. The factored LM uses the optimized topology of AR−FLM4 shown
in Section 4.7.1, Figures 4.2 and 4.3.

Table 4.7 shows that the best recognition results are also obtained using the same extended interpolation
of morpheme-based and class-based LMs over lexeme, morph, and pattern classes using conventional and
HPY based models. WER improvements of [ar-dev07: 0.4% absolute (2.8% relative); ar-eval07: 0.5%
absolute (3.1% relative)] are achieved compared to lattice rescoring via a morpheme-based 4-gram LM
based on modified Kneser-Ney smoothing. Table 4.8 shows the morpheme- and character-level perplexities
for the models listed in Table 4.7.

Table 4.9 reports the number of lexemes, morphs, and patterns involved in both word- and morpheme-
based models.
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Table 4.7. Recognition experiments on Arabic corpora using class-based LMs, factored LM (AR−FLM4), and
hierarchical Pitman-Yor LMs built over morphemes (vocabulary: 20k full-words + 236k morphemes; OOV rate =
[ar-dev07: 0.5%, ar-eval07: 0.7%]; N-best size = 1000; N-best error rate (NER) = [ar-dev07: 7.6%, ar-eval07: 8.8%]).

ar-dev07 ar-eval07
WER (ins/del) CER (ins/del) WER (ins/del) CER (ins/del)

LM classes [%] [%] [%] [%]

4-gram - 14.1 (2.4/1.6) 6.5 (2.5/2.7) 16.1 (2.1/1.5) 8.6 (2.1/4.4)

+ HPYLM - 14.0 (2.3/1.5) 6.5 (2.5/2.7) 16.0 (2.1/1.5) 8.6 (2.1/4.4)

factored LM lexeme & morph 13.9 (2.3/1.5) 6.5 (2.4/2.7) 15.9 (1.6/1.8) 8.6 (1.9/4.8)

conventional lexeme 13.9 (2.0/1.8) 6.6 (2.2/3.1) 15.9 (1.6/1.8) 8.7 (1.9/4.8)

class LM morph 13.9 (2.1/1.7) 6.6 (2.2/3.0) 16.0 (1.6/1.8) 8.7 (1.9/4.8)

pattern 13.9 (2.0/1.8) 6.6 (2.2/3.1) 16.0 (1.6/1.8) 8.7 (1.9/4.8)

all 13.8 (2.0/1.8) 6.6 (2.2/3.0) 15.8 (1.7/1.7) 8.6 (1.9/4.7)

conventional lexeme 13.8 (2.0/1.8) 6.6 (2.2/3.0) 15.7 (1.6/1.8) 8.5 (1.8/4.7)

+ HPY morph 13.9 (2.0/1.8) 6.6 (2.2/3.0) 15.7 (1.6/1.7) 8.6 (1.8/4.7)

class LM pattern 13.9 (2.0/1.8) 6.6 (2.2/3.0) 15.7 (1.6/1.7) 8.6 (1.9/4.7)

all 13.7 (2.0/1.8) 6.6 (2.2/3.0) 15.6 (1.6/1.8) 8.5 (1.8/4.7)

Table 4.8. Morpheme- and character-level perplexities on Arabic corpora for LMs that utilize morpheme-level classes
(inv: perplexity for in-vocabulary text excluding the unk symbol; all: perplexity for the whole text including the unk
symbol).

morpheme-level PPL char-level PPL
corpus LM inv (#morphemes) all (#morphemes) inv (#chars) all (#chars)

ar-dev07 morphemes 392.8 (19600) 391.7 (19724) 3.051 (104967) 3.041 (105869)

factored LM 408.3 407.2 3.073 3.064
class LM 373.0 372.2 3.021 3.013
HPY LM 365.9 365.0 3.011 3.002
HPY class LM 353.9 353.1 2.992 2.983

ar-eval07 morphemes 513.1 (30538) 509.7 (30752) 3.266 (161028) 3.248 (162719)

factored LM 518.3 515.6 3.272 3.255
class LM 482.9 479.9 3.228 3.212
HPY LM 478.1 475.1 3.222 3.205
HPY class LM 364.3 333.7 2.776 2.640

Table 4.9. Number of instances of every class for Arabic vocabularies.

vocabulary
class 750k word-based 256k morpheme-based

lexeme 300,355 146,221
morph 1,794 743
pattern 98,789 37,154
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4.7.3 Experiments on German

To compare the performance of stream-based LMs versus class-based LMs, Table 4.10 shows the results
of recognition experiments performed on German corpora using the German testing system described
in Appendix A. The system performs 2 recognition passes, each of which uses a 4-gram LM. In the
second recognition pass, the system produces N-best lists (N = 1000) which are rescored using different
LMs. The results are shown for both word-based and morpheme-based systems. The word-based system
uses 100k full-words, whereas, the morpheme-based system uses 5k full-words + 95k morphemes. The
configuration of the morpheme-based system is motivated by the optimization performed in Section 3.5.2.
In addition, class-based LMs are linearly interpolated with a traditional word- or morpheme-based LM
and used to perform the N-best rescoring. Log-linear score combination is used between stream-based LMs
and traditional word- or morpheme-based LMs. In all cases, the results are compared to the traditional
4-gram LM before rescoring.

Table 4.10. Recognition WERs [%] on German corpora using stream- and class-based LMs built over words and
morphemes (N-best size = 1000; word-based: 100k full-words, OOV rate = [gr-dev09: 5.0%, gr-eval09: 4.8%], N-
best error rate (NER) = [gr-dev09: 23.6%, gr-eval09: 21.4%]; morpheme-based: 5k full-words + 95k morphemes,
OOV rate = [gr-dev09: 1.5%, gr-eval09: 1.4%], N-best error rate (NER) = [gr-dev09: 20.0%, gr-eval09: 18.8%]).

word-based morpheme-based
LM classes gr-dev09 gr-eval09 gr-dev09 gr-eval09

before rescoring:
traditional 4-gram - 33.9 29.7 31.7 28.5

stream-based LM lexeme 34.0 29.6 31.8 28.4
POS-tag 34.0 29.6 31.8 28.4

cluster-index 34.1 29.6 31.8 28.5
class-based LM lexeme 33.9 29.5 31.6 28.3

POS-tag 33.9 29.5 31.6 28.4
cluster-index 34.0 29.6 31.7 28.5

linear interpolation:
traditional 4-gram
+ class-based LM lexeme 33.7 29.4 31.6 28.2

POS-tag 33.6 29.3 31.3 28.0
cluster-index 33.9 29.5 31.3 28.0

log-linear score combination:
traditional 4-gram
+ stream-based LM lexeme 33.9 29.5 31.8 28.3

POS-tag 33.9 29.5 31.7 28.3
cluster-index 34.0 29.6 31.7 28.4

Going in the same line with Arabic experiments, Table 4.10 shows that the performance of class-based
LMs is in general better than the performance of stream-based LMs. The best performance is obtained
using interpolated class-based LMs with traditional 4-gram LMs. However, combining the scores of stream-
based LMs with the scores of traditional 4-gram LMs does not succeed to outperform the interpolated
class-based with traditional 4-gram LMs. Therefore, in our further experiments, class-based LMs are
always interpolated with traditional 4-gram LMs.

Table 4.11 shows the results of recognition experiments performed on German corpora using different
word-based LMs that utilize word-level classes. The recognition system uses a vocabulary of 750k full-
words. All class-based LMs are linearly interpolated with traditional word-based LMs. Both conventional
and hierarchical Pitman-Yor models are used in the estimation of word- and class-based LMs. The factored
LM uses the optimized topology of GR−FLM5 shown in Section 4.7.1, Figures 4.4 and 4.5.

Table 4.11 shows that the best recognition results are obtained using an extended interpolation of
word-based and class-based LMs over lexeme, POS-tag, and cluster-index classes. For every LM, two
different versions are involved in the linear interpolation; one is estimated using conventional modified
Kneser-Ney (MKN) smoothing, and the other is estimated based on hierarchical Pitman-Yor models.
This achieves WER improvements of [gr-dev09: 0.5% absolute (1.6% relative); gr-eval09: 0.6% absolute
(2.2% relative)] compared to the traditional word-based 4-gram LM. Table 4.12 shows the word- and
character-level perplexities for the models listed in Table 4.11.
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Table 4.11. Recognition experiments on German corpora using class-based LMs, factored LM (GR−FLM5),
and hierarchical Pitman-Yor LMs built over full-words (vocabulary: 750k full-words; OOV rate = [gr-dev09: 2.3%,
gr-eval09: 2.1%]; N-best size = 1000; N-best error rate (NER) = [gr-dev09: 20.6%, gr-eval09: 18.9%]).

gr-dev09 gr-eval09
WER (ins/del) CER (ins/del) WER (ins/del) CER (ins/del)

LM classes [%] [%] [%] [%]

4-gram - 31.3 (4.6/6.0) 14.3 (3.5/5.9) 27.4 (3.2/6.5) 12.8 (2.7/5.9)

+ HPYLM - 31.0 (4.7/5.9) 14.13 (3.5/5.8) 27.1 (3.2/6.2) 12.6 (2.7/5.7)

factored LM lexeme & POS-tag 31.2 (4.5/6.1) 14.2 (3.5/6.0) 27.2 (3.2/6.3) 12.6 (2.7/5.7)

conventional lexeme 31.3 (4.6/6.0) 14.2 (3.5/5.9) 27.1 (3.4/5.9) 12.4 (2.7/5.5)

class LM POS-tag 31.2 (4.6/6.0) 14.2 (3.5/6.0) 27.1 (3.3/6.0) 12.4 (2.7/5.6)

cluster-index 31.3 (4.4/6.3) 14.3 (3.4/6.1) 27.1 (3.2/6.1) 12.5 (2.7/5.7)

all 31.1 (4.4/6.3) 14.2 (3.3/6.1) 27.0 (3.2/6.2) 12.5 (2.6/5.7)

conventional lexeme 31.0 (4.6/5.9) 14.1 (3.5/5.8) 26.9 (3.3/5.9) 12.4 (2.7/5.5)

+ HPY POS-tag 30.8 (4.6/5.8) 14.0 (3.5/5.8) 26.9 (3.3/5.9) 12.4 (2.7/5.5)

class LM cluster-index 30.9 (4.6/5.9) 14.1 (3.5/5.8) 26.9 (3.3/5.9) 12.4 (2.7/5.5)

all 30.8 (4.4/6.0) 14.1 (3.3/6.0) 26.8 (3.2/6.0) 12.4 (2.7/5.5)

Table 4.12. Word- and character-level perplexities on German corpora for LMs that utilize word-level classes (inv:
perplexity for in-vocabulary text excluding the unk symbol; all: perplexity for the whole text including the unk symbol).

word-level PPL char-level PPL
corpus LM inv (#words) all (#words) inv (#chars) all (#chars)

gr-dev09 full-words 509.0 (69548) 490.4 (71133) 2.818 (418447) 2.725 (439560)

factored LM 512.3 495.1 2.821 2.729
class LM 491.9 475.3 2.802 2.712
HPY LM 490.9 472.7 2.801 2.709
HPY class LM 479.0 462.3 2.789 2.699

gr-eval09 full-words 520.0 (35591) 503.3 (36319) 2.793 (216684) 2.713 (226395)

factored LM 527.5 512.0 2.800 2.720
class LM 502.6 487.8 2.778 2.699
HPY LM 502.4 486.1 2.778 2.698
HPY class LM 490.4 475.5 2.766 2.688
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Table 4.13 shows the results of recognition experiments performed on German corpora using differ-
ent morpheme-based LMs that utilize morpheme-level classes. The recognition system uses a vocabu-
lary of 5k full-words + 495k morphemes. All class-based LMs are linearly interpolated with traditional
morpheme-based LMs. Both conventional and hierarchical Pitman-Yor models are used in the estimation
of morpheme- and class-based LMs. The factored LM uses the optimized topology of GR−FLM5 shown
in Section 4.7.1, Figures 4.4 and 4.5.

Table 4.13. Recognition experiments on German corpora using class-based LMs, factored LM (GR−FLM5), and
hierarchical Pitman-Yor LMs built over morphemes (vocabulary: 5k full-words + 495k morphemes; OOV rate =
[gr-dev09: 0.9%, gr-eval09: 0.7%]; N-best size = 1000; N-best error rate (NER) = [gr-dev09: 19.1%, gr-eval09:
17.3%]).

gr-dev09 gr-eval09
WER (ins/del) CER (ins/del) WER (ins/del) CER (ins/del)

LM classes [%] [%] [%] [%]

4-gram - 31.0 (4.4/5.8) 14.2 (3.5/5.8) 27.2 (3.1/6.1) 12.5 (2.7/5.6)

+ HPYLM - 30.8 (4.5/5.6) 14.1 (3.2/5.7) 27.0 (3.2/6.0) 12.4 (2.7/5.6)

factored LM lexeme & POS-tag 30.8 (4.5/5.6) 14.1 (3.2/5.7) 27.0 (3.2/6.0) 12.4 (2.7/5.6)

conventional lexeme 30.9 (4.10/6.36) 14.3 (3.3/6.2) 27.2 (3.1/6.1) 12.5 (2.7/5.6)

class LM POS-tag 30.8 (4.16/6.13) 14.2 (3.4/6.0) 27.1 (3.1/6.0) 12.4 (2.7/5.5)

cluster-index 30.8 (4.04/6.35) 14.3 (3.3/6.2) 27.2 (3.1/6.2) 12.5 (2.7/5.5)

all 30.8 (4.15/6.13) 14.2 (3.3/6.0) 27.1 (3.1/5.9) 12.4 (2.7/5.5)

conventional lexeme 30.7 (4.3/6.0) 14.1 (3.4/5.9) 26.9 (3.1/6.0) 12.4 (2.7/5.6)

+ HPY POS-tag 30.7 (4.2/6.2) 14.2 (3.3/6.1) 26.9 (3.1/6.0) 12.4 (2.6/5.6)

class LM cluster-index 30.7 (4.3/5.9) 14.1 (3.4/5.9) 26.9 (3.2/6.0) 12.4 (2.6/5.6)

all 30.6 (4.1/6.2) 14.1 (3.3/6.1) 26.9 (3.1/6.0) 12.4 (2.6/5.6)

Table 4.13 shows that the best recognition results are also obtained using the same extended inter-
polation of morpheme-based and class-based LMs over lexeme, POS-tag, and cluster-index classes using
conventional and HPY based models. WER improvements of [gr-dev09: 0.4% absolute (1.3% relative);
gr-eval09: 0.3% absolute (1.1% relative)] are achieved compared to the morpheme-based 4-gram LM based
on modified Kneser-Ney smoothing. Table 4.14 shows the morpheme- and character-level perplexities for
the models listed in Table 4.13.

Table 4.14. Morpheme- and character-level perplexities on German corpora for LMs that utilize morpheme-level
classes (inv: perplexity for in-vocabulary text excluding the unk symbol; all: perplexity for the whole text including
the unk symbol).

morpheme-level PPL char-level PPL
corpus LM inv (#morphemes) all (#morphemes) inv (#chars) all (#chars)

gr-dev09 morphemes 403.9 (72391) 393.2 (73906) 2.799 (422086) 2.713 (442333)

factored LM 409.2 399.5 2.805 2.721
class LM 395.7 385.8 2.789 2.705
HPY LM 389.6 379.1 2.782 2.697
HPY class LM 383.7 373.9 2.774 2.691

gr-eval09 morphemes 403.0 (37151) 393.8 (37845) 2.772 (218582) 2.697 (227921)

factored LM 412.3 403.7 2.783 2.708
class LM 395.8 387.2 2.764 2.690
HPY LM 390.4 381.3 2.757 2.683
HPY class LM 385.1 376.5 2.751 2.677

Table 4.15 reports the number of lexemes, POS-tags, and cluster-indexes involved in both word- and
morpheme-based models.
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Table 4.15. Number of instances of every class for German vocabularies.

vocabulary
class 750k word-based 500k morpheme-based

lexeme 550,172 336,347
POS-tag 51 51
cluster-index 250 250

4.7.4 Overview of Experimental Results

From the experimental results shown in the previous sections, it is noted that each one of the introduced
approaches has its own positive influence in reducing the recognition WERs. Figure 4.6 presents a com-
parative summary of the best obtained WERs on Arabic and German corpora using: (1) full-word LMs,
(2) morpheme-based LMs, (3) morpheme-based factored LMs, (4) morpheme-based class LMs, and (5)
morpheme-based HPY class LMs. The observed WER improvements are found statistically significant
using a bootstrap method of significance analysis described in [Bisani & Ney 2004], the probability of
improvement (POIboot) ranges between 93% and 97%.
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Figure 4.6. Comparison of recognition WERs [%] on Arabic and German corpora using different LMs.

Interpolation weights. In Figure 4.6, the last two bars for every corpus represent the WERs for several
models interpolated together. To clarify the relative importance of the individual LMs during linear inter-
polation, we report the interpolation weights assigned to every LM. Figures 4.7, 4.8 give the interpolation
weights as percent values for Arabic and German models. Here, it should be recalled that the interpolation
weights are optimized over the development corpus in every case.
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(a) Arabic morpheme-based: LM + class-based LMs.
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Figure 4.7. Interpolation weights of individual Arabic morpheme-based LMs, models with negligible weights are not
shown in the figure.
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(a) German morpheme-based: LM + class-based LMs.
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Figure 4.8. Interpolation weights of individual German morpheme-based LMs, models with negligible weights are not
shown in the figure.

73



Chapter 4 Language Modeling with Morphology-Based Classes

4.8 Summary

In this chapter, incorporation of morphology-based classes into the LM estimation process has been
investigated in order to cope with morphologically rich languages. A novel approach using morpheme-
level classes has been proposed instead of the traditional word-level classes. This enables the utilization
of classes on top of morpheme-based LVCSR systems. This is a novel combination that preserves the
advantages of the morpheme-based modeling along with the benefits of using classes. Morpheme-based
models achieve better lexical coverage and reduce the influence of the data sparsity. Whereas, classes help
to achieve better generalization to unseen word sequences.

Stream-based, class-based, and factored LMs have been experimented and compared. In addition,
the use of hierarchical Pitman-Yor LMs has been investigated to estimate word- and class-based LMs.
Experiments have been conducted on Arabic and German tasks using the state-of-the-art LVCSR systems
with very large vocabularies that are heavily optimized based on the work of the previous chapter.

Different types of classes have been utilized using MADA Arabic morphological analyzer, Sebawai Arabic
root generator, and the German TreeTagger. In addition, a novel word class based on a data-driven word
clustering algorithm has been proposed for the German experiments. Experimental results have shown
that morpheme-level classes can be used as efficiently as word-level classes.

Experiments on factored LMs have shown that the parameter optimization is a crucial issue. Although
the factored LM is a quite general and powerful model, it is very difficult to optimize its parameters to
achieve the most efficient performance in a given task. The huge space of the model parameters, including
the parent factors; the backoff graph; and the smoothing options, turns the parameter optimization into a
complex and time consuming process. The optimum parameters are always heavily dependent on the data
and the available classes. Even if automatic search tools are used, it is not guaranteed to come up with
the best factored LM topology. Experiments have shown that an interpolation of different class-based
LMs built separately over different classes together with a traditional m-gram LM could easily beat a
carefully optimized factored LM that uses a complex backoff scheme with the same set of classes.

Experiments on hierarchical Pitman-Yor class-based LMs have shown little improvements in the recog-
nition performance compared to the conventional class-based LMs. However, the obtained improvements
are quite persistent and systematically consistent over all the test corpora.

The best recognition results have been obtained using an extended interpolation of word-based and
class-based LMs over all the available classes. For every LM, two different versions have been involved
in the linear interpolation; one is estimated using conventional modified Kneser-Ney (MKN) smoothing
method, and the other is estimated based on hierarchical Pitman-Yor models.
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Deep Neural Network Language Models

One major disadvantage of the backoff m-gram LM is its poor modeling performance in cases of data
sparseness. Even when large training corpora are used, still extremely small probabilities can be assigned
to many valid m-grams. So far, discrete space LMs that utilize word classes, like class-based LMs and
factored LMs, have introduced a partial solution to this problem by utilizing additional word classes in
cases of data sparseness. Moreover, the sub-word based LMs have introduced an additional contribution
to the solution of this problem by breaking down the words into smaller and more frequent sub-word
units, like morphemes or syllables. However, still a decisive solution to the data sparsity problem is not
reached. Nevertheless, a better solution to this problem could be found when dealing with the original
sources of the problem which are: the method of word representation, and the fundamental construction
of the parameter space during the LM estimation.

In fact, the failure to deal with the sparse data domains is an inherent disadvantage of all the LMs
that are estimated in a discrete space. The discrete nature of such models makes it difficult to achieve
high levels of generalization even after applying the most efficient smoothing techniques, like the modified
Kneser-Ney (MKN) smoothing of the backoff m-gram models [Chen &Goodman 1996]. Here, the essential
issue is the lack of a notion of similarity among words. Since words are represented in a discrete space (the
vocabulary space), it is not possible to perform a true interpolation 1 to approximate the probabilities of
the unseen m-grams. For these reasons, going to a continuous representation space is considered a natural
promotion of the LM probability estimation.

The basic idea behind the continuous word representation [Bengio & Ducharme 2001; Sarikaya & Afify+

2009; Schwenk 2007; Schwenk & Gauvain 2005] is to convert the numerical indexes of the vocabulary
words into a continuous representation space and to use a probability estimator operating in this space.
Since the resulting distributions are smooth functions of the word representation, better generalization to
unknown m-grams is expected. The probability estimation and the interpolation in a continuous space
are mathematically well understood and numerous powerful algorithms are available that can perform
reliable interpolations even when a limited amount of training data is available.

A common type of continuous space LM is the shallow neural network LM (SNNLM) which estimates
probabilities of word sequences in a continuous space using a single hidden layer (shallow) feed-forward
neural network [Bengio & Ducharme+ 2003; Schwenk 2007; Schwenk & Gauvain 2005]. Recently, deep
neural networks (DNNs) with multiple hidden layers have shown the capability to capture higher-level
abstract information that are more discriminative to the input features. They have been shown to provide
improved performance compared to shallow networks in different tasks [Arisoy & Sainath+ 2012; Bengio
2009; Dahl & Ranzato+ 2010; Mohamed & Dahl+ 2009; Seide & Li+ 2011].

In this chapter, we investigate the use of deep neural network language models (DNNLMs) to estimate
sub-word based LMs, namely morpheme-based LMs. Moreover, the input of the DNNs is augmented
with morphology-based classes derived on both word and morpheme levels in order to estimate robust
models for morphologically rich languages. To reach the highest level of performance, DNNLMs are always
interpolated with backoff m-gram LMs. This is a novel approach that combines the advantages of using
morpheme-based LMs and morphology-based classes along with the modeling capabilities of the DNNs.
The methods developed in this chapter are evaluated on an Egyptian Arabic conversational telephone
speech recognition task. These methods have been introduced in [El-Desoky & Kuo+ 2013].

Section 5.1 presents an overview of the state-of-the-art continuous space language modeling techniques.
Section 5.2 describes the architectures of the feed-forward neural network based LMs including shallow

1Interpolation is a method of constructing new data points within the range of a discrete set of already known data points.
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and deep multilayer neural network LMs. In addition, it shows how this type of neural network LM can be
enriched with additional morphology-based classes. Section 5.3 gives a description of the back-propagation
training algorithm. Section 5.4 briefly describes the state-of-the-art pre-training techniques essentially
related to the efficient training of deep neural network architectures. Section 5.5 introduces different
common approaches used to speed up the training and recognition processes when a neural network LM is
utilized in a typical LVCSR system. Section 5.6 presents some necessary preparations for performing our
recognition experiments including the techniques of word decomposition and class derivation for Egyptian
Arabic text. Section 5.7 presents the experimental results, and Section 5.8 summarizes the chapter.

5.1 Continuous Space Language Models: An Overview

The idea of estimating the LM probabilities in a continuous space has been explored in several previous
researches [Afify & Siohan+ 2007; Arisoy & Sainath+ 2012; Bengio & Ducharme+ 2003; Mikolov & Karafiát+

2010; Sarikaya & Afify+ 2009; Sarikaya & Emami+ 2010; Schwenk 2007] using various types of probability
estimators. The research effort in this direction was started by [Nakamura &Shikano 1989], where a neural
network estimator is used to predict word categories. In [Miikkulainen & Dyer 1991], hierarchical modular
subnetworks are utilized for natural language processing. In [Xu & Rudnicky 2000], a simple feed-forward
neural network with one input word and no hidden layers is used to estimate bigram probabilities. In
[Castro & Prat; Castro-Bleda & Polvoreda+ 2001], bigram and trigram probabilities are estimated using
multilayer feed-forward neural networks well known as multilayer perceptrons (MLPs).

Shallow neural network LM. In [Bengio & Ducharme 2001; Bengio & Sénécal 2003; Bengio & Ducharme+

2003], a shallow neural network LM (SNNLM) that uses one hidden layer is developed and used to estimate
up to 5-gram LM probabilities. The resulting models have achieved significant reductions in perplexities
(PPLs). However, no trial was made in this work to test the models in speech recognition tasks. The
first application of a SNNLM to LVCSR was done by [Schwenk 2007; Schwenk & Gauvain 2005] on the
DARPA HUB5 conversational telephone speech recognition task. The proposed neural network uses a
feed-forward architecture with only one hidden layer. This type of a single hidden layer neural network is
called a shallow neural network (SNN), where the word shallow is used to distinguish it from other deeper
architectures. The input of the neural network is simply the m − 1 previous words and the output is the
conditional probabilities of all the vocabulary words given the input history. The training of the network
takes place using a so-called back-propagation algorithm [Rumelhart &Hinton+ 1986] with gradient descent
optimization. In [Schwenk 2007], several highly efficient training and lattice rescoring algorithms were
introduced. The experimental results have shown significant reductions in both PPLs and WERs.

Deep neural network LM. Recently, feed-forward deep neural networks (DNNs) with multiple hid-
den layers have been found to achieve improved performance across various tasks [Bengio 2009; Dahl &
Ranzato+ 2010; Mohamed & Dahl+ 2009] compared to the feed-forward shallow neural networks with only
a single hidden layer. A major success have been reported in the application of the DNNs to the acoustic
modeling problem of the ASR systems [Mohamed & Dahl+ 2009; Sainath & Kingsbury+ 2012]. The es-
sential reason behind the success of the DNN models is their ability to capture higher-level and abstract
information about the input features at the upper layers of the network. Normally, the training of the
DNN is performed using the same back-propagation algorithm [Rumelhart & Hinton+ 1986] as in the case
of shallow architectures. However, having these many number of hidden layers in the DNN turns the
training process into a hard task. The standard learning strategy consisting of randomly initializing the
weights of the network and applying gradient descent using back-propagation can easily get stuck in poor
local minima or plateaus of the non-convex training criterion [Auer &Herbster+ 1996; Larochelle &Bengio+

2009]. The breakthrough to effective training strategies for DNNs came in [Hinton &Osindero+ 2006] with
the application of a greedy layer-wise unsupervised pre-training followed by a supervised fine-tuning.
The unsupervised pre-training strategies may rely on generative models like the restricted Boltzmann
machines (RBM) [Hinton & Osindero+ 2006] or on encoding models like the nonlinear auto-encoder (or
auto-associator) neural networks (AENNs) [Saund 1989]. Alternatively, in [Seide &Li+ 2011], a supervised
discriminative pre-training strategy is introduced that is also greedy and layer-wise. A recent trial to use
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the DNNs for estimating LMs is made in [Arisoy & Sainath+ 2012]. Significant reductions in both PPLs
and WERs are reported over a small Wall Street Journal (WSJ) English ASR task.

Recurrent neural network LM. In [Kombrink &Mikolov+ 2011; Mikolov 2012; Mikolov &Karafiát+ 2010],
a different type of continuous space LM was proposed that uses a recurrent neural network (RNN). Thus,
the model is called a recurrent neural network LM (RNNLM). The main difference between the feed-
forward and the recurrent architecture is the representation of the history. While in the feed-forward neural
network LM, the history is just the m − 1 previous words, for the RNNLM, an effective representation
of history is learned from the data during training. The hidden layer of the RNN represents all the
previous history and not only the m − 1 previous words. In fact, the RNN receives as input the direct
predecessor word, and the hidden layer contains recurrent connections by which it implicitly takes into
account multiple predecessor words that were presented previously to the network [Sundermeyer &Oparin+

2013]. Thereby, the model can theoretically represent long contextual patterns found in the training text.
This type of network is trained using a so-called back-propagation through time [Rumelhart & Hinton+

1986]. Here, it is worth mentioning that the RNN can be viewed as a folded version of a DNN, where
the multiple hidden layers of the DNN have tied weights and folded together in one recurrent layer with
self looping input. In an opposite viewpoint, the DNN can be viewed as an unfolded simplification of the
RNN with different non-tied weights at every hidden layer.

Long short-term memory neural network LM. The training of the RNNs using the back-propagation
through time [Rumelhart & Hinton+ 1986] is a difficult task. The main difficulty lies in the well-known
vanishing gradient problem [Bengio & Simard+ 1994]. The gradient that is propagated back through the
network either decays or grows exponentially. One approach to improve the training of the RNNs is to use
better optimization algorithms like the Hessian-free optimization [Martens & Sutskever 2011]. However,
this usually leads to a significant increase in the computational complexity. An alternative type of RNN
that is recently used to estimate continuous space LMs is called the long short-term memory (LSTM)
RNN [Gers 2001; Graves & Schmidhuber 2005; Hochreiter & Schmidhuber 1997]. The architecture of this
network is designed such that the vanishing gradient problem is avoided without a need to change the
training algorithm. Normally, when propagating back the gradient of the error function of the RNN
through a unit of the network, it gets scaled by a certain factor which leads to an exponential decay or
growth of the gradient over time. Thus, the gradient either dominates the next weight adaptation step or
effectively gets lost. To avoid this scaling effect, the unit of the RNN is re-designed in the LSTM in such
a way that the scaling factor is fixed to one. Since the new unit type has a limited learning capability,
it is enriched by several so-called gating units. Moreover, some modifications of the original LSTM unit
are proposed in [Gers & Schmidhuber+ 1999; Gers & Schraudolph+ 2002]. Recent researches have shown
improvements in WERs and PPLs using LSTMLM compared the other types of networks [Sundermeyer &
Schlüter+ 2012; Sundermeyer & Oparin+ 2013].

Tied-mixture LM. Another different and recent approach in continuous space language modeling is
investigated in [Afify & Siohan+ 2007; Sarikaya & Afify+ 2009; Sarikaya & Emami+ 2010], where Gaussian
mixture models (GMMs) and hidden Markov models (HMMs) are used as the probability estimators in the
continuous space. In [Afify &Siohan+ 2007], a set of GMMs are used to estimate the LM probabilities; the
resulting model is called a Gaussian mixture LM (GMLM). Later, this model was improved in [Sarikaya &
Afify+ 2009] using a set of HMMs that are based on a tied Gaussian mixture model to perform the
probability estimation; the resulting model is called a tied-mixture LM (TMLM). In this approach, the
discrete words are projected into a continuous space to obtain a set of real valued vectors using a bigram
co-occurrence matrix and singular value decomposition (SVD) [Bellegarda 2000; Sarikaya & Afify+ 2009].
The resulting word vectors are called feature vectors. Then, the history feature vectors are used to estimate
the tied-mixture distribution. Additionally, in [Sarikaya & Emami+ 2010], a trial was made to estimate
a TMLM using input feature vectors extracted from the projection layer of a corresponding SNNLM.
These approaches are evaluated on a Chinese real-time speech-to-speech translation task. The TMLM
with SNNLM based input features (TMLM-NN) outperformed the SNNLM. In addition, the TMLM with
bigram co-occurrence based features (TMLM-CO) provided further improvement over the TMLM-NN.
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Investigating deep neural network LMs. Up to this moment, the question of which technique of all
the above ones is the best selection to estimate the LM probabilities seems to be still an open question.
However, although the use of deep neural networks (DNNs) has achieved a great success in application
to the acoustic modeling problem of speech recognition, so far, there has been very few researches on
applying this type of neural network to the language modeling problem. To the best of our knowledge,
until the moment of writing this thesis, only in [Arisoy & Sainath+ 2012], a trial has been made on using
DNNLMs for the Wall Street Journal (WSJ) English ASR task, which is a rather small task compared
to the real world LVCSR tasks. Therefore, a decision was made in this thesis to investigate the use of
DNNLMs to tackle the problem of LVCSR for morphologically rich languages. In addition, more attention
is given to the combination of DNNLMs with sub-word based LMs and morphology-based classes.

5.2 Feed-Forward Neural Network Language Models

In this section, we describe different architectures of multilayer feed-forward neural network LMs. This
includes shallow and deep neural network LMs. Moreover, we show how to use multilayer feed-forward
neural networks to estimate morpheme-based LMs enriched with morphology-based classes to deal with
LVCSR tasks of morphologically rich languages.

5.2.1 Shallow Neural Network Language Model

As previously mentioned in Section 5.1, a SNNLM uses a single hidden layer feed-forward neural network
that maps words into a continuous space and predicts the probability of a word given the continuous
representations of the preceding words of the history. The projection of words into a continuous space
is done jointly with the neural network training in a single process. This ensures the learning of the
most suitable projection matrix that best fits the probability estimation task. Thereby, words that are
semantically or grammatically related are hopefully mapped to similar locations in the continuous space.
Thus, the similarity measure among words is defined as being close in the multi-dimensional feature space.
The probability estimates are smooth functions of the continuous word representations, a small change in
the input features leads to a small change in the probability estimation. This gives the model a built-in
smoothing capability that enables it to achieve better generalization to unseen m-grams.

Figure 5.1 shows the architecture of a standard SNNLM. Assuming that the vocabulary size is N , each
vocabulary word is represented by a binary N dimensional indication vector having a value of one at the
index of that word and zero elsewhere. This is usually called the 1-of-N encoding. For an m-gram LM, to
estimate the probability of a word wn given the previous m− 1 history words hn, where hn = w

n−1
n−m+1, the

input is given to the neural network as the concatenation of all the indication vectors of these m−1 history
words. Then, a linear projection layer of size P is used to map each word to its continuous representation
as a point in the RP space. This layer uses a linear activation function. The projection matrix is tied
for all the m − 1 history words. The used encoding scheme simplifies the calculation of the projection
layer output since it is only needed to copy one row of the N × P dimensional projection matrix. The
m − 1 continuous feature vectors of the history words, having P values each, are concatenated together
to form the input of the hidden layer. Thus, the m − 1 history gram is now represented as a point in
the R(m−1)P space and given as input to the hidden layer. This hidden layer has H hidden units with
hyperbolic tangent activation function. This is followed by an output layer with N target units that use
the softmax function to produce the posterior probabilities p(wn = i∣hn). These posteriors make up the
LM probabilities of each word in the vocabulary given a specific history hn.

Let the linear activities of the projection layer be c = [cl] with l = 1, ..., (m − 1)P , U = [ujl] is the
weight matrix between the projection and the hidden layer, d = [dj] with j = 1, ...,H are the outputs
of the hidden layer, V = [vij] is the weight matrix between the hidden and the output layer, o = [oi]
with i = 1, ...,N are the values at the output layer before applying the activation function, p = [pi] with
i = 1, ...,N are the outputs of the network after applying the final softmax activation function, bj and ki
are the biases of the hidden and the output layers respectively, then the operations performed at every
layer of the neural network are given by the following set of equations:
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Figure 5.1. Architecture of a shallow NNLM (SNNLM) that estimates the model p(wn∣wn−1
n−m+1).

dj = tanh
⎛

⎝

(m−1)P

∑
l=1

ujlcl + bj
⎞

⎠
∀j = 1, ...,H (5.1)

oi =
H

∑
j=1

vijdj + ki ∀i = 1, ...,N (5.2)

pi =
eoi

∑
N
r=1 e

or
= p(wn = i∣hn) ∀i = 1, ...,N (5.3)

The importance of the bias terms bj and ki used in Equations 5.1 and 5.2 respectively is to allow the
neural network to shift the activation function to the left or right, which may be critical to learn complex
functions successfully. From the above operations, we can see that the neural network predicts the LM
probabilities of all the vocabulary words simultaneously given the input history words. In principle,
this model is able to predict the probability of any word given any history, where the history words are
viewed together as an interpolated point in the R(m−1)P space. The softmax normalization of Equation
5.3 guarantees the generation of a normalized probability distribution from the neural network. In fact,
performing this normalization for each LM probability is very time consuming due to the large size of
the output layer that is usually needed in practice, therefore, in [Schwenk 2007], several techniques are
developed to enable the usage of this model for the LVCSR tasks. The neural network training will be
discussed in Section 5.3. Whereas, the speeding up techniques will be discussed in Section 5.5.

Using matrix/vector notation, the above equations can be rewritten as [Schwenk 2007]:

d = tanh(U × c + b) (5.4)

o = V × d + k (5.5)

p =
exp(o)

∑
N
r=1 e

or
(5.6)

where matrices are denoted by upper case bold letters, and vectors are denoted by lower case bold letters.
The real functions tanh and exp, together with the division operation are performed element-wise.
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5.2.2 Deep Neural Network Language Model

Figure 5.2 shows the architecture the DNNLM. It is similar to the standard SNNLM, however it employs
several hidden layers of nonlinearities instead of a single one. The number of hidden layers is L and every
hidden layer has H hidden units with hyperbolic tangent activation function. The operations of Equation
5.1 are repeated for every hidden layer in the network in a cascaded manner such that every layer gives
its output to the input of the next one. The main concept behind this architecture is that every hidden
layer is supposed to learn a nonlinear transformation that captures the main variations in its input. The
level of abstraction increases gradually from the lower to the upper layer. At the topmost layer of the
network, the most complex and abstract information is well captured.
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Figure 5.2. Architecture of a deep NNLM (DNNLM) that estimates the model p(wn∣wn−1
n−m+1).

5.2.3 Deep Neural Network Language Model with Classes

To enrich the DNNLM in such a way that makes it more suitable for morphologically rich languages,
we use the so-called morpheme-based DNNLM with morphology-based classes. Thus, instead of using
the DNN to estimate the LM probabilities over word sequences, it is used to estimate the conditional
probabilities over a mixture of word and morpheme sequences presented at the input layer. In addition,
morphology-based classes derived on word and morpheme levels are added to the network input in order
to estimate more reliable probabilities with the highest level of generalization. The objective of this
setup is to combine the advantages of using morpheme-based LMs and morphology-based classes with the
advanced modeling capabilities of the DNNs. In order not to lose the benefits of the traditional backoff
m-gram LM, interpolation is performed between the DNNLM and the standard backoff m-gram LM.

A related previous work was performed in [Alexandrescu & Kirchhoff 2006], where SNNLMs are used to
estimate LMs for modern standard Arabic (MSA) using word-level classes as inputs to the network with
a focus on the PPL improvements only. Also, in [Kuo & Mangu+ 2009], syntactic features are utilized
with SNNLMs to perform LVCSR for MSA leading to significant reductions in WER. To the best of
our knowledge, the approach investigated in this chapter is the first trial to utilize DNNLMs to estimate
morpheme-based LMs in combination to the use of morphology-based classes on morpheme-level. It is
also the second trial to use the DNNLMs in general (see [Arisoy & Sainath+ 2012]). The proposed models
are evaluated on an Egyptian Arabic conversational telephone speech recognition task.

Figure 5.3 shows the architecture of the DNNLM that utilizes morphology-based classes assuming that
only one class of input words2 is added to the network, and that a trigram-like model is to be estimated.
In the general case, the model can utilize any number of classes for every history word, and can estimate
any m-gram-like model. To add these classes to the input of the network, a unified vocabulary is created

2For the sake of generality, the term word is used here to refer to a word or a morpheme.
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by putting together all the used words and class instances in a single hybrid vocabulary. Thereby, a
unified binary indication vector can be used to encode any word or class instance. A separate vector is
used for every type of input (word or class). For a given predicted word, its history words are expanded
by adding classes. Then, all the words and classes in the history are encoded as binary indication vectors
that are used as inputs to the DNN in a similar fashion as previously used for only words. If the word
is indicated by wn and the class is indicated by cn, then the DNN of Figure 5.3 is now estimating the
trigram-like model p(wn∣wn−1cn−1wn−2cn−2). In a similar way, more history words and more classes for
every history word can be incorporated in the DNNLM.
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Figure 5.3. Architecture of a deep NNLM (DNNLM) with input classes. The input encoding uses separate vectors
for words and their classes for every history position. The network estimates the model p(wn∣wn−1cn−1wn−2cn−2).

An alternative input encoding scheme is shown in Figure 5.4 that is similar to the one proposed in
[Alexandrescu & Kirchhoff 2006], where only one vector per history position is used to encode the word
and its classes at that position. This vector uses multiple values of one to indicate the presence of the
word and its classes at the input layer of the network. In fact, this can be thought of as a kind of tying
for some of the network parameters at the input layer. Although this tying might be useful, the encoding
scheme of Figure 5.3 is used in our experiments due to its consistency with the available software.

5.2.4 Lattice Rescoring

It can be seen in all the above neural network models that the generation of the required conditional LM
probabilities is very time consuming due to the heavy computations performed by the neural network
especially at the output layer (speeding up techniques are to discussed in Section 5.5). Therefore, it is
impractical to use this type of LM during the ASR search. Rather, it is used in the rescoring phase.

For a given DNNLM, let wn be the predicted word, hn represents the history words, and h̄n represents
the classes of the history words. Assume that the given DNNLM is estimating the probability distribution
p(wn∣hn, h̄n). For example, in the estimated model of Figure 5.3, hn = wn−2wn−1 and h̄n = cn−2cn−1.

There are two possible approaches to utilize the probabilities of this DNNLM. The first one is to
perform N-best rescoring for sentences expanded with classes. In this case, to combine the DNNLM with
the standard backoff m-gram LM, we need to perform N-best score combination as discussed previously in
Section 4.6.2. This is because a direct interpolation of both models is not possible. The second approach
is to perform lattice rescoring. In this chapter, only the second approach is investigated leaving the first
one as a future work.

In order to perform lattice rescoring, we need to estimate the word probability p(wn∣hn) from the
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Figure 5.4. Architecture of a deep NNLM (DNNLM) with input classes. The input encoding uses one combined vector
for each word and its class for every history position. The network estimates the model p(wn∣wn−1cn−1wn−2cn−2).

distribution p(wn∣hn, h̄n) provided by the DNNLM. For simplicity of illustration, assume a bigram
case with a single class for a single history word. Let wn be the predicted word, and let c(wn) de-
note the set of possible class instances assigned to wn. Thus, we need to estimate p(wn∣wn−1) given
p(wn∣wn−1, cn−1) ∀ cn−1 ∈ c(wn−1). This can be done using the following equation:

p(wn∣wn−1) = ∑
cn−1∈c(wn−1)

p(wn, cn−1∣wn−1)

= ∑
cn−1∈c(wn−1)

p(wn∣wn−1, cn−1) p(cn−1∣wn−1) (5.7)

The distribution p(wn∣wn−1, cn−1) is obtained from the DNNLM which ensures the normalization prop-
erty, such that ∑wn

p(wn∣wn−1, cn−1) = 1. The probability p(cn−1∣wn−1) is the probability of assigning
some particular class cn−1 to a given word wn−1. Therefore, it is called the class membership probability.
Here, it should be noted that different instances of the class can be assigned to the same word in different
positions, this is what we called before a soft class (review Section 4.3). For example, the same word
can have different POS-tags in different positions of the sentence. It is also necessary that this probabil-
ity satisfies the normalization constraint, thus ∑cn−1∈c(wn−1) p(cn−1∣wn−1) = 1. The following paragraphs
describe different methods to estimate p(cn−1∣wn−1).

Maximum approximation. To estimate p(cn−1∣wn−1), we could make an assumption that for a particular
value of cn−1, the probability p(cn−1∣wn−1) is close to one, whereas for all other values, it is close to zero.
Thus, under this assumption, the following maximum approximation can be used to estimate p(wn∣wn−1):

p(wn∣wn−1) = max
cn−1∈c(wn−1)

p(wn∣wn−1, cn−1) (5.8)

Uniform approximation. An alternative approach is to assume that p(cn−1∣wn−1) is uniformly distributed
over the set of possible classes c(wn−1). Thus, if ∣c(wn−1)∣ is the number of elements in the set c(wn−1),
then we have:

p(cn−1∣wn−1) =
1

∣c(wn−1)∣
(5.9)
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This leads to the following averaging equation to estimate p(wn∣wn−1):

p(wn∣wn−1) =
1

∣c(wn−1)∣
∑

cn−1∈c(wn−1)
p(wn∣wn−1, cn−1) (5.10)

Estimation from the training data. A third approach is to estimate p(cn−1∣wn−1) from the training
corpus, for example:

p(cn−1∣wn−1) =
N(cn−1,wn−1)

N(wn−1)

where the numerator represents the count of occurrences of class cn−1 with the word wn−1 in the training
data, whereas the denominator represents the count of word wn−1 in the training data. This leads to the
following estimation of p(wn∣wn−1):

p(wn∣wn−1) = ∑
cn−1∈c(wn−1)

p(wn∣wn−1, cn−1)
N(cn−1,wn−1)

N(wn−1)
(5.11)

Preliminary empirical results have shown that there is no significant difference in performance among
the three approaches described above. However, the uniform approximation performs a little better in
practice. Therefore, Equation 5.10 is used in our experiments to estimate p(wn∣wn−1).

In order to apply Equation 5.10, all the m-grams of the required length are extracted from the lattices
and expanded by adding all possible classes for each history word. The probabilities p(wn∣wn−1, cn−1) are
extracted from the DNNLM. Then, the averaging of Equation 5.10 is performed. Thereby, the classes at
the history side of the conditional probabilities are marginalized out to obtain word conditional proba-
bilities that are used to rescore the lattices. Moreover, these probabilities can be interpolated with the
probabilities obtained from a normal DNNLM that uses no classes at the input layer.

5.3 Back-Propagation Training Algorithm

All the different neural network architectures discussed in this chapter belong to the category of multilayer
feed-forward neural networks. This type of neural network can be trained using the standard back-
propagation algorithm [Rumelhart & Hinton+ 1986]. This algorithm seeks to minimize the value of a
given error (or loss) function over the training dataset. The error function is defined as the cross-entropy
between the actual neural network output and the target (or desired) output. The cross-entropy error
is used as an alternative to the famous mean square error (MSE). This is because the activations of
the output neurons represent a probability distribution. Therefore, the cross-entropy error indicates the
distance between what the network believes this distribution should be, and what the teacher (the target)
says it should be [Plunkett & Elman 1997]. Following a similar formulation as in [Schwenk 2007], we have
the error function:

E =
N

∑
i=1

tilog(pi) + λR (5.12)

where ti denotes the target output of the neural network. At the output layer, a target value of one is used
for the predicted word in the training example, whereas a value of zero is used for all other words. The
first part of the error function represents the cross-entropy between the output and the target probability
distributions. The second part is called a weight decay regularization term. The parameter λ is called the
weight decay coefficient. Assuming that only one hidden layer is used, the value of R is computed as:

R =
H

∑
j=1

(m−1)P

∑
l=1

u2
jl +

N

∑
i=1

H

∑
j=1

v2
ij (5.13)
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This is called a squared `2 norm regularizer, which is simply the sum of squared magnitudes of the network
weights. If a number of L hidden layers are used, then the weight decay term can be generalized as:

R =
H

∑
j=1

(m−1)P

∑
l=1

u2
jl(1) +

L

∑
l=2

H

∑
i=1

H

∑
j=1

u2
ij(l) +

N

∑
i=1

H

∑
j=1

v2
ij (5.14)

where uij(1) are the weights of the first hidden layer, and uij(l) are the weights of the lth hidden layer.

To minimize the error function 5.12, each weight or bias in the neural network is updated by an amount
proportional to the partial derivative of E with respect to this particular weight or bias, thus:

ω̃ = ω − η
∂E

∂ω
(5.15)

where ω is one of the weights or biases of the neural network, and η is called the learning rate or the step
size that determines how much an updating step influences the current values of the weights.

5.3.1 Weight Decay Regularization

The objective of the weight decay regularization term in the error function 5.12 is to prevent the neural
network from over-fitting the training data. An over-fitted neural network tends to exactly reproduce the
finest details of the training data which is not a desired behavior since it badly affects the generalization
capabilities of the network. Normally, the over-fitting behavior is related to the existence of large weights
in the neural network [Bishop 1996; Hagiwara & Fukumizu 2008]. When the neural network weights are
relatively high, the network tends to produce non-smooth outputs that are usually over-fitting the training
data. In contrast, when the network weights are relatively small, the network tends to produce smoother
and better generalized outputs. For this reason, the weight decay term is introduced in the error function
in order to penalize (or discourage) the large weights. This means that the network is prevented from over-
fitting by limiting the growth of its weights. For simplicity, imagine that the error function of Equation
5.12 is re-written as:

E(w) = Ê(w) + λw2 (5.16)

where E(w) is the regularized error as a function of the network weights w, Ê(w) is the original (non-
regularized) cross-entropy error, λw2 is the weight decay regularization term, and λ is the weight decay
coefficient. Applying gradient descent to this error function, we obtain:

ω̃ = ω − η
∂Ê

∂ω
−

1

2
ηλω (5.17)

Now, it can be seen that the addition of the regularization term to the weight update rule causes the
weights to decay in proportion to its size (− 1

2
ηλω). Moreover, the weights are exponentially decayed to

zero if no other update is presented by the original error term, i.e. when the derivative of the original error
is asymptotically close to zero. The weight decay coefficient λ determines how we trade off the original
error with the penalization of the large weights. Usually, an optimal λ is experimentally selected using a
validation dataset.

5.3.2 Stochastic Back-Propagation

In the classical learning theory, the minimization of the neural network error should be performed for the
sum of the error function E over all the training examples. However, this could lead to very slow conver-
gence for large training corpora [Bishop 1996]. Alternatively, the so-called stochastic back-propagation is
used, where the following steps are applied:

1. prepare the set of training examples used to train the neural network; these are all the m-grams
extracted from the training text corpus in the form: w1w2...wm.

2. randomly select one m-gram example from the training set, now the neural network should learn
p(wm = i∣w1,w2, ...,wm−1).
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3. supposing that the word wm is the ith word in the vocabulary, set the target outputs tj = δi=j , where
j = 1, ...,N , and δi=j is the Kronecker delta function (δi=j = 1.0 iff i = j; otherwise δi=j = 0.0).

4. calculate the gradient of the error function E with respect to all the network weights.

5. update all the network weights using the update formula 5.15.

6. randomly select a different training example and repeat the above procedure until all the training
examples are exhausted.

7. repeat the whole procedure for several epochs3.

After each epoch, the total error is measured over a held-out set to monitor the convergence of the training
process. In the above steps, it is noted that the gradient is back-propagated through the projection layer,
which means that the neural network learns the projection matrix that best fits the probability estimation
task. Using this training algorithm, it can be empirically shown that the outputs of a neural network
converge to the posterior probabilities. Thus, the neural network minimizes the perplexity of the training
data under the constraints given by its architecture and the limited computational resources available for
optimizing its parameters [Schwenk 2007].

5.3.3 Computational Complexity

In order to calculate one m-gram probability p(wn = i∣w
n−1
n−m+1) using one forward pass through the neural

network, the following set of calculations are needed. First, the calculations of the projection layer is
achieved by simple table look-up due to the use of the 1-of-N input encoding (review Section 5.2.1),
thus the calculation of the projection layer can be neglected from the complexity analysis. Second, the
calculation of the hidden and the output layer corresponds to a matrix/vector multiplication followed by
applying a non-linear function. The addition of the bias terms can also be neglected since it can be done
in one multiply-and-add operation. Then, the number of the floating point operations for a single hidden
layer neural network can be given as:

(m − 1)PH +H +HN +N

If L hidden layers are used, then the number of the floating point operations becomes:

(m − 1)PH +H + (L − 1)(H2
+H) +HN +N

It can be seen that the use of L hidden layers, which is the case in deeper neural networks, adds a
factor of (L − 1)(H2 +H) to the computational complexity. Since N is usually much larger than H, the
computational complexity is still dominated by the calculation of the output layer which is the most time
consuming part of the calculations. Therefore, it is impractical to train such large networks for typical
LVCSR tasks [Schwenk 2007], where the vocabulary might contain up to several hundred thousands
of words, and the training examples might reach several millions of examples. In Section 5.5, several
techniques are described to reduce the computational effort [Schwenk & Gauvain 2005].

It is worth noting that the computational complexity of the neural network LM increases only linearly
with the order of the used m-gram, the size of the vocabulary, and the number of hidden layers. This is
a major advantage compared to the backoff m-gram LM whose complexity increases exponentially with
the order of the used m-gram. Therefore, it is quite common to use longer span neural network LMs in
typical LVCSR tasks. However, it is not common in practice to use higher than 5-gram backoff LMs due
to the data sparsity problems.

5.4 Pre-Training Strategies

Having many hidden layers of nonlinearities in the DNN architecture makes the training of such DNNs
more prone to fall into poor local minima or plateaus of the non-convex training criterion compared to
SNNs [Auer & Herbster+ 1996; Larochelle & Bengio+ 2009]. Therefore, it becomes vital to think of more

3An epoch is one pass through all the training examples.
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efficient techniques to initialize the weights of the neural networks such that better initial solutions are
reached. The recently proposed DNN learning algorithms make use of the so-called pre-training strategies.
These strategies use the idea of greedily training the network to break down the learning problem into
easier steps in order to provide more effective hint about what the hidden units should learn. This is
considered as a form of regularization that prevents over-fitting even for deep networks that have many
degrees of freedom [Larochelle & Bengio+ 2009].

The main challenge in training DNNs is dealing with the strong dependencies that exist between the pa-
rameters across layers. Thus, it is important to adapt the lower layers in order to provide adequate input to
the upper layers, and at the same time adapt the upper layers to make good use of the lower layers [Erhan &
Bengio+ 2010]. For instance, the greedy layer-wise unsupervised pre-training provides an initialization
procedure followed by a fine-tuning step using a global supervised target. Examples of the unsupervised
pre-training make use of the restricted Boltzmann machines (RBMs) [Hinton & Osindero+ 2006], and the
nonlinear auto-encoder neural networks (AENNs) [Saund 1989]. As illustrated in [Larochelle & Bengio+

2009], the general paradigm of the greedy layer-wise unsupervised pre-training can be described in the
following steps (see Figure 5.5):

1. initialization: randomly initialize all the parameters of the neural network.

2. first phase: greedily train subsets of the neural network parameters using a layer-wise unsupervised
training criterion by repeating the following steps for every layer l ∈ {1, ..., L} using iterations through
all the training dataset.

a) use the current input training sample xt to produce representations ĥl−1(xt) and ĥl(xt) for
layers l − 1 and l respectively.

b) update the biases bl−1 and bl of layers l − 1 and l respectively, and update the in-between
weight matrix wl using some unsupervised learning algorithm.

3. second phase: fine-tune all the neural network parameters using back-propagation and gradient
descent using a global supervised error function.
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(a) Pre-training 1st hidden
layer.
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(b) Pre-training 2nd hidden
layer.
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(c) Pre-training 3rd hidden
layer.
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(d) Fine-tuning the whole
network.

Figure 5.5. General steps of a greedy layer-wise unsupervised pre-training algorithm.

An alternative pre-training approach presented in [Seide & Li+ 2011] is to perform a supervised layer-
wise discriminative pre-training using the target labels at every step, then applying a final supervised
global fine-tuning.

In the work of [Arisoy &Sainath+ 2012] on DNNLMs, a supervised discriminative pre-training approach
has been experimented following the description in [Seide & Li+ 2011]. However, no consistent gains have
been observed. In this thesis, investigations on pre-training strategies of DNNLMs is left as a future work.
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5.5 Speeding Up Techniques

In this section, we discuss several techniques used in our experiments to speed up both the training and
the recognition processes of the DNNLM. These techniques are originally proposed in [Schwenk 2007] in
order to make the neural network LM tractable for typical LVCSR tasks.

5.5.1 Lattice or N-best Rescoring

The use of the neural network LM during the ASR search could lead to a significant increase in the
recognition time. Alternatively, the neural network LM can be used to rescore lattices or N-best lists
produced by traditional speech decoders using the conventional backoff m-gram LMs. The required m-
gram probabilities needed to perform the rescoring can be generated off-line from the neural network and
stored in a table which is just looked-up in the rescoring time.

5.5.2 Regrouping Probability Requests

Usually, when requesting m-gram probabilities from a neural network LM, probabilities with the same
context hn are often requested multiple times. To speed up the calculation of the requested probabilities,
it is better that all these request are grouped together so as to avoid multiple forward passes on the neural
network since all the LM probabilities for the same context are immediately available on the output layer.

5.5.3 Vocabulary Truncation

As previously mentioned in Section 5.3, the computational complexity of the neural network LM is dom-
inated by the calculation of the output layer. Therefore, one approach to speed up the calculation
of the m-gram probabilities is to decrease the size of the output layer. Thus, instead of using a full
vocabulary size N , the output layer is limited to the s most frequent words, where s ≪ N . This is
called a short-list. Assume that the set of words in the short-list is indicated by S, where ∣S ∣ = s. Let
pNN(wn∣hn) ∶ wn ∈ S denote the LM probabilities of the words in the short-list calculated from the neural
network, and pBO(wn∣hn) ∶ wn ∉ S denotes the LM probabilities of the words not in the short-list obtained
form a standard backoff m-gram LM, then:

p(wn∣hn) = {
pNN(wn∣hn) ⋅ α(hn) if wn ∈ S
pBO(wn∣hn) otherwise

(5.18)

where, α(hn) is a normalization factor used to guarantee that the whole model sums to unity. To find
α(hn), we make the total probability mass of the model equal to one, thus:

α(hn) ∑
wn∈S

pNN(wn∣hn) + ∑
wn∉S

pBO(wn∣hn) = 1 (5.19)

Since the neural network LM is normalized over the short-list, then we have:

∑
wn∈S

pNN(wn∣hn) = 1 (5.20)

In addition, the backoff LM is normalized over the whole vocabulary, then we can use:

∑
wn∉S

pBO(wn∣hn) = 1 − ∑
wn∈S

pBO(wn∣hn) (5.21)

Substituting 5.20 and 5.21 into 5.19, we obtain:

α(hn) = ∑
wn∈S

pBO(wn∣hn) (5.22)
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Furthermore, it is possible to use the neural network LM to predict the probability mass of all the out-of-
short-list words. This is achieved by using a special output word (usually called unk) to group together all
the words that are not in the short-list. In this case, the other outputs of the neural network correspond
directly to the LM probabilities without any rescaling factors. Let this unk word be denoted by u, then
the probability of this special word, denoted by pNN(u∣hn), is used to rescale the probabilities obtained
from the backoff LM. Therefore, Equation 5.18 can be rewritten as:

p(wn∣hn) = {
pNN(wn∣hn) if wn ∈ S
α(hn) ⋅ pNN(u∣hn) ⋅ pBO(wn∣hn) otherwise

(5.23)

Since the neural network LM is now normalized over S ∪ {u}, then we have:

∑
wn∈S

pNN(wn∣hn) + pNN(u∣hn) = 1 (5.24)

Again, taking into account Equation 5.21, we obtain the new normalization factor α(hn), as:

α(hn) =
1

1 −∑wn∈S pBO(wn∣hn)
(5.25)

Instead of using short-lists, classing or factorization of the output layer can be used as presented in
[Mikolov & Kombrink+ 2011]. In this case, the neural network estimates the probability distribution over
classes of the words rather than the words themselves. In the work of this chapter, short-lists are used
with Equation 5.23 to calculate the LM probabilities over the complete vocabulary.

5.5.4 Bunch Mode

Another possible reduction in the computational effort of the neural network LM can be achieved by
propagating several examples at once to the neural network. This is known as bunch mode [Bilmes &
Asanovic+ 1997], which leads to the use of matrix/matrix operations rather than matrix/vector operations
(see Equations 5.4 and 5.5), thus:

D = tanh(U ×C +B) (5.26)

O = V ×D +K (5.27)

where B and K are the bias matrices obtained by duplicating the bias vectors b and k in each line
of the corresponding matrix. The real functions tanh is performed element-wise. These matrix/matrix
operations can be heavily optimized on the current CPU architectures (cf. [Schwenk 2007]).

5.5.5 Resampling the Training Data

One possible approach to speed up the training of the neural network is to avoid performing epochs
over the whole training data several times. Instead, a small random subset of the training data can
be selected at each epoch. The advantage of this procedure is that any amount of training data can
be used. In addition, the change in the training examples after each epoch adds noise to the training
process which increases the generalization performance. Moreover, After performing some epochs, it is
highly probable that all the training examples are covered. On the other hand, it might be important to
resample differently from different corpora. Thus, to use all the examples of a small in-domain corpus,
and take only small parts of a large complementary corpus.

5.6 Generating Morphemes and Classes for Egyptian Arabic

As previously mentioned in Section 5.2.3, the experiments of this chapter are performed on an Egyptian
Arabic conversational telephone speech recognition task. In order to use morpheme-based DNNLMs with
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morphology-based classes, first we need to find an efficient method to perform word decomposition and
to produce morpheme-level classes.

In fact, almost all the available Arabic morphological analyzers are specifically designed for modern
standard Arabic (MSA). However, one important property about Egyptian Arabic is that it shares a large
portion of the written vocabulary with MSA (review Section 1.9.1). This makes it possible to reuse the
MSA morphological analyzers to perform morphological decomposition and class derivation for Egyptian
Arabic with some acceptable margin of error. In this chapter, we reuse the morphological analyzer and
disambiguator for Arabic (MADA) [Habash & Rambow 2005, 2007] previously investigated for MSA (see
Sections 3.3.1 and 4.1.1).

5.6.1 Word Decomposition

The available LM training text is completely preprocessed using the MADA tool in order to perform
morphological analysis and disambiguation and produce the corresponding set of morphological tags
along with the associated word tokenization as described in Section 3.3.1. For the non-MSA words that
occur in the Egyptian Arabic text, MADA produces special unknown markers to indicate the inability to
analyze the words.

To get an idea of how MADA behaves differently with Egyptian Arabic than with MSA, we performed
some analysis on the unknown word rate. For a typical MSA text, the unknown word rate is around 1% to
3%. However, for some Egyptian Arabic text, the unknown word rate is around 10% to 12%. In addition,
MADA produces some additional errors in the already known MSA words that are used in Egyptian
Arabic in a different sense. Such words have deceptively the same surface forms as some well known MSA
words but they have completely different meanings and pronunciations in Egyptian Arabic. Given that
MADA achieves an accuracy of around 95% for analyzing MSA words as reported in [Habash & Rambow
2005], then this means that Egyptian Arabic words can be processed using MADA with an accuracy of
around 80% to 85%.

Based on the produced MADA tokenization, we produce decomposed words in the form of “ prefix+
stem +suffix”. For more details about the decomposition process, see Section 3.3.1.

5.6.2 Class Derivation

Starting from the set of MADA morphological tags along with the generated decomposition, we derive two
different classes, namely lexeme and morph as previously explained in Section 4.1.1. The LM training text
is rewritten so that every word is replaced by a vector of classes as in the form: W-<word>:L-<lexeme>:M-
<morph>. The same classes are similarly defined for morphemes as well as for words. For more details
and examples, see Section 4.1.1.

5.7 Experimental Results

As described in Appendix A, the LM training text have around 7M running full-words including the
following corpora: acoustic data transcriptions (140k words), web text (5M words), extra sources (1.5M
words). Each corpus of these three is used to estimate a separate backoff trigram LM, these LMs are then
linearly interpolated together to create a single background backoff trigram LM. The interpolation weights
are chosen so as minimize the perplexity over the development eca-dev corpus. The used interpolation
weights reveal that the LM built over the last corpus (1.5M words of extra sources) is the least influential
to the final model. Therefore, Only the first two corpora are used to train separate trigram neural network
LMs (NNLMs) in order to speed up the training process. The two NNLMs are also interpolated together
with the background backoff trigram LM to create a single model.

The parameterization of the neural network architecture follows the best reported settings in [Arisoy &
Sainath+ 2012]. Thus, if P is the feature dimension at the projection layer, H is the number of hidden
units in each hidden layer, L is the number of hidden layers, and N is the size of the output layer (length
of short-list). Then, we use the following settings: [P = 120; H = 500; L = 1,...,4; N = 10k to 20k].
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To incorporate morphology-based classes into NNLMs, we create a similar setup that estimates the
model p(wn∣wn−1, ln−1,mn−1,wn−2, ln−2,mn−2), where w is the word, l is the lexeme, and m is the morph.
To use this model for lattice rescoring, we follow the procedure described in Section 5.2.4.

It is worth noting that all possible types of parameter tuning are performed on eca-dev corpus, like
the optimization of the interpolation wights, the neural network learning rates, and the weight decay
coefficients. Whereas, the recognition results are only reported on the eca-eval corpus. Details about the
development and evaluation corpora are given in Appendix A.

Table 5.1 shows the results of recognition experiments performed on CallHome Egyptian colloquial
Arabic (ECA) evaluation corpus eca-eval for a word-based system using trigram NNLMs with different
number of hidden layers interpolated with a traditional backoff trigram LM. The backoff LM is used alone
for the baseline experiment. Two different versions of NNLMs are experimented with and without the
incorporation of lexeme and morph classes. We follow the 2 passes recognition setup of the Egyptian
Arabic testing system described in Appendix A, where a standard backoff trigram LM is used to produce
lattices which are then rescored using different models. The system uses a vocabulary of 350k full-words
that represent almost all the available distinct words in the training text.

Table 5.1. Recognition experiments on CallHome Egyptian colloquial Arabic (ECA) evaluation corpus eca-eval using
word-based neural network LMs (NNLMs) for lattice rescoring. vocabulary: 350k full-words, OOV rate = 1.4%, graph
(lattice) error rate (GER) = 37.2%.

hidden WER (ins/del) CER (ins/del)

LM layers classes [%] [%]

3-gram backoff - - 59.7 (2.8/24.4) 44.9 (8.5/26.1)

+ NNLM 1 - 59.2 (2.8/24.3) 44.2 (8.3/26.0)

2 59.4 (2.8/24.3) 44.3 (8.6/26.2)

3 59.1 (2.8/24.2) 44.2 (8.3/26.0)

4 59.2 (2.8/24.3) 44.3 (8.4/26.1)

+ NNLM 1 lexeme & morph 59.2 (2.7/24.3) 44.3 (8.4/26.1)

2 59.2 (2.7/24.3) 44.3 (8.4/26.1)

3 59.0 (2.7/24.2) 44.2 (8.3/26.0)

4 59.1 (2.7/24.3) 44.2 (8.3/26.0)

It can be seen that the use of a shallow NNLM improves the WER by [0.5% absolute (0.8% relative)]
compared to the traditional backoff LM. In addition, using a deeper NNLM with 3 hidden layers improves
the WER a little further by [0.6% absolute (1.0% relative)] compared to the traditional backoff LM.
Moreover, using lexeme and morph classes with a 3 hidden layer NNLM also improves the WER a little
further by [0.7% absolute (1.2% relative)] also compared to the traditional backoff LM.

Similarly, Table 5.2 shows the results of recognition experiments performed on eca-eval corpus for a
morpheme-based system using trigram NNLMs with and without lexeme and morph classes. In addition,
interpolation is performed between both types of NNLMs. The system uses a 250k vocabulary having
5k full-words + 245k morphemes which also represent almost all the available distinct words/morphemes
in the decomposed training text. The 5k full-words are the most frequent decomposable full-words in
the training data (see decomposition constraint (2) in Section 3.3.1). The choice of keeping exactly 5k
most frequent decomposable full-words in the recognition vocabulary is made after performing a series
of recognition experiments to minimize the WER over the development corpus eca-dev using gradually
increased number of full-words (see Figure 5.6).

It can be seen that initially going to a morpheme-based system improves the WER by [2.9% absolute
(4.9% relative)] compared to the traditional word-based backoff LM shown in Table 5.1. Using a NNLM
with 2 hidden layers significantly improves the WER by [0.8% absolute (1.4% relative)] compared to the
conventional morpheme-based backoff LM. Using a NNLM with lexeme and morph classes alone does not
lead to further improvement in the WER. However, interpolating this NNLM with the previous NNLM
that uses no classes achieves a little further improvement in the WER by [1.0% absolute (1.8% relative)]
compared to the conventional morpheme-based backoff LM.

Here, it is worth noting that the optimum number of hidden layers is 3 layers for the word-based system
and 2 layers for the morpheme-based system. This is because the degree of variation in the word domain
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Figure 5.6. Optimization of the number of decomposable full-words retained in the morpheme-based vocabulary
performed over eca-dev corpus using overall vocabulary size of 250k (best WER = 56.8% with 5k full-words). Baseline
WER on eca-dev using 350k full-words vocabulary = 56.9%.

Table 5.2. Recognition experiments on CallHome Egyptian colloquial Arabic (ECA) evaluation corpus eca-eval using
morpheme-based neural network LMs (NNLMs) for lattice rescoring. vocabulary: 250k (5k words + 245k morphemes),
OOV rate = 0.9%, graph (lattice) error rate (GER) = 32.3%.

hidden WER (ins/del) CER (ins/del)

LM layers classes [%] [%]

3-gram backoff - - 56.8 (2.9/19.1) 40.4 (9.0/20.6)

+ NNLM 1 - 56.1 (2.8/19.1) 40.05 (8.93/20.40)

2 56.0 (2.8/19.1) 40.0 (8.9/20.4)

3 56.2 (2.8/19.1) 40.1 (9.0/20.4)

4 56.0 (2.8/19.1) 40.0 (8.9/20.4)

+ NNLM 1 lexeme & morph 56.0 (2.8/19.1) 40.0 (8.9/20.4)

2 56.0 (2.8/19.1) 40.0 (8.9/20.3)

3 56.0 (2.8/19.1) 40.0 (8.9/20.4)

4 56.1 (2.8/19.1) 40.0 (8.9/20.4)

+ NNLM -
+ NNLM lexeme & morph

1 56.0 (2.8/19.1) 40.0 (8.9/20.3)

2 55.8 (2.7/19.2) 39.9 (8.9/20.4)

3 56.0 (2.8/19.1) 39.97 (8.9/20.3)

4 55.9 (2.7/19.1) 39.97 (8.9/20.3)
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is more than that in the morpheme domain. This means that, when using morpheme-based systems,
simpler NNLMs with less number of hidden layers are required and can even achieve better performance
compared to more complex NNLMs operating on full-words.

The final improvement in the WER compared to the traditional word-based backoff LM is [3.9% absolute
(6.5% relative)] using a threefold interpolation of: morpheme-based backoff LM + deep NNLM + deep
NNLM with lexeme and morph classes. Table 5.3 shows the word- and character-level perplexities for the
models listed in Tables 5.1 and 5.2.

Table 5.3. Word-/morpheme-level and character-level perplexities on CallHome Egyptian colloquial Arabic (ECA)
evaluation corpus eca-eval for different LMs (inv: perplexity for in-vocabulary text excluding the unk symbol; all:
perplexity for the whole text including the unk symbol; units: words or morphemes).

hidden word-/morpheme-level PPL char-level PPL
LM layers classes inv (#units) all (#units) inv (#chars) all (#chars)

full-words backoff - - 336.1 (17269) 330.2 (17514) 4.070 (71568) 3.991 (73396)

+ shallow NNLM 1 - 321.5 316.3 4.027 3.950
+ deep NNLM 3 - 323.9 318.2 4.034 3.956
+ deep NNLM 3 lexeme & morph 312.8 307.2 4.000 3.922

morphemes backoff - - 312.9 (17939) 308.4 (18093) 4.120 (72801) 4.063 (73971)

+ shallow NNLM 1 - 291.1 286.4 4.047 3.990
+ deep NNLM 2 - 290.5 285.3 4.045 3.986
+ deep NNLM 2 lexeme & morph 286.4 281.2 4.031 3.972
+ deep NNLM 2 -

+ deep NNLM 2 lexeme & morph 285.3 280.0 4.027 3.968

Figure 5.7 presents a comparative summary of the WERs obtained on eca-eval corpus using the models
introduced in this chapter. The figure illustrates the gradual improvement in the WER achieved by each
proposed step. The WER improvements are found statistically significant using a bootstrap method of
significance analysis described in [Bisani & Ney 2004], the probability of improvement (POIboot) ranges
between 95% and 97%.
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Figure 5.7. Comparison of recognition WERs [%] on Egyptian Arabic eca-eval corpus using different LMs.

Interpolation weights. In Figure 5.7, the last three bars represent the WERs for several models inter-
polated together. To clarify the relative importance of the individual LMs during linear interpolation,
we report the interpolation weights assigned to every LM. Figure 5.8 gives the interpolation weights as
percent values for the interpolated models. These weights are optimized over the eca-dev corpus.
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5.7 Experimental Results

 0

 10

 20

 30

 40

 50

 60

m
orphem

e shallow NNLM

m
orphem

e backoff LM

In
te

rp
ol

at
io

n 
w

ei
gh

t [
%

]

Language model

56.1

43.9

(a) morpheme-based: backoff LM + shallow NNLM.
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Chapter 5 Deep Neural Network Language Models

5.8 Summary

In this chapter, feed-forward deep neural network LMs (DNNLMs) with several hidden layers of nonlin-
earities have been investigated to perform LVCSR for Egyptian colloquial Arabic (ECA) conversational
telephone speech. The deep neural networks (DNNs) have been utilized to estimate morpheme-based
LMs, where a mixture of words and morphemes have been presented as inputs to the neural network. To
enhance the generalization of the models, morphology-based classes derived on word and morpheme levels
have been added to the network input. This is a novel approach that aims at combining the advantages
of using morpheme-based LMs and morphology-based classes with the advanced modeling of the DNNs.

The morpheme-based modeling aims at achieving better lexical coverage and reducing the severity of
the data sparsity problem. The use of morphology-based classes helps to promote the generalization of
the LMs. Whereas, the use of DNNLMs allows for improved smoothness and higher discrimination in
continuous space. The neural network LMs have been used to perform lattice rescoring after running
the ASR search with a traditional backoff LM. Recognition experiments have been conducted using the
state-of-the-art LVCSR systems.

The morphological analyzer and disambiguator tool (MADA) designed for modern standard Arabic
(MSA) has been reused to perform word decomposition and class generation for Egyptian Arabic. Ex-
perimental results have shown that the most influential step on the recognition performance is the use
of morpheme-based LMs. The second most influential step is the use of DNNLMs. Therein, the largest
improvement has been obtained by the first hidden layer, whereas a little additional improvement has been
acquired by using deeper neural networks. The third most influential step is the use of morphology-based
classes, which introduces a little further improvement. In all cases, linear interpolation of neural network
models with conventional backoff models has been a vital process to obtain the observed improvements.

The best recognition performance has been obtained by interpolating the following models: morpheme-
based backoff LM, morpheme-based DNNLM, and morpheme-based DNNLM with classes. Proper tests
have shown the statistical significance of the achieved WER improvements.

Future work. In order to improve the proposed methodologies presented in this chapter, the following
set of investigations are recommended as a future work:

1. Increasing the context length of the neural network models (i.e. going to 4, 5, or 7-gram LMs).

2. Optimizing the size of each layer of the neural network including the sizes of: the projection, the
hidden, and the output layers.

3. Using a different input encoding scheme for the DNNLMs with classes (see Figure 5.4).

4. Investigating the effect of different pre-training strategies on the DNNLMs (see Section 5.4).

5. Using different techniques to reduce the size of the output layer, such as classing or factorization of
the output layer, instead of simply using short-lists (see Section 5.5).

6. Investigating the use of N-best rescoring instead of lattice rescoring.

7. Using a morphological analysis tool designed for Egyptian Arabic rather than using MADA, which
is dedicated for MSA.
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Chapter 6

Scientific Contributions

The goal of this thesis has been to develop improved language modeling approaches that are intended
to be utilized for performing efficient large vocabulary continuous speech recognition (LVCSR) for mor-
phologically rich languages. The work of this thesis has been focused in three major directions that are
explored in parallel during the creation of the language models (LMs): the first is to investigate the use
of different types of sub-word units, the second is to incorporate various morphology-based classes in the
estimation of the LMs, the third is to explore the use of recent state-of-the-art modeling and parameter
estimation techniques. To enhance the performance of the proposed models, special attention has been
paid to combine these approaches together. Experiments have been conducted on modern standard Ara-
bic (MSA), Egyptian colloquial Arabic (ECA), German, and Polish LVCSR tasks. This work contains
the following contributions which address the aforementioned research directions:

Development of optimized sub-word based language models. Sub-word based language models have
been investigated using different types of graphemic sub-words in combination to full-words, like mor-
phemes and syllables. Different approaches have been used to break down the full-words into the required
types of sub-word units including: supervised and unsupervised word decomposition approaches, and
rule based syllabification. It has been shown that it is very influential to keep some number of the most
frequent full-words without decomposition as a part of the recognition vocabulary. A careful optimization
of the number of full-words has been found to have a high impact on the recognition performance. Very
large vocabularies have been employed in the recognition systems in order to discover the actual potential
of the sub-word based models compared to full-word models. This approach has lead to a significant in-
crease in the overall lexical coverage indicated by a considerable reduction in the out-of-vocabulary (OOV)
rates measured on the development and evaluation datasets. This has introduced a one step towards the
solution of the data sparsity and the poor lexical coverage problems. As a result, significant improvements
in the recognition performance have been achieved compared to the traditional full-word based LMs.

Joint language and pronunciation models. Joint language and pronunciation models have been inves-
tigated via incorporating sub-word pronunciations into LMs. This has been achieved by using a novel
type of sub-word unit called graphone which is a joint unit of a sub-word with its context dependent
pronunciation. In order to combine this approach with the previous graphemic sub-lexical approach,
novel types of graphones have been explored based on different types of sub-words, like morpheme-based
and syllable-based graphones in addition to the previously known fragment-based graphones. These gra-
phone models have been derived from grapheme-to-phoneme (G2P) conversion models. They have been
essentially utilized to cope with high OOV rates by spelling new words as sequences of graphones. For
Arabic LMs, a special type of units called diacritized sub-words have been used in place of graphones.
This approach has introduced improved models to deal with OOV words. As a result, improvements in
the recognition performance have been observed compared to the traditional full-word based LMs.

Development of extended hybrid language models. Extended hybrid LMs comprising mixed types of
lexical and sub-lexical units have been investigated. For example, these units have included: full-words,
morphemes, and morpheme-based graphones; or full-words, syllables, and syllable-based graphones in one
hybrid lexicon and LM. Mainly, full-words have been used to model the most frequent tokens in the training
data. Whereas, morphemes or syllables have been used to model the moderately frequent tokens. However,
morpheme-based graphones or syllable-based graphones have been used to model the least frequent tokens
in the training data. This mixture of multiple types of units have been used to perform open vocabulary
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Chapter 6 Scientific Contributions

LVCSR tasks, where systems operate over open and constantly changing vocabularies. To achieve the
best performance, an optimization has been performed on the numbers of the used vocabulary items of
each type of unit. Using such models, improvements in recognition performance have been achieved over
the traditional full-word based LMs.

Investigations on using morphology-based classes in language models. Various morphology-based
classes have been incorporated into the estimation of the LMs in order to overcome the data sparseness and
achieve higher levels of generalization. In this context, stream- and class-based LMs have been explored.
These models have exploited different morphology-based classes. This approach has been found to yield
better smoothing and better generalization with regard to unseen word sequences. In stream- and class-
based LMs, every class stream has been treated separately without considering any interaction with the
other classes during the backoff. Therefore, separate models have been built over every individual class.
In addition, linear interpolation have been used to combine multiple models together. This approach
has taken a step further towards the solution of the data sparsity problem by supporting sparse word
sequences with equivalence classes which are naturally more frequent. This method has shown significant
improvements in recognition performance over the use of traditional word-based models.

In addition, factored LMs (FLMs) have been investigated, where both words and their classes have been
viewed as generic factors. Every word has been considered as a vector of parallel factors over which the
probability estimation has been performed. Class streams have been jointly handled during the backoff
using a complex backoff mechanism defined by a so-called backoff graph. It has been shown that the
optimization of the FLM parameters is a crucial issue that needs a careful handling because it affects the
performance significantly. Although the FLM is a quite general and powerful model, it has been found
that it is very difficult to optimize its parameters for a given task. This is due to the huge space of the
FLM parameters. These parameters have been optimized using both manual and automatic optimization
techniques. Trials have been made to combine the scores of the FLMs with the scores of other models,
like the class-based LMs, during the N-best rescoring. Experimental results have shown improvements
using FLMs over the traditional word-based models.

Combining the benefits of sub-word based LMs and morphology-based classes. A novel approach
have been introduced to use morphology-based classes for sub-word based LMs, rather than for word-
based LMs. Thus, investigations have been performed to build stream-based, class-based, and factored
LMs over sequences of morphemes and their classes. These models have been shown to effectively retain
the benefits of the sub-word based LMs along with the advantages of using morphology-based classes.
Sub-words have been used to achieve better lexical coverage and reduce the influence of the data sparsity.
Whereas, the morphology-based classes have been used to achieve better generalization to unseen word
sequences. To estimate such models, classes have been derived on morpheme level. Different classes have
been utilized, like the morphology-based classes derived from the MADA Arabic morphological analyzer
and the German TreeTagger. An additional data-driven class generated based on a data-driven word
clustering algorithm has been used in the German LVCSR experiments. Experimental results have shown
similar significant improvements in recognition performance when using morphology-based classes on
sub-word level compared to the use of morphology-based classes on word level.

Investigations on hierarchical Pitman-Yor language models. Investigations have been made to combine
the use of sub-word based LMs and morphology-based classes with the recent state-of-the-art modeling
techniques. From among those techniques, hierarchical Pitman-Yor LMs (HPYLMs) have been investi-
gated. The HPYLM is a type of hierarchical Bayesian LM based on a coherent Bayesian probabilistic
model. It relies on the Pitman-Yor (PY) process, a generalization of the Dirichlet distribution. In fact,
it is considered as a direct generalization of the hierarchical Dirichlet LM. The HPYLM produces power-
law distributions over word frequencies, which has been found to be an important statistical property of
natural languages. The HPYLM has been utilized to estimate class-based LMs on morpheme level. The
resulting models are called hierarchical Pitman-Yor class-based LMs (HPYCLMs). Using such models,
it has been shown that all the benefits of the sub-word modeling, morphology-based classes, and the
efficiency of the HPYLM can be combined together in a single model. The sub-word models achieve
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better lexical coverage and reduce the data sparsity. The use of morphology-based classes helps to achieve
better generalization to unseen word sequences. On the other hand, the use of HPY models improves the
smoothness of the m-gram probabilities over the conventional modified Kneser-Ney (MKN) smoothing
for both normal word-based and class-based models.

The best results have been achieved using an extended interpolation of: modified Kneser-Ney and
hierarchical Pitman-Yor based models. All the models are morpheme-based with different class-based
LMs involved in the interpolation using all the available classes. The experimental results have shown
systematic improvements in recognition performance over all the test corpora.

Investigations on continuous space language models using feed-forward deep neural networks. Es-
timating the LMs in a discrete space suffers from inherent problems. The discrete nature of such models
makes it difficult to achieve high levels of generalization even after applying the most efficient smoothing
techniques, like the modified Kneser-Ney (MKN) smoothing of the backoff m-gram models. The discrete
LMs have particularly poor performance in cases of data sparseness due to the lack of a notion of simi-
larity among words. Since words are represented in a discrete space, it is not possible to perform a true
interpolation to approximate the probabilities of the unseen m-grams. As a result, still extremely small
probabilities are assigned to many valid word sequences even if large training corpora are used.

To avoid such problems, investigations have been made to estimate LMs in continuous space using
feed-forward deep multilayer neural networks, shortly known as deep neural networks (DNNs). These
models have been shown to be able to capture complex relationships from the input patterns. The
resulting LMs are called deep neural network LMs (DNNLMs). The basic idea is to convert the numerical
indexes of the words into a continuous representation and to use DNNs as probability estimators to
estimate conditional probabilities in continuous space. The DNNs have been trained via the stochastic
back-propagation algorithm to predict the next word at the output layer given the history words at the
input layer. Since the resulting distributions are smooth functions of the word representation, better
generalization to unknown m-grams has been achieved.

In addition, DNNs have been used to estimate sub-word based rather than full-word based LMs. More-
over, word- and morpheme-level classes have been fed into the inputs of the DNNs in order to estimate
robust probabilities for morphologically rich languages. To achieve the highest level of performance,
DNNLMs have been interpolated with the backoff m-gram LMs. Furthermore, interpolations have been
performed among: backoff LMs, normal DNNLMs without classes, and DNNLMs with input classes. The
interpolated models have been used to perform lattice rescoring after a traditional recognition pass. This
is a novel approach that combines the benefits of sub-word modeling and morphology-based classes, with
the improved state-of-the-art performance of the DNNLMs. Using this combination, the experimental
results have shown significant improvements in recognition performance.
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Chapter 7

Outlook

In this thesis, efficient language modeling approaches have been proposed to perform LVCSR tasks for
morphologically rich languages. In particular, several techniques have been investigated to build different
types of sub-word based LMs. In addition, investigations have been made to integrate various morphology-
based classes into the LM estimation process. Moreover, advanced state-of-the-art language modeling
techniques have been visited. A special attention has been given to combine all these approaches together
in order to achieve the optimal recognition performance. The presented approaches have succeeded to
improve over the optimized traditional approaches by up to 7% relative. However, the following theoretical
and experimental questions remain open and may serve as a starting point for further research:

Sub-word based language modeling.

• The simple approach of using sub-word based LMs comprising a set of morphemic sub-words and
some fraction of the high frequent full-words performs very well and is hardly outperformed by more
sophisticated approaches. The question is: is it possible to beat this approach by using different
ideas, like the use of an additional character-based or phoneme-based LM component that drags
the OOV rates to zero? or by using a hierarchical language modeling setup, where every region of
words is handeled by a different LM that uses its own type of sub-word unit? It could be easier to
accomplish this by using a weighted finite state transducer (WFST) based ASR search rather than
the traditional tree-based search.

• All the investigated sub-word based approaches are using flat models, where a single lexicon contains
all the different types of recognition units. During the search, the competition between different
units to recognize the same word is rather limited. The question is: is it possible to build a LM that
allows different types of units (e.g. fragments of arbitrary lengths) to compete together in recognizing
words? In such a way, the search process itself is responsible for selecting the best combination of
units to recognize a given sentence.

• One of the tedious and time consuming tasks that are highly effective in performing efficient recog-
nition using sub-word based LMs is to optimize the number of vocabulary items used from each
unit type. This is usually heavily dependent on the underlying language, corpus, and the used types
of units. Is there some technique that enables the automation of this process? or is there some
intuition for increasing or decreasing the number of items of a given type of unit? This is an open
question that needs to be investigated.

Language modeling with morphology-based classes.

• The LM techniques investigated in this thesis are heavily dependent on the quality of the used
classes. In this work, mainly morphology-based classes are utilized. Can those models be improved
by introducing different types of classes? For example data-driven, syntactic, or semantic classes.
If this is possible, how can we efficiently generate high quality classes of these types? A possible
way to do that is to use classes derived from syntactic parse trees generated by syntactic parsers, or
semantic classes generated by semantic annotators.

• The huge space of the factored language model (FLM) parameters turns the parameter optimization
into a complex and time consuming process. The optimum parameters are always heavily dependent
on the data and the available classes. Even if automatic search tools are used, it is not guaranteed
to come up with the best FLM topology. The existing algorithms for automatic selection of the
FLM parameters are not efficient enough and not all the possible values of the parameters are
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representable. This causes a drop in the performance of such models compared to simpler models.
The question is: can we come up with a better algorithm to efficiently optimize the parameters of
the FLM such that all the possible values of the parameters can be represented? This could help so
much to discover the potential of the FLMs.

• Since FLMs are quite general models of backoff, it could be interesting to think of extending them, for
example by introducing different techniques of estimating probabilities at every node of the backoff
graphs. One possible way is to use log-linear models or even neural network models for probability
estimation. The question is: can these extensions be implemented efficiently within reasonable
computational complexity? and how much improvement can they offer over the originally existing
models?

Improved language modeling techniques.

• So far, we have investigated the use of hierarchical Pitman-Yor LMs (HPYLMs) and feed-forward
deep neural network LMs (DNNLMs) as advanced state-of-the-art techniques that can improve
over the traditional backoff m-gram LMs. These models are used in estimating sub-word LMs
enriched with morphology-based classes. However, there are many other advanced techniques need
to be explored. For example, how much improvement can be gained if a maximum entropy LM
(MaxEntLM) is used? or alternatively, a random forest LM (RFLM)? or even if a structured LM is
used?

• The deep neural network (DNN) approach to language modeling is only at its beginning. Therefore,
there are a lot of open questions need to be answered. For example, what is the relationship between
increasing the depth of the network and increasing the size of the projection or hidden layer? What
is the effect of selecting a certain size of the short-list at the output layer compared to the effect
of classing or factorizing the output layer? What are the differences between the methods of pre-
training? Is pre-training still effective even if many hidden layers are used? Is it very influential to
tie the projection matrices used to project different history words in continuous space? To which
extent this tying is important? What if a fully connected input layer is used instead?

• Continuous space LMs are now getting increasingly popular. Among those continuous space LMs,
there are three major approaches that have shown the best performance in typical LVCSR tasks.
These are: the feed-forward deep neural network LM (DNNLM), the recurrent neural network LM
(RNNLM), and the long short-term memory LM (LSTMLM). We still lack a comprehensive com-
parison among those approaches in order to well understand the following: what are the strengths,
weaknesses, and similarities among them? What is the effect of changing different parameters here
and there? Is a sufficiently deep DNNLM equivalent to a RNNLM? and to which extent they are
equivalent?

• It was reported in few literature that a tied-mixture LM (TMLM) can outperform a shallow neural
network LM (SNNLM) in some ASR tasks. Nevertheless, there are no known trials that have been
made to compare the TMLM with the other types of continuous space LMs, like the DNNLM,
RNNLM, and LSTMLM. Therefore, the following questions are raised: under which constraints the
TMLM can outperform the SNNLM? Can the TMLM outperform those other types of continuous
space LMs as well? Is it possible to improve the TMLM approach such that it outperforms the other
approaches?
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Appendix A

Corpora and Systems

The experiments of this thesis have been conducted using four system setups. The first system has been
developed as a part of the modern standard Arabic (MSA) track of the GALE1 project. The second
system has been developed for the German language as a part of the Quaero2 project. The third system
has been developed for the Polish language also as a part of the Quaero project. The fourth system
has been developed for Egyptian colloquial Arabic (ECA) as a preparatory step for developing Egyptian
Arabic LVCSR systems within the framework of the BOLT3 project. The first three systems; built for
MSA, German and Polish languages; are developed at RWTH using the RASR toolkit4 [Rybach &Gollan+

2009; Rybach & Hahn+ 2011]. Whereas, the fourth system, built for ECA, is developed at IBM5 using the
IBM Attila speech recognition toolkit [Soltau & Saon+ 2010].

A.1 Development and Evaluation Corpora

Table A.1 summarizes the development and evaluation corpora for all languages. The MSA corpora are
provided within the GALE project, and they consist of audio material taken from broadcast news (BN)
and broadcast conversation (BC) domains. The German corpora contain audio material from European
parliament plenary sessions (EPPS), BN, and podcast sources. However, the Polish corpora contain only
BN and podcast material. The German and Polish corpora are distributed within the Quaero project.
The ECA corpora consist of spontaneous telephone conversations (TC), and they are publicly provided
by LDC6 under the name: CallHome Egyptian Arabic corpora7.

Table A.1. Experimental corpora for: modern standard Arabic, German, Polish, and Egyptian colloquial Arabic.
BN: broadcast news; BC: broadcast conversation; EPPS: European parliament plenary sessions; PC: Podcast; TC:
Telephone Conversations.

language corpus project domain #sentences #words #chars #hours

Modern ar-dev07 GALE BN+BC 880 19,002 105,142 2.5
standard ar-eval07 1,521 29,430 161,384 4.0
Arabic ar-tune07 229 4,739 26,582 0.7

German gr-dev09 QUAERO EPPS+BN 2,600 71,133 439,560 7.5
gr-eval09 +PC 1,039 36,319 226,395 3.8

Polish pl-dev10 QUAERO BN+PC 2,750 31,029 194,063 3.2
pl-eval10 2,720 31,771 192,722 3.5

Egyptian eca-dev Public CallHome 6,415 37,197 14,6533 3.6
Arabic eca-eval TC 3,044 17,514 73,396 1.7

1GALE: Global Autonomous Language Exploitation.
2http://www.quaero.org
3BOLT: Broad Operational Language Translation.
4RASR: The RWTH Aachen University Speech Recognition System.
5While the author was visiting IBM T. J. Watson Research Center, NY, USA.
6http://ldc.upenn.edu
7LDC catalog numbers: LDC97S45, LDC97T19, LDC2002S37, and LDC2002T38.
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A.2 Modern Standard Arabic Testing System

Acoustic front end. In this system, the acoustic front end consists of 16 mel-frequency cepstral coef-
ficients (MFCCs) derived from a bank of 20 filters. The MFCCs are normalized using cepstral mean
and variance normalization and augmented with a voicedness feature [Zolnay & Schlüter+ 2002]. A linear
discriminant analysis (LDA) matrix is used to project the concatenation of 9 consecutive feature vectors
in a sliding window to 45 components. This reduced feature vector is augmented with phoneme posterior
features estimated by a multilayer perceptron (MLP) neural network [Hoffmeister & Plahl+ 2007].

Acoustic models. The acoustic models consist of within-word and across-word triphone models trained
using 1100h of transcribed audio material taken from broadcast news (BN) and broadcast conversation
(BC) domains. Some parts of the transcripts are derived automatically or are quick transcriptions. The
basic acoustic models are trained based on maximum likelihood (ML) training. Speaker variations are
compensated by applying vocal tract length normalization (VTLN) to the MFCC filterbank and speaker
adaptive training (SAT) based on constrained maximum likelihood linear regression (CMLLR) (also known
as feature space MLLR (fMLLR)). The models are enhanced by performing discriminative training (DT)
based on minimum phone error (MPE) criterion [Povey & Woodland 2002b]. More details about the
acoustic models are found in [Rybach & Hahn+ 2007; Vergyri & Mandal+ 2008].

Language models, vocabularies, and lexicons. The LM training corpora consist of around 206 Million
running words including text data from Agile Arab text, FBIS, TDT4 and GALE BN and BC data.
The recognition vocabularies are selected out of the text corpora using the ML approach as described
in [Venkataraman & Wang 2003], where we seek to maximized the probability over some in-domain held-
out text. The same text corpora are used to estimate backoff m-gram LMs with the modified Kneser-
Ney (MKN) smoothing using the SRILM toolkit [Stolcke 2002]. The MSA lexicons contain around 4
pronunciations per word. The missing pronunciations are generated using the grapheme-to-phoneme
(G2P) conversion approach described in [Bisani & Ney 2008].

Speech decoder. The speech decoder works in 3 passes. In the first pass, within-word acoustic models
are used without speaker adaptation. The second pass uses across-word speaker adapted models via
constrained maximum likelihood linear regression (CMLLR). Then, a third pass with additional maximum
likelihood linear regression (MLLR) adaptation is performed. In each of the three passes, a bigram LM
is used to produce lattices which are rescored using higher order backoff m-gram LMs. Optionally, at the
third pass, N-best lists are produced and rescored using advanced LMs. The development and evaluation
corpora are shown in Table A.1.

A.3 German Testing System

Acoustic front end. This system uses an acoustic front end that is similar to the MSA system front end
described in Section A.2.

Acoustic models. The acoustic models are across-word triphone models trained using about 343h of
transcribed audio material taken from BN, BC, European parliament plenary sessions (EPPS), read
articles, dialogs, and web data. The acoustic models are trained based on ML training method. Similar
to the MSA setup, speaker variations are compensated by applying VTLN and CMLLR based SAT
[Sundermeyer & Nußbaum-Thom+ 2011].

Language models, vocabularies, and lexicons. The LM training corpora consist of around 306 Million
running words including data from TAZ newspaper, and web collected German news articles. The vocab-
ularies are selected out of the text corpora by choosing some number of the top most frequent words. The
same text corpora are used to estimate backoff m-gram LMs smoothed with the MKN smoothing via the
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SRILM toolkit [Stolcke 2002]. The German lexicons contain around 1.2 pronunciations per word. The
missing pronunciations are generated using the G2P conversion approach shown in [Bisani & Ney 2008].

Speech decoder. The speech decoder works in 2 passes. In the first pass, across-word acoustic models are
used without speaker adaptation. The second pass uses the same acoustic models with speaker adaptation
based on both CMLLR and MLLR. In each pass, a 4-gram backoff LM is used to construct the search
space. No lattice or N-best rescoring is performed in the first pass. However, at the second pass, N-best
lists are produced and rescored with advanced LMs. The development and evaluation corpora are also
shown in Table A.1.

A.4 Polish Testing System

Acoustic front end. In this system, the acoustic front end uses VTLN normalized MFCC features. The
VTLN warping factors are estimated using a Gaussian mixture model (GMM) classifier. The front end is
completed by performing cepstral mean normalization and LDA over a window of 7 consecutive frames.
This results in a 45 dimensional feature vector [Lööf & Gollan+ 2009].

Acoustic models. A Spanish acoustic model is ported to Polish, through the use of a manually con-
structed phoneme mapping. The use of acoustic models from one language as a starting point for training
acoustic models for a different language is called cross-language bootstrapping [Schultz & Waibel 2001].
This initial model is refined through iterative recognition and retraining of the un-transcribed audio data.
The unsupervised retraining is performed on about 128h of un-transcribed recordings from EPPS. The
training process includes the use of a maximum a-posteriori (MAP) adaptation and SAT based on CM-
LLR. The CMLLR matrices for SAT were estimated using confidence measures. The details of the training
process are described in [Lööf & Gollan+ 2009].

Language models, vocabularies, and lexicons. The LM training corpora consist of around 630 Million
running words including data from EPPS, Kurier Lubelski, Nowosci, in addition to the official data
provided by the Quaero project which are mainly taken from news and blogs. The vocabularies are
selected out of the text corpora by choosing some number of the top most frequent words. Also, the
same text corpora are used to estimate backoff m-gram LMs smoothed via the MKN smoothing using
the SRILM toolkit [Stolcke 2002]. The Polish lexicons contain around 1.0 pronunciation per word. The
missing pronunciations are generated using the G2P conversion approach described in [Bisani &Ney 2008].

Speech decoder. The speech decoder works in 3 passes. In the first pass, across-word acoustic models
are used without speaker adaptation. The second pass applies speaker adaptation based on CMLLR.
The third pass applies additional MLLR adaptation. A 5-gram LM is used to construct the search space
of each pass. No lattice or N-best rescoring is performed. The development and evaluation corpora are
shown in Table A.1.

A.5 Egyptian Colloquial Arabic Testing system

Acoustic front end. In this system, the acoustic front end uses VTLN normalized Perceptual linear
predictive (PLP) features. The VTLN warping is performed using a set of warping functions that are
chosen to maximize the likelihood of frames that align to speech under a model that uses a single,
full-covariance Gaussian per context dependent state [Soltau & Kingsbury+ 2005b]. The features are
normalized using speaker-based cepstral mean and variance normalization. An LDA transform is used
over a window of 9 consecutive frames in order to reduce the feature dimensionality to 40.
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Acoustic models. The acoustic models are quinphone across-word models trained using about 16h of
transcribed telephone conversational speech from the CallHome Egyptian Arabic speech corpora. The
models are initialized using flat-start training and then refined with context dependent maximum like-
lihood (ML) and discriminative training (DT) based on boosted maximum mutual information (bMMI)
criterion. The ML training is interleaved with the estimation of a global semi-tied covariance (STC) trans-
form. Also, CMLLR transforms are applied in training. The detailed general training recipe is similar to
the one described in [Soltau & Saon+ 2010].

Language models, vocabularies, and lexicons. The LM training corpora have around 7 Million running
words including: acoustic transcriptions (140k words), web text (5M words), extra sources (1.5M words).
The vocabularies are selected out of the text corpora using the ML approach described in [Venkataraman &
Wang 2003]. The same text corpora are used to estimate backoff m-gram LMs with the MKN smoothing
via the SRILM toolkit [Stolcke 2002]. A grapheme-based lexicon is used where the pronunciations are the
same as the word orthographies.

Speech decoder. The speech decoder works in 2 passes. In the first pass, CMLLR adaptation is per-
formed. The second pass uses MLLR adaptation in a form of regression trees. In each pass, a trigram
backoff m-gram LM smoothed using the MKN smoothing is used to construct the search space and to
produce lattices which are then rescored using different advanced LMs.
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Symbols and Acronyms

In this appendix, all relevant mathematical symbols and acronyms which are used in this thesis are defined
for convenience. Detailed explanations are given in the corresponding chapters.

B.1 Mathematical Symbols

xT1 sequence of acoustic observations, xT1 ∶= x1x2...xT

wN1 word sequence, wN1 ∶= w1w2wN

p(wN1 ∣xT1 ) posterior probability of a word sequence wN1 given the acoustic observations xT1
p(xT1 ∣wN1 ) acoustic model, probability of a sequence of acoustic observations xT1 given a word

sequence wN1
p(wN1 ) language model, prior probability of a word sequence wN1
p(aL1 ∣wN1 ) pronunciation model, probability of a sequences of sub-word units aL1 given a sequence

of words wN1
sT1 sequence of states in a hidden Markov model

p(xT1 , s
T
1 ∣wN1 ) joint probability of observing the sequence xT1 of acoustic feature vectors and the state

sequence sT1 given a hidden Markov model representing the word sequence wN1
p(xt∣st;w

N
1 ) emission probability of observing a feature vector xt given state st in a hidden Markov

model representing the word sequence wN1
N (µ,σ2) Gaussian distribution with mean µ and variance σ2

x ∼ N (µ,σ2) Gaussian distributed random variable x with mean µ and variance σ2

p(wn∣w
n−1
n−m+1) conditional m-gram probability of a word wn given m − 1 history words wn−1

n−m+1

Hp(T ) cross-entropy of a language model p on a dataset T

PPp(T ) perplexity of a language model p on a dataset T

GER(L) graph error rate of a lattice L

Lev(wN1 , w̃
Ñ
1 ) Levenshtein distance between a hypothesized word sequence wN1 and a reference word

sequence w̃Ñ1
GD(L) graph density of a lattice L

E(L) set of arcs in a lattice L

NER(B) N -best error rate for a set of N -best sentences B

ε the empty word

G,Φ sets of letters and phonemes in a G2P model

G∗,Φ∗ sets of all possible orthographies and pronunciations that could be used by a G2P
model

g,ϕ word orthographic form and its corresponding pronunciation in a G2P model

(g,ϕ) graphone, a joint pair of an orthographic form g and a pronunciation ϕ

qN1 sequence of N graphones qN1 ∶= q1q2...qN , where qk = (gk, ϕk)

Q graphone inventory in a G2P model
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S(g,ϕ) set of all joint segmentations of an orthographic form g and a pronunciation ϕ

wn, cn word and assigned class at time (position) n

ĉ(⋅) deterministic mapping function that maps the word to its corresponding class

N(⋅) count of occurrences of some event in a given dataset, ex: N(wn, cn) = count of
occurrences of word wn in class cn

δi=j Kronecker delta function with a boolean subscript parameter, equals one for i = j, and
zero otherwise

λi weight assigned to model i during linear interpolation or model combination

Λ weights of a set of models within model combination, Λ = (λ1, ..., λK) for K models
(p1, ..., pK)

f1∶K
n bundle of K parallel factors used in a factored LM for a word at position n, f1∶K

n =

f1
n, f

2
n, ..., f

K
n

g(f, f1, f2, ..., fM) non-negative generalized backoff function in a factored LM with M + 1 variables, 1
child variable f and M parent variables f1, f2, ..., fM

∣s∣ number of items in a set s

PY (d, θ,G0) PY process with a discount parameter 0 ≤ d < 1, a strength parameter θ > −d, and a
prior mean vector G0

hn context (or history) of a word wn in an m-gram LM that consists of m − 1 previous
words, hn = w

n−1
n−m+1

h̄n features of the history words hn; for every word in hn, there could be one or more
corresponding features in h̄n

P number of units in a projection layer of a neural network LM

H number of units in a hidden layer of a neural network LM

N number of units in the output layer of a neural network LM, might be the size of a
short-list of the input vocabulary

cl activity of a unit l in the projection layer of a neural network LM

dj activity of a unit j in the hidden layer of a neural network LM

oi activity of a unit i in the output layer of a neural network LM before applying the
activation function

pi activity of a unit i in the output layer of a neural network LM after applying the
activation function, usually softmax activation

ti target output of a unit i in a neural network LM

bj , ki biases of the hidden and the output layers of a neural network LM

ujl neural network weight linking the unit l of the projection layer to the unit j of the
hidden layer

vij neural network weight linking the unit j of the hidden layer to the unit i of the output
layer

E regularized error function used in a neural network training

Ê non-regularized error function used in a neural network training

λR weight decay regularization term with a weight decay coefficient λ used in a regularized
error function of a neural network training

η learning rate used in a neural network training

ω abstract parameter of a neural network, usually represents a weight or a bias

ĥ(x) hidden representation of input x generated using an unsupervised neural network pre-
training procedure
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AENN Auto-Encoder Neural Network

ASR Automatic Speech Recognition

BAMA Buckwalter Arabic Morphological Analyzer

BC Broadcast Conversation

BIC Bayesian Information Criterion

bMMI boosted Maximum Mutual Information

BN Broadcast News

CD Contrastive Divergence

CER Character Error Rate

CLM Class-based Language Model

CMLLR Constrained Maximum Likelihood Linear Regression

CN Confusion Network

CRP Chinese Restaurant Process

DARPA Defense Advanced Research Projects Agency

DAT Dialog Act Tagging

DMC Discriminative Model Combination

DNN Deep Neural Network

DNNLM Deep Neural Network Language Model

DP Dynamic Programming

DT Discriminative Training

EA Evolutionary Algorithms

ECA Egyptian Colloquial Arabic

EM Expectation Maximization

EPPS European Parliament Plenary Sessions

FFT Fast Fourier Transform

FLM Factored Language Model

fMLLR feature space Maximum Likelihood Linear Regression

G2P Grapheme-to-Phoneme Conversion

GA Genetic Algorithm

GD Graph Density

GER Graph Error Rate

GMLM Gaussian Mixture Language Model

GMM Gaussian Mixture Model

GPB Generalized Parallel Backoff

GT Gammatone filter

HCRP Hierarchical Chinese Restaurant Process

HLDA Heteroscedastic Linear Discriminant Analysis

HMM Hidden Markov Model

HPY Hierarchical Pitman-Yor

HPYCLM Hierarchical Pitman-Yor Class-based Language Model

HPYLM Hierarchical Pitman-Yor Language Model

IBM International Business Machines Corporation
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IKN Interpolated Kneser-Ney Smoothing

KN Kneser-Ney Smoothing

LDA Linear Discriminant Analysis

LM Language Model

LSA Latent Semantic Analysis

LSTM Long Short-Term Memory Neural Network

LSTMLM Long Short-Term Memory Language Model

LVCSR Large Vocabulary Continuous Speech Recognition

MADA Morphological Analyzer and Disambiguator tool for Arabic

MAP Maximum A-posterior

MDL Minimum Description Length

MFCC Mel-Frequency Cepstral Coefficients

MKN Modified Kneser-Ney

ML Maximum Likelihood

MLLR Maximum Likelihood Linear Regression

MLP Multilayer Perceptron Neural Network

MPE Minimum Phone Error

MSA Modern Standard Arabic

MSE Mean Square Error

MT Machine Translation

NER N-best Error Rate

NNLM Neural Network Language Model

OOV Out-Of-Vocabulary

PER Phoneme Error Rate

PLP Perceptual Linear Predictive features

POI Probability Of Improvement

POS Part-Of-Speech

PPL Perplexity

PY Pitman-Yor

RBM Restricted Boltzmann Machines

RNN Recurrent Neural Network

RNNLM Recurrent Neural Network Language Model

RWTH Rheinisch Westfälische Technische Hochschule

SAT Speaker Adaptive Training

SNN Shallow Neural Network

SNNLM Shallow Neural Network Language Model

SRILM SRI Language Modeling Toolkit

STC Semi-Tied Covariance

SVD Singular Value Decomposition

TC Telephone Conversations

TDP Time Distortion Penalty

TMLM Tied-Mixture Language Model

TMLM-CO Tied-Mixture Language Model with bigram CO-occurrence based features

TMLM-NN Tied-Mixture Language Model with Neural Network based features
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VTLN Vocal Tract Length Normalization

WER Word Error Rate

WFST Weighted Finite State Transducer

WSJ Wall Street Journal
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B. Möbius. Word and syllable models for German text-to-speech synthesis. In Proc. of the Third ESCA
Workshop on Speech Synthesis, pages 59 – 64, NSW, Australia, November 1998.

126



Appendix B Bibliography

A. Mohamed, G. Dahl, and G. E. Hinton. Deep belief networks for phone recognition. In NIPS Workshop
on Deep Learning for Speech Recognition and Related Applications, Whistler, BC, Canada, 2009.

M. Mohri and M. Riley. Weighted determinization and minimization for large vocabulary speech recogni-
tion. In Proc. European Conf. on Speech Communication and Technology, Rhodes, Greece, September
1997.

S. Molau. Normalization in the acoustic feature space for improved speech recognition. PhD thesis, RWTH
Aachen, Aachen, Germany, 2003.

H. Murveit, J. Butzberger, V. Digalakis, and M. Weintraub. Progressive-search algorithms for large-
vocabulary speech recognition. In HLT ’93: Proceedings of the workshop on Human Language Technol-
ogy, pages 87 – 90, Morristown, NJ, USA, 1993. Association for Computational Linguistics.

M. Nakamura and K. Shikano. A study of English word category prediction based on neural networks. In
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, volume 2, pages 731 – 734, Glasgow,
Scotland, May 1989.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-
TR-93-1, Dept. of Computer Science, University of Toronto, September 1993.

S. B. Needleman and C. D. Wunsch. An efficient method applicable to the search for similarities in the
amino acid sequences of two proteins. Journal of Molecular Biology, 48(3):444 – 453, March 1970.

H. Ney. The use of a one-stage dynamic programming algorithm for connected word recognition. IEEE
Transactions on Speech and Audio Processing, 32(2):263 – 271, April 1984.

H. Ney. Acoustic modeling of phoneme units for continuous speech recognition. In L. Torres, E. Masgrau,
and M. A. Lagunas, editors, Signal Processing V: Theories and Applications, Fifth European Signal
Processing Conference, pages 65 – 72. Elsevier Science Publishers B. V., Barcelona, Spain, 1990.

H. Ney and X. Aubert. A word graph algorithm for large vocabulary continuous speech recognition.
In Proc. Int. Conf. on Spoken Language Processing, volume 3, pages 1355 – 1358, Yokohama, Japan,
September 1994.

H. Ney, D. Mergel, A. Noll, and A. Paeseler. A data-driven organization of the dynamic programming
beam search for continuous speech recognition. In Proc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, pages 833 – 836, Dallas, TX, USA, April 1987.
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H. Ney. RASR - the RWTH Aachen University open source speech recognition toolkit. In Proc. IEEE
Automatic Speech Recognition and Understanding Workshop, Honolulu, Hawaii, USA, December 2011.

T. Sainath, B. Kingsbury, and B. Ramabhadran. Improvements in using deep belief networks for large
vocabulary continuous speech recognition. Technical report, IBM, Speech and Language Algorithms
Group, 2012.

H. Sakoe. Two-level DP-matching - A dynamic programming-based pattern matching algorithm for con-
nected word recognition. IEEE Transactions on Speech and Audio Processing, 27:588 – 595, December
1979.

C. Samuelsson and W. Reichl. A class-based language model for large-vocabulary speech recognition
extracted from part-of-speech statistics. In Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, volume 1, pages 537 – 540, Phoenix, AZ, USA, March 1999.

R. Sarikaya, M. Afify, and B. Kingsbury. Tied-mixture language modeling in continuous space. In Proc.
Human Language Technology Conf. of the North American Chapter of the ACL, pages 459 – 467,
Boulder, CO, USA, June 2009.

R. Sarikaya, A. Emami, M. Afify, and B. Ramabhadran. Continuous space language modeling techniques.
In Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pages 5186 – 5189, Dallas, Texas,
USA, 2010.

E. Saund. Dimensionality-reduction using connectionist networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 11(3):304 – 314, March 1989.
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